JMAP REGENTS BY DATE

NY Algebra II Regents Exam Questions from Spring 2015 to January 2024 Sorted by Date www.jmap.org

2015 Algebra II Common Core State Standards Sample Items

1 If a, b, and c are all positive real numbers, which graph could represent the sketch of the graph of
$p(x)=-a(x+b)\left(x^{2}-2 c x+c^{2}\right)$?

2 Which equation represents a parabola with a focus of $(0,4)$ and a directrix of $y=2$?

1) $y=x^{2}+3$
2) $y=-x^{2}+1$
3) $y=\frac{x^{2}}{2}+3$
4) $y=\frac{x^{2}}{4}+3$

3 If the terminal side of angle θ, in standard position, passes through point $(-4,3)$, what is the numerical value of $\sin \theta$?

1) $\frac{3}{5}$
2) $\frac{4}{5}$
3) $-\frac{3}{5}$
4) $-\frac{4}{5}$

4 A study of the annual population of the red-winged blackbird in Ft. Mill, South Carolina, shows the population, $B(t)$, can be represented by the function $B(t)=750(1.16)^{t}$, where the t represents the number of years since the study began. In terms of the monthly rate of growth, the population of red-winged blackbirds can be best approximated by the function

1) $B(t)=750(1.012)^{t}$
2) $B(t)=750(1.012)^{12 t}$
3) $B(t)=750(1.16)^{12 t}$
4) $B(t)=750(1.16)^{\frac{t}{12}}$

5 Use the properties of rational exponents to determine the value of y for the equation:

$$
\frac{\sqrt[3]{x^{8}}}{\left(x^{4}\right)^{\frac{1}{3}}}=x^{y}, x>1
$$

6 Write $(5+2 y i)(4-3 i)-(5-2 y i)(4-3 i)$ in $a+b i$ form, where y is a real number.

7 Use an appropriate procedure to show that $x-4$ is a factor of the function $f(x)=2 x^{3}-5 x^{2}-11 x-4$. Explain your answer.

8 Solve algebraically for all values of x : $\sqrt{x-5}+x=7$

9 Monthly mortgage payments can be found using the formula below:

$$
M=\frac{P\left(\frac{r}{12}\right)\left(1+\frac{r}{12}\right)^{n}}{\left(1+\frac{r}{12}\right)^{n}-1}
$$

$M=$ monthly payment
$P=$ amount borrowed
$r=$ annual interest rate
$n=$ number of monthly payments

The Banks family would like to borrow \$120,000 to purchase a home. They qualified for an annual interest rate of 4.8%. Algebraically determine the fewest number of whole years the Banks family would need to include in the mortgage agreement in order to have a monthly payment of no more than $\$ 720$.

10 Solve the following system of equations algebraically for all values of x, y, and z :

$$
\begin{gathered}
x+3 y+5 z=45 \\
6 x-3 y+2 z=-10 \\
-2 x+3 y+8 z=72
\end{gathered}
$$

11 Write an explicit formula for a_{n}, the nth term of the recursively defined sequence below.

$$
\begin{aligned}
& a_{1}=x+1 \\
& a_{n}=x\left(a_{n-1}\right)
\end{aligned}
$$

For what values of x would $a_{n}=0$ when $n>1$?

12 Stephen's Beverage Company is considering whether to produce a new brand of cola. The company will launch the product if at least 25% of cola drinkers will buy the product. Fifty cola drinkers are randomly selected to take a blind taste-test of products A, B, and the new product. Nine out of fifty participants preferred Stephen's new cola to products A and B. The company then devised a simulation based on the requirement that 25% of cola drinkers will buy the product. Each dot in the graph shown below represents the proportion of people who preferred Stephen's new product, each of sample size 50 , simulated 100 times.

Proportion Preferring Stephen's Product
Assume the set of data is approximately normal and the company wants to be 95% confident of its results. Does the sample proportion obtained from the blind taste-test, nine out of fifty, fall within the margin of error developed from the simulation? Justify your answer. The company decides to continue developing the product even though only nine out of fifty participants preferred its brand of cola in the taste-test. Describe how the simulation data could be used to support this decision.

13 In contract negotiations between a local government agency and its workers, it is estimated that there is a 50% chance that an agreement will be reached on the salaries of the workers. It is estimated that there is a 70% chance that there will be an agreement on the insurance benefits. There is a 20% chance that no agreement will be reached on either issue. Find the probability that an agreement will be reached on both issues. Based on this answer, determine whether the agreement on salaries and the agreement on insurance are independent events. Justify your answer.

14 The ocean tides near Carter Beach follow a repeating pattern over time, with the amount of time between each low and high tide remaining relatively constant. On a certain day, low tide occurred at 8:30 a.m. and high tide occurred at 3:00 p.m. At high tide, the water level was 12 inches above the average local sea level; at low tide it was 12 inches below the average local sea level. Assume that high tide and low tide are the maximum and minimum water levels each day, respectively. Write a cosine function of the form $f(t)=A \cos (B t)$, where A and B are real numbers, that models the water level, $f(t)$, in inches above or below the average Carter Beach sea level, as a function of the time measured in t hours since 8:30 a.m. On the grid below, graph one cycle of this function.

People who fish in Carter Beach know that a certain species of fish is most plentiful when the water level is increasing. Explain whether you would recommend fishing for this species at 7:30 p.m. or 10:30 p.m. using evidence from the given context.

15 What is the solution set of the equation $\frac{3 x+25}{x+7}-5=\frac{3}{x}$?

1) $\left\{\frac{3}{2}, 7\right\}$
2) $\left\{\frac{7}{2},-3\right\}$
3) $\left\{-\frac{3}{2}, 7\right\}$
4) $\left\{-\frac{7}{2},-3\right\}$

16 Functions f, g, and h are given below.

$$
\begin{aligned}
& f(x)=\sin (2 x) \\
& g(x)=f(x)+1
\end{aligned}
$$

Which statement is true about functions f, g, and h ?

1) $f(x)$ and $g(x)$ are odd, $h(x)$ is even.
2) $f(x)$ and $g(x)$ are even, $h(x)$ is odd.
3) $f(x)$ is odd, $g(x)$ is neither, $h(x)$ is even.
4) $f(x)$ is even, $g(x)$ is neither, $h(x)$ is odd.

17 The expression $\frac{6 x^{3}+17 x^{2}+10 x+2}{2 x+3}$ equals

1) $3 x^{2}+4 x-1+\frac{5}{2 x+3}$
2) $6 x^{2}+8 x-2+\frac{5}{2 x+3}$
3) $6 x^{2}-x+13-\frac{37}{2 x+3}$
4) $3 x^{2}+13 x+\frac{49}{2}+\frac{151}{2 x+3}$

18 The solutions to the equation $-\frac{1}{2} x^{2}=-6 x+20$ are

1) $-6 \pm 2 i$
2) $-6 \pm 2 \sqrt{19}$
3) $6 \pm 2 i$
4) $6 \pm 2 \sqrt{19}$

19 What is the completely factored form of
$k^{4}-4 k^{2}+8 k^{3}-32 k+12 k^{2}-48$?

1) $(k-2)(k-2)(k+3)(k+4)$
2) $(k-2)(k-2)(k+6)(k+2)$
3) $(k+2)(k-2)(k+3)(k+4)$
4) $(k+2)(k-2)(k+6)(k+2)$

20 Which statement is incorrect for the graph of the function $y=-3 \cos \left[\frac{\pi}{3}(x-4)\right]+7$?

1) The period is 6 .
2) The amplitude is 3 .
3) The range is $[4,10]$.
4) The midline is $y=-4$.

21 Algebraically determine the values of x that satisfy the system of equations below.

$$
\begin{aligned}
& y=-2 x+1 \\
& y=-2 x^{2}+3 x+1
\end{aligned}
$$

22 The results of a poll of 200 students are shown in the table below:

	Preferred Music Style		
	Techno	Rap	Country
Female	54	25	27
Male	36	40	18

For this group of students, do these data suggest that gender and preferred music styles are independent of each other? Justify your answer.

23 For the function $f(x)=(x-3)^{3}+1$, find $f^{-1}(x)$.

24 Given: $h(x)=\frac{2}{9} x^{3}+\frac{8}{9} x^{2}-\frac{16}{13} x+2$

$$
k(x)=-|0.7 x|+5
$$

State the solutions to the equation $h(x)=k(x)$, rounded to the nearest hundredth.

25 Algebraically prove that the difference of the squares of any two consecutive integers is an odd integer.

26 Rewrite the expression $\left(4 x^{2}+5 x\right)^{2}-5\left(4 x^{2}+5 x\right)-6$ as a product of four linear factors.

27 After sitting out of the refrigerator for a while, a turkey at room temperature $\left(68^{\circ} \mathrm{F}\right)$ is placed into an oven at 8 a.m., when the oven temperature is $325^{\circ} \mathrm{F}$. Newton's Law of Heating explains that the temperature of the turkey will increase proportionally to the difference between the temperature of the turkey and the temperature of the oven, as given by the formula below:

$$
T=T_{a}+\left(T_{0}-T_{a}\right) e^{-k t}
$$

$T_{a}=$ the temperature surrounding the object
$T_{0}=$ the initial temperature of the object
$t=$ the time in hours
$T=$ the temperature of the object after t hours
$k=$ decay constant
The turkey reaches the temperature of approximately $100^{\circ} \mathrm{F}$ after 2 hours. Find the value of k, to the nearest thousandth, and write an equation to determine the temperature of the turkey after t hours. Determine the Fahrenheit temperature of the turkey, to the nearest degree, at 3 p.m.

28 Seventy-two students are randomly divided into two equally-sized study groups. Each member of the first group (group 1) is to meet with a tutor after school twice each week for one hour. The second group (group 2), is given an online subscription to a tutorial account that they can access for a maximum of two hours each week. Students in both groups are given the same tests during the year. A summary of the two groups' final grades is shown below:

	Group 1	Group 2
$\overline{\mathrm{x}}$	80.16	83.8
S_{x}	6.9	5.2

Calculate the mean difference in the final grades (group 1 - group 2) and explain its meaning in the context of the problem. A simulation was conducted in which the students' final grades were rerandomized 500 times. The results are shown below.

Use the simulation to determine if there is a significant difference in the final grades. Explain your answer.

29 Given $z(x)=6 x^{3}+b x^{2}-52 x+15, z(2)=35$, and $z(-5)=0$, algebraically determine all the zeros of $Z(x)$.

30 Two versions of a standardized test are given, an April version and a May version. The statistics for the April version show a mean score of 480 and a standard deviation of 24. The statistics for the May version show a mean score of 510 and a standard deviation of 20. Assume the scores are normally distributed. Joanne took the April version and scored in the interval 510-540. What is the probability, to the nearest ten thousandth, that a test paper selected at random from the April version scored in the same interval? Maria took the May version. In what interval must Maria score to claim she scored as well as Joanne?

31 Titanium-44 is a radioactive isotope such that every 63 years, its mass decreases by half. For a sample of titanium- 44 with an initial mass of 100 grams, write a function that will give the mass of the sample remaining after any amount of time. Define all variables. Scientists sometimes use the average yearly decrease in mass for estimation purposes. Use the average yearly decrease in mass of the sample between year 0 and year 10 to predict the amount of the sample remaining after 40 years. Round your answer to the nearest tenth. Is the actual mass of the sample or the estimated mass greater after 40 years? Justify your answer.

0616AII Common Core State Standards

1 When $b>0$ and d is a positive integer, the expression (3b) ${ }^{\frac{2}{d}}$ is equivalent to

1) $\frac{1}{(\sqrt[d]{3 b})^{2}}$
2) $(\sqrt{3 b})^{d}$
3) $\frac{1}{\sqrt{3 b^{d}}}$
4) $(\sqrt[d]{3 b})^{2}$

2 Julie averaged 85 on the first three tests of the semester in her mathematics class. If she scores 93 on each of the remaining tests, her average will be 90. Which equation could be used to determine how many tests, T, are left in the semester?

1) $\frac{255+93 T}{3 T}=90$
2) $\frac{255+90 T}{3 T}=93$
3) $\frac{255+93 T}{T+3}=90$
4) $\frac{255+90 T}{T+3}=93$

3 Given i is the imaginary unit, $(2-y i)^{2}$ in simplest form is

1) $y^{2}-4 y i+4$
2) $-y^{2}-4 y i+4$
3) $-y^{2}+4$
4) $y^{2}+4$

4 Which graph has the following characteristics?

- three real zeros
- as $x \rightarrow-\infty, f(x) \rightarrow-\infty$
- as $x \rightarrow \infty, f(x) \rightarrow \infty$

1)
2)
3)

5 The solution set for the equation $\sqrt{56-x}=x$ is

1) $\{-8,7\}$
2) $\{-7,8\}$
3) $\{7\}$
4) $\}$

6 The zeros for $f(x)=x^{4}-4 x^{3}-9 x^{2}+36 x$ are

1) $\{0, \pm 3,4\}$
2) $\{0,3,4\}$
3) $\{0, \pm 3,-4\}$
4) $\{0,3,-4\}$

7 Anne has a coin. She does not know if it is a fair coin. She flipped the coin 100 times and obtained 73 heads and 27 tails. She ran a computer simulation of 200 samples of 100 fair coin flips. The output of the proportion of heads is shown below.

Given the results of her coin flips and of her computer simulation, which statement is most accurate?

1) 73 of the computer's next 100 coin flips will be heads.
2) 50 of her next 100 coin flips will be heads.
3) Her coin is not fair.
4) Her coin is fair.

8 If $g(c)=1-c^{2}$ and $m(c)=c+1$, then which statement is not true?

1) $g(c) \cdot m(c)=1+c-c^{2}-c^{3}$
2) $g(c)+m(c)=2+c-c^{2}$
3) $m(c)-g(c)=c+c^{2}$
4) $\frac{m(c)}{g(c)}=\frac{-1}{1-c}$

9 The heights of women in the United States are normally distributed with a mean of 64 inches and a standard deviation of 2.75 inches. The percent of women whose heights are between 64 and 69.5 inches, to the nearest whole percent, is

1) 6
2) 48
3) 68
4) 95

10 The formula below can be used to model which scenario?

$$
\begin{aligned}
& a_{1}=3000 \\
& a_{n}=0.80 a_{n-1}
\end{aligned}
$$

1) The first row of a stadium has 3000 seats, and each row thereafter has 80 more seats than the row in front of it.
2) The last row of a stadium has 3000 seats, and each row before it has 80 fewer seats than the row behind it.
3) A bank account starts with a deposit of $\$ 3000$, and each year it grows by 80%.
4) The initial value of a specialty toy is $\$ 3000$, and its value each of the following years is 20% less.

11 Sean's team has a baseball game tomorrow. He pitches 50% of the games. There is a 40% chance of rain during the game tomorrow. If the probability that it rains given that Sean pitches is 40%, it can be concluded that these two events are

1) independent
2) dependent
3) mutually exclusive
4) complements

12 A solution of the equation $2 x^{2}+3 x+2=0$ is

1) $-\frac{3}{4}+\frac{1}{4} i \sqrt{7}$
2) $-\frac{3}{4}+\frac{1}{4} i$
3) $-\frac{3}{4}+\frac{1}{4} \sqrt{7}$
4) $\frac{1}{2}$

13 The Ferris wheel at the landmark Navy Pier in Chicago takes 7 minutes to make one full rotation. The height, H, in feet, above the ground of one of the six-person cars can be modeled by
$H(t)=70 \sin \left(\frac{2 \pi}{7}(t-1.75)\right)+80$, where t is time, in minutes. Using $H(t)$ for one full rotation, this car's minimum height, in feet, is

1) 150
2) 70
3) 10
4) 0

14 The expression $\frac{4 x^{3}+5 x+10}{2 x+3}$ is equivalent to

1) $2 x^{2}+3 x-7+\frac{31}{2 x+3}$
2) $2 x^{2}-3 x+7-\frac{11}{2 x+3}$
3) $2 x^{2}+2.5 x+5+\frac{15}{2 x+3}$
4) $2 x^{2}-2.5 x-5-\frac{20}{2 x+3}$

15 Which function represents exponential decay?

1) $y=2^{0.3 t}$
2) $y=1.2^{3 t}$
3) $y=\left(\frac{1}{2}\right)^{-t}$
4) $y=5^{-t}$

16 Given $f^{-1}(x)=-\frac{3}{4} x+2$, which equation represents $f(x)$?

1) $f(x)=\frac{4}{3} x-\frac{8}{3}$
2) $f(x)=-\frac{4}{3} x+\frac{8}{3}$
3) $f(x)=\frac{3}{4} x-2$
4) $f(x)=-\frac{3}{4} x+2$

17 A circle centered at the origin has a radius of 10 units. The terminal side of an angle, θ, intercepts the circle in Quadrant II at point C. The y-coordinate of point C is 8 . What is the value of $\cos \theta$?

1) $-\frac{3}{5}$
2) $-\frac{3}{4}$
3) $\frac{3}{5}$
4) $\frac{4}{5}$

18 Which statement about the graph of $c(x)=\log _{6} x$ is false?

1) The asymptote has equation $y=0$.
2) The graph has no y-intercept.
3) The domain is the set of positive reals.
4) The range is the set of all real numbers.

19 The equation $4 x^{2}-24 x+4 y^{2}+72 y=76$ is equivalent to

1) $4(x-3)^{2}+4(y+9)^{2}=76$
2) $4(x-3)^{2}+4(y+9)^{2}=121$
3) $4(x-3)^{2}+4(y+9)^{2}=166$
4) $4(x-3)^{2}+4(y+9)^{2}=436$

20 There was a study done on oxygen consumption of snails as a function of pH , and the result was a degree 4 polynomial function whose graph is shown below.

Which statement about this function is incorrect?

1) The degree of the polynomial is even.
2) There is a positive leading coefficient.
3) At two pH values, there is a relative maximum value.
4) There are two intervals where the function is decreasing.

21 Last year, the total revenue for Home Style, a national restaurant chain, increased 5.25% over the previous year. If this trend were to continue, which expression could the company's chief financial officer use to approximate their monthly percent increase in revenue? [Let m represent months.]

1) $(1.0525)^{m}$
2) $(1.0525)^{\frac{12}{m}}$
3) $(1.00427)^{m}$
4) $(1.00427)^{\frac{m}{12}}$

22 Which value, to the nearest tenth, is not a solution of $p(x)=q(x)$ if $p(x)=x^{3}+3 x^{2}-3 x-1$ and $q(x)=3 x+8$?

1) -3.9
2) -1.1
3) 2.1
4) 4.7

23 The population of Jamesburg for the years 2010-2013, respectively, was reported as follows: 250,000 250,937 251,878 252,822
How can this sequence be recursively modeled?

1) $j_{n}=250,000(1.00375)^{n-1}$
2) $j_{n}=250,000+937^{(n-1)}$
3) $j_{1}=250,000$
$j_{n}=1.00375 j_{n-1}$
4) $j_{1}=250,000$
$j_{n}=j_{n-1}+937$
24 The voltage used by most households can be modeled by a sine function. The maximum voltage is 120 volts, and there are 60 cycles every second. Which equation best represents the value of the voltage as it flows through the electric wires, where t is time in seconds?
5) $V=120 \sin (t)$
6) $V=120 \sin (60 t)$
7) $V=120 \sin (60 \pi t)$
8) $V=120 \sin (120 \pi t)$

25 Solve for x : $\frac{1}{x}-\frac{1}{3}=-\frac{1}{3 x}$
26 Describe how a controlled experiment can be created to examine the effect of ingredient X in a toothpaste.

27 Determine if $x-5$ is a factor of $2 x^{3}-4 x^{2}-7 x-10$. Explain your answer.

28 On the axes below, graph one cycle of a cosine function with amplitude 3 , period $\frac{\pi}{2}$, midline $y=-1$, and passing through the point $(0,2)$.

29 A suburban high school has a population of 1376 students. The number of students who participate in sports is 649. The number of students who participate in music is 433 . If the probability that a student participates in either sports or music is $\frac{974}{1376}$, what is the probability that a student participates in both sports and music?

30 The directrix of the parabola $12(y+3)=(x-4)^{2}$ has the equation $y=-6$. Find the coordinates of the focus of the parabola.

31 Algebraically prove that $\frac{x^{3}+9}{x^{3}+8}=1+\frac{1}{x^{3}+8}$, where $x \neq-2$.

32 A house purchased 5 years ago for $\$ 100,000$ was just sold for $\$ 135,000$. Assuming exponential growth, approximate the annual growth rate, to the nearest percent.

33 Solve the system of equations shown below algebraically.

$$
\begin{aligned}
& (x-3)^{2}+(y+2)^{2}=16 \\
& 2 x+2 y=10
\end{aligned}
$$

34 Alexa earns $\$ 33,000$ in her first year of teaching and earns a 4% increase in each successive year. Write a geometric series formula, S_{n}, for Alexa's total earnings over n years. Use this formula to find Alexa's total earnings for her first 15 years of teaching, to the nearest cent.

35 Fifty-five students attending the prom were randomly selected to participate in a survey about the music choice at the prom. Sixty percent responded that a DJ would be preferred over a band. Members of the prom committee thought that the vote would have 50% for the DJ and 50% for the band. A simulation was run 200 times, each of sample size 55 , based on the premise that 60% of the students would prefer a DJ. The approximate normal simulation results are shown below.

Using the results of the simulation, determine a plausible interval containing the middle 95% of the data. Round all values to the nearest hundredth. Members of the prom committee are concerned that a vote of all students attending the prom may produce a $50 \%-50 \%$ split. Explain what statistical evidence supports this concern.

36
Which function shown below has a greater average rate of change on the interval $[-2,4]$? Justify your answer.

\mathbf{x}	$\mathbf{f}(\mathbf{x})$
-4	0.3125
-3	0.625
-2	1.25
-1	2.5
0	5
1	10
2	20
3	40
4	80
5	160
6	320

$$
g(x)=4 x^{3}-5 x^{2}+3
$$

37 Drugs break down in the human body at different rates and therefore must be prescribed by doctors carefully to prevent complications, such as overdosing. The breakdown of a drug is represented by the function $N(t)=N_{0}(e)^{-r t}$, where $N(t)$ is the amount left in the body, N_{0} is the initial dosage, r is the decay rate, and t is time in hours. Patient $A, A(t)$, is given 800 milligrams of a drug with a decay rate of 0.347 . Patient $B, B(t)$, is given 400 milligrams of another drug with a decay rate of 0.231 . Write two functions, $A(t)$ and $B(t)$, to represent the breakdown of the respective drug given to each patient. Graph each function on the set of axes below.

To the nearest hour, t, when does the amount of the given drug remaining in patient B begin to exceed the amount of the given drug remaining in patient A ? The doctor will allow patient A to take another 800 milligram dose of the drug once only 15% of the original dose is left in the body. Determine, to the nearest tenth of an hour, how long patient A will have to wait to take another 800 milligram dose of the drug.

0816AII Common Core State Standards

1 Which equation has $1-i$ as a solution?

1) $x^{2}+2 x-2=0$
2) $x^{2}+2 x+2=0$
3) $x^{2}-2 x-2=0$
4) $x^{2}-2 x+2=0$

2 Which statement(s) about statistical studies is true?
I. A survey of all English classes in a high school would be a good sample to determine the number of hours students throughout the school spend studying.
II. A survey of all ninth graders in a high school would be a good sample to determine the number of student parking spaces needed at that high school.
III. A survey of all students in one lunch period in a high school would be a good sample to determine the number of hours adults spend on social media websites.
IV. A survey of all Calculus students in a high school would be a good sample to determine the number of students throughout the school who don't like math.

1) I, only
2) II, only
3) I and III
4) III and IV

3 To the nearest tenth, the value of x that satisfies $2^{x}=-2 x+11$ is

1) 2.5
2) 2.6
3) 5.8
4) 5.9

4 The lifespan of a 60-watt lightbulb produced by a company is normally distributed with a mean of 1450 hours and a standard deviation of 8.5 hours. If a 60 -watt lightbulb produced by this company is selected at random, what is the probability that its lifespan will be between 1440 and 1465 hours?

1) 0.3803
2) 0.4612
3) 0.8415
4) 0.9612

5 Which factorization is incorrect?

1) $4 k^{2}-49=(2 k+7)(2 k-7)$
2) $a^{3}-8 b^{3}=(a-2 b)\left(a^{2}+2 a b+4 b^{2}\right)$
3) $m^{3}+3 m^{2}-4 m+12=(m-2)^{2}(m+3)$
4) $t^{3}+5 t^{2}+6 t+t^{2}+5 t+6=(t+1)(t+2)(t+3)$

6 Sally's high school is planning their spring musical. The revenue, R, generated can be determined by the function $R(t)=-33 t^{2}+360 t$, where t represents the price of a ticket. The production cost, C, of the musical is represented by the function $C(t)=700+5 t$. What is the highest ticket price, to the nearest dollar, they can charge in order to not lose money on the event?

1) $t=3$
2) $t=5$
3) $t=8$
4) $t=11$

7 The set of data in the table below shows the results of a survey on the number of messages that people of different ages text on their cell phones each month.

Age Group	Text Messages per Month		
	$0-10$	$11-50$	Over 50
$15-18$	4	37	68
$19-22$	6	25	87
$23-60$	25	47	157

If a person from this survey is selected at random, what is the probability that the person texts over 50 messages per month given that the person is between the ages of 23 and 60 ?

1) $\frac{157}{229}$
2) $\frac{157}{312}$
3) $\frac{157}{384}$
4) $\frac{157}{456}$

8 A recursive formula for the sequence $18,9,4.5, \ldots$ is

1) $g_{1}=18$

$$
g_{n}=\frac{1}{2} g_{n-1}
$$

2) $g_{n}=18\left(\frac{1}{2}\right)^{n-1}$
3) $g_{1}=18$

$$
g_{n}=2 g_{n-1}
$$

4) $g_{n}=18(2)^{n-1}$

9 Kristin wants to increase her running endurance.
According to experts, a gradual mileage increase of 10% per week can reduce the risk of injury. If Kristin runs 8 miles in week one, which expression can help her find the total number of miles she will have run over the course of her 6 -week training program?

1) $\sum_{n=1}^{6} 8(1.10)^{n-1}$
2) $\sum_{n=1}^{6} 8(1.10)^{n}$
3) $\frac{8-8(1.10)^{6}}{0.90}$
4) $\frac{8-8(0.10)^{n}}{1.10}$

10 A sine function increasing through the origin can be used to model light waves. Violet light has a wavelength of 400 nanometers. Over which interval is the height of the wave decreasing, only?

1) $(0,200)$
2) $(100,300)$
3) $(200,400)$
4) $(300,400)$

11 The expression $\frac{x^{3}+2 x^{2}+x+6}{x+2}$ is equivalent to

1) $x^{2}+3$
2) $x^{2}+1+\frac{4}{x+2}$
3) $2 x^{2}+x+6$
4) $2 x^{2}+1+\frac{4}{x+2}$

12 A candidate for political office commissioned a poll. His staff received responses from 900 likely voters and 55% of them said they would vote for the candidate. The staff then conducted a simulation of 1000 more polls of 900 voters, assuming that 55% of voters would vote for their candidate. The output of the simulation is shown in the diagram below.

Given this output, and assuming a 95% confidence level, the margin of error for the poll is closest to

1) 0.01
2) 0.03
3) 0.06
4) 0.12

13 An equation to represent the value of a car after t months of ownership is $v=32,000(0.81)^{\frac{t}{12}}$. Which statement is not correct?

1) The car lost approximately 19% of its value each month.
2) The car maintained approximately 98% of its value each month.
3) The value of the car when it was purchased was $\$ 32,000$.
4) The value of the car 1 year after it was purchased was $\$ 25,920$.

14 Which equation represents an odd function?

1) $y=\sin x$
2) $y=\cos x$
3) $y=(x+1)^{3}$
4) $y=e^{5 x}$

15 The completely factored form of $2 d^{4}+6 d^{3}-18 d^{2}-54 d$ is

1) $2 d\left(d^{2}-9\right)(d+3)$
2) $2 d\left(d^{2}+9\right)(d+3)$
3) $2 d(d+3)^{2}(d-3)$
4) $2 d(d-3)^{2}(d+3)$

16 Which diagram shows an angle rotation of 1 radian on the unit circle?
1)

)
2)

3)

17 The focal length, F, of a camera's lens is related to the distance of the object from the lens, J, and the distance to the image area in the camera, W, by the formula below.

$$
\frac{1}{J}+\frac{1}{W}=\frac{1}{F}
$$

When this equation is solved for J in terms of F and W, J equals

1) $F-W$
2) $\frac{F W}{F-W}$
3) $\frac{F W}{W-F}$
4) $\frac{1}{F}-\frac{1}{W}$

18 The sequence $a_{1}=6, a_{n}=3 a_{n-1}$ can also be written as

1) $a_{n}=6 \cdot 3^{n}$
2) $a_{n}=6 \cdot 3^{n+1}$
3) $a_{n}=2 \cdot 3^{n}$
4) $a_{n}=2 \cdot 3^{n+1}$

19 Which equation represents the set of points equidistant from line ℓ and point R shown on the graph below?

1) $y=-\frac{1}{8}(x+2)^{2}+1$
2) $y=-\frac{1}{8}(x+2)^{2}-1$
3) $y=-\frac{1}{8}(x-2)^{2}+1$
4) $y=-\frac{1}{8}(x-2)^{2}-1$

20 Mr. Farison gave his class the three mathematical rules shown below to either prove or disprove. Which rules can be proved for all real numbers?

$$
\begin{array}{ll}
\text { I } & (m+p)^{2}=m^{2}+2 m p+p^{2} \\
\text { II } & (x+y)^{3}=x^{3}+3 x y+y^{3} \\
\text { III } & \left(a^{2}+b^{2}\right)^{2}=\left(a^{2}-b^{2}\right)^{2}+(2 a b)^{2}
\end{array}
$$

1) I, only
2) I and II
3) II and III
4) I and III

21 The graph of $p(x)$ is shown below.

What is the remainder when $p(x)$ is divided by $x+4$?

1) $x-4$
2) -4
3) 0
4) 4

22 A payday loan company makes loans between $\$ 100$ and $\$ 1000$ available to customers. Every 14 days, customers are charged 30% interest with compounding. In 2013, Remi took out a $\$ 300$ payday loan. Which expression can be used to calculate the amount she would owe, in dollars, after one year if she did not make payments?

1) $300(.30)^{\frac{14}{365}}$
2) $300(1.30)^{\frac{14}{365}}$
3) $300(.30)^{\frac{365}{14}}$
4) $300(1.30)^{\frac{365}{14}}$

23 Which value is not contained in the solution of the system shown below?

$$
\begin{aligned}
& a+5 b-c=-20 \\
& 4 a-5 b+4 c=19 \\
& -a-5 b-5 c=2
\end{aligned}
$$

1) -2
2) 2
3) 3
4) -3

24 In 2010, the population of New York State was approximately 19,378,000 with an annual growth rate of 1.5%. Assuming the growth rate is maintained for a large number of years, which equation can be used to predict the population of New York State t years after 2010 ?

1) $P_{t}=19,378,000(1.5)^{t}$
2) $P_{0}=19,378,000$

$$
P_{t}=19,378,000+1.015 P_{t-1}
$$

3) $P_{t}=19,378,000(1.015)^{t-1}$
4) $P_{0}=19,378,000$

$$
P_{t}=1.015 P_{t-1}
$$

25 The volume of air in a person's lungs, as the person breathes in and out, can be modeled by a sine graph. A scientist is studying the differences in this volume for people at rest compared to people told to take a deep breath. When examining the graphs, should the scientist focus on the amplitude, period, or midline? Explain your choice.

26 Explain how $\left(3^{\frac{1}{5}}\right)^{2}$ can be written as the equivalent radical expression $\sqrt[5]{9}$.

27 Simplify $x i(i-7 i)^{2}$, where i is the imaginary unit.

28 Using the identity $\sin ^{2} \theta+\cos ^{2} \theta=1$, find the value of $\tan \theta$, to the nearest hundredth, if $\cos \theta$ is -0.7 and θ is in Quadrant II.

29 Elizabeth waited for 6 minutes at the drive thru at her favorite fast-food restaurant the last time she visited. She was upset about having to wait that long and notified the manager. The manager assured her that her experience was very unusual and that it would not happen again. A study of customers commissioned by this restaurant found an approximately normal distribution of results. The mean wait time was 226 seconds and the standard deviation was 38 seconds. Given these data, and using a 95\% level of confidence, was Elizabeth's wait time unusual? Justify your answer.

30 The x-value of which function's x-intercept is larger, f or h ? Justify your answer.

$$
f(x)=\log (x-4)
$$

\mathbf{x}	$\mathbf{h}(\mathbf{x})$
-1	6
0	4
1	2
2	0
3	-2

31 The distance needed to stop a car after applying the brakes varies directly with the square of the car's speed. The table below shows stopping distances for various speeds.

Speed (mph)	10	20	30	40	50	60	70
Distance (ft)	6.25	25	56.25	100	156.25	225	306.25

Determine the average rate of change in braking distance, in $\mathrm{ft} / \mathrm{mph}$, between one car traveling at 50 mph and one traveling at 70 mph . Explain what this rate of change means as it relates to braking distance.

32 Given events A and B, such that $P(A)=0.6$, $P(B)=0.5$, and $P(A \cup B)=0.8$, determine whether A and B are independent or dependent.

33 Find algebraically the zeros for $p(x)=x^{3}+x^{2}-4 x-4$. On the set of axes below, graph $y=p(x)$.

34 One of the medical uses of Iodine-131 (I-131), a radioactive isotope of iodine, is to enhance x-ray images. The half-life of I-131 is approximately 8.02 days. A patient is injected with 20 milligrams of I-131. Determine, to the nearest day, the amount of time needed before the amount of I-131 in the patient's body is approximately 7 milligrams.

35 Solve the equation $\sqrt{2 x-7}+x=5$ algebraically, and justify the solution set.

Ayva designed an experiment to determine the effect of a new energy drink on a group of 20 volunteer students. Ten students were randomly selected to form group 1 while the remaining 10 made up group 2 . Each student in group 1 drank one energy drink, and each student in group 2 drank one cola drink. Ten minutes later, their times were recorded for reading the same paragraph of a novel. The results of the experiment are shown below.

Group 1 (seconds)	Group 2 (seconds)
17.4	23.3
18.1	18.8
18.2	22.1
19.6	12.7
18.6	16.9
16.2	24.4
16.1	21.2
15.3	21.2
17.8	16.3
19.7	14.5
Mean $=17.7$	Mean $=19.1$

Ayva thinks drinking energy drinks makes students read faster. Using information from the experimental design or the results, explain why Ayva's hypothesis may be incorrect. Using the given results, Ayva randomly mixes the 20 reading times, splits them into two groups of 10 , and simulates the difference of the means 232 times.

Ayva has decided that the difference in mean reading times is not an unusual occurrence. Support her decision using the results of the simulation. Explain your reasoning.

37 Seth's parents gave him $\$ 5000$ to invest for his 16th birthday. He is considering two investment options. Option A will pay him 4.5% interest compounded annually. Option B will pay him 4.6% compounded quarterly. Write a function of option A and option B that calculates the value of each account after n years. Seth plans to use the money after he graduates from college in 6 years. Determine how much more money option B will earn than option A to the nearest cent. Algebraically determine, to the nearest tenth of a year, how long it would take for option B to double Seth's initial investment.

0117AII Common Core State Standards

1 Relative to the graph of $y=3 \sin x$, what is the shift of the graph of $y=3 \sin \left(x+\frac{\pi}{3}\right)$?

1) $\frac{\pi}{3}$ right
2) $\frac{\pi}{3}$ left
3) $\frac{\pi}{3}$ up
4) $\frac{\pi}{3}$ down

2 A rabbit population doubles every 4 weeks. There are currently five rabbits in a restricted area. If t represents the time, in weeks, and $P(t)$ is the population of rabbits with respect to time, about how many rabbits will there be in 98 days?

1) 56
2) 152
3) 3688
4) 81,920

3 Factored completely, $m^{5}+m^{3}-6 m$ is equivalent to

1) $(m+3)(m-2)$
2) $\left(m^{2}+3 m\right)\left(m^{2}-2\right)$
3) $m\left(m^{4}+m^{2}-6\right)$
4) $m\left(m^{2}+3\right)\left(m^{2}-2\right)$

4 If $\sin ^{2}\left(32^{\circ}\right)+\cos ^{2}(M)=1$, then M equals

1) 32°
2) 58°
3) 68°
4) 72°

5 What is the solution to the system of equations $y=3 x-2$ and $y=g(x)$ where $g(x)$ is defined by the function below?

1) $\{(0,-2)\}$
2) $\{(0,-2),(1,6)\}$
3) $\{(1,6)\}$
4) $\{(1,1),(6,16)\}$

6 Which statement about statistical analysis is false?

1) Experiments can suggest patterns and relationships in data.
2) Experiments can determine cause and effect relationships.
3) Observational studies can determine cause and effect relationships.
4) Observational studies can suggest patterns and relationships in data.

7 The expression $\left(\frac{m^{2}}{m^{\frac{1}{3}}}\right)^{-\frac{1}{2}}$ is equivalent to

1) $-\sqrt[6]{m^{5}}$
2) $\frac{1}{\sqrt[6]{m^{5}}}$
3) $-m \sqrt[5]{m}$
4) $\frac{1}{m \sqrt[5]{m}}$

8 What is the inverse of the function $y=\log _{3} x$?

1) $y=x^{3}$
2) $y=\log _{x} 3$
3) $y=3^{x}$
4) $x=3^{y}$

9 Gabriel performed an experiment to see if planting 13 tomato plants in black plastic mulch leads to larger tomatoes than if 13 plants are planted without mulch. He observed that the average weight of the tomatoes from tomato plants grown in black plastic mulch was 5 ounces greater than those from the plants planted without mulch. To determine if the observed difference is statistically significant, he rerandomized the tomato groups 100 times to study these random differences in the mean weights. The output of his simulation is summarized in the dotplot below.

Given these results, what is an appropriate inference that can be drawn?

1) There was no effect observed between the two groups.
2) There was an effect observed that could be due to the random assignment of plants to the groups.

10 If $p(x)=a b^{x}$ and $r(x)=c d^{x}$, then $p(x) \bullet r(x)$ equals

1) $a c(b+d)^{x}$
2) $a c(b+d)^{2 x}$
3) $a c(b d)^{x}$
4) $a c(b d)^{x^{2}}$
5) There is strong evidence to support the hypothesis that tomatoes from plants planted in black plastic mulch are larger than those planted without mulch.
6) There is strong evidence to support the hypothesis that tomatoes from plants planted without mulch are larger than those planted in black plastic mulch.

11 The solution to the equation $18 x^{2}-24 x+87=0$ is

1) $-\frac{2}{3} \pm 6 i \sqrt{158}$
2) $-\frac{2}{3} \pm \frac{1}{6} i \sqrt{158}$
3) $\frac{2}{3} \pm 6 i \sqrt{158}$
4) $\frac{2}{3} \pm \frac{1}{6} i \sqrt{158}$

12 When $g(x)=\frac{2}{x+2}$ and $h(x)=\log (x+1)+3$ are graphed on the same set of axes, which coordinates best approximate their point of intersection?

1) $(-0.9,1.8)$
2) $(-0.9,1.9)$
3) $(1.4,3.3)$
4) $(1.4,3.4)$

13 The price of a postage stamp in the years since the end of World War I is shown in the scatterplot below.

The equation that best models the price, in cents, of a postage stamp based on these data is

1) $y=0.59 x-14.82$
2) $y=1.04(1.43)^{x}$
3) $y=1.43(1.04)^{x}$
4) $y=24 \sin (14 x)+25$

14 The eighth and tenth terms of a sequence are 64 and 100 . If the sequence is either arithmetic or geometric, the ninth term can not be

1) -82
2) -80
3) 80
4) 82

15 The loudness of sound is measured in units called decibels (dB). These units are measured by first assigning an intensity I_{0} to a very soft sound that is called the threshold sound. The sound to be measured is assigned an intensity, I, and the decibel rating, d, of this sound is found using $d=10 \log \frac{I}{I_{0}}$. The threshold sound audible to the average person is $1.0 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}$ (watts per square meter). Consider the following sound level classifications:

Moderate	$45-69 \mathrm{~dB}$
Loud	$70-89 \mathrm{~dB}$
Very loud	$90-109 \mathrm{~dB}$
Deafening	$>110 \mathrm{~dB}$

How would a sound with intensity $6.3 \times 10^{-3} \mathrm{~W} / \mathrm{m}^{2}$ be classified?

1) moderate
2) very loud
3) loud
4) deafening

16 Pedro and Bobby each own an ant farm. Pedro starts with 100 ants and says his farm is growing exponentially at a rate of 15% per month. Bobby starts with 350 ants and says his farm is steadily decreasing by 5 ants per month. Assuming both boys are accurate in describing the population of their ant farms, after how many months will they both have approximately the same number of ants?

1) 7
2) 8
3) 13
4) 36

17 What is the solution, if any, of the equation $\frac{2}{x+3}-\frac{3}{4-x}=\frac{2 x-2}{x^{2}-x-12}$?

1) -1
2) -5
3) all real numbers
4) no real solution

18 In 2013, approximately 1.6 million students took the Critical Reading portion of the SAT exam. The mean score, the modal score, and the standard deviation were calculated to be 496, 430, and 115, respectively. Which interval reflects 95% of the Critical Reading scores?

1) 430 ± 115
2) 430 ± 230
3) 496 ± 115
4) 496 ± 230

19 Which statement regarding the graphs of the functions below is untrue?

$$
\begin{aligned}
& f(x)=3 \sin 2 x, \text { from }-\pi<x<\pi \\
& g(x)=(x-0.5)(x+4)(x-2) \\
& h(x)=\log _{2} x \\
& j(x)=-|4 x-2|+3
\end{aligned}
$$

1) $\quad f(x)$ and $j(x)$ have a maximum y-value of 3 .
2) $\quad f(x), h(x)$, and $j(x)$ have one y-intercept.
3) $g(x)$ and $j(x)$ have the same end behavior as $x \rightarrow-\infty$.
4) $g(x), h(x)$, and $j(x)$ have rational zeros.

20 When $g(x)$ is divided by $x+4$, the remainder is 0 . Given $g(x)=x^{4}+3 x^{3}-6 x^{2}-6 x+8$, which conclusion about $g(x)$ is true?

1) $g(4)=0$
2) $g(-4)=0$
3) $x-4$ is a factor of $g(x)$.
4) No conclusion can be made regarding $g(x)$.

21 Joelle has a credit card that has a 19.2% annual interest rate compounded monthly. She owes a total balance of B dollars after m months. Assuming she makes no payments on her account, the table below illustrates the balance she owes after m months.

\mathbf{m}	\mathbf{B}
0	100.00
10	1172.00
19	1352.00
36	1770.80
60	2591.90
69	2990.00
72	3135.80
73	3186.00

Over which interval of time is her average rate of change for the balance on her credit card account the greatest?

1) month 10 to month 60
2) month 36 to month 72
3) month 19 to month 69
4) month 60 to month 73

22 Which graph represents a cosine function with no horizontal shift, an amplitude of 2 , and a period of $\frac{2 \pi}{3}$?
1)

2)

3)

4)

23 According to a pricing website, Indroid phones lose 58% of their cash value over 1.5 years. Which expression can be used to estimate the value of a $\$ 300$ Indroid phone in 1.5 years?

1) $300 e^{-0.87}$
2) $300 e^{-0.63}$
3) $300 e^{-0.58}$
4) $300 e^{-0.42}$

24 A cardboard box manufacturing company is building boxes with length represented by $x+1$, width by $5-x$, and height by $x-1$. The volume of the box is modeled by the function below.

Over which interval is the volume of the box changing at the fastest average rate?

1) $[1,2]$
2) $[1,3.5]$
3) $[1,5]$
4) $[0,3.5]$

25 Express $(1-i)^{3}$ in $a+b i$ form.

26 An orange-juice processing plant receives a truckload of oranges. The quality control team randomly chooses three pails of oranges, each containing 50 oranges, from the truckload. Identify the sample and the population in the given scenario. State one conclusion that the quality control team could make about the population if 5% of the sample was found to be unsatisfactory.

27 Using the unit circle below, explain why $\csc \theta=\frac{1}{y}$.

28 The function $M(t)$ represents the mass of radium over time, t, in years.

$$
M(t)=100 e^{\frac{\left(\ln \frac{1}{2}\right) t}{1590}}
$$

Determine if the function $M(t)$ represents growth or decay. Explain your reasoning.

29 On the grid below, sketch a cubic polynomial whose zeros are 1,3 , and -2 .

30 Given the equal terms $\sqrt[3]{x^{5}}$ and $y^{\frac{5}{6}}$, determine and state y, in terms of x.

31 The results of a survey of the student body at Central High School about television viewing preferences are shown below.

	Comedy Series	Drama Series	Reality Series	Total
Males	95	65	70	230
Females	80	70	110	260
Total	175	135	180	490

Are the events "student is a male" and "student prefers reality series" independent of each other? Justify your answer.

32 Given $f(x)=3 x^{2}+7 x-20$ and $g(x)=x-2$, state the quotient and remainder of $\frac{f(x)}{g(x)}$, in the form $q(x)+\frac{r(x)}{g(x)}$.

33 Algebraically determine the values of h and k to correctly complete the identity stated below.

$$
2 x^{3}-10 x^{2}+11 x-7=(x-4)\left(2 x^{2}+h x+3\right)+k
$$

34 Elaina has decided to run the Buffalo half-marathon in May. She researched training plans on the Internet and is looking at two possible plans: Jillian's 12-week plan and Josh’s 14-week plan. The number of miles run per week for each plan is plotted below.

Which one of the plans follows an arithmetic pattern? Explain how you arrived at your answer. Write a recursive definition to represent the number of miles run each week for the duration of the plan you chose. Jillian's plan has an alternative if Elaina wanted to train instead for a full 26 -mile marathon. Week one would start at 13 miles and follow the same pattern for the half-marathon, but it would continue for 14 weeks. Write an explicit formula, in simplest form, to represent the number of miles run each week for the full-marathon training plan.

35 The guidance department has reported that of the senior class, 2.3% are members of key club, K, 8.6\% are enrolled in AP Physics, P, and 1.9% are in both. Determine the probability of P given K, to the nearest tenth of a percent. The principal would like a basic interpretation of these results. Write a statement relating your calculated probabilities to student enrollment in the given situation.

36 Using the formula below, determine the monthly payment on a 5 -year car loan with a monthly percentage rate of 0.625% for a car with an original cost of $\$ 21,000$ and a $\$ 1000$ down payment, to the nearest cent.

$$
\begin{gathered}
P_{n}=P M T\left(\frac{1-(1+i)^{-n}}{i}\right) \\
P_{n}=\text { present amount borrowed } \\
n=\text { number of monthly pay periods } \\
P M T=\text { monthly payment } \\
i=\text { interest rate per month }
\end{gathered}
$$

The affordable monthly payment is $\$ 300$ for the same time period. Determine an appropriate down payment, to the nearest dollar.

37 The speed of a tidal wave, s, in hundreds of miles per hour, can be modeled by the equation $s=\sqrt{t}-2 t+6$, where t represents the time from its origin in hours. Algebraically determine the time when $s=0$. How much faster was the tidal wave traveling after 1 hour than 3 hours, to the nearest mile per hour? Justify your answer.

0617aii

1 The graph of the function $p(x)$ is sketched below.

Which equation could represent $p(x)$?

1) $p(x)=\left(x^{2}-9\right)(x-2)$
2) $p(x)=x^{3}-2 x^{2}+9 x+18$
3) $p(x)=\left(x^{2}+9\right)(x-2)$
4) $p(x)=x^{3}+2 x^{2}-9 x-18$

2 What is the solution to $8\left(2^{x+3}\right)=48$?

1) $x=\frac{\ln 6}{\ln 2}-3$
2) $x=0$
3) $x=\frac{\ln 48}{\ln 16}-3$
4) $x=\ln 4-3$

3 Cheap and Fast gas station is conducting a consumer satisfaction survey. Which method of collecting data would most likely lead to a biased sample?

1) interviewing every 5th customer to come into the station
2) interviewing customers chosen at random by a computer at the checkout
3) interviewing customers who call an 800 number posted on the customers' receipts
4) interviewing every customer who comes into the station on a day of the week chosen at random out of a hat

4 The expression $6 x i^{3}(-4 x i+5)$ is equivalent to

1) $2 x-5 i$
2) $-24 x^{2}-30 x i$
3) $-24 x^{2}+30 x-i$
4) $26 x-24 x^{2} i-5 i$

5 If $f(x)=3|x|-1$ and $g(x)=0.03 x^{3}-x+1$, an approximate solution for the equation $f(x)=g(x)$ is

1) 1.96
2) 11.29
3) $(-0.99,1.96)$
4) $(11.29,32.87)$

6 Given the parent function $p(x)=\cos x$, which phrase best describes the transformation used to obtain the graph of $g(x)=\cos (x+a)-b$, if a and b are positive constants?

1) right a units, up b units
2) right a units, down b units
3) left a units, up b units
4) left a units, down b units

7 The solution to the equation $4 x^{2}+98=0$ is

1) ± 7
2) $\pm 7 i$
3) $\pm \frac{7 \sqrt{2}}{2}$
4) $\pm \frac{7 i \sqrt{2}}{2}$

8 Which equation is represented by the graph shown below?

1) $y=\frac{1}{2} \cos 2 x$
2) $y=\cos x$
3) $y=\frac{1}{2} \cos x$
4) $y=2 \cos \frac{1}{2} x$

9 A manufacturing company has developed a cost model, $C(x)=0.15 x^{3}+0.01 x^{2}+2 x+120$, where x is the number of items sold, in thousands. The sales price can be modeled by $S(x)=30-0.01 x$. Therefore, revenue is modeled by $R(x)=x \bullet S(x)$. The company's profit, $P(x)=R(x)-C(x)$, could be modeled by

1) $0.15 x^{3}+0.02 x^{2}-28 x+120$
2) $-0.15 x^{3}-0.02 x^{2}+28 x-120$
3) $-0.15 x^{3}+0.01 x^{2}-2.01 x-120$
4) $-0.15 x^{3}+32 x+120$

10 A game spinner is divided into 6 equally sized regions, as shown in the diagram below.

For Miles to win, the spinner must land on the number 6. After spinning the spinner 10 times, and losing all 10 times, Miles complained that the spinner is unfair. At home, his dad ran 100 simulations of spinning the spinner 10 times, assuming the probability of winning each spin is $\frac{1}{6}$.
The output of the simulation is shown in the diagram below.

Which explanation is appropriate for Miles and his dad to make?

1) The spinner was likely unfair, since the number 6 failed to occur in about 20% of the simulations.
2) The spinner was likely unfair, since the spinner should have landed on the number 6 by the sixth spin.
3) The spinner was likely not unfair, since the number 6 failed to occur in about 20% of the simulations.
4) The spinner was likely not unfair, since in the output the player wins once or twice in the majority of the simulations.

11 Which binomial is a factor of $x^{4}-4 x^{2}-4 x+8$?

1) $x-2$
2) $x+2$
3) $x-4$
4) $x+4$

12 Given that $\sin ^{2} \theta+\cos ^{2} \theta=1$ and $\sin \theta=-\frac{\sqrt{2}}{5}$, what is a possible value of $\cos \theta$?

1) $\frac{5+\sqrt{2}}{5}$
2) $\frac{\sqrt{23}}{5}$
3) $\frac{3 \sqrt{3}}{5}$
4) $\frac{\sqrt{35}}{5}$

13 A student studying public policy created a model for the population of Detroit, where the population decreased 25% over a decade. He used the model $P=714(0.75)^{d}$, where P is the population, in thousands, d decades after 2010. Another student, Suzanne, wants to use a model that would predict the population after y years. Suzanne's model is best represented by

1) $P=714(0.6500)^{y}$
2) $P=714(0.8500)^{y}$
3) $P=714(0.9716)^{y}$
4) $P=714(0.9750)^{y}$

14 The probability that Gary and Jane have a child with blue eyes is 0.25 , and the probability that they have a child with blond hair is 0.5 . The probability that they have a child with both blue eyes and blond hair is 0.125 . Given this information, the events blue eyes and blond hair are

$$
\begin{array}{ll}
\text { I: } & \text { dependent } \\
\text { II: } & \text { independent } \\
\text { III: } & \text { mutually exclusive }
\end{array}
$$

1) I, only
2) II, only
3) I and III
4) II and III

15 Based on climate data that have been collected in Bar Harbor, Maine, the average monthly temperature, in degrees F, can be modeled by the equation $B(x)=23.914 \sin (0.508 x-2.116)+55.300$. The same governmental agency collected average monthly temperature data for Phoenix, Arizona, and found the temperatures could be modeled by the equation
$P(x)=20.238 \sin (0.525 x-2.148)+86.729$. Which statement can not be concluded based on the average monthly temperature models x months after starting data collection?

