JMAP REGENTS BY TYPE

The NY Algebra II Regents Exams Questions from Spring 2015 to January 2024 Sorted by Type
www.jmap.org

Algebra II Multiple Choice Regents Exam Questions

1 If $f(x)=3|x|-1$ and $g(x)=0.03 x^{3}-x+1$, an approximate solution for the equation $f(x)=g(x)$ is

1) 1.96
2) 11.29
3) $(-0.99,1.96)$
4) $(11.29,32.87)$

2 A game spinner is divided into 6 equally sized regions, as shown in the diagram below.

For Miles to win, the spinner must land on the number 6. After spinning the spinner 10 times, and losing all 10 times, Miles complained that the spinner is unfair. At home, his dad ran 100 simulations of spinning the spinner 10 times, assuming the probability of winning each spin is $\frac{1}{6}$.
The output of the simulation is shown in the diagram below.

Which explanation is appropriate for Miles and his dad to make?

1) The spinner was likely unfair, since the number 6 failed to occur in about 20% of the simulations.
2) The spinner was likely unfair, since the spinner should have landed on the number 6 by the sixth spin.
3) The spinner was likely not unfair, since the number 6 failed to occur in about 20% of the simulations.
4) The spinner was likely not unfair, since in the output the player wins once or twice in the majority of the simulations.

3 Which value, to the nearest tenth, is not a solution of $p(x)=q(x)$ if $p(x)=x^{3}+3 x^{2}-3 x-1$ and $q(x)=3 x+8$?

1) -3.9
2) -1.1
3) 2.1
4) 4.7

4 Given i is the imaginary unit, $(2-y i)^{2}$ in simplest form is

1) $y^{2}-4 y i+4$
2) $-y^{2}-4 y i+4$
3) $-y^{2}+4$
4) $y^{2}+4$

5 The heights of women in the United States are normally distributed with a mean of 64 inches and a standard deviation of 2.75 inches. The percent of women whose heights are between 64 and 69.5 inches, to the nearest whole percent, is

1) 6
2) 48
3) 68
4) 95

6 What is the solution set of the equation $\frac{3 x+25}{x+7}-5=\frac{3}{x}$?

1) $\left\{\frac{3}{2}, 7\right\}$
2) $\left\{\frac{7}{2},-3\right\}$
3) $\left\{-\frac{3}{2}, 7\right\}$
4) $\left\{-\frac{7}{2},-3\right\}$

7 A cafeteria food manager studied the lunchtime eating habits of a group of employees in their office building. The purpose of the study was to determine the proportion of employees who purchased lunch in the cafeteria, brought their lunch from home, or purchased lunch from an outside vendor. This collection of data would best be classified as

1) a census
2) an experiment
3) an observational study
4) a simulation

8 A circle centered at the origin has a radius of 10 units. The terminal side of an angle, θ, intercepts the circle in Quadrant II at point C. The y-coordinate of point C is 8 . What is the value of $\cos \theta$?

1) $-\frac{3}{5}$
2) $-\frac{3}{4}$
3) $\frac{3}{5}$
4) $\frac{4}{5}$

9 Which binomial is not a factor of the expression $x^{3}-11 x^{2}+16 x+84$?

1) $x+2$
2) $x+4$
3) $x-6$
4) $x-7$

10 Which value is not contained in the solution of the system shown below?

$$
\begin{aligned}
& a+5 b-c=-20 \\
& 4 a-5 b+4 c=19 \\
& -a-5 b-5 c=2
\end{aligned}
$$

1) -2
2) 2
3) 3
4) -3

11 Robert is buying a car that costs $\$ 22,000$. After a down payment of $\$ 4000$, he borrows the remainder from a bank, a six year loan at 6.24% annual interest rate. The following formula can be used to calculate his monthly loan payment.

$$
R=\frac{(P)(i)}{1-(1+i)^{-t}}
$$

$$
\begin{gathered}
R=\text { monthly payment } \\
P=\text { loan amount } \\
i=\text { monthly interest rate } \\
t=\text { time, in months }
\end{gathered}
$$

Robert's monthly payment will be

1) $\$ 298.31$
2) $\$ 300.36$
3) $\$ 307.35$
4) $\$ 367.10$

12 When $g(x)$ is divided by $x+4$, the remainder is 0 .
Given $g(x)=x^{4}+3 x^{3}-6 x^{2}-6 x+8$, which conclusion about $g(x)$ is true?

1) $g(4)=0$
2) $g(-4)=0$
3) $x-4$ is a factor of $g(x)$.
4) No conclusion can be made regarding $g(x)$.

13 If the terminal side of angle θ, in standard position, passes through point $(-4,3)$, what is the numerical value of $\sin \theta$?

1) $\frac{3}{5}$
2) $\frac{4}{5}$
3) $-\frac{3}{5}$
4) $-\frac{4}{5}$

14 For $x \neq 0$, which expressions are equivalent to one divided by the sixth root of x ?

$$
\text { I. } \frac{\sqrt[6]{x}}{\sqrt[3]{x}} \text { II. } \frac{x^{\frac{1}{6}}}{x^{\frac{1}{3}}} \text { III. } x^{\frac{-1}{6}}
$$

1) I and II, only
2) I and III, only
3) II and III, only
4) I, II, and III

15 Consider the system shown below.

$$
\begin{gathered}
2 x-y=4 \\
(x+3)^{2}+y^{2}=8
\end{gathered}
$$

The two solutions of the system can be described as

1) both imaginary
2) both irrational
3) both rational
4) one rational and one irrational

16 Which equation represents the set of points equidistant from line ℓ and point R shown on the graph below?

1) $y=-\frac{1}{8}(x+2)^{2}+1$
2) $y=-\frac{1}{8}(x+2)^{2}-1$
3) $y=-\frac{1}{8}(x-2)^{2}+1$
4) $y=-\frac{1}{8}(x-2)^{2}-1$

17 The eighth and tenth terms of a sequence are 64 and 100 . If the sequence is either arithmetic or geometric, the ninth term can not be

1) -82
2) -80
3) 80
4) 82

18 The solution to the equation $4 x^{2}+98=0$ is

1) ± 7
2) $\pm 7 i$
3) $\pm \frac{7 \sqrt{2}}{2}$
4) $\pm \frac{7 i \sqrt{2}}{2}$

19 Which scenario is best described as an observational study?

1) For a class project, students in Health class ask every tenth student entering the school if they eat breakfast in the morning.
2) A social researcher wants to learn whether or not there is a link between attendance and grades. She gathers data from 15 school districts.
3) A researcher wants to learn whether or not there is a link between children's daily amount of physical activity and their overall energy level. During lunch at the local high school, she distributed a short questionnaire to students in the cafeteria.
4) Sixty seniors taking a course in Advanced Algebra Concepts are randomly divided into two classes. One class uses a graphing calculator all the time, and the other class never uses graphing calculators. A guidance counselor wants to determine whether there is a link between graphing calculator use and students' final exam grades.

20 The expression $\frac{-3 x^{2}-5 x+2}{x^{3}+2 x^{2}}$ can be rewritten as

1) $\frac{-3 x-3}{x^{2}+2 x}$
2) $\frac{-3 x-1}{x^{2}}$
3) $-3 x^{-1}+1$
4) $-3 x^{-1}+x^{-2}$

21 When factored completely, $m^{5}+m^{3}-6 m$ is equivalent to

1) $(m+3)(m-2)$
2) $\left(m^{2}+3 m\right)\left(m^{2}-2\right)$
3) $m\left(m^{4}+m^{2}-6\right)$
4) $m\left(m^{2}+3\right)\left(m^{2}-2\right)$

22 Which statement about the graph of $c(x)=\log _{6} x$ is false?

1) The asymptote has equation $y=0$.
2) The graph has no y-intercept.
3) The domain is the set of positive reals.
4) The range is the set of all real numbers.

23 Functions f, g, and h are given below.

$$
\begin{aligned}
& f(x)=\sin (2 x) \\
& g(x)=f(x)+1
\end{aligned}
$$

Which statement is true about functions f, g, and h ?

1) $f(x)$ and $g(x)$ are odd, $h(x)$ is even.
2) $\quad f(x)$ and $g(x)$ are even, $h(x)$ is odd.
3) $f(x)$ is odd, $g(x)$ is neither, $h(x)$ is even.
4) $f(x)$ is even, $g(x)$ is neither, $h(x)$ is odd.

24 The solution set for the equation $\sqrt{56-x}=x$ is

1) $\{-8,7\}$
2) $\{-7,8\}$
3) $\{7\}$
4) $\}$

25 Which graph represents a cosine function with no horizontal shift, an amplitude of 2 , and a period of $\frac{2 \pi}{3}$?
1)

2)

3)
4)

26 The inverse of the function $f(x)=\frac{x+1}{x-2}$ is

1) $f^{-1}(x)=\frac{x+1}{x+2}$
2) $f^{-1}(x)=\frac{2 x+1}{x-1}$
3) $f^{-1}(x)=\frac{x+1}{x-2}$
4) $f^{-1}(x)=\frac{x-1}{x+1}$

27 A candidate for political office commissioned a poll. His staff received responses from 900 likely voters and 55% of them said they would vote for the candidate. The staff then conducted a simulation of 1000 more polls of 900 voters, assuming that 55% of voters would vote for their candidate. The output of the simulation is shown in the diagram below.

Given this output, and assuming a 95\% confidence level, the margin of error for the poll is closest to

1) 0.01
2) 0.03
3) 0.06
4) 0.12

28 A payday loan company makes loans between \$100 and $\$ 1000$ available to customers. Every 14 days, customers are charged 30% interest with compounding. In 2013, Remi took out a $\$ 300$ payday loan. Which expression can be used to calculate the amount she would owe, in dollars, after one year if she did not make payments?

1) $300(.30)^{\frac{14}{365}}$
2) $300(1.30)^{\frac{14}{365}}$
3) $300(.30)^{\frac{365}{14}}$
4) $300(1.30)^{\frac{365}{14}}$

29 Gabriel performed an experiment to see if planting 13 tomato plants in black plastic mulch leads to larger tomatoes than if 13 plants are planted without mulch. He observed that the average weight of the tomatoes from tomato plants grown in black plastic mulch was 5 ounces greater than those from the plants planted without mulch. To determine if the observed difference is statistically significant, he rerandomized the tomato groups 100 times to study these random differences in the mean weights. The output of his simulation is summarized in the dotplot below.

Differences in Mean Weight (oz.)

Given these results, what is an appropriate inference that can be drawn?

1) There was no effect observed between the two groups.
2) There was an effect observed that could be due to the random assignment of plants to the groups.
3) There is strong evidence to support the hypothesis that tomatoes from plants planted in black plastic mulch are larger than those planted without mulch.
4) There is strong evidence to support the hypothesis that tomatoes from plants planted without mulch are larger than those planted in black plastic mulch.

30 Given $p \neq q, p=\left(\frac{1}{2}\right)^{q}$, expressed in logarithmic form, is equivalent to

1) $\log _{p}\left(\frac{1}{2}\right)=q$
2) $\quad \log _{q}(p)=\frac{1}{2}$
3) $\log _{\frac{1}{2}}(p)=q$
4) $\log _{\frac{1}{2}}(q)=p$

31 When $b>0$ and d is a positive integer, the expression (3b) ${ }^{\frac{2}{d}}$ is equivalent to

1) $\frac{1}{(\sqrt[d]{3 b})^{2}}$
2) $(\sqrt{3 b})^{d}$
3) $\frac{1}{\sqrt{3 b^{d}}}$
4) $(\sqrt[d]{3 b})^{2}$

32 A study conducted in 2004 in New York City found that 212 out of 1334 participants had hypertension. Kim ran a simulation of 100 studies based on these data. The output of the simulation is shown in the diagram below.

At a 95\% confidence level, the proportion of New York City residents with hypertension and the margin of error are closest to

1) proportion $\approx .16$; margin of error $\approx .01$
2) proportion $\approx .16$; margin of error $\approx .02$
3) proportion $\approx .01$; margin of error $\approx .16$
4) proportion $\approx .02$; margin of error $\approx .16$

33 The completely factored form of $2 d^{4}+6 d^{3}-18 d^{2}-54 d$ is

1) $2 d\left(d^{2}-9\right)(d+3)$
2) $2 d\left(d^{2}+9\right)(d+3)$
3) $2 d(d+3)^{2}(d-3)$
4) $2 d(d-3)^{2}(d+3)$

34 If $\sin ^{2}\left(32^{\circ}\right)+\cos ^{2}(M)=1$, then M equals

1) 32°
2) 58°
3) 68°
4) 72°

35 The seventh term of the geometric sequence $\sqrt{6},-2 \sqrt{3}, 2 \sqrt{6},-4 \sqrt{3} \ldots$ is

1) $6 \sqrt{6}$
2) $-6 \sqrt{3}$
3) $8 \sqrt{6}$
4) $-8 \sqrt{3}$

36 Sally's high school is planning their spring musical. The revenue, R, generated can be determined by the function $R(t)=-33 t^{2}+360 t$, where t represents the price of a ticket. The production cost, C, of the musical is represented by the function $C(t)=700+5 t$. What is the highest ticket price, to the nearest dollar, they can charge in order to not lose money on the event?

1) $t=3$
2) $t=5$
3) $t=8$
4) $t=11$

37 The equation $4 x^{2}-24 x+4 y^{2}+72 y=76$ is equivalent to

1) $4(x-3)^{2}+4(y+9)^{2}=76$
2) $4(x-3)^{2}+4(y+9)^{2}=121$
3) $4(x-3)^{2}+4(y+9)^{2}=166$
4) $4(x-3)^{2}+4(y+9)^{2}=436$

38 The function $f(x)=\frac{x-3}{x^{2}+2 x-8}$ is undefined when x equals

1) 2 or -4
2) 4 or -2
3) 3, only
4) 2, only

39 A student studying public policy created a model for the population of Detroit, where the population decreased 25% over a decade. He used the model $P=714(0.75)^{d}$, where P is the population, in thousands, d decades after 2010. Another student, Suzanne, wants to use a model that would predict the population after y years. Suzanne's model is best represented by

1) $P=714(0.6500)^{y}$
2) $P=714(0.8500)^{y}$
3) $P=714(0.9716)^{y}$
4) $P=714(0.9750)^{y}$

40 What does $\left(\frac{-54 x^{9}}{y^{4}}\right)^{\frac{2}{3}}$ equal?

1) $\frac{9 i x \sqrt[63]{4}}{y \sqrt[3]{y^{2}}}$
2) $\frac{9 i x \sqrt[63]{4}}{y^{2} \sqrt[3]{y^{2}}}$
3) $\frac{9 x^{63} \sqrt{4}}{y \sqrt[3]{y}}$
4) $\frac{9 x^{6 \sqrt[3]{4}}}{y^{2} \sqrt[3]{y^{2}}}$

41 To solve $\frac{2 x}{x-2}-\frac{11}{x}=\frac{8}{x^{2}-2 x}$, Ren multiplied both sides by the least common denominator. Which statement is true?

1) 2 is an extraneous solution.
2) $\frac{7}{2}$ is an extraneous solution.
3) 0 and 2 are extraneous solutions.
4) This equation does not contain any extraneous solutions.

42 Which graph best represents the graph of $f(x)=(x+a)^{2}(x-b)$, where a and b are positive real numbers?
1)

2)
3)

4)

43 Given $f(x)=2 x^{2}+7 x-15$ and $g(x)=3-2 x$, what is $\frac{f(x)}{g(x)}$ for all defined values?

1) $-x-5$
2) $-x+5$
3) $x-5$
4) $x+5$

44 The set of data in the table below shows the results of a survey on the number of messages that people of different ages text on their cell phones each month.

Text Messages per Month			
Age Group	$0-10$	$11-50$	Over 50
$15-18$	4	37	68
$19-22$	6	25	87
$23-60$	25	47	157

If a person from this survey is selected at random, what is the probability that the person texts over 50 messages per month given that the person is between the ages of 23 and 60 ?

1) $\frac{157}{229}$
2) $\frac{157}{312}$
3) $\frac{157}{384}$
4) $\frac{157}{456}$

45 The graph of the function $p(x)$ is sketched below.

Which equation could represent $p(x)$?

1) $p(x)=\left(x^{2}-9\right)(x-2)$
2) $p(x)=x^{3}-2 x^{2}+9 x+18$
3) $p(x)=\left(x^{2}+9\right)(x-2)$
4) $p(x)=x^{3}+2 x^{2}-9 x-18$

46 The lifespan of a 60-watt lightbulb produced by a company is normally distributed with a mean of 1450 hours and a standard deviation of 8.5 hours. If a 60 -watt lightbulb produced by this company is selected at random, what is the probability that its lifespan will be between 1440 and 1465 hours?

1) 0.3803
2) 0.4612
3) 0.8415
4) 0.9612

47 The function $p(t)=110 e^{0.03922 t}$ models the population of a city, in millions, t years after 2010. As of today, consider the following two statements:
I. The current population is 110 million.
II. The population increases continuously by approximately 3.9% per year.
This model supports

1) I, only
2) II, only
3) both I and II
4) neither I nor II

48 Two surveys were conducted to estimate the proportion of teens who use social media at least once per day.

Based on these results, it was determined that approximately 75% of teens use social media at least once per day. What is the best explanation of the difference in the results between the two surveys?

1) The smaller sample size of five teens resulted in a smaller margin of error and should provide a more accurate estimate.
2) The larger sample size of 50 teens resulted in a smaller margin of error and should provide a more accurate estimate.
3) The smaller sample size of five teens resulted in a bigger margin of error and should provide a more accurate estimate.
4) The larger sample size of 50 teens resulted in a bigger margin of error and should provide a more accurate estimate.

49 The expression $\frac{6 x^{3}+17 x^{2}+10 x+2}{2 x+3}$ equals

1) $3 x^{2}+4 x-1+\frac{5}{2 x+3}$
2) $6 x^{2}+8 x-2+\frac{5}{2 x+3}$
3) $6 x^{2}-x+13-\frac{37}{2 x+3}$
4) $3 x^{2}+13 x+\frac{49}{2}+\frac{151}{2 x+3}$

50 The equations $y=3 t+6$ and $y=(1.82)^{t}$ approximately model the growth of two separate populations where $t>0$. What is the best approximation of the time, t, at which the populations are the same?

1) -1.9
2) 0.3
3) 5.1
4) 21.3

51 Cheap and Fast gas station is conducting a consumer satisfaction survey. Which method of collecting data would most likely lead to a biased sample?

1) interviewing every 5th customer to come into the station
2) interviewing customers chosen at random by a computer at the checkout
3) interviewing customers who call an 800 number posted on the customers' receipts
4) interviewing every customer who comes into the station on a day of the week chosen at random out of a hat

52 The sequence $a_{1}=6, a_{n}=3 a_{n-1}$ can also be written as

1) $a_{n}=6 \cdot 3^{n}$
2) $a_{n}=6 \cdot 3^{n+1}$
3) $a_{n}=2 \cdot 3^{n}$
4) $a_{n}=2 \cdot 3^{n+1}$

53 In 2013, approximately 1.6 million students took the Critical Reading portion of the SAT exam. The mean score, the modal score, and the standard deviation were calculated to be 496, 430, and 115, respectively. Which interval reflects 95% of the Critical Reading scores?

1) 430 ± 115
2) 430 ± 230
3) 496 ± 115
4) 496 ± 230

54 The solutions to the equation $-\frac{1}{2} x^{2}=-6 x+20$ are

1) $-6 \pm 2 i$
2) $-6 \pm 2 \sqrt{19}$
3) $6 \pm 2 i$
4) $6 \pm 2 \sqrt{19}$

55 The equation of the parabola that has its focus at the point $(-3,2)$ and directrix at $y=0$ is

1) $y=\frac{1}{4}(x+3)^{2}+1$
2) $y=\frac{1}{4}(x-3)^{2}+1$
3) $y=\frac{1}{8}(x+3)^{2}+1$
4) $y=\frac{1}{8}(x-3)^{2}+1$

56 Which binomial is a factor of $x^{4}-4 x^{2}-4 x+8$?

1) $x-2$
2) $x+2$
3) $x-4$
4) $x+4$

57 Julie averaged 85 on the first three tests of the semester in her mathematics class. If she scores 93 on each of the remaining tests, her average will be 90. Which equation could be used to determine how many tests, T, are left in the semester?

1) $\frac{255+93 T}{3 T}=90$
2) $\frac{255+90 T}{3 T}=93$
3) $\frac{255+93 T}{T+3}=90$
4) $\frac{255+90 T}{T+3}=93$

58 A parabola has its focus at $(1,2)$ and its directrix is $y=-2$. The equation of this parabola could be

1) $y=8(x+1)^{2}$
2) $y=\frac{1}{8}(x+1)^{2}$
3) $y=8(x-1)^{2}$
4) $y=\frac{1}{8}(x-1)^{2}$

59 A public opinion poll was conducted on behalf of Mayor Ortega's reelection campaign shortly before the election. 264 out of 550 likely voters said they would vote for Mayor Ortega; the rest said they would vote for his opponent. Which statement is least appropriate to make, according to the results of the poll?

1) There is a 48% chance that Mayor Ortega will win the election.
2) The point estimate ($\hat{\mathrm{p}}$) of voters who will vote for Mayor Ortega is 48%.
3) It is most likely that between 44% and 52% of voters will vote for Mayor Ortega.
4) Due to the margin of error, an inference cannot be made regarding whether Mayor Ortega or his opponent is most likely to win the election.

60 Based on climate data that have been collected in Bar Harbor, Maine, the average monthly temperature, in degrees F, can be modeled by the equation
$B(x)=23.914 \sin (0.508 x-2.116)+55.300$. The same governmental agency collected average monthly temperature data for Phoenix, Arizona, and found the temperatures could be modeled by the equation
$P(x)=20.238 \sin (0.525 x-2.148)+86.729$. Which statement can not be concluded based on the average monthly temperature models x months after starting data collection?

1) The average monthly temperature variation is more in Bar Harbor than in Phoenix.
2) The midline average monthly temperature for Bar Harbor is lower than the midline temperature for Phoenix.
3) The maximum average monthly temperature for Bar Harbor is $79^{\circ} \mathrm{F}$, to the nearest degree.
4) The minimum average monthly temperature for Phoenix is $20^{\circ} \mathrm{F}$, to the nearest degree.

61 Which graph has imaginary roots?

62 Given that $\sin ^{2} \theta+\cos ^{2} \theta=1$ and $\sin \theta=-\frac{\sqrt{2}}{5}$, what is a possible value of $\cos \theta$?

1) $\frac{5+\sqrt{2}}{5}$
2) $\frac{\sqrt{23}}{5}$
3) $\frac{3 \sqrt{3}}{5}$
4) $\frac{\sqrt{35}}{5}$

63 What is the inverse of the function $y=\log _{3} x$?

1) $y=x^{3}$
2) $y=\log _{x} 3$
3) $y=3^{x}$
4) $x=3^{y}$

64 A solution of the equation $2 x^{2}+3 x+2=0$ is

1) $-\frac{3}{4}+\frac{1}{4} i \sqrt{7}$
2) $-\frac{3}{4}+\frac{1}{4} i$
3) $-\frac{3}{4}+\frac{1}{4} \sqrt{7}$
4) $\frac{1}{2}$

65 Which sinusoid has the greatest amplitude?
1)

2) $y=3 \sin (\theta-3)+5$

3)
4) $y=-5 \sin (\theta-1)-3$

66 The Ferris wheel at the landmark Navy Pier in Chicago takes 7 minutes to make one full rotation. The height, H, in feet, above the ground of one of the six-person cars can be modeled by $H(t)=70 \sin \left(\frac{2 \pi}{7}(t-1.75)\right)+80$, where t is time, in minutes. Using $H(t)$ for one full rotation, this car's minimum height, in feet, is

1) 150
2) 70
3) 10
4) 0

67 There was a study done on oxygen consumption of snails as a function of pH , and the result was a degree 4 polynomial function whose graph is shown below.