1) The average monthly temperature variation is more in Bar Harbor than in Phoenix.
2) The midline average monthly temperature for Bar Harbor is lower than the midline temperature for Phoenix.
3) The maximum average monthly temperature for Bar Harbor is $79^{\circ} \mathrm{F}$, to the nearest degree.
4) The minimum average monthly temperature for Phoenix is $20^{\circ} \mathrm{F}$, to the nearest degree.

16 For $x \neq 0$, which expressions are equivalent to one divided by the sixth root of x ?
I. $\frac{\sqrt[6]{x}}{\sqrt[3]{x}}$ II. $\frac{x^{\frac{1}{6}}}{x^{\frac{1}{3}}}$ III. $x^{\frac{-1}{6}}$

1) I and II, only
2) I and III, only
3) II and III, only
4) I, II, and III

17 A parabola has its focus at $(1,2)$ and its directrix is $y=-2$. The equation of this parabola could be

1) $y=8(x+1)^{2}$
2) $y=\frac{1}{8}(x+1)^{2}$
3) $y=8(x-1)^{2}$
4) $y=\frac{1}{8}(x-1)^{2}$

18 The function $p(t)=110 e^{0.03922 t}$ models the population of a city, in millions, t years after 2010. As of today, consider the following two statements:
I. The current population is 110 million.
II. The population increases continuously by approximately 3.9% per year.
This model supports

1) I, only
2) II, only
3) both I and II
4) neither I nor II

19 To solve $\frac{2 x}{x-2}-\frac{11}{x}=\frac{8}{x^{2}-2 x}$, Ren multiplied both sides by the least common denominator. Which statement is true?

1) 2 is an extraneous solution.
2) $\frac{7}{2}$ is an extraneous solution.
3) 0 and 2 are extraneous solutions.
4) This equation does not contain any extraneous solutions.

20 Given $f(9)=-2$, which function can be used to generate the sequence $-8,-7.25,-6.5,-5.75, \ldots$?

1) $f(n)=-8+0.75 n$
2) $f(n)=-8-0.75(n-1)$
3) $f(n)=-8.75+0.75 n$
4) $f(n)=-0.75+8(n-1)$

21 The function $f(x)=2^{-0.25 x} \bullet \sin \left(\frac{\pi}{2} x\right)$ represents a damped sound wave function. What is the average rate of change for this function on the interval [$-7,7$], to the nearest hundredth?

1) -3.66
2) -0.30
3) -0.26
4) 3.36

22 Mallory wants to buy a new window air conditioning unit. The cost for the unit is $\$ 329.99$. If she plans to run the unit three months out of the year for an annual operating cost of $\$ 108.78$, which function models the cost per year over the lifetime of the unit, $C(n)$, in terms of the number of years, n, that she owns the air conditioner.

1) $C(n)=329.99+108.78 n$
2) $C(n)=329.99+326.34 n$
3) $C(n)=\frac{329.99+108.78 n}{n}$
4) $C(n)=\frac{329.99+326.34 n}{n}$

23 The expression $\frac{-3 x^{2}-5 x+2}{x^{3}+2 x^{2}}$ can be rewritten as

1) $\frac{-3 x-3}{x^{2}+2 x}$
2) $\frac{-3 x-1}{x^{2}}$
3) $-3 x^{-1}+1$
4) $-3 x^{-1}+x^{-2}$

24 Jasmine decides to put $\$ 100$ in a savings account each month. The account pays 3% annual interest, compounded monthly. How much money, S, will Jasmine have after one year?

1) $S=100(1.03)^{12}$
2) $S=\frac{100-100(1.0025)^{12}}{1-1.0025}$
3) $S=100(1.0025)^{12}$
4) $S=\frac{100-100(1.03)^{12}}{1-1.03}$

25 Given $r(x)=x^{3}-4 x^{2}+4 x-6$, find the value of $r(2)$. What does your answer tell you about $x-2$ as a factor of $r(x)$? Explain.

26 The weight of a bag of pears at the local market averages 8 pounds with a standard deviation of 0.5 pound. The weights of all the bags of pears at the market closely follow a normal distribution. Determine what percentage of bags, to the nearest integer, weighed less than 8.25 pounds.

27 Over the set of integers, factor the expression $4 x^{3}-x^{2}+16 x-4$ completely.

28 The graph below represents the height above the ground, h, in inches, of a point on a triathlete's bike wheel during a training ride in terms of time, t, in seconds.

Identify the period of the graph and describe what the period represents in this context.

29 Graph $y=400(.85)^{2 x}-6$ on the set of axes below.

30 Solve algebraically for all values of x :
$\sqrt{x-4}+x=6$

31 Write $\sqrt[3]{x} \bullet \sqrt{x}$ as a single term with a rational exponent.

32 Data collected about jogging from students with two older siblings are shown in the table below.

	Neither Sibling Jogs	One Sibling Jogs	Both Siblings Jog
Student Does Not Jog	1168	1823	1380
Student Jogs	188	416	400

Using these data, determine whether a student with two older siblings is more likely to jog if one sibling jogs or if both siblings jog. Justify your answer.

33 Solve the following system of equations algebraically for all values of x, y, and z :

$$
\begin{gathered}
x+y+z=1 \\
2 x+4 y+6 z=2 \\
-x+3 y-5 z=11
\end{gathered}
$$

34 Jim is looking to buy a vacation home for $\$ 172,600$ near his favorite southern beach. The formula to compute a mortgage payment, M, is
$M=P \bullet \frac{r(1+r)^{N}}{(1+r)^{N}-1}$ where P is the principal amount of the loan, r is the monthly interest rate, and N is the number of monthly payments. Jim's bank offers a monthly interest rate of 0.305% for a 15 -year mortgage. With no down payment, determine Jim's mortgage payment, rounded to the nearest dollar. Algebraically determine and state the down payment, rounded to the nearest dollar, that Jim needs to make in order for his mortgage payment to be $\$ 1100$.

35 Graph $y=\log _{2}(x+3)-5$ on the set of axes below.
Use an appropriate scale to include both intercepts.

Describe the behavior of the given function as x approaches -3 and as x approaches positive infinity.

36 Charlie's Automotive Dealership is considering implementing a new check-in procedure for customers who are bringing their vehicles for routine maintenance. The dealership will launch the procedure if 50% or more of the customers give the new procedure a favorable rating when compared to the current procedure. The dealership devises a simulation based on the minimal requirement that 50% of the customers prefer the new procedure. Each dot on the graph below represents the proportion of the customers who preferred the new check-in procedure, each of sample size 40 , simulated 100 times.

Assume the set of data is approximately normal and the dealership wants to be 95% confident of its results. Determine an interval containing the plausible sample values for which the dealership will launch the new procedure. Round your answer to the nearest hundredth. Forty customers are selected randomly to undergo the new check-in procedure and the proportion of customers who prefer the new procedure is 32.5%. The dealership decides not to implement the new check-in procedure based on the results of the study. Use statistical evidence to explain this decision.

37 A radioactive substance has a mass of 140 g at $3 \mathrm{p} . \mathrm{m}$. and 100 g at $8 \mathrm{p} . \mathrm{m}$. Write an equation in the form $A=A_{0}\left(\frac{1}{2}\right)^{\frac{t}{h}}$ that models this situation, where h is the constant representing the number of hours in the half-life, A_{0} is the initial mass, and A is the mass t hours after 3 p.m. Using this equation, solve for h, to the nearest ten thousandth. Determine when the mass of the radioactive substance will be 40 g . Round your answer to the nearest tenth of an hour.

0817AII Common Core State Standards

1 The function $f(x)=\frac{x-3}{x^{2}+2 x-8}$ is undefined when x equals

1) 2 or -4
2) 4 or -2
3) 3, only
4) 2 , only

2 Which expression is equivalent to $(3 k-2 i)^{2}$, where i is the imaginary unit?

1) $9 k^{2}-4$
2) $9 k^{2}+4$
3) $9 k^{2}-12 k i-4$
4) $9 k^{2}-12 k i+4$

3 The roots of the equation $x^{2}+2 x+5=0$ are

1) -3 and 1
2) -1 , only
3) $-1+2 i$ and $-1-2 i$
4) $-1+4 i$ and $-1-4 i$

6 Which equation represents a parabola with the focus at $(0,-1)$ and the directrix of $y=1$?

1) $x^{2}=-8 y$
2) $x^{2}=-4 y$
3) $x^{2}=8 y$
4) $x^{2}=4 y$

7 Which diagram represents an angle, α, measuring $\frac{13 \pi}{20}$ radians drawn in standard position, and its reference angle, θ ?
1)

2)

3)
4)

8 What are the zeros of $P(m)=\left(m^{2}-4\right)\left(m^{2}+1\right)$?

1) 2 and -2 , only
2) $2,-2$, and -4
3) $-4, i$, and $-i$
4) $2,-2$, i, and $-i$

9 The value of a new car depreciates over time. Greg purchased a new car in June 2011. The value, V, of his car after t years can be modeled by the equation $\log _{0.8}\left(\frac{V}{17000}\right)=t$. What is the average decreasing rate of change per year of the value of the car from June 2012 to June 2014, to the nearest ten dollars per year?

1) 1960
2) 2180
3) 2450
4) 2770

10 lridium-192 is an isotope of iridium and has a half-life of 73.83 days. If a laboratory experiment begins with 100 grams of Iridium-192, the number of grams, A, of Iridium-192 present after t days would be $A=100\left(\frac{1}{2}\right)^{\frac{t}{73.83}}$. Which equation approximates the amount of Iridium-192 present after t days?

1) $A=100\left(\frac{73.83}{2}\right)^{t}$
2) $A=100\left(\frac{1}{147.66}\right)^{t}$
3) $A=100(0.990656)^{t}$
4) $A=100(0.116381)^{t}$

11 The distribution of the diameters of ball bearings made under a given manufacturing process is normally distributed with a mean of 4 cm and a standard deviation of 0.2 cm . What proportion of the ball bearings will have a diameter less than 3.7 cm ?

1) 0.0668
2) 0.4332
3) 0.8664
4) 0.9500

12 A polynomial equation of degree three, $p(x)$, is used to model the volume of a rectangular box. The graph of $p(x)$ has x intercepts at $-2,10$, and 14 . Which statements regarding $p(x)$ could be true?
A. The equation of $p(x)=(x-2)(x+10)(x+14)$.
B. The equation of $p(x)=-(x+2)(x-10)(x-14)$.
C. The maximum volume occurs when $x=10$.
D. The maximum volume of the box is approximately 56 .

1) A and C
2) A and D
3) B and C
4) B and D

13 Which expression is equivalent to $\frac{4 x^{3}+9 x-5}{2 x-1}$, where $x \neq \frac{1}{2}$?

1) $2 x^{2}+x+5$
2) $2 x^{2}+\frac{11}{2}+\frac{1}{2(2 x-1)}$
3) $2 x^{2}-x+5$
4) $2 x^{2}-x+4+\frac{1}{2 x-1}$

14 The inverse of the function $f(x)=\frac{x+1}{x-2}$ is

1) $f^{-1}(x)=\frac{x+1}{x+2}$
2) $f^{-1}(x)=\frac{2 x+1}{x-1}$
3) $f^{-1}(x)=\frac{x+1}{x-2}$
4) $f^{-1}(x)=\frac{x-1}{x+1}$

15 Which expression has been rewritten correctly to form a true statement?

1) $(x+2)^{2}+2(x+2)-8=(x+6) x$
2) $x^{4}+4 x^{2}+9 x^{2} y^{2}-36 y^{2}=(x+3 y)^{2}(x-2)^{2}$
3) $x^{3}+3 x^{2}-4 x y^{2}-12 y^{2}=(x-2 y)(x+3)^{2}$
4) $\left(x^{2}-4\right)^{2}-5\left(x^{2}-4\right)-6=\left(x^{2}-7\right)\left(x^{2}-6\right)$

16 A study conducted in 2004 in New York City found that 212 out of 1334 participants had hypertension. Kim ran a simulation of 100 studies based on these data. The output of the simulation is shown in the diagram below.

At a 95\% confidence level, the proportion of New York City residents with hypertension and the margin of error are closest to

1) proportion $\approx .16$; margin of error $\approx .01$
2) proportion $\approx .16$; margin of error $\approx .02$
3) proportion $\approx .01$; margin of error $\approx .16$
4) proportion $\approx .02$; margin of error $\approx .16$

17 Which scenario is best described as an observational study?

1) For a class project, students in Health class ask every tenth student entering the school if they eat breakfast in the morning.
2) A social researcher wants to learn whether or not there is a link between attendance and grades. She gathers data from 15 school districts.
3) A researcher wants to learn whether or not there is a link between children's daily amount of physical activity and their overall energy level. During lunch at the local high school, she distributed a short questionnaire to students in the cafeteria.
4) Sixty seniors taking a course in Advanced Algebra Concepts are randomly divided into two classes. One class uses a graphing calculator all the time, and the other class never uses graphing calculators. A guidance counselor wants to determine whether there is a link between graphing calculator use and students' final exam grades.

18 Which sinusoid has the greatest amplitude?
1)

2) $y=3 \sin (\theta-3)+5$
3)

4) $y=-5 \sin (\theta-1)-3$

19 Consider the system shown below.

$$
\begin{gathered}
2 x-y=4 \\
(x+3)^{2}+y^{2}=8
\end{gathered}
$$

The two solutions of the system can be described as

1) both imaginary
2) both irrational
3) both rational
4) one rational and one irrational

20 Which binomial is not a factor of the expression $x^{3}-11 x^{2}+16 x+84$?

1) $x+2$
2) $x+4$
3) $x-6$
4) $x-7$

21 A ball is dropped from a height of 32 feet. It bounces and rebounds 80% of the height from which it was falling. What is the total downward distance, in feet, the ball traveled up to the 12th bounce?

1) 29
2) 58
3) 120
4) 149

22 A public opinion poll was conducted on behalf of Mayor Ortega's reelection campaign shortly before the election. 264 out of 550 likely voters said they would vote for Mayor Ortega; the rest said they would vote for his opponent. Which statement is least appropriate to make, according to the results of the poll?

1) There is a 48% chance that Mayor Ortega will win the election.
2) The point estimate ($\hat{\mathrm{p}}$) of voters who will vote for Mayor Ortega is 48%.
3) It is most likely that between 44% and 52% of voters will vote for Mayor Ortega.
4) Due to the margin of error, an inference cannot be made regarding whether Mayor Ortega or his opponent is most likely to win the election.

23 What does $\left(\frac{-54 x^{9}}{y^{4}}\right)^{\frac{2}{3}}$ equal?

1) $\frac{9 i x^{63} \sqrt{4}}{y \sqrt[3]{y^{2}}}$
2) $\frac{9 i x^{63} \sqrt{4}}{y^{2} \sqrt[3]{y^{2}}}$
3) $\frac{9 x^{63} \sqrt{4}}{y \sqrt[3]{y}}$
4) $\frac{9 x^{63} \sqrt{4}}{y^{2} \sqrt[3]{y^{2}}}$

24 The Rickerts decided to set up an account for their daughter to pay for her college education. The day their daughter was born, they deposited $\$ 1000$ in an account that pays 1.8% compounded annually. Beginning with her first birthday, they deposit an additional $\$ 750$ into the account on each of her birthdays. Which expression correctly represents the amount of money in the account n years after their daughter was born?

1) $a_{n}=1000(1.018)^{n}+750$
2) $a_{n}=1000(1.018)^{n}+750 n$
3) $a_{0}=1000$

$$
a_{n}=a_{n-1}(1.018)+750
$$

4) $a_{0}=1000$

$$
a_{n}=a_{n-1}(1.018)+750 n
$$

25 Explain how (-8$)^{\frac{4}{3}}$ can be evaluated using properties of rational exponents to result in an integer answer.

26 A study was designed to test the effectiveness of a new drug. Half of the volunteers received the drug. The other half received a sugar pill. The probability of a volunteer receiving the drug and getting well was 40%. What is the probability of a volunteer getting well, given that the volunteer received the drug?

27 Verify the following Pythagorean identity for all values of x and y :

$$
\left(x^{2}+y^{2}\right)^{2}=\left(x^{2}-y^{2}\right)^{2}+(2 x y)^{2}
$$

28 Mrs. Jones had hundreds of jelly beans in a bag that contained equal numbers of six different flavors. Her student randomly selected four jelly beans and they were all black licorice. Her student complained and said "What are the odds I got all of that kind?" Mrs. Jones replied, "simulate rolling a die 250 times and tell me if four black licorice jelly beans is unusual." Explain how this simulation could be used to solve the problem.

29 While experimenting with her calculator, Candy creates the sequence $4,9,19,39,79, \ldots$. Write a recursive formula for Candy's sequence. Determine the eighth term in Candy's sequence.

30 In New York State, the minimum wage has grown exponentially. In 1966, the minimum wage was $\$ 1.25$ an hour and in 2015, it was $\$ 8.75$.
Algebraically determine the rate of growth to the nearest percent.

31 Algebraically determine whether the function $j(x)=x^{4}-3 x^{2}-4$ is odd, even, or neither.

32 On the axes below, sketch a possible function $p(x)=(x-a)(x-b)(x+c)$, where a, b, and c are positive, $a>b$, and $p(x)$ has a positive y-intercept of d. Label all intercepts.

33 Solve for all values of $p: \frac{3 p}{p-5}-\frac{2}{p+3}=\frac{p}{p+3}$

34 Simon lost his library card and has an overdue library book. When the book was 5 days late, he owed $\$ 2.25$ to replace his library card and pay the fine for the overdue book. When the book was 21 days late, he owed $\$ 6.25$ to replace his library card and pay the fine for the overdue book. Suppose the total amount Simon owes when the book is n days late can be determined by an arithmetic sequence. Determine a formula for a_{n}, the nth term of this sequence. Use the formula to determine the amount of money, in dollars, Simon needs to pay when the book is 60 days late.

35 a) On the axes below, sketch at least one cycle of a sine curve with an amplitude of 2 , a midline at $y=-\frac{3}{2}$, and a period of 2π.

b) Explain any differences between a sketch of $y=2 \sin \left(x-\frac{\pi}{3}\right)-\frac{3}{2}$ and the sketch from part a.

36 Using a microscope, a researcher observed and recorded the number of bacteria spores on a large sample of uniformly sized pieces of meat kept at room temperature. A summary of the data she recorded is shown in the table below.

Hours (x)	Average Number of Spores (y)
0	4
0.5	10
1	15
2	60
3	260
4	1130
6	16,380

Using these data, write an exponential regression equation, rounding all values to the nearest thousandth. The researcher knows that people are likely to suffer from food-borne illness if the number of spores exceeds 100 . Using the exponential regression equation, determine the maximum amount of time, to the nearest quarter hour, that the meat can be kept at room temperature safely.

37 The value of a certain small passenger car based on its use in years is modeled by $V(t)=28482.698(0.684)^{t}$, where $V(t)$ is the value in dollars and t is the time in years. Zach had to take out a loan to purchase the small passenger car. The function $Z(t)=22151.327(0.778)^{t}$, where $Z(t)$ is measured in dollars, and t is the time in years, models the unpaid amount of Zach's loan over time. Graph $V(t)$ and $Z(t)$ over the interval $0 \leq t \leq 5$, on the set of axes below.

State when $V(t)=Z(t)$, to the nearest hundredth, and interpret its meaning in the context of the problem. Zach takes out an insurance policy that requires him to pay a $\$ 3000$ deductible in case of a collision. Zach will cancel the collision policy when the value of his car equals his deductible. To the nearest year, how long will it take Zach to cancel this policy? Justify your answer.

0118AII Common Core State Standards

1 The operator of the local mall wants to find out how many of the mall's employees make purchases in the food court when they are working. She hopes to use these data to increase the rent and attract new food vendors. In total, there are 1023 employees who work at the mall. The best method to obtain a random sample of the employees would be to survey

1) all 170 employees at each of the larger stores
2) 50% of the 90 employees of the food court
3) every employee
4) every 30th employee entering each mall entrance for one week

2 What is the solution set for x in the equation below?

$$
\sqrt{x+1}-1=x
$$

1) $\{1\}$
2) $\{0\}$
3) $\{-1,0\}$
4) $\{0,1\}$

3 For the system shown below, what is the value of z ?

$$
\begin{gathered}
y=-2 x+14 \\
3 x-4 z=2 \\
3 x-y=16
\end{gathered}
$$

1) 5
2) 2
3) 6
4) 4

4 The hours of daylight, y, in Utica in days, x, from January 1, 2013 can be modeled by the equation $y=3.06 \sin (0.017 x-1.40)+12.23$. How many hours of daylight, to the nearest tenth, does this model predict for February 14, 2013?

1) 9.4
2) 10.4
3) 12.1
4) 12.2

5 A certain pain reliever is taken in 220 mg dosages and has a half-life of 12 hours. The function $A=220\left(\frac{1}{2}\right)^{\frac{t}{12}}$ can be used to model this situation, where A is the amount of pain reliever in milligrams remaining in the body after t hours.
According to this function, which statement is true?

1) Every hour, the amount of pain reliever remaining is cut in half.
2) In 12 hours, there is no pain reliever remaining in the body.
3) In 24 hours, there is no pain reliever remaining in the body.
4) In 12 hours, 110 mg of pain reliever is remaining.

6 The expression $(x+a)(x+b)$ can not be written as

1) $a(x+b)+x(x+b)$
2) $x^{2}+a b x+a b$
3) $x^{2}+(a+b) x+a b$
4) $x(x+a)+b(x+a)$

7 There are 440 students at Thomas Paine High School enrolled in U.S. History. On the April report card, the students' grades are approximately normally distributed with a mean of 79 and a standard deviation of 7. Students who earn a grade less than or equal to 64.9 must attend summer school. The number of students who must attend summer school for U.S. History is closest to

1) 3
2) 5
3) 10
4) 22

8 For a given time, x, in seconds, an electric current, y, can be represented by $y=2.5\left(1-2.7^{-10 x}\right)$.
Which equation is not equivalent?

1) $y=2.5-2.5\left(2.7^{-10 x}\right)$
2) $y=2.5-2.5\left(\left(2.7^{2}\right)^{-.05 x}\right)$
3) $y=2.5-2.5\left(\frac{1}{2.7^{10 x}}\right)$
4) $y=2.5-2.5\left(2.7^{-2}\right)\left(2.7^{.05 x}\right)$

9 What is the quotient when $10 x^{3}-3 x^{2}-7 x+3$ is divided by $2 x-1$?

1) $5 x^{2}+x+3$
2) $5 x^{2}-x+3$
3) $5 x^{2}-x-3$
4) $5 x^{2}+x-3$

10 Judith puts \$5000 into an investment account with interest compounded continuously. Which approximate annual rate is needed for the account to grow to $\$ 9110$ after 30 years?

1) 2%
2) 2.2%
3) 0.02%
4) 0.022%

11 If $n=\sqrt{a^{5}}$ and $m=a$, where $a>0$, an expression for $\frac{n}{m}$ could be

1) $a^{\frac{5}{2}}$
2) a^{4}
3) $\sqrt[3]{a^{2}}$
4) $\sqrt{a^{3}}$

12 The solutions to $x+3-\frac{4}{x-1}=5$ are

1) $\frac{3}{2} \pm \frac{\sqrt{17}}{2}$
2) $\frac{3}{2} \pm \frac{\sqrt{17}}{2} i$
3) $\frac{3}{2} \pm \frac{\sqrt{33}}{2}$
4) $\frac{3}{2} \pm \frac{\sqrt{33}}{2} i$

13 If $a e^{b t}=c$, where a, b, and c are positive, then t equals

1) $\ln \left(\frac{c}{a b}\right)$
2) $\ln \left(\frac{c b}{a}\right)$
3) $\frac{\ln \left(\frac{c}{a}\right)}{b}$
4) $\frac{\ln \left(\frac{c}{a}\right)}{\ln b}$

14 For which values of x, rounded to the nearest hundredth, will $\left|x^{2}-9\right|-3=\log _{3} x$?

1) 2.29 and 3.63
2) 2.37 and 3.54
3) 2.84 and 3.17
4) 2.92 and 3.06

15 The terminal side of θ, an angle in standard position, intersects the unit circle at $P\left(-\frac{1}{3},-\frac{\sqrt{8}}{3}\right)$. What is the value of $\sec \theta$?

1) -3
2) $-\frac{3 \sqrt{8}}{8}$
3) $-\frac{1}{3}$
4) $-\frac{\sqrt{8}}{3}$

16 What is the equation of the directrix for the parabola $-8(y-3)=(x+4)^{2}$?

1) $y=5$
2) $y=1$
3) $y=-2$
4) $y=-6$

17 The function below models the average price of gas in a small town since January 1st.
$G(t)=-0.0049 t^{4}+0.0923 t^{3}-0.56 t^{2}+1.166 t+3.23$, where $0 \leq t \leq 10$.
If $G(t)$ is the average price of gas in dollars and t represents the number of months since January 1st, the absolute maximum $G(t)$ reaches over the given domain is about

1) $\$ 1.60$
2) $\$ 3.92$
3) $\$ 4.01$
4) $\$ 7.73$

18 Written in simplest form, $\frac{c^{2}-d^{2}}{d^{2}+c d-2 c^{2}}$ where $c \neq d$, is equivalent to

1) $\frac{c+d}{d+2 c}$
2) $\frac{c-d}{d+2 c}$
3) $\frac{-c-d}{d+2 c}$
4) $\frac{-c+d}{d+2 c}$

19 If $p(x)=2 x^{3}-3 x+5$, what is the remainder of $p(x) \div(x-5)$?

1) -230
2) 0
3) 40
4) 240

20 The results of simulating tossing a coin 10 times, recording the number of heads, and repeating this 50 times are shown in the graph below.

Based on the results of the simulation, which statement is false?

1) Five heads occurred most often, which is consistent with the theoretical probability of obtaining a heads.
2) Eight heads is unusual, as it falls outside the middle 95% of the data.
3) Obtaining three heads or fewer occurred 28% of the time.
4) Seven heads is not unusual, as it falls within the middle 95% of the data.

21 What is the inverse of $f(x)=-6(x-2)$?

1) $f^{-1}(x)=-2-\frac{x}{6}$
2) $f^{-1}(x)=2-\frac{x}{6}$
3) $f^{-1}(x)=\frac{1}{-6(x-2)}$
4) $f^{-1}(x)=6(x+2)$

24 At her job, Pat earns $\$ 25,000$ the first year and receives a raise of $\$ 1000$ each year. The explicit formula for the nth term of this sequence is $a_{n}=25,000+(n-1) 1000$. Which rule best represents the equivalent recursive formula?

1) $a_{n}=24,000+1000 n$
2) $a_{n}=25,000+1000 n$
3) $a_{1}=25,000, a_{n}=a_{n-1}+1000$
4) $a_{1}=25,000, a_{n}=a_{n+1}+1000$

25 Elizabeth tried to find the product of $(2+4 i)$ and ($3-i$), and her work is shown below.

$$
\begin{aligned}
& (2+4 i)(3-i) \\
= & 6-2 i+12 i-4 i^{2} \\
= & 6+10 i-4 i^{2} \\
= & 6+10 i-4(1) \\
= & 6+10 i-4 \\
= & 2+10 i
\end{aligned}
$$

Identify the error in the process shown and determine the correct product of $(2+4 i)$ and $(3-i)$.

23 If the function $g(x)=a b^{x}$ represents exponential growth, which statement about $g(x)$ is false?

1) $a>0$ and $b>1$
2) The y-intercept is $(0, a)$.
3) The asymptote is $y=0$.
4) The x-intercept is $(b, 0)$.

26 A runner is using a nine-week training app to prepare for a "fun run." The table below represents the amount of the program completed, A, and the distance covered in a session, D, in miles.

A	$\frac{4}{9}$	$\frac{5}{9}$	$\frac{6}{9}$	$\frac{8}{9}$	1
D	2	2	2.25	3	3.25

Based on these data, write an exponential regression equation, rounded to the nearest thousandth, to model the distance the runner is able to complete in a session as she continues through the nine-week program.

27 A formula for work problems involving two people is shown below.

$$
\frac{1}{t_{1}}+\frac{1}{t_{2}}=\frac{1}{t_{b}}
$$

$t_{1}=$ the time taken by the first person to complete the job
$t_{2}=$ the time taken by the second person to complete the job

$$
t_{b}=\text { the time it takes for them working }
$$

together to complete the job
Fred and Barney are carpenters who build the same model desk. It takes Fred eight hours to build the desk while it only takes Barney six hours. Write an equation that can be used to find the time it would take both carpenters working together to build a desk. Determine, to the nearest tenth of an hour, how long it would take Fred and Barney working together to build a desk.

28 Completely factor the following expression: $x^{2}+3 x y+3 x^{3}+y$

29 Researchers in a local area found that the population of rabbits with an initial population of 20 grew continuously at the rate of 5% per month. The fox population had an initial value of 30 and grew continuously at the rate of 3% per month. Find, to the nearest tenth of a month, how long it takes for these populations to be equal.

30 Consider the function $h(x)=2 \sin (3 x)+1$ and the function q represented in the table below.

\boldsymbol{x}	$\boldsymbol{q (x)}$
-2	-8
-1	0
0	0
1	-2
2	0

Determine which function has the smaller minimum value for the domain [-2,2]. Justify your answer.

31 The zeros of a quartic polynomial function h are $-1, \pm 2$, and 3 . Sketch a graph of $y=h(x)$ on the grid below.

32 Explain why $81^{\frac{3}{4}}$ equals 27.

33 Given: $f(x)=2 x^{2}+x-3$ and $g(x)=x-1$ Express $f(x) \bullet g(x)-[f(x)+g(x)]$ as a polynomial in standard form.

34 A student is chosen at random from the student body at a given high school. The probability that the student selects Math as the favorite subject is $\frac{1}{4}$. The probability that the student chosen is a junior is $\frac{116}{459}$. If the probability that the student selected is a junior or that the student chooses Math as the favorite subject is $\frac{47}{108}$, what is the exact probability that the student selected is a junior whose favorite subject is Math? Are the events "the student is a junior" and "the student's favorite subject is Math" independent of each other? Explain your answer.

35 In a random sample of 250 men in the United States, age 21 or older, 139 are married. The graph below simulated samples of 250 men, 200 times, assuming that 139 of the men are married.

a) Based on the simulation, create an interval in which the middle 95% of the number of married men may fall. Round your answer to the nearest integer.
b) A study claims " 50 percent of men 21 and older in the United States are married." Do your results from part a contradict this claim? Explain.

36 The graph of $y=f(x)$ is shown below. The function has a leading coefficient of 1 .

Write an equation for $f(x)$. The function g is formed by translating function f left 2 units. Write an equation for $g(x)$.

37 The resting blood pressure of an adult patient can be modeled by the function P below, where $P(t)$ is the pressure in millimeters of mercury after time t in seconds.

$$
P(t)=24 \cos (3 \pi t)+120
$$

On the set of axes below, graph $y=P(t)$ over the domain $0 \leq t \leq 2$.

Determine the period of P. Explain what this value represents in the given context. Normal resting blood pressure for an adult is 120 over 80 . This means that the blood pressure oscillates between a maximum of 120 and a minimum of 80 . Adults with high blood pressure (above 140 over 90) and adults with low blood pressure (below 90 over 60) may be at risk for health disorders. Classify the given patient's blood pressure as low, normal, or high and explain your reasoning.

0618aii

1 The graphs of the equations $y=x^{2}+4 x-1$ and $y+3=x$ are drawn on the same set of axes. One solution of this system is

1) $(-5,-2)$
2) $(-1,-4)$
3) $(1,4)$
4) $(-2,-1)$

2 Which statement is true about the graph of $f(x)=\left(\frac{1}{8}\right)^{x} ?$

1) The graph is always increasing.
2) The graph is always decreasing.
3) The graph passes through $(1,0)$.
4) The graph has an asymptote, $x=0$.

3 For all values of x for which the expression is defined, $\frac{x^{3}+2 x^{2}-9 x-18}{x^{3}-x^{2}-6 x}$, in simplest form, is equivalent to

1) 3
2) $-\frac{17}{2}$
3) $\frac{x+3}{x}$
4) $\frac{x^{2}-9}{x(x-3)}$

4 A scatterplot showing the weight, w, in grams, of each crystal after growing t hours is shown below.

The relationship between weight, w, and time, t, is best modeled by

1) $w=4^{t}+5$
2) $w=(1.4)^{t}+2$
3) $w=5(2.1)^{t}$
4) $w=8(.75)^{t}$

5 Where i is the imaginary unit, the expression $(x+3 i)^{2}-(2 x-3 i)^{2}$ is equivalent to

1) $-3 x^{2}$
2) $-3 x^{2}-18$
3) $-3 x^{2}-18 x i$
4) $-3 x^{2}-6 x i-18$

6 Which function is even?

1) $f(x)=\sin x$
2) $f(x)=x^{2}-4$
3) $f(x)=|x-2|+5$
4) $f(x)=x^{4}+3 x^{3}+4$

7 The function $N(t)=100 e^{-0.023 t}$ models the number of grams in a sample of cesium-137 that remain after t years. On which interval is the sample's average rate of decay the fastest?

1) $[1,10]$
2) $[10,20]$
3) $[15,25]$
4) $[1,30]$

8 Which expression can be rewritten as $(x+7)(x-1)$?

1) $(x+3)^{2}-16$
2) $(x+3)^{2}-10(x+3)-2(x+3)+20$
3) $\frac{(x-1)\left(x^{2}-6 x-7\right)}{(x+1)}$
4) $\frac{(x+7)\left(x^{2}+4 x+3\right)}{(x+3)}$

9 What is the solution set of the equation $\frac{2}{x}-\frac{3 x}{x+3}=\frac{x}{x+3}$?

1) $\{3\}$
2) $\left\{\frac{3}{2}\right\}$
3) $\{-2,3\}$
4) $\left\{-1, \frac{3}{2}\right\}$

10 The depth of the water at a marker 20 feet from the shore in a bay is depicted in the graph below.

If the depth, d, is measured in feet and time, t, is measured in hours since midnight, what is an equation for the depth of the water at the marker?

1) $d=5 \cos \left(\frac{\pi}{6} t\right)+9$
2) $d=9 \cos \left(\frac{\pi}{6} t\right)+5$
3) $d=9 \sin \left(\frac{\pi}{6} t\right)+5$
4) $d=5 \sin \left(\frac{\pi}{6} t\right)+9$

11 On a given school day, the probability that Nick oversleeps is 48% and the probability he has a pop quiz is 25%. Assuming these two events are independent, what is the probability that Nick oversleeps and has a pop quiz on the same day?

1) 73%
2) 36%
3) 23%
4) 12%

12 If $x-1$ is a factor of $x^{3}-k x^{2}+2 x$, what is the value of k ?

1) 0
2) 2
3) 3
4) -3

13 The profit function, $p(x)$, for a company is the cost function, $c(x)$, subtracted from the revenue function, $r(x)$. The profit function for the Acme Corporation is $p(x)=-0.5 x^{2}+250 x-300$ and the revenue function is $r(x)=-0.3 x^{2}+150 x$. The cost function for the Acme Corporation is

1) $c(x)=0.2 x^{2}-100 x+300$
2) $c(x)=0.2 x^{2}+100 x+300$
3) $c(x)=-0.2 x^{2}+100 x-300$
4) $c(x)=-0.8 x^{2}+400 x-300$

14 The populations of two small towns at the beginning of 2018 and their annual population growth rate are shown in the table below.

Town	Population	Annual Population Growth Rate
Jonesville	1240	6% increase
Williamstown	890	11% increase

Assuming the trend continues, approximately how many years after the beginning of 2018 will it take for the populations to be equal?

1) 7
2) 20
3) 68
4) 125

15 What is the inverse of $f(x)=x^{3}-2$?

1) $f^{-1}(x)=\sqrt[3]{x}+2$
2) $f^{-1}(x)= \pm \sqrt[3]{x}+2$
3) $f^{-1}(x)=\sqrt[3]{x+2}$
4) $f^{-1}(x)= \pm \sqrt[3]{x+2}$

16 A 4th degree polynomial has zeros $-5,3, i$, and $-i$. Which graph could represent the function defined by this polynomial?
1)

2)

3)
4)

17 The weights of bags of Graseck's Chocolate Candies are normally distributed with a mean of 4.3 ounces and a standard deviation of 0.05 ounces. What is the probability that a bag of these chocolate candies weighs less than 4.27 ounces?

1) 0.2257
2) 0.2743
3) 0.7257
4) 0.7757

18 The half-life of iodine- 131 is 8 days. The percent of the isotope left in the body d days after being introduced is $I=100\left(\frac{1}{2}\right)^{\frac{d}{8}}$. When this equation is written in terms of the number e, the base of the natural logarithm, it is equivalent to $I=100 e^{k d}$. What is the approximate value of the constant, k ?

1) -0.087
2) 0.087
3) -11.542
4) 11.542

19 The graph of $y=\log _{2} x$ is translated to the right 1 unit and down 1 unit. The coordinates of the x-intercept of the translated graph are

1) $(0,0)$
2) $(1,0)$
3) $(2,0)$
4) $(3,0)$

20 For positive values of x, which expression is equivalent to $\sqrt{16 x^{2}} \cdot x^{\frac{2}{3}}+\sqrt[3]{8 x^{5}}$

1) $6 \sqrt[3]{x^{5}}$
2) $6 \sqrt[5]{x^{3}}$
3) $4 \sqrt[3]{x^{2}}+2 \sqrt[3]{x^{5}}$
4) $4 \sqrt{x^{3}}+2 \sqrt[5]{x^{3}}$

21 Which equation represents a parabola with a focus of $(-2,5)$ and a directrix of $y=9$?

1) $(y-7)^{2}=8(x+2)$
2) $(y-7)^{2}=-8(x+2)$
3) $(x+2)^{2}=8(y-7)$
4) $(x+2)^{2}=-8(y-7)$

22 Given the following polynomials

$$
\begin{gathered}
x=(a+b+c)^{2} \\
y=a^{2}+b^{2}+c^{2} \\
z=a b+b c+a c
\end{gathered}
$$

Which identity is true?

1) $x=y-z$
2) $x=y+z$
3) $x=y-2 z$
4) $x=y+2 z$

23 On average, college seniors graduating in 2012 could compute their growing student loan debt using the function $D(t)=29,400(1.068)^{t}$, where t is time in years. Which expression is equivalent to $29,400(1.068)^{t}$ and could be used by students to identify an approximate daily interest rate on their loans?

1) $29,400\left(1.068^{\frac{1}{365}}\right)^{t}$
2) $29,400\left(\frac{1.068}{365}\right)^{365 t}$
3) $29,400\left(1+\frac{0.068}{365}\right)^{t}$
4) $29,400\left(1.068^{\frac{1}{365}}\right)^{365 t}$

24 A manufacturing plant produces two different-sized containers of peanuts. One container weighs x ounces and the other weighs y pounds. If a gift set can hold one of each size container, which expression represents the number of gift sets needed to hold 124 ounces?

1) $\frac{124}{16 x+y}$
2) $\frac{x+16 y}{124}$
3) $\frac{124}{x+16 y}$
4) $\frac{16 x+y}{124}$

25 A survey about television-viewing preferences was given to randomly selected freshmen and seniors at Fairport High School. The results are shown in the table below.

Favorite Type of Program			
	Sports	Reality Show	Comedy Series
Senior	83	110	67
Freshmen	119	103	54

A student response is selected at random from the results. State the exact probability the student response is from a freshman, given the student prefers to watch reality shows on television.

26 On the grid below, graph the function
$f(x)=x^{3}-6 x^{2}+9 x+6$ on the domain $-1 \leq x \leq 4$.

27 Solve the equation $2 x^{2}+5 x+8=0$. Express the answer in $a+b i$ form.

28 Chuck's Trucking Company has decided to initiate an Employee of the Month program. To determine the recipient, they put the following sign on the back of each truck.

The driver who receives the highest number of positive comments will win the recognition.
Explain one statistical bias in this data collection method.

29 Determine the quotient and remainder when $\left(6 a^{3}+11 a^{2}-4 a-9\right)$ is divided by $(3 a-2)$.
Express your answer in the form $q(a)+\frac{r(a)}{d(a)}$.

30 The recursive formula to describe a sequence is shown below.

$$
\begin{gathered}
a_{1}=3 \\
a_{n}=1+2 a_{n-1}
\end{gathered}
$$

State the first four terms of this sequence. Can this sequence be represented using an explicit geometric formula? Justify your answer.

31 The Wells family is looking to purchase a home in a suburb of Rochester with a 30 -year mortgage that has an annual interest rate of 3.6%. The house the family wants to purchase is $\$ 152,500$ and they will make a $\$ 15,250$ down payment and borrow the remainder. Use the formula below to determine their monthly payment, to the nearest dollar.

$$
\begin{array}{r}
M=\frac{P\left(\frac{r}{12}\right)\left(1+\frac{r}{12}\right)^{n}}{\left(1+\frac{r}{12}\right)^{n}-1} \\
M=\text { monthly payment } \\
P=\text { amount borrowed } \\
r=\text { annual interest rate } \\
n=\text { total number of monthly payments }
\end{array}
$$

32 An angle, θ, is in standard position and its terminal side passes through the point $(2,-1)$. Find the exact value of $\sin \theta$.

33 Solve algebraically for all values of x : $\sqrt{6-2 x}+x=2(x+15)-9$

34 Joseph was curious to determine if scent improves memory. A test was created where better memory is indicated by higher test scores. A controlled experiment was performed where one group was given the test on scented paper and the other group was given the test on unscented paper. The summary statistics from the experiment are given below.

	Scented Paper	Unscented Paper
\bar{x}	23	18
$\mathrm{~s}_{\mathrm{x}}$	2.898	2.408

Calculate the difference in means in the experimental test grades (scented -unscented). A simulation was conducted in which the subjects' scores were rerandomized into two groups 1000 times. The differences of the group means were calculated each time. The results are shown below.

Use the simulation results to determine the interval representing the middle 95% of the difference in means, to the nearest hundredth. Is the difference in means in Joseph's experiment statistically significant based on the simulation? Explain.

35 Carla wants to start a college fund for her daughter Lila. She puts $\$ 63,000$ into an account that grows at a rate of 2.55% per year, compounded monthly. Write a function, $C(t)$, that represents the amount of money in the account t years after the account is opened, given that no more money is deposited into or withdrawn from the account. Calculate algebraically the number of years it will take for the account to reach $\$ 100,000$, to the nearest hundredth of a year.

36 The height, $h(t)$ in cm, of a piston, is given by the equation $h(t)=12 \cos \left(\frac{\pi}{3} t\right)+8$, where t represents the number of seconds since the measurements began. Determine the average rate of change, in $\mathrm{cm} / \mathrm{sec}$, of the piston's height on the interval $1 \leq t \leq 2$. At what value(s) of t, to the nearest tenth of a second, does $h(t)=0$ in the interval $1 \leq t \leq 5$? Justify your answer.

37 Website popularity ratings are often determined using models that incorporate the number of visits per week a website receives. One model for ranking websites is $P(x)=\log (x-4)$, where x is the number of visits per week in thousands and $P(x)$ is the website's popularity rating. According to this model, if a website is visited 16,000 times in one week, what is its popularity rating, rounded to the nearest tenth? Graph $y=P(x)$ on the axes below.

An alternative rating model is represented by $R(x)=\frac{1}{2} x-6$, where x is the number of visits per week in thousands. Graph $R(x)$ on the same set of axes. For what number of weekly visits will the two models provide the same rating?

0818AII Common Core State Standards

1 The solution of $87 e^{0.3 x}=5918$, to the nearest thousandth, is

1) 0.583
2) 1.945
3) 4.220
4) 14.066

2 A researcher randomly divides 50 bean plants into two groups. He puts one group by a window to receive natural light and the second group under artificial light. He records the growth of the plants weekly. Which data collection method is described in this situation?

1) observational study
2) controlled experiment
3) survey
4) systematic sample

3 If $f(x)=x^{2}+9$ and $g(x)=x+3$, which operation would not result in a polynomial expression?

1) $f(x)+g(x)$
2) $f(x)-g(x)$
3) $f(x) \bullet g(x)$
4) $f(x) \div g(x)$

4 Consider the function $p(x)=3 x^{3}+x^{2}-5 x$ and the graph of $y=m(x)$ below.

Which statement is true?

1) $p(x)$ has three real roots and $m(x)$ has two real roots.
2) $\quad p(x)$ has one real root and $m(x)$ has two real roots.
3) $p(x)$ has two real roots and $m(x)$ has three real roots.
4) $\quad p(x)$ has three real roots and $m(x)$ has four real roots.

5 Which expression is equivalent to
$\frac{2 x^{4}+8 x^{3}-25 x^{2}-6 x+14}{x+6}$?

1) $2 x^{3}+4 x^{2}+x-12+\frac{86}{x+6}$
2) $2 x^{3}-4 x^{2}-x+14$
3) $2 x^{3}-4 x^{2}-x+\frac{14}{x+6}$
4) $2 x^{3}-4 x^{2}-x$

6 Given $f(x)=\frac{1}{2} x+8$, which equation represents the inverse, $g(x)$?

1) $g(x)=2 x-8$
2) $g(x)=2 x-16$
3) $g(x)=-\frac{1}{2} x+8$
4) $g(x)=-\frac{1}{2} x-16$

7 The value(s) of x that satisfy

$$
\sqrt{x^{2}-4 x-5}=2 x-10 \text { are }
$$

1) $\{5\}$
2) $\{7\}$
3) $\{5,7\}$
4) $\{3,5,7\}$

8 Stephanie found that the number of white-winged cross bills in an area can be represented by the formula $C=550(1.08)^{t}$, where t represents the number of years since 2010. Which equation correctly represents the number of white-winged cross bills in terms of the monthly rate of population growth?

1) $C=550(1.00643)^{t}$
2) $C=550(1.00643)^{12 t}$
3) $C=550(1.00643)^{\frac{t}{12}}$
4) $C=550(1.00643)^{t+12}$

9 The roots of the equation $3 x^{2}+2 x=-7$ are

1) $-2,-\frac{1}{3}$
2) $-\frac{7}{3}, 1$
3) $-\frac{1}{3} \pm \frac{2 i \sqrt{5}}{3}$
4) $-\frac{1}{3} \pm \frac{\sqrt{11}}{3}$

10 The average depreciation rate of a new boat is approximately 8% per year. If a new boat is purchased at a price of $\$ 75,000$, which model is a recursive formula representing the value of the boat n years after it was purchased?

1) $a_{n}=75,000(0.08)^{n}$
2) $a_{0}=75,000$
$a_{n}=(0.92)^{n}$
3) $a_{n}=75,000(1.08)^{n}$
4) $a_{0}=75,000$

$$
a_{n}=0.92\left(a_{n-1}\right)
$$

11 Given $\cos \theta=\frac{7}{25}$, where θ is an angle in standard position terminating in quadrant IV, and $\sin ^{2} \theta+\cos ^{2} \theta=1$, what is the value of $\tan \theta$?

1) $-\frac{24}{25}$
2) $-\frac{24}{7}$
3) $\frac{24}{25}$
4) $\frac{24}{7}$

12 For $x>0$, which expression is equivalent to
$\frac{\sqrt[3]{x^{2}} \cdot \sqrt{x^{5}}}{\sqrt[6]{x}}$?

1) x
2) $x^{\frac{3}{2}}$
3) x^{3}
4) x^{10}

13 Jake wants to buy a car and hopes to save at least $\$ 5000$ for a down payment. The table below summarizes the amount of money he plans to save each week.

Week	1	2	3	4	5
Money Saved, in Dollars	2	5	12.5	31.25	\ldots

Based on this plan, which expression should he use to determine how much he has saved in n weeks?

1) $\frac{2-2\left(2.5^{n}\right)}{1-2.5}$
2) $\frac{2-2\left(2.5^{n-1}\right)}{1-2.5}$
3) $\frac{1-2.5^{n}}{1-2.5}$
4) $\frac{1-2.5^{n-1}}{1-2.5}$

14 Which expression is equivalent to
$x^{6} y^{4}\left(x^{4}-16\right)-9\left(x^{4}-16\right)$?

1) $x^{10} y^{4}-16 x^{6} y^{4}-9 x^{4}-144$
2) $\left(x^{6} y^{4}-9\right)(x+2)^{3}(x-2)$
3) $\left(x^{3} y^{2}+3\right)\left(x^{3} y^{2}-3\right)(x+2)^{2}(x-2)^{2}$
4) $\left(x^{3} y^{2}+3\right)\left(x^{3} y^{2}-3\right)\left(x^{2}+4\right)\left(x^{2}-4\right)$

15 If $A=-3+5 i, B=4-2 i$, and $C=1+6 i$, where i is the imaginary unit, then $A-B C$ equals

1) $5-17 i$
2) $5+27 i$
3) $-19-17 i$
4) $-19+27 i$

16 Which sketch best represents the graph of $x=3^{y}$?
1)

2)
3)

17 The graph below represents national and New York State average gas prices.

If New York State's gas prices are modeled by $G(x)$ and $C>0$, which expression best approximates the national average x months from August 2014?

1) $G(x+C)$
2) $G(x)+C$
3) $G(x-C)$
4) $G(x)-C$

18 Data for the students enrolled in a local high school are shown in the Venn diagram below.

If a student from the high school is selected at random, what is the probability that the student is a sophomore given that the student is enrolled in Algebra II?

1) $\frac{85}{210}$
2) $\frac{85}{295}$
3) $\frac{85}{405}$
4) $\frac{85}{1600}$

19 If $p(x)=2 \ln (x)-1$ and $m(x)=\ln (x+6)$, then what is the solution for $p(x)=m(x)$?

1) 1.65
2) 3.14
3) 5.62
4) no solution

20 Which function's graph has a period of 8 and reaches a maximum height of 1 if at least one full period is graphed?

1) $y=-4 \cos \left(\frac{\pi}{4} x\right)-3$
2) $y=-4 \cos \left(\frac{\pi}{4} x\right)+5$
3) $y=-4 \cos (8 x)-3$
4) $y=-4 \cos (8 x)+5$

21 Given $c(m)=m^{3}-2 m^{2}+4 m-8$, the solution of $c(m)=0$ is

1) ± 2
2) 2, only
3) $2 i, 2$
4) $\pm 2 i, 2$

22 The height above ground for a person riding a Ferris wheel after t seconds is modeled by
$h(t)=150 \sin \left(\frac{\pi}{45} t+67.5\right)+160$ feet. How many seconds does it take to go from the bottom of the wheel to the top of the wheel?

1) 10
2) 45
3) 90
4) 150

23 The parabola described by the equation $y=\frac{1}{12}(x-2)^{2}+2$ has the directrix at $y=-1$. The focus of the parabola is

1) $(2,-1)$
2) $(2,2)$
3) $(2,3)$
4) $(2,5)$

24 A fast-food restaurant analyzes data to better serve its customers. After its analysis, it discovers that the events D, that a customer uses the drive-thru, and F, that a customer orders French fries, are independent. The following data are given in a report:

$$
\begin{aligned}
P(F) & =0.8 \\
P(F \cap D) & =0.456
\end{aligned}
$$

Given this information, $P(F \mid D)$ is

1) 0.344
2) 0.3648
3) 0.57
4) 0.8

25 Over the set of integers, factor the expression $x^{4}-4 x^{2}-12$.

26 Express the fraction $\frac{2 x^{\frac{3}{2}}}{\frac{1}{4}}$ in simplest radical $\left(16 x^{4}\right)^{\frac{1}{4}}$
form.

27 The world population was 2560 million people in 1950 and 3040 million in 1960 and can be modeled by the function $p(t)=2560 e^{0.017185 t}$, where t is time in years after 1950 and $p(t)$ is the population in millions. Determine the average rate of change of $p(t)$ in millions of people per year, from $4 \leq t \leq 8$. Round your answer to the nearest hundredth.

28 The scores of a recent test taken by 1200 students had an approximately normal distribution with a mean of 225 and a standard deviation of 18 . Determine the number of students who scored between 200 and 245.

29 Algebraically solve for x : $\frac{-3}{x+3}+\frac{1}{2}=\frac{x}{6}-\frac{1}{2}$

30 Graph $t(x)=3 \sin (2 x)+2$ over the domain $[0,2 \pi]$ on the set of axes below.

31 Solve the following system of equations algebraically. $x^{2}+y^{2}=400$

$$
y=x-28
$$

32 Some smart-phone applications contain "in-app" purchases, which allow users to purchase special content within the application. A random sample of 140 users found that 35 percent made in-app purchases. A simulation was conducted with 200 samples of 140 users assuming 35 percent of the samples make in-app purchases. The approximately normal results are shown below.

Considering the middle 95% of the data, determine the margin of error, to the nearest hundredth, for the simulated results. In the given context, explain what this value represents.

33 Solve the following system of equations algebraically for all values of x, y, and z :

$$
\begin{aligned}
2 x+3 y-4 z & =-1 \\
x-2 y+5 z & =3 \\
-4 x+y+z & =16
\end{aligned}
$$

34 Evaluate $j(-1)$ given $j(x)=2 x^{4}-x^{3}-35 x^{2}+16 x+48$. Explain what your answer tells you about $x+1$ as a factor. Algebraically find the remaining zeros of $j(x)$.

35 Determine, to the nearest tenth of a year, how long it would take an investment to double at a $3 \frac{3}{4} \%$ interest rate, compounded continuously.

36 To determine if the type of music played while taking a quiz has a relationship to results, 16 students were randomly assigned to either a room softly playing classical music or a room softly playing rap music. The results on the quiz were as follows:

Classical: 74, 83, 77, 77, 84, 82, 90, 89
Rap: $\quad 77,80,78,74,69,72,78,69$
John correctly rounded the difference of the means of his experimental groups as 7. How did John obtain this value and what does it represent in the given context? Justify your answer. To determine if there is any significance in this value, John rerandomized the 16 scores into two groups of 8 , calculated the difference of the means, and simulated this process 250 times as shown below.

Classical vs. Rap

Does the simulation support the theory that there may be a significant difference in quiz scores? Explain.

37 A major car company analyzes its revenue, $R(x)$, and costs $C(x)$, in millions of dollars over a fifteen-year period. The company represents its revenue and costs as a function of time, in years, x, using the given functions.

$$
\begin{gathered}
R(x)=550 x^{3}-12,000 x^{2}+83,000 x+7000 \\
C(x)=880 x^{3}-21,000 x^{2}+150,000 x-160,000
\end{gathered}
$$

The company's profits can be represented as the difference between its revenue and costs. Write the profit function, $P(x)$, as a polynomial in standard form. Graph $y=P(x)$ on the set of axes below over the domain $2 \leq x \leq 16$.

Over the given domain, state when the company was the least profitable and the most profitable, to the nearest year. Explain how you determined your answer.

0119AII Common Core State Standards

1 Suppose two sets of test scores have the same mean, but different standard deviations, σ_{1} and σ_{2}, with $\sigma_{2}>\sigma_{1}$. Which statement best describes the variability of these data sets?

1) Data set one has the greater variability.
2) The variability will be the same for each data set.
3) Data set two has the greater variability.
4) No conclusion can be made regarding the variability of either set.

2 If $f(x)=\log _{3} x$ and $g(x)$ is the image of $f(x)$ after a translation five units to the left, which equation represents $g(x)$?

1) $g(x)=\log _{3}(x+5)$
2) $g(x)=\log _{3} x+5$
3) $g(x)=\log _{3}(x-5)$
4) $g(x)=\log _{3} x-5$

3 When factoring to reveal the roots of the equation $x^{3}+2 x^{2}-9 x-18=0$, which equations can be used?
I. $x^{2}(x+2)-9(x+2)=0$
II. $x\left(x^{2}-9\right)+2\left(x^{2}-9\right)=0$
III. $(x-2)\left(x^{2}-9\right)=0$

1) I and II, only
2) II and III, only
3) I and III, only
4) I, II, and III

4 When a ball bounces, the heights of consecutive bounces form a geometric sequence. The height of the first bounce is 121 centimeters and the height of the third bounce is 64 centimeters. To the nearest centimeter, what is the height of the fifth bounce?

1) 25
2) 34
3) 36
4) 42

5 The solutions to the equation $5 x^{2}-2 x+13=9$ are

1) $\frac{1}{5} \pm \frac{\sqrt{21}}{5}$
2) $\frac{1}{5} \pm \frac{\sqrt{19}}{5} i$
3) $\frac{1}{5} \pm \frac{\sqrt{66}}{5} i$
4) $\frac{1}{5} \pm \frac{\sqrt{66}}{5}$

6 Julia deposits $\$ 2000$ into a savings account that earns 4% interest per year. The exponential function that models this savings account is $y=2000(1.04)^{t}$, where t is the time in years. Which equation correctly represents the amount of money in her savings account in terms of the monthly growth rate?

1) $y=166.67(1.04)^{0.12 t}$
2) $y=2000(1.01)^{t}$
3) $y=2000(1.0032737)^{12 t}$
4) $y=166.67(1.0032737)^{t}$

7 Tides are a periodic rise and fall of ocean water. On a typical day at a seaport, to predict the time of the next high tide, the most important value to have would be the

1) time between consecutive low tides
2) average depth of water over a 24 -hour period
3) time when the tide height is 20 feet
4) difference between the water heights at low and high tide

8 An estimate of the number of milligrams of a medication in the bloodstream t hours after 400 mg has been taken can be modeled by the function below.

$$
\begin{gathered}
I(t)=0.5 t^{4}+3.45 t^{3}-96.65 t^{2}+347.7 t \\
\text { where } 0 \leq t \leq 6
\end{gathered}
$$

Over what time interval does the amount of medication in the bloodstream strictly increase?

1) 0 to 2 hours
2) 0 to 3 hours
3) 2 to 6 hours
4) 3 to 6 hours

9 Which representation of a quadratic has imaginary roots?
1)

\mathbf{x}	\mathbf{y}
-2.5	2
-2.0	0
-1.5	-1
-1.0	-1
-0.5	0
0.0	2

2) $2(x+3)^{2}=64$
3)

4) $2 x^{2}+32=0$

10 A random sample of 100 people that would best estimate the proportion of all registered voters in a district who support improvements to the high school football field should be drawn from registered voters in the district at a

1) football game
2) supermarket
3) school fund-raiser
4) high school band concert

11 Which expression is equivalent to $(2 x-i)^{2}-(2 x-i)(2 x+3 i)$ where i is the imaginary unit and x is a real number?

1) $-4-8 x i$
2) $-4-4 x i$
3) 2
4) $8 x-4 i$

12 Suppose events A and B are independent and $P(A$ and $B)$ is 0.2 . Which statement could be true?

1) $P(A)=0.4, P(B)=0.3, P(A$ or $B)=0.5$
2) $P(A)=0.8, P(B)=0.25$
3) $P(A \mid B)=0.2, P(B)=0.2$
4) $P(A)=0.15, P(B)=0.05$

13 The function $f(x)=a \cos b x+c$ is plotted on the graph shown below.

What are the values of a, b, and c ?

1) $a=2, b=6, c=3$
2) $a=2, b=3, c=1$
3) $a=4, b=6, c=5$
4) $a=4, b=\frac{\pi}{3}, c=3$

14 Which equation represents the equation of the parabola with focus $(-3,3)$ and directrix $y=7$?

1) $y=\frac{1}{8}(x+3)^{2}-5$
2) $y=\frac{1}{8}(x-3)^{2}+5$
3) $y=-\frac{1}{8}(x+3)^{2}+5$
4) $y=-\frac{1}{8}(x-3)^{2}+5$

15 What is the solution set of the equation $\frac{2}{3 x+1}=\frac{1}{x}-\frac{6 x}{3 x+1}$?

1) $\left\{-\frac{1}{3}, \frac{1}{2}\right\}$
2) $\left\{-\frac{1}{3}\right\}$
3) $\left\{\frac{1}{2}\right\}$
4) $\left\{\frac{1}{3},-2\right\}$

16 Savannah just got contact lenses. Her doctor said she can wear them 2 hours the first day, and can then increase the length of time by 30 minutes each day. If this pattern continues, which formula would not be appropriate to determine the length of time, in either minutes or hours, she could wear her contact lenses on the nth day?

1) $a_{1}=120$

$$
a_{n}=a_{n-1}+30
$$

3) $a_{1}=2$
4) $a_{n}=90+30 n$
5) $a_{n}=2.5+0.5 n$

17 If $f(x)=a^{x}$ where $a>1$, then the inverse of the function is

1) $f^{-1}(x)=\log _{x} a$
2) $f^{-1}(x)=a \log x$
3) $f^{-1}(x)=\log _{a} x$
4) $f^{-1}(x)=x \log a$

18 Kelly-Ann has $\$ 20,000$ to invest. She puts half of the money into an account that grows at an annual rate of 0.9% compounded monthly. At the same time, she puts the other half of the money into an account that grows continuously at an annual rate of 0.8%. Which function represents the value of Kelly-Ann's investments after t years?

1) $f(t)=10,000(1.9)^{t}+10,000 e^{0.8 t}$
2) $f(t)=10,000(1.009)^{t}+10,000 e^{0.008 t}$
3) $f(t)=10,000(1.075)^{12 t}+10,000 e^{0.8 t}$
4) $f(t)=10,000(1.00075)^{12 t}+10,000 e^{0.008 t}$

19 Which graph represents a polynomial function that contains $x^{2}+2 x+1$ as a factor?
1)

2)

3)

20 Sodium iodide-131, used to treat certain medical conditions, has a half-life of 1.8 hours. The data table below shows the amount of sodium iodide-131, rounded to the nearest thousandth, as the dose fades over time.

Number of Half Lives	1	2	3	4	5
Amount of Sodium Iodide-131	139.000	69.500	34.750	17.375	8.688

What approximate amount of sodium iodide-131 will remain in the body after 18 hours?

1) 0.001
2) 0.136
3) 0.271
4) 0.543

21 Which expression(s) are equivalent to $\frac{x^{2}-4 x}{2 x}$, where $x \neq 0$?
I. $\frac{x}{2}-2$
II. $\frac{x-4}{2}$
III. $\frac{x-1}{2}-\frac{3}{2}$

1) II, only
2) II and III
3) I and II
4) I, II, and III

22 Consider $f(x)=4 x^{2}+6 x-3$, and $p(x)$ defined by the graph below.

The difference between the values of the maximum of p and minimum of f is

1) 0.25
2) 1.25
3) 3.25
4) 10.25

23 The scores on a mathematics college-entry exam are normally distributed with a mean of 68 and standard deviation 7.2. Students scoring higher than one standard deviation above the mean will not be enrolled in the mathematics tutoring program. How many of the 750 incoming students can be expected to be enrolled in the tutoring program?

1) 631
2) 512
3) 238
4) 119

24 How many solutions exist for $\frac{1}{1-x^{2}}=-|3 x-2|+5$?

1) 1
2) 2
3) 3
4) 4

25 Justify why $\frac{\sqrt[3]{x^{2} y^{5}}}{\sqrt[4]{x^{3} y^{4}}}$ is equivalent to $x^{\frac{-1}{12}} y^{\frac{2}{3}}$ using properties of rational exponents, where $x \neq 0$ and $y \neq 0$.

26 The zeros of a quartic polynomial function are $2,-2,4$, and -4 . Use the zeros to construct a possible sketch of the function, on the set of axes below.

27 Erin and Christa were working on cubing binomials for math homework. Erin believed they could save time with a shortcut. She wrote down the rule below for Christa to follow.

$$
(a+b)^{3}=a^{3}+b^{3}
$$

Does Erin's shortcut always work? Justify your result algebraically.

28 The probability that a resident of a housing community opposes spending money for community improvement on plumbing issues is 0.8 . The probability that a resident favors spending money on improving walkways given that the resident opposes spending money on plumbing issues is 0.85 . Determine the probability that a randomly selected resident opposes spending money on plumbing issues and favors spending money on walkways.

29 Rowan is training to run in a race. He runs 15 miles in the first week, and each week following, he runs 3% more than the week before. Using a geometric series formula, find the total number of miles Rowan runs over the first ten weeks of training, rounded to the nearest thousandth.

30 The average monthly high temperature in Buffalo, in degrees Fahrenheit, can be modeled by the function $B(t)=25.29 \sin (0.4895 t-1.9752)+55.2877$, where t is the month number (January $=1$). State, to the nearest tenth, the average monthly rate of temperature change between August and November. Explain its meaning in the given context.

31 Point $M\left(t, \frac{4}{7}\right)$ is located in the second quadrant on the unit circle. Determine the exact value of t.

32 On the grid below, graph the function $y=\log _{2}(x-3)+1$

33 Solve the following system of equations algebraically for all values of a, b, and c.

$$
\begin{gathered}
a+4 b+6 c=23 \\
a+2 b+c=2 \\
6 b+2 c=a+14
\end{gathered}
$$

34 Given $a(x)=x^{4}+2 x^{3}+4 x-10$ and $b(x)=x+2$, determine $\frac{a(x)}{b(x)}$ in the form $q(x)+\frac{r(x)}{b(x)}$. Is $b(x)$ a factor of $a(x)$? Explain.

35 A radio station claims to its advertisers that the mean number of minutes commuters listen to the station is 30 . The station conducted a survey of 500 of their listeners who commute. The sample statistics are shown below.

$\overline{\mathrm{x}}$	29.11
s_{x}	20.718

A simulation was run 1000 times based upon the results of the survey. The results of the simulation appear below.

Based on the simulation results, is the claim that commuters listen to the station on average 30 minutes plausible? Explain your response including an interval containing the middle 95% of the data, rounded to the nearest hundredth.

36 Solve the given equation algebraically for all values of $x .3 \sqrt{x}-2 x=-5$

37 Tony is evaluating his retirement savings. He currently has $\$ 318,000$ in his account, which earns an interest rate of 7% compounded annually. He wants to determine how much he will have in the account in the future, even if he makes no additional contributions to the account. Write a function, $A(t)$, to represent the amount of money that will be in his account in t years. Graph $A(t)$ where $0 \leq t \leq 20$ on the set of axes below.

Tony's goal is to save $\$ 1,000,000$. Determine algebraically, to the nearest year, how many years it will take for him to achieve his goal. Explain how your graph of $A(t)$ confirms your answer.

0619aii

1 A sociologist reviews randomly selected surveillance videos from a public park over a period of several years and records the amount of time people spent on a smartphone. The statistical procedure the sociologist used is called

1) a census
2) an observational study
3) an experiment
4) a sample survey

2 Which statement(s) are true for all real numbers?
I $\quad(x-y)^{2}=x^{2}+y^{2}$
II $\quad(x+y)^{3}=x^{3}+3 x y+y^{3}$

1) I, only
2) I and II
3) II, only
4) neither I nor II

3 What is the solution set of the following system of equations?

$$
\begin{aligned}
& y=3 x+6 \\
& y=(x+4)^{2}-10
\end{aligned}
$$

1) $\{(-5,-9)\}$
2) $\{(5,21)\}$
3) $\{(0,6),(-5,-9)\}$
4) $\{(0,6),(5,21)\}$

4 Irma initially ran one mile in over ten minutes. She then began a training program to reduce her one-mile time. She recorded her one-mile time once a week for twelve consecutive weeks, as modeled in the graph below.

Which statement regarding Irma's one-mile training program is correct?

1) Her one-mile speed increased as the number of weeks increased.
2) If the trend continues, she will run under a six-minute mile by week thirteen.
3) Her one-mile speed decreased as the number of weeks increased.
4) She reduced her one-mile time the most between weeks ten and twelve.

5 A 7-year lease for office space states that the annual rent is $\$ 85,000$ for the first year and will increase by 6% each additional year of the lease. What will the total rent expense be for the entire 7 -year lease?

1) $\$ 42,809.63$
2) $\$ 90,425.53$
3) $\$ 595,000.00$
4) $\$ 713,476.20$

6 The graph of $y=f(x)$ is shown below.

Which expression defines $f(x)$?

1) $2 x$
2) $5\left(2^{x}\right)$
3) $5\left(2^{\frac{x}{2}}\right)$
4) $5\left(2^{2 x}\right)$

7 Given $P(x)=x^{3}-3 x^{2}-2 x+4$, which statement is true?

1) $(x-1)$ is a factor because $P(-1)=2$.
2) $(x+1)$ is a factor because $P(-1)=2$.
3) $(x+1)$ is a factor because $P(1)=0$.
4) $(x-1)$ is a factor because $P(1)=0$.

8 For $x \geq 0$, which equation is false?

1) $\left(x^{\frac{3}{2}}\right)^{2}=\sqrt[4]{x^{3}}$
2) $\left(x^{3}\right)^{\frac{1}{4}}=\sqrt[4]{x^{3}}$
3) $\left(x^{\frac{3}{2}}\right)^{\frac{1}{2}}=\sqrt[4]{x^{3}}$
4) $\left(x^{\frac{2}{3}}\right)^{2}=\sqrt[3]{x^{4}}$

9 What is the inverse of the function $y=4 x+5$?

1) $x=\frac{1}{4} y-\frac{5}{4}$
2) $y=\frac{1}{4} x-\frac{5}{4}$
3) $y=4 x-5$
4) $y=\frac{1}{4 x+5}$

10 Which situation could be modeled using a geometric sequence?

1) A cell phone company charges $\$ 30.00$ per month for 2 gigabytes of data and $\$ 12.50$ for each additional gigabyte of data.
2) The temperature in your car is 79°. You lower the temperature of your air conditioning by 2° every 3 minutes in order to find a comfortable temperature.
3) David's parents have set a limit of 50 minutes per week that he may play online games during the school year. However, they will increase his time by 5% per week for the next ten weeks.
4) Sarah has $\$ 100.00$ in her piggy bank and saves an additional $\$ 15.00$ each week.

11 The completely factored form of $n^{4}-9 n^{2}+4 n^{3}-36 n-12 n^{2}+108$ is

1) $\left(n^{2}-9\right)(n+6)(n-2)$
2) $(n+3)(n-3)(n+6)(n-2)$
3) $(n-3)(n-3)(n+6)(n-2)$
4) $(n+3)(n-3)(n-6)(n+2)$

12 What is the solution when the equation $w x^{2}+w=0$ is solved for x, where w is a positive integer?

1) -1
2) 0
3) 6
4) $\pm i$

13 A group of students was trying to determine the proportion of candies in a bag that are blue. The company claims that 24% of candies in bags are blue. A simulation was run 100 times with a sample size of 50 , based on the premise that 24% of the candies are blue. The approximately normal results of the simulation are shown in the dot plot below.

The simulation results in a mean of 0.254 and a standard deviation of 0.060 . Based on this simulation, what is a plausible interval containing the middle 95% of the data?

1) $(0.194,0.314)$
2) $(0.134,0.374)$
3) $(-0.448,0.568)$
4) $(0.254,0.374)$

14 Selected values for the functions f and g are shown in the tables below.

\mathbf{x}	$\mathbf{f (x)}$				
-3.12	-4.88				
0	-6				
1.23	-4.77				
8.52	2.53				
9.01	3.01	\quad	-2.01	$\mathbf{g}(\mathbf{x})$	
:---:	:---:	:---:			
	0	0.01			
	8.52	2.53			
	13.11	3.01			
	16.52	3.29			

A solution to the equation $f(x)=g(x)$ is

1) 0
2) 2.53
3) 3.01
4) 8.52

15 The expression 6-(3x-2i) ${ }^{2}$ is equivalent to

1) $-9 x^{2}+12 x i+10$
2) $9 x^{2}-12 x i+2$
3) $-9 x^{2}+10$
4) $-9 x^{2}+12 x i-4 i+6$

16 A number, minus twenty times its reciprocal, equals eight. The number is

1) 10 or -2
2) 10 or 2
3) -10 or -2
4) -10 or 2

17 A savings account, S, has an initial value of $\$ 50$. The account grows at a 2% interest rate compounded n times per year, t, according to the function below.

$$
S(t)=50\left(1+\frac{.02}{n}\right)^{n t}
$$

Which statement about the account is correct?

1) As the value of n increases, the amount of interest per year decreases.
2) As the value of n decreases to one, the amount of interest per year increases.
3) As the value of n increases, the value of
4) As the value of n decreases to one, the value of the account approaches the the account approaches the function $S(t)=50 e^{0.02 t}$. function $S(t)=50(1-0.02)^{t}$.

18 There are 400 students in the senior class at Oak Creek High School. All of these students took the SAT. The distribution of their SAT scores is approximately normal. The number of students who scored within 2 standard deviations of the mean is approximately

1) 75
2) 95
3) 300
4) 380

19 The solution set for the equation $b=\sqrt{2 b^{2}-64}$ is

1) $\{-8\}$
2) $\{8\}$
3) $\{ \pm 8\}$
4) $\}$

20 Which table best represents an exponential relationship?
1)

x	y
1	8
2	4
3	2
4	1
5	$\frac{1}{2}$

3)

\mathbf{x}	\mathbf{y}
0	0
1	1
2	4
3	9
4	16

2)

x	y
8	0
4	1
0	2
-4	3
-8	4

4)

\mathbf{x}	\mathbf{y}
1	1
2	8
3	27
4	64
5	125

21 A sketch of $r(x)$ is shown below.

An equation for $r(x)$ could be

1) $r(x)=(x-a)(x+b)(x+c)$
2) $r(x)=(x+a)(x-b)(x-c)^{2}$
3) $r(x)=(x+a)(x-b)(x-c)$
4) $r(x)=(x-a)(x+b)(x+c)^{2}$

22 The temperature, in degrees Fahrenheit, in Times Square during a day in August can be predicted by the function $T(x)=8 \sin (0.3 x-3)+74$, where x is the number of hours after midnight. According to this model, the predicted temperature, to the nearest degree Fahrenheit, at 7 P.M. is

1) 68
2) 74
3) 77
4) 81

23 Consider the system of equations below:

$$
\begin{gathered}
x+y-z=6 \\
2 x-3 y+2 z=-19 \\
-x+4 y-z=17
\end{gathered}
$$

Which number is not the value of any variable in the solution of the system?

1) -1
2) 2
3) 3
4) -4

24 Camryn puts $\$ 400$ into a savings account that earns 6% annually. The amount in her account can be modeled by $C(t)=400(1.06)^{t}$ where t is the time in years. Which expression best approximates the amount of money in her account using a weekly growth rate?

1) $400(1.001153846)^{t}$
2) $400(1.001121184)^{t}$
3) $400(1.001153846)^{52 t}$
4) $400(1.001121184)^{52 t}$

25 The table below shows the number of hours of daylight on the first day of each month in Rochester, NY.

Month	Hours of Daylight
Jan.	9.4
Feb.	10.6
March	11.9
April	13.9
May	14.7
June	15.4
July	15.1
Aug.	13.9
Sept.	12.5
Oct.	11.1
Nov.	9.7
Dec.	9.0

Given the data, what is the average rate of change in hours of daylight per month from January 1st to April 1st? Interpret what this means in the context of the problem.

26 Algebraically solve for x : $\frac{7}{2 x}-\frac{2}{x+1}=\frac{1}{4}$

27 Graph $f(x)=\log _{2}(x+6)$ on the set of axes below.

28 Given $\tan \theta=\frac{7}{24}$, and θ terminates in Quadrant III, determine the value of $\cos \theta$.

29 Kenzie believes that for $x \geq 0$, the expression $\left(\sqrt[7]{x^{2}}\right)\left(\sqrt[5]{x^{3}}\right)$ is equivalent to $\sqrt[35]{x^{6}}$. Is she correct? Justify your response algebraically.

30 When the function $p(x)$ is divided by $x-1$ the quotient is $x^{2}+7+\frac{5}{x-1}$. State $p(x)$ in standard form.

31 Write a recursive formula for the sequence $6,9,13.5,20.25, \ldots$

32 Robin flips a coin 100 times. It lands heads up 43 times, and she wonders if the coin is unfair. She runs a computer simulation of 750 samples of 100 fair coin flips. The output of the proportion of heads is shown below.

Do the results of the simulation provide strong evidence that Robin's coin is unfair? Explain your answer.

33 Factor completely over the set of integers: $16 x^{4}-81$. Sara graphed the polynomial $y=16 x^{4}-81$ and stated "All the roots of $y=16 x^{4}-81$ are real." Is Sara correct? Explain your reasoning.

34 The half-life of a radioactive substance is 15 years. Write an equation that can be used to determine the amount, $s(t)$, of 200 grams of this substance that remains after t years. Determine algebraically, to the nearest year, how long it will take for $\frac{1}{10}$ of this substance to remain.

Algebra II Regents Exam 0619
www.jmap.org
35 Determine an equation for the parabola with focus $(4,-1)$ and directrix $y=-5$. (Use of the grid below is optional.)

36 Juan and Filipe practice at the driving range before playing golf. The number of wins and corresponding practice times for each player are shown in the table below.

	Juan Wins	Felipe Wins
Short Practice Time	8	10
Long Practice Time	15	12

Given that the practice time was long, determine the exact probability that Filipe wins the next match. Determine whether or not the two events "Filipe wins" and "long practice time" are independent. Justify your answer.

37 Griffin is riding his bike down the street in Churchville, N.Y. at a constant speed, when a nail gets caught in one of his tires. The height of the nail above the ground, in inches, can be represented by the trigonometric function $f(t)=-13 \cos (0.8 \pi t)+13$, where t represents the time (in seconds) since the nail first became caught in the tire. Determine the period of $f(t)$. Interpret what the period represents in this context. On the grid below, graph at least one cycle of $f(t)$ that includes the y-intercept of the function.

Does the height of the nail ever reach 30 inches above the ground? Justify your answer.

0819AII Regents Exam

1 When the expression $(x+2)^{2}+4(x+2)+3$ is rewritten as the product of two binomials, the result is

1) $(x+3)(x+1)$
2) $(x+5)(x+3)$
3) $(x+2)(x+2)$
4) $(x+6)(x+1)$

2 The first term of a geometric sequence is 8 and the fourth term is 216 . What is the sum of the first 12 terms of the corresponding series?

1) 236,192
2) 708,584
3) $2,125,760$
4) $6,377,288$

3 Perry invested in property that cost him $\$ 1500$. Five years later it was worth $\$ 3000$, and 10 years from his original purchase, it was worth $\$ 6000$. Assuming the growth rate remains the same, which type of function could he create to find the value of his investment 30 years from his original purchase?

1) exponential function
2) quadratic function
3) linear function
4) trigonometric function

4 If $\left(a^{3}+27\right)=(a+3)\left(a^{2}+m a+9\right)$, then m equals

1) -9
2) -3
3) 3
4) 6

5 If $\cos \theta=-\frac{3}{4}$ and θ is in Quadrant III, then $\sin \theta$ is equivalent to

1) $-\frac{\sqrt{7}}{4}$
2) $\frac{\sqrt{7}}{4}$
3) $-\frac{5}{4}$
4) $\frac{5}{4}$

6 A veterinary pharmaceutical company plans to test a new drug to treat a common intestinal infection among puppies. The puppies are randomly assigned to two equal groups. Half of the puppies will receive the drug, and the other half will receive a placebo. The veterinarians monitor the puppies. This is an example of which study method?

1) census
2) survey
3) observational study
4) controlled experiment

7 The expression $2-\frac{x-1}{x+2}$ is equivalent to

1) $1-\frac{3}{x+2}$
2) $1+\frac{3}{x+2}$
3) $1-\frac{1}{x+2}$
4) $1+\frac{1}{x+2}$

8 Which description could represent the graph of $f(x)=4 x^{2}(x+a)-x-a$, if a is an integer?

1) As $x \rightarrow-\infty, f(x) \rightarrow \infty$, as $x \rightarrow \infty, f(x) \rightarrow \infty$, and the graph has 3 x-intercepts.
2) As $x \rightarrow-\infty, f(x) \rightarrow-\infty$, as $x \rightarrow \infty, f(x) \rightarrow \infty$, and the graph has 3 x-intercepts.
3) As $x \rightarrow-\infty, f(x) \rightarrow \infty$, as $x \rightarrow \infty, f(x) \rightarrow-\infty$, and the graph has 4 x-intercepts.
4) As $x \rightarrow-\infty, f(x) \rightarrow-\infty$, as $x \rightarrow \infty, f(x) \rightarrow \infty$, and the graph has 4 x-intercepts.

9 After Roger’s surgery, his doctor administered pain medication in the following amounts in milligrams over four days.

Day (n)	1	2	3	4
Dosage (m)	2000	1680	1411.2	1185.4

How can this sequence best be modeled recursively?

1) $m_{1}=2000$

$$
m_{n}=m_{n-1}-320
$$

3) $m_{1}=2000$
$m_{n}=(0.84) m_{n-1}$
4) $m_{n}=2000(0.84)^{n-1}$
5) $m_{n}=2000(0.84)^{n+1}$

10 The expression $\frac{9 x^{2}-2}{3 x+1}$ is equivalent to

1) $3 x-1-\frac{1}{3 x+1}$
2) $3 x-1+\frac{1}{3 x+1}$
3) $3 x+1-\frac{1}{3 x+1}$
4) $3 x+1+\frac{1}{3 x+1}$

11 If $f(x)$ is an even function, which function must also be even?

1) $f(x-2)$
2) $f(x)+3$
3) $f(x+1)$
4) $f(x+1)+3$

12 The average monthly temperature of a city can be modeled by a cosine graph. Melissa has been living in Phoenix, Arizona, where the average annual temperature is $75^{\circ} \mathrm{F}$. She would like to move, and live in a location where the average annual temperature is $62^{\circ} \mathrm{F}$. When examining the graphs of the average monthly temperatures for various locations, Melissa should focus on the

1) amplitude
2) period
3) horizontal shift
4) midline

13 Consider the probability statements regarding events A and B below.

$$
\begin{aligned}
& P(A \text { or } B)=0.3 \text {; } \\
& P(A \text { and } B)=0.2 \text {; and } \\
& P(A \mid B)=0.8
\end{aligned}
$$

What is $P(B)$?

1) 0.1
2) 0.25
3) 0.375
4) 0.667

14 Given $y>0$, the expression $\sqrt{3 x^{2} y} \bullet \sqrt[3]{27 x^{3} y^{2}}$ is equivalent to

1) $81 x^{5} y^{3}$
2) $3^{1.5} x^{2} y$
3) $3^{\frac{5}{2}} x^{2} y^{\frac{5}{3}}$
4) $3^{\frac{3}{2}} x^{2} y^{\frac{7}{6}}$

15 What is the solution set of the equation $\frac{10}{x^{2}-2 x}+\frac{4}{x}=\frac{5}{x-2}$?

1) $\{0,2\}$
2) $\{0\}$
3) $\{2\}$
4) $\}$

16 What are the solution(s) to the system of equations shown below?

$$
\begin{aligned}
& x^{2}+y^{2}=5 \\
& y=2 x
\end{aligned}
$$

1) $x=1$ and $x=-1$
2) $(1,2)$ and $(-1,-2)$
3) $x=1$
4) $(1,2)$, only

17 If $\$ 5000$ is put into a savings account that pays 3.5% interest compounded monthly, how much money, to the nearest ten cents, would be in that account after 6 years, assuming no money was added or withdrawn?

1) $\$ 5177.80$
2) $\$ 5941.30$
3) $\$ 6146.30$
4) $\$ 6166.50$

18 The Fahrenheit temperature, $F(t)$, of a heated object at time t, in minutes, can be modeled by the function below. F_{s} is the surrounding temperature, F_{0} is the initial temperature of the object, and k is a constant.

$$
F(t)=F_{s}+\left(F_{0}-F_{s}\right) e^{-k t}
$$

Coffee at a temperature of $195^{\circ} \mathrm{F}$ is poured into a container. The room temperature is kept at a constant $68^{\circ} \mathrm{F}$ and $k=0.05$. Coffee is safe to drink when its temperature is, at most, $120^{\circ} \mathrm{F}$. To the nearest minute, how long will it take until the coffee is safe to drink?

1) 7
2) 10
3) 11
4) 18

19 The mean intelligence quotient (IQ) score is 100 , with a standard deviation of 15 , and the scores are normally distributed. Given this information, the approximate percentage of the population with an IQ greater than 130 is closest to

1) 2%
2) 31%
3) 48%
4) 95%

20 After examining the functions $f(x)=\ln (x+2)$ and $g(x)=e^{x-1}$ over the interval ($-2,3$, Lexi determined that the correct number of solutions to the equation $f(x)=g(x)$ is

1) 1
2) 2
3) 3
4) 0

21 Evan graphed a cubic function, $f(x)=a x^{3}+b x^{2}+c x+d$, and determined the roots of $f(x)$ to be ± 1 and 2 . What is the value of b, if $a=1$?

1) 1
2) 2
3) -1
4) -2

22 The equation $t=\frac{1}{0.0105} \ln \left(\frac{A}{5000}\right)$ relates time, t, in years, to the amount of money, A, earned by a $\$ 5000$ investment. Which statement accurately describes the relationship between the average rates of change of t on the intervals [6000, 8000] and [9000, 12,000]?

1) A comparison cannot be made because the intervals are different sizes.
2) The average rate of change is larger for the interval [6000, 8000].
3) The average rate of change is larger for the interval [9000, 12,000].
4) The average rate of change is equal for both intervals.

23 What is the inverse of $f(x)=\frac{x}{x+2}$, where $x \neq-2$?

1) $f^{-1}(x)=\frac{2 x}{x-1}$
2) $f^{-1}(x)=\frac{-2 x}{x-1}$
3) $f^{-1}(x)=\frac{x}{x-2}$
4) $f^{-1}(x)=\frac{-x}{x-2}$

24 A study of black bears in the Adirondacks reveals that their population can be represented by the function $P(t)=3500(1.025)^{t}$, where t is the number of years since the study began. Which function is correctly rewritten to reveal the monthly growth rate of the black bear population?

1) $P(t)=3500(1.00206)^{12 t}$
2) $P(t)=3500(1.00206)^{\frac{t}{12}}$
3) $P(t)=3500(1.34489)^{12 t}$
4) $P(t)=3500(1.34489)^{\frac{t}{12}}$

25 At Andrew Jackson High School, students are only allowed to enroll in AP U.S. History if they have already taken AP World History or AP European History. Out of 825 incoming seniors, 165 took AP World History, 66 took AP European History, and 33 took both. Given this information, determine the probability a randomly selected incoming senior is allowed to enroll in AP U.S. History.

26 Explain what a rational exponent, such as $\frac{5}{2}$ means. Use this explanation to evaluate $9^{\frac{5}{2}}$.

27 Write $-\frac{1}{2} i^{3}(\sqrt{-9}-4)-3 i^{2}$ in simplest $a+b i$ form.

28 A person's lung capacity can be modeled by the function $C(t)=250 \sin \left(\frac{2 \pi}{5} t\right)+2450$, where $C(t)$ represents the volume in mL present in the lungs after t seconds. State the maximum value of this function over one full cycle, and explain what this value represents.

29 Determine for which polynomial(s) $(x+2)$ is a factor. Explain your answer.

$$
\begin{aligned}
& P(x)=x^{4}-3 x^{3}-16 x-12 \\
& Q(x)=x^{3}-3 x^{2}-16 x-12
\end{aligned}
$$

30 On July 21, 2016, the water level in Puget Sound, WA reached a high of 10.1 ft at $6 \mathrm{a} . \mathrm{m}$. and a low of -2 ft at 12:30 p.m. Across the country in Long Island, NY, Shinnecock Bay's water level reached a high of 2.5 ft at 10:42 p.m. and a low of -0.1 ft at 5:31 a.m. The water levels of both locations are affected by the tides and can be modeled by sinusoidal functions. Determine the difference in amplitudes, in feet, for these two locations.

Algebra II Regents Exam 0819
www.jmap.org
31 Write a recursive formula, a_{n}, to describe the sequence graphed below.

32 Sketch the graphs of $r(x)=\frac{1}{x}$ and $a(x)=|x|-3$ on the set of axes below. Determine, to the nearest tenth, the positive solution of $r(x)=a(x)$.

33 A population of 950 bacteria grows continuously at a rate of 4.75% per day. Write an exponential function, $N(t)$, that represents the bacterial population after t days and explain the reason for your choice of base. Determine the bacterial population after 36 hours, to the nearest bacterium.

Algebra II Regents Exam 0819
www.jmap.org
34 Write an equation for a sine function with an amplitude of 2 and a period of $\frac{\pi}{2}$. On the grid below, sketch the graph of the equation in the interval 0 to 2π.

35 Mary bought a pack of candy. The manufacturer claims that 30% of the candies manufactured are red. In her pack, 14 of the 60 candies are red. She ran a simulation of 300 samples, assuming the manufacturer is correct. The results are shown below.

Based on the simulation, determine the middle 95% of plausible values that the proportion of red candies in a pack is within. Based on the simulation, is it unusual that Mary's pack had 14 red candies out of a total of 60 ? Explain.

36 a) Algebraically determine the roots, in simplest $a+b i$ form, to the equation below.

$$
x^{2}-2 x+7=4 x-10
$$

b) Consider the system of equations below.

$$
\begin{gathered}
y=x^{2}-2 x+7 \\
y=4 x-10
\end{gathered}
$$

The graph of this system confirms the solution from part a is imaginary. Explain why.

37 The Beaufort Wind Scale was devised by British Rear Admiral Sir Francis Beaufort, in 1805 based upon observations of the effects of the wind. Beaufort numbers, B, are determined by the equation $B=1.69 \sqrt{s+4.45}-3.49$, where s is the speed of the wind in mph , and B is rounded to the nearest integer from 0 to 12 .

Beaufort Wind Scale	
Beaufort Number	Force of Wind
0	Calm
1	Light air
2	Light breeze
3	Gentle breeze
4	Moderate breeze
5	Fresh breeze
6	Steady breeze
7	Moderate gale
8	Fresh gale
9	Strong gale
10	Whole gale
11	Storm
12	Hurricane

Using the table above, classify the force of wind at a speed of 30 mph . Justify your answer. In 1946, the scale was extended to accommodate strong hurricanes. A strong hurricane received a B value of exactly 15 .
Algebraically determine the value of s, to the nearest $m p h$. Any B values that round to 10 receive a Beaufort number of 10 . Using technology, find an approximate range of wind speeds, to the nearest mph , associated with a Beaufort number of 10 .

0120AII Common Core State Standards

1 The expression $\sqrt[4]{81 x^{8} y^{6}}$ is equivalent to

1) $3 x^{2} y^{\frac{3}{2}}$
2) $3 x^{4} y^{2}$
3) $9 x^{2} y^{\frac{3}{2}}$
4) $9 x^{4} y^{2}$

2 Chet has $\$ 1200$ invested in a bank account modeled by the function $P(n)=1200(1.002)^{n}$, where $P(n)$ is the value of his account, in dollars, after n months. Chet's debt is modeled by the function $Q(n)=100 n$, where $Q(n)$ is the value of debt, in dollars, after n months. After n months, which function represents Chet's net worth, $R(n)$?

1) $R(n)=1200(1.002)^{n}+100 n$
2) $R(n)=1200(1.002)^{12 n}+100 n$
3) $R(n)=1200(1.002)^{n}-100 n$
4) $R(n)=1200(1.002)^{12 n}-100 n$

3 Emmeline is working on one side of a polynomial identity proof used to form Pythagorean triples. Her work is shown below:

$$
(5 x)^{2}+\left(5 x^{2}-5\right)^{2}
$$

Step 1: $25 x^{2}+\left(5 x^{2}-5\right)^{2}$
Step 2: $25 x^{2}+25 x^{2}+25$
Step 3: $50 x^{2}+25$
Step 4: $75 x^{2}$
What statement is true regarding Emmeline's work?

1) Emmeline's work is entirely correct.
2) There are mistakes in step 2 and step 4.
3) There is a mistake in step 2 , only.
4) There is a mistake in step 4 , only.

4 Susan won $\$ 2,000$ and invested it into an account with an annual interest rate of 3.2%. If her investment were compounded monthly, which expression best represents the value of her investment after t years?

1) $2000(1.003)^{12 t}$
2) $2000(1.032)^{\frac{t}{12}}$
3) $2064^{\frac{t}{12}}$
4) $\frac{2000(1.032)^{t}}{12}$

5 Consider the end behavior description below.

- as $x \rightarrow-\infty, f(x) \rightarrow \infty$
- as $x \rightarrow \infty, f(x) \rightarrow-\infty$

Which function satisfies the given conditions?

1) $f(x)=x^{4}+2 x^{2}+1$
2)

3) $f(x)=-x^{3}+2 x-6$

6 The expression $(x+a)^{2}+5(x+a)+4$ is equivalent to

1) $(a+1)(a+4)$
2) $(x+1)(x+4)$
3) $(x+a+1)(x+a+4)$
4) $x^{2}+a^{2}+5 x+5 a+4$

7 Given $x \neq-2$, the expression $\frac{2 x^{2}+5 x+8}{x+2}$ is equivalent to

1) $2 x^{2}+\frac{9}{x+2}$
2) $2 x+\frac{7}{x+2}$
3) $2 x+1+\frac{6}{x+2}$
4) $2 x+9-\frac{10}{x+2}$

8 Which situation best describes conditional probability?

1) finding the probability of an event occurring two or more times
2) finding the probability of two independent events occurring at the same time
3) finding the probability of an event occurring only once
4) finding the probability of an event occurring given another event had already occurred

9 Which expression is not a solution to the equation $2^{t}=\sqrt{10}$?

1) $\frac{1}{2} \log _{2} 10$
2) $\log _{2} \sqrt{10}$
3) $\log _{4} 10$
4) $\log _{10} 4$

10 What is the solution set of $x=\sqrt{3 x+40}$?

1) $\{-5,8\}$
2) $\{8\}$
3) $\{-4,10\}$
4) $\}$

11 Consider the data in the table below.

	Right Handed	Left Handed
Male	87	13
Female	89	11

What is the probability that a randomly selected person is male given the person is left handed?

1) $\frac{13}{200}$
2) $\frac{13}{100}$
3) $\frac{13}{50}$
4) $\frac{13}{24}$

12 The function $N(x)=90(0.86)^{x}+69$ can be used to predict the temperature of a cup of hot chocolate in degrees Fahrenheit after x minutes. What is the approximate average rate of change of the temperature of the hot chocolate, in degrees per minute, over the interval $[0,6]$?

1) -8.93
2) -0.11
3) 0.11
4) 8.93

13 A recursive formula for the sequence $40,30,22.5, \ldots$ is

1) $g_{n}=40\left(\frac{3}{4}\right)^{n}$
2) $g_{n}=40\left(\frac{3}{4}\right)^{n-1}$
3) $g_{1}=40$
4) $g_{1}=40$
$g_{n}=g_{n-1}-10$

$$
g_{n}=\frac{3}{4} g_{n-1}
$$

14 The J\& B candy company claims that 45% of the candies it produces are blue, 30% are brown, and 25% are yellow. Each bag holds 65 candies. A simulation was run 200 times, each of sample size 65 , based on the premise that 45% of the candies are blue. The results of the simulation are shown below.

Bonnie purchased a bag of J\& B's candy and counted 24 blue candies. What inference can be made regarding a bag of J\& B's with only 24 blue candies?

1) The company is not meeting their production standard.
2) Bonnie's bag was a rarity and the
company should not be concerned.
3) The company should change their claim to 37% blue candies are produced.
4) Bonnie's bag is within the middle 95% of the simulated data supporting the company's claim.

15 Which investigation technique is most often used to determine if a single variable has an impact on a given population?

1) observational study
2) controlled experiment
3) random survey
4) formal interview

16 As θ increases from $-\frac{\pi}{2}$ to 0 radians, the value of $\cos \theta$ will

1) decrease from 1 to 0
2) increase from -1 to 0
3) decrease from 0 to -1
4) increase from 0 to 1

Algebra II CCSS Regents Exam 0120
www.jmap.org
17 Consider the following patterns:
I. $16,-12,9,-6.75, \ldots$
II. $1,4,9,16, \ldots$
III. $6,18,30,42, \ldots$
IV. $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots$

Which pattern is geometric?

1) I
2) III
3) II
4) IV

18 Consider the system below.

$$
\begin{gathered}
x+y+z=9 \\
x-y-z=-1 \\
x-y+z=21
\end{gathered}
$$

Which value is not in the solution, (x, y, z), of the system?

1) -8
2) -6
3) 11
4) 4

19 Which statement regarding polynomials and their zeros is true?

1) $f(x)=\left(x^{2}-1\right)(x+a)$ has zeros of 1 and $-a$, only.
2) $f(x)=\left(x^{2}+25\right)(x+a)$ has zeros of ± 5 and $-a$.
3) $f(x)=x^{3}-a x^{2}+16 x-16 a$ has zeros of 4 and a, only.
4) $f(x)=x^{3}-a x^{2}-9 x+9 a$ has zeros of ± 3 and a.

20 If a solution of $2(2 x-1)=5 x^{2}$ is expressed in simplest $a+b i$ form, the value of b is

1) $\frac{\sqrt{6}}{5} i$
2) $\frac{\sqrt{6}}{5}$
3) $\frac{1}{5} i$
4) $\frac{1}{5}$

21 Which value, to the nearest tenth, is the smallest solution of $f(x)=g(x)$ if $f(x)=3 \sin \left(\frac{1}{2} x\right)-1$ and $g(x)=x^{3}-2 x+1$?

1) -3.6
2) -2.1
3) -1.8
4) 1.4

22 Expressed in simplest $a+b i$ form, $(7-3 i)+(x-2 i)^{2}-\left(4 i+2 x^{2}\right)$ is

1) $\left(3-x^{2}\right)-(4 x+7) i$
2) $\left(3+3 x^{2}\right)-(4 x+7) i$
3) $\left(3-x^{2}\right)-7 i$
4) $\left(3+3 x^{2}\right)-7 i$

23 Written in simplest form, the fraction $\frac{x^{3}-9 x}{9-x^{2}}$, where $x \neq \pm 3$, is equivalent to

1) $-x$
2) x
3) $\frac{-x(x+3)}{(3+x)}$
4) $\frac{x(x-3)}{(3-x)}$

24 According to a study, 45% of Americans have type O blood. If a random number generator produces three-digit values from 000 to 999 , which values would represent those having type O blood?

1) between 000 and 045 , inclusive
2) between 000 and 449, inclusive
3) between 000 and 444 , inclusive
4) between 000 and 450 , inclusive

25 For n and $p>0$, is the expression $\left(p^{2} n^{\frac{1}{2}}\right)^{8} \sqrt{p^{5} n^{4}}$ equivalent to $p^{18} n^{6} \sqrt{p}$? Justify your answer.

26 Show why $x-3$ is a factor of $m(x)=x^{3}-x^{2}-5 x-3$. Justify your answer.

27 Describe the transformation applied to the graph of $p(x)=2^{x}$ that forms the new function $q(x)=2^{x-3}+4$.

28 The parabola $y=-\frac{1}{20}(x-3)^{2}+6$ has its focus at (3,1). Determine and state the equation of the directrix. (The use of the grid below is optional.)

29 Given the geometric series $300+360+432+518.4+\ldots$, write a geometric series formula, S_{n}, for the sum of the first n terms. Use the formula to find the sum of the first 10 terms, to the nearest tenth.

30 Visible light can be represented by sinusoidal waves. Three visible light waves are shown in the graph below. The midline of each wave is labeled ℓ.

Based on the graph, which light wave has the longest period? Justify your answer.
31 Biologists are studying a new bacterium. They create a culture with 100 of the bacteria and anticipate that the number of bacteria will double every 30 hours. Write an equation for the number of bacteria, B, in terms of the number of hours, t, since the experiment began.

32 Graph $y=x^{3}-4 x^{2}+2 x+7$ on the set of axes below.

33 Sonja is cutting wire to construct a mobile. She cuts 100 inches for the first piece, 80 inches for the second piece, and 64 inches for the third piece. Assuming this pattern continues, write an explicit equation for a_{n}, the length in inches of the nth piece. Sonja only has 40 feet of wire to use for the project and wants to cut 20 pieces total for the mobile using her pattern. Will she have enough wire? Justify your answer.

34 Graph the following function on the axes below.

$$
f(x)=\log _{3}(2-x)
$$

State the domain of f. State the equation of the asymptote.
35 Algebraically solve the following system of equations.

$$
\begin{gathered}
(x-2)^{2}+(y-3)^{2}=16 \\
x+y-1=0
\end{gathered}
$$

36 The table below gives air pressures in kPa at selected altitudes above sea level measured in kilometers.

\mathbf{x}	Altitude (km)	0	1	2	3	4	5
\mathbf{y}	Air Pressure (kPa)	101	90	79	70	62	54

Write an exponential regression equation that models these data rounding all values to the nearest thousandth. Use this equation to algebraically determine the altitude, to the nearest hundredth of a kilometer, when the air pressure is 29 kPa .

37 Sarah is fighting a sinus infection. Her doctor prescribed a nasal spray and an antibiotic to fight the infection. The active ingredients, in milligrams, remaining in the bloodstream from the nasal spray, $n(t)$, and the antibiotic, $a(t)$, are modeled in the functions below, where t is the time in hours since the medications were taken.

$$
\begin{aligned}
& n(t)=\frac{t+1}{t+5}+\frac{18}{t^{2}+8 t+15} \\
& a(t)=\frac{9}{t+3}
\end{aligned}
$$

Determine which drug is made with a greater initial amount of active ingredient. Justify your answer. Sarah's doctor told her to take both drugs at the same time. Determine algebraically the number of hours after taking the medications when both medications will have the same amount of active ingredient remaining in her bloodstream.

0622aii

1 For all positive values of x, which expression is equivalent to $x^{\frac{3}{4}}$?

1) $\sqrt[4]{x^{3}}$
2) $\sqrt[3]{x^{4}}$
3) $\left(x^{3}\right)^{4}$
4) $3\left(x^{4}\right)$

2 Mrs. Favata's statistics class wants to conduct a survey to see how students feel about changing the school mascot's name. Which plan is the best process for gathering an appropriate sample?

1) Survey students in a random sample of senior homerooms.
2) Survey every tenth student entering art classes in the school.
3) Survey every fourth student entering the cafeteria during each lunch period.
4) Survey all members of the school's varsity sports teams.

3 Given $x \neq-3$, the expression $\frac{2 x^{3}+7 x^{2}-3 x-25}{x+3}$ is equivalent to

1) $2 x^{2}+x-6-\frac{7}{x+3}$
2) $2 x^{2}+13 x-36+\frac{83}{x+3}$
3) $2 x^{2}+x-13$
4) $x^{2}+4 x-15+\frac{20}{x+3}$

4 In a group of 40 people, 20 have brown hair, 22 have blue eyes, and 15 have both brown hair and blue eyes. How many people have neither brown hair nor blue eyes?

1) 0
2) 13
3) 27
4) 32

Algebra II Regents Exam 0622
www.jmap.org
5 Consider the function $y=h(x)$, defined by the graph below.

Which equation could be used to represent the graph shown below?

1) $y=h(x)-2$
2) $y=h(x-2)$
3) $y=-h(x)$
4) $y=h(-x)$

6 For the polynomial $p(x)$, if $p(3)=0$, it can be concluded that

1) $x+3$ is a factor of $p(x)$
2) $x-3$ is a factor of $p(x)$
3) when $p(x)$ is divided by 3 , the remainder is zero
4) when $p(x)$ is divided by -3 , the remainder is zero

7 The solution to the equation $5 e^{x+2}=7$ is

1) $-2+\ln \left(\frac{7}{5}\right)$
2) $\left(\frac{\ln 7}{\ln 5}\right)-2$
3) $\frac{-3}{5}$
4) $-2+\ln (2)$

Algebra II Regents Exam 0622
www.jmap.org
8 Consider the system of equations below?

$$
\begin{aligned}
x+2 y-z & =1 \\
-x-3 y+2 z & =0 \\
2 x-4 y+z & =10
\end{aligned}
$$

What is the solution to the given system of equations?

1) $(1,1,2)$
2) $(3,-1,0)$
3) $(5,-1,2)$
4) $(3,5,8)$

9 Monthly mortgage payments can be found using the formula below, where M is the monthly payment, P is the amount borrowed, r is the annual interest rate, and n is the total number of monthly payments.

$$
M=\frac{P\left(\frac{r}{12}\right)\left(1+\frac{r}{12}\right)^{n}}{\left(1+\frac{r}{12}\right)^{n}-1}
$$

If Adam takes out a 15 -year mortgage, borrowing $\$ 240,000$ at an annual interest rate of 4.5%, his monthly payment will be

1) $\$ 1379.09$
2) $\$ 1604.80$
3) $\$ 1835.98$
4) $\$ 9011.94$

10 For all real values of x, if $f(x)=(x-3)^{2}$ and $g(x)=(x+3)^{2}$, what is $f(x)-g(x)$?

1) -18
2) 0
3) $-12 x$
4) $2 x^{2}-12 x-18$

11 If $f(t)=50(.5)^{\frac{t}{5715}}$ represents a mass, in grams, of carbon-14 remaining after t years, which statement(s) must be true?
I. The mass of the carbon- 14 is decreasing by half each year.
II. The mass of the original sample is 50 g .

1) I, only
2) I and II
3) II, only
4) neither I nor II

12 Consider the graph of g and the table representing t below.

x	$t(x)$
-1	3
0	5
1	2
2	-5
3	-1
4	3

Over the interval $[2,4]$, which statement regarding the average rate of change for g and t is true?

1) g has a greater average rate of change.
2) The average rate of change for g is twice the average rate of change for t.
3) The average rates of change are equal.
4) The average rate of change for g is half the average rate of change for t.