Which statement about this function is incorrect?

1) The degree of the polynomial is even.
2) There is a positive leading coefficient.
3) At two pH values, there is a relative maximum value.
4) There are two intervals where the function is decreasing.

68 Jasmine decides to put $\$ 100$ in a savings account each month. The account pays 3% annual interest, compounded monthly. How much money, S, will Jasmine have after one year?

1) $S=100(1.03)^{12}$
2) $S=\frac{100-100(1.0025)^{12}}{1-1.0025}$
3) $S=100(1.0025)^{12}$
4) $S=\frac{100-100(1.03)^{12}}{1-1.03}$

69 The roots of the equation $x^{2}+2 x+5=0$ are

1) -3 and 1
2) -1 , only
3) $-1+2 i$ and $-1-2 i$
4) $-1+4 i$ and $-1-4 i$

70 The population of Jamesburg for the years 2010-2013, respectively, was reported as follows: 250,000 250,937 251,878 252,822
How can this sequence be recursively modeled?

1) $j_{n}=250,000(1.00375)^{n-1}$
2) $j_{n}=250,000+937^{(n-1)}$
3) $j_{1}=250,000$
$j_{n}=1.00375 j_{n-1}$
4) $j_{1}=250,000$

$$
j_{n}=j_{n-1}+937
$$

71 A sine function increasing through the origin can be used to model light waves. Violet light has a wavelength of 400 nanometers. Over which interval is the height of the wave decreasing, only?

1) $(0,200)$
2) $(100,300)$
3) $(200,400)$
4) $(300,400)$

72 The value of a new car depreciates over time. Greg purchased a new car in June 2011. The value, V, of his car after t years can be modeled by the equation $\log _{0.8}\left(\frac{V}{17000}\right)=t$. What is the average decreasing rate of change per year of the value of the car from June 2012 to June 2014, to the nearest ten dollars per year?

1) 1960
2) 2180
3) 2450
4) 2770

73 Which equation represents an odd function?

1) $y=\sin x$
2) $y=\cos x$
3) $y=(x+1)^{3}$
4) $y=e^{5 x}$

74 The solution set for the equation
$\sqrt{x+14}-\sqrt{2 x+5}=1$ is

1) $\{-6\}$
2) $\{2\}$
3) $\{18\}$
4) $\{2,22\}$

75 The function $f(x)=2^{-0.25 x} \bullet \sin \left(\frac{\pi}{2} x\right)$ represents a damped sound wave function. What is the average rate of change for this function on the interval [-7,7], to the nearest hundredth?

1) -3.66
2) -0.30
3) -0.26
4) 3.36

76 Joelle has a credit card that has a 19.2% annual interest rate compounded monthly. She owes a total balance of B dollars after m months. Assuming she makes no payments on her account, the table below illustrates the balance she owes after m months.

\mathbf{m}	\mathbf{B}
0	100.00
10	1172.00
19	1352.00
36	1770.80
60	2591.90
69	2990.00
72	3135.80
73	3186.00

Over which interval of time is her average rate of change for the balance on her credit card account the greatest?

1) month 10 to month 60
2) month 36 to month 72
3) month 19 to month 69
4) month 60 to month 73

77 Last year, the total revenue for Home Style, a national restaurant chain, increased 5.25% over the previous year. If this trend were to continue, which expression could the company's chief financial officer use to approximate their monthly percent increase in revenue? [Let m represent months.]

1) $(1.0525)^{m}$
2) $(1.0525)^{\frac{12}{m}}$
3) $(1.00427)^{m}$
4) $(1.00427)^{\frac{m}{12}}$

78 A rabbit population doubles every 4 weeks. There are currently five rabbits in a restricted area. If t represents the time, in weeks, and $P(t)$ is the population of rabbits with respect to time, about how many rabbits will there be in 98 days?

1) 56
2) 152
3) 3688
4) 81,920

79 Which equation does not represent an identity?

1) $x^{2}-y^{2}=(x+y)(x-y)$
2) $(x-y)^{2}=(x-y)(x-y)$
3) $(x+y)^{2}=x^{2}+2 x y+y^{2}$
4) $(x+y)^{3}=x^{3}+3 x y+y^{3}$

80 A manufacturing company has developed a cost model, $C(x)=0.15 x^{3}+0.01 x^{2}+2 x+120$, where x is the number of items sold, in thousands. The sales price can be modeled by $S(x)=30-0.01 x$. Therefore, revenue is modeled by $R(x)=x \bullet S(x)$. The company's profit, $P(x)=R(x)-C(x)$, could be modeled by

1) $0.15 x^{3}+0.02 x^{2}-28 x+120$
2) $-0.15 x^{3}-0.02 x^{2}+28 x-120$
3) $-0.15 x^{3}+0.01 x^{2}-2.01 x-120$
4) $-0.15 x^{3}+32 x+120$

81 If a, b, and c are all positive real numbers, which graph could represent the sketch of the graph of $p(x)=-a(x+b)\left(x^{2}-2 c x+c^{2}\right)$?

82 The formula below can be used to model which scenario?

$$
\begin{aligned}
& a_{1}=3000 \\
& a_{n}=0.80 a_{n-1}
\end{aligned}
$$

1) The first row of a stadium has 3000 seats, and each row thereafter has 80 more seats than the row in front of it.
2) The last row of a stadium has 3000 seats, and each row before it has 80 fewer seats than the row behind it.
3) A bank account starts with a deposit of $\$ 3000$, and each year it grows by 80%.
4) The initial value of a specialty toy is $\$ 3000$, and its value each of the following years is 20\% less.

83 Pedro and Bobby each own an ant farm. Pedro starts with 100 ants and says his farm is growing exponentially at a rate of 15% per month. Bobby starts with 350 ants and says his farm is steadily decreasing by 5 ants per month. Assuming both boys are accurate in describing the population of their ant farms, after how many months will they both have approximately the same number of ants?

1) 7
2) 8
3) 13
4) 36

84 Mr. Farison gave his class the three mathematical rules shown below to either prove or disprove. Which rules can be proved for all real numbers?

I	$(m+p)^{2}=m^{2}+2 m p+p^{2}$
II	$(x+y)^{3}=x^{3}+3 x y+y^{3}$
III	$\left(a^{2}+b^{2}\right)^{2}=\left(a^{2}-b^{2}\right)^{2}+(2 a b)^{2}$

1) I, only
2) I and II
3) II and III
4) I and III

85 The focal length, F, of a camera's lens is related to the distance of the object from the lens, J, and the distance to the image area in the camera, W, by the formula below.

$$
\frac{1}{J}+\frac{1}{W}=\frac{1}{F}
$$

When this equation is solved for J in terms of F and W, J equals

1) $F-W$
2) $\frac{F W}{F-W}$
3) $\frac{F W}{W-F}$
4) $\frac{1}{F}-\frac{1}{W}$

86 An equation to represent the value of a car after t months of ownership is $v=32,000(0.81)^{\frac{t}{12}}$. Which statement is not correct?

1) The car lost approximately 19% of its value each month.
2) The car maintained approximately 98% of its value each month.
3) The value of the car when it was purchased was $\$ 32,000$.
4) The value of the car 1 year after it was purchased was $\$ 25,920$.

87 A ball is dropped from a height of 32 feet. It bounces and rebounds 80% of the height from which it was falling. What is the total downward distance, in feet, the ball traveled up to the 12th bounce?

1) 29
2) 58
3) 120
4) 149

88 Kristin wants to increase her running endurance. According to experts, a gradual mileage increase of 10% per week can reduce the risk of injury. If Kristin runs 8 miles in week one, which expression can help her find the total number of miles she will have run over the course of her 6-week training program?

1) $\sum_{n=1}^{6} 8(1.10)^{n-1}$
2) $\sum_{n=1}^{6} 8(1.10)^{n}$
3) $\frac{8-8(1.10)^{6}}{0.90}$
4) $\frac{8-8(0.10)^{n}}{1.10}$

89 Which equation represents a parabola with the focus at $(0,-1)$ and the directrix of $y=1$?

1) $x^{2}=-8 y$
2) $x^{2}=-4 y$
3) $x^{2}=8 y$
4) $x^{2}=4 y$

90 Given $\tan \theta=-\frac{4}{3}$ where $\frac{\pi}{2}<\theta<\pi$, what is the value of $\sec \theta$?

1) $-\frac{5}{3}$
2) $-\frac{3}{5}$
3) $\frac{4}{5}$
4) $\frac{5}{3}$

91 What are the zeros of $P(m)=\left(m^{2}-4\right)\left(m^{2}+1\right)$?

1) 2 and -2 , only
2) $2,-2$, and -4
3) $-4, i$, and $-i$
4) $2,-2$, i, and $-i$

92 What is the solution to the system of equations $y=3 x-2$ and $y=g(x)$ where $g(x)$ is defined by the function below?

1) $\{(0,-2)\}$
2) $\{(0,-2),(1,6)\}$
3) $\{(1,6)\}$
4) $\{(1,1),(6,16)\}$

93 If $p(x)=a b^{x}$ and $r(x)=c d^{x}$, then $p(x) \bullet r(x)$ equals

1) $a c(b+d)^{x}$
2) $a c(b+d)^{2 x}$
3) $a c(b d)^{x}$
4) $a c(b d)^{x^{2}}$

94 To solve the equation $\frac{7}{x+7}+\frac{4 x}{x-7}=\frac{3 x+7}{x-7}$, Joan's first step is to multiply both sides by the least common denominator. Which statement is true?

1) -14 is an extraneous solution.
2) 7 and -7 are extraneous solutions.
3) 7 is an extraneous solution.
4) There are no extraneous solutions.

95 Given 3 is a root of $f(x)=x^{4}-x^{3}-21 x^{2}+45 x$, what are the other unique roots of $f(x)$?

1) -5 , only
2) -5 and 0
3) $-3,1$ and 5
4) $-5,-3$ and 0

96 According to a pricing website, Indroid phones lose 58% of their cash value over 1.5 years. Which expression can be used to estimate the value of a $\$ 300$ Indroid phone in 1.5 years?

1) $300 e^{-0.87}$
2) $300 e^{-0.63}$
3) $300 e^{-0.58}$
4) $300 e^{-0.42}$

97 The temperature, F, in degrees Fahrenheit, after t hours of a roast put into an oven is given by the equation $F=325-185 e^{-0.4 t}$. What was the temperature of the roast when it was put into the oven?

1) 325
2) 200
3) 185
4) 140

Algebra II Multiple Choice Regents Exam Questions www.jmap.org

98 The roots of the equation $0=x^{2}+6 x+10$ in simplest $a+b i$ form are

1) $-3 \pm 2 i$
2) $-6 \pm i$
3) $-3 \pm i$
4) $-3 \pm i \sqrt{2}$

99 In 2010, the population of New York State was approximately $19,378,000$ with an annual growth rate of 1.5%. Assuming the growth rate is maintained for a large number of years, which equation can be used to predict the population of New York State t years after 2010?

1) $P_{t}=19,378,000(1.5)^{t}$
2) $P_{0}=19,378,000$
$P_{t}=19,378,000+1.015 P_{t-1}$
3) $P_{t}=19,378,000(1.015)^{t-1}$
4) $P_{0}=19,378,000$
$P_{t}=1.015 P_{t-1}$

100 Which equation has $1-i$ as a solution?

1) $x^{2}+2 x-2=0$
2) $x^{2}+2 x+2=0$
3) $x^{2}-2 x-2=0$
4) $x^{2}-2 x+2=0$

101 The voltage used by most households can be modeled by a sine function. The maximum voltage is 120 volts, and there are 60 cycles every second. Which equation best represents the value of the voltage as it flows through the electric wires, where t is time in seconds?

1) $\quad V=120 \sin (t)$
2) $V=120 \sin (60 t)$
3) $V=120 \sin (60 \pi t)$
4) $V=120 \sin (120 \pi t)$

102 A polynomial equation of degree three, $p(x)$, is used to model the volume of a rectangular box. The graph of $p(x)$ has x intercepts at $-2,10$, and 14. Which statements regarding $p(x)$ could be true?
A. The equation of $p(x)=(x-2)(x+10)(x+14)$.
B. The equation of $p(x)=-(x+2)(x-10)(x-14)$.
C. The maximum volume occurs when $x=10$.
D. The maximum volume of the box is approximately 56 .

1) A and C
2) A and D
3) B and C
4) $\quad B$ and D

103 As x increases from 0 to $\frac{\pi}{2}$, the graph of the equation $y=2 \tan x$ will

1) increase from 0 to 2
2) decrease from 0 to -2
3) increase without limit
4) decrease without limit

104 A recursive formula for the sequence $18,9,4.5, \ldots$ is

1) $g_{1}=18$

$$
g_{n}=\frac{1}{2} g_{n-1}
$$

2) $g_{n}=18\left(\frac{1}{2}\right)^{n-1}$
3) $g_{1}=18$
$g_{n}=2 g_{n-1}$
4) $g_{n}=18(2)^{n-1}$

Algebra II Multiple Choice Regents Exam Questions www.jmap.org

105 The expression $6 x i^{3}(-4 x i+5)$ is equivalent to

1) $2 x-5 i$
2) $-24 x^{2}-30 x i$
3) $-24 x^{2}+30 x-i$
4) $26 x-24 x^{2} i-5 i$

106 The Rickerts decided to set up an account for their daughter to pay for her college education. The day their daughter was born, they deposited $\$ 1000$ in an account that pays 1.8% compounded annually. Beginning with her first birthday, they deposit an additional $\$ 750$ into the account on each of her birthdays. Which expression correctly represents the amount of money in the account n years after their daughter was born?

1) $a_{n}=1000(1.018)^{n}+750$
2) $a_{n}=1000(1.018)^{n}+750 n$
3) $a_{0}=1000$

$$
a_{n}=a_{n-1}(1.018)+750
$$

4) $a_{0}=1000$

$$
a_{n}=a_{n-1}(1.018)+750 n
$$

107 Which statement is incorrect for the graph of the function $y=-3 \cos \left[\frac{\pi}{3}(x-4)\right]+7$?

1) The period is 6 .
2) The amplitude is 3 .
3) The range is $[4,10]$.
4) The midline is $y=-4$.

108 To the nearest tenth, the value of x that satisfies $2^{x}=-2 x+11$ is

1) 2.5
2) 2.6
3) 5.8
4) 5.9

109 The distribution of the diameters of ball bearings made under a given manufacturing process is normally distributed with a mean of 4 cm and a standard deviation of 0.2 cm . What proportion of the ball bearings will have a diameter less than 3.7 cm ?

1) 0.0668
2) 0.4332
3) 0.8664
4) 0.9500

110 lridium-192 is an isotope of iridium and has a half-life of 73.83 days. If a laboratory experiment begins with 100 grams of Iridium-192, the number of grams, A, of Iridium-192 present after t days would be $A=100\left(\frac{1}{2}\right)^{\frac{t}{73.83}}$. Which equation approximates the amount of Iridium-192 present after t days?

1) $A=100\left(\frac{73.83}{2}\right)^{t}$
2) $A=100\left(\frac{1}{147.66}\right)^{t}$
3) $A=100(0.990656)^{t}$
4) $A=100(0.116381)^{t}$

111 The solution to the equation $18 x^{2}-24 x+87=0$ is

1) $-\frac{2}{3} \pm 6 i \sqrt{158}$
2) $-\frac{2}{3} \pm \frac{1}{6} i \sqrt{158}$
3) $\frac{2}{3} \pm 6 i \sqrt{158}$
4) $\frac{2}{3} \pm \frac{1}{6} i \sqrt{158}$

Algebra II Multiple Choice Regents Exam Questions www.jmap.org

112 Beginning July 1, 2019, Michelle deposited \$250 into an account that yields 0.15% each month. She continued to make $\$ 250$ deposits into this account on the first of each month for 3 years. Which expression represents the amount of money that was in the account after her last deposit was made on June 1, 2022?

1) $250(1.0015)^{3}$
2) $250(1.0015)^{36}$
3) $\frac{250-250(1.0015)^{3}}{1-1.0015}$
4) $\frac{250-250(1.0015)^{36}}{1-1.0015}$

113 The rational expression $\frac{2 x^{4}-5 x^{2}+3 x-2}{x-3}$ is equivalent to

1) $2 x^{3}-5 x-12-\frac{38}{x-3}$
2) $2 x^{3}+6 x^{2}+13 x+42+\frac{124}{x-3}$
3) $2 x^{3}-5 x+18-\frac{56}{x-3}$
4) $2 x^{3}-6 x^{2}+13 x-36+\frac{106}{x-3}$

114 Mallory wants to buy a new window air conditioning unit. The cost for the unit is $\$ 329.99$. If she plans to run the unit three months out of the year for an annual operating cost of $\$ 108.78$, which function models the cost per year over the lifetime of the unit, $C(n)$, in terms of the number of years, n, that she owns the air conditioner.

1) $C(n)=329.99+108.78 n$
2) $C(n)=329.99+326.34 n$
3) $C(n)=\frac{329.99+108.78 n}{n}$
4) $C(n)=\frac{329.99+326.34 n}{n}$

115 What is the completely factored form of $k^{4}-4 k^{2}+8 k^{3}-32 k+12 k^{2}-48$?

1) $(k-2)(k-2)(k+3)(k+4)$
2) $(k-2)(k-2)(k+6)(k+2)$
3) $(k+2)(k-2)(k+3)(k+4)$
4) $(k+2)(k-2)(k+6)(k+2)$

116 If $g(c)=1-c^{2}$ and $m(c)=c+1$, then which statement is not true?

1) $g(c) \cdot m(c)=1+c-c^{2}-c^{3}$
2) $g(c)+m(c)=2+c-c^{2}$
3) $m(c)-g(c)=c+c^{2}$
4) $\frac{m(c)}{g(c)}=\frac{-1}{1-c}$

117 Sean's team has a baseball game tomorrow. He pitches 50% of the games. There is a 40% chance of rain during the game tomorrow. If the probability that it rains given that Sean pitches is 40%, it can be concluded that these two events are

1) independent
2) dependent
3) mutually exclusive
4) complements

118 Which statement regarding the graphs of the functions below is untrue?

$$
\begin{aligned}
& f(x)=3 \sin 2 x, \text { from }-\pi<x<\pi \\
& g(x)=(x-0.5)(x+4)(x-2) \\
& h(x)=\log _{2} x \\
& j(x)=-|4 x-2|+3
\end{aligned}
$$

1) $\quad f(x)$ and $j(x)$ have a maximum y-value of 3 .
2) $\quad f(x), h(x)$, and $j(x)$ have one y-intercept.
3) $g(x)$ and $j(x)$ have the same end behavior as $x \rightarrow-\infty$.
4) $\quad g(x), h(x)$, and $j(x)$ have rational zeros.

119 Which statement(s) about statistical studies is true?
I. A survey of all English classes in a high school would be a good sample to determine the number of hours students throughout the school spend studying.
II. A survey of all ninth graders in a high school would be a good sample to determine the number of student parking spaces needed at that high school.
III. A survey of all students in one lunch period in a high school would be a good sample to determine the number of hours adults spend on social media websites.
IV. A survey of all Calculus students in a high school would be a good sample to determine the number of students throughout the school who don't like math.

1) I, only
2) II, only
3) I and III
4) III and IV

120 Anne has a coin. She does not know if it is a fair coin. She flipped the coin 100 times and obtained 73 heads and 27 tails. She ran a computer simulation of 200 samples of 100 fair coin flips. The output of the proportion of heads is shown below.

Given the results of her coin flips and of her computer simulation, which statement is most accurate?

1) 73 of the computer's next 100 coin flips will be heads.
2) 50 of her next 100 coin flips will be heads.
3) Her coin is not fair.
4) Her coin is fair.

121 Given $f(9)=-2$, which function can be used to generate the sequence $-8,-7.25,-6.5,-5.75, \ldots$?

1) $f(n)=-8+0.75 n$
2) $f(n)=-8-0.75(n-1)$
3) $f(n)=-8.75+0.75 n$
4) $f(n)=-0.75+8(n-1)$

122 Which diagram represents an angle, α, measuring $\frac{13 \pi}{20}$ radians drawn in standard position, and its reference angle, θ ?

123 The expression $\left(\frac{m^{2}}{m^{\frac{1}{3}}}\right)^{-\frac{1}{2}}$ is equivalent to

1) $-\sqrt[6]{m^{5}}$
2) $\frac{1}{\sqrt[6]{m^{5}}}$
3) $-m \sqrt[5]{m}$
4) $\frac{1}{m \sqrt[5]{m}}$

124 Given $f^{-1}(x)=-\frac{3}{4} x+2$, which equation represents $f(x)$?

1) $f(x)=\frac{4}{3} x-\frac{8}{3}$
2) $f(x)=-\frac{4}{3} x+\frac{8}{3}$
3) $f(x)=\frac{3}{4} x-2$
4) $f(x)=-\frac{3}{4} x+2$

125 Which equation represents a parabola with a focus of $(0,4)$ and a directrix of $y=2$?

1) $y=x^{2}+3$
2) $y=-x^{2}+1$
3) $y=\frac{x^{2}}{2}+3$
4) $y=\frac{x^{2}}{4}+3$

126 What is the solution to $8\left(2^{x+3}\right)=48$?

1) $x=\frac{\ln 6}{\ln 2}-3$
2) $x=0$
3) $x=\frac{\ln 48}{\ln 16}-3$
4) $x=\ln 4-3$

127 Which graph has the following characteristics?

- three real zeros
- as $x \rightarrow-\infty, f(x) \rightarrow-\infty$
- as $x \rightarrow \infty, f(x) \rightarrow \infty$

1)

2)
3)

128 The loudness of sound is measured in units called decibels (dB). These units are measured by first assigning an intensity I_{0} to a very soft sound that is called the threshold sound. The sound to be measured is assigned an intensity, I, and the decibel rating, d, of this sound is found using $d=10 \log \frac{I}{I_{0}}$. The threshold sound audible to the average person is $1.0 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}$ (watts per square meter). Consider the following sound level classifications:

Moderate	$45-69 \mathrm{~dB}$
Loud	$70-89 \mathrm{~dB}$
Very loud	$90-109 \mathrm{~dB}$
Deafening	$>110 \mathrm{~dB}$

How would a sound with intensity $6.3 \times 10^{-3} \mathrm{~W} / \mathrm{m}^{2}$ be classified?

1) moderate
2) very loud
3) loud
4) deafening

129 A cardboard box manufacturing company is building boxes with length represented by $x+1$, width by $5-x$, and height by $x-1$. The volume of the box is modeled by the function below.

Over which interval is the volume of the box changing at the fastest average rate?

1) $[1,2]$
2) $[1,3.5]$
3) $[1,5]$
4) $[0,3.5]$

130 The graph of $p(x)$ is shown below.

What is the remainder when $p(x)$ is divided by $x+4$?

1) $x-4$
2) -4
3) 0
4) 4

131 Given $f(x)=x^{3}-3$ and $f^{-1}(x)=\sqrt[3]{x-3 b}$, the value of b is

1) 1
2) -1
3) 3
4) -3

132 Which factorization is incorrect?

1) $4 k^{2}-49=(2 k+7)(2 k-7)$
2) $a^{3}-8 b^{3}=(a-2 b)\left(a^{2}+2 a b+4 b^{2}\right)$
3) $m^{3}+3 m^{2}-4 m+12=(m-2)^{2}(m+3)$
4) $t^{3}+5 t^{2}+6 t+t^{2}+5 t+6=(t+1)(t+2)(t+3)$

133 Which equation is equivalent to $P=210 x^{\frac{4}{3}} y^{\frac{7}{3}}$

1) $P=\sqrt[3]{210 x^{4} y^{7}}$
2) $P=70 x y^{2} \sqrt[3]{x y}$
3) $P=210 x y^{2} \sqrt[3]{x y}$
4) $P=210 x y^{2} \sqrt[3]{x^{3} y^{5}}$

134 Which expression is equivalent to $\frac{4 x^{3}+9 x-5}{2 x-1}$, where $x \neq \frac{1}{2}$?

1) $2 x^{2}+x+5$
2) $2 x^{2}+\frac{11}{2}+\frac{1}{2(2 x-1)}$
3) $2 x^{2}-x+5$
4) $2 x^{2}-x+4+\frac{1}{2 x-1}$

135 What is the solution, if any, of the equation $\frac{2}{x+3}-\frac{3}{4-x}=\frac{2 x-2}{x^{2}-x-12}$?

1) -1
2) -5
3) all real numbers
4) no real solution

136 A company wishes to determine the cooking time for one pound of spaghetti. The company's technicians cooked one pound of spaghetti and recorded the time needed for the spaghetti to be ready to eat. Repeating this process 35 times resulted in an approximately normal distribution, with a mean of 9.82 minutes and a standard deviation of 1.4 minutes. In which interval should the middle 95% of cooking times fall?

1) $(8.42,11.22)$
2) $(7.02,12.62)$
3) $(9.35,10.29)$
4) $(6.82,11.32)$

137 The zeros for $f(x)=x^{4}-4 x^{3}-9 x^{2}+36 x$ are

1) $\{0, \pm 3,4\}$
2) $\{0,3,4\}$
3) $\{0, \pm 3,-4\}$
4) $\{0,3,-4\}$

138 The average cost of a gallon of milk in the United States between the years of 1995 and 2018 can be modeled by the equation
$P(t)=-0.0004 t^{3}+0.0114 t^{2}-0.0150 t+2.6602$, where $P(t)$ represents the cost, in dollars, and t is time in years since January 1995. During this time period, in what year did $P(t)$ reach its maximum?

1) 1995
2) 2013
3) 2014
4) 2018

Algebra II Multiple Choice Regents Exam Questions www.jmap.org

139 A study of the annual population of the red-winged blackbird in Ft. Mill, South Carolina, shows the population, $B(t)$, can be represented by the function $B(t)=750(1.16)^{t}$, where the t represents the number of years since the study began. In terms of the monthly rate of growth, the population of red-winged blackbirds can be best approximated by the function

1) $B(t)=750(1.012)^{t}$
2) $B(t)=750(1.012)^{12 t}$
3) $B(t)=750(1.16)^{12 t}$
4) $B(t)=750(1.16)^{\frac{t}{12}}$

140 The expression $\frac{x^{3}+2 x^{2}+x+6}{x+2}$ is equivalent to

1) $x^{2}+3$
2) $x^{2}+1+\frac{4}{x+2}$
3) $2 x^{2}+x+6$
4) $2 x^{2}+1+\frac{4}{x+2}$

141 Which expression has been rewritten correctly to form a true statement?

1) $(x+2)^{2}+2(x+2)-8=(x+6) x$
2) $x^{4}+4 x^{2}+9 x^{2} y^{2}-36 y^{2}=(x+3 y)^{2}(x-2)^{2}$
3) $x^{3}+3 x^{2}-4 x y^{2}-12 y^{2}=(x-2 y)(x+3)^{2}$
4) $\left(x^{2}-4\right)^{2}-5\left(x^{2}-4\right)-6=\left(x^{2}-7\right)\left(x^{2}-6\right)$

142 Given $y=-2 x$ and $x^{2}+y^{2}=5$, the point of intersection in Quadrant II is

1) $(1,-2)$
2) $(-2,1)$
3) $(-1,1)$
4) $(-1,2)$

143 When $g(x)=\frac{2}{x+2}$ and $h(x)=\log (x+1)+3$ are graphed on the same set of axes, which coordinates best approximate their point of intersection?

1) $(-0.9,1.8)$
2) $(-0.9,1.9)$
3) $(1.4,3.3)$
4) $(1.4,3.4)$

144 Which diagram shows an angle rotation of 1 radian on the unit circle?
1)

2)

Algebra II Multiple Choice Regents Exam Questions www.jmap.org

145 Which statement about statistical analysis is false?

1) Experiments can suggest patterns and relationships in data.
2) Experiments can determine cause and effect relationships.
3) Observational studies can determine cause and effect relationships.
4) Observational studies can suggest patterns and relationships in data.

146 Given the parent function $p(x)=\cos x$, which phrase best describes the transformation used to obtain the graph of $g(x)=\cos (x+a)-b$, if a and b are positive constants?

1) right a units, up b units
2) right a units, down b units
3) left a units, up b units
4) left a units, down b units

147 The expression $\frac{4 x^{3}+5 x+10}{2 x+3}$ is equivalent to

1) $2 x^{2}+3 x-7+\frac{31}{2 x+3}$
2) $2 x^{2}-3 x+7-\frac{11}{2 x+3}$
3) $2 x^{2}+2.5 x+5+\frac{15}{2 x+3}$
4) $2 x^{2}-2.5 x-5-\frac{20}{2 x+3}$

148 Which function represents exponential decay?

1) $y=2^{0.3 t}$
2) $y=1.2^{3 t}$
3) $y=\left(\frac{1}{2}\right)^{-t}$
4) $y=5^{-t}$

149 A study of the red tailed hawk population in a given area shows the population, $H(t)$, can be represented by the function $H(t)=50(1.19)^{t}$ where t represents the number of years since the study began. In terms of the monthly rate of growth, the population can be best approximated by the function

1) $H(t)=50(1.015)^{12 t}$
2) $H(t)=50(1.15)^{\frac{t}{12}}$
3) $H(t)=50(1.19)^{12 t}$
4) $H(t)=50(1.19)^{\frac{t}{12}}$

150 The price of a postage stamp in the years since the end of World War I is shown in the scatterplot below.

The equation that best models the price, in cents, of a postage stamp based on these data is

1) $y=0.59 x-14.82$
2) $y=1.04(1.43)^{x}$
3) $y=1.43(1.04)^{x}$
4) $y=24 \sin (14 x)+25$

151 Relative to the graph of $y=3 \sin x$, what is the shift of the graph of $y=3 \sin \left(x+\frac{\pi}{3}\right)$?

1) $\frac{\pi}{3}$ right
2) $\frac{\pi}{3}$ left
3) $\frac{\pi}{3}$ up
4) $\frac{\pi}{3}$ down

152 Which expression is equivalent to $(3 k-2 i)^{2}$, where i is the imaginary unit?

1) $9 k^{2}-4$
2) $9 k^{2}+4$
3) $9 k^{2}-12 k i-4$
4) $9 k^{2}-12 k i+4$

153 Which equation is represented by the graph shown below?

1) $y=\frac{1}{2} \cos 2 x$
2) $y=\cos x$
3) $y=\frac{1}{2} \cos x$
4) $y=2 \cos \frac{1}{2} x$

154 The probability that Gary and Jane have a child with blue eyes is 0.25 , and the probability that they have a child with blond hair is 0.5 . The probability that they have a child with both blue eyes and blond hair is 0.125 . Given this information, the events blue eyes and blond hair are

I: dependent
II: independent
III: mutually exclusive

1) I, only
2) II, only
3) I and III
4) II and III

155 The J\& B candy company claims that 45% of the candies it produces are blue, 30% are brown, and 25% are yellow. Each bag holds 65 candies. A simulation was run 200 times, each of sample size 65 , based on the premise that 45% of the candies are blue. The results of the simulation are shown below.

Bonnie purchased a bag of J\& B's candy and counted 24 blue candies. What inference can be made regarding a bag of J\& B's with only 24 blue candies?

1) The company is not meeting their production standard.
2) Bonnie's bag was a rarity and the company should not be concerned.
3) The company should change their claim to 37% blue candies are produced.
4) Bonnie's bag is within the middle 95% of the simulated data supporting the company's claim.

Algebra II Multiple Choice Regents Exam Questions

156 A recursive formula for the sequence $40,30,22.5, \ldots$ is

1) $g_{n}=40\left(\frac{3}{4}\right)^{n}$
2) $g_{1}=40$

$$
g_{n}=g_{n-1}-10
$$

3) $g_{n}=40\left(\frac{3}{4}\right)^{n-1}$
4) $g_{1}=40$

$$
g_{n}=\frac{3}{4} g_{n-1}
$$

157 Emmeline is working on one side of a polynomial identity proof used to form Pythagorean triples. Her work is shown below:

$$
(5 x)^{2}+\left(5 x^{2}-5\right)^{2}
$$

Step 1: $25 x^{2}+\left(5 x^{2}-5\right)^{2}$
Step 2: $25 x^{2}+25 x^{2}+25$
Step 3: $50 x^{2}+25$
Step 4: $75 x^{2}$
What statement is true regarding Emmeline's work?

1) Emmeline's work is entirely correct.
2) There is a mistake in step 2 , only.
3) There are mistakes in step 2 and step 4.
4) There is a mistake in step 4 , only.

158 The equation below can be used to model the height of a tide in feet, $H(t)$, on a beach at t hours.

$$
H(t)=4.8 \sin \left(\frac{\pi}{6}(t+3)\right)+5.1
$$

Using this function, the amplitude of the tide is

1) $\frac{\pi}{6}$
2) 4.8
3) 3
4) 5.1

159 Which expression is a factor of $x^{4}-x^{3}-11 x^{2}+5 x+30$?

1) $x+2$
2) $x-2$
3) $x+5$
4) $x-5$

160 For all real values of x, if $f(x)=(x-3)^{2}$ and $g(x)=(x+3)^{2}$, what is $f(x)-g(x)$?

1) -18
2) 0
3) $-12 x$
4) $2 x^{2}-12 x-18$

161 Which expression is equivalent to $\frac{2 x^{3}+2 x-7}{2 x+4}$?

1) $x^{2}-2 x+5-\frac{27}{2 x+4}$
2) $x^{2}-1-\frac{3}{2 x+4}$
3) $x^{2}+2 x+5+\frac{13}{2 x+4}$
4) $x^{2}+2 x-3+\frac{5}{2 x+4}$

162 Given the inverse function $f^{-1}(x)=\frac{2}{3} x+\frac{1}{6}$, which function represents $f(x)$?

1) $f(x)=-\frac{2}{3} x+\frac{1}{6}$
2) $f(x)=-\frac{3}{2} x+\frac{1}{4}$
3) $f(x)=\frac{3}{2} x-\frac{1}{4}$
4) $f(x)=\frac{3}{2} x-\frac{1}{6}$

163 Monthly mortgage payments can be found using the formula below, where M is the monthly payment, P is the amount borrowed, r is the annual interest rate, and n is the total number of monthly payments.

$$
M=\frac{P\left(\frac{r}{12}\right)\left(1+\frac{r}{12}\right)^{n}}{\left(1+\frac{r}{12}\right)^{n}-1}
$$

If Adam takes out a 15-year mortgage, borrowing $\$ 240,000$ at an annual interest rate of 4.5%, his monthly payment will be

1) $\$ 1379.09$
2) $\$ 1604.80$
3) $\$ 1835.98$
4) $\$ 9011.94$

164 If $f(t)=50(.5)^{\frac{t}{5715}}$ represents a mass, in grams, of carbon-14 remaining after t years, which statement(s) must be true?
I. The mass of the carbon-14 is decreasing by half each year.
II. The mass of the original sample is 50 g .

1) I, only
2) II, only
3) I and II
4) neither I nor II

165 In a group of 40 people, 20 have brown hair, 22 have blue eyes, and 15 have both brown hair and blue eyes. How many people have neither brown hair nor blue eyes?

1) 0
2) 13
3) 27
4) 32

166 John and Margaret deposit \$500 into a savings account for their son on his first birthday. They continue to make a deposit of $\$ 500$ on the child's birthday, with the last deposit being made on the child's 21st birthday. If the account pays 4% annual interest, which equation represents the amount of money in the account after the last deposit is made?

1) $S_{21}=500(1.04)^{21}$
2) $S_{21}=\frac{500\left(1-1.04^{21}\right)}{1-1.04}$
3) $S_{21}=500(1.04)^{20}+500$
4) $S_{21}=\frac{500\left(1-0.04^{21}\right)}{1-1.04}$

167 A cyclist pedals a bike at a rate of 60 revolutions per minute. The height, h, of a pedal at time t, in seconds, is plotted below.

The graph can be modeled by the function $h(t)=5 \sin (k t)$, where k is equal to

1) 1
2) 2π
3) 60
4) $\frac{\pi}{30}$

168 The table below shows the food preferences of sports fans whose favorite sport is football or baseball.
Favorite Food to Eat While Watching Sports

	Wings	Pizza	Hot Dogs
Football	14	20	6
Baseball	6	12	42

The probability that a fan prefers pizza given that the fan prefers football is

1) $\frac{1}{2}$
2) $\frac{1}{5}$
3) $\frac{5}{8}$
4) $\frac{13}{25}$

169 Betty conducted a survey of her class to see if they like pizza. She gathered 200 responses and 65% of the voters said they did like pizza. Betty then ran a simulation of 400 more surveys, each with 200 responses, assuming that 65% of the voters would like pizza. The output of the simulation is shown below.

Considering the middle 95% of the data, what is the margin of error for the simulation?

1) 0.01
2) 0.02
3) 0.05
4) 0.07

170 If $(6-k i)^{2}=27-36 i$, the value of k is

1) -36
2) -3
3) 3
4) 6

171 Which equation represents a parabola with a focus of $(4,-3)$ and directrix of $y=1$?

1) $(x-1)^{2}=4(y+3)$
2) $(x-1)^{2}=-8(y-3)$
3) $(x+4)^{2}=4(y-3)$
4) $(x-4)^{2}=-8(y+1)$

172 Given $f(x)=-\frac{2}{5} x+4$, which statement is true of the inverse function $f^{-1}(x)$?

1) $f^{-1}(x)$ is a line with slope $\frac{5}{2}$.
2) $f^{-1}(x)$ is a line with slope $\frac{2}{5}$.
3) $f^{-1}(x)$ passes through the point $(6,-5)$.
4) $f^{-1}(x)$ has a y-intercept at $(0,-4)$.

173 Which situation best describes conditional probability?

1) finding the probability of an event occurring two or more times
2) finding the probability of an event occurring only once
3) finding the probability of two independent events occurring at the same time
4) finding the probability of an event occurring given another event had already occurred

174 Consider the following patterns:
I. $16,-12,9,-6.75, \ldots$
II. $1,4,9,16, \ldots$
III. $6,18,30,42, \ldots$
IV. $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots$

Which pattern is geometric?

1) I
2) II
3) III
4) IV

175 If $f(x)=2 x^{4}-x^{3}-16 x+8$, then $f\left(\frac{1}{2}\right)$

1) equals 0 and $2 x+1$ is a factor of $f(x)$
2) equals 0 and $2 x-1$ is a factor of $f(x)$
3) does not equal 0 and $2 x+1$ is not a factor of $f(x)$
4) does not equal 0 and $2 x-1$ is a factor of $f(x)$

176 Given that i is the imaginary unit, the expression $(x-2 i)^{2}$ is equivalent to

1) $x^{2}+4$
2) $x^{2}-4$
3) $x^{2}-2 x i-4$
4) $x^{2}-4 x i-4$

177 How many real solutions exist for the system of equations below?

$$
\begin{aligned}
& y=\frac{1}{4} x-8 \\
& y=\frac{1}{2} x^{2}+2 x
\end{aligned}
$$

1) 1
2) 2
3) 3
4) 0

178 A retailer advertises that items will be discounted by 10% every Monday until they are sold. In how many weeks will an item costing $\$ 50$ first be sold for under half price?

1) 7
2) 6
3) 5
4) 4

179 According to a study, 45\% of Americans have type O blood. If a random number generator produces three-digit values from 000 to 999, which values would represent those having type O blood?

1) between 000 and 045 , inclusive
2) between 000 and 444, inclusive
3) between 000 and 449, inclusive
4) between 000 and 450, inclusive

180 Written in simplest form, the fraction $\frac{x^{3}-9 x}{9-x^{2}}$, where $x \neq \pm 3$, is equivalent to

1) $-x$
2) x
3) $\frac{-x(x+3)}{(3+x)}$
4) $\frac{x(x-3)}{(3-x)}$

181 Which investigation technique is most often used to determine if a single variable has an impact on a given population?

1) observational study
2) random survey
3) controlled experiment
4) formal interview

182 What is the solution of $2\left(3^{x+4}\right)=56$?

1) $x=\log _{3}(28)-4$
2) $x=-1$
3) $x=\log (25)-4$
4) $x=\frac{\log (56)}{\log (6)}-4$

183 A local university has a current enrollment of 12,000 students. The enrollment is increasing continuously at a rate of 2.5% each year. Which logarithm is equal to the number of years it will take for the population to increase to 15,000 students?

1) $\frac{\ln 1.25}{0.25}$
2) $\frac{\ln 3000}{0.025}$
3) $\frac{\ln 1.25}{2.5}$
4) $\frac{\ln 1.25}{0.025}$

184 If $f(x)=\frac{1}{2} x+2$, then the inverse function is

1) $f^{-1}(x)=-\frac{1}{2} x-2$
2) $f^{-1}(x)=\frac{1}{2} x-1$
3) $f^{-1}(x)=2 x-4$
4) $f^{-1}(x)=2 x+2$

185 According to the USGS, an agency within the Department of Interior of the United States, the frog population in the U.S. is decreasing at the rate of 3.79% per year. A student created a model, $P=12,150(0.962)^{t}$, to estimate the population in a pond after t years. The student then created a model that would predict the population after d decades. This model is best represented by

1) $P=12,150(0.461)^{d}$
2) $P=12,150(0.679)^{d}$
3) $P=12,150(0.996)^{d}$
4) $P=12,150(0.998)^{d}$

186 A rush-hour commuter train has arrived on time 64 of its first 80 days. As arrivals continue, which equation can be used to find x, the number of consecutive days that the train must arrive on schedule to raise its on-time performance rate to 90\%?

1) $\frac{64}{80+x}=\frac{90}{100}$
2) $\frac{64+x}{80+x}=\frac{90}{100}$
3) $\frac{64+x}{80}=\frac{90}{100}$
4) $\frac{x}{80+x}=\frac{90}{100}$

Algebra II Multiple Choice Regents Exam Questions www.jmap.org

187 Consider the end behavior description below.

- as $x \rightarrow-\infty, f(x) \rightarrow \infty$
- as $x \rightarrow \infty, f(x) \rightarrow-\infty$

Which function satisfies the given conditions?

1) $f(x)=x^{4}+2 x^{2}+1$
2)

3) $f(x)=-x^{3}+2 x-6$
4)

Chet has $\$ 1200$ invested in a bank account modeled by the function $P(n)=1200(1.002)^{n}$, where $P(n)$ is the value of his account, in dollars, after n months. Chet's debt is modeled by the function $Q(n)=100 n$, where $Q(n)$ is the value of debt, in dollars, after n months. After n months, which function represents Chet's net worth, $R(n)$?

1) $R(n)=1200(1.002)^{n}+100 n$
2) $R(n)=1200(1.002)^{12 n}+100 n$
3) $R(n)=1200(1.002)^{n}-100 n$
4) $R(n)=1200(1.002)^{12 n}-100 n$

189 What is the solution set of $x=\sqrt{3 x+40}$?

1) $\{-5,8\}$
2) $\{8\}$
3) $\{-4,10\}$
4) $\}$

190 The graph of the function $f(x)$ is shown below.

In which interval is $f(x)$ always positive?

1) $(-2,4)$
2) $(0,10)$
3) $(-12,-5)$
4) $(-10,0)$

191 What is the solution for the system of equations below?

$$
\begin{aligned}
x+y+z & =2 \\
x-2 y-z & =-4 \\
x-9 y+z & =-18
\end{aligned}
$$

1) $(-2,2,2)$
2) $(-2,-2,6)$
3) $(0,2,0)$
4) $(0,2,4)$

192 The roots of the equation $x^{2}-4 x=-13$ are

1) $2 \pm 3 i$
2) $2 \pm 6 i$
3) $2 \pm \sqrt{17}$
4) $2 \pm \sqrt{13}$

193 A group of high school students wanted to collect information on how many times per week students exercised. If they want the least biased results they should survey every fifth student at the school who is

1) entering the gym
2) in the junior class
3) entering the library
4) entering the building

194 A recursive formula for the sequence $64,48,36, \ldots$ is

1) $a_{n}=64(0.75)^{n-1}$
2) $a_{1}=64$

$$
a_{n}=a_{n-1}-16
$$

3) $a_{n}=64+(n-1)(-16)$
4) $a_{1}=64$

$$
a_{n}=0.75 a_{n-1}
$$

195 An angle, θ, is rotated counterclockwise on the unit circle, with its terminal side in the second quadrant, as shown in the diagram below.

Which value represents the radian measure of angle θ ?

1) 1
2) 2
3) 65.4
4) 114.6

196 In the diagram of a unit circle below, point A, $\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$, represents the point where the terminal side of θ intersects the unit circle.

What is $\mathrm{m} \angle \theta$?

1) 30°
2) 120°
3) 135°
4) 150°

197 The Hot and Tasty Coffee chain conducts a survey of its customers at its location at the Staten Island ferry terminal. After the survey is completed, the statistical consultant states that 70% of customers who took the survey said the most important factor in choosing where to get their coffee is how fast they are served. Based on this result, Hot and Tasty Coffee can infer that

1) most of its customers in New York State care most about being served quickly
2) coffee drinkers care less about taste and more about being served quickly
3) most of its customers at the Staten Island ferry terminal care most about being served quickly
4) most of its customers at transportation terminals and stations care most about being served quickly

198 Which graph shows a quadratic function with two imaginary zeros?
1)

2)

3)

200 A tree farm initially has 150 trees. Each year, 20\% of the trees are cut down and 80 seedlings are planted. Which recursive formula models the number of trees, a_{n}, after n years?