13 A parabola has a directrix of $y=3$ and a vertex at (2,1). Which ordered pair is the focus of the parabola?

1) $(2,-1)$
2) $(2,0)$
3) $(2,2)$
4) $(2,5)$

14 The heights of the 3300 students at Oceanview High School are approximately normally distributed with a mean of 65.5 inches and a standard deviation of 2.9 inches. The number of students at Oceanview who are between 64 and 68 inches tall is closest to

1) 1660
2) 1070
3) 2244
4) 1640

15 Which statement below about the graph of $f(x)=-\log (x+4)+2$ is true?

1) $f(x)$ has a y-intercept at $(0,2)$.
2) As $x \rightarrow \infty, f(x) \rightarrow \infty$.
3) $-f(x)$ has a y-intercept at $(0,2)$.
4) $x \rightarrow-4, f(x) \rightarrow \infty$.

16 A researcher wants to determine if room-darkening shades cause people to sleep longer. Which method of data collection is most appropriate?

1) census
2) observation study
3) survey
4) controlled experiment

17 The inverse of $f(x)=-6 x+\frac{1}{2}$ is

1) $f^{-1}(x)=6 x-\frac{1}{2}$
2) $f^{-1}(x)=\frac{1}{-6 x+\frac{1}{2}}$
3) $f^{-1}(x)=-\frac{1}{6} x+\frac{1}{12}$
4) $f^{-1}(x)=-\frac{1}{6} x+2$

18 The expression $\frac{x^{2}+12}{x^{2}+3}$ can be rewritten as

1) $\frac{10}{x^{2}+3}$
2) $1+\frac{9}{x^{2}+3}$
3) $x+9$
4) 4

19 An angle, θ, is rotated counterclockwise on the unit circle, with its terminal side in the second quadrant, as shown in the diagram below.

Which value represents the radian measure of angle θ ?

1) 1
2) 2
3) 65.4
4) 114.6

20 The depth of the water, $d(t)$, in feet, on a given day at Thunder Bay, t hours after midnight is modeled by $d(t)=5 \sin \left(\frac{\pi}{6}(t-5)\right)+7$. Which statement about the Thunder Bay tide is false?

1) A low tide occurred at 2 a.m.
2) The maximum depth of the water was 12 feet.
3) The water depth at 9 a.m. was approximately 11 feet.
4) The difference in water depth between high tide and low tide is 14 feet.

21 A function is defined as $a_{n}=a_{n-1}+\log _{n+1}(n-1)$, where $a_{1}=8$. What is the value of a_{3} ?

1) 8
2) 8.5
3) 9.2
4) 10

Algebra II Regents Exam 0622
www.jmap.org
22 Which function has a maximum y-value of 4 and a midline of $y=1$?
1)

3)

4) $j(x)=4 \sin (x)+1$
2) $g(x)=-3 \cos (x)+1$

23 Which expression is equivalent to $(x+y i)\left(x^{2}-x y i-y^{2}\right)$, where i is the imaginary unit?

1) $x^{3}+y^{3} i$
2) $x^{3}-x y^{2}-\left(x y^{2}+y^{3}\right) i$
3) $x^{3}-2 x y^{2}-y^{3} i$
4) $x^{3}-y^{3} i$

24 The growth of a $\$ 500$ investment can be modeled by the function $P(t)=500(1.03)^{t}$, where t represents time in years. In terms of the monthly rate of growth, the value of the investment can be best approximated by

1) $P(t)=500(1.00247)^{12 t}$
2) $P(t)=500(1.00247)^{t}$
3) $P(t)=500(1.03)^{12 t}$
4) $\quad P(t)=500(1.03)^{\frac{t}{12}}$

25 Does the equation $x^{2}-4 x+13=0$ have imaginary solutions? Justify your answer.

26 The initial push of a child on a swing causes the swing to travel a total of 6 feet. Each successive swing travels 80% of the distance of the previous swing. Determine the total distance, to the nearest hundredth of a foot, a child travels in the first five swings.

27 Solve algebraically for $n: \frac{2}{n^{2}}+\frac{3}{n}=\frac{4}{n^{2}}$

28 Factor completely over the set of integers: $-2 x^{4}+x^{3}+18 x^{2}-9 x$

29 The relative frequency table shows the proportion of a population who have a given eye color and the proportion of the same population who wear glasses.

	Wear Glasses	Don't Wear Glasses
Blue Eyes	0.14	0.26
Brown Eyes	0.11	0.24
Green Eyes	0.10	0.15

Given the data, are the events of having blue eyes and wearing glasses independent? Justify your answer.

30 For $x \neq 0$ and $y \neq 0, \sqrt[3]{81 x^{15} y^{9}}=3^{a} x^{5} y^{3}$. Determine the value of a.

31 Graph $y=2 \cos \left(\frac{1}{2} x\right)+5$ on the interval $[0,2 \pi]$, using the axes below.

32 A cup of coffee is left out on a countertop to cool. The table below represents the temperature, $F(t)$, in degrees Fahrenheit, of the coffee after it is left out for t minutes.

\mathbf{t}	0	5	10	15	20	25
$\mathbf{F}(\mathbf{t})$	180	144	120	104	93.3	86.2

Based on these data, write an exponential regression equation, $F(t)$, to model the temperature of the coffee. Round all values to the nearest thousandth.

33 On the set of axes below, graph $y=f(x)$ and $y=g(x)$ for the given functions.

$$
\begin{gathered}
f(x)=x^{3}-3 x^{2} \\
g(x)=2 x-5
\end{gathered}
$$

State the number of solutions to the equation $f(x)=g(x)$.

34 A Foucault pendulum can be used to demonstrate that the Earth rotates. The time, t, in seconds, that it takes for one swing or period of the pendulum can be modeled by the equation $t=2 \pi \sqrt{\frac{L}{g}}$ where L is the length of the pendulum in meters and g is a constant of $9.81 \mathrm{~m} / \mathrm{s}^{2}$. The first Foucault pendulum was constructed in 1851 and has a pendulum length of 67 m . Determine, to the nearest tenth of a second, the time it takes this pendulum to complete one swing. Another Foucault pendulum at the United Nations building takes 9.6 seconds to complete one swing. Determine, to the nearest tenth of a meter, the length of this pendulum.

35 In order to decrease the percentage of its residents who drive to work, a large city launches a campaign to encourage people to use public transportation instead. Before starting the campaign, the city's Department of Transportation uses census data to estimate that 65% of its residents drive to work. The Department of Transportation conducts a simulation, shown below, run 400 times based on this estimate. Each dot represents the proportion of 200 randomly selected residents who drive to work.

Use the simulation results to construct a plausible interval containing the middle 95% of the data. Round your answer to the nearest hundredth. One year after launching the campaign, the Department of Transportation conducts a survey of 200 randomly selected city residents and finds that 122 of them drive to work. Should the department conclude that the city's campaign was effective? Use statistical evidence from the simulation to explain your answer.

36 Solve the system of equations algebraically.

$$
\begin{gathered}
x^{2}+y^{2}=25 \\
y+5=2 x
\end{gathered}
$$

37 The population, in millions of people, of the United States can be represented by the recursive formula below, where a_{0} represents the population in 1910 and n represents the number of years since 1910 .

$$
\begin{aligned}
& a_{0}=92.2 \\
& a_{n}=1.015 a_{n-1}
\end{aligned}
$$

Identify the percentage of the annual rate of growth from the equation $a_{n}=1.015 a_{n-1}$. Write an exponential function, P, where $P(t)$ represents the United States population in millions of people, and t is the number of years since 1910. According to this model, determine algebraically the number of years it takes for the population of the United States to be approximately 300 million people. Round your answer to the nearest year.

0822aii

1 The Hot and Tasty Coffee chain conducts a survey of its customers at its location at the Staten Island ferry terminal. After the survey is completed, the statistical consultant states that 70% of customers who took the survey said the most important factor in choosing where to get their coffee is how fast they are served. Based on this result, Hot and Tasty Coffee can infer that

1) most of its customers in New York State care most about being served quickly
2) coffee drinkers care less about taste and more about being served quickly
3) most of its customers at the Staten Island ferry terminal care most about being served quickly
4) most of its customers at transportation terminals and stations care most about being served quickly

2 Given that i is the imaginary unit, the expression $(x-2 i)^{2}$ is equivalent to

1) $x^{2}+4$
2) $x^{2}-4$
3) $x^{2}-2 x i-4$
4) $x^{2}-4 x i-4$

3 The equation below can be used to model the height of a tide in feet, $H(t)$, on a beach at t hours.

$$
H(t)=4.8 \sin \left(\frac{\pi}{6}(t+3)\right)+5.1
$$

Using this function, the amplitude of the tide is

1) $\frac{\pi}{6}$
2) 4.8
3) 3
4) 5.1

4 In watching auditions for lead singer in a band, Liem became curious as to whether there is an association between how animated the leadsinger is and the amount of applause from the audience. He decided to watch each singer and rate the singer on a scale of 1 to 5 , where 1 is the least animated and 5 is the most animated. He did this for all 5 nights of auditions and found that the more animated singers did receive louder applause. The study Liem conducted would be best described as

1) experimental
2) a sample survey
3) observational
4) a random assignment

Algebra II Regents Exam 0822
www.jmap.org
5 In the diagram of a unit circle below, point $A,\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$, represents the point where the terminal side of θ intersects the unit circle.

What is $\mathrm{m} \angle \theta$?

1) 30°
2) 120°
3) 135°
4) 150°

6 Consider the function $f(x)=2 x^{3}+x^{2}-18 x-9$. Which statement is true?

1) $2 x-1$ is a factor of $f(x)$.
2) $x-3$ is a factor of $f(x)$.
3) $f(3) \neq f\left(-\frac{1}{2}\right)$
4) $f\left(\frac{1}{2}\right)=0$

7 Which sketch could represent the function $m(x)=-\log _{100}(x-2)$?
1)

3)

4)

8 Which equation has roots of $3+i$ and $3-i$?

1) $x^{2}-6 x+10=0$
2) $x^{2}+6 x-10=0$
3) $x^{2}-10 x+6=0$
4) $x^{2}+10 x-6=0$

9 A local university has a current enrollment of 12,000 students. The enrollment is increasing continuously at a rate of 2.5% each year. Which logarithm is equal to the number of years it will take for the population to increase to 15,000 students?

1) $\frac{\ln 1.25}{0.25}$
2) $\frac{\ln 3000}{0.025}$
3) $\frac{\ln 1.25}{2.5}$
4) $\frac{\ln 1.25}{0.025}$

10 What is the total number of points of intersection of the graphs of the equations $y=e^{x}$ and $x y=20$?

1) 1
2) 2
3) 3
4) 0

11 The amount of a substance, $A(t)$, in grams, remaining after t days is modeled by $A(t)=50(0.5)^{\frac{t}{3}}$. Which statement is false?

1) In 20 days, there is no substance remaining.
2) The amount of the substance remaining can also be modeled by

$$
A(t)=50(2)^{\frac{-t}{3}}
$$

2) After two half-lives, there is 25% of the
substance remaining.
3) After one week, there is less than 10 g of the substance remaining.

12 A parabola that has a vertex at $(2,1)$ and a focus of $(2,-3)$ has an equation of

1) $y=\frac{1}{16}(x-2)^{2}+1$
2) $y=-\frac{1}{16}(x+2)^{2}-1$
3) $y=-\frac{1}{16}(x-2)^{2}+1$
4) $y=-\frac{1}{16}(x-2)^{2}-3$

13 The expression $\left(a \sqrt[3]{2 b^{2}}\right)\left(\sqrt[3]{4 a^{2} b}\right)$ is equivalent to

1) $2 a b \sqrt[3]{a^{2}}$
2) $2 a b$
3) $2 a b \sqrt[3]{2 a^{2}}$
4) $2 a^{2} b \sqrt[3]{2 b}$

14 Given $f(x)=3^{x-1}+2$, as $x \rightarrow-\infty$

1) $f(x) \rightarrow-1$
2) $f(x) \rightarrow 0$
3) $f(x) \rightarrow 2$
4) $f(x) \rightarrow-\infty$

15 For all values of x for which the expression is defined, $\frac{x^{2}+3 x}{x^{2}+5 x+6}$ is equivalent to

1) $1-\frac{x}{x+2}$
2) $\frac{x}{x+2}$
3) $\frac{3 x}{5 x+6}$
4) $1+\frac{1}{2 x+6}$

16 A recursive formula for the sequence $64,48,36, \ldots$ is

1) $a_{n}=64(0.75)^{n-1}$
2) $a_{n}=64+(n-1)(-16)$
3) $a_{1}=64$
4) $a_{1}=64$ $a_{n}=a_{n-1}-16$

$$
a_{n}=0.75 a_{n-1}
$$

17 Which expression is equivalent to $\frac{x^{3}-2}{x-2}$?

1) x^{2}
2) $x^{2}+2 x+4+\frac{6}{x-2}$
3) $x^{2}-2$
4) $x^{2}-2 x+4-\frac{10}{x-2}$

18 What is the solution set of the equation $\frac{4}{k^{2}-8 k+12}=\frac{k}{k-2}+\frac{1}{k-6}$?

1) $\{-1,6\}$
2) $\{1,-6\}$
3) $\{-1\}$
4) $\{1\}$

19 Given the polynomial identity $x^{6}+y^{6}=\left(x^{2}+y^{2}\right)\left(x^{4}-x^{2} y^{2}+y^{4}\right)$, which equation must also be true for all values of x and y ?

1) $x^{6}+y^{6}=x^{2}\left(x^{4}-x^{2} y^{2}+y^{4}\right)+y^{2}\left(x^{4}-x^{2} y^{2}+y^{4}\right)$
2) $x^{6}+y^{6}=\left(x^{2}+y^{2}\right)\left(x^{2}-y^{2}\right)\left(x^{2}-y^{2}\right)$
3) $\left(x^{3}+y^{3}\right)^{2}=\left(x^{2}+y^{2}\right)\left(x^{4}-x^{2} y^{2}+y^{4}\right)$
4) $\left(x^{6}+y^{6}\right)-\left(x^{2}+y^{2}\right)=x^{4}-x^{2} y^{2}+y^{4}$

20 Given $p(\theta)=3 \sin \left(\frac{1}{2} \theta\right)$ on the interval $-\pi<\theta<\pi$, the function p

1) decreases, then increases
2) decreases throughout the interval
3) increases, then decreases
4) increases throughout the interval

21 A company fired several employees in order to save money. The amount of money the company saved per year over five years following the loss of employees is shown in the table below.

Year	Amount Saved (in dollars)
1	59,000
2	64,900
3	71,390
4	78,529
5	$86,381.9$

Which expression determines the total amount of money saved by the company over 5 years?

1) $\frac{59,000-59,000(1.1)^{5}}{1-1.1}$
2) $\frac{59,000-59,000(0.1)^{5}}{1-0.1}$
3) $\sum_{n=1}^{5} 59,000(1.1)^{n}$
4) $\sum_{n=1}^{5} 59,000(0.1)^{n-1}$

22 A rush-hour commuter train has arrived on time 64 of its first 80 days. As arrivals continue, which equation can be used to find x, the number of consecutive days that the train must arrive on schedule to raise its on-time performance rate to 90% ?

1) $\frac{64}{80+x}=\frac{90}{100}$
2) $\frac{64+x}{80+x}=\frac{90}{100}$
3) $\frac{64+x}{80}=\frac{90}{100}$
4) $\frac{x}{80+x}=\frac{90}{100}$

23 Given $f(x)=-\frac{2}{5} x+4$, which statement is true of the inverse function $f^{-1}(x)$?

1) $f^{-1}(x)$ is a line with slope $\frac{5}{2}$.
2) $f^{-1}(x)$ is a line with slope $\frac{2}{5}$.
3) $f^{-1}(x)$ passes through the point $(6,-5)$.
4) $f^{-1}(x)$ has a y-intercept at $(0,-4)$.

24 The amount of a substance, $A(t)$, that remains after t days can be given by the equation $A(t)=A_{0}(0.5)^{\frac{t}{0.0803}}$, where A_{0} represents the initial amount of the substance. An equivalent form of this equation is

1) $A(t)=A_{0}(0.000178)^{t}$
2) $A(t)=A_{0}(0.945861)^{t}$
3) $A(t)=A_{0}(0.04015)^{t}$
4) $A(t)=A_{0}(1.08361)^{t}$

25 Determine the average rate of change, in mph, from 2 to 4 hours on the graph shown below.

26 Factor the expression $x^{3}-2 x^{2}-9 x+18$ completely.
27 Solve algebraically for all values of $x: \sqrt{4 x+1}=11-x$
28 Given that $\left(\frac{y^{\frac{17}{8}}}{y^{\frac{5}{4}}}\right)^{-4}=y^{n}$, where $y>0$, determine the value of n.

29 Given $\cos A=\frac{3}{\sqrt{10}}$ and $\cot A=-3$, determine the value of $\sin A$ in radical form.

30 According to a study done at a hospital, the average weight of a newborn baby is 3.39 kg , with a standard deviation of 0.55 kg . The weights of all the newborns in this hospital closely follow a normal distribution. Last year, 9256 babies were born at this hospital. Determine, to the nearest integer, approximately how many babies weighed more than 4 kg .

31 The table below shows the results of gender and music preference. Based on these data, determine if the events "the person is female" and "the person prefers classic rock" are independent of each other. Justify your answer.

	Rap	Techno	Classic Rock	Classical
Male	39	17	42	12
Female	17	37	36	15

32 Algebraically determine the solution set for the system of equations below.

$$
\begin{aligned}
& y=2 x^{2}-7 x+4 \\
& y=11-2 x
\end{aligned}
$$

33 When observed by researchers under a microscope, a smartphone screen contained approximately 11,000 bacteria per square inch. Bacteria, under normal conditions, double in population every 20 minutes.
a) Assuming an initial value of 11,000 bacteria, write a function, $p(t)$, that can be used to model the population of bacteria, p, on a smartphone screen, where t represents the time in minutes after it is first observed under a microscope.
b) Using $p(t)$ from part a, determine algebraically, to the nearest hundredth of a minute, the amount of time it would take for a smartphone screen that was not touched or cleaned to have a population of $1,000,000$ bacteria per square inch.

34 The function $v(x)=x(3-x)(x+4)$ models the volume, in cubic inches, of a rectangular solid for $0 \leq x \leq 3$. Graph $y=v(x)$ over the domain $0 \leq x \leq 3$.

To the nearest tenth of a cubic inch, what is the maximum volume of the rectangular solid?
35 Given $f(x)=3 x^{3}-4 x^{2}+2 x-1$ and $g(x)=x-4$, state the quotient and remainder of $\frac{f(x)}{g(x)}$, in the form $q(x)+\frac{r(x)}{g(x)}$. Is $x=4$ a root of $f(x)$? Explain your answer.

36 State officials claim 82% of a community want to repeal the 30 mph speed limit on an expressway. A community organization devises a simulation based on the claim that 82% of the community supports the repeal. Each dot on the graph below represents the proportion of community members who support the repeal. The graph shows 200 simulated surveys, each of sample size 60 .

Based on the simulation, determine an interval containing the middle 95% of plausible proportions. Round your answer to the nearest thousandth. The community organization conducted its own sample survey of 60 people and found 70% supported the repeal. Based on the results of the simulation, explain why the organization should question the State officials' claim.

Algebra II Regents Exam 0822
www.jmap.org
37 A technology company is comparing two plans for speeding up its technical support time. Plan A can be modeled by the function $A(x)=15.7(0.98)^{x}$ and plan B can be modeled by the function $B(x)=11(0.99)^{x}$ where x is the number of customer service representatives employed by the company and $A(x)$ and $B(x)$ represent the average wait time, in minutes, of each customer. Graph $A(x)$ and $B(x)$ in the interval $0 \leq x \leq 100$ on the set of axes below.

To the nearest integer, solve the equation $A(x)=B(x)$. Determine, to the nearest minute, $B(100)-A(100)$. Explain what this value represents in the given context.

0123aii Common Core State Standards

1 Which expression is equivalent to $(x+2)^{2}-5(x+2)+6$?

1) $x(x-1)$
2) $(x-3)(x-2)$
3) $(x-4)(x+3)$
4) $(x-6)(x+1)$

2 To the nearest tenth, the solution to the equation $4300 e^{0.07 x}-123=5000$ is

1) 1.1
2) 2.5
3) 6.3
4) 68.5

3 The value of an automobile t years after it was purchased is given by the function $V=38,000(0.84)^{t}$. Which statement is true?

1) The value of the car increases 84% each year.
2) The value of the car increases 16% each year.
3) The value of the car decreases 84% each year.
4) The value of the car decreases 16% each year.

4 Which function represents exponential decay?

1) $p(x)=\left(\frac{1}{4}\right)^{-x}$
2) $q(x)=1.8^{-x}$
3) $r(x)=2.3^{2 x}$
4) $s(x)=4^{\frac{x}{2}}$

5 The expression $\frac{x^{4}-5 x^{2}+4 x+14}{x+2}$ is equivalent to

1) $x^{3}-2 x^{2}-x+6+\frac{2}{x+2}$
2) $x^{3}-5 x+4-\frac{14}{x+2}$
3) $x^{3}+2 x^{2}-x+2+\frac{18}{x+2}$
4) $x^{3}+2 x^{2}-9 x+22-\frac{30}{x+2}$

6 The sum of the first 20 terms of the series $-2+6-18+54-\ldots$ is

1) -610
2) -59
3) $1,743,392,200$
4) $2,324,522,934$

7 If $f(x)=2 x^{4}-x^{3}-16 x+8$, then $f\left(\frac{1}{2}\right)$

1) equals 0 and $2 x+1$ is a factor of $f(x)$
2) does not equal 0 and $2 x+1$ is not a factor of $f(x)$
3) equals 0 and $2 x-1$ is a factor of $f(x)$
4) does not equal 0 and $2 x-1$ is a factor of $f(x)$

8 If $(6-k i)^{2}=27-36 i$, the value of k is

1) -36
2) -3
3) 3
4) 6

9 What is the solution set of the equation $\frac{x+2}{x}+\frac{x}{3}=\frac{2 x^{2}+6}{3 x}$?

1) $\{-3\}$
2) $\{-3,0\}$
3) $\{3\}$
4) $\{0,3\}$

10 How many real solutions exist for the system of equations below?

$$
\begin{aligned}
& y=\frac{1}{4} x-8 \\
& y=\frac{1}{2} x^{2}+2 x
\end{aligned}
$$

1) 1
2) 2
3) 3
4) 0

11 Which equation represents a polynomial identity?

1) $x^{3}+y^{3}=(x+y)^{3}$
2) $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$
3) $x^{3}+y^{3}=(x+y)\left(x^{2}-x y-y^{2}\right)$
4) $x^{3}+y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$

12 Given $x>0$, the expression $\frac{x^{\frac{1}{5}}}{x^{\frac{1}{2}}}$ can be rewritten as

1) $\sqrt[3]{x}$
2) $-\sqrt[10]{x^{3}}$
3) $\frac{1}{\sqrt[10]{x^{3}}}$
4) $\sqrt[3]{x^{10}}$

13 A cyclist pedals a bike at a rate of 60 revolutions per minute. The height, h, of a pedal at time t, in seconds, is plotted below.

The graph can be modeled by the function $h(t)=5 \sin (k t)$, where k is equal to

1) 1
2) 2π
3) 60
4) $\frac{\pi}{30}$

14 Which statement about data collection is most accurate?

1) A survey about parenting styles given to
every tenth student entering the library $\quad \begin{aligned} & \text { Margin of error increases as sample size } \\ & \text { increases. }\end{aligned}$ every tenth student entering the library will provide unbiased results.
2) An observational study allows a researcher to determine the cause of an outcome.
3) A survey collected from a random sample of students in a school can be used to represent the opinions of the school population.

15 If $f(x)=\frac{1}{2} x+2$, then the inverse function is

1) $f^{-1}(x)=-\frac{1}{2} x-2$
2) $f^{-1}(x)=\frac{1}{2} x-1$
3) $f^{-1}(x)=2 x-4$
4) $f^{-1}(x)=2 x+2$

16 Given $f(x)=x^{4}-x^{3}-6 x^{2}$, for what values of x will $f(x)>0$?

1) $x<-2$, only
2) $x<-2$ or $x>3$
3) $x<-2$ or $0 \leq x \leq 3$
4) $x>3$, only

17 For which approximate value(s) of x will $\log (x+5)=|x-1|-3$?

1) 5,1
2) $-2.41,5$
3) $-2.41,0.41$
4) 5, only

18 Consider a cubic polynomial with the characteristics below.

- exactly one real root
- as $x \rightarrow \infty, f(x) \rightarrow-\infty$

Given $a>0$ and $b>0$, which equation represents a cubic polynomial with these characteristics?

1) $f(x)=(x-a)\left(x^{2}+b\right)$
2) $f(x)=(a-x)\left(x^{2}+b\right)$
3) $f(x)=\left(a-x^{2}\right)\left(x^{2}+b\right)$
4) $f(x)=(x-a)\left(b-x^{2}\right)$

19 Betty conducted a survey of her class to see if they like pizza. She gathered 200 responses and 65% of the voters said they did like pizza. Betty then ran a simulation of 400 more surveys, each with 200 responses, assuming that 65% of the voters would like pizza. The output of the simulation is shown below.

Considering the middle 95% of the data, what is the margin of error for the simulation?

1) 0.01
2) 0.02
3) 0.05
4) 0.07

20 If $\cos A=\frac{\sqrt{5}}{3}$ and $\tan A<0$, what is the value of $\sin A$?

1) $\frac{2}{3}$
2) $-\frac{\sqrt{5}}{3}$
3) $-\frac{2}{3}$
4) $\frac{3}{\sqrt{5}}$

21 A tree farm initially has 150 trees. Each year, 20% of the trees are cut down and 80 seedlings are planted. Which recursive formula models the number of trees, a_{n}, after n years?

1) $a_{1}=150$
2) $a_{n}=150(0.2)^{n}+80$
$a_{n}=a_{n-1}(0.2)+80$
3) $a_{1}=150$
4) $a_{n}=150(0.8)^{n}+80$

$$
a_{n}=a_{n-1}(0.8)+80
$$

22 Which equation represents a parabola with a focus of $(4,-3)$ and directrix of $y=1$?

1) $(x-1)^{2}=4(y+3)$
2) $(x-1)^{2}=-8(y-3)$
3) $(x+4)^{2}=4(y-3)$
4) $(x-4)^{2}=-8(y+1)$

23 Mia has a student loan that is in deferment, meaning that she does not need to make payments right now. The balance of her loan account during her deferment can be represented by the function $f(x)=35,000(1.0325)^{x}$, where x is the number of years since the deferment began. If the bank decides to calculate her balance showing a monthly growth rate, an approximately equivalent function would be

1) $f(x)=35,000(1.0027)^{12 x}$
2) $f(x)=35,000(1.0027)^{\frac{x}{12}}$
3) $f(x)=35,000(1.0325)^{12 x}$
4) $f(x)=35,000(1.0325)^{\frac{x}{12}}$

24 Which graph shows a quadratic function with two imaginary zeros?
1)

3)

25 Algebraically determine the zeros of the function below.

$$
r(x)=3 x^{3}+12 x^{2}-3 x-12
$$

26 Given $a>0$, solve the equation $a^{x+1}=\sqrt[3]{a^{2}}$ for x algebraically.
27 Given $P(A)=\frac{1}{3}$ and $P(B)=\frac{5}{12}$, where A and B are independent events, determine $P(A \cap B)$.

28 The scores on a collegiate mathematics readiness assessment are approximately normally distributed with a mean of 680 and a standard deviation of 120 . Determine the percentage of scores between 690 and 900 , to the nearest percent.

Algebra II CCSS Regents Exam 0123
www.jmap.org
29 Consider the data in the table below.

\mathbf{x}	1	2	3	4	5	6
\mathbf{y}	3.9	6	11	18.1	28	40.3

State an exponential regression equation to model these data, rounding all values to the nearest thousandth.
30 Write the expression $A(x) \bullet B(x)-3 C(x)$ as a polynomial in standard form.

$$
\begin{aligned}
& A(x)=x^{3}+2 x-1 \\
& B(x)=x^{2}+7 \\
& C(x)=x^{4}-5 x
\end{aligned}
$$

31 Over the set of integers, completely factor $x^{4}-5 x^{2}+4$.
32 Natalia's teacher has given her the following information about angle θ.

- $\pi<\theta<2 \pi$

$$
\text { - } \cos \theta=\frac{\sqrt{3}}{4}
$$

Explain how Natalia can determine if the value of $\tan \theta$ is positive or negative.
33 Solve the equation $\sqrt{49-10 x}+5=2 x$ algebraically.

34 Joette is playing a carnival game. To win a prize, one has to correctly guess which of five equally sized regions a spinner will land on, as shown in the diagram below.

She complains that the game is unfair because her favorite number, 2 , has only been spun once in ten times she played the game. State the proportion of 2's that were spun. State the theoretical probability of spinning a 2 . The simulation output below shows the results of simulating ten spins of a fair spinner, repeated 100 times.

Does the output indicate that the carnival game was unfair? Explain your answer.

35 Graph $c(x)=-9(3)^{x-4}+2$ on the axes below.

Describe the end behavior of $c(x)$ as x approaches positive infinity. Describe the end behavior of $c(x)$ as x approaches negative infinity.

36 The monthly high temperature (${ }^{\circ} \mathrm{F}$) in Buffalo, New York can be modeled by $B(m)=24.9 \sin (0.5 m-2.05)+55.25$, where m is the number of the month and January $=1$. Find the average rate of change in the monthly high temperature between June and October, to the nearest hundredth. Explain what this value represents in the given context.

37 Objects cool at different rates based on the formula below.

$$
T=\left(T_{0}-T_{R}\right) e^{-r t}+T_{R}
$$

T_{0} : initial temperature
T_{R} : room temperature
r : rate of cooling of the object
t : time in minutes that the object cools to a temperature, T
Mark makes T-shirts using a hot press to transfer designs to the shirts. He removes a shirt from a press that heats the shirt to $400^{\circ} \mathrm{F}$. The rate of cooling for the shirt is 0.0735 and the room temperature is $75^{\circ} \mathrm{F}$. Using this information, write an equation for the temperature of the shirt, T, after t minutes. Use the equation to find the temperature of the shirt, to the nearest degree, after five minutes. At the same time, Mark's friend Jeanine removes a hoodie from a press that heats the hoodie to $450^{\circ} \mathrm{F}$. After eight minutes, the hoodie measured $270^{\circ} \mathrm{F}$. The room temperature is still $75^{\circ} \mathrm{F}$. Determine the rate of cooling of the hoodie, to the nearest ten thousandth. The T-shirt and hoodie were removed at the same time. Determine when the temperature will be the same, to the nearest minute.

0623aii

1 The population of Austin, Texas from 1850 to 2010 is summarized in the table below.

Year	1850	1870	1890	1910	1930	1950	1970	1990	2010
Population	629	4428	14,575	29,860	53,120	132,459	251,808	494,290	790,390

Over which period of time was the average rate of change in population the greatest?

1) 1850 to 1910
2) 1990 to 2010
3) 1950 to 1970
4) 1890 to 1970

2 Which expression is not equivalent to $36 x^{6}-25 y^{4}$?

1) $6^{2}\left(x^{3}\right)^{2}-5^{2}\left(y^{2}\right)^{2}$
2) $\left(6 x^{3}-5 y^{2}\right)\left(6 x^{3}+5 y^{2}\right)$
3) $\left(6 x^{6}-5 y^{4}\right)\left(6 x^{6}+5 y^{4}\right)$
4) $\left(3 \cdot 2 x^{3}-5 y^{2}\right)\left(3 \cdot 2 x^{3}+5 y^{2}\right)$

3 What are the zeros of $s(x)=x^{4}-9 x^{2}+3 x^{3}-27 x-10 x^{2}+90$?

1) $\{-3,-2,5\}$
2) $\{-2,3,5\}$
3) $\{-3,-2,3,5\}$
4) $\{-5,-3,2,3\}$

4 If θ is an angle in standard position whose terminal side passes through the point $(-2,-3)$, what is the numerical value of $\tan \theta$?

1) $\frac{2}{3}$
2) $\frac{3}{2}$
3) $-\frac{2}{\sqrt{13}}$
4) $-\frac{3}{\sqrt{13}}$

5 The average monthly temperature, $T(m)$, in degrees Fahrenheit, over a 12 month period, can be modeled by $T(m)=-23 \cos \left(\frac{\pi}{6} m\right)+56$, where m is in months. What is the range of temperatures, in degrees Fahrenheit, of this function?

1) $[-23,23]$
2) $[33,79]$
3) $[-23,56]$
4) $[-79,33]$

6 Which expression is an equivalent form of $a \sqrt[5]{a^{4}}$?

1) a
2) $a^{\frac{9}{5}}$
3) $a^{\frac{9}{4}}$
4) $a^{\frac{1}{5}}$

Algebra II Regents Exam 0623
www.jmap.org
7 The expression $3 i\left(a i-6 i^{2}\right)$ is equivalent to

1) $3 a+18 i$
2) $3 a-18 i$
3) $-3 a+18 i$
4) $-3 a-18 i$

8 Which equation best represents the graph below?

1) $h(x)=\log (x+a)+c$
2) $h(x)=\log (x-a)+c$
3) $h(x)=\log (x+a)-c$
4) $h(x)=\log (x-a)-c$

9 Which function has the characteristic as $x \rightarrow-\infty, f(x) \rightarrow-\infty$?
1)

2)

3) $f(x)=5(4)^{-x}$
4) $f(x)=-\log _{5}(-x)$

10 The expression $\left(x^{2}+3\right)^{2}-2\left(x^{2}+3\right)-24$ is equivalent to

1) $\left(x^{2}+9\right)\left(x^{2}-1\right)$
2) $\left(x^{2}-3\right)\left(x^{2}+7\right)$
3) $x^{4}-2 x^{2}-21$
4) $x^{4}+4 x^{2}-9$

11 What is the solution for the system of equations below?

$$
\begin{aligned}
x+y+z & =2 \\
x-2 y-z & =-4 \\
x-9 y+z & =-18
\end{aligned}
$$

1) $(-2,2,2)$
2) $(-2,-2,6)$
3) $(0,2,0)$
4) $(0,2,4)$

12 The roots of the equation $x^{2}-4 x=-13$ are

1) $2 \pm 3 i$
2) $2 \pm 6 i$
3) $2 \pm \sqrt{17}$
4) $2 \pm \sqrt{13}$

13 Which expression is equivalent to $\frac{2 x^{3}+2 x-7}{2 x+4}$?

1) $x^{2}-2 x+5-\frac{27}{2 x+4}$
2) $x^{2}-1-\frac{3}{2 x+4}$
3) $x^{2}+2 x+5+\frac{13}{2 x+4}$
4) $x^{2}+2 x-3+\frac{5}{2 x+4}$

14 A popular celebrity tracks the number of people, in thousands, who have followed her on social media since January 1, 2015. A summary of the data she recorded is shown in the table below:

Number of Months Since January 2015	2	11	16	20	27	35	47	50	52
Number of Social Media Followers (thousands)	3.1	7.5	29.7	49.7	200.3	680.3	5200.3	8109.3	$12,107.1$

The celebrity uses an exponential regression equation to model the data. According to the model, about how many followers did she have on June 1, 2018?

1) $13,000,000$
2) $5,420,000$
3) $1,850,000$
4) 790,000

15 Luminescence is the emission of light that is not caused by heat. A luminescent substance decays according to the function below.

$$
I=I_{0} e^{3\left(-\frac{t}{0.6}\right)}
$$

This function can be best approximated by

1) $I=I_{0} e^{\left(-\frac{t}{0.18}\right)}$
2) $I=I_{0} e^{5 t}$
3) $I=I_{0}(0.0067)^{t}$
4) $I=I_{0}(0.0497)^{0.6 t}$

16 The heights of the students at Central High School can be modeled by a normal distribution with a mean of 68.1 and a standard deviation of 3.4 inches. According to this model, approximately what percent of the students would have a height less than 60 inches or greater than 75 inches?

1) 0.86%
2) 1.26%
3) 2.12%
4) 2.98%

17 Marissa and Sydney are trying to determine if there is enough interest in their school to put on a senior musical. They randomly surveyed 100 members of the senior class and 43% of them said they would be interested in being in a senior musical. Marissa and Sydney then conducted a simulation of 500 more surveys, each of 100 seniors, assuming that 43% of the senior class would be interested in being in the musical. The output of the simulation is shown below.

The standard deviation of the simulation is closest to

1) 0.02
2) 0.05
3) 0.09
4) 0.43

18 For $f(x)=\cos x$, which statement is true?

1) $2 f(x)$ and $f(2 x)$ are even functions.
2) $2 f(x)$ and $f\left(x+\frac{\pi}{2}\right)$ are odd functions.
3) $\quad f(2 x)$ and $f(x)+2$ are odd functions.
4) $f(x)+2$ is an odd function and $f\left(x+\frac{\pi}{2}\right)$ is an even function.

19 The solution set of $\frac{x+3}{x-5}+\frac{6}{x+2}=\frac{6+10 x}{(x-5)(x+2)}$ is

1) $\{-6\}$
2) $\{5\}$
3) $\{-6,5\}$
4) $\{-5,6\}$

20 Given x and y are positive, which expressions are equivalent to $\frac{x^{3}}{y}$?
I. $\left(\frac{y}{x^{3}}\right)^{-1}$
II. $\sqrt[3]{x^{9}}\left(y^{-1}\right)$
III. $\frac{x^{6} \sqrt[4]{y^{8}}}{x^{3} y^{3}}$

1) I and II, only
2) II and III, only
3) I and III, only
4) I, II, and III

21 Given the inverse function $f^{-1}(x)=\frac{2}{3} x+\frac{1}{6}$, which function represents $f(x)$?

1) $f(x)=-\frac{2}{3} x+\frac{1}{6}$
2) $f(x)=-\frac{3}{2} x+\frac{1}{4}$
3) $f(x)=\frac{3}{2} x-\frac{1}{4}$
4) $f(x)=\frac{3}{2} x-\frac{1}{6}$

How many equations below are identities?

$$
\begin{aligned}
& \text { - } x^{2}+y^{2}=\left(x^{2}-y^{2}\right)+(2 x y)^{2} \\
& \text { - } x^{3}+y^{3}=(x-y)+\left(x^{2}-x y+y^{2}\right) \\
& \text { - } x^{4}+y^{4}=(x-y)(x-y)\left(x^{2}+y^{2}\right)
\end{aligned}
$$

1) 1
2) 2
3) 3
4) 0

23 If the focus of a parabola is $(0,6)$ and the directrix is $y=4$, what is an equation for the parabola?

1) $y^{2}=4(x-5)$
2) $x^{2}=4(y-5)$
3) $y^{2}=8(x-5)$
4) $x^{2}=8(y-6)$

24 John and Margaret deposit \$500 into a savings account for their son on his first birthday. They continue to make a deposit of $\$ 500$ on the child's birthday, with the last deposit being made on the child's 21 st birthday. If the account pays 4% annual interest, which equation represents the amount of money in the account after the last deposit is made?

1) $S_{21}=500(1.04)^{21}$
2) $S_{21}=\frac{500\left(1-1.04^{21}\right)}{1-1.04}$
3) $S_{21}=500(1.04)^{20}+500$
4) $S_{21}=\frac{500\left(1-0.04^{21}\right)}{1-1.04}$

25 The business office of a local college wishes to determine the methods of payment that will be used by students when buying books at the beginning of a semester. Explain how the office can gather an appropriate sample that minimizes bias.

26 Determine the solution of $\sqrt{3 x+7}=x-1$ algebraically.

27 The population of bacteria, $P(t)$, in hundreds, after t hours can be modeled by the function $P(t)=37 e^{0.0532 t}$. Determine whether the population is increasing or decreasing over time. Explain your reasoning.

28 The polynomial function $g(x)=x^{3}+a x^{2}-5 x+6$ has a factor of $(x-3)$. Determine the value of a.

29 Write a recursive formula for the sequence $189,63,21,7, \ldots$.

30 Solve algebraically for x to the nearest thousandth: $2 e^{0.49 x}=15$

31 For all values of x for which the expression is defined, write the expression below in simplest form.

$$
\frac{2 x^{3}+x^{2}-18 x-9}{3 x-x^{2}}
$$

32 An app design company believes that the proportion of high school students who have purchased apps on their smartphones in the past 3 months is 0.85 . A simulation of 500 samples of 150 students was run based on this proportion and the results are shown below.

Suppose a sample of 150 students from your high school showed that 88% of students had purchased apps on their smartphones in the past 3 months. Based on the simulation, would the results from your high school give the app design company reason to believe their assumption is incorrect? Explain.

33 Patricia creates a cubic polynomial function, $p(x)$, with a leading coefficient of 1 . The zeros of the function are 2 , 3 , and -6 . Write an equation for $p(x)$. Sketch $y=p(x)$ on the set of axes below.

34 A public radio station held a fund-raiser. The table below summarizes the donor category and method of donation.

		Donor Category	
		Supporter	Patron
Method of Donation	Phone calls	400	672
	Online	1200	2016

To the nearest thousandth, find the probability that a randomly selected donor was categorized as a supporter, given that the donation was made online. Do these data indicate that being a supporter is independent of donating online? Justify your answer.

35 Algebraically solve the system:

$$
\begin{gathered}
(x-2)^{2}+(y-3)^{2}=20 \\
y=-2 x+7
\end{gathered}
$$

36 On a certain tropical island, there are currently 500 palm trees and 200 flamingos. Suppose the palm tree population is decreasing at an annual rate of 3% per year and the flamingo population is growing at a continuous rate of 2% per year. Write two functions, $P(x)$ and $F(x)$, that represent the number of palm trees and flamingos on this island, respectively, x years from now. State the solution to the equation $P(x)=F(x)$, rounded to the nearest year. Interpret the meaning of this value within the given context.

Algebra II Regents Exam 0623
www.jmap.org
37 The volume of air in an average lung during breathing can be modeled by the graph below.

Using the graph, write an equation for $N(t)$, in the form $N(t)=A \sin (B t)+C$. That same lung, when engaged in exercise, has a volume that can be modeled by $E(t)=2000 \sin (\pi t)+3200$, where $E(t)$ is volume in mL and t is time in seconds. Graph at least one cycle of $E(t)$ on the same grid as $N(t)$. How many times during the 5 -second interval will $N(t)=E(t)$?

0823aii

1 A group of high school students wanted to collect information on how many times per week students exercised. If they want the least biased results they should survey every fifth student at the school who is

1) entering the gym
2) entering the library
3) in the junior class
4) entering the building

2 Given $x \neq-3$, which expression is equivalent to $\frac{2 x^{3}+3 x^{2}-4 x+5}{x+3}$?

1) $2 x^{3}+9 x^{2}+23 x+74$
2) $2 x^{2}-3 x+5-\frac{10}{x+3}$
3) $2 x^{3}-3 x^{2}+5 x-10$
4) $2 x^{2}+9 x+23+\frac{74}{x+3}$

3 The table below shows the food preferences of sports fans whose favorite sport is football or baseball.

Favorite Food to Eat While Watching Sports

	Wings	Pizza	Hot Dogs
Football	14	20	6
Baseball	6	12	42

The probability that a fan prefers pizza given that the fan prefers football is

1) $\frac{1}{2}$
2) $\frac{1}{5}$
3) $\frac{5}{8}$
4) $\frac{13}{25}$

4 If $f(x)=12 x-4$, then the inverse function $f^{-1}(x)$ is

1) $f^{-1}(x)=\frac{x+1}{3}$
2) $f^{-1}(x)=\frac{x}{3}+1$
3) $f^{-1}(x)=\frac{x+4}{12}$
4) $f^{-1}(x)=\frac{x}{12}+4$

Algebra II Regents Exam 0823
www.jmap.org
5 The graph of a quadratic function is shown below.

When the graph of $x+y=4$ is drawn on the same axes, one solution to this system is

1) $(4,0)$
2) $(1,5)$
3) $(2,2)$
4) $(3,1)$

6 What is the solution of $2\left(3^{x+4}\right)=56$?

1) $x=\log _{3}(28)-4$
2) $x=-1$
3) $x=\log (25)-4$
4) $x=\frac{\log (56)}{\log (6)}-4$

7 In a survey of people who recently bought a laptop, 45% said they were looking for a large screen, 31% said they were looking for a fast processor, and 58% said they wanted a large screen or a fast processor. If a survey respondent is selected at random, what is the probability that the respondent wanted both a large screen and a fast processor?

1) 76%
2) 14%
3) 77%
4) 18%

8 In the quadratic formula, $b^{2}-4 a c$ is called the discriminant. The function $f(x)$ has a discriminant value of 8 , and $g(x)$ has a discriminant value of -16 . The quadratic graphs, $h(x)$ and $j(x)$, are shown below.

Which quadratic functions have imaginary roots?

1) $g(x)$ and $h(x)$
2) $g(x)$ and $j(x)$
3) $f(x)$ and $h(x)$
4) $\quad f(x)$ and $j(x)$

9 The element Americium has a half-life of 25 minutes. Given an initial amount, A_{0}, which expression could be used to determine the amount of Americium remaining after t minutes?

1) $A_{0}\left(\frac{1}{2}\right)^{\frac{t}{25}}$
2) $A_{0}(25)^{\frac{t}{2}}$
3) $25\left(\frac{1}{2}\right)^{t}$
4) $A_{0}\left(\frac{1}{2}\right)^{25 t}$

10 Which function has the greatest y-intercept?

1) $f(x)=4 \sin (2 x)$
2) $g(x)=3 x^{4}+2 x^{3}+7$
3) $h(x)=5 e^{2 x}+3$
4) $j(x)=6 \log _{2}(3 x+4)$

11 According to the USGS, an agency within the Department of Interior of the United States, the frog population in the U.S. is decreasing at the rate of 3.79% per year. A student created a model, $P=12,150(0.962)^{t}$, to estimate the population in a pond after t years. The student then created a model that would predict the population after d decades. This model is best represented by

1) $P=12,150(0.461)^{d}$
2) $P=12,150(0.679)^{d}$
3) $P=12,150(0.996)^{d}$
4) $P=12,150(0.998)^{d}$

12 What is the value of $\tan \theta$ when $\sin \theta=\frac{2}{5}$ and θ is in quadrant II?

1) $\frac{-\sqrt{21}}{5}$
2) $\frac{-\sqrt{21}}{2}$
3) $\frac{-2}{\sqrt{21}}$
4) $\frac{2}{\sqrt{21}}$

13 A population is normally distributed with a mean of 23 and a standard deviation of 1.2. The percentage of the population that falls below 21, to the nearest hundredth, is

1) 0.05
2) 4.78
3) 8.29
4) 91.30

14 Audra is interested in studying the number of students entering kindergarten in the Ahlville Central School District over the next several years. Using data dating back to 2015, she determines that the number of kindergarteners is decreasing at an exponential rate. She creates a formula to model this situation $y=a(b)^{x}$, where x is the number of years since 2015 and y is the number of students entering kindergarten. If there were 105 students entering kindergarten in Ahlville in 2015, which statement about Audra's formula is true?

1) a is positive and b is negative.
2) Both a and b are positive.
3) a is negative and b is positive.
4) Both a and b are negative.

15 The solution set for the equation $\sqrt{3(x+6)}=x$ is

1) $\{6,-3\}$
2) $\{-6,3\}$
3) $\{6\}$
4) $\{-3\}$

16 The George family would like to borrow $\$ 45,000$ to purchase a new boat. They qualified for a loan with an annual interest rate of 6.75%. The monthly loan payment can be found using the formula below.

$$
\begin{gathered}
M=\frac{P\left(\frac{r}{12}\right)\left(1+\frac{r}{12}\right)^{n}}{\left(1+\frac{r}{12}\right)^{n}-1} \\
M=\text { monthly payment } \\
P=\text { amount borrowed } \\
r=\text { annual interest rate }
\end{gathered} n=\text { number of monthly payments }
$$

What is the monthly payment if they would like to pay off the loan in five years?

1) $\$ 262.99$
2) $\$ 252.13$
3) $\$ 915.24$
4) $\$ 885.76$

17 A retailer advertises that items will be discounted by 10% every Monday until they are sold. In how many weeks will an item costing $\$ 50$ first be sold for under half price?

1) 7
2) 6
3) 5
4) 4

18 The graph of the function $f(x)$ is shown below.

In which interval is $f(x)$ always positive?

1) $(-2,4)$
2) $(0,10)$
3) $(-12,-5)$
4) $(-10,0)$

19 If $f(x)=\left(x^{2}+3 x+2\right)\left(x^{2}-4 x+3\right)$ and $g(x)=x^{2}-9$, then how many real solutions are there to the equation $f(x)=g(x)$?

1) 1
2) 2
3) 6
4) 4

20 Which expression is a factor of $x^{4}-x^{3}-11 x^{2}+5 x+30$?

1) $x+2$
2) $x-2$
3) $x+5$
4) $x-5$

21 The expression $\frac{x^{2}+6}{x^{2}+4}$ is equivalent to

1) $\frac{6}{4}$
2) $1+\frac{10}{x^{2}+4}$
3) $1-\frac{2}{x^{2}+4}$
4) $1+\frac{2}{x^{2}+4}$

22 Stone Manufacturing has developed a cost model, $C(x)=0.18 x^{3}+0.02 x^{2}+4 x+180$, where x is the number of sprockets sold, in thousands. The sales price can be modeled by $S(x)=95.4-6 x$ and the company's revenue by $R(x)=x \bullet S(x)$. The company's profits, $R(x)-C(x)$, could be modeled by

1) $0.18 x^{3}+6.02 x^{2}+91.4 x+180$
2) $0.18 x^{3}-5.98 x^{2}-91.4 x+180$
3) $-0.18 x^{3}-6.02 x^{2}+91.4 x-180$
4) $0.18 x^{3}+5.98 x^{2}+99.4 x+180$

23 Which function is even?

1) $f(x)=x^{3}+2$
2) $f(x)=x^{2}+1$
3) $f(x)=|x+2|$
4) $f(x)=\sin (2 x)$

24 The graph of a cubic polynomial function $p(x)$ is shown below.

If $p(x)$ is written as a product of linear factors, which factor would appear twice?

1) $x-2$
2) $x+2$
3) $x-3$
4) $x+3$

25 Factor the expression $2 x^{3}-3 x^{2}-18 x+27$ completely.

26 Algebraically determine the values of x that satisfy the system of equations below:

$$
\begin{aligned}
& y=x^{2}+8 x-5 \\
& y=8 x-4
\end{aligned}
$$

27 Solve the equation $3 x^{2}+5 x+8=0$. Write your solution in $a+b i$ form.

28 On the coordinate plane below, sketch at least one cycle of a cosine function with a midline at $y=-2$, an amplitude of 3 , and a period of $\frac{\pi}{2}$.

29 Given i is the imaginary unit, simplify $\left(5 x i^{3}-4 i\right)^{2}$ as a polynomial in standard form.

30 Consider the parabola given by $y=\frac{1}{4} x^{2}+x+8$ with vertex ($-2,7$) and focus $(-2,8)$. Use this information to explain how to determine the equation of the directrix.

31 Write $\frac{x \sqrt{x^{3}}}{\sqrt[3]{x^{5}}}$ as a single term in simplest form, with a rational exponent.

32 A fruit fly population can be modeled by the equation $P=10(1.27)^{t}$, where P represents the number of fruit flies after t days. What is the average rate of change of the population, rounded to the nearest hundredth, over the interval [0,10.5]? Include appropriate units in your answer.

Algebra II Regents Exam 0823
www.jmap.org
33 Sketch $p(x)=-\log _{2}(x+3)+2$ on the axes below.

Describe the end behavior of $p(x)$ as $x \rightarrow-3$. Describe the end behavior of $p(x)$ as $x \rightarrow \infty$

34 Solve for x algebraically: $\frac{1}{x-6}+\frac{x}{x-2}=\frac{4}{x^{2}-8 x+12}$

35 Solve the following system of equations algebraically for x, y, and z.

$$
\begin{aligned}
2 x+4 y-3 z & =12 \\
3 x-2 y+2 z & =-9 \\
-x+y-3 z & =0
\end{aligned}
$$

36 Two classes of students were entered into an experiment to see whether using an interactive whiteboard leads to better grades. It was observed that the mean grade of students in the class with the interactive whiteboard was 0.6 points higher than the class without it. To determine if the observed difference is statistically significant, the classes were rerandomized 5000 times to study these random differences in the mean grades. The output of the simulation is summarized in the histogram below.

Determine an interval containing the middle 95% of the simulation results. Round your answer to the nearest hundredth. Does the interval indicate that the difference between the classes' grades is significant? Explain.

37 The Manford family started savings accounts for their twins, Abby and Brett, on the day they were born. They invested $\$ 8000$ in an account for each child. Abby's account pays 4.2% annual interest compounded quarterly. Brett's account pays 3.9% annual interest compounded continuously. Write a function, $A(t)$, for Abby's account and a function, $B(t)$, for Brett's account that calculates the value of each account after t years. Determine who will have more money in their account when the twins turn 18 years old, and find the difference in the amounts in the accounts to the nearest cent. Algebraically determine, to the nearest tenth of a year, how long it takes for Brett's account to triple in value.