1) $a_{1}=150$

$$
a_{n}=a_{n-1}(0.2)+80
$$

2) $a_{1}=150$

$$
a_{n}=a_{n-1}(0.8)+80
$$

3) $a_{n}=150(0.2)^{n}+80$
4) $a_{n}=150(0.8)^{n}+80$

201 Which function is even?

1) $f(x)=x^{3}+2$
2) $f(x)=x^{2}+1$
3) $f(x)=|x+2|$
4) $f(x)=\sin (2 x)$

202 Which statement below about the graph of $f(x)=-\log (x+4)+2$ is true?

1) $f(x)$ has a y-intercept at $(0,2)$.
2) $-f(x)$ has a y-intercept at $(0,2)$.
3) As $x \rightarrow \infty, f(x) \rightarrow \infty$.
4) $x \rightarrow-4, f(x) \rightarrow \infty$.

203 If the focus of a parabola is $(0,6)$ and the directrix is $y=4$, what is an equation for the parabola?

1) $y^{2}=4(x-5)$
2) $x^{2}=4(y-5)$
3) $y^{2}=8(x-5)$
4) $x^{2}=8(y-6)$

204 A popular celebrity tracks the number of people, in thousands, who have followed her on social media since January 1, 2015. A summary of the data she recorded is shown in the table below:

Number of Months Since January 2015	2	11	16	20	27	35	47	50	52
Number of Social Media Followers (thousands)	3.1	7.5	29.7	49.7	200.3	680.3	5200.3	8109.3	$12,107.1$

The celebrity uses an exponential regression equation to model the data. According to the model, about how many followers did she have on June 1, 2018?

1) $13,000,000$
2) $5,420,000$
3) $1,850,000$
4) 790,000

205 Mia has a student loan that is in deferment, meaning that she does not need to make payments right now. The balance of her loan account during her deferment can be represented by the function $f(x)=35,000(1.0325)^{x}$, where x is the number of years since the deferment began. If the bank decides to calculate her balance showing a monthly growth rate, an approximately equivalent function would be

1) $f(x)=35,000(1.0027)^{12 x}$
2) $f(x)=35,000(1.0027)^{\frac{x}{12}}$
3) $f(x)=35,000(1.0325)^{12 x}$
4) $f(x)=35,000(1.0325)^{\frac{x}{12}}$

206 The growth of a \$500 investment can be modeled by the function $P(t)=500(1.03)^{t}$, where t represents time in years. In terms of the monthly rate of growth, the value of the investment can be best approximated by

1) $P(t)=500(1.00247)^{12 t}$
2) $P(t)=500(1.00247)^{t}$
3) $P(t)=500(1.03)^{12 t}$
4) $P(t)=500(1.03)^{\frac{t}{12}}$

207 Given $p(\theta)=3 \sin \left(\frac{1}{2} \theta\right)$ on the interval $-\pi<\theta<\pi$, the function p

1) decreases, then increases
2) increases, then decreases
3) decreases throughout the interval
4) increases throughout the interval

208 In watching auditions for lead singer in a band, Liem became curious as to whether there is an association between how animated the lead singer is and the amount of applause from the audience. He decided to watch each singer and rate the singer on a scale of 1 to 5 , where 1 is the least animated and 5 is the most animated. He did this for all 5 nights of auditions and found that the more animated singers did receive louder applause. The study Liem conducted would be best described as

1) experimental
2) observational
3) a sample survey
4) a random assignment

Algebra II Multiple Choice Regents Exam Questions www.jmap.org

209 If θ is an angle in standard position whose terminal side passes through the point $(-2,-3)$, what is the numerical value of $\tan \theta$?

1) $\frac{2}{3}$
2) $\frac{3}{2}$
3) $-\frac{2}{\sqrt{13}}$
4) $-\frac{3}{\sqrt{13}}$

210 Consider a cubic polynomial with the characteristics below.

- exactly one real root
- as $x \rightarrow \infty, f(x) \rightarrow-\infty$

Given $a>0$ and $b>0$, which equation represents a cubic polynomial with these characteristics?

1) $f(x)=(x-a)\left(x^{2}+b\right)$
2) $f(x)=(a-x)\left(x^{2}+b\right)$
3) $f(x)=\left(a-x^{2}\right)\left(x^{2}+b\right)$
4) $f(x)=(x-a)\left(b-x^{2}\right)$

211 Which statement about data collection is most accurate?

1) A survey about parenting styles given to every tenth student entering the library will provide unbiased results.
2) An observational study allows a researcher to determine the cause of an outcome.
3) Margin of error increases as sample size increases.
4) A survey collected from a random sample of students in a school can be used to represent the opinions of the school population.

212 If $\cos A=\frac{\sqrt{5}}{3}$ and $\tan A<0$, what is the value of $\sin A$?

1) $\frac{2}{3}$
2) $-\frac{\sqrt{5}}{3}$
3) $-\frac{2}{3}$
4) $\frac{3}{\sqrt{5}}$

213 The graph of a quadratic function is shown below.

When the graph of $x+y=4$ is drawn on the same axes, one solution to this system is

1) $(4,0)$
2) $(1,5)$
3) $(2,2)$
4) $(3,1)$

Algebra II Multiple Choice Regents Exam Questions

www.jmap.org
214 Consider the graph of g and the table representing t below.

x	$t(x)$
-1	3
0	5
1	2
2	-5
3	-1
4	3

Over the interval $[2,4]$, which statement regarding the average rate of change for g and t is true?

1) g has a greater average rate of change.
2) The average rate of change for g is twice the average rate of change for t.
3) The average rates of change are equal.
4) The average rate of change for g is half the average rate of change for t.

215 The solution set of $\frac{x+3}{x-5}+\frac{6}{x+2}=\frac{6+10 x}{(x-5)(x+2)}$ is

1) $\{-6\}$
2) $\{5\}$
3) $\{-6,5\}$
4) $\{-5,6\}$

216 If a solution of $2(2 x-1)=5 x^{2}$ is expressed in simplest $a+b i$ form, the value of b is

1) $\frac{\sqrt{6}}{5} i$
2) $\frac{\sqrt{6}}{5}$
3) $\frac{1}{5} i$
4) $\frac{1}{5}$

217 Which statement regarding polynomials and their zeros is true?

1) $f(x)=\left(x^{2}-1\right)(x+a)$ has zeros of 1 and $-a$, only.
2) $f(x)=x^{3}-a x^{2}+16 x-16 a$ has zeros of 4 and a, only.
3) $f(x)=\left(x^{2}+25\right)(x+a)$ has zeros of ± 5 and $-a$.
4) $f(x)=x^{3}-a x^{2}-9 x+9 a$ has zeros of ± 3 and a.

218 What is the solution set of the equation $\frac{x+2}{x}+\frac{x}{3}=\frac{2 x^{2}+6}{3 x}$?

1) $\{-3\}$
2) $\{-3,0\}$
3) $\{3\}$
4) $\{0,3\}$

Algebra II Multiple Choice Regents Exam Questions www.jmap.org

219 Luminescence is the emission of light that is not caused by heat. A luminescent substance decays according to the function below.

$$
I=I_{0} e^{3\left(-\frac{t}{0.6}\right)}
$$

This function can be best approximated by

1) $I=I_{0} e^{\left(-\frac{t}{0.18}\right)}$
2) $I=I_{0} e^{5 t}$
3) $I=I_{0}(0.0067)^{t}$
4) $I=I_{0}(0.0497)^{0.6 t}$

220 Which equation best represents the graph below?

1) $h(x)=\log (x+a)+c$
2) $h(x)=\log (x-a)+c$
3) $h(x)=\log (x+a)-c$
4) $h(x)=\log (x-a)-c$

221 A researcher wants to determine if room-darkening shades cause people to sleep longer. Which method of data collection is most appropriate?

1) census
2) survey
3) observation study
4) controlled experiment

222 The expression $\frac{x^{4}-5 x^{2}+4 x+14}{x+2}$ is equivalent to

1) $x^{3}-2 x^{2}-x+6+\frac{2}{x+2}$
2) $x^{3}-5 x+4-\frac{14}{x+2}$
3) $x^{3}+2 x^{2}-x+2+\frac{18}{x+2}$
4) $x^{3}+2 x^{2}-9 x+22-\frac{30}{x+2}$

223 The amount of a substance, $A(t)$, that remains after t days can be given by the equation
$A(t)=A_{0}(0.5)^{\frac{t}{0.0803}}$, where A_{0} represents the initial amount of the substance. An equivalent form of this equation is

1) $A(t)=A_{0}(0.000178)^{t}$
2) $A(t)=A_{0}(0.945861)^{t}$
3) $A(t)=A_{0}(0.04015)^{t}$
4) $A(t)=A_{0}(1.08361)^{t}$

224 If $f(x)=12 x-4$, then the inverse function $f^{-1}(x)$ is

1) $f^{-1}(x)=\frac{x+1}{3}$
2) $f^{-1}(x)=\frac{x}{3}+1$
3) $f^{-1}(x)=\frac{x+4}{12}$
4) $f^{-1}(x)=\frac{x}{12}+4$

225 Which equation has roots of $3+i$ and $3-i$?

1) $x^{2}-6 x+10=0$
2) $x^{2}+6 x-10=0$
3) $x^{2}-10 x+6=0$
4) $x^{2}+10 x-6=0$

226 Which function has the characteristic as
$x \rightarrow-\infty, f(x) \rightarrow-\infty$?
1)

3) $f(x)=5(4)^{-x}$
4) $f(x)=-\log _{5}(-x)$

227 Given $x \neq-2$, the expression $\frac{2 x^{2}+5 x+8}{x+2}$ is equivalent to

1) $2 x^{2}+\frac{9}{x+2}$
2) $2 x+\frac{7}{x+2}$
3) $2 x+1+\frac{6}{x+2}$
4) $2 x+9-\frac{10}{x+2}$

228 Marissa and Sydney are trying to determine if there is enough interest in their school to put on a senior musical. They randomly surveyed 100 members of the senior class and 43% of them said they would be interested in being in a senior musical. Marissa and Sydney then conducted a simulation of 500 more surveys, each of 100 seniors, assuming that 43% of the senior class would be interested in being in the musical. The output of the simulation is shown below.

The standard deviation of the simulation is closest to

1) 0.02
2) 0.05
3) 0.09
4) 0.43

229 What is the total number of points of intersection of the graphs of the equations $y=e^{x}$ and $x y=20$?

1) 1
2) 2
3) 3
4) 0

230 For which approximate value(s) of x will $\log (x+5)=|x-1|-3$?

1) 5,1
2) $-2.41,0.41$
3) $-2.41,5$
4) 5, only

Algebra II Multiple Choice Regents Exam Questions www.jmap.org

231 The solution to the equation $5 e^{x+2}=7$ is

1) $-2+\ln \left(\frac{7}{5}\right)$
2) $\left(\frac{\ln 7}{\ln 5}\right)-2$
3) $\frac{-3}{5}$
4) $-2+\ln (2)$

232 The graph of a cubic polynomial function $p(x)$ is shown below.

If $p(x)$ is written as a product of linear factors, which factor would appear twice?

1) $x-2$
2) $x+2$
3) $x-3$
4) $x+3$

233 A population is normally distributed with a mean of 23 and a standard deviation of 1.2. The percentage of the population that falls below 21, to the nearest hundredth, is

1) 0.05
2) 4.78
3) 8.29
4) 91.30

234 How many equations below are identities?

- $x^{2}+y^{2}=\left(x^{2}-y^{2}\right)+(2 x y)^{2}$
- $x^{3}+y^{3}=(x-y)+\left(x^{2}-x y+y^{2}\right)$
- $x^{4}+y^{4}=(x-y)(x-y)\left(x^{2}+y^{2}\right)$

1) 1
2) 2
3) 3
4) 0

235 In a survey of people who recently bought a laptop, 45% said they were looking for a large screen, 31% said they were looking for a fast processor, and 58% said they wanted a large screen or a fast processor. If a survey respondent is selected at random, what is the probability that the respondent wanted both a large screen and a fast processor?

1) 76%
2) 14%
3) 77%
4) 18%

236 The expression $3 i\left(a i-6 i^{2}\right)$ is equivalent to

1) $3 a+18 i$
2) $3 a-18 i$
3) $-3 a+18 i$
4) $-3 a-18 i$

237 Susan won $\$ 2,000$ and invested it into an account with an annual interest rate of 3.2%. If her investment were compounded monthly, which expression best represents the value of her investment after t years?

1) $2000(1.003)^{12 t}$
2) $2000(1.032)^{\frac{t}{12}}$
3) $2064^{\frac{t}{12}}$
4) $\frac{2000(1.032)^{t}}{12}$

238 The population of Austin, Texas from 1850 to 2010 is summarized in the table below.

Year	1850	1870	1890	1910	1930	1950	1970	1990	2010
Population	629	4428	14,575	29,860	53,120	132,459	251,808	494,290	790,390

Over which period of time was the average rate of change in population the greatest?

1) 1850 to 1910
2) 1990 to 2010
3) 1950 to 1970
4) 1890 to 1970

239 Consider the system below.

$$
\begin{gathered}
x+y+z=9 \\
x-y-z=-1 \\
x-y+z=21
\end{gathered}
$$

Which value is not in the solution, (x, y, z), of the system?

1) -8
2) -6
3) 11
4) 4

240 Which expression is equivalent to $(x+y i)\left(x^{2}-x y i-y^{2}\right)$, where i is the imaginary unit?

1) $x^{3}+y^{3} i$
2) $x^{3}-x y^{2}-\left(x y^{2}+y^{3}\right) i$
3) $x^{3}-2 x y^{2}-y^{3} i$
4) $x^{3}-y^{3} i$

241 Which function has the greatest y-intercept?

1) $f(x)=4 \sin (2 x)$
2) $g(x)=3 x^{4}+2 x^{3}+7$
3) $h(x)=5 e^{2 x}+3$
4) $j(x)=6 \log _{2}(3 x+4)$

242 Consider the function $f(x)=2 x^{3}+x^{2}-18 x-9$. Which statement is true?

1) $2 x-1$ is a factor of $f(x)$.
2) $x-3$ is a factor of $f(x)$.
3) $f(3) \neq f\left(-\frac{1}{2}\right)$
4) $f\left(\frac{1}{2}\right)=0$

243 The value of an automobile t years after it was purchased is given by the function $V=38,000(0.84)^{t}$. Which statement is true?

1) The value of the car increases 84% each year.
2) The value of the car decreases 84% each year.
3) The value of the car increases 16% each year.
4) The value of the car decreases 16% each year.

244 For the polynomial $p(x)$, if $p(3)=0$, it can be concluded that

1) $x+3$ is a factor of $p(x)$
2) $x-3$ is a factor of $p(x)$
3) when $p(x)$ is divided by 3 , the remainder is zero
4) when $p(x)$ is divided by -3 , the remainder is zero

245 A company fired several employees in order to save money. The amount of money the company saved per year over five years following the loss of employees is shown in the table below.

Year	Amount Saved (in dollars)
1	59,000
2	64,900
3	71,390
4	78,529
5	$86,381.9$

Which expression determines the total amount of money saved by the company over 5 years?

1) $\frac{59,000-59,000(1.1)^{5}}{1-1.1}$
2) $\frac{59,000-59,000(0.1)^{5}}{1-0.1}$
3) $\sum_{n=1}^{5} 59,000(1.1)^{n}$
4) $\sum_{n=1}^{5} 59,000(0.1)^{n-1}$

246 The sum of the first 20 terms of the series $-2+6-18+54-\ldots$ is

1) -610
2) -59
3) $1,743,392,200$
4) $2,324,522,934$

248 Expressed in simplest $a+b i$ form, $(7-3 i)+(x-2 i)^{2}-\left(4 i+2 x^{2}\right)$ is

1) $\left(3-x^{2}\right)-(4 x+7) i$
2) $\left(3+3 x^{2}\right)-(4 x+7) i$
3) $\left(3-x^{2}\right)-7 i$
4) $\left(3+3 x^{2}\right)-7 i$

247 Mrs. Favata's statistics class wants to conduct a survey to see how students feel about changing the school mascot's name. Which plan is the best process for gathering an appropriate sample?

1) Survey students in a random sample of senior homerooms.
2) Survey every tenth student entering art classes in the school.
3) Survey every fourth student entering the cafeteria during each lunch period.
4) Survey all members of the school's varsity sports teams.

249 Which expression is equivalent to $\frac{x^{3}-2}{x-2}$?

1) x^{2}
2) $x^{2}+2 x+4+\frac{6}{x-2}$
3) $x^{2}-2$
4) $x^{2}-2 x+4-\frac{10}{x-2}$

250 What is the solution set of the equation $\frac{4}{k^{2}-8 k+12}=\frac{k}{k-2}+\frac{1}{k-6}$?

1) $\{-1,6\}$
2) $\{1,-6\}$
3) $\{-1\}$
4) $\{1\}$

251 Audra is interested in studying the number of students entering kindergarten in the Ahlville Central School District over the next several years. Using data dating back to 2015, she determines that the number of kindergarteners is decreasing at an exponential rate. She creates a formula to model this situation $y=a(b)^{x}$, where x is the number of years since 2015 and y is the number of students entering kindergarten. If there were 105 students entering kindergarten in Ahlville in 2015, which statement about Audra's formula is true?

1) a is positive and b is negative.
2) a is negative and b is positive.
3) Both a and b are positive.
4) Both a and b are negative.

252 Which function represents exponential decay?

1) $p(x)=\left(\frac{1}{4}\right)^{-x}$
2) $q(x)=1.8^{-x}$
3) $r(x)=2.3^{2 x}$
4) $s(x)=4^{\frac{x}{2}}$

253 Given $f(x)=x^{4}-x^{3}-6 x^{2}$, for what values of x will $f(x)>0$?

1) $x<-2$, only
2) $x<-2$ or $x>3$
3) $x<-2$ or $0 \leq x \leq 3$
4) $x>3$, only

254 Which value, to the nearest tenth, is the smallest solution of $f(x)=g(x)$ if $f(x)=3 \sin \left(\frac{1}{2} x\right)-1$ and $g(x)=x^{3}-2 x+1$?

1) -3.6
2) -2.1
3) -1.8
4) 1.4

255 In the quadratic formula, $b^{2}-4 a c$ is called the discriminant. The function $f(x)$ has a discriminant value of 8 , and $g(x)$ has a discriminant value of -16. The quadratic graphs, $h(x)$ and $j(x)$, are shown below.

Which quadratic functions have imaginary roots?

1) $g(x)$ and $h(x)$
2) $g(x)$ and $j(x)$
3) $f(x)$ and $h(x)$
4) $\quad f(x)$ and $j(x)$

256 The inverse of $f(x)=-6 x+\frac{1}{2}$ is

1) $f^{-1}(x)=6 x-\frac{1}{2}$
2) $f^{-1}(x)=\frac{1}{-6 x+\frac{1}{2}}$
3) $f^{-1}(x)=-\frac{1}{6} x+\frac{1}{12}$
4) $f^{-1}(x)=-\frac{1}{6} x+2$

257 The heights of the 3300 students at Oceanview High School are approximately normally distributed with a mean of 65.5 inches and a standard deviation of 2.9 inches. The number of students at Oceanview who are between 64 and 68 inches tall is closest to

1) 1660
2) 1070
3) 2244
4) 1640

258 Consider the function $y=h(x)$, defined by the graph below.

Which equation could be used to represent the graph shown below?

1) $y=h(x)-2$
2) $y=h(x-2)$
3) $y=-h(x)$
4) $y=h(-x)$

259 As θ increases from $-\frac{\pi}{2}$ to 0 radians, the value of $\cos \theta$ will

1) decrease from 1 to 0
2) decrease from 0 to -1
3) increase from -1 to 0
4) increase from 0 to 1

260 Which expression is not equivalent to $36 x^{6}-25 y^{4}$?

1) $6^{2}\left(x^{3}\right)^{2}-5^{2}\left(y^{2}\right)^{2}$
2) $\left(6 x^{3}-5 y^{2}\right)\left(6 x^{3}+5 y^{2}\right)$
3) $\left(6 x^{6}-5 y^{4}\right)\left(6 x^{6}+5 y^{4}\right)$
4) $\left(3 \cdot 2 x^{3}-5 y^{2}\right)\left(3 \cdot 2 x^{3}+5 y^{2}\right)$

261 The expression $\sqrt[4]{81 x^{8} y^{6}}$ is equivalent to

1) $3 x^{2} y^{\frac{3}{2}}$
2) $3 x^{4} y^{2}$
3) $9 x^{2} y^{\frac{3}{2}}$
4) $9 x^{4} y^{2}$

262 The heights of the students at Central High School can be modeled by a normal distribution with a mean of 68.1 and a standard deviation of 3.4 inches. According to this model, approximately what percent of the students would have a height less than 60 inches or greater than 75 inches?

1) 0.86%
2) 1.26%
3) 2.12%
4) 2.98%

263 Given $f(x)=3^{x-1}+2$, as $x \rightarrow-\infty$

1) $f(x) \rightarrow-1$
2) $f(x) \rightarrow 0$
3) $f(x) \rightarrow 2$
4) $f(x) \rightarrow-\infty$

264 The expression $\left(a \sqrt[3]{2 b^{2}}\right)\left(\sqrt[3]{4 a^{2} b}\right)$ is equivalent to

1) $2 a b \sqrt[3]{a^{2}}$
2) $2 a b$
3) $2 a b \sqrt[3]{2 a^{2}}$
4) $2 a^{2} b \sqrt[3]{2 b}$

265 What is the value of $\tan \theta$ when $\sin \theta=\frac{2}{5}$ and θ is in quadrant II?

1) $\frac{-\sqrt{21}}{5}$
2) $\frac{-\sqrt{21}}{2}$
3) $\frac{-2}{\sqrt{21}}$
4) $\frac{2}{\sqrt{21}}$

266 For all values of x for which the expression is defined, $\frac{x^{2}+3 x}{x^{2}+5 x+6}$ is equivalent to

1) $1-\frac{x}{x+2}$
2) $\frac{x}{x+2}$
3) $\frac{3 x}{5 x+6}$
4) $1+\frac{1}{2 x+6}$

267 Stone Manufacturing has developed a cost model, $C(x)=0.18 x^{3}+0.02 x^{2}+4 x+180$, where x is the number of sprockets sold, in thousands. The sales price can be modeled by $S(x)=95.4-6 x$ and the company's revenue by $R(x)=x \bullet S(x)$. The company's profits, $R(x)-C(x)$, could be modeled by

1) $0.18 x^{3}+6.02 x^{2}+91.4 x+180$
2) $0.18 x^{3}-5.98 x^{2}-91.4 x+180$
3) $-0.18 x^{3}-6.02 x^{2}+91.4 x-180$
4) $0.18 x^{3}+5.98 x^{2}+99.4 x+180$

268 Which equation represents a polynomial identity?

1) $x^{3}+y^{3}=(x+y)^{3}$
2) $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$
3) $x^{3}+y^{3}=(x+y)\left(x^{2}-x y-y^{2}\right)$
4) $x^{3}+y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$

269 What are the zeros of
$s(x)=x^{4}-9 x^{2}+3 x^{3}-27 x-10 x^{2}+90$?

1) $\{-3,-2,5\}$
2) $\{-2,3,5\}$
3) $\{-3,-2,3,5\}$
4) $\{-5,-3,2,3\}$

270 Given x and y are positive, which expressions are equivalent to $\frac{x^{3}}{y}$?
I. $\left(\frac{y}{x^{3}}\right)^{-1}$ II. $\sqrt[3]{x^{9}}\left(y^{-1}\right)$ III. $\frac{x^{6} \sqrt[4]{y^{8}}}{x^{3} y^{3}}$

1) I and II, only
2) I and III, only
3) II and III, only
4) I, II, and III

271 Which expression is equivalent to
$(x+2)^{2}-5(x+2)+6$?

1) $x(x-1)$
2) $(x-3)(x-2)$
3) $(x-4)(x+3)$
4) $(x-6)(x+1)$

272 The depth of the water, $d(t)$, in feet, on a given day at Thunder Bay, t hours after midnight is modeled by $d(t)=5 \sin \left(\frac{\pi}{6}(t-5)\right)+7$. Which statement about the Thunder Bay tide is false?

1) A low tide occurred at 2 a.m.
2) The maximum depth of the water was 12 feet.
3) The water depth at 9 a.m. was approximately 11 feet.
4) The difference in water depth between high tide and low tide is 14 feet.

273 The expression $(x+a)^{2}+5(x+a)+4$ is equivalent to

1) $(a+1)(a+4)$
2) $(x+1)(x+4)$
3) $(x+a+1)(x+a+4)$
4) $x^{2}+a^{2}+5 x+5 a+4$

274 Consider the system of equations below?

$$
\begin{aligned}
x+2 y-z & =1 \\
-x-3 y+2 z & =0 \\
2 x-4 y+z & =10
\end{aligned}
$$

What is the solution to the given system of equations?

1) $(1,1,2)$
2) $(3,-1,0)$
3) $(5,-1,2)$
4) $(3,5,8)$

275 The solution set for the equation $\sqrt{3(x+6)}=x$ is

1) $\{6,-3\}$
2) $\{-6,3\}$
3) $\{6\}$
4) $\{-3\}$

276 The expression $\frac{x^{2}+12}{x^{2}+3}$ can be rewritten as

1) $\frac{10}{x^{2}+3}$
2) $1+\frac{9}{x^{2}+3}$
3) $x+9$
4) 4

277 The amount of a substance, $A(t)$, in grams, remaining after t days is modeled by
$A(t)=50(0.5)^{\frac{t}{3}}$. Which statement is false?

1) In 20 days, there is no substance remaining.
2) After two half-lives, there is 25% of the substance remaining.
3) The amount of the substance remaining can also be modeled by

$$
A(t)=50(2)^{\frac{-t}{3}} .
$$

4) After one week, there is less than 10 g of the substance remaining.

278 If $f(x)=\left(x^{2}+3 x+2\right)\left(x^{2}-4 x+3\right)$ and $g(x)=x^{2}-9$, then how many real solutions are there to the equation $f(x)=g(x)$?

1) 1
2) 2
3) 6
4) 4

279 Consider the data in the table below.

	Right Handed	Left Handed
Male	87	13
Female	89	11

What is the probability that a randomly selected person is male given the person is left handed?

1) $\frac{13}{200}$
2) $\frac{13}{100}$
3) $\frac{13}{50}$
4) $\frac{13}{24}$

280 Given the polynomial identity $x^{6}+y^{6}=\left(x^{2}+y^{2}\right)\left(x^{4}-x^{2} y^{2}+y^{4}\right)$, which equation must also be true for all values of x and y ?

1) $x^{6}+y^{6}=x^{2}\left(x^{4}-x^{2} y^{2}+y^{4}\right)+y^{2}\left(x^{4}-x^{2} y^{2}+y^{4}\right)$
2) $x^{6}+y^{6}=\left(x^{2}+y^{2}\right)\left(x^{2}-y^{2}\right)\left(x^{2}-y^{2}\right)$
3) $\left(x^{3}+y^{3}\right)^{2}=\left(x^{2}+y^{2}\right)\left(x^{4}-x^{2} y^{2}+y^{4}\right)$
4) $\left(x^{6}+y^{6}\right)-\left(x^{2}+y^{2}\right)=x^{4}-x^{2} y^{2}+y^{4}$

281 The average monthly temperature, $T(m)$, in degrees Fahrenheit, over a 12 month period, can be modeled by $T(m)=-23 \cos \left(\frac{\pi}{6} m\right)+56$, where m is in months. What is the range of temperatures, in degrees Fahrenheit, of this function?

1) $[-23,23]$
2) $[33,79]$
3) $[-23,56]$
4) $[-79,33]$

282 Which expression is an equivalent form of $a \sqrt[5]{a^{4}}$?

1) a
2) $a^{\frac{9}{5}}$
3) $a^{\frac{9}{4}}$
4) $a^{\frac{1}{5}}$

283 To the nearest tenth, the solution to the equation $4300 e^{0.07 x}-123=5000$ is

1) 1.1
2) 2.5
3) 6.3
4) 68.5

284 Given $x \neq-3$, which expression is equivalent to $\frac{2 x^{3}+3 x^{2}-4 x+5}{x+3}$?

1) $2 x^{3}+9 x^{2}+23 x+74$
2) $2 x^{2}-3 x+5-\frac{10}{x+3}$
3) $2 x^{3}-3 x^{2}+5 x-10$
4) $2 x^{2}+9 x+23+\frac{74}{x+3}$

Algebra II Multiple Choice Regents Exam Questions www.jmap.org

285 Which function has a maximum y-value of 4 and a midline of $y=1$?
1)

2) $g(x)=-3 \cos (x)+1$

4) $j(x)=4 \sin (x)+1$

286 Which expression is not a solution to the equation $2^{t}=\sqrt{10}$?

1) $\frac{1}{2} \log _{2} 10$
2) $\log _{2} \sqrt{10}$
3) $\log _{4} 10$
4) $\log _{10} 4$

287 A parabola that has a vertex at $(2,1)$ and a focus of $(2,-3)$ has an equation of

1) $y=\frac{1}{16}(x-2)^{2}+1$
2) $y=-\frac{1}{16}(x+2)^{2}-1$
3) $y=-\frac{1}{16}(x-2)^{2}+1$
4) $y=-\frac{1}{16}(x-2)^{2}-3$

288 Given $x>0$, the expression $\frac{x^{\frac{1}{5}}}{x^{\frac{1}{2}}}$ can be rewritten as

1) $\sqrt[3]{x}$
2) $-\sqrt[10]{x^{3}}$
3) $\frac{1}{\sqrt[10]{x^{3}}}$
4) $\sqrt[3]{x^{10}}$

289 The function $N(x)=90(0.86)^{x}+69$ can be used to predict the temperature of a cup of hot chocolate in degrees Fahrenheit after x minutes. What is the approximate average rate of change of the temperature of the hot chocolate, in degrees per minute, over the interval $[0,6]$?

1) -8.93
2) -0.11
3) 0.11
4) 8.93

290 A function is defined as $a_{n}=a_{n-1}+\log _{n+1}(n-1)$, where $a_{1}=8$. What is the value of a_{3} ?

1) 8
2) 8.5
3) 9.2
4) 10

291 Which sketch could represent the function

$$
m(x)=-\log _{100}(x-2) ?
$$

1)
2)

292 A parabola has a directrix of $y=3$ and a vertex at $(2,1)$. Which ordered pair is the focus of the parabola?

1) $(2,-1)$
2) $(2,0)$
3) $(2,2)$
4) $(2,5)$

293 The George family would like to borrow \$45,000 to purchase a new boat. They qualified for a loan with an annual interest rate of 6.75%. The monthly loan payment can be found using the formula below.

$$
\begin{gathered}
M=\frac{P\left(\frac{r}{12}\right)\left(1+\frac{r}{12}\right)^{n}}{\left(1+\frac{r}{12}\right)^{n}-1} \\
M=\text { monthly payment } \\
P=\text { amount borrowed } \\
r=\text { annual interest rate } \\
n=\text { number of monthly payments }
\end{gathered}
$$

What is the monthly payment if they would like to pay off the loan in five years?

1) $\$ 262.99$
2) $\$ 252.13$
3) $\$ 915.24$
4) $\$ 885.76$

294 For all positive values of x, which expression is equivalent to $x^{\frac{3}{4}}$?

1) $\sqrt[4]{x^{3}}$
2) $\sqrt[3]{x^{4}}$
3) $\left(x^{3}\right)^{4}$
4) $3\left(x^{4}\right)$

295 The expression $\frac{x^{2}+6}{x^{2}+4}$ is equivalent to

1) $\frac{6}{4}$
2) $1+\frac{10}{x^{2}+4}$
3) $1-\frac{2}{x^{2}+4}$
4) $1+\frac{2}{x^{2}+4}$

296 Given $x \neq-3$, the expression $\frac{2 x^{3}+7 x^{2}-3 x-25}{x+3}$ is equivalent to

1) $2 x^{2}+x-6-\frac{7}{x+3}$
2) $2 x^{2}+13 x-36+\frac{83}{x+3}$
3) $2 x^{2}+x-13$
4) $x^{2}+4 x-15+\frac{20}{x+3}$

297 The element Americium has a half-life of 25 minutes. Given an initial amount, A_{0}, which expression could be used to determine the amount of Americium remaining after t minutes?

1) $A_{0}\left(\frac{1}{2}\right)^{\frac{t}{25}}$
2) $A_{0}(25)^{\frac{t}{2}}$
3) $25\left(\frac{1}{2}\right)^{t}$
4) $A_{0}\left(\frac{1}{2}\right)^{25 t}$

298 For $f(x)=\cos x$, which statement is true?

1) $2 f(x)$ and $f(2 x)$ are even functions.
2) $f(2 x)$ and $f(x)+2$ are odd functions.
3) $2 f(x)$ and $f\left(x+\frac{\pi}{2}\right)$ are odd functions.
4) $f(x)+2$ is an odd function and $f\left(x+\frac{\pi}{2}\right)$ is an even function.

299 Consider the function $p(x)=3 x^{3}+x^{2}-5 x$ and the graph of $y=m(x)$ below.

Which statement is true?

1) $p(x)$ has three real roots and $m(x)$ has two real roots.
2) $\quad p(x)$ has one real root and $m(x)$ has two real roots.
3) $\quad p(x)$ has two real roots and $m(x)$ has three real roots.
4) $\quad p(x)$ has three real roots and $m(x)$ has four real roots.

Algebra II Multiple Choice Regents Exam Questions

300 For $x \geq 0$, which equation is false?

1) $\left(x^{\frac{3}{2}}\right)^{2}=\sqrt[4]{x^{3}}$
2) $\left(x^{3}\right)^{\frac{1}{4}}=\sqrt[4]{x^{3}}$
3) $\left(x^{\frac{3}{2}}\right)^{\frac{1}{2}}=\sqrt[4]{x^{3}}$
4) $\left(x^{\frac{2}{3}}\right)^{2}=\sqrt[3]{x^{4}}$

301 Suppose two sets of test scores have the same mean, but different standard deviations, σ_{1} and σ_{2}, with $\sigma_{2}>\sigma_{1}$. Which statement best describes the variability of these data sets?

1) Data set one has the greater variability.
2) Data set two has the greater variability.
3) The variability will be the same for each data set.
4) No conclusion can be made regarding the variability of either set.

302 Suppose events A and B are independent and $P(A$ and $B)$ is 0.2 . Which statement could be true?

1) $P(A)=0.4, P(B)=0.3, P(A$ or $B)=0.5$
2) $P(A)=0.8, P(B)=0.25$
3) $P(A \mid B)=0.2, P(B)=0.2$
4) $P(A)=0.15, P(B)=0.05$

303 What is the solution set of the equation $\frac{2}{x}-\frac{3 x}{x+3}=\frac{x}{x+3}$?

1) $\{3\}$
2) $\left\{\frac{3}{2}\right\}$
3) $\{-2,3\}$
4) $\left\{-1, \frac{3}{2}\right\}$

304 What is the equation of the directrix for the parabola $-8(y-3)=(x+4)^{2}$?

1) $y=5$
2) $y=1$
3) $y=-2$
4) $y=-6$

305 Which expression can be rewritten as $(x+7)(x-1)$?

1) $(x+3)^{2}-16$
2) $(x+3)^{2}-10(x+3)-2(x+3)+20$
3) $\frac{(x-1)\left(x^{2}-6 x-7\right)}{(x+1)}$
4) $\frac{(x+7)\left(x^{2}+4 x+3\right)}{(x+3)}$

306 If $x-1$ is a factor of $x^{3}-k x^{2}+2 x$, what is the value of k ?

1) 0
2) 2
3) 3
4) -3

307 The profit function, $p(x)$, for a company is the cost function, $c(x)$, subtracted from the revenue function, $r(x)$. The profit function for the Acme Corporation is $p(x)=-0.5 x^{2}+250 x-300$ and the revenue function is $r(x)=-0.3 x^{2}+150 x$. The cost function for the Acme Corporation is

1) $c(x)=0.2 x^{2}-100 x+300$
2) $c(x)=0.2 x^{2}+100 x+300$
3) $c(x)=-0.2 x^{2}+100 x-300$
4) $c(x)=-0.8 x^{2}+400 x-300$

Algebra II Multiple Choice Regents Exam Questions

 www.jmap.org308
Evan graphed a cubic function,
$f(x)=a x^{3}+b x^{2}+c x+d$, and determined the roots of $f(x)$ to be ± 1 and 2 . What is the value of b, if $a=1$?

1) 1
2) 2
3) -1
4) -2

309 Which sketch best represents the graph of $x=3^{y}$?

310 A scatterplot showing the weight, w, in grams, of each crystal after growing t hours is shown below.

The relationship between weight, w, and time, t, is best modeled by

1) $w=4^{t}+5$
2) $w=(1.4)^{t}+2$
3) $w=5(2.1)^{t}$
4) $w=8(.75)^{t}$

311 Which function's graph has a period of 8 and reaches a maximum height of 1 if at least one full period is graphed?

1) $y=-4 \cos \left(\frac{\pi}{4} x\right)-3$
2) $y=-4 \cos \left(\frac{\pi}{4} x\right)+5$
3) $y=-4 \cos (8 x)-3$
4) $y=-4 \cos (8 x)+5$

312 What is the solution set for x in the equation below?

$$
\sqrt{x+1}-1=x
$$

1) $\{1\}$
2) $\{0\}$
3) $\{-1,0\}$
4) $\{0,1\}$

Algebra II Multiple Choice Regents Exam Questions www.jmap.org

313 If $A=-3+5 i, B=4-2 i$, and $C=1+6 i$, where i is the imaginary unit, then $A-B C$ equals

1) $5-17 i$
2) $5+27 i$
3) $-19-17 i$
4) $-19+27 i$

314 The solutions to $x+3-\frac{4}{x-1}=5$ are

1) $\frac{3}{2} \pm \frac{\sqrt{17}}{2}$
2) $\frac{3}{2} \pm \frac{\sqrt{17}}{2} i$
3) $\frac{3}{2} \pm \frac{\sqrt{33}}{2}$
4) $\frac{3}{2} \pm \frac{\sqrt{33}}{2} i$

315 Given $y>0$, the expression $\sqrt{3 x^{2} y} \bullet \sqrt[3]{27 x^{3} y^{2}}$ is equivalent to

1) $81 x^{5} y^{3}$
2) $3^{1.5} x^{2} y$
3) $3^{\frac{5}{2}} x^{2} y^{\frac{5}{3}}$
4) $3^{\frac{3}{2}} x^{2} y^{\frac{7}{6}}$

316 A veterinary pharmaceutical company plans to test a new drug to treat a common intestinal infection among puppies. The puppies are randomly assigned to two equal groups. Half of the puppies will receive the drug, and the other half will receive a placebo. The veterinarians monitor the puppies. This is an example of which study method?

1) census
2) observational study
3) survey
4) controlled experiment

317 An estimate of the number of milligrams of a medication in the bloodstream t hours after 400 mg has been taken can be modeled by the function below.

$$
\begin{gathered}
I(t)=0.5 t^{4}+3.45 t^{3}-96.65 t^{2}+347.7 t \\
\text { where } 0 \leq t \leq 6
\end{gathered}
$$

Over what time interval does the amount of medication in the bloodstream strictly increase?

1) 0 to 2 hours
2) 0 to 3 hours
3) 2 to 6 hours
4) 3 to 6 hours

318 If $p(x)=2 \ln (x)-1$ and $m(x)=\ln (x+6)$, then what is the solution for $p(x)=m(x)$?

1) 1.65
2) 3.14
3) 5.62
4) no solution

319 What is the inverse of $f(x)=-6(x-2)$?

1) $f^{-1}(x)=-2-\frac{x}{6}$
2) $f^{-1}(x)=2-\frac{x}{6}$
3) $f^{-1}(x)=\frac{1}{-6(x-2)}$
4) $f^{-1}(x)=6(x+2)$

320 On a given school day, the probability that Nick oversleeps is 48% and the probability he has a pop quiz is 25%. Assuming these two events are independent, what is the probability that Nick oversleeps and has a pop quiz on the same day?

1) 73%
2) 36%
3) 23%
4) 12%

321 Which statement(s) are true for all real numbers?

$$
\begin{array}{ll}
\text { I } & (x-y)^{2}=x^{2}+y^{2} \\
\text { II } & (x+y)^{3}=x^{3}+3 x y+y^{3}
\end{array}
$$

1) I, only
2) II, only
3) I and II
4) neither I nor II

322 Which description could represent the graph of $f(x)=4 x^{2}(x+a)-x-a$, if a is an integer?

1) As $x \rightarrow-\infty, f(x) \rightarrow \infty$, as $x \rightarrow \infty, f(x) \rightarrow \infty$, and the graph has $3 x$-intercepts.
2) As $x \rightarrow-\infty, f(x) \rightarrow-\infty$, as $x \rightarrow \infty, f(x) \rightarrow \infty$, and the graph has $3 x$-intercepts.
3) As $x \rightarrow-\infty, f(x) \rightarrow \infty$, as $x \rightarrow \infty, f(x) \rightarrow-\infty$, and the graph has $4 x$-intercepts.
4) As $x \rightarrow-\infty, f(x) \rightarrow-\infty$, as $x \rightarrow \infty, f(x) \rightarrow \infty$, and the graph has $4 x$-intercepts.

323 The parabola described by the equation $y=\frac{1}{12}(x-2)^{2}+2$ has the directrix at $y=-1$. The focus of the parabola is

1) $(2,-1)$
2) $(2,2)$
3) $(2,3)$
4) $(2,5)$

324 For the system shown below, what is the value of z ?

$$
\begin{gathered}
y=-2 x+14 \\
3 x-4 z=2 \\
3 x-y=16
\end{gathered}
$$

1) 5
2) 2
3) 6
4) 4

325 A 4th degree polynomial has zeros $-5,3$, i, and $-i$. Which graph could represent the function defined by this polynomial?
1)

2)

3)

326 Sodium iodide-131, used to treat certain medical conditions, has a half-life of 1.8 hours. The data table below shows the amount of sodium iodide-131, rounded to the nearest thousandth, as the dose fades over time.

Number of Half Lives	1	2	3	4	5
Amount of Sodium Iodide-131	139.000	69.500	34.750	17.375	8.688

What approximate amount of sodium iodide-131 will remain in the body after 18 hours?

1) 0.001
2) 0.136
3) 0.271
4) 0.543

327 The terminal side of θ, an angle in standard position, intersects the unit circle at $P\left(-\frac{1}{3},-\frac{\sqrt{8}}{3}\right)$.
What is the value of $\sec \theta$?

1) -3
2) $-\frac{3 \sqrt{8}}{8}$
3) $-\frac{1}{3}$
4) $-\frac{\sqrt{8}}{3}$

328 Which equation represents the equation of the parabola with focus $(-3,3)$ and directrix $y=7$?

1) $y=\frac{1}{8}(x+3)^{2}-5$
2) $y=\frac{1}{8}(x-3)^{2}+5$
3) $y=-\frac{1}{8}(x+3)^{2}+5$
4) $y=-\frac{1}{8}(x-3)^{2}+5$

329 A sociologist reviews randomly selected surveillance videos from a public park over a period of several years and records the amount of time people spent on a smartphone. The statistical procedure the sociologist used is called

1) a census
2) an experiment
3) an observational study
4) a sample survey

330 A 7-year lease for office space states that the annual rent is $\$ 85,000$ for the first year and will increase by 6% each additional year of the lease. What will the total rent expense be for the entire 7 -year lease?

1) $\$ 42,809.63$
2) $\$ 90,425.53$
3) $\$ 595,000.00$
4) $\$ 713,476.20$

331 If $f(x)=\log _{3} x$ and $g(x)$ is the image of $f(x)$ after a translation five units to the left, which equation represents $g(x)$?

1) $g(x)=\log _{3}(x+5)$
2) $g(x)=\log _{3} x+5$
3) $g(x)=\log _{3}(x-5)$
4) $g(x)=\log _{3} x-5$

Algebra II Multiple Choice Regents Exam Questions www.jmap.org

332 The solution set for the equation $b=\sqrt{2 b^{2}-64}$ is

1) $\{-8\}$
2) $\{8\}$
3) $\{ \pm 8\}$
4) $\}$

333 A researcher randomly divides 50 bean plants into two groups. He puts one group by a window to receive natural light and the second group under artificial light. He records the growth of the plants weekly. Which data collection method is described in this situation?

1) observational study
2) controlled experiment
3) survey
4) systematic sample

334 The completely factored form of $n^{4}-9 n^{2}+4 n^{3}-36 n-12 n^{2}+108$ is

1) $\left(n^{2}-9\right)(n+6)(n-2)$
2) $(n+3)(n-3)(n+6)(n-2)$
3) $(n-3)(n-3)(n+6)(n-2)$
4) $(n+3)(n-3)(n-6)(n+2)$

335 The expression $(x+a)(x+b)$ can not be written as

1) $a(x+b)+x(x+b)$
2) $x^{2}+a b x+a b$
3) $x^{2}+(a+b) x+a b$
4) $x(x+a)+b(x+a)$

336 If $\left(a^{3}+27\right)=(a+3)\left(a^{2}+m a+9\right)$, then m equals

1) -9
2) -3
3) 3
4) 6

337 How many solutions exist for
$\frac{1}{1-x^{2}}=-|3 x-2|+5$?

1) 1
2) 2
3) 3
4) 4

338 The equation $t=\frac{1}{0.0105} \ln \left(\frac{A}{5000}\right)$ relates time, t, in years, to the amount of money, A, earned by a $\$ 5000$ investment. Which statement accurately describes the relationship between the average rates of change of t on the intervals [6000, 8000] and [$9000,12,000]$?

1) A comparison cannot be made because the intervals are different sizes.
2) The average rate of change is equal for both intervals.
3) The average rate of change is larger for the interval [6000, 8000].
4) The average rate of change is larger for the interval [9000, 12,000].

339 Given $\cos \theta=\frac{7}{25}$, where θ is an angle in standard position terminating in quadrant IV, and $\sin ^{2} \theta+\cos ^{2} \theta=1$, what is the value of $\tan \theta$?

1) $-\frac{24}{25}$
2) $-\frac{24}{7}$
3) $\frac{24}{25}$
4) $\frac{24}{7}$

Algebra II Multiple Choice Regents Exam Questions www.jmap.org

340 Which graph represents a polynomial function that contains $x^{2}+2 x+1$ as a factor?
1)

2)

3)

341 A study of black bears in the Adirondacks reveals that their population can be represented by the function $P(t)=3500(1.025)^{t}$, where t is the number of years since the study began. Which function is correctly rewritten to reveal the monthly growth rate of the black bear population?