Algebra II Regents Exam 0124
www.jmap.org

0124aii Regents Exam

1 A cafeteria food manager studied the lunchtime eating habits of a group of employees in their office building. The purpose of the study was to determine the proportion of employees who purchased lunch in the cafeteria, brought their lunch from home, or purchased lunch from an outside vendor. This collection of data would best be classified as

1) a census
2) an observational study
3) an experiment
4) a simulation

2 Which graph has imaginary roots?
1)

3)

3 Given 3 is a root of $f(x)=x^{4}-x^{3}-21 x^{2}+45 x$, what are the other unique roots of $f(x)$?

1) -5 , only
2) -5 and 0
3) $-3,1$ and 5
4) $-5,-3$ and 0

4 Given $p \neq q, p=\left(\frac{1}{2}\right)^{q}$, expressed in logarithmic form, is equivalent to

1) $\log _{p}\left(\frac{1}{2}\right)=q$
2) $\quad \log _{q}(p)=\frac{1}{2}$
3) $\quad \log _{\frac{1}{2}}(p)=q$
4) $\quad \log _{\frac{1}{2}}(q)=p$

5 Which graph best represents the graph of $f(x)=(x+a)^{2}(x-b)$, where a and b are positive real numbers?
1)

3)

6 The equations $y=3 t+6$ and $y=(1.82)^{t}$ approximately model the growth of two separate populations where $t>0$. What is the best approximation of the time, t, at which the populations are the same?

1) -1.9
2) 0.3
3) 5.1
4) 21.3

7 Given $y=-2 x$ and $x^{2}+y^{2}=5$, the point of intersection in Quadrant II is

1) $(1,-2)$
2) $(-2,1)$
3) $(-1,1)$
4) $(-1,2)$

8 The rational expression $\frac{2 x^{4}-5 x^{2}+3 x-2}{x-3}$ is equivalent to

1) $2 x^{3}-5 x-12-\frac{38}{x-3}$
2) $2 x^{3}+6 x^{2}+13 x+42+\frac{124}{x-3}$
3) $2 x^{3}-5 x+18-\frac{56}{x-3}$
4) $2 x^{3}-6 x^{2}+13 x-36+\frac{106}{x-3}$

9 The equation of the parabola that has its focus at the point $(-3,2)$ and directrix at $y=0$ is

1) $y=\frac{1}{4}(x+3)^{2}+1$
2) $y=\frac{1}{4}(x-3)^{2}+1$
3) $y=\frac{1}{8}(x+3)^{2}+1$
4) $y=\frac{1}{8}(x-3)^{2}+1$

10 The seventh term of the geometric sequence $\sqrt{6},-2 \sqrt{3}, 2 \sqrt{6},-4 \sqrt{3} \ldots$ is

1) $6 \sqrt{6}$
2) $-6 \sqrt{3}$
3) $8 \sqrt{6}$
4) $-8 \sqrt{3}$

11 A company wishes to determine the cooking time for one pound of spaghetti. The company's technicians cooked one pound of spaghetti and recorded the time needed for the spaghetti to be ready to eat. Repeating this process 35 times resulted in an approximately normal distribution, with a mean of 9.82 minutes and a standard deviation of 1.4 minutes. In which interval should the middle 95% of cooking times fall?

1) $(8.42,11.22)$
2) $(7.02,12.62)$
3) $(9.35,10.29)$
4) $(6.82,11.32)$

12 Given $f(x)=2 x^{2}+7 x-15$ and $g(x)=3-2 x$, what is $\frac{f(x)}{g(x)}$ for all defined values?

1) $-x-5$
2) $-x+5$
3) $x-5$
4) $x+5$

13 Which equation is equivalent to $P=210 x^{\frac{4}{3}} y^{\frac{7}{3}}$

1) $P=\sqrt[3]{210 x^{4} y^{7}}$
2) $P=70 x y^{2} \sqrt[3]{x y}$
3) $P=210 x y^{2} \sqrt[3]{x y}$
4) $P=210 x y^{2} \sqrt[3]{x^{3} y^{5}}$

14 The average cost of a gallon of milk in the United States between the years of 1995 and 2018 can be modeled by the equation $P(t)=-0.0004 t^{3}+0.0114 t^{2}-0.0150 t+2.6602$, where $P(t)$ represents the cost, in dollars, and t is time in years since January 1995. During this time period, in what year did $P(t)$ reach its maximum?

1) 1995
2) 2013
3) 2014
4) 2018

15 The temperature, F, in degrees Fahrenheit, after t hours of a roast put into an oven is given by the equation $F=325-185 e^{-0.4 t}$. What was the temperature of the roast when it was put into the oven?

1) 325
2) 200
3) 185
4) 140

16 The roots of the equation $0=x^{2}+6 x+10$ in simplest $a+b i$ form are

1) $-3 \pm 2 i$
2) $-6 \pm i$
3) $-3 \pm i$
4) $-3 \pm i \sqrt{2}$

17 Which equation does not represent an identity?

1) $x^{2}-y^{2}=(x+y)(x-y)$
2) $(x-y)^{2}=(x-y)(x-y)$
3) $(x+y)^{2}=x^{2}+2 x y+y^{2}$
4) $(x+y)^{3}=x^{3}+3 x y+y^{3}$

18 Two surveys were conducted to estimate the proportion of teens who use social media at least once per day.

Based on these results, it was determined that approximately 75% of teens use social media at least once per day. What is the best explanation of the difference in the results between the two surveys?

1) The smaller sample size of five teens resulted in a smaller margin of error and should provide a more accurate estimate.
2) The larger sample size of 50 teens resulted in a smaller margin of error and should provide a more accurate estimate.
3) The smaller sample size of five teens resulted in a bigger margin of error and should provide a more accurate estimate.
4) The larger sample size of 50 teens resulted in a bigger margin of error and should provide a more accurate estimate.

19 Given $f(x)=x^{3}-3$ and $f^{-1}(x)=\sqrt[3]{x-3 b}$, the value of b is

1) 1
2) -1
3) 3
4) -3

20 Robert is buying a car that costs $\$ 22,000$. After a down payment of $\$ 4000$, he borrows the remainder from a bank, a six year loan at 6.24% annual interest rate. The following formula can be used to calculate his monthly loan payment.

$$
\begin{gathered}
R=\frac{(P)(i)}{1-(1+i)^{-t}} \\
R=\text { monthly payment } \\
P=\text { loan amount } \\
i=\text { monthly interest rate } \\
t=\text { time, in months }
\end{gathered}
$$

Robert's monthly payment will be

1) $\$ 298.31$
2) $\$ 300.36$
3) $\$ 307.35$
4) $\$ 367.10$

21 Given $\tan \theta=-\frac{4}{3}$ where $\frac{\pi}{2}<\theta<\pi$, what is the value of $\sec \theta$?

1) $-\frac{5}{3}$
2) $-\frac{3}{5}$
3) $\frac{4}{5}$
4) $\frac{5}{3}$

22 To solve the equation $\frac{7}{x+7}+\frac{4 x}{x-7}=\frac{3 x+7}{x-7}$, Joan's first step is to multiply both sides by the least common denominator. Which statement is true?

1) -14 is an extraneous solution.
2) 7 is an extraneous solution.
3) 7 and -7 are extraneous solutions.
4) There are no extraneous solutions.

23 Beginning July 1, 2019, Michelle deposited $\$ 250$ into an account that yields 0.15% each month. She continued to make $\$ 250$ deposits into this account on the first of each month for 3 years. Which expression represents the amount of money that was in the account after her last deposit was made on June 1, 2022?

1) $250(1.0015)^{3}$
2) $250(1.0015)^{36}$
3) $\frac{250-250(1.0015)^{3}}{1-1.0015}$
4) $\frac{250-250(1.0015)^{36}}{1-1.0015}$

24 A study of the red tailed hawk population in a given area shows the population, $H(t)$, can be represented by the function $H(t)=50(1.19)^{t}$ where t represents the number of years since the study began. In terms of the monthly rate of growth, the population can be best approximated by the function

1) $H(t)=50(1.015)^{12 t}$
2) $H(t)=50(1.15)^{\frac{t}{12}}$
3) $H(t)=50(1.19)^{12 t}$
4) $H(t)=50(1.19)^{\frac{t}{12}}$

25 Factor $x^{3}+4 x^{2}-9 x-36$ completely.

26 Determine if $x+4$ is a factor of $2 x^{3}+10 x^{2}+4 x-16$. Explain your answer.

27 An initial investment of $\$ 1000$ reaches a value, $V(t)$, according to the model $V(t)=1000(1.01)^{4 t}$, where t is the time in years. Determine the average rate of change, to the nearest dollar per year, of this investment from year 2 to year 7.

28 When $\left(\frac{1}{\sqrt[3]{y^{2}}}\right) y^{4}$ is written in the form y^{n}, what is the value of n ? Justify your answer.

29 The heights of the members of a ski club are normally distributed. The average height is 64.7 inches with a standard deviation of 4.3 inches. Determine the percentage of club members, to the nearest percent, who are between 67 inches and 72 inches tall.

30 The explicit formula $a_{n}=6+6 n$ represents the number of seats in each row in a movie theater, where n represents the row number. Rewrite this formula in recursive form.

31 Express $\left(2 x i^{3}-3 y\right)^{2}$ in simplest form.

32 A survey was given to 1250 randomly selected high school students at the end of their junior year. The survey offered four post-graduation options: two-year college, four-year college, military, or work. Of the 1250 responses, 475 chose a four-year college. State one possible conclusion that can be made about the population of high school juniors, based on this survey.

33 A researcher wants to determine if nut allergies and milk allergies are related to each other. The researcher surveyed 1500 people and asked them if they are allergic to nuts or milk. The survey results are summarized in the table below.

	Allergic to Nuts	Not Allergic to Nuts
Allergic to Milk	3	42
Not Allergic to Milk	12	1443

Determine the probability that a randomly selected survey respondent is allergic to milk. Determine the probability that a randomly selected survey respondent is allergic to milk, given that the person is allergic to nuts. Based on the survey data, determine whether nut allergies and milk allergies are independent events. Justify your answer.

34 Algebraically solve for x : $2 x=6+2 \sqrt{x-1}$

35 During the summer, Adam saved $\$ 4000$ and Betty saved $\$ 3500$. Adam deposited his money in Bank A at an annual rate of 2.4% compounded monthly. Betty deposited her money in Bank B at an annual rate of 4% compounded quarterly. Write two functions that represent the value of each account after t years if no other deposits or withdrawals are made, where Adam's account value is represented by $A(t)$, and Betty's by $B(t)$. Using technology, determine, to the nearest tenth of a year, how long it will take for the two accounts to have the same amount of money in them. Justify your answer.

Algebra II Regents Exam 0124
www.jmap.org
36 On the graph below, draw at least one complete cycle of a sine graph passing through point $(0,2)$ that has an amplitude of 3 , a period of π, and a midline at $y=2$.

Based on your graph, state an interval in which the graph is increasing.

37 A manufacturer of sweatshirts finds that profits and costs fluctuate depending on the number of products created. Creating more products doesn't always increase profits because it requires additional costs, such as building a larger facility or hiring more workers. The manufacturer determines the profit, $p(x)$, in thousands of dollars, as a function of the number of sweatshirts sold, x, in thousands. This function, p, is given below.

$$
p(x)=-x^{3}+11 x^{2}-7 x-69
$$

Graph $y=p(x)$, over the interval $0 \leq x \leq 9$, on the set of axes below.

Over the given interval, state the coordinates of the maximum of p and round all values to the nearest integer. Explain what this point represents in terms of the number of sweatshirts sold and profit. Determine how many sweatshirts, to the nearest whole sweatshirt, the manufacturer would need to produce in order to first make a positive profit. Justify your answer.

2015 Algebra II Common Core State Standards Sample Items Answer Section

1 ANS: 1
The zeros of the polynomial are at $-b$, and c. The sketch of a polynomial of degree 3 with a negative leading coefficient should have end behavior showing as x goes to negative infinity, $f(x)$ goes to positive infinity. The multiplicities of the roots are correctly represented in the graph.

PTS: 2 REF: spr1501aii NAT: F.IF.C. 7 TOP: Graphing Polynomial Functions
KEY: bimodalgraph
2 ANS: 4

A parabola with a focus of $(0,4)$ and a directrix of $y=2$ is sketched as follows:

By inspection, it is determined that the vertex of the parabola is $(0,3)$. It is also evident that the distance, p, between the vertex and the focus is 1. It is possible to use the formula $(x-h)^{2}=4 p(y-k)$ to derive the equation of the parabola as follows: $(x-0)^{2}=4(1)(y-3)$

$$
\begin{aligned}
x^{2} & =4 y-12 \\
x^{2}+12 & =4 y \\
\frac{x^{2}}{4}+3 & =y
\end{aligned}
$$

or A point (x, y) on the parabola must be the same distance from the focus as it is from the directrix. For any such point (x, y), the distance to the focus is $\sqrt{(x-0)^{2}+(y-4)^{2}}$ and the distance to the directrix is $y-2$. Setting this equal leads to: $x^{2}+y^{2}-8 y+16=y^{2}-4 y+4$

$$
\begin{aligned}
& x^{2}+16=4 y+4 \\
& \frac{x^{2}}{4}+3=y
\end{aligned}
$$

PTS: 2 REF: spr1502aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions
3 ANS: 1
A reference triangle can be sketched using the coordinates $(-4,3)$ in the second quadrant to find the value of $\sin \theta$.

PTS: 2
REF: spr1503aii NAT: F.TF.A. 2
KEY: extension to reals

4 ANS: 2
$B(t)=750\left(1.16^{\frac{1}{12}}\right)^{12 t} \approx 750(1.012)^{12 t} \quad B(t)=750\left(1+\frac{0.16}{12}\right)^{12 t}$ is wrong, because the growth is an annual rate that is not compounded monthly.

PTS: 2 REF: spr1504aii NAT: A.SSE.B. 3 TOP: Modeling Exponential Functions
KEY: AII
5 ANS:
$\frac{x^{\frac{8}{3}}}{x^{\frac{4}{3}}}=x^{y}$
$x^{\frac{4}{3}}=x^{y}$
$\frac{4}{3}=y$

PTS: 2
REF: spr1505aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents
KEY: numbers
6 ANS:
$(4-3 i)(5+2 y i-5+2 y i)$
$(4-3 i)(4 y i)$
$16 y i-12 y i^{2}$
$12 y+16 y i$
PTS: 2 REF: spr1506aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers
7 ANS:
$f(4)=2(4)^{3}-5(4)^{2}-11(4)-4=128-80-44-4=0$ Any method that demonstrates 4 is a zero of $f(x)$ confirms
that $x-4$ is a factor, as suggested by the Remainder Theorem.

PTS: 2 REF: spr1507aii NAT: A.APR.B. 2 TOP: Remainder Theorem

8 ANS:

$$
\begin{aligned}
\sqrt{x-5} & =-x+7 \quad \sqrt{x-5}=-9+7=-2 \text { is extraneous. } \\
x-5 & =x^{2}-14 x+49 \\
0 & =x^{2}-15 x+54 \\
0 & =(x-6)(x-9) \\
x & =6,9
\end{aligned}
$$

PTS: 2
REF: spr1508aii NAT: A.REI.A. 2 TOP: Solving Radicals KEY: extraneous solutions

9

$$
720=\frac{120000\left(\frac{.048}{12}\right)\left(1+\frac{.048}{12}\right)^{n}}{\left(1+\frac{.048}{12}\right)^{n}-1} \frac{275.2}{12} \approx 23 \text { years }
$$

$$
\begin{aligned}
720(1.004)^{n}-720 & =480(1.004)^{n} \\
240(1.004)^{n} & =720 \\
1.004^{n} & =3 \\
n \log 1.004 & =\log 3 \\
n & \approx 275.2 \text { months }
\end{aligned}
$$

PTS: 4
REF: spr1509aii NAT: A.CED.A. 1 TOP: Exponential Growth

10 ANS:

$$
\begin{aligned}
& 6 x-3 y+2 z=-10 \quad x+3 y+5 z=45 \quad 4 x+10 z=62 \quad 4 x+4(7)=20 \\
& -2 x+3 y+8 z=72 \quad 6 x-3 y+2 z=-10 \quad 4 x+4 z=20 \quad 4 x=-8 \\
& 4 x+10 z=62 \quad 7 x+7 z=35 \quad 6 z=42 \quad x=-2
\end{aligned}
$$

$$
\begin{aligned}
6(-2)-3 y+2(7) & =-10 \\
-3 y & =-12 \\
y & =4
\end{aligned}
$$

PTS: 4 REF: spr1510aii NAT: A.REI.C. 6 TOP: Solving Linear Systems
KEY: three variables
11 ANS:
$a_{n}=x^{n-1}(x+1) x^{n-1}=0 x+1=0$

$$
x=0 \quad x=-1
$$

PTS: 4 REF: spr1511aii NAT: F.BF.A. 2 TOP: Sequences
12 ANS:
Yes. The margin of error from this simulation indicates that 95% of the observations fall within ± 0.12 of the simulated proportion, 0.25 . The margin of error can be estimated by multiplying the standard deviation, shown to be 0.06 in the dotplot, by 2 , or applying the estimated standard error formula, $\left(\sqrt{\frac{p(1-p)}{n}}\right)$ or $\left(\sqrt{\frac{(0.25)(0.75)}{50}}\right)$ and multiplying by 2 . The interval 0.25 ± 0.12 includes plausible values for the true proportion of people who prefer Stephen's new product. The company has evidence that the population proportion could be at least 25%. As seen in the dotplot, it can be expected to obtain a sample proportion of 0.18 (9 out of 50) or less several times, even when the population proportion is 0.25 , due to sampling variability. Given this information, the results of the survey do not provide enough evidence to suggest that the true proportion is not at least 0.25 , so the development of the product should continue at this time.

PTS: 4
REF: spr1512aii NAT: S.IC.B. 4
TOP: Analysis of Data

13 ANS:

This scenario can be modeled with a Venn Diagram:

Since $P(S \cup I)_{c}=0.2, P(S \cup I)=0.8$. Then, $P(S \cap I)=P(S)+P(I)-P(S \cup I)$ If S and I are independent, then the

$$
\begin{aligned}
& =0.5+0.7-0.8 \\
& =0.4
\end{aligned}
$$

Product Rule must be satisfied. However, $(0.5)(0.7) \neq 0.4$. Therefore, salary and insurance have not been treated independently.

PTS: 4 REF: spr1513aii NAT: S.CP.A. 2 TOP: Probability of Compound Events
KEY: independence
14 ANS:

The amplitude, 12, can be interpreted from the situation, since the water level has a minimum of -12 and a maximum of 12 . The value of A is -12 since at $8: 30$ it is low tide. The period of the function is 13 hours, and is expressed in the function through the parameter B. By experimentation with technology or using the relation $P=\frac{2 \pi}{B}$ (where P is the period), it is determined that $B=\frac{2 \pi}{13}$.
$f(t)=-12 \cos \left(\frac{2 \pi}{13} t\right)$

In order to answer the question about when to fish, the student must interpret the function and determine which choice, 7:30 pm or 10:30 pm, is on an increasing interval. Since the function is increasing from $t=13$ to $t=19.5$ (which corresponds to $9: 30 \mathrm{pm}$ to $4: 00 \mathrm{am}$), 10:30 is the appropriate choice.

PTS: 6 REF: spr1514aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions KEY: graph

15 ANS: 4

$$
\underbrace{}_{(-3,5,-0.857)}
$$

PTS: 2
REF: fall1501aii NAT: A.REI.A. 2 TOP: Solving Rationals
KEY: rational solutions
16 ANS: 3
$f(x)=-f(x)$, so $f(x)$ is odd. $g(-x) \neq g(x)$, so $g(x)$ is not even. $g(-x) \neq-g(x)$, so $g(x)$ is not odd. $h(-x)=h(x)$, so $h(x)$ is even.

PTS: 2 REF: fall1502aii NAT: F.BF.B. 3 TOP: Even and Odd Functions
17 ANS: 1

$$
\begin{array}{r}
2 x + 3 \longdiv { 6 x ^ { 3 } + 1 7 x ^ { 2 } + 4 x - 1 0 x + 2 } \\
\frac{6 x^{3}+9 x^{2}}{8 x^{2}+10 x} \\
\frac{8 x^{2}+12 x}{-2 x+2} \\
\frac{-2 x-3}{5}
\end{array}
$$

PTS: 2
REF: fall1503aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: division

18 ANS: 3

PTS: 2 REF: fall1504aii NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: complex solutions | completing the square
19 ANS: 4
$k^{4}-4 k^{2}+8 k^{3}-32 k+12 k^{2}-48$
$k^{2}\left(k^{2}-4\right)+8 k\left(k^{2}-4\right)+12\left(k^{2}-4\right)$
$\left(k^{2}-4\right)\left(k^{2}+8 k+12\right)$
$(k+2)(k-2)(k+6)(k+2)$
PTS: 2
REF: fall1505aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials
KEY: factoring by grouping
20 ANS: 4

As the range is [4,10], the midline is $y=\frac{4+10}{2}=7$.

PTS: 2
REF: fall1506aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions
KEY: mixed

21 ANS:

$$
\begin{aligned}
-2 x+1 & =-2 x^{2}+3 x+1 \\
2 x^{2}-5 x & =0 \\
x(2 x-5) & =0 \\
x & =0, \frac{5}{2}
\end{aligned}
$$

PTS: 2
REF: fall1507aii NAT: A.REI.C. 7 TOP: Quadratic-Linear Systems
KEY: AII
22 ANS:
Based on these data, the two events do not appear to be independent. $P(F)=\frac{106}{200}=0.53$, while $P(F \mid T)=\frac{54}{90}=0.6, P(F \mid R)=\frac{25}{65}=0.39$, and $P(F \mid C)=\frac{27}{45}=0.6$. The probability of being female are not the same as the conditional probabilities. This suggests that the events are not independent.

PTS: 2 REF: fall1508aii NAT: S.CP.A. 4 TOP: Conditional Probability
23 ANS:
$x=(y-3)^{3}+1$
$x-1=(y-3)^{3}$
$\sqrt[3]{x-1}=y-3$
$\sqrt[3]{x-1}+3=y$
$f^{-1}(x)=\sqrt[3]{x-1}+3$
PTS: 2 REF: fall1509aii NAT: F.BF.B. 4 TOP: Inverse of Functions
KEY: other

24 ANS:
(-1.13/4.21)
PTS: 2
REF: fall1510aii NAT: A.REI.D. 11 TOP: Other Systems
KEY: AII
25 ANS:
Let x equal the first integer and $x+1$ equal the next. $(x+1)^{2}-x^{2}=x^{2}+2 x+1-x^{2}=2 x+1.2 x+1$ is an odd integer.

PTS: 2 REF: fall1511aii NAT: A.APR.C. 4 TOP: Polynomial Identities
26 ANS:
The expression is of the form $y^{2}-5 y-6$ or $(y-6)(y+1)$. Let $y=4 x^{2}+5 x$:
$\left(4 x^{2}+5 x-6\right)\left(4 x^{2}+5 x+1\right)$
$(4 x-3)(x+2)(4 x+1)(x+1)$
PTS: 2
REF: fall1512aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials
KEY: $\mathrm{a}>1$
27

$$
\begin{array}{rl}
100 & =325+(68-325) e^{-2 k} \\
-225 & T=325-257 e^{-0.066 t} \\
& =-257 e^{-2 k} \\
& T=325-257 e^{-0.066(7)} \approx 163 \\
k & =\frac{\ln \left(\frac{-225}{-257}\right)}{-2} \\
k & \approx 0.066
\end{array}
$$

PTS: 4
REF: fall1513aii NAT: F.LE.A. 4 TOP: Exponential Growth

28
ANS:
The mean difference between the students' final grades in group 1 and group 2 is -3.64 . This value indicates that students who met with a tutor had a mean final grade of 3.64 points less than students who used an on-line subscription. One can infer whether this difference is due to the differences in intervention or due to which students were assigned to each group by using a simulation to rerandomize the students’ final grades many (500) times. If the observed difference - 3.64 is the result of the assignment of students to groups alone, then a difference of -3.64 or less should be observed fairly regularly in the simulation output. However, a difference of -3 or less occurs in only about 2% of the rerandomizations. Therefore, it is quite unlikely that the assignment to groups alone accounts for the difference; rather, it is likely that the difference between the interventions themselves accounts for the difference between the two groups' mean final grades.

PTS: 4 REF: fall1514aii NAT: S.IC.B. 5 TOP: Analysis of Data
29 ANS:

$$
\begin{aligned}
& 0=6(-5)^{3}+b(-5)^{2}-52(-5)+15 \quad z(x)=6 x^{3}+19 x^{2}-52 x+15 \\
& 0=-750+25 b+260+15
\end{aligned}
$$

$$
475=25 b
$$

$$
19=b
$$

-5	6	19	-52	15
		-30	55	15
	6	-11	3	0
$6 x^{2}-11 x+3=0$				

$(2 x-3)(3 x-1)=0$

$$
x=\frac{3}{2}, \frac{1}{3},-5
$$

PTS: 4 REF: fall1515aii NAT: A.APR.B. 2 TOP: Remainder Theorem
30 ANS:
$\operatorname{normcdf}(510,540,480,24)=0.0994 \quad z=\frac{510-480}{24}=1.251 .25=\frac{x-510}{20} 2.5=\frac{x-510}{20} 535-560$

$$
z=\frac{540-480}{24}=2.5 \quad x=535 \quad x=560
$$

PTS: 4 REF: fall1516aii NAT: S.ID.A. 4 TOP: Normal Distributions
KEY: probability
31 ANS:
$A(t)=100(0.5)^{\frac{t}{63}}$, where t is time in years, and $A(t)$ is the amount of titanium-44 left after t years.
$\frac{A(10)-A(0)}{10-0}=\frac{89.58132-100}{10}=-1.041868$ The estimated mass at $t=40$ is $100-40(-1.041868) \approx 58.3$. The
actual mass is $A(40)=100(0.5)^{\frac{40}{63}} \approx 64.3976$. The estimated mass is less than the actual mass.
PTS: 6 REF: fall1517aii NAT: F.LE.A. 2 TOP: Modeling Exponential Functions
KEY: AII

0616AII Common Core State Standards

Answer Section

1	ANS: 4	PTS: 2	REF: 061601aii	NAT: N.RN.A. 2
	TOP: Radicals and Rational Exponents	KEY: variables		
2	ANS: 3	PTS: 2	REF: 061602aii	NAT: A.CED.A. 1
	TOP: Modeling Rationals			

3 ANS: 2
$(2-y i)(2-y i)=4-4 y i+y^{2} i^{2}=-y^{2}-4 y i+4$
PTS: 2 REF: 061603aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers
4 ANS: 3
The graph shows three real zeros, and has end behavior matching the given end behavior.
PTS: 2 REF: 061604aii NAT: F.IF.C. 7 TOP: Graphing Polynomial Functions
KEY: bimodalgraph
5 ANS: 3
 -8 is extraneous.

$$
\begin{aligned}
56-x & =x^{2} \\
0 & =x^{2}+x-56 \\
0 & =(x+8)(x-7) \\
x & =7
\end{aligned}
$$

PTS: 2 REF: 061605aii NAT: A.REI.A. 2 TOP: Solving Radicals
KEY: extraneous solutions

6 ANS: 1

$$
x^{4}-4 x^{3}-9 x^{2}+36 x=0
$$

$$
\begin{aligned}
x^{3}(x-4)-9 x(x-4) & =0 \\
\left(x^{3}-9 x\right)(x-4) & =0 \\
x\left(x^{2}-9\right)(x-4) & =0 \\
x(x+3)(x-3)(x-4) & =0 \\
x & =0, \pm 3,4
\end{aligned}
$$

PTS: 2
REF: 061606aii
NAT: A.APR.B. 3 TOP: Zeros of Polynomials
KEY: AII
7 ANS: 3
PTS: 2
REF: 061607aii NAT: S.IC.A. 2
TOP: Analysis of Data
8 ANS: 4
$\frac{m(c)}{g(c)}=\frac{c+1}{1-c^{2}}=\frac{c+1}{(1+c)(1-c)}=\frac{1}{1-c}$
PTS: 2 REF: 061608aii NAT: F.BF.A. 1 TOP: Operations with Functions
9 ANS: 2

$\bar{x}+2 \sigma$ represents approximately 48% of the data.
PTS: 2
REF: 061609aii NAT: S.ID.A. 4 TOP: Normal Distributions
KEY: percent
10 ANS: 4
The scenario represents a decreasing geometric sequence with a common ratio of 0.80 .
PTS: 2 REF: 061610aii NAT: F.BF.A. 2 TOP: Sequences
11 ANS: 1
The probability of rain equals the probability of rain, given that Sean pitches.
PTS: 2
REF: 061611aii
NAT: S.CP.A. 3 TOP: Conditional Probability

12 ANS: 1

$$
x=\frac{-3 \pm \sqrt{3^{2}-4(2)(2)}}{2(2)}=\frac{-3 \pm \sqrt{-7}}{4}=-\frac{3}{4} \pm \frac{i \sqrt{7}}{4}
$$

PTS: 2 REF: 061612aii NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: complex solutions | quadratic formula
13 ANS: 3

$H(t)$ is at a minimum at $70(-1)+80=10$
PTS: 2
REF: 061613aii NAT: F.IF.B. 4 TOP: Graphing Trigonometric Functions
KEY: maximum/minimum
14 ANS: 2
$2 x + 3 \longdiv { 4 x ^ { 3 } + 0 x ^ { 2 } + 5 x + 1 0 }$

$$
\begin{aligned}
& \frac{4 x^{3}+6 x^{2}}{-6 x^{2}+5 x} \\
& \frac{-6 x^{2}-9 x}{14 x+10} \\
& \frac{14 x+21}{-11}
\end{aligned}
$$

PTS: 2 REF: 061614aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: division
15 ANS: 4

PTS: 2
REF: 061615aii
NAT: F.IF.C. 7
TOP: Graphing Exponential Functions

16
ANS: 2

$$
\begin{aligned}
x & =-\frac{3}{4} y+2 \\
-4 x & =3 y-8 \\
-4 x+8 & =3 y \\
-\frac{4}{3} x+\frac{8}{3} & =y
\end{aligned}
$$

PTS: 2
REF: 061616aii
NAT: F.BF.B. 4
TOP: Inverse of Functions
KEY: linear
17 ANS: 1

$$
\cos \theta=-\frac{6}{10}=-\frac{3}{5}
$$

PTS: 2 REF: 061617aii NAT: F.TF.A. 2 TOP: Determining Trigonometric Functions
KEY: extension to reals
18 ANS: 1

PTS: 2 REF: 061618aii NAT: F.IF.C. 7 TOP: Graphing Logarithmic Functions
19 ANS: 4
$4\left(x^{2}-6 x+9\right)+4\left(y^{2}+18 y+81\right)=76+36+324$

$$
4(x-3)^{2}+4(y+9)^{2}=436
$$

PTS: 2
REF: 061619aii
NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
20 ANS: 2
PTS: 2
REF: 061620aii NAT: F.IF.B. 4
TOP: Graphing Polynomial Functions

21 ANS: 3
$1.0525^{\frac{1}{12}} \approx 1.00427$
PTS: 2 REF: 061621aii NAT: F.BF.A. 1 TOP: Modeling Exponential Functions
KEY: AII
22 ANS: 4

PTS: 2
REF: 061622aii
KEY: AII
23 ANS: 3
TOP: Sequences
PTS: 2
NAT: A.REI.D. 11 TOP: Other Systems

ANS: 4
period $=\frac{2 \pi}{B}$
$\frac{1}{60}=\frac{2 \pi}{B}$
$B=120 \pi$
PTS: 2 REF: 061624aii NAT: F.TF.B. 5 TOP: Modeling Trigonometric Functions
25 ANS:

$$
\begin{aligned}
\frac{3-x}{3 x} & =-\frac{1}{3 x} \\
3-x & =-1 \\
x & =4
\end{aligned}
$$

PTS: 2
REF: 061625aii
NAT: A.REI.A. 2 TOP: Solving Rationals KEY: rational solutions

ANS:
Randomly assign participants to two groups. One group uses the toothpaste with ingredient X and the other group uses the toothpaste without ingredient X.

PTS: 2 REF: 061626aii NAT: S.IC.B. 3 TOP: Analysis of Data
KEY: type
27 ANS:

$x - 5 \longdiv { 2 x ^ { 3 } - 4 x ^ { 2 } - 7 x - 1 0 }$ Since there is a remainder, $x-5$ is not a factor.
$\underline{2 x^{3}-10 x^{2}}$
$6 x^{2}-7 x$
$\underline{6 x^{2}-30 x}$
$23 x-10$
$\underline{23 x-115}$
105
PTS: 2 REF: 061627aii NAT: A.APR.B. 2 TOP: Remainder Theorem
28 ANS:

PTS: 2 REF: 061628aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions KEY: graph
29
ANS:
$P(S \cap M)=P(S)+P(M)-P(S \cup M)=\frac{649}{1376}+\frac{433}{1376}-\frac{974}{1376}=\frac{108}{1376}$
PTS: 2 REF: 061629aii NAT: S.CP.B. 7 TOP: Theoretical Probability

30 ANS:

The vertex of the parabola is $(4,-3)$. The x-coordinate of the focus and the vertex is the same. Since the distance from the vertex to the directrix is 3 , the distance from the vertex to the focus is 3 , so the y-coordinate of the focus is 0 . The coordinates of the focus are $(4,0)$.

PTS: 2
REF: 061630aii
NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions
31 ANS:
$\frac{x^{3}+9}{x^{3}+8}=\frac{x^{3}+8}{x^{3}+8}+\frac{1}{x^{3}+8}$
$\frac{x^{3}+9}{x^{3}+8}=\frac{x^{3}+9}{x^{3}+8}$
PTS: 2 REF: 061631aii NAT: A.APR.C. 4 TOP: Polynomial Identities
32 ANS:

$$
\begin{aligned}
A & =P e^{r t} \\
135000 & =100000 e^{5 r} \\
1.35 & =e^{5 r} \\
\ln 1.35 & =\ln e^{5 r} \\
\ln 1.35 & =5 r \\
.06 & \approx r \text { or } 6 \%
\end{aligned}
$$

PTS: 2 REF: 061632aii NAT: F.LE.A. 4 TOP: Exponential Growth

33 ANS:

$$
\begin{aligned}
y & =-x+5 \quad y=-7+5=-2 \\
(x-3)^{2}+(-x+5+2)^{2} & =16 \quad y=-3+5=2 \\
x^{2}-6 x+9+x^{2}-14 x+49 & =16 \\
2 x^{2}-20 x+42 & =0 \\
x^{2}-10 x+21 & =0 \\
(x-7)(x-3) & =0 \\
x & =7,3
\end{aligned}
$$

PTS: 4 REF: 061633aii NAT: A.REI.C. 7 TOP: Quadratic-Linear Systems
KEY: AII
34 ANS:
$S_{n}=\frac{33000-33000(1.04)^{n}}{1-1.04} S_{15}=\frac{33000-33000(1.04)^{15}}{1-1.04} \approx 660778.39$
PTS: 4 REF: 061634aii NAT: A.SSE.B. 4 TOP: Series
35 ANS:
$0.602 \pm 2 \cdot 0.066=0.47-0.73$. Since 0.50 falls within the 95% interval, this supports the concern there may be an even split.

PTS: 4 REF: 061635aii NAT: S.IC.B. 5 TOP: Analysis of Data
36 ANS:
$\frac{f(4)-f(-2)}{4--2}=\frac{80-1.25}{6}=13.125 g(x)$ has a greater rate of change
$\frac{g(4)-g(-2)}{4--2}=\frac{179--49}{6}=38$
PTS: 4 REF: 061636aii NAT: F.IF.C. 9 TOP: Comparing Functions
KEY: AII

37 ANS:

$A(t)=800 e^{-0.347 t}$
$B(t)=400 e^{-0.231 t}$
$800 e^{-0.347 t}=400 e^{-0.231 t}$
$\ln 2 e^{-0.347 t}=\ln e^{-0.231 t} \quad \ln 0.15=\ln e^{-0.347 t}$

$$
\ln 2+\ln e^{-0.347 t}=\ln e^{-0.231 t} \quad \ln 0.15=-0.347 t \cdot \ln e
$$

$$
\ln 2-0.347 t=-0.231 t
$$

$$
5.5 \approx t
$$

$$
\begin{aligned}
\ln 2 & =0.116 t \\
6 & \approx t
\end{aligned}
$$

PTS: 6 REF: 061637aii NAT: A.REI.D. 11 TOP: Other Systems KEY: AII

0816AII Common Core State Standards

Answer Section

1 ANS: 4
If $1-i$ is one solution, the other is $1+i . \quad(x-(1-i))(x-(1+i))=0$

$$
\begin{array}{r}
x^{2}-x-i x-x+i x+\left(1-i^{2}\right)=0 \\
x^{2}-2 x+2=0
\end{array}
$$

PTS: 2 REF: 081601aii NAT: A.REI.B. 4 TOP: Complex Conjugate Root Theorem
2 ANS: 1
II. Ninth graders drive to school less often; III.Students know little about adults; IV. Calculus students love math!

PTS: 2 REF: 081602aii NAT: S.IC.B. 3 TOP: Analysis of Data
KEY: bias
3 ANS: 2

PTS: 2 REF: 081603aii NAT: A.REI.D. 11 TOP: Other Systems
KEY: AII
4 ANS: 3

PTS: 2 REF: 081604aii NAT: S.ID.A. 4 TOP: Normal Distributions
KEY: probability
5 ANS: 3
$(m-2)^{2}(m+3)=\left(m^{2}-4 m+4\right)(m+3)=m^{3}+3 m^{2}-4 m^{2}-12 m+4 m+12=m^{3}-m^{2}-8 m+12$
PTS: 2
REF: 081605aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials
KEY: factoring by grouping

6 ANS: 3

$$
\begin{aligned}
-33 t^{2}+360 t & =700+5 t \\
-33 t^{2}+355 t-700 & =0 \\
t & =\frac{-355 \pm \sqrt{355^{2}-4(-33)(-700)}}{2(-33)} \approx 3,8
\end{aligned}
$$

PTS: 2 REF: 081606aii NAT: A.REI.D. 11 TOP: Quadratic-Linear Systems
KEY: AII
7 ANS: 1
$\frac{157}{25+47+157}$
PTS: 2 REF: 081607aii NAT: S.CP.A. 4 TOP: Conditional Probability
8 ANS: 1
(2) is not recursive

PTS: 2 REF: 081608aii NAT: F.BF.A. 2 TOP: Sequences
9 ANS: 1 PTS: 2 REF: 081609aii NAT: F.BF.B. 6
TOP: Sigma Notation KEY: represent
10 ANS: 2 PTS: 2 REF: 081610aii NAT: F.IF.B. 4
TOP: Graphing Trigonometric Functions KEY: increasing/decreasing
11 ANS: 2

$$
\begin{array}{r}
\frac{x^{2}+0 x+1}{x + 2 \longdiv { x ^ { 3 } + 2 x ^ { 2 } + x + 6 }} \\
\frac{x^{3}+2 x^{2}}{0 x^{2}+x} \\
\frac{0 x^{2}+0 x}{x+6} \\
\frac{x+2}{4}
\end{array}
$$

PTS: 2 REF: 081611aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: division
12 ANS: 2
$M E=\left(z \sqrt{\frac{p(1-p)}{n}}\right)=\left(1.96 \sqrt{\frac{(0.55)(0.45)}{900}}\right) \approx 0.03$
PTS: 2 REF: 081612aii NAT: S.IC.B. 4 TOP: Analysis of Data

13 ANS: 1
The car lost approximately 19% of its value each year.
PTS: 2 REF: 081613aii NAT: F.LE.B. 5 TOP: Modeling Exponential Functions
14 ANS: 1
The graph of $y=\sin x$ is unchanged when rotated 180° about the origin.
PTS: 2 REF: 081614aii NAT: F.BF.B. 3 TOP: Even and Odd Functions
15 ANS: 3

$$
\begin{gathered}
2 d\left(d^{3}+3 d^{2}-9 d-27\right) \\
2 d\left(d^{2}(d+3)-9(d+3)\right) \\
2 d\left(d^{2}-9\right)(d+3) \\
2 d(d+3)(d-3)(d+3) \\
2 d(d+3)^{2}(d-3)
\end{gathered}
$$

PTS: 2 REF: 081615aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials
KEY: factoring by grouping
16 ANS: 1 PTS: 2 REF: 081616aii NAT: F.TF.A. 1
TOP: Unit Circle KEY: bimodalgraph
17 ANS: 3
$\frac{1}{J}=\frac{1}{F}-\frac{1}{W}$
$\frac{1}{J}=\frac{W-F}{F W}$
$J=\frac{F W}{W-F}$
PTS: 2 REF: 081617aii NAT: A.REI.A. 2 TOP: Solving Rationals
KEY: rational solutions
18 ANS: 3 PTS: 2 REF: 081618aii NAT: F.LE.A. 2
TOP: Sequences
19 ANS: 4
The vertex is $(2,-1)$ and $p=2 . y=-\frac{1}{4(2)}(x-2)^{2}-1$
PTS: 2 REF: 081619aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions
20 ANS: 4
$(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \neq x^{3}+3 x y+y^{3}$
PTS: 2 REF: 081620aii NAT: A.APR.C. 4 TOP: Polynomial Identities
21 ANS: 3
Since $x+4$ is a factor of $p(x)$, there is no remainder.
PTS: 2
REF: 081621aii NAT: A.APR.B. 2 TOP: Remainder Theorem

22 ANS: 4 PTS: 2 REF: 081622aii NAT: F.BF.A. 1
TOP: Modeling Exponential Functions KEY: AII
23 ANS: 2
Combining (1) and (3): $-6 c=-18$ Combining (1) and (2): $5 a+3 c=-1$ Using (3): $-(-2)-5 b-5(3)=2$

$$
\begin{aligned}
& c=3 \\
& 5 a+3(3)=-1 \\
& 5 a=-10 \\
& 2-5 b-15=2 \\
& b=-3 \\
& a=-2
\end{aligned}
$$

PTS: 2 REF: 081623aii NAT: A.REI.C. 6 TOP: Solving Linear Systems
KEY: three variables
24 ANS: 4 PTS: 2 REF: 081624aii NAT: F.BF.A. 2
TOP: Sequences
25 ANS:
Amplitude, because the height of the graph shows the volume of the air.
PTS: 2 REF: 081625aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions
KEY: mixed
26 ANS:
Applying the commutative property, $\left(3^{\frac{1}{5}}\right)^{2}$ can be rewritten as $\left(3^{2}\right)^{\frac{1}{5}}$ or $9^{\frac{1}{5}}$. A fractional exponent can be rewritten as a radical with the denominator as the index, or $9^{\frac{1}{5}}=\sqrt[5]{9}$.

PTS: 2 REF: 081626aii NAT: N.RN.A. 1 TOP: Radicals and Rational Exponents
27 ANS:
$x i(-6 i)^{2}=x i\left(36 i^{2}\right)=36 x i^{3}=-36 x i$
PTS: 2 REF: 081627aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers
28 ANS:
$\sin ^{2} \theta+(-0.7)^{2}=1 \quad$ Since θ is in Quadrant II, $\sin \theta=\sqrt{.51}$ and $\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{\sqrt{.51}}{-0.7} \approx-1.02$ $\sin ^{2} \theta=.51$ $\sin \theta= \pm \sqrt{.51}$

PTS: 2 REF: 081628aii NAT: F.TF.C. 8 TOP: Determining Trigonometric Functions
29 ANS:
Using a 95% level of confidence, $x \pm 2$ standard deviations sets the usual wait time as $150-302$ seconds. 360 seconds is unusual.

PTS: 2 REF: 081629aii NAT: S.IC.B. 6 TOP: Analysis of Data

30 ANS:
$0=\log _{10}(x-4)$ The x-intercept of h is $(2,0) . f$ has the larger value.

$$
\begin{aligned}
10^{0} & =x-4 \\
1 & =x-4 \\
x & =5
\end{aligned}
$$

PTS: 2 REF: 081630aii NAT: F.IF.C. 9 TOP: Comparing Functions
KEY: AII
31 ANS:
$\frac{306.25-156.25}{70-50}=\frac{150}{20}=7.5$ Between $50-70 \mathrm{mph}$, each additional mph in speed requires 7.5 more feet to stop.
PTS: 2 REF: 081631aii NAT: F.IF.B. 6 TOP: Rate of Change
KEY: AII
32 ANS:
$P(A \cup B)=P(A)+P(B)-P(A \cap B) A$ and B are independent since $P(A \cap B)=P(A) \cdot P(B)$

$$
0.8=0.6+0.5-P(A \cap B) \quad 0.3=0.6 \cdot 0.5
$$

$P(A \cap B)=0.3$
$0.3=0.3$
PTS: 2 REF: 081632aii NAT: S.CP.A. 2 TOP: Probability of Compound Events
KEY: independence
33
ANS:
$0=x^{2}(x+1)-4(x+1)$

$0=\left(x^{2}-4\right)(x+1)$
$0=(x+2)(x-2)(x+1)$
$x=-2,-1,2$
PTS: 4
REF: 081633aii
NAT: F.IF.C. 7
TOP: Graphing Polynomial Functions

34 ANS:

$$
\begin{aligned}
7 & =20(0.5)^{\frac{t}{8.02}} \\
\log 0.35 & =\log 0.5^{\frac{t}{8.02}} \\
\log 0.35 & =\frac{t \log 0.5}{8.02} \\
\frac{8.02 \log 0.35}{\log 0.5} & =t \\
t & \approx 12
\end{aligned}
$$

PTS: 4 REF: 081634aii NAT: F.LE.A. 4 TOP: Exponential Decay
35 ANS:

$$
\begin{array}{rlrl}
(\sqrt{2 x-7})^{2} & =(5-x)^{2} & \sqrt{2(4)-7}+4 & =5 \\
2 x-7 & =25-10 x+x^{2} & \sqrt{2(8)-7}+8 & =5 \\
0 & =x^{2}-12 x+32 \\
0 & =(x-8)(x-4) \\
x & =4,8
\end{array}
$$

PTS: 4 REF: 081635aii NAT: A.REI.A. 2 TOP: Solving Radicals
KEY: extraneous solutions
36
ANS:
Some of the students who did not drink energy drinks read faster than those who did drink energy drinks.
$17.7-19.1=-1.4$ Differences of -1.4 and less occur $\frac{25}{232}$ or about 10% of the time, so the difference is not unusual.

PTS: 4
REF: 081636aii NAT: S.IC.B. 5 TOP: Analysis of Data
$A=5000(1.045)^{n} \quad 5000\left(1+\frac{.046}{4}\right)^{4(6)}-5000(1.045)^{6} \approx 6578.87-6511.30 \approx 67.5710000=5000\left(1+\frac{.046}{4}\right)^{4 n}$
$B=5000\left(1+\frac{.046}{4}\right)^{4 n}$

$$
\begin{aligned}
2 & =1.0115^{4 n} \\
\log 2 & =4 n \cdot \log 1.0115 \\
n & =\frac{\log 2}{4 \log 1.0115} \\
n & \approx 15.2
\end{aligned}
$$

PTS: 6
REF: 081637aii NAT: A.CED.A. 1 TOP: Exponential Growth

0117AII Common Core State Standards

Answer Section

1 ANS: $2 \quad$ PTS: 2
REF: 011701aii
NAT: F.IF.B. 4
TOP: Graphing Trigonometric Functions
2 ANS: 1
$P(28)=5(2)^{\frac{98}{28}} \approx 56$
PTS: 2 REF: 011702aii NAT: F.LE.A. 2 TOP: Modeling Exponential Functions
KEY: AII
3 ANS: 4
$m^{5}+m^{3}-6 m=m\left(m^{4}+m^{2}-6\right)=m\left(m^{2}+3\right)\left(m^{2}-2\right)$
PTS: 2 REF: 011703aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials
KEY: higher power AII
4 ANS: 1 PTS: 2 REF: 011704aii NAT: F.TF.C. 8
TOP: Simplifying Trigonometric Expressions
5 ANS: 4
$y=g(x)=(x-2)^{2} \quad(x-2)^{2}=3 x-2 \quad y=3(6)-2=16$

$$
\begin{aligned}
x^{2}-4 x+4 & =3 x-2 \quad y=3(1)-2=1 \\
x^{2}-7 x+6 & =0 \\
(x-6)(x-1) & =0 \\
x & =6,1
\end{aligned}
$$

PTS: 2 REF: 011705aii NAT: A.REI.C. 7 TOP: Quadratic-Linear Systems
KEY: AII
6 ANS: 3 PTS: 2 REF: 011706aii NAT: S.IC.B. 3
TOP: Analysis of Data KEY: type
7 ANS: 2
$\left(m^{\frac{5}{3}}\right)^{-\frac{1}{2}}=m^{-\frac{5}{6}}=\frac{1}{\sqrt[6]{m^{5}}}$
PTS: 2 REF: 011707aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents
KEY: variables
8 ANS: 3 PTS: 2
REF: 011708aii NAT: F.BF.B. 4
TOP: Inverse of Functions
KEY: other
REF: 011709aii NAT: S.IC.B. 5
ANS: 2 PTS: 2
TOP: Analysis of Data
10 ANS: $3 \quad$ PTS: 2
REF: 011710aii NAT: F.BF.A. 1
TOP: Operations with Functions

11 ANS: 4
$x=\frac{8 \pm \sqrt{(-8)^{2}-4(6)(29)}}{2(6)}=\frac{8 \pm \sqrt{-632}}{12}=\frac{8 \pm i \sqrt{4} \sqrt{158}}{12}=\frac{2}{3} \pm \frac{1}{6} i \sqrt{158}$
PTS: 2 REF: 011711aii NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: complex solutions | quadratic formula
12 ANS: 2

PTS: 2
REF: 011712aii NAT: A.REI.D. 11 TOP: Other Systems
KEY: AII
13 ANS: 3
The pattern suggests an exponential pattern, not linear or sinusoidal. A 4\% growth rate is accurate, while a 43% growth rate is not.

PTS: 2 REF: 011713aii NAT: S.ID.B. 6 TOP: Regression
KEY: choose model
14 ANS: 1
$d=18 ; r= \pm \frac{5}{4}$
PTS: 2 REF: 011714aii NAT: F.IF.A. 3 TOP: Sequences
KEY: term
15 ANS: 3
$d=10 \log \frac{6.3 \times 10^{-3}}{1.0 \times 10^{-12}} \approx 98$
PTS: 2 REF: 011715aii NAT: F.IF.B. 4 TOP: Evaluating Logarithmic Expressions
16 ANS: 2

PTS: 2 REF: 011716aii NAT: A.REI.D. 11 TOP: Other Systems
KEY: AII

17 ANS: 1

$$
\begin{aligned}
\frac{2(x-4)}{(x+3)(x-4)}+\frac{3(x+3)}{(x-4)(x+3)} & =\frac{2 x-2}{x^{2}-x-12} \\
2 x-8+3 x+9 & =2 x-2 \\
3 x & =-3 \\
x & =-1
\end{aligned}
$$

PTS: 2 REF: 011717aii NAT: A.REI.A. 2 TOP: Solving Rationals
KEY: rational solutions
18 ANS: 4
$496 \pm 2(115)$
PTS: 2 REF: 011718aii NAT: S.ID.A. 4 TOP: Normal Distributions
KEY: interval
19 ANS: 2
$h(x)$ does not have a y-intercept.
PTS: 2 REF: 011719aii NAT: F.IF.C. 9 TOP: Comparing Functions
20 ANS: 2 PTS: 2 REF: 011720aii NAT: A.APR.B. 2
TOP: Remainder Theorem
21 ANS: 4
(1) $\frac{B(60)-B(10)}{60-10} \approx 28 \%$ (2) $\frac{B(69)-B(19)}{69-19} \approx 33 \%$ (3) $\frac{B(72)-B(36)}{72-36} \approx 38 \%$ (4) $\frac{B(73)-B(60)}{73-60} \approx 46 \%$

PTS: 2 REF: 011721aii NAT: F.IF.B. 6 TOP: Rate of Change
KEY: AII
22 ANS: 3
(3) repeats 3 times over 2π.

PTS: 2 REF: 011722aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions
KEY: recognize | bimodalgraph
23 ANS: 1

$$
\begin{aligned}
\frac{A}{P} & =e^{r t} \\
0.42 & =e^{r t} \\
\ln 0.42 & =\ln e^{r t} \\
-0.87 & \approx r t
\end{aligned}
$$

PTS: 2 REF: 011723aii NAT: F.BF.A. 1 TOP: Modeling Exponential Functions
KEY: AII

24 ANS: 1
(1) $\frac{9-0}{2-1}=9$ (2) $\frac{17-0}{3.5-1}=6.8$ (3) $\frac{0-0}{5-1}=0$ (4) $\frac{17--5}{3.5-1} \approx 6.3$

PTS: 2 REF: 011724aii NAT: F.IF.B. 6 TOP: Rate of Change
KEY: AII
25 ANS:
$(1-i)(1-i)(1-i)=\left(1-2 i+i^{2}\right)(1-i)=-2 i(1-i)=-2 i+2 i^{2}=-2-2 i$
PTS: 2 REF: 011725aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers
26 ANS:
sample: pails of oranges; population: truckload of oranges. It is likely that about 5% of all the oranges are unsatisfactory.