1) $\quad P(t)=3500(1.00206)^{12 t}$
2) $P(t)=3500(1.00206)^{\frac{t}{12}}$
3) $P(t)=3500(1.34489)^{12 t}$
4) $\quad P(t)=3500(1.34489)^{\frac{t}{12}}$

342 The solution of $87 e^{0.3 x}=5918$, to the nearest thousandth, is

1) 0.583
2) 1.945
3) 4.220
4) 14.066

343 The expression 6-(3x-2i) is equivalent to

1) $-9 x^{2}+12 x i+10$
2) $9 x^{2}-12 x i+2$
3) $-9 x^{2}+10$
4) $-9 x^{2}+12 x i-4 i+6$

344 The expression $2-\frac{x-1}{x+2}$ is equivalent to

1) $1-\frac{3}{x+2}$
2) $1+\frac{3}{x+2}$
3) $1-\frac{1}{x+2}$
4) $1+\frac{1}{x+2}$

345 Selected values for the functions f and g are shown in the tables below.

x	f(x)	\mathbf{x}	g(x)
-3.12	-4.88	-2.01	-1.01
0	-6	0	0.58
1.23	-4.77	8.52	2.53
8.52	2.53	13.11	3.01
9.01	3.01	16.52	3.29

A solution to the equation $f(x)=g(x)$ is

1) 0
2) 2.53
3) 3.01
4) 8.52

346
After Roger's surgery, his doctor administered pain medication in the following amounts in milligrams over four days.

Day (n)	1	2	3	4
Dosage (m)	2000	1680	1411.2	1185.4

How can this sequence best be modeled recursively?

1) $m_{1}=2000$
2) $m_{1}=2000$

$$
m_{n}=m_{n-1}-320
$$

2) $m_{n}=2000(0.84)^{n-1}$
3) $m_{n}=2000(0.84)^{n+1}$

347 Which situation could be modeled using a geometric sequence?

1) A cell phone company charges $\$ 30.00$ per month for 2 gigabytes of data and $\$ 12.50$ for each additional gigabyte of data.
2) The temperature in your car is 79°. You lower the temperature of your air conditioning by 2° every 3 minutes in order to find a comfortable temperature.
3) David's parents have set a limit of 50 minutes per week that he may play online games during the school year. However, they will increase his time by 5% per week for the next ten weeks.
4) Sarah has $\$ 100.00$ in her piggy bank and saves an additional $\$ 15.00$ each week.

348 At her job, Pat earns $\$ 25,000$ the first year and receives a raise of $\$ 1000$ each year. The explicit formula for the nth term of this sequence is $a_{n}=25,000+(n-1) 1000$. Which rule best represents the equivalent recursive formula?

1) $a_{n}=24,000+1000 n$
2) $a_{n}=25,000+1000 n$
3) $a_{1}=25,000, a_{n}=a_{n-1}+1000$
4) $a_{1}=25,000, a_{n}=a_{n+1}+1000$

349 Which expression(s) are equivalent to $\frac{x^{2}-4 x}{2 x}$, where $x \neq 0$?
I. $\frac{x}{2}-2$
II. $\frac{x-4}{2}$
III. $\frac{x-1}{2}-\frac{3}{2}$

1) II, only
2) I and II
3) II and III
4) I, II, and III

350 When a ball bounces, the heights of consecutive bounces form a geometric sequence. The height of the first bounce is 121 centimeters and the height of the third bounce is 64 centimeters. To the nearest centimeter, what is the height of the fifth bounce?

1) 25
2) 34
3) 36
4) 42

351 Savannah just got contact lenses. Her doctor said she can wear them 2 hours the first day, and can then increase the length of time by 30 minutes each day. If this pattern continues, which formula would not be appropriate to determine the length of time, in either minutes or hours, she could wear her contact lenses on the nth day?

1) $a_{1}=120$

$$
a_{n}=a_{n-1}+30
$$

2) $a_{n}=90+30 n$
3) $a_{1}=2$

$$
a_{n}=a_{n-1}+0.5
$$

4) $a_{n}=2.5+0.5 n$

352 For all values of x for which the expression is defined, $\frac{x^{3}+2 x^{2}-9 x-18}{x^{3}-x^{2}-6 x}$, in simplest form, is equivalent to

1) 3
2) $-\frac{17}{2}$
3) $\frac{x+3}{x}$
4) $\frac{x^{2}-9}{x(x-3)}$

353 Julia deposits \$2000 into a savings account that earns 4% interest per year. The exponential function that models this savings account is $y=2000(1.04)^{t}$, where t is the time in years. Which equation correctly represents the amount of money in her savings account in terms of the monthly growth rate?

1) $y=166.67(1.04)^{0.12 t}$
2) $y=2000(1.01)^{t}$
3) $y=2000(1.0032737)^{12 t}$
4) $y=166.67(1.0032737)^{t}$

354 The operator of the local mall wants to find out how many of the mall's employees make purchases in the food court when they are working. She hopes to use these data to increase the rent and attract new food vendors. In total, there are 1023 employees who work at the mall. The best method to obtain a random sample of the employees would be to survey

1) all 170 employees at each of the larger stores
2) 50% of the 90 employees of the food court
3) every employee
4) every 30th employee entering each mall entrance for one week

Algebra II Multiple Choice Regents Exam Questions www.jmap.org

355 Judith puts \$5000 into an investment account with interest compounded continuously. Which approximate annual rate is needed for the account to grow to $\$ 9110$ after 30 years?

1) 2%
2) 2.2%
3) 0.02%
4) 0.022%

356 A savings account, S, has an initial value of $\$ 50$. The account grows at a 2% interest rate compounded n times per year, t, according to the function below.

$$
S(t)=50\left(1+\frac{.02}{n}\right)^{n t}
$$

Which statement about the account is correct?

1) As the value of n increases, the amount of interest per year decreases.
2) As the value of n increases, the value of the account approaches the function $S(t)=50 e^{0.02 t}$.
3) As the value of n decreases to one, the amount of interest per year increases.
4) As the value of n decreases to one, the value of the account approaches the function

$$
S(t)=50(1-0.02)^{t} .
$$

357 The scores on a mathematics college-entry exam are normally distributed with a mean of 68 and standard deviation 7.2. Students scoring higher than one standard deviation above the mean will not be enrolled in the mathematics tutoring program. How many of the 750 incoming students can be expected to be enrolled in the tutoring program?

1) 631
2) 512
3) 238
4) 119

358 For a given time, x, in seconds, an electric current, y, can be represented by $y=2.5\left(1-2.7^{-10 x}\right)$.
Which equation is not equivalent?

1) $y=2.5-2.5\left(2.7^{-10 x}\right)$
2) $y=2.5-2.5\left(\left(2.7^{2}\right)^{-.05 x}\right)$
3) $y=2.5-2.5\left(\frac{1}{2.7^{10 x}}\right)$
4) $y=2.5-2.5\left(2.7^{-2}\right)\left(2.7^{.05 x}\right)$

359 If $f(x)$ is an even function, which function must also be even?

1) $f(x-2)$
2) $f(x)+3$
3) $f(x+1)$
4) $f(x+1)+3$

360 Written in simplest form, $\frac{c^{2}-d^{2}}{d^{2}+c d-2 c^{2}}$ where $c \neq d$, is equivalent to

1) $\frac{c+d}{d+2 c}$
2) $\frac{c-d}{d+2 c}$
3) $\frac{-c-d}{d+2 c}$
4) $\frac{-c+d}{d+2 c}$

361 If the function $g(x)=a b^{x}$ represents exponential growth, which statement about $g(x)$ is false?

1) $a>0$ and $b>1$
2) The y-intercept is $(0, a)$.
3) The asymptote is $y=0$.
4) The x-intercept is ($b, 0$).

362 Consider the probability statements regarding events A and B below.

$$
\begin{aligned}
& P(A \text { or } B)=0.3 ; \\
& P(A \text { and } B)=0.2 \text {; and } \\
& P(A \mid B)=0.8
\end{aligned}
$$

What is $P(B)$?

1) 0.1
2) 0.25
3) 0.375
4) 0.667

363 The depth of the water at a marker 20 feet from the shore in a bay is depicted in the graph below.

If the depth, d, is measured in feet and time, t, is measured in hours since midnight, what is an equation for the depth of the water at the marker?

1) $d=5 \cos \left(\frac{\pi}{6} t\right)+9$
2) $d=9 \cos \left(\frac{\pi}{6} t\right)+5$
3) $d=9 \sin \left(\frac{\pi}{6} t\right)+5$
4) $d=5 \sin \left(\frac{\pi}{6} t\right)+9$

364 The solutions to the equation $5 x^{2}-2 x+13=9$ are

1) $\frac{1}{5} \pm \frac{\sqrt{21}}{5}$
2) $\frac{1}{5} \pm \frac{\sqrt{19}}{5} i$
3) $\frac{1}{5} \pm \frac{\sqrt{66}}{5} i$
4) $\frac{1}{5} \pm \frac{\sqrt{66}}{5}$

365 Which function is even?

1) $f(x)=\sin x$
2) $f(x)=x^{2}-4$
3) $f(x)=|x-2|+5$
4) $f(x)=x^{4}+3 x^{3}+4$

366 Camryn puts $\$ 400$ into a savings account that earns 6% annually. The amount in her account can be modeled by $C(t)=400(1.06)^{t}$ where t is the time in years. Which expression best approximates the amount of money in her account using a weekly growth rate?

1) $400(1.001153846)^{t}$
2) $400(1.001121184)^{t}$
3) $400(1.001153846)^{52 t}$
4) $400(1.001121184)^{52 t}$

367 The average monthly temperature of a city can be modeled by a cosine graph. Melissa has been living in Phoenix, Arizona, where the average annual temperature is $75^{\circ} \mathrm{F}$. She would like to move, and live in a location where the average annual temperature is $62^{\circ} \mathrm{F}$. When examining the graphs of the average monthly temperatures for various locations, Melissa should focus on the

1) amplitude
2) horizontal shift
3) period
4) midline

368 The graphs of the equations $y=x^{2}+4 x-1$ and $y+3=x$ are drawn on the same set of axes. One solution of this system is

1) $(-5,-2)$
2) $(-1,-4)$
3) $(1,4)$
4) $(-2,-1)$

369 Which equation represents a parabola with a focus of $(-2,5)$ and a directrix of $y=9$?

1) $(y-7)^{2}=8(x+2)$
2) $(y-7)^{2}=-8(x+2)$
3) $(x+2)^{2}=8(y-7)$
4) $(x+2)^{2}=-8(y-7)$

370 The roots of the equation $3 x^{2}+2 x=-7$ are

1) $-2,-\frac{1}{3}$
2) $-\frac{7}{3}, 1$
3) $-\frac{1}{3} \pm \frac{2 i \sqrt{5}}{3}$
4) $-\frac{1}{3} \pm \frac{\sqrt{11}}{3}$

371 Consider the system of equations below:

$$
\begin{gathered}
x+y-z=6 \\
2 x-3 y+2 z=-19 \\
-x+4 y-z=17
\end{gathered}
$$

Which number is not the value of any variable in the solution of the system?

1) -1
2) 2
3) 3
4) -4

372 The value(s) of x that satisfy $\sqrt{x^{2}-4 x-5}=2 x-10$ are

1) $\{5\}$
2) $\{7\}$
3) $\{5,7\}$
4) $\{3,5,7\}$

373 What is the inverse of the function $y=4 x+5$?

1) $x=\frac{1}{4} y-\frac{5}{4}$
2) $y=\frac{1}{4} x-\frac{5}{4}$
3) $y=4 x-5$
4) $y=\frac{1}{4 x+5}$

374 Which expression is equivalent to $x^{6} y^{4}\left(x^{4}-16\right)-9\left(x^{4}-16\right)$?

1) $x^{10} y^{4}-16 x^{6} y^{4}-9 x^{4}-144$
2) $\left(x^{6} y^{4}-9\right)(x+2)^{3}(x-2)$
3) $\left(x^{3} y^{2}+3\right)\left(x^{3} y^{2}-3\right)(x+2)^{2}(x-2)^{2}$
4) $\left(x^{3} y^{2}+3\right)\left(x^{3} y^{2}-3\right)\left(x^{2}+4\right)\left(x^{2}-4\right)$

375 A number, minus twenty times its reciprocal, equals eight. The number is

1) 10 or -2
2) 10 or 2
3) -10 or -2
4) -10 or 2

376 The graph of $y=\log _{2} x$ is translated to the right 1 unit and down 1 unit. The coordinates of the x-intercept of the translated graph are

1) $(0,0)$
2) $(1,0)$
3) $(2,0)$
4) $(3,0)$

Algebra II Multiple Choice Regents Exam Questions www.jmap.org

The graph below represents national and New York State average gas prices.

If New York State's gas prices are modeled by $G(x)$ and $C>0$, which expression best approximates the national average x months from August 2014?

1) $G(x+C)$
2) $G(x)+C$
3) $G(x-C)$
4) $G(x)-C$

378 A manufacturing plant produces two different-sized containers of peanuts. One container weighs x ounces and the other weighs y pounds. If a gift set can hold one of each size container, which expression represents the number of gift sets needed to hold 124 ounces?

1) $\frac{124}{16 x+y}$
2) $\frac{x+16 y}{124}$
3) $\frac{124}{x+16 y}$
4) $\frac{16 x+y}{124}$

379 The Fahrenheit temperature, $F(t)$, of a heated object at time t, in minutes, can be modeled by the function below. F_{s} is the surrounding temperature, F_{0} is the initial temperature of the object, and k is a constant.

$$
F(t)=F_{s}+\left(F_{0}-F_{s}\right) e^{-k t}
$$

Coffee at a temperature of $195^{\circ} \mathrm{F}$ is poured into a container. The room temperature is kept at a constant $68^{\circ} \mathrm{F}$ and $k=0.05$. Coffee is safe to drink when its temperature is, at most, $120^{\circ} \mathrm{F}$. To the nearest minute, how long will it take until the coffee is safe to drink?

1) 7
2) 10
3) 11
4) 18

380 Stephanie found that the number of white-winged cross bills in an area can be represented by the formula $C=550(1.08)^{t}$, where t represents the number of years since 2010. Which equation correctly represents the number of white-winged cross bills in terms of the monthly rate of population growth?

1) $C=550(1.00643)^{t}$
2) $C=550(1.00643)^{12 t}$
3) $C=550(1.00643)^{\frac{t}{12}}$
4) $C=550(1.00643)^{t+12}$

381 Perry invested in property that cost him \$1500. Five years later it was worth $\$ 3000$, and 10 years from his original purchase, it was worth $\$ 6000$. Assuming the growth rate remains the same, which type of function could he create to find the value of his investment 30 years from his original purchase?

1) exponential function
2) linear function
3) quadratic function
4) trigonometric function

382 Jake wants to buy a car and hopes to save at least $\$ 5000$ for a down payment. The table below summarizes the amount of money he plans to save each week.

Week	1	2	3	4	5
Money Saved, in Dollars	2	5	12.5	31.25	\ldots

Based on this plan, which expression should he use to determine how much he has saved in n weeks?

1) $\frac{2-2\left(2.5^{n}\right)}{1-2.5}$
2) $\frac{2-2\left(2.5^{n-1}\right)}{1-2.5}$
3) $\frac{1-2.5^{n}}{1-2.5}$
4) $\frac{1-2.5^{n-1}}{1-2.5}$

A fast-food restaurant analyzes data to better serve its customers. After its analysis, it discovers that the events D, that a customer uses the drive-thru, and F, that a customer orders French fries, are independent. The following data are given in a report:

$$
\begin{aligned}
P(F) & =0.8 \\
P(F \cap D) & =0.456
\end{aligned}
$$

Given this information, $P(F \mid D)$ is

1) 0.344
2) 0.3648
3) 0.57
4) 0.8

384 When factoring to reveal the roots of the equation $x^{3}+2 x^{2}-9 x-18=0$, which equations can be used?
I. $x^{2}(x+2)-9(x+2)=0$
II. $x\left(x^{2}-9\right)+2\left(x^{2}-9\right)=0$
III. $(x-2)\left(x^{2}-9\right)=0$

1) I and II, only
2) I and III, only
3) II and III, only
4) I, II, and III

385 The hours of daylight, y, in Utica in days, x, from January 1, 2013 can be modeled by the equation $y=3.06 \sin (0.017 x-1.40)+12.23$. How many hours of daylight, to the nearest tenth, does this model predict for February 14, 2013?

1) 9.4
2) 10.4
3) 12.1
4) 12.2

386 The graph of $y=f(x)$ is shown below.

Which expression defines $f(x)$?

1) $2 x$
2) $5\left(2^{x}\right)$
3) $5\left(2^{\frac{x}{2}}\right)$
4) $5\left(2^{2 x}\right)$

387 What is the solution set of the equation $\frac{2}{3 x+1}=\frac{1}{x}-\frac{6 x}{3 x+1}$?

1) $\left\{-\frac{1}{3}, \frac{1}{2}\right\}$
2) $\left\{-\frac{1}{3}\right\}$
3) $\left\{\frac{1}{2}\right\}$
4) $\left\{\frac{1}{3},-2\right\}$

388 The results of simulating tossing a coin 10 times, recording the number of heads, and repeating this 50 times are shown in the graph below.

Based on the results of the simulation, which statement is false?

1) Five heads occurred most often, which is consistent with the theoretical probability of obtaining a heads.
2) Eight heads is unusual, as it falls outside the middle 95% of the data.
3) Obtaining three heads or fewer occurred 28% of the time.
4) Seven heads is not unusual, as it falls within the middle 95% of the data.

389 What is the solution when the equation $w x^{2}+w=0$ is solved for x, where w is a positive integer?

1) -1
2) 0
3) 6
4) $\pm i$

390 What is the inverse of $f(x)=\frac{x}{x+2}$, where $x \neq-2$?

1) $f^{-1}(x)=\frac{2 x}{x-1}$
2) $f^{-1}(x)=\frac{-2 x}{x-1}$
3) $f^{-1}(x)=\frac{x}{x-2}$
4) $f^{-1}(x)=\frac{-x}{x-2}$

391 If $p(x)=2 x^{3}-3 x+5$, what is the remainder of $p(x) \div(x-5)$?

1) -230
2) 0
3) 40
4) 240

392 The function below models the average price of gas in a small town since January 1st.
$G(t)=-0.0049 t^{4}+0.0923 t^{3}-0.56 t^{2}+1.166 t+3.23$, where $0 \leq t \leq 10$.
If $G(t)$ is the average price of gas in dollars and t represents the number of months since January 1st, the absolute maximum $G(t)$ reaches over the given domain is about

1) $\$ 1.60$
2) $\$ 3.92$
3) $\$ 4.01$
4) $\$ 7.73$

393 Which table best represents an exponential relationship?
1)

\mathbf{x}	\mathbf{y}
1	8
2	4
3	2
4	1
5	$\frac{1}{2}$

x	y
8	0
4	1
0	2
-4	3
-8	4

2)

x	y
0	0
1	1
2	4
3	9
4	16

3)

x	y
1	1
2	8
3	27
4	64
5	125

394 Given $c(m)=m^{3}-2 m^{2}+4 m-8$, the solution of $c(m)=0$ is

1) ± 2
2) 2, only
3) $2 i, 2$
4) $\pm 2 i, 2$

395 Data for the students enrolled in a local high school are shown in the Venn diagram below.

If a student from the high school is selected at random, what is the probability that the student is a sophomore given that the student is enrolled in Algebra II?

1) $\frac{85}{210}$
2) $\frac{85}{295}$
3) $\frac{85}{405}$
4) $\frac{85}{1600}$

396 Which expression is equivalent to $(2 x-i)^{2}-(2 x-i)(2 x+3 i)$ where i is the imaginary unit and x is a real number?

1) $-4-8 x i$
2) $-4-4 x i$
3) 2
4) $8 x-4 i$

397 The mean intelligence quotient (IQ) score is 100 , with a standard deviation of 15 , and the scores are normally distributed. Given this information, the approximate percentage of the population with an IQ greater than 130 is closest to

1) 2%
2) 31%
3) 48%
4) 95%

398 The expression $\frac{9 x^{2}-2}{3 x+1}$ is equivalent to

1) $3 x-1-\frac{1}{3 x+1}$
2) $3 x-1+\frac{1}{3 x+1}$
3) $3 x+1-\frac{1}{3 x+1}$
4) $3 x+1+\frac{1}{3 x+1}$

399 What is the quotient when $10 x^{3}-3 x^{2}-7 x+3$ is divided by $2 x-1$?

1) $5 x^{2}+x+3$
2) $5 x^{2}-x+3$
3) $5 x^{2}-x-3$
4) $5 x^{2}+x-3$

400 On average, college seniors graduating in 2012 could compute their growing student loan debt using the function $D(t)=29,400(1.068)^{t}$, where t is time in years. Which expression is equivalent to $29,400(1.068)^{t}$ and could be used by students to identify an approximate daily interest rate on their loans?

1) $29,400\left(1.068^{\frac{1}{365}}\right)^{t}$
2) $29,400\left(\frac{1.068}{365}\right)^{365 t}$
3) $29,400\left(1+\frac{0.068}{365}\right)^{t}$
4) $29,400\left(1.068^{\frac{1}{365}}\right)^{365 t}$

401 Kelly-Ann has $\$ 20,000$ to invest. She puts half of the money into an account that grows at an annual rate of 0.9% compounded monthly. At the same time, she puts the other half of the money into an account that grows continuously at an annual rate of 0.8%. Which function represents the value of Kelly-Ann's investments after t years?

1) $f(t)=10,000(1.9)^{t}+10,000 e^{0.8 t}$
2) $f(t)=10,000(1.009)^{t}+10,000 e^{0.008 t}$
3) $f(t)=10,000(1.075)^{12 t}+10,000 e^{0.8 t}$
4) $f(t)=10,000(1.00075)^{12 t}+10,000 e^{0.008 t}$

402 After examining the functions $f(x)=\ln (x+2)$ and $g(x)=e^{x-1}$ over the interval $(-2,3]$, Lexi determined that the correct number of solutions to the equation $f(x)=g(x)$ is

1) 1
2) 2
3) 3
4) 0

403 Given $f(x)=\frac{1}{2} x+8$, which equation represents the inverse, $g(x)$?

1) $g(x)=2 x-8$
2) $g(x)=2 x-16$
3) $g(x)=-\frac{1}{2} x+8$
4) $g(x)=-\frac{1}{2} x-16$

404 When the expression $(x+2)^{2}+4(x+2)+3$ is rewritten as the product of two binomials, the result is

1) $(x+3)(x+1)$
2) $(x+5)(x+3)$
3) $(x+2)(x+2)$
4) $(x+6)(x+1)$

A sketch of $r(x)$ is shown below.

An equation for $r(x)$ could be

1) $r(x)=(x-a)(x+b)(x+c)$
2) $r(x)=(x+a)(x-b)(x-c)^{2}$
3) $r(x)=(x+a)(x-b)(x-c)$
4) $r(x)=(x-a)(x+b)(x+c)^{2}$

406 The function $f(x)=a \cos b x+c$ is plotted on the graph shown below.

What are the values of a, b, and c ?

1) $a=2, b=6, c=3$
2) $a=2, b=3, c=1$
3) $a=4, b=6, c=5$
4) $a=4, b=\frac{\pi}{3}, c=3$

407 Which representation of a quadratic has imaginary roots?
1)

\mathbf{x}	\mathbf{y}
-2.5	2
-2.0	0
-1.5	-1
-1.0	-1
-0.5	0
0.0	2

2) $2(x+3)^{2}=64$

3) $2 x^{2}+32=0$

408
Given the following polynomials

$$
\begin{aligned}
& x=(a+b+c)^{2} \\
& y=a^{2}+b^{2}+c^{2} \\
& z=a b+b c+a c
\end{aligned}
$$

Which identity is true?

1) $x=y-z$
2) $x=y+z$
3) $x=y-2 z$
4) $x=y+2 z$

409 A group of students was trying to determine the proportion of candies in a bag that are blue. The company claims that 24% of candies in bags are blue. A simulation was run 100 times with a sample size of 50 , based on the premise that 24% of the candies are blue. The approximately normal results of the simulation are shown in the dot plot below.

The simulation results in a mean of 0.254 and a standard deviation of 0.060 . Based on this simulation, what is a plausible interval containing the middle 95% of the data?

1) $(0.194,0.314)$
2) $(0.134,0.374)$
3) $(-0.448,0.568)$
4) $(0.254,0.374)$

410 The weights of bags of Graseck's Chocolate Candies are normally distributed with a mean of 4.3 ounces and a standard deviation of 0.05 ounces. What is the probability that a bag of these chocolate candies weighs less than 4.27 ounces?

1) 0.2257
2) 0.2743
3) 0.7257
4) 0.7757

411 The average depreciation rate of a new boat is approximately 8% per year. If a new boat is purchased at a price of $\$ 75,000$, which model is a recursive formula representing the value of the boat n years after it was purchased?

1) $a_{n}=75,000(0.08)^{n}$
2) $a_{0}=75,000$

$$
\begin{array}{ll}
& a_{n}=(0.92)^{n} \\
\text { 3) } & a_{n}=75,000(1.08)^{n} \\
\text { 4) } & a_{0}=75,000 \\
& a_{n}=0.92\left(a_{n-1}\right)
\end{array}
$$

412 Brian deposited 1 cent into an empty non-interest bearing bank account on the first day of the month. He then additionally deposited 3 cents on the second day, 9 cents on the third day, and 27 cents on the fourth day. What would be the total amount of money in the account at the end of the 20th day if the pattern continued?

1) $\$ 11,622,614.67$
2) $\$ 17,433,922.00$
3) $\$ 116,226,146.80$
4) $\$ 1,743,392,200.00$

413 If $n=\sqrt{a^{5}}$ and $m=a$, where $a>0$, an expression for $\frac{n}{m}$ could be

1) $a^{\frac{5}{2}}$
2) a^{4}
3) $\sqrt[3]{a^{2}}$
4) $\sqrt{a^{3}}$

414 For which values of x, rounded to the nearest hundredth, will $\left|x^{2}-9\right|-3=\log _{3} x$?

1) 2.29 and 3.63
2) 2.37 and 3.54
3) 2.84 and 3.17
4) 2.92 and 3.06

415 What is the solution set of the equation $\frac{10}{x^{2}-2 x}+\frac{4}{x}=\frac{5}{x-2}$?

1) $\{0,2\}$
2) $\{0\}$
3) $\{2\}$
4) $\}$

416 For positive values of x, which expression is equivalent to $\sqrt{16 x^{2}} \bullet x^{\frac{2}{3}}+\sqrt[3]{8 x^{5}}$

1) $6 \sqrt[5]{x^{3}}$
2) $6 \sqrt[3]{x^{5}}$
3) $4 \sqrt[3]{x^{2}}+2 \sqrt[3]{x^{5}}$
4) $4 \sqrt{x^{3}}+2 \sqrt[5]{x^{3}}$

417 The temperature, in degrees Fahrenheit, in Times Square during a day in August can be predicted by the function $T(x)=8 \sin (0.3 x-3)+74$, where x is the number of hours after midnight. According to this model, the predicted temperature, to the nearest degree Fahrenheit, at 7 P.M. is

1) 68
2) 74
3) 77
4) 81

418 The first term of a geometric sequence is 8 and the fourth term is 216 . What is the sum of the first 12 terms of the corresponding series?

1) 236,192
2) 708,584
3) $2,125,760$
4) $6,377,288$

419 What are the solution(s) to the system of equations shown below?

$$
\begin{aligned}
& x^{2}+y^{2}=5 \\
& y=2 x
\end{aligned}
$$

1) $x=1$ and $x=-1$
2) $x=1$
3) $(1,2)$ and $(-1,-2)$
4) $(1,2)$, only

420 Consider $f(x)=4 x^{2}+6 x-3$, and $p(x)$ defined by the graph below.

The difference between the values of the maximum of p and minimum of f is

1) 0.25
2) 1.25
3) 3.25
4) 10.25

421 If $a e^{b t}=c$, where a, b, and c are positive, then t equals

1) $\ln \left(\frac{c}{a b}\right)$
2) $\ln \left(\frac{c b}{a}\right)$
3) $\frac{\ln \left(\frac{c}{a}\right)}{b}$
4) $\frac{\ln \left(\frac{c}{a}\right)}{\ln b}$

422 A random sample of 100 people that would best estimate the proportion of all registered voters in a district who support improvements to the high school football field should be drawn from registered voters in the district at a

1) football game
2) supermarket
3) school fund-raiser
4) high school band concert

423 What is the inverse of $f(x)=x^{3}-2$?

1) $f^{-1}(x)=\sqrt[3]{x}+2$
2) $f^{-1}(x)= \pm \sqrt[3]{x}+2$
3) $f^{-1}(x)=\sqrt[3]{x+2}$
4) $f^{-1}(x)= \pm \sqrt[3]{x+2}$

424 The function $N(t)=100 e^{-0.023 t}$ models the number of grams in a sample of cesium-137 that remain after t years. On which interval is the sample's average rate of decay the fastest?

1) $[1,10]$
2) $[10,20]$
3) $[15,25]$
4) $[1,30]$

425 What is the solution set of the following system of equations?

$$
\begin{aligned}
& y=3 x+6 \\
& y=(x+4)^{2}-10
\end{aligned}
$$

1) $\{(-5,-9)\}$
2) $\{(5,21)\}$
3) $\{(0,6),(-5,-9)\}$
4) $\{(0,6),(5,21)\}$

426 A certain pain reliever is taken in 220 mg dosages and has a half-life of 12 hours. The function
$A=220\left(\frac{1}{2}\right)^{\frac{t}{12}}$ can be used to model this situation, where A is the amount of pain reliever in milligrams remaining in the body after t hours. According to this function, which statement is true?

1) Every hour, the amount of pain reliever remaining is cut in half.
2) In 12 hours, there is no pain reliever remaining in the body.
3) In 24 hours, there is no pain reliever remaining in the body.
4) In 12 hours, 110 mg of pain reliever is remaining.

427 The half-life of iodine-131 is 8 days. The percent of the isotope left in the body d days after being introduced is $I=100\left(\frac{1}{2}\right)^{\frac{d}{8}}$. When this equation is written in terms of the number e, the base of the natural logarithm, it is equivalent to $I=100 e^{k d}$. What is the approximate value of the constant, k ?

1) -0.087
2) 0.087
3) -11.542
4) 11.542

428 The populations of two small towns at the beginning of 2018 and their annual population growth rate are shown in the table below.

Town	Population	Annual Population Growth Rate
Jonesville	1240	6% increase
Williamstown	890	11% increase

Assuming the trend continues, approximately how many years after the beginning of 2018 will it take for the populations to be equal?

1) 7
2) 20
3) 68
4) 125

429 Irma initially ran one mile in over ten minutes. She then began a training program to reduce her one-mile time. She recorded her one-mile time once a week for twelve consecutive weeks, as modeled in the graph below.

Number of Weeks
Which statement regarding Irma's one-mile training program is correct?

1) Her one-mile speed increased as the number of weeks increased.
2) Her one-mile speed decreased as the number of weeks increased.
3) If the trend continues, she will run under a six-minute mile by week thirteen.
4) She reduced her one-mile time the most between weeks ten and twelve.

430 Which statement is true about the graph of
$f(x)=\left(\frac{1}{8}\right)^{x}$?

1) The graph is always increasing.
2) The graph is always decreasing.
3) The graph passes through (1,0).
4) The graph has an asymptote, $x=0$.

431 The height above ground for a person riding a Ferris wheel after t seconds is modeled by $h(t)=150 \sin \left(\frac{\pi}{45} t+67.5\right)+160$ feet. How many seconds does it take to go from the bottom of the wheel to the top of the wheel?

1) 10
2) 45
3) 90
4) 150

432 Where i is the imaginary unit, the expression $(x+3 i)^{2}-(2 x-3 i)^{2}$ is equivalent to

1) $-3 x^{2}$
2) $-3 x^{2}-18$
3) $-3 x^{2}+18 x i$
4) $-3 x^{2}-6 x i-18$

433 For $x>0$, which expression is equivalent to $\frac{\sqrt[3]{x^{2}} \cdot \sqrt{x^{5}}}{\sqrt[6]{x}}$?

1) x
2) $x^{\frac{3}{2}}$
3) x^{3}
4) x^{10}

434 There are 400 students in the senior class at Oak Creek High School. All of these students took the SAT. The distribution of their SAT scores is approximately normal. The number of students who scored within 2 standard deviations of the mean is approximately

1) 75
2) 95
3) 300
4) 380

435 If $f(x)=a^{x}$ where $a>1$, then the inverse of the function is

1) $f^{-1}(x)=\log _{x} a$
2) $f^{-1}(x)=a \log x$
3) $f^{-1}(x)=\log _{a} x$
4) $f^{-1}(x)=x \log a$

436 If $f(x)=x^{2}+9$ and $g(x)=x+3$, which operation would not result in a polynomial expression?

1) $f(x)+g(x)$
2) $f(x)-g(x)$
3) $f(x) \bullet g(x)$
4) $f(x) \div g(x)$

437 If $\cos \theta=-\frac{3}{4}$ and θ is in Quadrant III, then $\sin \theta$ is equivalent to

1) $-\frac{\sqrt{7}}{4}$
2) $\frac{\sqrt{7}}{4}$
3) $-\frac{5}{4}$
4) $\frac{5}{4}$

438 Given $P(x)=x^{3}-3 x^{2}-2 x+4$, which statement is true?

1) $(x-1)$ is a factor because $P(-1)=2$.
2) $(x+1)$ is a factor because $P(-1)=2$.
3) $(x+1)$ is a factor because $P(1)=0$.
4) $(x-1)$ is a factor because $P(1)=0$.

439 Tides are a periodic rise and fall of ocean water.
On a typical day at a seaport, to predict the time of the next high tide, the most important value to have would be the

1) time between consecutive low tides
2) time when the tide height is 20 feet
3) average depth of water over a 24 -hour period
4) difference between the water heights at low and high tide

440 Which expression is equivalent to $\frac{2 x^{4}+8 x^{3}-25 x^{2}-6 x+14}{x+6}$?

1) $2 x^{3}+4 x^{2}+x-12+\frac{86}{x+6}$
2) $2 x^{3}-4 x^{2}-x+14$
3) $2 x^{3}-4 x^{2}-x+\frac{14}{x+6}$
4) $2 x^{3}-4 x^{2}-x$

Algebra II Multiple Choice Regents Exam Questions www.jmap.org

441 There are 440 students at Thomas Paine High School enrolled in U.S. History. On the April report card, the students' grades are approximately normally distributed with a mean of 79 and a standard deviation of 7. Students who earn a grade less than or equal to 64.9 must attend summer school. The number of students who must attend summer school for U.S. History is closest to

1) 3
2) 5
3) 10
4) 22

442 If $\$ 5000$ is put into a savings account that pays 3.5% interest compounded monthly, how much money, to the nearest ten cents, would be in that account after 6 years, assuming no money was added or withdrawn?

1) $\$ 5177.80$
2) $\$ 5941.30$
3) $\$ 6146.30$
4) $\$ 6166.50$

Algebra II 2 Point Regents Exam Questions

443
Data collected about jogging from students with two older siblings are shown in the table below.

	Neither Sibling Jogs	One Sibling Jogs	Both Siblings Jog
Student Does Not Jog	1168	1823	1380
Student Jogs	188	416	400

Using these data, determine whether a student with two older siblings is more likely to jog if one sibling jogs or if both siblings jog. Justify your answer.

444 On the grid below, sketch a cubic polynomial whose zeros are 1,3 , and -2 .

445 Given the equal terms $\sqrt[3]{x^{5}}$ and $y^{\frac{5}{6}}$, determine and state y, in terms of x.

446 Describe how a controlled experiment can be created to examine the effect of ingredient X in a toothpaste.

447 Chuck's Trucking Company has decided to initiate an Employee of the Month program. To determine the recipient, they put the following sign on the back of each truck.

The driver who receives the highest number of positive comments will win the recognition. Explain one statistical bias in this data collection method.

448 Explain how $\left(3^{\frac{1}{5}}\right)^{2}$ can be written as the equivalent radical expression $\sqrt[5]{9}$.

449 The distance needed to stop a car after applying the brakes varies directly with the square of the car's speed. The table below shows stopping distances for various speeds.

Speed (mph)	10	20	30	40	50	60	70
Distance (ft)	6.25	25	56.25	100	156.25	225	306.25

Determine the average rate of change in braking distance, in $\mathrm{ft} / \mathrm{mph}$, between one car traveling at 50 mph and one traveling at 70 mph . Explain what this rate of change means as it relates to braking distance.

450 The zeros of a quartic polynomial function h are $-1, \pm 2$, and 3. Sketch a graph of $y=h(x)$ on the grid below.

451 Mrs. Jones had hundreds of jelly beans in a bag that contained equal numbers of six different flavors. Her student randomly selected four jelly beans and they were all black licorice. Her student complained and said "What are the odds I got all of that kind?" Mrs. Jones replied, "simulate rolling a die 250 times and tell me if four black licorice jelly beans is unusual." Explain how this simulation could be used to solve the problem.

452 Algebraically solve for $x: \frac{-3}{x+3}+\frac{1}{2}=\frac{x}{6}-\frac{1}{2}$

453 Explain how (-8$)^{\frac{4}{3}}$ can be evaluated using properties of rational exponents to result in an integer answer.

454 The explicit formula $a_{n}=6+6 n$ represents the number of seats in each row in a movie theater, where n represents the row number. Rewrite this formula in recursive form.

455 Express $(1-i)^{3}$ in $a+b i$ form.

456 Researchers in a local area found that the population of rabbits with an initial population of 20 grew continuously at the rate of 5% per month. The fox population had an initial value of 30 and grew continuously at the rate of 3% per month. Find, to the nearest tenth of a month, how long it takes for these populations to be equal.

457 Factor the expression $x^{3}-2 x^{2}-9 x+18$ completely.

458 Visible light can be represented by sinusoidal waves. Three visible light waves are shown in the graph below. The midline of each wave is labeled ℓ.

Based on the graph, which light wave has the longest period? Justify your answer.

459 Given $\tan \theta=\frac{7}{24}$, and θ terminates in Quadrant III, determine the value of $\cos \theta$.

460 Solve algebraically for all values of x :
$\sqrt{x-4}+x=6$

461 The weight of a bag of pears at the local market averages 8 pounds with a standard deviation of 0.5 pound. The weights of all the bags of pears at the market closely follow a normal distribution. Determine what percentage of bags, to the nearest integer, weighed less than 8.25 pounds.

462 Use the properties of rational exponents to determine the value of y for the equation:

$$
\frac{\sqrt[3]{x^{8}}}{\left(x^{4}\right)^{\frac{1}{3}}}=x^{y}, x>1
$$

463 Write $-\frac{1}{2} i^{3}(\sqrt{-9}-4)-3 i^{2}$ in simplest $a+b i$ form.

464 An angle, θ, is in standard position and its terminal side passes through the point $(2,-1)$. Find the exact value of $\sin \theta$.

465 Algebraically prove that the difference of the squares of any two consecutive integers is an odd integer.

466 The recursive formula to describe a sequence is shown below.

$$
\begin{gathered}
a_{1}=3 \\
a_{n}=1+2 a_{n-1}
\end{gathered}
$$

State the first four terms of this sequence. Can this sequence be represented using an explicit geometric formula? Justify your answer.

Algebra II 2 Point Regents Exam Questions www.jmap.org

467 On the grid below, graph the function $y=\log _{2}(x-3)+1$

Elizabeth waited for 6 minutes at the drive thru at her favorite fast-food restaurant the last time she visited. She was upset about having to wait that long and notified the manager. The manager assured her that her experience was very unusual and that it would not happen again. A study of customers commissioned by this restaurant found an approximately normal distribution of results. The mean wait time was 226 seconds and the standard deviation was 38 seconds. Given these data, and using a 95% level of confidence, was Elizabeth's wait time unusual? Justify your answer.

The polynomial function $g(x)=x^{3}+a x^{2}-5 x+6$ has a factor of $(x-3)$. Determine the value of a.

470 Point $M\left(t, \frac{4}{7}\right)$ is located in the second quadrant on the unit circle. Determine the exact value of t.

471 Factor completely over the set of integers:
$-2 x^{4}+x^{3}+18 x^{2}-9 x$

472 Write a recursive formula for the sequence $6,9,13.5,20.25, \ldots$

473 Factor the expression $2 x^{3}-3 x^{2}-18 x+27$ completely.

474 A cup of coffee is left out on a countertop to cool. The table below represents the temperature, $F(t)$, in degrees Fahrenheit, of the coffee after it is left out for t minutes.

\mathbf{t}	0	5	10	15	20	25
$\mathbf{F}(\mathbf{t})$	180	144	120	104	93.3	86.2

Based on these data, write an exponential regression equation, $F(t)$, to model the temperature of the coffee. Round all values to the nearest thousandth.

475 Use an appropriate procedure to show that $x-4$ is a factor of the function $f(x)=2 x^{3}-5 x^{2}-11 x-4$. Explain your answer.

476 A person's lung capacity can be modeled by the function $C(t)=250 \sin \left(\frac{2 \pi}{5} t\right)+2450$, where $C(t)$ represents the volume in mL present in the lungs after t seconds. State the maximum value of this function over one full cycle, and explain what this value represents.

477 Write $\frac{x \sqrt{x^{3}}}{\sqrt[3]{x^{5}}}$ as a single term in simplest form, with a rational exponent.

478 A suburban high school has a population of 1376 students. The number of students who participate in sports is 649. The number of students who participate in music is 433 . If the probability that a student participates in either sports or music is $\frac{974}{1376}$, what is the probability that a student participates in both sports and music?

479 Rewrite the expression $\left(4 x^{2}+5 x\right)^{2}-5\left(4 x^{2}+5 x\right)-6$ as a product of four linear factors.

480 Write a recursive formula for the sequence 189, 63, 21,7,....

481 Verify the following Pythagorean identity for all values of x and y :

$$
\left(x^{2}+y^{2}\right)^{2}=\left(x^{2}-y^{2}\right)^{2}+(2 x y)^{2}
$$

482 Given $r(x)=x^{3}-4 x^{2}+4 x-6$, find the value of $r(2)$. What does your answer tell you about $x-2$ as a factor of $r(x)$? Explain.

483 Erin and Christa were working on cubing binomials for math homework. Erin believed they could save time with a shortcut. She wrote down the rule below for Christa to follow.

$$
(a+b)^{3}=a^{3}+b^{3}
$$

Does Erin's shortcut always work? Justify your result algebraically.

484 Factor $x^{3}+4 x^{2}-9 x-36$ completely.

485 Algebraically determine the solution set for the system of equations below.

$$
\begin{aligned}
& y=2 x^{2}-7 x+4 \\
& y=11-2 x
\end{aligned}
$$

486 Algebraically determine the values of x that satisfy the system of equations below:

$$
\begin{aligned}
& y=x^{2}+8 x-5 \\
& y=8 x-4
\end{aligned}
$$

487 Graph $y=x^{3}-4 x^{2}+2 x+7$ on the set of axes below.

488 Given that $\left(\frac{y^{\frac{17}{8}}}{y^{\frac{5}{4}}}\right)^{-4}=y^{n}$, where $y>0$, determine the value of n.

489 Graph $f(x)=\log _{2}(x+6)$ on the set of axes below.

490 The probability that a resident of a housing community opposes spending money for community improvement on plumbing issues is 0.8 . The probability that a resident favors spending money on improving walkways given that the resident opposes spending money on plumbing issues is 0.85 . Determine the probability that a randomly selected resident opposes spending money on plumbing issues and favors spending money on walkways.

491 Explain why $81^{\frac{3}{4}}$ equals 27.

492 Solve the equation $3 x^{2}+5 x+8=0$. Write your solution in $a+b i$ form.

A survey about television-viewing preferences was given to randomly selected freshmen and seniors at Fairport High School. The results are shown in the table below.

Favorite Type of Program			
	Sports	Reality Show	Comedy Series
Senior	83	110	67
Freshmen	119	103	54

A student response is selected at random from the results. State the exact probability the student response is from a freshman, given the student prefers to watch reality shows on television.

494
The results of a survey of the student body at Central High School about television viewing preferences are shown below.

	Comedy Series	Drama Series	Reality Series	Total
Males	95	65	70	230
Females	80	70	110	260
Total	175	135	180	490

Are the events "student is a male" and "student prefers reality series" independent of each other? Justify your answer.

495 The function $M(t)$ represents the mass of radium over time, t, in years.

$$
M(t)=100 e^{\frac{\left(\ln \frac{1}{2}\right) t}{1590}}
$$

Determine if the function $M(t)$ represents growth or decay. Explain your reasoning.

496 Given the geometric series
$300+360+432+518.4+\ldots$, write a geometric series formula, S_{n}, for the sum of the first n terms. Use the formula to find the sum of the first 10 terms, to the nearest tenth.

497 On the axes below, sketch a possible function $p(x)=(x-a)(x-b)(x+c)$, where a, b, and c are positive, $a>b$, and $p(x)$ has a positive y-intercept of d. Label all intercepts.

498 Graph $y=2 \cos \left(\frac{1}{2} x\right)+5$ on the interval $[0,2 \pi]$, using the axes below.

499 Consider the parabola given by $y=\frac{1}{4} x^{2}+x+8$ with vertex $(-2,7)$ and focus $(-2,8)$. Use this information to explain how to determine the equation of the directrix.

While experimenting with her calculator, Candy creates the sequence $4,9,19,39,79, \ldots$. Write a recursive formula for Candy's sequence. Determine the eighth term in Candy's sequence.

501 Solve the equation $2 x^{2}+5 x+8=0$. Express the answer in $a+b i$ form.

502 Solve algebraically for all values of x :
$\sqrt{4 x+1}=11-x$

503 A study was designed to test the effectiveness of a new drug. Half of the volunteers received the drug. The other half received a sugar pill. The probability of a volunteer receiving the drug and getting well was 40%. What is the probability of a volunteer getting well, given that the volunteer received the drug?