PTS: 2 REF: 011726aii NAT: S.IC.A. 2 TOP: Analysis of Data
27 ANS:
$\csc \theta=\frac{1}{\sin \theta}$, and $\sin \theta$ on a unit circle represents the y value of a point on the unit circle. Since $y=\sin \theta$, $\csc \theta=\frac{1}{y}$.

PTS: 2 REF: 011727aii NAT: F.TF.A. 2 TOP: Reciprocal Trigonometric Relationships
28 ANS:
$\frac{\left(\ln \frac{1}{2}\right)}{1590}$ is negative, so $M(t)$ represents decay.
PTS: 2 REF: 011728aii NAT: F.IF.C. 7 TOP: Graphing Exponential Functions
29 ANS:

PTS: 2
REF: 011729aii NAT: F.IF.C. 7
TOP: Graphing Polynomial Functions

30 ANS:

$$
\begin{aligned}
\left(x^{\frac{5}{3}}\right)^{\frac{6}{5}} & =\left(y^{\frac{5}{6}}\right)^{\frac{6}{5}} \\
x^{2} & =y
\end{aligned}
$$

PTS: 2
REF: 011730aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents
KEY: variables
31 ANS:
No, because $P(M / R) \neq P(M)$

$$
\begin{aligned}
& \frac{70}{180} \neq \frac{230}{490} \\
& 0.38 \neq 0.47
\end{aligned}
$$

PTS: 2 REF: 011731aii NAT: S.CP.A. 4 TOP: Conditional Probability
32 ANS:

$$
\begin{gathered}
x - 2 \longdiv { 3 x + 1 3 } \begin{array} { c }
{ \frac { 3 x ^ { 2 } + 7 x - 2 0 } { 3 x ^ { 2 } - 6 x } } \\
{ 1 3 x - 2 0 } \\
{ \underline { 1 3 x - 2 6 } }
\end{array}
\end{gathered}
$$

6

PTS: 2 REF: 011732aii NAT: A.APR.D. 6 TOP: Division of Polynomials
33 ANS:
$\begin{array}{rlrl}2 x^{3}-10 x^{2}+11 x-7 & =2 x^{3}+h x^{2}+3 x-8 x^{2}-4 h x-12+k & h & =-2 \\ -2 x^{2}+8 x+5 & =h x^{2}-4 h x+k & k & =5\end{array}$
PTS: 4 REF: 011733aii NAT: A.APR.C. 4 TOP: Polynomial Identities
34 ANS:
Jillian's plan, because distance increases by one mile each week. $a_{1}=10 \quad a_{n}=n+12$

$$
a_{n}=a_{n-1}+1
$$

PTS: 4 REF: 011734aii NAT: F.LE.A. 2 TOP: Sequences
35 ANS:
$P(P / K)=\frac{P\left(P^{\wedge} K\right)}{P(K)}=\frac{1.9}{2.3} \approx 82.6 \%$ A key club member has an 82.6% probability of being enrolled in AP Physics.
PTS: 4 REF: 011735aii NAT: S.CP.B. 6 TOP: Conditional Probability

36 ANS:
$20000=P M T\left(\frac{1-(1+.00625)^{-60}}{0.00625}\right) 21000-x=300\left(\frac{1-(1+.00625)^{-60}}{0.00625}\right)$
$P M T \approx 400.76$
$x \approx 6028$
PTS: 4 REF: 011736aii NAT: A.SSE.B. 4 TOP: Series
37 ANS:

$$
\begin{aligned}
& 0=\sqrt{t}-2 t+6 \quad 2\left(\frac{9}{4}\right)-6<0, \text { so } \frac{9}{4} \text { is extraneous. } \\
& 2 t-6=\sqrt{t} \\
& 4 t^{2}-24 t+36=t \\
& 4 t^{2}-25 t+36=0 \\
&(4 t-9)(t-4)=0 \\
& t=\frac{9}{4}, 4 \\
&(\sqrt{1}-2(1)+6)-(\sqrt{3}-2(3)+6)=5-\sqrt{3} \approx 3.268327 \mathrm{mph}
\end{aligned}
$$

PTS: 6
REF: 011737aii NAT: A.REI.A. 2 TOP: Solving Radicals KEY: context

0617aii

Answer Section

1 ANS: 1 PTS: 2
TOP: Zeros of Polynomials
2 ANS: 1

$$
\begin{aligned}
8\left(2^{x+3}\right) & =48 \\
2^{x+3} & =6 \\
(x+3) \ln 2 & =\ln 6 \\
x+3 & =\frac{\ln 6}{\ln 2} \\
x & =\frac{\ln 6}{\ln 2}-3
\end{aligned}
$$

PTS: 2 REF: 061702aii NAT: F.LE.A. 4 TOP: Exponential Equations
KEY: without common base
3 ANS: 3
Self selection causes bias.
PTS: 2 REF: 061703aii NAT: S.IC.B. 3 TOP: Analysis of Data
KEY: bias
4 ANS: 2
$6 x i^{3}(-4 x i+5)=-24 x^{2} i^{4}+30 x i^{3}=-24 x^{2}(1)+30 x(-1)=-24 x^{2}-30 x i$

PTS: 2 REF: 061704aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers
5 ANS: 2

PTS: 2
KEY: AII
6 ANS: 4
REF: 061705aii
NAT: A.REI.D. 11 TOP: Other Systems
PTS: 2
REF: 061706aii NAT: F.IF.B. 4
TOP: Graphing Trigonometric Functions

7 ANS: 4
$4 x^{2}=-98$
$x^{2}=-\frac{98}{4}$
$x^{2}=-\frac{49}{2}$
$x= \pm \sqrt{-\frac{49}{2}}= \pm \frac{7 i}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}= \pm \frac{7 i \sqrt{2}}{2}$
PTS: 2 REF: 061707aii NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: complex solutions | taking square roots
8 ANS: 1 PTS: 2 REF: 061708aii NAT: F.TF.B. 5
TOP: Modeling Trigonometric Functions
9 ANS: 2
$x(30-0.01 x)-\left(0.15 x^{3}+0.01 x^{2}+2 x+120\right)=30 x-0.01 x^{2}-0.15 x^{3}-0.01 x^{2}-2 x-120$ $=-0.15 x^{3}-0.02 x^{2}+28 x-120$

PTS: 2 REF: 061709aii NAT: F.BF.A. 1 TOP: Operations with Functions
10 ANS: 3 PTS: 2 REF: 061710aii NAT: S.IC.A. 2
TOP: Analysis of Data
11 ANS: 1

2 | 1 | 0 | -4 | -4 | 8 |
| ---: | ---: | ---: | ---: | ---: |
| | 2 | 4 | 0 | -8 |
| 1 | 2 | 0 | -4 | 0 |

Since there is no remainder when the quartic is divided by $x-2$, this binomial is a factor.
PTS: 2
REF: 061711aii NAT: A.APR.B. 2 TOP: Remainder Theorem
12 ANS: 2
$\cos \theta= \pm \sqrt{1-\left(\frac{-\sqrt{2}}{5}\right)^{2}}= \pm \sqrt{\frac{25}{25}-\frac{2}{25}}= \pm \frac{\sqrt{23}}{5}$
PTS: 2 REF: 061712aii NAT: F.TF.C. 8 TOP: Determining Trigonometric Functions
13 ANS: 3
$0.75^{\frac{1}{10}} \approx .9716$
PTS: 2
REF: 061713aii NAT: A.SSE.B. 3 TOP: Modeling Exponential Functions
KEY: AII

14 ANS: 2
The events are independent because $P(A$ and $B)=P(A) \cdot P(B)$.
$0.125=0.5 \cdot 0.25$
If $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)=0.25+0.5-.125=0.625$, then the events are not mutually exclusive because $P(A$ or $B)=P(A)+P(B)$

$$
0.625 \neq 0.5+0.25
$$

PTS: 2
REF: 061714aii
NAT: S.CP.B. 7 TOP: Theoretical Probability
15 ANS: 4

	Bar Harbor	Phoenix
Minimum	31.386	66.491
Midline	55.3	86.729
Maximum	79.214	106.967
Range	47.828	40.476

PTS: 2
REF: 061715aii NAT: F.IF.B. 4
TOP: Graphing Trigonometric Functions
KEY: maximum/minimum
16 ANS: $4 \quad$ PTS: 2
REF: 061716aii
NAT: N.RN.A. 2
TOP: Radicals and Rational Exponents
KEY: variables
17 ANS: 4
The vertex is $(1,0)$ and $p=2 . y=\frac{1}{4(2)}(x-1)^{2}+0$

PTS: 2 REF: 061717aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions
18 ANS: 2
The 2010 population is 110 million.
PTS: 2 REF: 061718aii NAT: F.LE.B. 5 TOP: Modeling Exponential Functions
19 ANS: 1
$\frac{2 x}{x-2}\left(\frac{x}{x}\right)-\frac{11}{x}\left(\frac{x-2}{x-2}\right)=\frac{8}{x^{2}-2 x}$

$$
\begin{aligned}
2 x^{2}-11 x+22 & =8 \\
2 x^{2}-11 x+14 & =0 \\
(2 x-7)(x-2) & =0 \\
x & =\frac{7}{2}, 2
\end{aligned}
$$

PTS: 2
20 ANS: 3
TOP: Sequences

REF: 061719aii
PTS: 2
KEY: AII

NAT: A.REI.A. 2 TOP: Solving Rationals
REF: 061720aii NAT: F.LE.A. 2

21 ANS: 3
$\frac{f(7)-f(-7)}{7--7}=\frac{=2^{-0.25(7)} \cdot \sin \left(\frac{\pi}{2}(7)\right)-2^{-0.25(-7)} \cdot \sin \left(\frac{\pi}{2}(-7)\right)}{14} \approx-0.26$
PTS: 2 REF: 061721aii NAT: F.IF.B. 6 TOP: Rate of Change
KEY: AII
22 PTS: 2 REF: 061722aii NAT: A.CED.A. 1
TOP: Modeling Rationals
23 ANS: 4
$\frac{-3 x^{2}-5 x+2}{x^{3}+2 x^{2}}=\frac{(-3 x+1)(x+2)}{x^{2}(x+2)}=\frac{-3 x}{x^{2}}+\frac{1}{x^{2}}=-3 x^{-1}+x^{-2}$
PTS: 2 REF: 061723aii NAT: A.APR.D. 6 TOP: Expressions with Negative Exponents
KEY: variables
24 ANS: 2 PTS: 2 REF: 061724aii NAT: A.SSE.B. 4
TOP: Series
25 ANS:
$r(2)=-6$. Since there is a remainder when the cubic is divided by $x-2$, this binomial is not a factor.

1	-4	4	4	6
	2	-4		
	-2			

PTS: 2 REF: 061725aii NAT: A.APR.B. 2 TOP: Remainder Theorem
26 ANS:

PTS: 2 REF: 061726aii NAT: S.ID.A. 4 TOP: Normal Distributions
KEY: percent
27 ANS:
$x^{2}(4 x-1)+4(4 x-1)=\left(x^{2}+4\right)(4 x-1)$
PTS: 2
REF: 061727aii
NAT: A.SSE.A. 2 TOP: Factoring Polynomials
KEY: factoring by grouping
28
ANS:
period is $\frac{2}{3}$. The wheel rotates once every $\frac{2}{3}$ second.
PTS: 2 REF: 061728aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions
KEY: period

29 ANS:

PTS: 2
REF: 061729aii
NAT: F.IF.C. 7 TOP: Graphing Exponential Functions
KEY: AII
30 ANS:

$$
\begin{aligned}
\sqrt{x-4} & =-x+6 \quad \sqrt{x-4}=-8+6=-2 \text { is extraneous. } \\
x-4 & =x^{2}-12 x+36 \\
0 & =x^{2}-13 x+40 \\
0 & =(x-8)(x-5) \\
x & =5,8
\end{aligned}
$$

PTS: 2 REF: 061730aii NAT: A.REI.A. 2 TOP: Solving Radicals
KEY: extraneous solutions
31 ANS:
$\sqrt[3]{x} \cdot \sqrt{x}=x^{\frac{1}{3}} \bullet x^{\frac{1}{2}}=x^{\frac{3}{6}} \bullet x^{\frac{3}{6}}=x^{\frac{5}{6}}$
PTS: 2
REF: 061731aii NAT: N.RN.A. 2 TOP: Operations with Radicals
KEY: with variables, index > 2
32
ANS:
A student is more likely to jog if both siblings jog. 1 jogs: $\frac{416}{2239} \approx 0.19$. both jog: $\frac{400}{1780} \approx 0.22$
PTS: 2 REF: 061732aii NAT: S.CP.A. 4 TOP: Conditional Probability
33 ANS:
$x+y+z=1 \quad 2 x+2 y+2 z=2-2 z-z=3 \quad y-(-1)=3 x+2-1=1$
$\underline{-x+3 y-5 z=11} \underline{2 x+4 y+6 z=2} \quad-3 z=3 \quad y=2 \quad x=0$
$4 y-4 z=12 \quad 2 y+4 z=0 \quad z=-1$
$y-z=3 \quad y+2 z=0$
$y=-2 z$
PTS: 4 REF: 061733aii NAT: A.REI.C. 6 TOP: Solving Linear Systems
KEY: three variables

34 ANS:

$$
\begin{aligned}
M=172600 \bullet \frac{0.00305(1+0.00305)^{12 \cdot 15}}{(1+0.00305)^{12 \cdot 15}-1} \approx 1247 \quad 1100 & =(172600-x) \bullet \frac{0.00305(1+0.00305)^{12 \cdot 15}}{(1+0.00305)^{12 \cdot 15}-1} \\
1100 & \approx(172600-x) \bullet(0.007228) \\
152193 & \approx 172600-x \\
20407 & \approx x
\end{aligned}
$$

PTS: 4
REF: 061734ai
35 ANS:

$$
\text { As } x \rightarrow-3, y \rightarrow-\infty . \text { As } x \rightarrow \infty, y \rightarrow \infty .
$$

PTS: 4
REF: 061735aii NAT: F.IF.C. 7 TOP: Graphing Logarithmic Functions
36 ANS:
$0.506 \pm 2 \cdot 0.078=0.35-0.66$. The 32.5% value falls below the 95% confidence level.
PTS: 4 REF: 061736aii NAT: S.IC.B. 5 TOP: Analysis of Data
37 ANS:
$100=140\left(\frac{1}{2}\right)^{\frac{5}{h}} \log \frac{100}{140}=\log \left(\frac{1}{2}\right)^{\frac{5}{h}} \quad 40=140\left(\frac{1}{2}\right)^{\frac{t}{10.3002}}$

$$
\begin{aligned}
\log \frac{5}{7}=\frac{5}{h} \log \frac{1}{2} & \log \frac{2}{7}
\end{aligned}=\log \left(\frac{1}{2}\right)^{\frac{t}{10.3002}} \quad \begin{aligned}
& \log \frac{5}{7} \log \frac{1}{2} \\
& h=10.3002 \\
& \log \frac{2}{7}=\frac{t \log \left(\frac{1}{2}\right)}{10.3002} \\
& t=\frac{10.3002 \log \frac{2}{7}}{\log \frac{1}{2}} \approx 18.6
\end{aligned}
$$

PTS: 6
REF: 061737aii NAT: F.LE.A. 4 TOP: Exponential Decay

0817AII Common Core State Standards

Answer Section

1 ANS: 1

$$
\begin{aligned}
x^{2}+2 x-8 & =0 \\
(x+4)(x-2) & =0 \\
x & =-4,2
\end{aligned}
$$

PTS: 2 REF: 081701aii NAT: A.APR.D. 6 TOP: Undefined Rationals
2 ANS: 3
$(3 k-2 i)^{2}=9 k^{2}-12 k i+4 i^{2}=9 k^{2}-12 k i-4$
PTS: 2 REF: 081702aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers
3 ANS: 3
$x^{2}+2 x+1=-5+1$

$$
\begin{aligned}
(x+1)^{2} & =-4 \\
x+1 & = \pm 2 i \\
x & =-1 \pm 2 i
\end{aligned}
$$

PTS: 2 REF: 081703aii NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: complex solutions | completing the square
4 ANS: 2

$$
\begin{array}{rlr}
\sqrt{x+14} & =\sqrt{2 x+5}+1 & \sqrt{22+14}-\sqrt{2(22)+5}=1 \\
x+14 & =2 x+5+2 \sqrt{2 x+5}+1 & 6-7 \neq 1 \\
-x+8 & =2 \sqrt{2 x+5} &
\end{array}
$$

$x^{2}-16 x+64=8 x+20$
$x^{2}-24 x+44=0$
$(x-22)(x-2)=0$

$$
x=2,22
$$

PTS: 2
KEY: advanced
5 ANS: 3
PTS: 2
TOP: Graphing Trigonometric Functions

NAT: A.REI.A. 2 TOP: Solving Radicals
REF: 081705aii NAT: F.IF.B. 4
KEY: increasing/decreasing

6 ANS: 2
The vertex of the parabola is $(0,0)$. The distance, p, between the vertex and the focus or the vertex and the directrix is 1. $y=\frac{-1}{4 p}(x-h)^{2}+k$

$$
\begin{aligned}
& y=\frac{-1}{4(1)}(x-0)^{2}+0 \\
& y=-\frac{1}{4} x^{2}
\end{aligned}
$$

PTS: 2 REF: 081706aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions
7 ANS: 4 PTS: 2
REF: 081707aii NAT: F.TF.A. 2
TOP: Reference Angles
8 ANS: 4 PTS: 2
REF: 081708aii NAT: A.APR.B. 3
TOP: Zeros of Polynomials
KEY: AII
9 ANS: 3
$\log _{0.8}\left(\frac{V}{17000}\right)=t \quad \frac{17,000(0.8)^{3}-17,000(0.8)^{1}}{3-1} \approx-2450$

$$
\begin{aligned}
0.8^{t} & =\frac{V}{17000} \\
V & =17000(0.8)^{t}
\end{aligned}
$$

PTS: 2 REF: 081709aii NAT: F.IF.B. 6 TOP: Rate of Change
KEY: AII
10 ANS: 3
$\left(\frac{1}{2}\right)^{\frac{1}{73.83}} \approx 0.990656$
PTS: 2 REF: 081710aii NAT: A.SSE.B. 3 TOP: Modeling Exponential Functions
KEY: AII
11 ANS: 1

PTS: 2
REF: 081711aii
NAT: S.ID.A. 4 TOP: Normal Distributions
KEY: percent

12 ANS: 4
The maximum volume of $p(x)=-(x+2)(x-10)(x-14)$ is about 56 , at $x=12.1$
PTS: 2 REF: 081712aii NAT: F.IF.B. 4 TOP: Graphing Polynomial Functions
13 ANS: 1
$2 x - 1 \longdiv { 4 x ^ { 3 } + 0 x ^ { 2 } + 9 x - 5 }$

$$
\begin{aligned}
& \frac{4 x^{3}-2 x^{2}}{2 x^{2}+9 x} \\
& \frac{2 x^{2}-x}{10 x-5} \\
& \underline{10 x-5}
\end{aligned}
$$

PTS: 2 REF: 081713aii NAT: A.APR.D. 6 TOP: Rational Expressions
14 ANS: 2

$$
\begin{aligned}
x & =\frac{y+1}{y-2} \\
x y-2 x & =y+1 \\
x y-y & =2 x+1 \\
y(x-1) & =2 x+1 \\
y & =\frac{2 x+1}{x-1}
\end{aligned}
$$

PTS: 2 REF: 081714aii NAT: F.BF.B. 4 TOP: Inverse of Functions
KEY: equations
15 ANS: 1

1) let $y=x+2$, then $y^{2}+2 y-8$

$$
\begin{aligned}
& (y+4)(y-2) \\
& (x+2+4)(x+2-2) \\
& (x+6) x
\end{aligned}
$$

PTS: 2 REF: 081715aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials
KEY: multivariable
16 ANS: 2
$M E=\left(z \sqrt{\frac{p(1-p)}{n}}\right)=\left(1.96 \sqrt{\frac{(0.16)(0.84)}{1334}}\right) \approx 0.02$
PTS: 2
REF: 081716ai NAT: S.IC.B. 4

TOP: Analysis of Data

17 ANS: $2 \quad$ PTS: 2
TOP: Analysis of Data
18 ANS: 4 PTS: 2
TOP: Graphing Trigonometric Functions
REF: 081718aii
KEY: amplitude
19 ANS: 1

$$
\begin{array}{rlc}
(x+3)^{2}+(2 x-4)^{2} & =8 & b^{2}-4 a c \\
x^{2}+6 x+9+4 x^{2}-16 x+16 & =8 & 100-4(5)(17)<0 \\
5 x^{2}-10 x+17 & =0
\end{array}
$$

PTS: 2
REF: 081719aii NAT: A.REI.C. 7 TOP: Quadratic-Linear Systems
KEY: AII
20 ANS: 2

$-4 |$| 1 | -11 | 16 | 84 |
| ---: | ---: | ---: | ---: |
| | -4 | 60 | -304 |
| 1 | -15 | 76 | |

Since there is a remainder when the cubic is divided by $x+4$, this binomial is not a factor.
PTS: 2 REF: 081720aii NAT: A.APR.B. 2 TOP: Remainder Theorem
21 ANS: 4
$d=32(.8)^{b-1} S_{n}=\frac{32-32(.8)^{12}}{1-.8} \approx 149$
$\begin{array}{llll}\text { PTS: } 2 & \text { REF: 081721aii } & \text { NAT: A.SSE.B. } 4 & \text { TOP: Series }\end{array}$
22 ANS: 1 PTS: 2 REF: 081722aii NAT: S.IC.B. 6
TOP: Analysis of Data
23 ANS: 4
$\left(\frac{-54 x^{9}}{y^{4}}\right)^{\frac{2}{3}}=\frac{(2 \cdot-27)^{\frac{2}{3}} x^{\frac{18}{3}}}{y^{\frac{8}{3}}}=\frac{2^{\frac{2}{3}} \cdot 9 x^{6}}{y^{2} \cdot y^{\frac{2}{3}}}=\frac{9 x^{63} \sqrt{4}}{y^{2} \sqrt[3]{y^{2}}}$
PTS: 2 REF: 081723aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents
KEY: variables
24 ANS: 3 PTS: 2 REF: 081724aii NAT: F.BF.A. 2
TOP: Sequences
25 ANS:
Rewrite $\frac{4}{3}$ as $\frac{1}{3} \cdot \frac{4}{1}$, using the power of a power rule.

PTS: 2 REF: 081725aii NAT: N.RN.A. 1 TOP: Radicals and Rational Exponents
26 ANS:
$P(W / D)=\frac{P\left(W^{\wedge} D\right)}{P(D)}=\frac{.4}{.5} \approx .8$

PTS: 2 REF: 081726aii NAT: S.CP.B. 6 TOP: Conditional Probability

27 ANS:

$$
\begin{aligned}
\left(x^{2}+y^{2}\right)^{2} & =\left(x^{2}-y^{2}\right)^{2}+(2 x y)^{2} \\
x^{4}+2 x^{2} y^{2}+y^{4} & =x^{4}-2 x^{2} y^{2}+y^{4}+4 x^{2} y^{2} \\
x^{4}+2 x^{2} y^{2}+y^{4} & =x^{4}+2 x^{2} y^{2}+y^{4}
\end{aligned}
$$

PTS: 2
REF: 081727aii
NAT: A.APR.C. 4 TOP: Polynomial Identities
28 ANS:
Since there are six flavors, each flavor can be assigned a number, 1-6. Use the simulation to see the number of times the same number is rolled 4 times in a row.

PTS: 2 REF: 081728aii NAT: S.IC.A. 2 TOP: Analysis of Data
29 ANS:
$a_{1}=4 \quad a_{8}=639$
$a_{n}=2 a_{n-1}+1$
PTS: 2 REF: 081729aii NAT: F.LE.A. 2 TOP: Sequences
30 ANS:

$$
\begin{aligned}
8.75 & =1.25 x^{49} \\
7 & =x^{49} \\
x & =\sqrt[49]{7} \approx 1.04
\end{aligned}
$$

PTS: 2 REF: 081730aii NAT: F.LE.A. 4 TOP: Exponential Growth
31 ANS:
$j(-x)=(-x)^{4}-3(-x)^{2}-4=x^{2}-3 x^{2}-4$ Since $j(x)=j(-x)$, the function is even.
PTS: 2 REF: 081731aii NAT: F.BF.B. 3 TOP: Even and Odd Functions
32 ANS:

PTS: 2
REF: 081732aii NAT: F.IF.C. 7 TOP: Graphing Polynomial Functions
KEY: AII

33
ANS:

$$
\begin{aligned}
\frac{3 p}{p-5} & =\frac{p+2}{p+3} \\
3 p^{2}+9 p & =p^{2}-3 p-10 \\
2 p^{2}+12 p+10 & =0 \\
p^{2}+6 p+5 & =0 \\
(p+5)(p+1) & =0 \\
p & =-5,-1
\end{aligned}
$$

PTS: 4 REF: 081733aii NAT: A.REI.A. 2 TOP: Solving Rationals
KEY: rational solutions
34 ANS:
$\frac{6.25-2.25}{21-5}=\frac{4}{16}=\$.25$ fine per day. $2.25-5(.25)=\$ 1$ replacement fee. $a_{n}=1.25+(n-1)(.25) . a_{60}=\$ 16$
PTS: 4 REF: 081734aii NAT: F.LE.A. 2 TOP: Sequences
35

Part a sketch is shifted $\frac{\pi}{3}$ units right.

PTS: 4 REF: 081735aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions KEY: graph

36 ANS:
$y=4.168(3.981)^{x} . \quad 100=4.168(3.981)^{x}$

$$
\begin{gathered}
\log \frac{100}{4.168}=\log (3.981)^{x} \\
\log \frac{100}{4.168}=x \log (3.981) \\
\frac{\log \frac{100}{4.168}}{\log (3.981)}=x \\
x \approx 2.25
\end{gathered}
$$

PTS: 4 REF: 081736aii NAT: S.ID.B. 6 TOP: Regression
KEY: exponential AII
37 ANS:

At 1.95 years, the value of the car equals the loan
balance. Zach can cancel the policy after 6 years.
PTS: 4
REF: 081737aii NAT: A.REI.D. 11 TOP: Other Systems
KEY: AII

0118AII Common Core State Standards

Answer Section

	ANS: $4 \quad$ PTS: 2 TOP: Analysis of Data	REF: 011801aii KEY: bias	NAT: S.IC.B. 3
2	ANS: 3 $\sqrt{x+1}=x+1$		
	$x+1=x^{2}+2 x+1$		
	$0=x^{2}+x$		
	$0=x(x+1)$		
	$x=-1,0$		
	PTS: 2 REF: 011802aii KEY: extraneous solutions	NAT: A.REI.A. 2	TOP: Solving Radicals
3	ANS: 4		
	$3 x-(-2 x+14)=163(6)-4 z=2$		
	$5 x=30 \quad-4 z=-16$		
	$x=6 \quad z=4$		

PTS: 2 REF: 011803aii NAT: A.REI.C. 6 TOP: Solving Linear Systems
KEY: three variables
4 ANS: 2 PTS: 2
REF: 011804aii NAT: F.TF.A. 2
TOP: Determining Trigonometric Functions KEY: radians
5 ANS: 4 PTS: 2 REF: 011805aii NAT: F.LE.B. 5
TOP: Modeling Exponential Functions
6 ANS: 2 PTS: 2 REF: 011806aii NAT: A.APR.C. 4
TOP: Polynomial Identities
7 ANS: 3
$440 \times 2.3 \% \approx 10$
PTS: 2 REF: 011807aii NAT: S.ID.A. 4 TOP: Normal Distributions
KEY: predict
8 ANS: 4 PTS: 2 REF: 011808aii NAT: A.SSE.B. 3
TOP: Modeling Exponential Functions KEY: AII

9 ANS: 4

$$
\begin{gathered}
2 x - 1 \longdiv { 5 x ^ { 2 } + x - 3 } \\
\frac{10 x^{3}-5 x^{2}}{2 x^{2}-7 x+3} \\
\underline{2 x^{2}-x} \\
-6 x+3 \\
\underline{-6 x+3}
\end{gathered}
$$

PTS: 2 REF: 011809aii NAT: A.APR.D. 6 TOP: Rational Expressions
10 ANS: 1

$$
9110=5000 e^{30 r}
$$

$\ln \frac{911}{500}=\ln e^{30 r}$
$\frac{\ln \frac{911}{500}}{30}=r$

$$
r \approx .02
$$

PTS: 2 REF: 011810aii NAT: F.LE.A. 4 TOP: Exponential Growth
11 ANS: 4
$\frac{n}{m}=\frac{\sqrt{a^{5}}}{a}=\frac{a^{\frac{5}{2}}}{a^{\frac{2}{2}}}=a^{\frac{3}{2}}=\sqrt{a^{3}}$
PTS: 2 REF: 011811aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents
KEY: variables
12 ANS: 1

$$
\begin{aligned}
x-\frac{4}{x-1} & =2 \quad x=\frac{3 \pm \sqrt{(-3)^{2}-4(1)(-2)}}{2(1)}=\frac{3 \pm \sqrt{17}}{2} \\
x(x-1)-4 & =2(x-1) \\
x^{2}-x-4 & =2 x-2 \\
x^{2}-3 x-2 & =0
\end{aligned}
$$

PTS: 2 REF: 011812aii NAT: A.REI.A. 2 TOP: Solving Rationals KEY: rational solutions

13 ANS: 3
$e^{b t}=\frac{c}{a}$
$\ln e^{b t}=\ln \frac{c}{a}$
$b t \ln e=\ln \frac{c}{a}$
$t=\frac{\ln \frac{c}{a}}{b}$
PTS: 2 REF: 011813aii NAT: F.LE.A. 4 TOP: Exponential Growth
14 ANS: 1
PTS: 2
TOP: Other Systems
REF: 011814aii NAT: A.REI.D. 11
KEY: AII
15 ANS: $1 \quad$ PTS: 2
REF: 011815aii NAT: F.TF.A. 2
TOP: Unit Circle
16 ANS: 1
In vertex form, the parabola is $y=-\frac{1}{4(2)}(x+4)^{2}+3$. The vertex is $(-4,3)$ and $p=2.3+2=5$
PTS: 2 REF: 011816aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions
17 ANS: 3

PTS: 2 REF: 011817aii NAT: F.IF.B. 4 TOP: Graphing Polynomial Functions
18 ANS: 3
$\frac{c^{2}-d^{2}}{d^{2}+c d-2 c^{2}}=\frac{(c+d)(c-d)}{(d+2 c)(d-c)}=\frac{-(c+d)}{d+2 c}=\frac{-c-d}{d+2 c}$

PTS: 2 REF: 011818aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: a > 0
19 ANS: 4
$p(5)=2(5)^{3}-3(5)+5=240$
PTS: 2 REF: 011819aii NAT: A.APR.B. 2 TOP: Remainder Theorem
20 ANS: 2 PTS: 2 REF: 011820aii NAT: S.IC.A. 2
TOP: Analysis of Data

21 ANS: 2

$$
\begin{aligned}
x & =-6(y-2) \\
-\frac{x}{6} & =y-2 \\
-\frac{x}{6}+2 & =y
\end{aligned}
$$

PTS: 2 REF: 011821aii NAT: F.BF.B. 4 TOP: Inverse of Functions
KEY: equations
22 ANS: 2
$S_{20}=\frac{.01-.01(3)^{20}}{1-3}=17,433,922$
PTS: 2 REF: 011822aii NAT: A.SSE.B. 4 TOP: Series
23 ANS: 4
There is no x-intercept.
PTS: 2 REF: 011823aii NAT: F.IF.C. 7 TOP: Graphing Exponential Functions
KEY: AII
24 ANS: 3
PTS: 2
REF: 011824aii NAT: F.BF.A. 2
TOP: Sequences
25 ANS:
$i^{2}=-1$, and not $1 ; 10+10 i$
PTS: 2 REF: 011825aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers
26 ANS:
$D=1.223(2.652)^{A}$
PTS: 2 REF: 011826aii NAT: S.ID.B. 6 TOP: Regression
KEY: exponential AII
27
$\frac{1}{8}+\frac{1}{6}=\frac{1}{t_{b}} ; \frac{24 t_{b}}{8}+\frac{24 t_{b}}{6}=\frac{24 t_{b}}{t_{b}}$

$$
\begin{aligned}
3 t_{b}+4 t_{b} & =24 \\
t_{b} & =\frac{24}{7} \approx 3.4
\end{aligned}
$$

PTS: 2 REF: 011827aii NAT: A.CED.A. 1 TOP: Modeling Rationals
$3 x^{3}+x^{2}+3 x y+y=x^{2}(3 x+1)+y(3 x+1)=\left(x^{2}+y\right)(3 x+1)$
PTS: 2
REF: 011828aii
NAT: A.SSE.A. 2 TOP: Factoring Polynomials
KEY: factoring by grouping

29 ANS:
$20 e^{.05 t}=30 e^{.03 t}$
$\frac{\frac{2}{3} e^{.05 t}}{e^{.05 t}}=\frac{e^{.03 t}}{e^{.05 t}}$
$\ln \frac{2}{3}=\ln e^{-.02 t}$
$\ln \frac{2}{3}=-.02 t \ln e$
$\frac{\ln \frac{2}{3}}{-.02}=t$
$20.3 \approx t$
PTS: 2 REF: 011829aii NAT: A.REI.D. 11 TOP: Other Systems
KEY: AII
30 ANS:
q has the smaller minimum value for the domain $[-2,2]$. h's minimum is $-1(2(-1)+1)$ and q 's minimum is -8 .
PTS: 2
REF: 011830aii NAT: F.IF.C. 9 TOP: Comparing Functions
KEY: AII
31 ANS:

PTS: 2
REF: 011831aii
NAT: F.IF.C. 7
TOP: Graphing Polynomial Functions
32 ANS:
The denominator of the rational exponent represents the index of a root, and the 4 th root of 81 is 3 and 3^{3} is 27 .
PTS: 2
REF: 011832ai
NAT: N.RN.A. 1 TOP: Radicals and Rational Exponents

33 ANS:

$$
\begin{gathered}
\left(2 x^{2}+x-3\right) \cdot(x-1)-\left[\left(2 x^{2}+x-3\right)+(x-1)\right] \\
\left(2 x^{3}-2 x^{2}+x^{2}-x-3 x+3\right)-\left(2 x^{2}+2 x-4\right) \\
2 x^{3}-3 x^{2}-6 x+7
\end{gathered}
$$

PTS: 4 REF: 011833aii NAT: F.BF.A. 1 TOP: Operations with Functions
34 ANS:
$\frac{47}{108}=\frac{1}{4}+\frac{116}{459}-P(M$ and $J) ;$ No, because $\frac{31}{459} \neq \frac{1}{4} \cdot \frac{116}{459}$
$P(M$ and $J)=\frac{31}{459}$
PTS: 4 REF: 011834aii NAT: S.CP.A. 3 TOP: Conditional Probability
35 ANS:
$138.905 \pm 2 \cdot 7.95=123-155$. No, since 125 (50% of 250) falls within the 95% interval.
PTS: 4 REF: 011835aii NAT: S.IC.A. 2 TOP: Analysis of Data
36 ANS:
$f(x)=x^{2}(x+4)(x-3) ; g(x)=(x+2)^{2}(x+6)(x-1)$
PTS: 4 REF: 011836aii NAT: A.APR.B. 3 TOP: Zeros of Polynomials
37 ANS:

The period of P is $\frac{2}{3}$, which means the patient's blood pressure reaches a high every $\frac{2}{3}$
second and a low every $\frac{2}{3}$ second. The patient's blood pressure is high because 144 over 96 is greater than 120 over 80 .

PTS: 6 REF: 011837aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions KEY: graph

0618aii

Answer Section

1 ANS: 2

$$
\begin{array}{rlrl}
x^{2}+4 x-1 & =x-3 & y+3 & =-1 \\
x^{2}+3 x+2 & =0 & y=-4 \\
(x+2)(x+1) & =0 & \\
x & =-2,-1 &
\end{array}
$$

PTS: 2 REF: 061801aii NAT: A.REI.C. 7 TOP: Quadratic-Linear Systems
KEY: AII
2 ANS: 2 PTS: 2 REF: 061802aii NAT: F.IF.C. 7
TOP: Graphing Exponential Functions
KEY: AII
3 ANS: 3
$\frac{x^{2}(x+2)-9(x+2)}{x\left(x^{2}-x-6\right)}=\frac{\left(x^{2}-9\right)(x+2)}{x(x-3)(x+2)}=\frac{(x+3)(x-3)}{x(x-3)}=\frac{x+3}{x}$
PTS: 2 REF: 061803aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: factoring
4 ANS: 2 PTS: 2 REF: 061804aii NAT: S.ID.B. 6
TOP: Regression KEY: choose model
5 ANS: 3
$(x+3 i)^{2}-(2 x-3 i)^{2}=x^{2}+6 x i+9 i^{2}-\left(4 x^{2}-12 x i+9 i^{2}\right)=-3 x^{2}-18 x i$
PTS: 2 REF: 061805aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers
6 ANS: 2
$f(x)=f(-x)$
$x^{2}-4=(-x)^{2}-4$
$x^{2}-4=x^{2}-4$
PTS: 2 REF: 061806aii NAT: F.BF.B. 3 TOP: Even and Odd Functions
7 ANS: 1
$\frac{N(10)-N(1)}{10-1} \approx-2.03, \frac{N(20)-N(10)}{20-10} \approx-1.63, \frac{N(25)-N(15)}{25-15} \approx-1.46, \frac{N(30)-N(1)}{30-1} \approx-1.64$
PTS: 2 REF: 061807aii NAT: F.IF.B. 6 TOP: Rate of Change
KEY: AII
8 ANS: 1
$(x+7)(x-1)=x^{2}+6 x-7=x^{2}+6 x+9-7-9=(x+3)^{2}-16$
PTS: 2 REF: 061808aii NAT: A.APR.C. 4 TOP: Polynomial Identities

9 ANS: 4

$$
\begin{aligned}
\frac{2}{x} & =\frac{4 x}{x+3} \\
2 x+6 & =4 x^{2} \\
4 x^{2}-2 x-6 & =0 \\
2\left(2 x^{2}-x-3\right) & =0 \\
(2 x-3)(x+1) & =0 \\
x & =\frac{3}{2},-1
\end{aligned}
$$

PTS: 2 REF: 061809aii NAT: A.REI.A. 2 TOP: Solving Rationals
10 ANS: 4
$a=\frac{14-4}{2}=5, d=\frac{14+4}{2}=9$
PTS: 2 REF: 061810aii NAT: F.TF.B. 5 TOP: Modeling Trigonometric Functions
11 ANS: 4
$0.48 \cdot 0.25=0.12$
PTS: 1 REF: 061811aii NAT: S.CP.A. 2 TOP: Probability of Compound Events
KEY: probability
12 ANS: 3
$1^{3}-k(1)^{2}+2(1)=0$
$k=3$
PTS: 2 REF: 061812aii NAT: A.APR.B. 3 TOP: Zeros of Polynomials
KEY: AII
13 ANS: 1

$$
p(x)=r(x)-c(x)
$$

$$
-0.5 x^{2}+250 x-300=-0.3 x^{2}+150 x-c(x)
$$

$$
c(x)=0.2 x^{2}-100 x+300
$$

PTS: 2 REF: 061813aii NAT: F.BF.A. 1 TOP: Operations with Functions
14 ANS: 1

$$
\begin{aligned}
1240(1.06)^{x} & =890(1.11)^{x} \\
x & \approx 7
\end{aligned}
$$

PTS: 2
REF: 061814aii
NAT: A.REI.D. 11 TOP: Other Systems
KEY: AII

15 ANS: 3
$y=x^{3}-2$
$x=y^{3}-2$
$x+2=y^{3}$
$\sqrt[3]{x+2}=y$
PTS: 2 REF: 061815aii NAT: F.BF.B. 4 TOP: Inverse of Functions
KEY: other
16 ANS: 2
PTS: 2
TOP: Graphing Polynomial Functions
REF: 061816aii NAT: F.IF.C. 7
ANS: 2

PTS: 2
REF: 061817aii
NAT: S.ID.A. 4
TOP: Normal Distributions
KEY: probability
18 ANS: 1
$100\left(\frac{1}{2}\right)^{\frac{d}{8}}=100 e^{k d}$
$\left(\frac{1}{2}\right)^{\frac{1}{8}}=e^{k}$

$$
k \approx-0.087
$$

PTS: 2
KEY: AII
19 ANS: 4
$\log _{2}(x-1)-1=0$
$\log _{2}(x-1)=1$

$$
\begin{aligned}
x-1 & =2^{1} \\
x & =3
\end{aligned}
$$

PTS: 2
REF: 061819aii
NAT: F.IF.C. 7 TOP: Graphing Logarithmic Functions

20 ANS: 2
$4 x \bullet x^{\frac{2}{3}}+2 x^{\frac{5}{3}}=4 x^{\frac{5}{3}}+2 x^{\frac{5}{3}}=6 x^{\frac{5}{3}}=6 \sqrt[3]{x^{5}}$
PTS: 2
REF: 061820aii NAT: N.RN.A. 2
TOP: Operations with Radicals
KEY: with variables, index >2
21 ANS: 4
$\frac{5+9}{2}=7$, vertex: $(-2,7) ; p=7-9=-2, y=\frac{1}{4(-2)}(x+2)^{2}+7$

$$
\begin{aligned}
& y-7=\frac{1}{-8}(x+2)^{2} \\
& -8(y-7)=(x+2)^{2}
\end{aligned}
$$

PTS: 2 REF: 061821aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions
22 ANS: 4
$(a+b+c)^{2}=a^{2}+a b+a c+a b+b^{2}+b c+a c+a b+c^{2}$

$$
\begin{aligned}
& x=a^{2}+b^{2}+c^{2}+2(a b+b c+a c) \\
& x=y+2 z
\end{aligned}
$$

PTS: 2 REF: 061822aii NAT: A.APR.C. 4 TOP: Polynomial Identities
23 ANS: 4
1 year $=365$ days
PTS: 2 REF: 061823aii NAT: A.SSE.B. 3 TOP: Modeling Exponential Functions
KEY: AII
24 ANS: 3 PTS: 2 REF: 061824aii NAT: A.CED.A. 1
TOP: Modeling Rationals
25 ANS:
$\frac{103}{110+103}=\frac{103}{213}$
PTS: 2 REF: 061825aii NAT: S.CP.A. 4 TOP: Conditional Probability
26 ANS:

PTS: 2
REF: 061826aii
NAT: F.IF.C. 7 TOP: Graphing Polynomial Functions

27 ANS:
$x=\frac{-5 \pm \sqrt{5^{2}+4(2)(8)}}{2(2)}=-\frac{5}{4} \pm \frac{i \sqrt{39}}{4}$
PTS: 2 REF: 061827aii NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: complex solutions | quadratic formula
28 ANS:
Self selection is a cause of bias because people with more free time are more likely to respond.
PTS: 2 REF: 061828aii NAT: S.IC.B. 3 TOP: Analysis of Data
KEY: bias
29 ANS:

PTS: 2 REF: 061829aii NAT: A.APR.D. 6 TOP: Division of Polynomials
30 ANS:
$a_{1}=3 \quad a_{2}=7 \quad a_{3}=15 \quad a_{4}=31$; No, because there is no common ratio: $\frac{7}{3} \neq \frac{15}{7}$
PTS: 2 REF: 061830aii NAT: F.IF.A. 3 TOP: Sequences
KEY: term
31 ANS:
$M=\frac{(152500-15250)\left(\frac{.036}{12}\right)\left(1+\frac{.036}{12}\right)^{360}}{\left(1+\frac{.036}{12}\right)^{360}-1} \approx 624$
PTS: 2
REF: 061831aii
NAT: A.SSE.B. 4 TOP: Series

32 ANS:
$\frac{-1}{\sqrt{2^{2}+(-1)^{2}}}=-\frac{1}{\sqrt{5}}$
PTS: 2 REF: 061832aii NAT: F.TF.A. 2 TOP: Determining Trigonometric Functions KEY: extension to reals
33 ANS:

$$
\sqrt{6-2 x}+x=2 x+30-9 \quad \sqrt{6-2(-29)} \neq-29+21, \text { so }-29 \text { is extraneous. }
$$

$$
\sqrt{6-2 x}=x+21 \quad \sqrt{64} \neq-8
$$

$$
6-2 x=x^{2}+42 x+441
$$

$$
x^{2}+44 x+435=0
$$

$$
(x+29)(x+15)=0
$$

$$
x=-29,-15
$$

PTS: 4 REF: 061833aii NAT: A.REI.A. 2 TOP: Solving Radicals
KEY: extraneous solutions
34 ANS:
$23-18=5, \bar{x} \pm 2 \sigma=-3.07-3.13$, Yes, a difference of 5 or more occurred three times out of a thousand, which is statistically significant.

PTS: 4 REF: 061834aii NAT: S.IC.B. 5 TOP: Analysis of Data
35 ANS:
$C(t)=63000\left(1+\frac{0.0255}{12}\right)^{12 t} 63000\left(1+\frac{0.0255}{12}\right)^{12 t}=100000$

$$
\begin{aligned}
12 t \log (1.002125) & =\log \frac{100}{63} \\
t & \approx 18.14
\end{aligned}
$$

PTS: 4 REF: 061835aii NAT: A.CED.A. 1 TOP: Exponential Growth
36 ANS:
$\frac{h(2)-h(1)}{2-1}=-12, h(t)=0$ at $t \approx 2.2,3.8$, using a graphing calculator to find where $h(t)=0$.
PTS: 4 REF: 061836aii NAT: F.IF.B. 4 TOP: Graphing Trigonometric Functions

37 ANS:
$P(16)=\log (16-4) \approx 1.1, \underbrace{}_{2}$
PTS: 6 REF: 061837aii NAT: A.REI.D. 11 TOP: Other Systems
KEY: AII

0818AII Common Core State Standards

Answer Section

1 ANS: 4
$\ln e^{0.3 x}=\ln \frac{5918}{87}$
$x=\frac{\ln \frac{5918}{87}}{0.3}$
PTS: 2 REF: 081801aii
NAT: F.LE.A. 4 TOP: Exponential Equations
KEY: without common base
2 ANS: 2 PTS: 2
TOP: Analysis of Data
3 ANS: 4 PTS: 2
REF: 081802aii NAT: S.IC.B. 3
KEY: type
REF: 081803aii NAT: F.BF.A. 1
TOP: Operations with Functions
4 ANS: $1 \quad$ PTS: 2
REF: 081804aii NAT: F.IF.C. 9
TOP: Comparing Functions
5 ANS: 3

$$
\begin{gathered}
\frac{2 x^{3}-4 x^{2}-x+\frac{14}{x+6}}{x + 6 \longdiv { 2 x ^ { 4 } + 8 x ^ { 3 } - 2 5 x ^ { 2 } - 6 x + 1 4 }} \\
\frac{2 x^{4}+12 x^{3}}{-4 x^{3}-25 x^{2}} \\
\frac{-4 x^{3}-24 x^{2}}{-x^{2}-6 x} \\
-x^{2}-6 x
\end{gathered}
$$

PTS: 2 REF: 081805aii NAT: A.APR.D. 6 TOP: Rational Expressions KEY: division
6 ANS: 2
$y=\frac{1}{2} x+8 \quad x=\frac{1}{2} y+8$

$$
\begin{aligned}
2 x & =y+16 \\
y & =2 x-16
\end{aligned}
$$

PTS: 2
REF: 081806aii
NAT: F.BF.B. 4 TOP: Inverse of Functions
KEY: linear

7 ANS: 3

$$
\begin{aligned}
x^{2}-4 x-5 & =4 x^{2}-40 x+100 \\
3 x^{2}-36 x+105 & =0 \\
x^{2}-12 x+35 & =0 \\
(x-7)(x-5) & =0 \\
x & =5,7
\end{aligned}
$$

PTS: 2 REF: 081807aii NAT: A.REI.A. 2 TOP: Solving Radicals
KEY: extraneous solutions
8 ANS: 2
$1.00643^{12} \approx 1.08$
PTS: 2 REF: 081808aii NAT: A.SSE.B. 3 TOP: Modeling Exponential Functions
9 ANS: 3
$x=\frac{-2 \pm \sqrt{2^{2}-4(3)(7)}}{2(3)}=\frac{-2 \pm \sqrt{-80}}{6}=\frac{-2 \pm i \sqrt{16} \sqrt{5}}{6}=-\frac{1}{3} \pm \frac{2 i \sqrt{5}}{3}$
PTS: 2 REF: 081809aii NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: complex solutions | quadratic formula
10 ANS: 4 PTS: 2 REF: 081810aii NAT: F.LE.A. 2
TOP: Sequences
11 ANS: 2
If $\cos \theta=\frac{7}{25}, \sin \theta= \pm \frac{24}{25}$, and $\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{-\frac{24}{25}}{\frac{7}{25}}=-\frac{24}{7}$
PTS: 2 REF: 081811aii NAT: F.TF.C. 8 TOP: Determining Trigonometric Functions
12 ANS: 3
$\frac{x^{\frac{2}{3}} \cdot x^{\frac{5}{2}}}{x^{\frac{1}{6}}}=\frac{x^{\frac{4}{6}} \cdot x^{\frac{15}{6}}}{x^{\frac{1}{6}}}=x^{\frac{18}{6}}=x^{3}$
PTS: 2 REF: 081812aii NAT: N.RN.A. 2 TOP: Operations with Radicals
KEY: with variables, index > 2
13 ANS: 1 PTS: 2
REF: 081813aii NAT: A.SSE.B. 4
TOP: Series

14 ANS: 4

$$
\left(x^{6} y^{4}-9\right)\left(x^{4}-16\right)
$$

$\left(x^{3} y^{2}+3\right)\left(x^{3} y^{2}-3\right)\left(x^{2}+4\right)\left(x^{2}-4\right)$
PTS: 2 REF: 081814aii NAT: A.SSE.A. 2
TOP: Factoring the Difference of Perfect Squares KEY: multivariable AII
15 ANS: 3
$-3+5 i-\left(4+24 i-2 i-12 i^{2}\right)=-3+5 i-(16+22 i)=-19-17 i$
PTS: 2 REF: 081815aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers
16 ANS: 2 PTS: 2 REF: 081816aii NAT: F.IF.C. 7
TOP: Graphing Logarithmic Functions KEY: bimodalgraph
17 ANS: 4 PTS: 2 REF: 081817aii NAT: F.BF.B. 3
TOP: Transformations with Functions
18 ANS: 2
$\frac{85}{210+85}$
PTS: 2 REF: 081818aii NAT: S.CP.A. 1 TOP: Venn Diagrams
19 ANS: 3
PTS: 2
REF: 081819aii NAT: A.REI.D. 11
TOP: Other Systems
20 ANS: 1
$-4(-1)-3=1 \quad 8=\frac{2 \pi}{b}$

$$
b=\frac{\pi}{4}
$$

PTS: 2 REF: 081820aii NAT: F.IF.B. 4 TOP: Graphing Trigonometric Functions
KEY: maximum/minimum
21 ANS: 4

$$
m^{3}-2 m^{2}+4 m-8=0
$$

$m^{2}(m-2)+4(m-2)=0$

$$
\left(m^{2}+4\right)(m-2)=0
$$

PTS: 2
REF: 081821aii
NAT: A.APR.D. 6 TOP: Solving Polynomial Equations
22 ANS: 2
$P=\frac{2 \pi}{\frac{\pi}{45}}=90$
PTS: 2
REF: 081822aii
NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions
KEY: period

23 ANS: 4
The vertex is $(2,2)$ and $p=3.3+2=5$
PTS: 2 REF: 081823aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions
24 ANS: 4 PTS: 2
TOP: Conditional Probability
25 ANS:
$\left(x^{2}-6\right)\left(x^{2}+2\right)$
PTS: 2
REF: 081825aii
NAT: A.SSE.A. 2 TOP: Factoring Polynomials
KEY: higher power
26 ANS:
$\frac{2 x^{\frac{3}{2}}}{2 x^{\frac{2}{2}}}=x^{\frac{1}{2}}=\sqrt{x}$
PTS: 2
REF: 081826ai
NAT: N.RN.A. 2
TOP: Radicals and Rational Exponents
27
$\frac{p(8)-p(4)}{8-4} \approx 48.78$
PTS: 2
REF: 081827aii
NAT: F.IF.B. 6
TOP: Rate of Change
28
ANS:
$1200 \cdot 0.784 \approx 941$
PTS: 2
REF: 081828aii
NAT: S.ID.A. 4
TOP: Normal Distributions
KEY: predict
29
ANS:

$$
\begin{gathered}
-6(x+3)\left(\frac{-3}{x+3}-\frac{x}{6}+1=0\right) \\
18+x(x+3)-6(x+3)=0 \\
18+x^{2}+3 x-6 x-18=0 \\
x^{2}-3 x=0 \\
x(x-3)=0 \\
x=0,3
\end{gathered}
$$

PTS: 2
REF: 081829aii
NAT: A.REI.A. 2 TOP: Solving Rationals
KEY: rational solutions

30
ANS:

PTS: 2
REF: 081830aii NAT: F.IF.C. 7
TOP: Graphing Trigonometric Functions
KEY: graph
31 ANS:

$$
\begin{aligned}
x^{2}+(x-28)^{2} & =400 \quad y=12-28=-16 \quad y=16-28=-12 \\
x^{2}+x^{2}-56 x+784 & =400 \\
2 x^{2}-56 x+384 & =0 \\
x^{2}-28 x+192 & =0 \\
(x-16)(x-12) & =0 \\
x & =12,16
\end{aligned}
$$

PTS: 2 REF: 081831aii NAT: A.REI.C. 7 TOP: Quadratic-Linear Systems
32 ANS:
$2(0.042)=0.084 \approx 0.08$ The percent of users making in-app purchases will be within 4% of 35%.
PTS: 2 REF: 081832aii NAT: S.IC.B. 4 TOP: Analysis of Data
33 ANS:
$4 x+6 y-8 z=-24 x-8 y+20 z=12 \quad z+2=3 z-4 \quad y=3+2=5-4 x+5+3=16$

$-4 x+y+z=16$ $7 y-7 z=14$ $-4 x+y+z=16$ $6=2 z$	$-4 x=8$		
$y-z=2$	$y-3 z=-4$		$x=3$
$y=z+2$	$y=3 z-4$		

PTS: 4
REF: 081833aii NAT: A.REI.C. 6 TOP: Solving Linear Systems
KEY: three variables

34 ANS:

$$
\begin{aligned}
j(-1)=2(-1)^{4}-(-1)^{3} & -35(-1)^{2}+16(-1)+48=2+1-35-16+48=0 ; x+1 \text { is a factor of } j(x) ; \\
2 x^{3}-3 x^{2}-32 x+48 & =0 \\
x^{2}(2 x-3)-16(2 x-3) & =0 \\
\left(x^{2}-16\right)(2 x-3) & =0 \\
x & = \pm 4, \frac{3}{2}
\end{aligned}
$$

PTS: 4
REF: 081834aii
NAT: A.APR.B. 2 TOP: Remainder Theorem
35 ANS:
$2=e^{0.0375 t}$
$t \approx 18.5$

PTS: 4
REF: 081835aii
NAT: F.LE.A. 4 TOP: Exponential Growth
36 ANS:
John found the means of the scores of the two rooms and subtracted the means. The mean score for the classical room was 7 higher than the rap room (82-75). Yes, there is less than a 5% chance this difference occurring due to random chance. It is likely the difference was due to the music.

PTS: 4
REF: 081836aii
NAT: S.IC.B. 5 TOP: Analysis of Data
37
ANS:
$P(x)=R(x)-C(x)=-330 x^{3}+9000 x^{2}-67000 x+167000$

Least profitable at year 5 because there is a minimum in $P(x)$. Most profitable at year 13 because there is a maximum in $P(x)$.

PTS: 6 REF: 081837aii NAT: F.IF.C. 7 TOP: Graphing Polynomial Functions

0119AII Common Core State Standards

Answer Section

1 ANS: 2
PTS: 2
TOP: Normal Distributions
2 ANS: $1 \quad$ PTS: 2
TOP: Graphing Logarithmic Functions
3 ANS: 1

$$
\begin{aligned}
& x^{3}+2 x^{2}-9 x-18=0 \quad x^{3}-9 x+2 x^{2}-18=0 \quad x^{3}-9 x+2 x^{2}-18=0 \\
& x^{2}(x+2)-9(x+2)=0 x\left(x^{2}-9\right)+2\left(x^{2}-9\right)=0 x\left(x^{2}-9\right)+2\left(x^{2}-9\right)=0 \\
& (x+2)\left(x^{2}-9\right)=0
\end{aligned}
$$

PTS: 2
REF: 011903ai
4 ANS: 2

$$
\begin{aligned}
121(b)^{2} & =64 \quad 64\left(\frac{8}{11}\right)^{2} \approx 34 \\
b & =\frac{8}{11}
\end{aligned}
$$

PTS: 2 REF: 011904aii NAT: F.IF.A. 3 TOP: Sequences
KEY: term
5 ANS: 2
$x=\frac{2 \pm \sqrt{(-2)^{2}-4(5)(4)}}{2(5)}=\frac{2 \pm \sqrt{-76}}{10}=\frac{2 \pm i \sqrt{4} \sqrt{19}}{10}=\frac{1}{5} \pm \frac{i \sqrt{19}}{5}$

PTS: 2 REF: 011905aii NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: complex solutions | quadratic formula
6
$1.04^{\frac{1}{12}} \approx 1.0032737$
PTS: 2 REF: 011906aii NAT: A.SSE.B. 3 TOP: Modeling Exponential Functions
7 ANS: 1
The time of the next high tide will be the midpoint of consecutive low tides.
PTS: 2 REF: 011907aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions
KEY: mixed

8 ANS: 1

PTS: 2 REF: 011908aii
NAT: F.IF.B. 4 TOP: Graphing Polynomial Functions
9 ANS: 4
(1) quadratic has two roots and both are real $(-2,0)$ and $(-0,5,0)$, (2) $x= \pm \sqrt{32}-3$, (3) the real root is 3 , with a multiplicity of 2 , (4) $x= \pm 4 i$

PTS: 2 REF: 011909aii NAT: A.REI.B. 4 TOP: Using the Discriminant
KEY: determine nature of roots given equation, graph, table
10 ANS: 2 PTS: 2 REF: 011910aii NAT: S.IC.B. 3
TOP: Analysis of Data KEY: bias
11 ANS: 1

$$
\begin{gathered}
(2 x-i)^{2}-(2 x-i)(2 x+3 i) \\
(2 x-i)[(2 x-i)-(2 x+3 i)] \\
(2 x-i)(-4 i) \\
-8 x i+4 i^{2} \\
-8 x i-4
\end{gathered}
$$

PTS: 2 REF: 011911aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers
12 ANS: 2
(1) $0.4 \cdot 0.3 \neq 0.2$, (2) $0.8 \cdot 0.25=0.2$, (3) $P(A \mid B)=P(A)=0.2$, (4) $0.2 \neq 0.15 \cdot 0.05$

$$
0.2 \neq 0.2 \cdot 0.2
$$

PTS: 2
REF: 011912aii NAT: S.CP.A. 3 TOP: Conditional Probability
13 ANS: 1
The cosine function has been translated +3 . Since the maximum is 5 and the minimum is 1 , the amplitude is 2 .
$\frac{\pi}{3}=\frac{2 \pi}{b}$.
$b=6$
PTS: 2 REF: 011913aii NAT: F.TF.B. 5 TOP: Modeling Trigonometric Functions

14 ANS: 3
The vertex is $(-3,5)$ and $p=2 . y=\frac{-1}{4(2)}(x+3)^{2}+5$
PTS: 2 REF: 011914aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions
15 ANS: 3

$$
\begin{aligned}
\frac{2}{3 x+1} & =\frac{1}{x}-\frac{6 x}{3 x+1}-\frac{1}{3} \text { is extraneous. } \\
\frac{6 x+2}{3 x+1} & =\frac{1}{x} \\
6 x^{2}+2 x & =3 x+1 \\
6 x^{2}-x-1 & =0 \\
(2 x-1)(3 x+1) & =0 \\
x & =\frac{1}{2},-\frac{1}{3}
\end{aligned}
$$

PTS: 2 REF: 011915aii NAT: A.REI.A. 2 TOP: Solving Rationals
16 ANS: 4
$a_{1}=2.5+0.5(1)=3$
PTS: 2 REF: 011916aii NAT: F.LE.A. 2 TOP: Sequences
17 ANS: 3 PTS: 2 REF: 011917aii NAT: F.BF.B. 4
TOP: Inverse of Functions KEY: other
18 ANS: 4
$1+\frac{.009}{12}=1.00075$
PTS: 2 REF: 011918aii NAT: A.SSE.B. 3 TOP: Modeling Exponential Functions
19 ANS: 1
$x^{2}+2 x+1=(x+1)^{2}$
PTS: 2 REF: 011919aii NAT: A.APR.B. 3 TOP: Graphing Polynomial Functions
20 ANS: 3
$y=278(0.5)^{\frac{18}{1.8}} \approx 0.271$
PTS: 2 REF: 011920aii NAT: F.LE.A. 2 TOP: Modeling Exponential Functions
21 ANS: 4
$\frac{x^{2}-4 x}{2 x}=\frac{x(x-4)}{2 x}=\frac{x-4}{2}=\frac{x}{2}-2 \frac{x-1}{2}-\frac{3}{2}=\frac{x-1-3}{2}=\frac{x-4}{2}$
PTS: 2
REF: 011921aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: factoring

22 ANS: 4
The maximum of p is 5. The minimum of f is $-\frac{21}{4}\left(x=\frac{-6}{2(4)}=-\frac{3}{4}\right.$
$\left.f\left(-\frac{3}{4}\right)=4\left(-\frac{3}{4}\right)^{2}+6\left(-\frac{3}{4}\right)-3=4\left(\frac{9}{16}\right)-\frac{18}{4}-\frac{12}{4}=-\frac{21}{4}\right) \cdot \frac{20}{4}-\left(-\frac{21}{4}\right)=\frac{41}{4}=10.25$
PTS: 2 REF: 011922aii NAT: F.IF.C. 9 TOP: Comparing Functions
23 ANS: 1
$84.1 \% \times 750 \approx 631$
PTS: 2 REF: 011923aii NAT: S.ID.A. 4 TOP: Normal Distributions
KEY: predict
24 ANS: 4

PTS: 2
REF: 011924aii
NAT: A.REI.D. 11 TOP: Other Systems
25 ANS:
$\frac{\sqrt[3]{x^{2} y^{5}}}{\sqrt[4]{x^{3} y^{4}}}=\frac{x^{\frac{2}{3}} y^{\frac{5}{3}}}{x^{\frac{3}{4}} y}=\frac{x^{\frac{8}{12}} y^{\frac{20}{12}}}{x^{\frac{9}{12}} y^{\frac{12}{12}}}=x^{-\frac{1}{12}} y^{\frac{2}{3}}$
PTS: 2 REF: 011925aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents
KEY: variables
26 ANS:

PTS: 2
REF: 011926aii
NAT: F.IF.C. 7
TOP: Graphing Polynomial Functions

27 ANS:

$$
(a+b)^{3}=a^{3}+b^{3} \quad \text { No. Erin's shortcut only works if } a=0, b=0 \text { or } a=-b .
$$

$a^{3}+3 a^{2} b+3 a b^{2}+b^{3}=a^{3}+b^{3}$

$$
\begin{aligned}
3 a b^{2}+3 a^{2} b & =0 \\
3 a b(b+a) & =0 \\
a & =0, b=0, a=-b
\end{aligned}
$$

PTS: 2 REF: 011927aii NAT: A.APR.C. 4 TOP: Polynomial Identities
28 ANS:
$P(A+B)=P(A) \cdot P(B \mid A)=0.8 \cdot 0.85=0.68$
PTS: 2 REF: 011928aii NAT: S.CP.A. 3 TOP: Conditional Probability
29 ANS:
$S_{10}=\frac{15-15(1.03)^{10}}{1-1.03} \approx 171.958$
PTS: 2 REF: 011929aii NAT: A.SSE.B. 4 TOP: Series
30 ANS:
$\frac{B(11)-B(8)}{11-8} \approx-10.1$ The average monthly high temperature decreases 10.1° each month from August to November.

PTS: 2 REF: 011930aii NAT: F.IF.B. 6 TOP: Rate of Change
31 ANS:
$t^{2}+\left(\frac{4}{7}\right)^{2}=1 \quad-\frac{\sqrt{33}}{7}$

$$
t^{2}+\frac{16}{49}=\frac{49}{49}
$$

$$
t^{2}=\frac{33}{49}
$$

$$
t=\frac{ \pm \sqrt{33}}{7}
$$

PTS: 2
REF: 011931aii
NAT: F.TF.A. 2 TOP: Unit Circle

32
ANS:

PTS: 2
REF: 011932aii NAT: F.IF.C. 7
33 ANS:
$a+4 b+6 c=23 \quad a+2 b+c=2 \quad 8 b+3 c=16 \quad 2 b+5(4)=21 a+4\left(\frac{1}{2}\right)+6(4)=23$
$\underline{a+2 b+c=2}$
$\underline{-a+6 b+2 c=14} \quad \underline{8 b+20 c=84}$

$$
2 b=1
$$

$b=\frac{1}{2}$

$$
\begin{aligned}
a+2+24 & =23 \\
a & =-3
\end{aligned}
$$

PTS: 4 REF: 011933aii NAT: A.REI.C. 6 TOP: Solving Linear Systems
KEY: three variables
34 ANS:
$x + 2 \longdiv { x ^ { 3 } + 4 } x ^ { 4 } + 2 x ^ { 3 } + 4 x - 1 0 \quad x ^ { 3 } + 4 - \frac { 1 8 } { x + 2 }$. No, because there is a remainder.

$$
x^{4}+2 x^{3}
$$

$$
4 x-10
$$

$$
\underline{4 x+8}
$$

$$
-18
$$

PTS: 4
REF: 011934aii NAT: A.REI.C. 6 TOP: Rational Expressions
KEY: division
35 ANS:
$29.101 \pm 2 \cdot 0.934=27.23-30.97$. Yes, since 30 falls within the 95% interval.
PTS: 4
REF: 011935aii
NAT: S.IC.A. 2
TOP: Analysis of Data

36 ANS:

$$
\begin{aligned}
3 \sqrt{x}-2 x & =-5 \quad 1 \text { is extraneous. } \\
3 \sqrt{x} & =2 x-5 \\
9 x & =4 x^{2}-20 x+25 \\
4 x^{2}-29 x+25 & =0 \\
(4 x-25)(x-1) & =0 \\
x & =\frac{25}{4}, 1
\end{aligned}
$$

PTS: 4
REF: 011936aii
NAT: A.REI.A. 2 TOP: Solving Radicals
KEY: extraneous solutions
37 ANS:
$A(t)=318000(1.07)^{t}$

$$
\begin{aligned}
1.07^{t} & =\frac{1000}{318} \\
t \log 1.07 & =\log \frac{1000}{318} \\
t & =\frac{\log \frac{1000}{318}}{\log 1.07} \\
t & \approx 17
\end{aligned}
$$

the point $(17,1000000)$.
PTS: 6
REF: 011937aii NAT: A.CED.A. 1 TOP: Exponential Growth

0619aii

Answer Section
1 ANS: $3 \quad$ PTS: 2
TOP: Analysis of Data
2 ANS: 4
$(x-y)^{2}=x^{2}-2 x y+y^{2}(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}$
PTS: 2 REF: 061902aii NAT: A.APR.C. 4 TOP: Polynomial Identities
3 ANS: 3

$$
\begin{aligned}
(x+4)^{2}-10 & =3 x+6 \quad y=3(-5)+6=-9 \\
x^{2}+8 x+16-10 & =3 x+6 \quad y=3(0)+6=6 \\
x^{2}+5 x & =0 \\
x(x+5) & =0 \\
x & =-5,0
\end{aligned}
$$

PTS: 2 REF: 061903aii NAT: A.REI.C. 7 TOP: Quadratic-Linear Systems
4 ANS: $1 \quad$ PTS: 2
TOP: Relating Graphs to Events
5 ANS: 4
$S_{7}=\frac{85000-85000(1.06)^{7}}{1-1.06} \approx 713476.20$
PTS: 2 REF: 061905aii NAT: A.SSE.B. 4 TOP: Series
6 ANS: 3 PTS: 2 REF: 061906aii NAT: F.LE.A. 2
TOP: Families of Functions
7 ANS: 4 PTS: 2 REF: 061907aii NAT: A.APR.B. 2
TOP: Remainder Theorem
8 ANS: 1
$\left(x^{\frac{3}{2}}\right)^{2}=x^{3}$
PTS: 2 REF: 061908aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents
KEY: variables
9 ANS: 2
$x=4 y+5$
$x-5=4 y$
$\frac{1}{4} x-\frac{5}{4}=y$
PTS: 2
REF: 061909aii
NAT: F.BF.B. 4
TOP: Inverse of Functions
KEY: linear

10 ANS: 3 PTS: 2 REF: 061910aii NAT: F.BF.A. 2
TOP: Sequences
11 ANS: 2
$n^{2}\left(n^{2}-9\right)+4 n\left(n^{2}-9\right)-12\left(n^{2}-9\right)$

$$
\begin{gathered}
\left(n^{2}+4 n-12\right)\left(n^{2}-9\right) \\
(n+6)(n-2)(n+3)(n-3)
\end{gathered}
$$

PTS: 2 REF: 061911aii
NAT: A.SSE.A. 2 TOP: Factoring Polynomials
KEY: factoring by grouping
12 ANS: 4
$w x^{2}+w=0$
$w x^{2}=-w$
$x^{2}=-1$
$x= \pm i$

PTS: 2 REF: 061912aii NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: complex solutions | taking square roots
13 ANS: 2
$0.254 \pm 2(0.060) \rightarrow(0.134,0.374)$
PTS: 2 REF: 061913aii NAT: S.IC.B. 5 TOP: Analysis of Data
14 ANS: 4 PTS: 2 REF: 061914aii NAT: A.REI.D. 11
TOP: Other Systems
15 ANS: 1
$6-(3 x-2 i)(3 x-2 i)=6-\left(9 x^{2}-12 x i+4 i^{2}\right)=6-9 x^{2}+12 x i+4=-9 x^{2}+12 x i+10$
PTS: 2 REF: 061915aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers
16 ANS: 1

$$
\begin{aligned}
x-\frac{20}{x} & =8 \\
x^{2}-8 x-20 & =0 \\
(x-10)(x+2) & =0 \\
x & =10,-2
\end{aligned}
$$

PTS: 2 REF: 061916aii NAT: A.CED.A. 1 TOP: Modeling Rationals
17 ANS: 2
PTS: 2
REF: 061917aii NAT: F.LE.B. 5
TOP: Modeling Exponential Functions

18 ANS: 4
$400 \cdot .954 \approx 380$
PTS: 2 REF: 061918aii NAT: S.ID.A. 4 TOP: Normal Distributions
KEY: predict
19 ANS: 2
$b^{2}=2 b^{2}-64-8$ is extraneous.
$-b^{2}=-64$
$b= \pm 8$
PTS: 2 REF: 061919aii
NAT: A.REI.A. 2 TOP: Solving Radicals
KEY: extraneous solutions
20 ANS: 1
2) linear, 3) quadratic, 4) cubic

PTS: 2 REF: 061920aii NAT: F.LE.A. 2 TOP: Families of Functions
21 ANS: 4 PTS: 2
TOP: Graphing Polynomial Functions
22 ANS: 3
$T(19)=8 \sin (0.3(19)-3)+74 \approx 77$
PTS: 2 REF: 061922aii NAT: F.TF.A. 2 TOP: Determining Trigonometric Functions
KEY: radians
23 ANS: 2

$$
\begin{array}{ccccc}
x+y-z=6 & 2 x+2 y-2 z=12 & 5 y-4 z=31 & 5 y-2(-4)=23 & x+3-(-4)=6 \\
\frac{-x+4 y-z=17}{5 y-2 z=23} & \frac{2 x-3 y+2 z=-19}{5 y-4 z=31} & \frac{5 y-2 z=23}{} & 5 y=15 & x=-1 \\
& -2 z=8 & y=3 & \\
z=-4 & &
\end{array}
$$

PTS: 2 REF: 061923aii NAT: A.REI.C. 6 TOP: Solving Linear Systems
KEY: three variables
24 ANS: 4
$1.06^{\frac{1}{52}}$
PTS: 2 REF: 061924aii NAT: F.BF.A. 1 TOP: Modeling Exponential Functions
25 ANS:
$\frac{13.9-9.4}{4-1}=1.5$ The average rate of change in the number of hours of daylight from January 1-April 1 is 1.5.
PTS: 2 REF: 061925aii NAT: F.IF.B. 6 TOP: Rate of Change

26
ANS:

$$
\begin{aligned}
\frac{7}{2 x}-\frac{2}{x+1} & =\frac{1}{4} \\
\frac{7 x+7-4 x}{2 x^{2}+2 x} & =\frac{1}{4} \\
2 x^{2}+2 x & =12 x+28 \\
x^{2}-5 x-14 & =0 \\
(x-7)(x+2) & =0 \\
x & =7,-2
\end{aligned}
$$

PTS: 2 REF: 061926aii NAT: A.REI.A. 2 TOP: Solving Rationals
KEY: rational solutions
27 ANS:

PTS: 2 REF: 061927aii NAT: F.IF.C. 7 TOP: Graphing Logarithmic Functions
28
$\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{-7 / 25}{-24 / 25} \cos \theta=\frac{-24}{25}$

PTS: 2 REF: 061928aii NAT: F.TF.C. 8 TOP: Determining Trigonometric Functions
ANS:
No. $\left(\sqrt[7]{x^{2}}\right)\left(\sqrt[5]{x^{3}}\right)=x^{\frac{2}{7}} \cdot x^{\frac{3}{5}}=x^{\frac{31}{35}}=\sqrt[35]{x^{31}}$

PTS: 2 REF: 061929aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents KEY: variables

30 ANS:
$\frac{p(x)}{x-1}=x^{2}+7+\frac{5}{x-1}$
$p(x)=x^{3}-x^{2}+7 x-7+5$
$p(x)=x^{3}-x^{2}+7 x-2$
PTS: 2 REF: 061930aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: division
31 ANS:
$\frac{9}{6}=1.5 \quad a_{1}=6$

$$
a_{n}=1.5 \cdot a_{n-1}
$$

PTS: 2 REF: 061931aii NAT: F.BF.A. 2 TOP: Sequences
32 ANS:
No. $0.499 \pm 2(0.049) \rightarrow 0.401-0.597$. Since 0.43 falls within this interval, Robin's coin is likely not unfair.
PTS: 2 REF: 061932aii NAT: S.IC.A. 2 TOP: Analysis of Data
33 ANS:
$16 x^{4}-81=\left(4 x^{2}+9\right)\left(4 x^{2}-9\right)=\left(4 x^{2}+9\right)(2 x+3)(2 x-3)$. No, because $\pm \frac{3 i}{2}$ are roots.
PTS: 4 REF: 061933aii NAT: F.IF.C. 7 TOP: Graphing Polynomial Functions
34 ANS:

$$
\begin{aligned}
s(t)=200(0.5)^{\frac{t}{15}} \quad \frac{1}{10} & =(0.5)^{\frac{t}{15}} \\
\log \frac{1}{10} & =\log (0.5)^{\frac{t}{15}} \\
-1 & =\frac{t \cdot \log (0.5)}{15} \\
t & =\frac{-15}{\log (0.5)} \approx 50
\end{aligned}
$$

PTS: 4
REF: 061934aii
NAT: F.LE.A. 4
TOP: Exponential Decay

35 ANS:
$y=\frac{1}{4(2)}(x-4)^{2}-3$
PTS: 4 REF: 061935aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions
36 ANS:
$P(F \mid L)=\frac{12}{27} P(F)=\frac{22}{45}$ Since $P(F \mid L) \neq P(F)$, the events are not independent.
PTS: 4
REF: 061936aii
NAT: S.CP.A. 4
TOP: Conditional Probability
37 ANS:
period $=\frac{2 \pi}{0.8 \pi}=2.5$. The wheel rotates once every 2.5 seconds.

No, because the maximum of $f(t)=26$.

PTS: 6 REF: 061937aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions KEY: graph

0819AII Regents Exam

Answer Section
1 ANS: 2
$u=x+2 \quad u^{2}+4 u+3$

$$
\begin{gathered}
(u+3)(u+1) \\
(x+2+3)(x+2+1) \\
(x+5)(x+3)
\end{gathered}
$$

PTS: 2 REF: 081901aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials KEY: higher power
2 ANS: 3
$8 r^{3}=216 S_{12}=\frac{8-8(3)^{12}}{1-3}=2125760$
$r^{3}=27$

$$
r=3
$$

PTS: 2 REF: 081902aii NAT: A.SSE.B. 4 TOP: Series
3 ANS: 1 PTS: 2
REF: 081903aii NAT: F.LE.A. 2
TOP: Families of Functions
4 ANS: 2 PTS: 2
TOP: Factoring Polynomials
REF: 081904aii NAT: A.SSE.A. 2
KEY: higher power
5 ANS: 1
$-\sqrt{1-\left(-\frac{3}{4}\right)^{2}}=-\sqrt{\frac{16}{16}-\frac{9}{16}}=-\sqrt{\frac{7}{16}}=-\frac{\sqrt{7}}{4}$
PTS: 2 REF: 081905aii NAT: F.TF.C. 8 TOP: Determining Trigonometric Functions
6 ANS: 4
PTS: 2
REF: 081906aii NAT: S.IC.B. 3
TOP: Analysis of Data KEY: type
7 ANS: 2

$$
\begin{gathered}
2-\frac{x-1}{x+2} \\
1+\frac{x+2}{x+2}-\frac{x-1}{x+2} \\
1+\frac{x+2-(x-1)}{x+2} \\
1+\frac{3}{x+2}
\end{gathered}
$$

PTS: 2 REF: 081907aii
8 ANS: 2
PTS: 2
NAT: A.APR.D. 7 TOP: Addition and Subtraction of Rationals REF: 081908aii NAT: F.IF.B. 4
TOP: Graphing Polynomial Functions

9 ANS: 3
TOP: Sequences
PTS: 2
KEY: recursive
10 ANS: 1
$3 x + 1 \longdiv { 9 x - 1 } \begin{array} { r } { 3 x ^ { 2 } + 0 x - 2 } \end{array}$

$$
\begin{array}{r}
\frac{9 x^{2}+3 x}{-3 x-2} \\
\frac{-3 x-1}{-1}
\end{array}
$$

PTS: 2
KEY: division
11 ANS: 2
TOP. Even and Od
12 ANS: 4
TOP: Graphing Trigonometric Functions
REF: 081912aii
NAT: F.IF.C. 7
13 ANS: 2
$P(B) \cdot P(A \mid B)=P(A$ and $B)$
$P(B) \cdot 0.8=0.2$
$P(B)=0.25$
PTS: 2 REF: 081913aii NAT: S.CP.A. 3 TOP: Conditional Probability
14 ANS: 4
$\sqrt{3 x^{2} y} \cdot \sqrt[3]{27 x^{3} y^{2}}=3^{\frac{1}{2}} x y^{\frac{1}{2}} \cdot 3^{\frac{2}{2}} x y^{\frac{2}{3}}=3^{\frac{3}{2}} x^{2} y^{\frac{7}{6}}$
PTS: 2
REF: 081914aii NAT: N.RN.A. 2 TOP: Operations with Radicals KEY: with variables, index > 2
15 ANS: 4
$x(x-2)\left(\frac{10}{x^{2}-2 x}+\frac{4}{x}=\frac{5}{x-2}\right) 2$ is extraneous.

$$
\begin{gathered}
10+4(x-2)=5 x \\
10+4 x-8=5 x \\
2=x
\end{gathered}
$$

PTS: 2 REF: 081915aii
NAT: A.REI.A. 2 TOP: Solving Rationals
KEY: rational solutions

16 ANS: 3

$$
\begin{aligned}
x^{2}+(2 x)^{2} & =5 \quad y=2 x= \pm 2 \\
x^{2}+4 x^{2} & =5 \\
5 x^{2} & =5 \\
x & = \pm 1
\end{aligned}
$$

PTS: 2 REF: 081916aii NAT: A.REI.C. 7 TOP: Quadratic-Linear Systems
17 ANS: 4
$5000\left(1+\frac{.035}{12}\right)^{12 \cdot 6} \approx 6166.50$
PTS: 2 REF: 081917aii NAT: A.CED.A. 1 TOP: Exponential Growth
18 ANS: 4
$120=68+(195-68) e^{-0.05 t}$

$$
52=127 e^{-0.05 t}
$$

$\ln \frac{52}{127}=\ln e^{-0.05 t}$
$\ln \frac{52}{127}=-0.05 t$
$\frac{\ln \frac{52}{127}}{-0.05}=t$

$$
18 \approx t
$$

PTS: 2 REF: 081918aii NAT: F.LE.A. 4 TOP: Exponential Decay
19

PTS: 2
REF: 081919aii
NAT: S.ID.A. 4
TOP: Normal Distributions
KEY: percent

20 ANS: 2

PTS: 2 REF: 081920aii NAT: A.REI.D. 11 TOP: Other Systems
21 ANS: 4
$f(x)=(x+1)(x-1)(x-2)=\left(x^{2}-1\right)(x-2)=x^{3}-2 x^{2}-x+2$
PTS: 2 REF: 081921aii NAT: A.APR.B. 3 TOP: Graphing Polynomial Functions
22 ANS: 3

4.1 - 1.1	
Define $t(a)=\frac{1}{0.0105} \cdot \ln \left(\frac{a}{5000}\right)$	Done
$\underline{t(8000)-t(6000)}$	0.013699
$\begin{gathered} 8000-6000 \\ x(12000)-t(9000) \\ \hline \end{gathered}$	0.009133
12000-9000	
I	

PTS: 2
23
ANS: 2

$$
x=\frac{y}{y+2}
$$

$x y+2 x=y$

$$
x y-y=-2 x
$$

$$
y=\frac{-2 x}{x-1}
$$

PTS: 2
REF: 081924aii NAT: F.BF.B. 4 TOP: Inverse of Functions
KEY: other
24
ANS: 1
$1.025^{\frac{1}{12}} \approx 1.00206$
PTS: 2
REF: 081922aii
NAT: F.IF.B. 6
TOP: Rate of Change

$$
y(x-1)=-2 x
$$

25 ANS:
$\frac{165+66-33}{825}=\frac{198}{825}$
PTS: 2 REF: 081925aii NAT: S.CP.B. 6 TOP: Conditional Probability
26 ANS:
The denominator of the rational exponent represents the index of a root, and the numerator of the rational exponent represents the power of the base. $(\sqrt{9})^{5}=243$

PTS: 2 REF: 081926aii NAT: N.RN.A. 1 TOP: Radicals and Rational Exponents
27 ANS:
$-\frac{1}{2} i^{3}(3 i-4)-3 i^{2}=-\frac{3}{2} i^{4}+2 i^{3}-3 i^{2}=-\frac{3}{2}-2 i+3=\frac{3}{2}-2 i$

PTS: 2 REF: 081927aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers
28 ANS:
$250(1)+2450=2700$ The maximum lung capacity of a person is 2700 mL.
PTS: 2 REF: 081928aii NAT: F.IF.B. 4 TOP: Graphing Trigonometric Functions
29 ANS:
$P(-2)=60 Q(-2)=0(x+2)$ is a factor of $Q(x)$ since $Q(-2)=0$.
PTS: 2 REF: 081929aii NAT: A.APR.B. 2 TOP: Remainder Theorem
30 ANS:
$\frac{10.1--2}{2}-\frac{2.5--0.1}{2}=6.05-1.3=4.75$
PTS: 2
REF: 081930aii NAT: F.IF.C. 7
KEY: amplitude
31 ANS:
$a_{1}=4$
$a_{n}=3 a_{n-1}$
PTS: 2
REF: 081931aii
NAT: F.LE.A. 2 TOP: Sequences
KEY: recursive

32 ANS:

PTS: 2 REF: 081932aii NAT: A.REI.D. 11 TOP: Other Systems
33 ANS:
$N(t)=950 e^{0.0475 t}$ The base is e because growth is continuous. $N\left(\frac{36}{24}\right) \approx 1020$
PTS: 4
REF: 081933aii
NAT: F.LE.A. 2 TOP: Modeling Exponential Functions
$y=2 \sin 4 x$

PTS: 4 REF: 081934aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions KEY: graph
35
ANS:
$0.301 \pm 2(0.058) \rightarrow 0.185-0.417 \frac{14}{60} \approx 0.23$. It is not unusual because 0.23 falls within this interval.
PTS: 4 REF: 081935aii NAT: S.IC.B. 5 TOP: Analysis of Data

36 ANS:
$x^{2}-6 x=-17 \quad$ The solution is imaginary because the parabola and line do not intersect.
$x^{2}-6 x+9=-17+9$

$$
\begin{aligned}
(x-3)^{2} & =-8 \\
x-3 & = \pm 2 i \sqrt{2} \\
x & =3 \pm 2 i \sqrt{2}
\end{aligned}
$$

PTS: 4
REF: 081936aii NAT: A.REI.B. 4 TOP: Solving Quadratics KEY: complex solutions | completing the square
37 ANS:
$B=1.69 \sqrt{30+4.45}-3.49 \approx 6$, which is a steady breeze. $\quad 15=1.69 \sqrt{s+4.45}-3.49$

$$
\begin{aligned}
& 18.49=1.69 \sqrt{s+4.45} \\
& \frac{18.49}{1.69}=\sqrt{s+4.45} \\
& \left(\frac{18.49}{1.69}\right)^{2}=s+4.45 \\
& s=\left(\frac{18.49}{1.69}\right)^{2}-4.45 \\
& s \approx 115 \\
& 9.5=1.69 \sqrt{s+4.45}-3.49 \quad 10.49=1.69 \sqrt{s+4.45}-3.4955-64 \\
& 12.99=1.69 \sqrt{s+4.45} \quad 13.98=1.69 \sqrt{s+4.45} \\
& \frac{12.99}{1.69}=\sqrt{s+4.45} \quad \frac{13.98}{1.69}=\sqrt{s+4.45} \\
& \left(\frac{12.99}{1.69}\right)^{2}=s+4.45 \quad\left(\frac{13.98}{1.69}\right)^{2}=s+4.45 \\
& s=\left(\frac{12.99}{1.69}\right)^{2}-4.45 \quad s=\left(\frac{13.98}{1.69}\right)^{2}-4.45 \\
& s \approx 55 \quad s \approx 64
\end{aligned}
$$

PTS: 6 REF: 081937aii NAT: A.REI.A. 2 TOP: Solving Radicals KEY: context

0120AII Common Core State Standards

Answer Section

1 ANS: 1
$\sqrt[4]{81 x^{8} y^{6}}=81^{\frac{1}{4}} x^{\frac{8}{4}} y^{\frac{6}{4}}=3 x^{2} y^{\frac{3}{2}}$
PTS: 2 REF: 012001aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents
KEY: variables
2 ANS: $3 \quad$ PTS: 2
TOP: Operations with Functions
3 ANS: 3 PTS: 2
TOP: Polynomial Identities
4 ANS: 1
$2000\left(1+\frac{.032}{12}\right)^{12 t} \approx 2000(1.003)^{12 t}$
PTS: 2 REF: 012004aii
NAT: F.BF.A. 1 TOP: Modeling Exponential Functions
5 ANS: $3 \quad$ PTS: 2
TOP: Graphing Polynomial Functions
6 ANS: 3
$(x+a)^{2}+5(x+a)+4$ let $u=x+a$

$$
\begin{aligned}
& u^{2}+5 u+4 \\
& (u+4)(u+1) \\
& (x+a+4)(x+a+1)
\end{aligned}
$$

PTS: 2 REF: 012006aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials
KEY: multivariable
7 ANS: 3
$x + 2 \longdiv { 2 x ^ { 2 } + 5 x + 8 }$
$\underline{2 x^{2}+4 x}$
$x+8$
$\underline{x+2}$
6
PTS: 2
KEY: division
8 ANS: 4
REF: 012007aii
NAT: A.APR.D. 6 TOP: Rational Expressions

TOP: Conditional Probability

9 ANS: 4
$\log 2^{t}=\log \sqrt{10}$ 2) $\left.\left.\frac{\log \sqrt{10}}{\log 2}=\log _{2} \sqrt{10}, 1\right) \log _{2} \sqrt{10}=\log _{2} 10^{\frac{1}{2}}=\frac{1}{2} \log _{2} 10,3\right) \log _{4} 10=\frac{\log _{2} 10}{\log _{2} 4}=\frac{1}{2} \log _{2} 10$
$t \log 2=\log \sqrt{10}$
$t=\frac{\log \sqrt{10}}{\log 2}$
PTS: 2 REF: 012009aii NAT: F.LE.A. 4 TOP: Exponential Equations KEY: without common base
10 ANS: 2
$x^{2}=3 x+40 . x=-5$ is an extraneous solution.
$x^{2}-3 x-40=0$
$(x-8)(x+5)=0$

$$
x=8,-5
$$

PTS: 2 REF: 012010aii NAT: A.REI.A. 2 TOP: Solving Radicals
KEY: extraneous solutions
11 ANS: 4
$\frac{13}{13+11}=\frac{13}{24}$
PTS: 2 REF: 012011aii NAT: S.CP.A. 4 TOP: Conditional Probability
12 ANS: 1
$\frac{N(6)-N(0)}{6-0} \approx-8.93$
PTS: 2
REF: 012012aii NAT: F.IF.B. 6
TOP: Rate of Change
13 ANS: 4
(1) and (3) are not recursive

PTS: 2 REF: 012013aii NAT: F.LE.A. 2 TOP: Sequences
KEY: recursive
14 ANS: 4
PTS: 2
REF: 012014aii NAT: S.IC.B. 5
TOP: Analysis of Data
15 ANS: 3 PTS: 2
TOP: Analysis of Data
16 ANS: 4
PTS: 2
REF: 012015aii NAT: S.IC.B. 3
KEY: type
REF: 012016aii NAT: F.IF.B. 4
TOP: Graphing Trigonometric Functions KEY: increasing/decreasing
17 ANS: 1
$\frac{-12}{16}=\frac{9}{-12}=\frac{-6.75}{9}$
PTS: 2 REF: 012017aii NAT: F.IF.A. 3 TOP: Sequences
KEY: difference or ratio

18 ANS: 1

$$
\begin{array}{ccc}
x+y+z=9 & 4-y-z=-1 & 4-6+z=9 \\
x-y-z=-1 & 4-y+z=21 & z=11 \\
\cline { 1 - 3 }=8 & -y-z=-5 & \\
x=4 & \frac{-y+z=17}{-2 y=12} \\
y=-6
\end{array}
$$

PTS: 2
REF: 012018aii NAT: A.REI.C. 6 TOP: Solving Linear Systems
KEY: three variables
19 ANS: 4

1) -1 is also a zero. 2) $x^{2}(x-a)+16(x-a)=\left(x^{2}+16\right)(x-a) a$ is the only zero. 3) $-a$ is the only zero. 4) $x^{2}(x-a)-9(x-a)=\left(x^{2}-9\right)(x-a)$.

PTS: 2 REF: 012019aii NAT: A.APR.B. 3 TOP: Solving Polynomial Equations
20 ANS: 2
$5 x^{2}-4 x+2=0 \frac{4 \pm \sqrt{(-4)^{2}-4(5)(2)}}{2(5)}=\frac{4 \pm \sqrt{-24}}{10}=\frac{4 \pm 2 i \sqrt{6}}{10}=\frac{2 \pm i \sqrt{6}}{5}$
PTS: 2 REF: 012020aii NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: complex solutions | quadratic formula
21 ANS: 2

PTS: 2 REF: 012021aii NAT: A.REI.D. 11 TOP: Other Systems
22 ANS: 1
$7-3 i+x^{2}-4 x i+4 i^{2}-4 i-2 x^{2}=7-7 i-x^{2}-4 x i-4=3-x^{2}-4 x i-7 i=\left(3-x^{2}\right)-(4 x+7) i$
PTS: 2
REF: 012022aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers

23 ANS: 1
$\frac{x\left(x^{2}-9\right)}{-\left(x^{2}-9\right)}=-x$
PTS: 2
REF: 012023aii
NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: factoring
24 ANS: 3
between 000 and 449 , inclusive $\rightarrow \frac{450}{1000}=45 \%$
PTS: 2 REF: 012024aii NAT: S.IC.B. 3 TOP: Analysis of Data
KEY: type
25 ANS:
$\left(p^{2} n^{\frac{1}{2}}\right)^{8} \sqrt{p^{5} n^{4}}=\left(p^{16} n^{4}\right) p^{2} n^{2} \sqrt{p}=p^{18} n^{6} \sqrt{p}$
PTS: 2 REF: 012025aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents
26 ANS:
$m(3)=3^{3}-3^{2}-5(3)-3=27-9-15-3=0$ Since $m(3)=0$, there is no remainder when $m(x)$ is divided by $x-3$, and so $x-3$ is a factor.

PTS: 2
REF: 012026aii
NAT: A.APR.B. 2 TOP: Remainder Theorem
27 ANS:
Translation 3 units right and 4 units up
PTS: 2 REF: 012027aii NAT: F.IF.C. 7 TOP: Graphing Exponential Functions
28 ANS:

vertex $(3,6)$, focus (3,1), $p=5$, directrix $y=6+5=11$
PTS: 2 REF: 012028aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions
29 ANS:
$r=\frac{360}{300}=1.2 S_{n}=\frac{300-300(1.2)^{n}}{1-1.2} S_{10}=\frac{300-300(1.2)^{10}}{1-1.2} \approx 7787.6$
PTS: 2
REF: 012029aii NAT: A.SSE.B. 4 TOP: Series

30 ANS:
Light wave C. The periods for A, B, and C are 280, 220 and 320.
PTS: 2 REF: 012030aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions KEY: period
31 ANS:
$B(t)=100(2)^{\frac{t}{30}}$
PTS: 2 REF: 012031aii NAT: F.LE.A. 2 TOP: Modeling Exponential Functions
32 ANS:

PTS: 2 REF: 012032aii NAT: F.IF.C. 7 TOP: Graphing Polynomial Functions
33 ANS:
$a_{n}=100(.8)^{n-1} S_{20}=\frac{100-100(.8)^{20}}{1-.8} \approx 494$ No, because $494>40 \times 12$.
PTS: 4
REF: 012033aii NAT: A.SSE.B. 4 TOP: Series
34 ANS:

Domain: $x<2$, Asymptote $x=2$
PTS: 4
REF: 012034aii NAT: F.IF.C. 7
TOP: Graphing Logarithmic Functions

35 ANS:

$$
\begin{array}{rlrl}
y & =-x+1 & y=-2+1=-1 \quad(2,-1) \\
(x-2)^{2}+(-x+1-3)^{2} & =16 \quad y=2+1=3 \quad(-2,3) \\
x^{2}-4 x+4+x^{2}+4 x+4 & =16 \\
2 x^{2} & =8 \\
x & =-2,2 &
\end{array}
$$

PTS: 4 REF: 012035aii NAT: A.REI.C. 7 TOP: Quadratic-Linear Systems
36 ANS:
$y=101.523(.883)^{x} \quad 29=101.523(.883)^{x}$

$$
\begin{aligned}
& \frac{29}{101.523}=(.883)^{x} \\
& \log \frac{29}{101.523}=x \log (.883) \\
& \log \frac{29}{101.523} \\
& \log (.883) \\
& x \approx 10.07
\end{aligned}
$$

PTS: 4
REF: 012036aii
NAT: S.ID.B. 6 TOP: Regression
KEY: exponential
37 ANS:
antibiotic $n(0)=\frac{0+1}{0+5}+\frac{18}{0^{2}+8(0)+15}=\frac{3}{15}+\frac{18}{15}=\frac{21}{15} \quad \frac{t+1}{t+5}+\frac{18}{t^{2}+8 t+15}=\frac{9}{t+3}$

$$
a(0)=\frac{9}{0+3}=3
$$

$$
\begin{aligned}
\frac{(t+1)(t+3)}{(t+5)(t+3)}+\frac{18}{(t+3)(t+5)} & =\frac{9(t+5)}{(t+3)(t+5)} \\
t^{2}+4 t+3+18 & =9 t+45 \\
t^{2}-5 t-24 & =0 \\
(t-8)(t+3) & =0 \\
t & =8
\end{aligned}
$$

PTS: 6 REF: 012037aii NAT: A.REI.A. 2 TOP: Solving Rationals KEY: rational solutions

0622aii
Answer Section
1 ANS: $1 \quad$ PTS: 2
REF: 062201aii NAT: N.RN.A. 2
TOP: Radicals and Rational Exponents
2 ANS: 3
To determine student opinion, survey the widest range of students.
PTS: 2
REF: 062202aii NAT: S.IC.B. 3 TOP: Analysis of Data
KEY: bias
3 ANS: 1

$$
x + 3 \longdiv { 2 x ^ { 3 } + 7 x ^ { 2 } - 3 x - 2 5 }
$$

$$
\underline{2 x^{3}+6 x^{2}}
$$

$$
x^{2}-3 x
$$

$$
x^{2}+3 x
$$

$$
-6 x-25
$$

$$
-6 x-18
$$

$$
-7
$$

PTS: 2 REF: 062203aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: division
4 ANS: 2

$40-(20+22-15)=13$
PTS: 2 REF: 062204aii NAT: S.CP.A. 1 TOP: Venn Diagrams
5 ANS: $3 \quad$ PTS: 2
TOP: Transformations with Functions
6 ANS: $2 \quad$ PTS: 2
REF: 062206aii NAT: A.APR.B. 2
TOP: Remainder Theorem

7 ANS: 1

$$
\begin{aligned}
\ln e^{x+2} & =\ln \frac{7}{5} \\
(x+2) \ln e & =\ln \frac{7}{5} \\
x & =-2+\ln \frac{7}{5}
\end{aligned}
$$

PTS: 2 REF: 062207aii NAT: F.LE.A. 4 TOP: Exponential Equations KEY: without common base
8 ANS: 2

$$
\begin{aligned}
& 2 x+4 y-2 z=2-x-3 y+2 z=0 \quad x+y=2 \quad 3+2 y-z=1 \quad 2 y-z=-2 \\
& \underline{-x-3 y+2 z=0} \quad \underline{4 x-8 y+2 z=20} \underline{x-y=4 \quad 6-4 y+z=10 \quad \underline{2(-1)-z=-2}} \\
& x+y=2 \quad 5 x-5 y=20 \quad 2 x=6 \quad 2 y-z=-2 \quad z=0 \\
& x-y=4 \quad x=3 \quad \frac{-4 y+z=4}{-2 y=2} \\
& y=-1
\end{aligned}
$$

PTS: 2 REF: 062208aii NAT: A.REI.C. 6 TOP: Solving Linear Systems
KEY: three variables
9 ANS: 3
$M=\frac{240000\left(\frac{4.5 \%}{12}\right)\left(1+\frac{4.5 \%}{12}\right)^{15 \times 12}}{\left(1+\frac{4.5 \%}{12}\right)^{15 \times 12}-1} \approx 1835.98$
PTS: 2 REF: 062209aii NAT: F.IF.B. 4 TOP: Evaluating Exponential Expressions
10 ANS: 3
$x^{2}-6 x+9-\left(x^{2}+6 x+9\right)=-12 x$
PTS: 2 REF: 062210aii NAT: F.BF.A. 1 TOP: Operations with Functions
11 ANS: 2
The mass of the carbon-14 is decreasing by half every 5715 years.
PTS: 2 REF: 062211aii NAT: F.LE.B. 5 TOP: Modeling Exponential Functions
12 ANS: 4
$g(x): \frac{10-6}{4-2}=2 t(x): \frac{3--5}{4-2}=4$
PTS: 2 REF: 062212ai NAT: F.IF.C. 9 TOP: Comparing Functions

13 ANS: 1
The vertical distance from the directrix to the vertex, p, is 2 . The vertical distance from the vertex to the focus must also be 2 .

PTS: 2 REF: 062213aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions
14 ANS: 1 PTS: 2
TOP: Normal Distributions
15 ANS: 4 PTS: 2
TOP: Graphing Logarithmic Functions
16 ANS: 4 PTS: 2
REF: 062216aii NAT: S.IC.B. 3
TOP: Analysis of Data
KEY: type
17 ANS: 3
$y=-6 x+\frac{1}{2}$
$x=-6 y+\frac{1}{2}$
$x-\frac{1}{2}=-6 y$
$-\frac{1}{6}\left(x-\frac{1}{2}\right)=y$
PTS: 2 REF: 062217aii NAT: F.BF.B. 4 TOP: Inverse of Functions
KEY: linear
18 ANS: 2
$x ^ { 2 } + 3 \longdiv { x ^ { 2 } + 0 x + 1 2 }$

$$
\underline{x^{2}+0 x+3}
$$

9
PTS: 2
REF: 062218aii
NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: division
19 ANS: 2
PTS: 2
REF: 062219aii NAT: F.TF.A. 1
TOP: Unit Circle
20 ANS: 4

1) $d(2)=2$;2) $d(1)=12$;3) $d(9) \approx 11$; 4) $d(-1)=2$

PTS: 2 REF: 062220aii NAT: F.IF.B. 4 TOP: Graphing Trigonometric Functions
21 ANS: 2
$a_{2}=8+\log _{2+1} 1=8+0=8$
$a_{3}=8+\log _{3+1} 2=8+\frac{1}{2}=8.5$
PTS: 2 REF: 062221aii NAT: F.IF.A. 3 TOP: Sequences

22 ANS: 2 PTS: 2 REF: 062222aii NAT: F.IF.C. 9
TOP: Comparing Functions
23 ANS: 4
$x^{3}-x^{2} y i-x y^{2}+x^{2} y i-x y^{2} i^{2}-y^{3} i=x^{3}-x y^{2}-x y^{2}(-1)-y^{3} i=x^{3}-y^{3} i$
PTS: 2 REF: 062223aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers
24 ANS: 1
$\left(1.03^{\frac{1}{12}}\right)^{12 t} \approx 1.00247^{12 t}$
PTS: 2 REF: 062224aii NAT: A.SSE.B. 3 TOP: Modeling Exponential Functions
25 ANS:
$b^{2}-4 a c=(-4)^{2}-4(1)(13)=16-52=-36$ imaginary
PTS: 2 REF: 062225aii NAT: A.REI.B. 4 TOP: Using the Discriminant KEY: determine nature of roots given equation, graph, table
26 ANS:
$S_{5}=\frac{6-6(.8)^{5}}{1-.8} \approx 20.17$
PTS: 2 REF: 062226aii NAT: A.SSE.B. 4 TOP: Series
27 ANS:

$$
\begin{aligned}
\frac{3}{n} & =\frac{2}{n^{2}} \quad 0 \text { is an extraneous solution. } \\
3 n^{2} & =2 n \\
3 n^{2}-2 n & =0 \\
n(3 n-2) & =0 \\
n & =0, \frac{3}{2}
\end{aligned}
$$

PTS: 2 REF: 062228aii NAT: A.REI.A. 2 TOP: Solving Rationals
28 ANS:

$$
\begin{gathered}
-x\left(2 x^{3}-x^{2}-18 x+9\right) \\
-x\left(x^{2}(2 x-1)-9(2 x-1)\right) \\
-x\left(x^{2}-9\right)(2 x-1) \\
-x(x+3)(x-3)(2 x-1)
\end{gathered}
$$

PTS: 2 REF: 062228aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials
KEY: factoring by grouping

29 ANS:
Yes. $\quad P(\mathrm{Bl})=P(\mathrm{Bl} \mid \mathrm{Gl})$

$$
0.14+0.26=\frac{.14}{.35}
$$

$$
.4=.4
$$

PTS: 2
30 ANS:
$\sqrt[3]{81}=\sqrt[3]{3^{4}}=3^{\frac{4}{3}} \quad a=\frac{4}{3}$
PTS: 2
REF: 062230aii
NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents
KEY: variables
31 ANS:

PTS: 2
KEY: graph
32 ANS:
$F(t)=169.136(.971)^{t}$
PTS: 2
REF: 062232aii
NAT: S.ID.B. 6 TOP: Regression
KEY: exponential

33 ANS:

PTS: 4 REF: 062233aii NAT: A.REI.D. 11 TOP: Other Systems
34 ANS:
$t=2 \pi \sqrt{\frac{67}{9.81}} \approx 16.49 .6=2 \pi \sqrt{\frac{L}{9.81}}$

$$
L \approx 22.9
$$

PTS: 4 REF: 062234aii NAT: A.REI.A. 2 TOP: Solving Radicals
KEY: context
35 ANS:
$.651 \pm 2 . .034=.58-.72$. No, since $.61(122 / 200)$ falls within the 95% interval.
PTS: 4 REF: 062235aii NAT: S.IC.A. 2 TOP: Analysis of Data
36 ANS:

$$
\left.\begin{array}{rlrl}
x^{2}+(2 x-5)^{2} & =25 & y+5 & =2(0) \\
x^{2}+4 x^{2}-20 x+25 & =25 & y & =-5
\end{array}\right) \quad y=2(4)(0,-5),(4,3)
$$

PTS: 4 REF: 062236aii NAT: A.REI.C. 7 TOP: Quadratic-Linear Systems
37 ANS:
$1.5 \% ; P(t)=92.2(1.015)^{t} ; \quad \frac{300}{92.2}=(1.015)^{t}$

$$
\begin{aligned}
\log \frac{300}{92.2} & =t \log (1.015) \\
\frac{\log \frac{300}{92.2}}{\log (1.015)} & =t \\
t & \approx 79
\end{aligned}
$$

PTS: 6
REF: 062237aii NAT: A.CED.A. 1 TOP: Exponential Growth

0822aii

Answer Section

1 ANS: $3 \quad$ PTS: 2
REF: 082201aii NAT: S.IC.B. 3
TOP: Analysis of Data
KEY: type
2 ANS: 4
$(x-2 i)(x-2 i)=x^{2}-4 x i+4 i^{2}=x^{2}-4 x i-4$
PTS: 2 REF: 082202aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers
3 ANS: 2
PTS: 2
REF: 082203aii
NAT: F.IF.C. 7
TOP: Graphing Trigonometric Functions
KEY: amplitude
4 ANS: 2 PTS: 2 REF: 082204ai
NAT: S.IC.B. 3
TOP: Analysis of Data
5 ANS: $4 \quad$ PTS: 2
KEY: type
REF: 082205aii NAT: F.TF.A. 2
TOP: Unit Circle
6 ANS: 2
$2 x^{3}+x^{2}-18 x-9$
$x^{2}(2 x+1)-9(2 x+1)$
$\left(x^{2}-9\right)(2 x+1)$
$(x+3)(x-3)(2 x+1)$
PTS: 2 REF: 082206aii NAT: A.APR.B. 2 TOP: Remainder Theorem
7 ANS: 4
Translate the parent \log function 2 to the right and reflect over the x-axis.
PTS: 2 REF: 082207aii NAT: F.IF.C. 7 TOP: Graphing Logarithmic Functions
8 ANS: 1
The product of the roots equals $(3+i)(3-i)=9-i^{2}=10=\frac{c}{a}$. OR

$$
\begin{aligned}
(x-(3+i))(x-(3-i)) & =0 \\
(x-3-i)(x-3+i) & =0 \\
((x-3)-i)((x-3)+i) & =0 \\
(x-3)^{2}-i^{2} & =0 \\
x^{2}-6 x+9+1 & =0 \\
x^{2}-6 x+10 & =0
\end{aligned}
$$

PTS: 2
REF: 082208aii
NAT: A.REI.B. 4 TOP: Complex Conjugate Root Theorem

9 ANS: 4

$$
\begin{aligned}
\frac{15000}{12000} & =\frac{12000 e^{.025 t}}{12000} \\
1.25 & =e^{.025 t} \\
\ln 1.25 & =\ln e^{.025 t} \\
\ln 1.25 & =.025 t \\
\frac{\ln 1.25}{.025} & =t
\end{aligned}
$$

PTS: 2 REF: 082209aii NAT: F.LE.A. 4 TOP: Exponential Growth
10 ANS: 1

PTS: 2 REF: 082210aii NAT: A.REI.D. 11 TOP: Other Systems
11 ANS: 1

1) $A(20)>0 ; 2) .5 \times .5=.25$; 3) true; 4) $A(7) \approx 9.9$

PTS: 2 REF: 082211aii NAT: F.LE.B. 5 TOP: Modeling Exponential Functions
12 ANS: 3
The distance from the vertex to the focus, p, is 4 . Since the focus is below the vertex, p is negative.
$y=-\frac{1}{4(4)}(x-2)^{2}+1$
PTS: 2 REF: 082212aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions
13 ANS: 1
$\left(a \sqrt[3]{2 b^{2}}\right)\left(\sqrt[3]{4 a^{2} b}\right)=a \sqrt[3]{8 a^{2} b^{3}}=2 a b \sqrt[3]{a^{2}}$
PTS: 2 REF: 082213aii NAT: N.RN.A. 2 TOP: Operations with Radicals
KEY: with variables, index >2
14 ANS: 3 PTS: 2
TOP: Graphing Exponential Functions
15 ANS: 2
$\frac{x^{2}+3 x}{x^{2}+5 x+6}=\frac{x(x+3)}{(x+2)(x+3)}$
PTS: 2
REF: 082215aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: factoring

16 ANS: 4
1) is a correct formula, but not recursive
PTS: 2 REF: 082216aii NAT: F.LE.A. 2 TOP: Sequences
KEY: recursive
17 ANS: 2
$x - 2 \longdiv { x ^ { 3 } - 0 x ^ { 2 } + 0 x - 2 }$
$\underline{x^{3}-2 x^{2}}$
$2 x^{2}+0 x$
$\underline{2 x^{2}-4 x}$
$4 x-2$
$\underline{4 x-8}$
6
PTS: 2 REF: 082217aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: division
18 ANS: 3
$\frac{4}{k^{2}-8 k+12}=\frac{k(k-6)+(k-2)}{k^{2}-8 k+12} k=6$ is extraneous

$$
4=k^{2}-6 k+k-2
$$

$$
0=k^{2}-5 k-6
$$

$$
0=(k-6)(k+1)
$$

$$
k=6,-1
$$

PTS: 2 REF: 082218aii NAT: A.REI.A. 2 TOP: Solving Rationals
19 ANS: 1
2) $\left(x^{4}-x^{2} y^{2}+y^{4}\right) \neq\left(x^{2}-y^{2}\right)\left(x^{2}-y^{2}\right)$; 3) $x^{6}+y^{6} \neq\left(x^{3}+y^{3}\right)^{2}$; 4) $\frac{x^{6}+y^{6}}{x^{2}+y^{2}} \neq x^{6}+y^{6}-\left(x^{2}+y^{2}\right)$

PTS: 2 REF: 082219aii NAT: A.APR.C. 4 TOP: Polynomial Identities
20 ANS: 4 PTS: 2 REF: 082220aii NAT: F.IF.B. 4
TOP: Graphing Trigonometric Functions
21 ANS: 1 PTS: 2 REF: 082221aii NAT: F.BF.B. 6
TOP: Sigma Notation KEY: represent
22 ANS: 2 PTS: 2 REF: 082222aii NAT: A.CED.A. 1
TOP: Modeling Rationals

23 ANS: 3
$x=-\frac{2 y}{5}+4 \quad y=-\frac{5}{2}(6)+10=-5$
$5 x=-2 y+20$
$2 y=-5 x+20$
$y=-\frac{5}{2} x+10$
PTS: 2 REF: 082223aii NAT: F.BF.B. 4 TOP: Inverse of Functions
KEY: linear
24 ANS: 1
$0.5^{\frac{1}{0.0803}} \approx 0.000178$
PTS: 2 REF: 082224aii NAT: A.SSE.B. 3 TOP: Modeling Exponential Functions
25 ANS:
$\frac{60-20}{4-2}=\frac{40}{2}=20$
PTS: 2 REF: 082225aii NAT: F.IF.B. 6 TOP: Rate of Change
26 ANS:
$x^{3}-2 x^{2}-9 x+18=x^{2}(x-2)-9(x-2)=\left(x^{2}-9\right)(x-2)=(x+3)(x-3)(x-2)$
PTS: 2 REF: 082226aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials
KEY: factoring by grouping
27
ANS:
$\sqrt{4 x+1}=11-x \quad 20$ is extraneous.

$$
\begin{aligned}
4 x+1 & =121-22 x+x^{2} \\
0 & =x^{2}-26 x+120 \\
0 & =(x-6)(x-20) \\
x & =6,20
\end{aligned}
$$

PTS: 2 REF: 082227aii NAT: A.REI.A. 2 TOP: Solving Radicals
KEY: extraneous solutions

ANS:
$\left(\frac{y^{\frac{17}{8}}}{y^{\frac{10}{8}}}\right)^{-4}=y^{n} \quad n=-\frac{7}{2}$

$$
\begin{gathered}
\left(y^{\frac{7}{8}}\right)^{-4}=y^{n} \\
y^{-\frac{7}{2}}=y^{n}
\end{gathered}
$$

PTS: 2 REF: 082228aii NAT: A.APR.D. 6 TOP: Expressions with Negative Exponents
KEY: variables
29 ANS:
$\cos A=\frac{\cos A}{\sin A}$

$$
-3=\frac{\frac{3}{\sqrt{10}}}{\sin A}
$$

$\sin A=\frac{3}{-3 \sqrt{10}}=-\frac{1}{\sqrt{10}}$
PTS: 2 REF: 082229aii NAT: F.TF.C. 8 TOP: Determining Trigonometric Functions
30 ANS:
$0.133696 \times 9256 \approx 1237$
PTS: 2 REF: 082230aii NAT: S.ID.A. 4 TOP: Normal Distributions
KEY: predict
31 ANS:
No, because $P(F / C R) \neq P(F)$

$$
\begin{aligned}
\frac{36}{42+36} & \neq \frac{17+37+36+15}{39+17+42+12+17+37+36+15} \\
\frac{36}{78} & \neq \frac{105}{215} \\
\frac{6}{13} & \neq \frac{21}{43}
\end{aligned}
$$

PTS: 2
REF: 082231aii NAT: S.CP.A. 4
TOP: Conditional Probability

32 ANS:

$$
\begin{aligned}
2 x^{2}-7 x+4 & =11-2 x \quad y=11-2\left(\frac{7}{2}\right)=4 \quad\left\{\left(\frac{7}{2}, 4\right),(-1,13)\right\} \\
2 x^{2}-5 x-7 & =0 \quad y=11-2(-1)=13 \\
(2 x-7)(x+1) & =0 \\
x & =\frac{7}{2},-1
\end{aligned}
$$

PTS: 2
REF: 082232aii
NAT: A.REI.C. 7 TOP: Quadratic-Linear Systems
33 ANS:
a) $p(t)=11000(2)^{\frac{t}{20}}$; b) $\quad \frac{1000000}{11000}=\frac{11000(2)^{\frac{t}{20}}}{11000}$

$$
\log \frac{1000}{11}=\log 2^{\frac{t}{20}}
$$

$$
\log \frac{1000}{11}=\frac{t \cdot \log 2}{20}
$$

$$
\frac{20 \log \frac{1000}{11}}{\log 2}=t
$$

$$
t \approx 130.13
$$

PTS: 4
REF: 082233aii
NAT: F.LE.A. 4
TOP: Exponential Growth
34 ANS:

PTS: 4
REF: 082234aii
NAT: F.IF.C. 7 TOP: Graphing Polynomial Functions

35 ANS:
$x - 4 \longdiv { 3 x ^ { 3 } - 4 x ^ { 2 } + 2 x - 1 } 3 x ^ { 2 } + 8 x + 3 4 + \frac { 1 3 5 } { x - 4 } x = 4$ is not a root of $f(x)$ because $\frac{f(x)}{g(x)}$ has a remainder.
$3 x^{3}-12 x^{2}$
$8 x^{2}+2 x$
$8 x^{2}-32 x$
$34 x-1$
$34 x-136$
135

PTS: 4 REF: 082235aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: division
36 ANS:
$.819 \pm 2.053=.713-.925$. Since .70 does not fall within the 95% interval.
PTS: 4 REF: 082236aii NAT: S.IC.A. 2 TOP: Analysis of Data
37 ANS:

there are 100 CSRs between the plans.
PTS: 6
REF: 082237aii NAT: A.REI.D. 11 TOP: Other Systems

0123aii Common Core State Standards

Answer Section

1 ANS: 1

$$
\begin{gathered}
u=x+2 \\
u^{2}-5 u+6 \\
(u-3)(u-2) \\
(x+2-3)(x+2-2) \\
(x-1) x
\end{gathered}
$$

PTS: 2 REF: 012301aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials KEY: higher power
2 ANS: 2
$4300 e^{0.07 x}=5123$

$$
\begin{aligned}
\ln e^{0.07 x} & =\ln \frac{5123}{4300} \\
0.07 x & =\ln \frac{5123}{4300} \\
x & =\frac{\ln \frac{5123}{4300}}{0.07} \\
x & \approx 2.5
\end{aligned}
$$

PTS: 2 REF: 012302aii NAT: F.LE.A. 4 TOP: Exponential Equations
KEY: without common base
3 ANS: 4 PTS: 2
TOP: Modeling Exponential Functions
4 ANS: 2
$p(x)=4^{x}, q(x)=\left(\frac{5}{9}\right)^{x}, r(x)=5.29^{x}, s(x)=2^{x}$

PTS: 2
REF: 012304aii
NAT: F.IF.C. 7 TOP: Graphing Exponential Functions

5 ANS: 1

$$
\begin{array}{r}
\frac{x^{3}-2 x^{2}-x+6}{x + 2 \longdiv { x ^ { 4 } + 0 x ^ { 3 } - 5 x ^ { 2 } + 4 x + 1 4 }} \\
\frac{x^{4}+2 x^{3}}{-2 x^{3}-5 x^{2}} \\
\frac{-2 x^{3}-4 x^{2}}{-x^{2}+4 x} \\
\frac{-x^{2}-2 x}{6 x+14} \\
\frac{6 x+12}{2}
\end{array}
$$

PTS: 2 REF: 012305aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: division
6 ANS: 3
$S_{20}=\frac{-2-(-2)(-3)^{20}}{1-(-3)}=1,743,392,200$

PTS: 2
REF: 012306aii
NAT: A.SSE.B. 4 TOP: Series
KEY: geometric
7 ANS: 2

$$
2 x^{4}-x^{3}-16 x+8=0
$$

$$
x^{3}(2 x-1)-8(2 x-1)=0
$$

$$
\left(x^{3}-8\right)(2 x-1)=0
$$

$$
x=2, \frac{1}{2}
$$

PTS: 2
REF: 012307aii NAT: A.APR.B. 2 TOP: Remainder and Factor Theorems

8 ANS: 3

$$
\begin{aligned}
(6-k i)^{2} & =27-36 i \\
36-12 k i+k^{2} i^{2} & =27-36 i \\
9-k^{2}-12 k i & =-36 i
\end{aligned}
$$

Set real part equal to real part: $9-k^{2}=0$ Set imaginary part equal to imaginary part: $\quad-12 k i=-36 i$

$$
\begin{aligned}
k= \pm 3 \quad \frac{-12 k i}{-12 i} & =\frac{-36 i}{-12 i} \\
k & =3
\end{aligned}
$$

PTS: 2 REF: 012308aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers
9 ANS: 3

$$
\begin{aligned}
\frac{x+2}{x}+\frac{x}{3} & =\frac{2 x^{2}+6}{3 x} 0 \text { is extraneous. } \\
\frac{x^{2}+3 x+6}{3 x} & =\frac{2 x^{2}+6}{3 x} \\
x^{2}+3 x+6 & =2 x^{2}+6 \\
x^{2}-3 x & =0 \\
x(x-3) & =0 \\
x & =0,3
\end{aligned}
$$

PTS: 2 REF: 012309aii NAT: A.REI.A. 2 TOP: Solving Rationals
10 ANS: 4
$\frac{1}{2} x^{2}+2 x=\frac{1}{4} x-8 \quad b^{2}-4 a c$
$2 x^{2}+8 x=x-32 \quad 7^{2}-4(2)(32)<0$
$2 x^{2}+7 x+32=0$
PTS: 2 REF: 012310aii NAT: A.REI.C. 7 TOP: Quadratic-Linear Systems
11 ANS: 2
PTS: 2
REF: 012311aii NAT: A.APR.C. 4
TOP: Polynomial Identities
12
$\frac{x^{\frac{1}{5}}}{x^{\frac{1}{2}}}=x^{\frac{1}{5}-\frac{1}{2}}=x^{-\frac{3}{10}}=\frac{1}{x^{\frac{3}{10}}}=\frac{1}{\sqrt[10]{x^{3}}}$
PTS: 2 REF: 012312aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents

13 ANS: 2
$1=\frac{2 \pi}{k}$
$k=2 \pi$
PTS: 2 REF: 012313aii NAT: F.TF.B. 5 TOP: Modeling Trigonometric Functions
14 ANS: 4
PTS: 2
REF: 012314aii
NAT: S.IC.B. 3
TOP: Analysis of Data
15 ANS: 3
$x=\frac{1}{2} y+2$
$2 x=y+4$
$y=2 x-4$
PTS: 2
REF: 012315aii
NAT: F.BF.B. 4 TOP: Inverse of Functions
KEY: linear
16 ANS: 2

PTS: 2
REF: 012316aii
NAT: F.IF.B. 4
TOP: Graphing Polynomial Functions
17 ANS: 3

PTS: 2 REF: 012317aii NAT: A.REI.D. 11 TOP: Other Systems
18 ANS: 2

1) $x \rightarrow \infty, f(x) \rightarrow \infty$; 3) quartic polynomial; 4) three real roots

PTS: 2
REF: 012318aii
NAT: A.APR.B. 3 TOP: Graphing Polynomial Functions

19 ANS: 4
$2 \times 0.035=0.07$ or $M E=\left(z \sqrt{\frac{p(1-p)}{n}}\right)=\left(1.96 \sqrt{\frac{(0.65)(0.35)}{200}}\right) \approx 0.07$
PTS: 2 REF: 012319aii NAT: S.IC.B. 4 TOP: Analysis of Data
20 ANS: 3
$\sin ^{2} A+\left(\frac{\sqrt{5}}{3}\right)^{2}=1 \quad$ Since $\tan A<0, \sin A=-\frac{2}{3}$

$$
\sin ^{2} A+\frac{5}{9}=\frac{9}{9}
$$

$$
\sin ^{2} A=\frac{4}{9}
$$

$$
\sin A= \pm \frac{2}{3}
$$

PTS: 2 REF: 012320aii NAT: F.TF.C. 8 TOP: Determining Trigonometric Functions
21 PNS: 2 PTS: 2 REF: 012321aii NAT: F.BF.A. 2
TOP: Sequences
22 ANS: 4
The distance between the focus and directrix is $1--3=4 . p$ is half this distance, or 2 . The vertex of the parabola is $(4,-1)$. Since the directrix is above the focus, the parabola faces downward. $y=-\frac{1}{4 p}(x-h)^{2}+k$

$$
\begin{aligned}
& y=-\frac{1}{4(2)}(x-4)^{2}-1 \\
& y+1=-\frac{1}{8}(x-4)^{2}
\end{aligned}
$$

PTS: 2 REF: 012322aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions
23 ANS: 1
$1.0325^{\frac{1}{12}} \approx 1.0027$
PTS: 2 REF: 012323aii NAT: A.SSE.B. 3 TOP: Modeling Exponential Functions
24 ANS: 2

1) 1 real, mult. 2; 3) not a quadratic; 4) not a function.

PTS: 2 REF: 012324aii NAT: F.IF.C. 7 TOP: Graphing Polynomial Functions

25 ANS:

$$
\begin{aligned}
3\left(x^{3}+4 x^{2}-x-4\right) & =0 \\
\left(x^{2}(x+4)-(x+4)\right) & =0 \\
\left(x^{2}-1\right)(x+4) & =0 \\
x & = \pm 1,-4
\end{aligned}
$$

PTS: 2 REF: 012325aii NAT: A.APR.B. 3 TOP: Solving Polynomial Equations 26 ANS:
$a^{x+1}=a^{\frac{2}{3}}$
$x+1=\frac{2}{3}$

$$
x=-\frac{1}{3}
$$

PTS: 2 REF: 012326aii
KEY: common base shown
27 ANS:
$\frac{1}{3} \times \frac{5}{12}=\frac{5}{36}$
PTS: 2 REF: 012327aii NAT: S.CP.A. 2 TOP: Probability of Compound Events
KEY: probability
28 ANS:

PTS: 2
REF: 012328aii
NAT: S.ID.A. 4 TOP: Normal Distributions
KEY: percent
29
ANS:
$y=2.459(1.616)^{x}$
PTS: 2 REF: 012329aii NAT: S.ID.B. 6 TOP: Regression
KEY: exponential

30 ANS:

$$
\begin{gathered}
\left(x^{3}+2 x-1\right)\left(x^{2}+7\right)-3\left(x^{4}-5 x\right) \\
x^{5}+7 x^{3}+2 x^{3}+14 x-x^{2}-7-3 x^{4}+15 x \\
x^{5}-3 x^{4}+9 x^{3}-x^{2}+29 x-7
\end{gathered}
$$

PTS: 2 REF: 012330aii NAT: F.BF.A. 1 TOP: Operations with Functions
31 ANS:

$$
\begin{gathered}
x^{4}-5 x^{2}+4 \\
\left(x^{2}-4\right)\left(x^{2}-1\right) \\
(x+2)(x-2)(x+1)(x-1)
\end{gathered}
$$

PTS: 2 REF: 012331aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials
32 ANS:
$\pi<\theta<2 \pi \rightarrow$ Quadrant III or IV θ must be in Quadrant IV, where $\tan \theta$ is negative.
$\cos \theta=\frac{\sqrt{3}}{4} \rightarrow$ Quadrant I or IV
PTS: 2 REF: 012332aii NAT: F.TF.A. 2 TOP: Finding the Terminal Side of an Angle
33 ANS:

$$
\begin{aligned}
\sqrt{49-10 x} & =2 x-5 \quad-\frac{3}{2} \text { is extraneous. } \\
49-10 x & =4 x^{2}-20 x+25 \\
0 & =4 x^{2}-10 x-24 \\
0 & =2 x^{2}-5 x-12 \\
0 & =(2 x+3)(x-4) \\
x & =-\frac{3}{2}, 4
\end{aligned}
$$

PTS: 4 REF: 012333aii NAT: A.REI.A. 2 TOP: Solving Radicals KEY: extraneous solutions
34 ANS:
$\frac{1}{10}, \frac{1}{5}$, and no, since 0.10 clearly falls within 95% of 0.20 .
PTS: 4 REF: 012334aii NAT: S.IC.A. 2 TOP: Analysis of Data

35 ANS:

$$
\text { As } x \rightarrow \infty, c(x) \rightarrow-\infty \text {. As } x \rightarrow-\infty, c(x) \rightarrow 2 .
$$

PTS: 4 REF: 012335aii NAT: F.IF.C. 7 TOP: Graphing Exponential Functions
36 ANS:
$\frac{B(10)-B(6)}{10-6} \approx-3.88$. The average monthly high temperature decreases about 4° each month from June and October.

PTS: 4 REF: 012336aii NAT: F.IF.B. 6 TOP: Rate of Change
37 ANS:
$T=(400-75) e^{-0.0735 t}+75,325 e^{-0.0735(5)}+75 \approx 300,270=(450-75) e^{-8 r}+75,325 e^{-0.0735 t}+75=375 e^{-0.0817 t}+75$
$r \approx 0.0817 \quad t \approx 17$
PTS: 6 REF: 012337aii NAT: A.CED.A. 1 TOP: Exponential Decay

0623aii

Answer Section

1 ANS: 2

1) $\frac{29860-629}{1910-1850} \approx 487$; 2) $\frac{790390-494290}{2010-1990} \approx 14805$; 3) $\frac{251808-132459}{1970-1950} \approx 5967$; 4) $\frac{251808-14575}{1970-1890} \approx 2965$

PTS: 2 REF: 062301aii NAT: F.IF.B. 6 TOP: Rate of Change
2 ANS: 3
PTS: 2
TOP: Factoring Polynomials
3 ANS: 4
$s(x)=x^{4}-9 x^{2}+3 x^{3}-27 x-10 x^{2}+90=x^{4}+3 x^{3}-19 x^{2}-27 x+90$

PTS: 2 REF: 062303aii NAT: A.APR.B. 3 TOP: Solving Polynomial Equations
4 ANS: 2
$\sqrt{(-2)^{2}+(-3)^{2}}=\sqrt{13} ; \tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{\frac{-3}{\sqrt{13}}}{\frac{-2}{\sqrt{13}}}=\frac{3}{2}$
PTS: 2 REF: 062304aii
NAT: F.TF.A. 2
TOP: Determining Trigonometric Functions
KEY: extension to reals
5 ANS: 2
$-23(1)+56=33 ;-23(-1)+56=79$
PTS: 2
REF: 062305aii
NAT: F.IF.A. 2
TOP: Domain and Range
KEY: real domain, trigonometric
6 ANS: 2
$a \sqrt[5]{a^{4}}=a^{\frac{5}{5}} \cdot a^{\frac{4}{5}}=a^{\frac{9}{5}}$
PTS: 2 REF: 062306aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents
7 ANS: 3
$3 i\left(a i-6 i^{2}\right)=3 a i^{2}-18 i^{3}=-3 a+18 i$
PTS: 2
REF: 062307aii
NAT: N.CN.A. 2
TOP: Operations with Complex Numbers
8 ANS: $1 \quad$ PTS: 2
TOP: Graphing Logarithmic Functions

9 ANS: 4
PTS: 2
REF: 062309aii NAT: F.IF.C. 9
TOP: Comparing Functions
10 ANS: 2
$\left(x^{2}+3\right)^{2}-2\left(x^{2}+3\right)-24$ let $u=x^{2}+3$

$$
\begin{aligned}
& u^{2}-2 u-24 \\
& (u-6)(u+4) \\
& \left(x^{2}+3-6\right)\left(x^{2}+3+4\right)
\end{aligned}
$$

PTS: 2 REF: 062310aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials
11 ANS: 3

$$
\begin{aligned}
& x+y+z=2 \quad x-2 y-z=-4 \quad 2 x-y=-2 \quad x+2+z=2 \quad x+z=0 \quad 0+2+z=2 \\
& \underline{x-2 y-z=-4} \quad \underline{x-9 y+z=-18} \quad \underline{2 x-11 y=-22} \quad x-2(2)-z=-4 \quad \underline{x-z=0} \quad z=0 \\
& 2 x-y=-2 \quad 2 x-11 y=-22 \quad 2 x=0 \\
& y=2 \quad x=0
\end{aligned}
$$

PTS: 2 REF: 062311aii NAT: A.REI.C. 6 TOP: Solving Linear Systems
KEY: three variables
12 ANS: 1
$x^{2}-4 x+4=-13+4$

$$
\begin{aligned}
(x-2)^{2} & =-9 \\
x-2 & = \pm 3 i \\
x & =2 \pm 3 i
\end{aligned}
$$

PTS: 2
REF: 062312aii NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: complex solutions | completing the square
13 ANS: 1
$2 x + 4 \longdiv { 2 x ^ { 3 } + 0 x ^ { 2 } + 2 x - 7 }$

$$
\begin{aligned}
& \frac{2 x^{3}+4 x^{2}}{-4 x^{2}+2 x} \\
& \frac{-4 x^{2}-8 x}{10 x-7} \\
& \frac{10 x+20}{-27}
\end{aligned}
$$

PTS: 2 REF: 062313aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: division

14 ANS: 3
$y=1.77(1.18)^{x} \quad y(41) \approx 1,850,950$
PTS: 2 REF: 062314aii NAT: S.ID.B. 6 TOP: Regression
KEY: exponential
15 ANS: 3
$e^{\left(-\frac{3}{0.6}\right)} \approx 0.006738$
PTS: 2 REF: 062315aii NAT: A.SSE.B. 3 TOP: Modeling Exponential Functions
16 ANS: 4

PTS: 2 REF: 062316aii NAT: S.ID.A. 4 TOP: Normal Distributions
KEY: percent
17 ANS: 2
$.43 \pm 2(0.05)$ contains about 95% of the data.
PTS: 2 REF: 062317aii NAT: S.IC.B. 4 TOP: Analysis of Data
18 ANS: 1 PTS: 2 REF: 062318aii NAT: F.BF.B. 3
TOP: Even and Odd Functions
19 ANS: 1
$\frac{(x+3)(x+2)}{(x-5)(x+2)}+\frac{6(x-5)}{(x+2)(x-5)}=\frac{6+10 x}{(x-5)(x+2)} 5$ is extraneous.

$$
\begin{aligned}
x^{2}+5 x+6+6 x-30 & =10 x+6 \\
x^{2}+x-30 & =0 \\
(x+6)(x-5) & =0 \\
x & =-6,5
\end{aligned}
$$

PTS: 2 REF: 062319aii NAT: A.REI.A. 2 TOP: Solving Rationals
20 ANS: 4
I. $\left(\frac{y}{x^{3}}\right)^{-1}=\frac{x^{3}}{y}$; II. $\sqrt[3]{x^{9}}\left(y^{-1}\right)=\frac{x^{\frac{9}{3}}}{y}=\frac{x^{3}}{y}$; III. $\frac{x^{64} \sqrt{y^{8}}}{x^{3} y^{3}}=\frac{x^{3} y^{\frac{8}{4}}}{y^{3}}=\frac{x^{3}}{y}$

PTS: 2 REF: 062320aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents

21 ANS: 3
$x=\frac{2}{3} y+\frac{1}{6}$
$6 x=4 y+1$
$4 y=6 x-1$
$y=\frac{6}{4} x-\frac{1}{4}$
PTS: 2 REF: 062321aii NAT: F.BF.B. 4 TOP: Inverse of Functions
KEY: linear
22 ANS: 4
$\left(x^{2}-y^{2}\right)+(2 x y)^{2}=x^{2}+4 x^{2} y^{2}-y^{2}$
$(x-y)+\left(x^{2}-x y+y^{2}\right)=x^{2}+x-y-x y+y^{2}$
$(x-y)(x-y)\left(x^{2}+y^{2}\right)=\left(x^{2}-2 x y+y^{2}\right)\left(x^{2}+y^{2}\right)=x^{4}-2 x^{3} y+x^{2} y^{2}+x^{2} y^{2}-2 x y^{3}+y^{4}$
PTS: 2 REF: 062322aii NAT: A.APR.C. 4 TOP: Polynomial Identities
23 ANS: 2
Since the distance from the focus to the directrix is $2, p=1$ and the vertex of the parabola is $(0,5)$.

$$
\begin{aligned}
y & =\frac{1}{4 p}(x-h)^{2}+k \\
y & =\frac{1}{4(1)}(x-0)^{2}+5 \\
y & =\frac{1}{4} x^{2}+5 \\
y-5 & =\frac{1}{4} x^{2} \\
4(y-5) & =x^{2}
\end{aligned}
$$

PTS: 2 REF: 062323aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions
TOP: Series
PTS: 2
KEY: geometric
REF: 062324aii NAT: A.SSE.B. 4
25 ANS:
Pick random names from a list of all students and ask each one his method.
PTS: 2
REF: 062325aii
NAT: S.IC.B. 3 TOP: Analysis of Data

26 ANS:
$3 x+7=x^{2}-2 x+1 \quad-1$ is extraneous.

$$
\begin{aligned}
& 0=x^{2}-5 x-6 \\
& 0=(x-6)(x+1) \\
& x=6,-1
\end{aligned}
$$

PTS: 2 REF: 062326aii NAT: A.REI.A. 2 TOP: Solving Radicals
KEY: extraneous solutions
27
ANS:
$e^{0.0532}>1$, so $P(t)$ is increasing.
PTS: 2 REF: 062327aii NAT: F.IF.C. 7 TOP: Graphing Exponential Functions
28 ANS:

$$
\begin{aligned}
g(3)=0 ; \quad 0 & =3^{3}+a(3)^{2}-5(3)+6 \\
0 & =27+9 a-15+6 \\
-18 & =9 a \\
a & =-2
\end{aligned}
$$

PTS: 2 REF: 062328aii NAT: A.APR.B. 2 TOP: Remainder and Factor Theorems
29 ANS:
$\frac{63}{189}=\frac{1}{3} \quad a_{1}=189$

$$
a_{n}=\frac{1}{3} a_{n-1}
$$

PTS: 2
REF: 062329aii NAT: F.LE.A. 2 TOP: Sequences
KEY: recursive
30 ANS:

$$
\begin{aligned}
\ln e^{0.49 x} & =\ln 7.5 \\
0.49 x & =\ln 7.5 \\
x & =\frac{\ln 7.5}{0.49} \approx 4.112
\end{aligned}
$$

PTS: 2 REF: 062330aii NAT: F.LE.A. 4 TOP: Exponential Equations KEY: without common base
31 ANS:
$\frac{x^{2}(2 x+1)-9(2 x+1)}{x(3-x)}=\frac{\left(x^{2}-9\right)(2 x+1)}{x(3-x)}=\frac{(x+3)(x-3)(2 x+1)}{x(3-x)}=\frac{(x+3)(2 x+1)}{-x}$
PTS: 2
REF: 062331ai NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: factoring

32 ANS:
No. $0.852 \pm 2(0.029) \rightarrow 0.794-0.91$. 0.88 falls within this interval.
PTS: 2 REF: 062332aii NAT: S.IC.A. 2 TOP: Analysis of Data
33 ANS:

$p(x)=(x-2)(x-3)(x+6)$
REF: 062333aii NAT: F.IF.C. 7 TOP: Graphing Polynomial Functions
34 ANS:
$\frac{1200}{1200+2016} \approx .373$. Yes, because $\frac{1600}{4288} \approx .373$ also.
PTS: 4 REF: 062334aii NAT: S.CP.A. 4 TOP: Conditional Probability
35
ANS:

$$
(x-2)^{2}+(-2 x+7-3)^{2}=20 \quad y=-2(0)+7=7 \quad(0,7),(4,-1)
$$

$$
(x-2)^{2}+(-2 x+4)^{2}=20 \quad y=-2(4)+7=-1
$$

$x^{2}-4 x+4+4 x^{2}-16 x+16=20$

$$
\begin{aligned}
5 x^{2}-20 x & =0 \\
5 x(x-4) & =0 \\
x & =0,4
\end{aligned}
$$

PTS: 4 REF: 062335aii NAT: A.REI.C. 7 TOP: Quadratic-Linear Systems
36 ANS:
$P(x)=500(0.97)^{x} ; 18$; The number of palm trees and flamingos will be equal in 18 years.
$F(x)=200 e^{0.02 x}$
PTS: 4 REF: 062336aii NAT: A.REI.D. 11 TOP: Other Systems

37 ANS:
$N(t)=400 \sin \left(\frac{2 \pi}{5} t\right)+2400$.
PTS: 6
REF: 062337aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions

4 times.

0823aii

Answer Section
1 ANS: 4 PTS: 2
REF: 082301aii NAT: S.IC.B. 3
TOP: Analysis of Data
2 ANS: 2

$$
\begin{array}{r}
2 x^{2}-3 x+5 \\
\frac{2 x^{3}+6 x^{2}}{-3 x^{2}-4 x} \\
\frac{-3 x^{2}-9 x}{5 x+5} \\
\frac{5 x+15}{-10}
\end{array}
$$

PTS: 2 REF: 082302aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: division
3 ANS: 1
$\frac{20}{14+20+6}=\frac{1}{2}$
PTS: 2 REF: 082303aii NAT: S.CP.A. 4 TOP: Conditional Probability
4 ANS: 3
$x=12 y-4$
$x+4=12 y$
$\frac{x+4}{12}=y$

PTS: 2 REF: 082304aii NAT: F.BF.B. 4 TOP: Inverse of Functions
KEY: linear
5 ANS: 4

$$
\begin{array}{rlr}
y & =-(x-1)^{2}+5 & 3+y=4 \\
4-x & =-x^{2}+2 x-1+5 & y=1 \\
x^{2}-3 x & =0 \\
x(x-3) & =0 \\
x & =0,3
\end{array}
$$

PTS: 2
REF: 082305aii
NAT: A.REI.C. 7 TOP: Quadratic-Linear Systems

6 ANS: 1
$\log 3^{x+4}=\log 28$
$\frac{(x+4) \log 3}{\log 3}=\frac{\log 28}{\log 3}$

$$
x+4=\frac{\log 28}{\log 3}
$$

$$
x=\log _{3} 28-4
$$

PTS: 2 REF: 082306aii NAT: A.CED.A. 1 TOP: Exponential Equations
KEY: without common base
7 ANS: 4
$45 \%+31 \%-58 \%=18 \%$
PTS: 2 REF: 082307aii NAT: S.CP.B. 7 TOP: Theoretical Probability
8 ANS: 2
PTS: 2
REF: 082308aii NAT: A.REI.B. 4
TOP: Using the Discriminant KEY: determine nature of roots given equation, graph, table
9 ANS: $1 \quad$ PTS: 2
REF: 082309aii NAT: F.BF.A. 1
TOP: Modeling Exponential Functions
10 ANS: 4
$f(0)=4 \sin (2(0))=0 ; g(0)=3(0)^{4}+2(0)^{3}+7=7 ; h(0)=5 e^{2(0)}+3=8 ; j(0)=6 \log _{2}(3(0)+4)=12$
PTS: 2 REF: 082310aii NAT: F.IF.C. 9 TOP: Comparing Functions
11 ANS: 2
$.962^{10} \approx .679$
PTS: 2 REF: 082311aii NAT: A.SSE.B. 3 TOP: Modeling Exponential Functions
12 ANS: 3
$\frac{-2}{\sqrt{5^{2}-2^{2}}}=\frac{-2}{\sqrt{21}}$

PTS: 2
13 ANS: 2
REF: 082312aii
NAT: F.TF.C. 8
REF: 082313aii NAT: S.ID.A. 4
TOP: Normal Distributions
KEY: percent
14 ANS: 3
$a=105,0<b<1$
PTS: 2
REF: 082314aii
NAT: F.BF.A. 1 TOP: Modeling Exponential Functions

15 ANS: 3

$$
\begin{aligned}
\sqrt{3 x+18} & =x \quad-3 \text { is extraneous. } \\
3 x+18 & =x^{2} \\
x^{2}-3 x-18 & =0 \\
(x-6)(x+3) & =0 \\
x & =6,-3
\end{aligned}
$$

PTS: 2 REF: 082315aii NAT: A.REI.A. 2 TOP: Solving Radicals
KEY: extraneous solutions
16 ANS: 4
$M=\frac{45000\left(\frac{6.75 \%}{12}\right)\left(1+\frac{6.75 \%}{12}\right)^{5 \times 12}}{\left(1+\frac{6.75 \%}{12}\right)^{5 \times 12}-1} \approx 885.76$
PTS: 2 REF: 082316aii NAT: F.IF.B. 4 TOP: Evaluating Exponential Expressions
17 ANS: 1
$50(.9)^{t}=25$

$$
t \approx 6.57
$$

PTS: 2 REF: 082317aii NAT: F.LE.A. 2 TOP: Modeling Exponential Functions
18 ANS: 4
PTS: 2
TOP: Graphing Polynomial Functions
19

PTS: 2
REF: 082319aii
NAT: A.REI.D. 11 TOP: Other Systems
20 ANS: 1

$-2 |$| 1 | -1 | -11 | 5 | 30 |
| ---: | ---: | ---: | ---: | ---: |
| | -2 | 6 | 10 | -30 |
| 1 | -3 | -5 | 15 | 0 |

Since there is no remainder when the quartic is divided by $x+2$, this binomial is a factor.
PTS: 2
REF: 082320aii NAT: A.APR.B. 2 TOP: Remainder and Factor Theorems

21 ANS: 4
$\frac{x^{2}+6}{x^{2}+4}=\frac{x^{2}+4}{x^{2}+4}+\frac{2}{x^{2}+4}=1+\frac{2}{x^{2}+4}$
PTS: 2 REF: 082321aii NAT: A.APR.D. 7 TOP: Addition and Subtraction of Rationals
22 ANS: 3
$95.4 x-6 x^{2}-\left(0.18 x^{3}+0.02 x^{2}+4 x+180\right)$
PTS: 2 REF: 082322aii NAT: F.BF.A. 1 TOP: Operations with Functions
23 ANS: 2
$f(x)=f(-x)$
$x^{2}+1=(-x)^{2}+1$
$x^{2}+1=x^{2}+1$
PTS: 2 REF: 082323aii NAT: F.BF.B. 3 TOP: Even and Odd Functions
24 ANS: 2 PTS: 2
REF: 082324aii NAT: A.APR.B. 3
TOP: Graphing Polynomial Functions
25 ANS:
$2 x^{3}-3 x^{2}-18 x+27$
$x^{2}(2 x-3)-9(2 x-3)$

$$
\left(x^{2}-9\right)(2 x-3)
$$

$(x+3)(x-3)(2 x-3)$
PTS: 2 REF: 082325aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials
26 ANS:
$x^{2}+8 x-5=8 x-4$

$$
\begin{aligned}
x^{2}-1 & =0 \\
x & = \pm 1
\end{aligned}
$$

PTS: 2 REF: 082326aii NAT: A.REI.C. 7 TOP: Quadratic-Linear Systems
27 ANS:
$x=\frac{-5 \pm \sqrt{5^{2}-4(3)(8)}}{2(3)}=-\frac{5}{6} \pm \frac{i \sqrt{71}}{6}$
PTS: 2 REF: 082327aii NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: complex solutions | quadratic formula

28 ANS:

PTS: 2 REF: 082328aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions
KEY: graph
29 ANS:
$\left(5 x i^{3}-4 i\right)^{2}=(-5 x i-4 i)^{2}=25 x^{2} i^{2}+40 x i^{2}+16 i^{2}=-25 x^{2}-40 x-16$
PTS: 2 REF: 082329aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers
30 ANS:
p is the distance from the focus to the vertex: $8-7=1 . p$ is the distance from the directrix to the vertex:
$1=7-d . y=6$
$d=6$
PTS: 2 REF: 082330aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions
31 ANS:
$\frac{x \cdot x^{\frac{3}{2}}}{x^{\frac{5}{3}}}=\frac{x^{\frac{6}{6}} \cdot x^{\frac{9}{6}}}{x^{\frac{10}{6}}}=x^{\frac{5}{6}}$
PTS: 2 REF: 082331aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents
32 ANS:
$\frac{P(10.5)-P(0)}{10.5-0} \approx 10.76$ fruit flies per day
PTS: 2 REF: 082332aii NAT: F.IF.B. 6 TOP: Rate of Change
33 ANS:

$$
\text { As } x \rightarrow-3, y \rightarrow \infty . \text { As } x \rightarrow \infty, y \rightarrow-\infty . .
$$

PTS: 4
REF: 082333aii
NAT: F.IF.C. 7
TOP: Graphing Logarithmic Functions

34 ANS:
$\frac{x-2}{(x-6)(x-2)}+\frac{x(x-6)}{(x-6)(x-2)}=\frac{4}{(x-6)(x-2)} .6$ is extraneous.

$$
\begin{aligned}
x-2+x^{2}-6 x & =4 \\
x^{2}-5 x-6 & =0 \\
(x-6)(x+1) & =0 \\
x & =6,-1
\end{aligned}
$$

PTS: 2 REF: 082334aii NAT: A.REI.A. 2 TOP: Solving Rationals
35 ANS:

$$
\left.\left.\begin{array}{cccccr}
2 x+4 y-3 z=12 & 2 x+4 y-3 z=12 & 8 x+z=-6 & 32 x+4 z & =-24 & 8(-1)+z=-6
\end{array}\right)-(-1)+y-3(2)=0\right)
$$

PTS: 4 REF: 082335aii NAT: A.REI.C. 6 TOP: Solving Linear Systems KEY: three variables
36 ANS:
$0.01 \pm 2 \cdot 0.38=-0.75-0.77$. No, since 0.6 falls within the 95% interval.
PTS: 4 REF: 082336aii NAT: S.IC.B. 5 TOP: Analysis of Data
37 ANS:
$\left.A(t)=8000\left(1+\frac{.042}{4}\right)^{4 t} \quad \begin{array}{l}A(18)\end{array}\right)=16970.900 \quad 24000=8000 e^{.039 t}$
$B(18)=16142.274 \quad \ln 3=\ln e^{.039 t}$
$B(t)=8000 e^{.039 t}$
$828.63 \ln 3=.039 t$

$$
t \approx 28.2
$$

PTS: 6
REF: 082337aii
NAT: A.CED.A. 1 TOP: Exponential Growth

0124aii Regents Exam

Answer Section

REF: 012401aii NAT: S.IC.B. 3

REF: 012402aii NAT: A.REI.B. 4
KEY: determine nature of roots given equation

PTS: 2 REF: 012403aii NAT: A.APR.B. 3 TOP: Solving Polynomial Equations
4 ANS: 3
PTS: 2
REF: 012404aii NAT: A.APR.B. 3
TOP: Express Exponentials as Logarithms
5 ANS: $1 \quad$ PTS: 2
TOP: Graphing Polynomial Functions
6 ANS: 3

PTS: 2
REF: 012406aii NAT: A.REI.D. 11 TOP: Other Systems

7 ANS: 4

PTS: 2 REF: 012407aii NAT: A.REI.C. 7 TOP: Quadratic-Linear Systems
8 ANS: 2
$x - 3 \longdiv { 2 x ^ { 4 } + 0 x ^ { 3 } - 5 x ^ { 2 } + 3 x - 2 }$
$\underline{2 x^{4}-6 x^{3}}$
$6 x^{3}-5 x^{2}$
$6 x^{3}-18 x^{2}$
$13 x^{2}+3 x$
$13 x^{2}-39 x$
$42 x-2$
$\underline{42 x-126}$
124

PTS: 2
REF: 012408aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: division
9 ANS: 1
Distance from the focus to the directrix is 2 , so $p=1$. Vertex is $(-3,1) . y=\frac{1}{4(1)}(x+3)^{2}+1$
PTS: 2 REF: 012409aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions
10 ANS: 3
$r=\frac{-2 \sqrt{3}}{\sqrt{6}}=\frac{-2}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{-2 \sqrt{2}}{2}=-\sqrt{2} \quad a_{7}=\sqrt{6}(-\sqrt{2})^{7-1}=\sqrt{6}(-\sqrt{2})^{6}=\sqrt{6} \cdot 2^{3}=8 \sqrt{6}$

PTS: 2
REF: 012410aii NAT: F.BF.A. 1 TOP: Sequences
KEY: explicit

11 ANS: 2
$9.82 \pm 2(1.4)$
PTS: 2 REF: 012411aii NAT: S.IC.B. 4 TOP: Analysis of Data
12 ANS: 1
$\frac{f(x)}{g(x)}=\frac{2 x^{2}+7 x-15}{3-2 x}=\frac{(2 x-3)(x+5)}{-(2 x-3)}=\frac{x+5}{-1}=-x-5$
PTS: 2 REF: 012412aii NAT: F.BF.A. 1 TOP: Operations with Functions
13 ANS: 3
$P=210 x^{\frac{4}{3}} y^{\frac{7}{3}}=210 x^{\frac{3}{3}} x^{\frac{1}{3}} y^{\frac{6}{3}} y^{\frac{1}{3}}=210 x \cdot x^{\frac{1}{3}} y^{2} y^{\frac{1}{3}}=210 x y^{2} \sqrt[3]{x y}$
PTS: 2 REF: 012413aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents
14 ANS: 2

PTS: 2 REF: 012414aii NAT: F.IF.B. 4 TOP: Graphing Polynomial Functions
15 ANS: 4
$F=325-185 e^{-0.4(0)}=325-185=140$
PTS: 2 REF: 012415aii NAT: F.IF.B. 4 TOP: Evaluating Exponential Expressions
16 ANS: 3
$x^{2}+6 x+9=-10+9$

$$
\begin{aligned}
(x+3)^{2} & =-1 \\
x+3 & = \pm i \\
x & =-3 \pm i
\end{aligned}
$$

PTS: 2 REF: 012416aii NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: complex solutions | completing the square
17 ANS: 4
$(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}$
PTS: 2 REF: 012417aii NAT: A.APR.C. 4 TOP: Polynomial Identities
18 ANS: $3 \quad$ PTS: 2
REF: 012418aii NAT: S.IC.B. 6
TOP: Analysis of Data

19 ANS: 2
$y=x^{3}-3$
$x=y^{3}-3$
$x+3=y^{3}$
$\sqrt[3]{x+3}=y$
PTS: 2 REF: 012419aii NAT: F.BF.B. 4 TOP: Inverse of Functions
KEY: polynomial
20 ANS: 2
$i=\frac{6.24 \%}{12}=.52 \% \quad R=\frac{(18000)(.52 \%)}{1-(1+.52 \%)^{-12 \cdot 6}} \approx 300.36$

PTS: 2 REF: 012420aii NAT: F.IF.B. 4 TOP: Evaluating Exponential Expressions
21 ANS: 1
$\cos \theta=-\frac{3}{5} ; \sec \theta=-\frac{5}{3}$
PTS: 2 REF: 012421aii NAT: F.TF.C. 8 TOP: Determining Trigonometric Functions
22 ANS: 3

$$
\begin{gathered}
\left(x^{2}-49\right)\left(\frac{7}{x+7}+\frac{4 x}{x-7}=\frac{3 x+7}{x-7}\right) \\
7(x-7)+4 x(x+7)=(3 x+7)(x+7) \\
7 x-49+4 x^{2}+28 x=3 x^{2}+21 x+7 x+49 \\
4 x^{2}+35 x-49=3 x^{2}+28 x+49 \\
x^{2}+7 x-98=0 \\
(x+14)(x-7)=0 \\
x=-14,7
\end{gathered}
$$

PTS: 2 REF: 012422aii NAT: A.REI.A. 2 TOP: Solving Rationals
23 ANS: 4 PTS: 2 REF: 012423aii NAT: A.SSE.B. 4
TOP: Series KEY: geometric
24 ANS: 1
$50\left(1.19^{\frac{1}{12}}\right)^{12 t} \approx 50(1.015)^{12 t}$
PTS: 2 REF: 012424aii NAT: A.SSE.B. 3 TOP: Modeling Exponential Functions
25 ANS:
$x^{3}+4 x^{2}-9 x-36=x^{2}(x+4)-9(x+4)=\left(x^{2}-9\right)(x+4)=(x+3)(x-3)(x+4)$
PTS: 2
REF: 012425aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials

26 ANS:

Since -4 is a zero, $x+4$ is a factor.
PTS: 2 REF: 012426aii NAT: A.APR.B. 2 TOP: Remainder and Factor Theorems 27 ANS:
$\frac{V(7)-V(2)}{7-2} \approx 48$
PTS: 2 REF: 012427aii NAT: F.IF.B. 6 TOP: Rate of Change
28 ANS:
$\left(\frac{1}{\sqrt[3]{y^{2}}}\right) y^{4}=\frac{y^{\frac{12}{3}}}{y^{\frac{2}{3}}}=y^{\frac{10}{3}} \quad n=\frac{10}{3}$
PTS: 2 REF: 012428aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents
29 ANS:

25
PTS: 2
REF: 012429aii
NAT: S.ID.A. 4
TOP: Normal Distributions
KEY: percent
30 ANS:
$a_{1}=12$
$a_{n}=a_{n-1}+6$
PTS: 2 REF: 012430aii NAT: F.BF.A. 2 TOP: Sequences
31 ANS:
$\left(2 x i^{3}-3 y\right)^{2}=4 x^{2} i^{6}-12 x y i^{3}+9 y^{2}=-4 x^{2}+12 x y i+9 y^{2}$
PTS: 2
REF: 012431aii
NAT: N.CN.A. 2 TOP: Operations with Complex Numbers

32 ANS:
About $38 \%\left(\frac{475}{1250}\right)$ of high school juniors in the population will choose a four-year college.
PTS: 2 REF: 012432aii NAT: S.IC.A. 2 TOP: Analysis of Data
33 ANS:
$\frac{3+42}{1500}=3 \% \quad \frac{3}{3+12}=20 \%$ No, because a person is more likely to be allergic milk if he is also allergic to nuts.
PTS: 4 REF: 012433aii NAT: S.CP.A. 4 TOP: Conditional Probability
34 ANS:

$$
\begin{aligned}
2 x-6 & =2 \sqrt{x-1} \quad 2 \text { is extraneous. } \\
4 x^{2}-24 x+36 & =4(x-1) \\
x^{2}-6 x+9 & =x-1 \\
x^{2}-7 x+10 & =0 \\
(x-5)(x-2) & =0 \\
x & =2,5
\end{aligned}
$$

PTS: 4 REF: 012434aii NAT: A.REI.A. 2 TOP: Solving Radicals
KEY: extraneous solutions
35 ANS:
$A(t)=4000\left(1+\frac{2.4 \%}{12}\right)^{12 t} \quad B(t)=3500\left(1+\frac{4 \%}{4}\right)^{4 t} \quad 8.4$, the value of t for which $A(t)=B(t)$
PTS: 4 REF: 012435aii NAT: A.REI.D. 11 TOP: Other Systems
36 ANS:

PTS: 4
REF: 012436aii
NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions
KEY: graph

37 ANS:

$(7,78)$ If 7000 sweatshirts are sold, the profit is $\$ 78,000.3,549$, because that is when $p(x)$ is first greater than 0 .

PTS: 6 REF: 012437aii NAT: F.IF.C. 7 TOP: Graphing Polynomial Functions