504 On July 21, 2016, the water level in Puget Sound, WA reached a high of 10.1 ft at 6 a.m. and a low of -2 ft at 12:30 p.m. Across the country in Long Island, NY, Shinnecock Bay's water level reached a high of 2.5 ft at $10: 42$ p.m. and a low of -0.1 ft at 5:31 a.m. The water levels of both locations are affected by the tides and can be modeled by sinusoidal functions. Determine the difference in amplitudes, in feet, for these two locations.

505 Over the set of integers, factor the expression $x^{4}-4 x^{2}-12$.

506 Write $\sqrt[3]{x} \bullet \sqrt{x}$ as a single term with a rational exponent.

507 Express the fraction $\frac{2 x^{\frac{3}{2}}}{\left(16 x^{4}\right)^{\frac{1}{4}}}$ in simplest radical form.

508 Solve for $x: \frac{1}{x}-\frac{1}{3}=-\frac{1}{3 x}$

509 Over the set of integers, factor the expression $4 x^{3}-x^{2}+16 x-4$ completely.

510 Given $a>0$, solve the equation $a^{x+1}=\sqrt[3]{a^{2}}$ for x algebraically.

511 Solve the following system of equations algebraically. $x^{2}+y^{2}=400$

$$
y=x-28
$$

512 Over the set of integers, completely factor $x^{4}-5 x^{2}+4$.

513 The volume of air in a person's lungs, as the person breathes in and out, can be modeled by a sine graph. A scientist is studying the differences in this volume for people at rest compared to people told to take a deep breath. When examining the graphs, should the scientist focus on the amplitude, period, or midline? Explain your choice.

514 Given $P(A)=\frac{1}{3}$ and $P(B)=\frac{5}{12}$, where A and B are independent events, determine $P(A \cap B)$.

515 Algebraically prove that $\frac{x^{3}+9}{x^{3}+8}=1+\frac{1}{x^{3}+8}$, where $x \neq-2$.

516 According to a study done at a hospital, the average weight of a newborn baby is 3.39 kg , with a standard deviation of 0.55 kg . The weights of all the newborns in this hospital closely follow a normal distribution. Last year, 9256 babies were born at this hospital. Determine, to the nearest integer, approximately how many babies weighed more than 4 kg .

517 Graph $t(x)=3 \sin (2 x)+2$ over the domain $[0,2 \pi]$ on the set of axes below.

518 A formula for work problems involving two people is shown below.

$$
\frac{1}{t_{1}}+\frac{1}{t_{2}}=\frac{1}{t_{b}}
$$

$t_{1}=$ the time taken by the first person to complete the job
$t_{2}=$ the time taken by the second person to complete the job
$t_{b}=$ the time it takes for them working together to complete the job Fred and Barney are carpenters who build the same model desk. It takes Fred eight hours to build the desk while it only takes Barney six hours. Write an equation that can be used to find the time it would take both carpenters working together to build a desk. Determine, to the nearest tenth of an hour, how long it would take Fred and Barney working together to build a desk.

519 The results of a poll of 200 students are shown in the table below:

	Preferred Music Style		
	Techno	Rap	Country
Female	54	25	27
Male	36	40	18

For this group of students, do these data suggest that gender and preferred music styles are independent of each other? Justify your answer.

520 For $x \neq 0$ and $y \neq 0, \sqrt[3]{81 x^{15} y^{9}}=3^{a} x^{5} y^{3}$. Determine the value of a.

521 An orange-juice processing plant receives a truckload of oranges. The quality control team randomly chooses three pails of oranges, each containing 50 oranges, from the truckload. Identify the sample and the population in the given scenario. State one conclusion that the quality control team could make about the population if 5% of the sample was found to be unsatisfactory.

522 Given $f(x)=3 x^{2}+7 x-20$ and $g(x)=x-2$, state the quotient and remainder of $\frac{f(x)}{g(x)}$, in the form $q(x)+\frac{r(x)}{g(x)}$.

523 Explain what a rational exponent, such as $\frac{5}{2}$ means.
Use this explanation to evaluate $9^{\frac{5}{2}}$.

524 Algebraically determine whether the function $j(x)=x^{4}-3 x^{2}-4$ is odd, even, or neither.

525 Describe the transformation applied to the graph of $p(x)=2^{x}$ that forms the new function $q(x)=2^{x-3}+4$.

526 Algebraically solve for x : $\frac{7}{2 x}-\frac{2}{x+1}=\frac{1}{4}$

527 A house purchased 5 years ago for $\$ 100,000$ was just sold for $\$ 135,000$. Assuming exponential growth, approximate the annual growth rate, to the nearest percent.

528 Solve algebraically for x to the nearest thousandth: $2 e^{0.49 x}=15$

529 Kenzie believes that for $x \geq 0$, the expression $\left(\sqrt[7]{x^{2}}\right)\left(\sqrt[5]{x^{3}}\right)$ is equivalent to $\sqrt[35]{x^{6}}$. Is she correct? Justify your response algebraically.

530 The directrix of the parabola $12(y+3)=(x-4)^{2}$ has the equation $y=-6$. Find the coordinates of the focus of the parabola.

Algebra II 2 Point Regents Exam Questions www.jmap.org

531 An app design company believes that the proportion of high school students who have purchased apps on their smartphones in the past 3 months is 0.85 . A simulation of 500 samples of 150 students was run based on this proportion and the results are shown below.

Suppose a sample of 150 students from your high school showed that 88% of students had purchased apps on their smartphones in the past 3 months. Based on the simulation, would the results from your high school give the app design company reason to believe their assumption is incorrect? Explain.

532 The scores on a collegiate mathematics readiness assessment are approximately normally distributed with a mean of 680 and a standard deviation of 120. Determine the percentage of scores between 690 and 900, to the nearest percent.

533 Express $\left(2 x i^{3}-3 y\right)^{2}$ in simplest form.

534 Write the expression $A(x) \bullet B(x)-3 C(x)$ as a polynomial in standard form.

$$
\begin{aligned}
& A(x)=x^{3}+2 x-1 \\
& B(x)=x^{2}+7 \\
& C(x)=x^{4}-5 x
\end{aligned}
$$

535 Determine for which polynomial(s) $(x+2)$ is a factor. Explain your answer.

$$
\begin{aligned}
& P(x)=x^{4}-3 x^{3}-16 x-12 \\
& Q(x)=x^{3}-3 x^{2}-16 x-12
\end{aligned}
$$

536 Write a recursive formula, a_{n}, to describe the sequence graphed below.

537 Some smart-phone applications contain "in-app" purchases, which allow users to purchase special content within the application. A random sample of 140 users found that 35 percent made in-app purchases. A simulation was conducted with 200 samples of 140 users assuming 35 percent of the samples make in-app purchases. The approximately normal results are shown below.

Considering the middle 95% of the data, determine the margin of error, to the nearest hundredth, for the simulated results. In the given context, explain what this value represents.

538 The graph below represents the height above the ground, h, in inches, of a point on a triathlete's bike wheel during a training ride in terms of time, t, in seconds.

Identify the period of the graph and describe what the period represents in this context.

539 Determine the solution of $\sqrt{3 x+7}=x-1$ algebraically.

540 Elizabeth tried to find the product of $(2+4 i)$ and (3-i), and her work is shown below.

$$
\begin{aligned}
& (2+4 i)(3-i) \\
= & 6-2 i+12 i-4 i^{2} \\
= & 6+10 i-4 i^{2} \\
= & 6+10 i-4(1) \\
= & 6+10 i-4 \\
= & 2+10 i
\end{aligned}
$$

Identify the error in the process shown and determine the correct product of $(2+4 i)$ and $(3-i)$.

541 Biologists are studying a new bacterium. They create a culture with 100 of the bacteria and anticipate that the number of bacteria will double every 30 hours. Write an equation for the number of bacteria, B, in terms of the number of hours, t, since the experiment began.

542 An initial investment of $\$ 1000$ reaches a value, $V(t)$, according to the model $V(t)=1000(1.01)^{4 t}$, where t is the time in years. Determine the average rate of change, to the nearest dollar per year, of this investment from year 2 to year 7 .

543 Justify why $\frac{\sqrt[3]{x^{2} y^{5}}}{\sqrt[4]{x^{3} y^{4}}}$ is equivalent to $x^{\frac{-1}{12}} y^{\frac{2}{3}}$ using properties of rational exponents, where $x \neq 0$ and $y \neq 0$.

544 When $\left(\frac{1}{\sqrt[3]{y^{2}}}\right) y^{4}$ is written in the form y^{n}, what is the value of n ? Justify your answer.

545 Robin flips a coin 100 times. It lands heads up 43 times, and she wonders if the coin is unfair. She runs a computer simulation of 750 samples of 100 fair coin flips. The output of the proportion of heads is shown below.

Do the results of the simulation provide strong evidence that Robin's coin is unfair? Explain your answer.

546 Rowan is training to run in a race. He runs 15 miles in the first week, and each week following, he runs 3% more than the week before. Using a geometric series formula, find the total number of miles Rowan runs over the first ten weeks of training, rounded to the nearest thousandth.

547 For all values of x for which the expression is defined, write the expression below in simplest form.

$$
\frac{2 x^{3}+x^{2}-18 x-9}{3 x-x^{2}}
$$

548 A runner is using a nine-week training app to prepare for a "fun run." The table below represents the amount of the program completed, A, and the distance covered in a session, D, in miles.

A	$\frac{4}{9}$	$\frac{5}{9}$	$\frac{6}{9}$	$\frac{8}{9}$	1
D	2	2	2.25	3	3.25

Based on these data, write an exponential regression equation, rounded to the nearest thousandth, to model the distance the runner is able to complete in a session as she continues through the nine-week program.

549 The zeros of a quartic polynomial function are 2 , $-2,4$, and -4 . Use the zeros to construct a possible sketch of the function, on the set of axes below.

550 Write $(5+2 y i)(4-3 i)-(5-2 y i)(4-3 i)$ in $a+b i$ form, where y is a real number.

551 The business office of a local college wishes to determine the methods of payment that will be used by students when buying books at the beginning of a semester. Explain how the office can gather an appropriate sample that minimizes bias.

552 Natalia's teacher has given her the following information about angle θ.

$$
\bullet \pi<\theta<2 \pi
$$

- $\cos \theta=\frac{\sqrt{3}}{4}$

Explain how Natalia can determine if the value of $\tan \theta$ is positive or negative.

553 Sketch the graphs of $r(x)=\frac{1}{x}$ and $a(x)=|x|-3$ on the set of axes below. Determine, to the nearest tenth, the positive solution of $r(x)=a(x)$.

554 The table below shows the results of gender and music preference. Based on these data, determine if the events "the person is female" and "the person prefers classic rock" are independent of each other. Justify your answer.

	Rap	Techno	Classic Rock	Classical
Male	39	17	42	12
Female	17	37	36	15

555
The initial push of a child on a swing causes the swing to travel a total of 6 feet. Each successive swing travels 80% of the distance of the previous swing. Determine the total distance, to the nearest hundredth of a foot, a child travels in the first five swings.

556 Given i is the imaginary unit, simplify $\left(5 x i^{3}-4 i\right)^{2}$ as a polynomial in standard form.

557 On the grid below, graph the function $f(x)=x^{3}-6 x^{2}+9 x+6$ on the domain $-1 \leq x \leq 4$.

558 Algebraically determine the values of x that satisfy the system of equations below.

$$
\begin{aligned}
& y=-2 x+1 \\
& y=-2 x^{2}+3 x+1
\end{aligned}
$$

559 For the function $f(x)=(x-3)^{3}+1$, find $f^{-1}(x)$.

560 Given $\cos A=\frac{3}{\sqrt{10}}$ and $\cot A=-3$, determine the value of $\sin A$ in radical form.

561 Determine if $x-5$ is a factor of $2 x^{3}-4 x^{2}-7 x-10$. Explain your answer.

562 Given events A and B, such that $P(A)=0.6$, $P(B)=0.5$, and $P(A \cup B)=0.8$, determine whether A and B are independent or dependent.

563 Solve algebraically for all values of x : $\sqrt{x-5}+x=7$

564 Using the identity $\sin ^{2} \theta+\cos ^{2} \theta=1$, find the value of $\tan \theta$, to the nearest hundredth, if $\cos \theta$ is -0.7 and θ is in Quadrant II.

Consider the data in the table below.

\mathbf{x}	1	2	3	4	5	6
\mathbf{y}	3.9	6	11	18.1	28	40.3

State an exponential regression equation to model these data, rounding all values to the nearest thousandth.

566 The scores of a recent test taken by 1200 students had an approximately normal distribution with a mean of 225 and a standard deviation of 18 . Determine the number of students who scored between 200 and 245 .

567 Completely factor the following expression: $x^{2}+3 x y+3 x^{3}+y$

568 Using the unit circle below, explain why $\csc \theta=\frac{1}{y}$.

569 Does the equation $x^{2}-4 x+13=0$ have imaginary solutions? Justify your answer.

570
Determine the quotient and remainder when $\left(6 a^{3}+11 a^{2}-4 a-9\right)$ is divided by $(3 a-2)$. Express your answer in the form $q(a)+\frac{r(a)}{d(a)}$.

571 On the axes below, graph one cycle of a cosine function with amplitude 3 , period $\frac{\pi}{2}$, midline $y=-1$, and passing through the point $(0,2)$.

572 When the function $p(x)$ is divided by $x-1$ the quotient is $x^{2}+7+\frac{5}{x-1}$. State $p(x)$ in standard form.

573 Show why $x-3$ is a factor of $m(x)=x^{3}-x^{2}-5 x-3$. Justify your answer.

574 Consider the function $h(x)=2 \sin (3 x)+1$ and the function q represented in the table below.

\boldsymbol{x}	$\boldsymbol{q (x)}$
-2	-8
-1	0
0	0
1	-2
2	0

Determine which function has the smaller minimum value for the domain [-2,2]. Justify your answer.

575 The heights of the members of a ski club are normally distributed. The average height is 64.7 inches with a standard deviation of 4.3 inches. Determine the percentage of club members, to the nearest percent, who are between 67 inches and 72 inches tall.

576 In New York State, the minimum wage has grown exponentially. In 1966, the minimum wage was $\$ 1.25$ an hour and in 2015, it was $\$ 8.75$.
Algebraically determine the rate of growth to the nearest percent.

577 The population of bacteria, $P(t)$, in hundreds, after t hours can be modeled by the function $P(t)=37 e^{0.0532 t}$. Determine whether the population is increasing or decreasing over time. Explain your reasoning.

578 A fruit fly population can be modeled by the equation $P=10(1.27)^{t}$, where P represents the number of fruit flies after t days. What is the average rate of change of the population, rounded to the nearest hundredth, over the interval $[0,10.5]$? Include appropriate units in your answer.

579 Determine if $x+4$ is a factor of $2 x^{3}+10 x^{2}+4 x-16$. Explain your answer.

580 The Wells family is looking to purchase a home in a suburb of Rochester with a 30 -year mortgage that has an annual interest rate of 3.6%. The house the family wants to purchase is $\$ 152,500$ and they will make a $\$ 15,250$ down payment and borrow the remainder. Use the formula below to determine their monthly payment, to the nearest dollar.

$$
\begin{array}{r}
M=\frac{P\left(\frac{r}{12}\right)\left(1+\frac{r}{12}\right)^{n}}{\left(1+\frac{r}{12}\right)^{n}-1} \\
M=\text { monthly payment } \\
P=\text { amount borrowed } \\
r=\text { annual interest rate } \\
n=\text { total number of monthly payments }
\end{array}
$$

581 For n and $p>0$, is the expression
$\left(p^{2} n^{\frac{1}{2}}\right)^{8} \sqrt{p^{5} n^{4}}$ equivalent to $p^{18} n^{6} \sqrt{p}$?
Justify your answer.

582 The average monthly high temperature in Buffalo, in degrees Fahrenheit, can be modeled by the function
$B(t)=25.29 \sin (0.4895 t-1.9752)+55.2877$, where t is the month number (January $=1$). State, to the nearest tenth, the average monthly rate of temperature change between August and November. Explain its meaning in the given context.

Graph $y=400(.85)^{2 x}-6$ on the set of axes below.

584 A survey was given to 1250 randomly selected high school students at the end of their junior year. The survey offered four post-graduation options: two-year college, four-year college, military, or work. Of the 1250 responses, 475 chose a four-year college. State one possible conclusion that can be made about the population of high school juniors, based on this survey.

585 On the coordinate plane below, sketch at least one cycle of a cosine function with a midline at $y=-2$, an amplitude of 3 , and a period of $\frac{\pi}{2}$.

586 The parabola $y=-\frac{1}{20}(x-3)^{2}+6$ has its focus at $(3,1)$. Determine and state the equation of the directrix. (The use of the grid below is optional.)

The table below shows the number of hours of daylight on the first day of each month in Rochester, NY.

Month	Hours of Daylight
Jan.	9.4
Feb.	10.6
March	11.9
April	13.9
May	14.7
June	15.4
July	15.1
Aug.	13.9
Sept.	12.5
Oct.	11.1
Nov.	9.7
Dec.	9.0

Given the data, what is the average rate of change in hours of daylight per month from January 1st to April 1st? Interpret what this means in the context of the problem.

The relative frequency table shows the proportion of a population who have a given eye color and the proportion of the same population who wear glasses.

	Wear Glasses	Don't Wear Glasses
Blue Eyes	0.14	0.26
Brown Eyes	0.11	0.24
Green Eyes	0.10	0.15

Given the data, are the events of having blue eyes and wearing glasses independent? Justify your answer.

Simplify $x i(i-7 i)^{2}$, where i is the imaginary unit.

Given: $h(x)=\frac{2}{9} x^{3}+\frac{8}{9} x^{2}-\frac{16}{13} x+2$

$$
k(x)=-|0.7 x|+5
$$

State the solutions to the equation $h(x)=k(x)$, rounded to the nearest hundredth.

591 The world population was 2560 million people in 1950 and 3040 million in 1960 and can be modeled by the function $p(t)=2560 e^{0.017185 t}$, where t is time in years after 1950 and $p(t)$ is the population in millions. Determine the average rate of change of $p(t)$ in millions of people per year, from $4 \leq t \leq 8$. Round your answer to the nearest hundredth.

592 The x-value of which function's x-intercept is larger, f or h ? Justify your answer.

$$
f(x)=\log (x-4)
$$

\mathbf{x}	$\mathbf{h}(\mathbf{x})$
-1	6
0	4
1	2
2	0
3	-2

593 Solve algebraically for $n: \frac{2}{n^{2}}+\frac{3}{n}=\frac{4}{n^{2}}$

594 At Andrew Jackson High School, students are only allowed to enroll in AP U.S. History if they have already taken AP World History or AP European History. Out of 825 incoming seniors, 165 took AP World History, 66 took AP European History, and 33 took both. Given this information, determine the probability a randomly selected incoming senior is allowed to enroll in AP U.S. History.

595 Algebraically determine the zeros of the function below.

$$
r(x)=3 x^{3}+12 x^{2}-3 x-12
$$

596 Determine the average rate of change, in mph , from 2 to 4 hours on the graph shown below.

Algebra II 4 Point Regents Exam Questions

597 Charlie's Automotive Dealership is considering implementing a new check-in procedure for customers who are bringing their vehicles for routine maintenance. The dealership will launch the procedure if 50% or more of the customers give the new procedure a favorable rating when compared to the current procedure. The dealership devises a simulation based on the minimal requirement that 50% of the customers prefer the new procedure. Each dot on the graph below represents the proportion of the customers who preferred the new check-in procedure, each of sample size 40 , simulated 100 times.

Assume the set of data is approximately normal and the dealership wants to be 95% confident of its results. Determine an interval containing the plausible sample values for which the dealership will launch the new procedure. Round your answer to the nearest hundredth. Forty customers are selected randomly to undergo the new check-in procedure and the proportion of customers who prefer the new procedure is 32.5%. The dealership decides not to implement the new check-in procedure based on the results of the study. Use statistical evidence to explain this decision.

A researcher wants to determine if nut allergies and milk allergies are related to each other. The researcher surveyed 1500 people and asked them if they are allergic to nuts or milk. The survey results are summarized in the table below.

	Allergic to Nuts	Not Allergic to Nuts
Allergic to Milk	3	42
Not Allergic to Milk	12	1443

Determine the probability that a randomly selected survey respondent is allergic to milk. Determine the probability that a randomly selected survey respondent is allergic to milk, given that the person is allergic to nuts. Based on the survey data, determine whether nut allergies and milk allergies are independent events. Justify your answer.

599 Algebraically determine the values of h and k to correctly complete the identity stated below.

$$
2 x^{3}-10 x^{2}+11 x-7=(x-4)\left(2 x^{2}+h x+3\right)+k
$$

600 Algebraically solve the following system of equations.

$$
\begin{gathered}
(x-2)^{2}+(y-3)^{2}=16 \\
x+y-1=0
\end{gathered}
$$

601 Sonja is cutting wire to construct a mobile. She cuts 100 inches for the first piece, 80 inches for the second piece, and 64 inches for the third piece. Assuming this pattern continues, write an explicit equation for a_{n}, the length in inches of the nth piece. Sonja only has 40 feet of wire to use for the project and wants to cut 20 pieces total for the mobile using her pattern. Will she have enough wire? Justify your answer.

602 A population of 950 bacteria grows continuously at a rate of 4.75% per day. Write an exponential function, $N(t)$, that represents the bacterial population after t days and explain the reason for your choice of base. Determine the bacterial population after 36 hours, to the nearest bacterium.

603 Simon lost his library card and has an overdue library book. When the book was 5 days late, he owed $\$ 2.25$ to replace his library card and pay the fine for the overdue book. When the book was 21 days late, he owed $\$ 6.25$ to replace his library card and pay the fine for the overdue book. Suppose the total amount Simon owes when the book is n days late can be determined by an arithmetic sequence. Determine a formula for a_{n}, the nth term of this sequence. Use the formula to determine the amount of money, in dollars, Simon needs to pay when the book is 60 days late.

604 Fifty-five students attending the prom were randomly selected to participate in a survey about the music choice at the prom. Sixty percent responded that a DJ would be preferred over a band. Members of the prom committee thought that the vote would have 50% for the DJ and 50% for the band. A simulation was run 200 times, each of sample size 55 , based on the premise that 60% of the students would prefer a DJ. The approximate normal simulation results are shown below.

Using the results of the simulation, determine a plausible interval containing the middle 95% of the data. Round all values to the nearest hundredth. Members of the prom committee are concerned that a vote of all students attending the prom may produce a $50 \%-50 \%$ split. Explain what statistical evidence supports this concern.

605 The guidance department has reported that of the senior class, 2.3% are members of key club, K, 8.6% are enrolled in AP Physics, P, and 1.9% are in both. Determine the probability of P given K, to the nearest tenth of a percent. The principal would like a basic interpretation of these results. Write a statement relating your calculated probabilities to student enrollment in the given situation.

Algebra II 4 Point Regents Exam Questions

www.jmap.org
606 Using a microscope, a researcher observed and recorded the number of bacteria spores on a large sample of uniformly sized pieces of meat kept at room temperature. A summary of the data she recorded is shown in the table below.

Hours (x)	Average Number of Spores (y)
0	4
0.5	10
1	15
2	60
3	260
4	1130
6	16,380

Using these data, write an exponential regression equation, rounding all values to the nearest thousandth. The researcher knows that people are likely to suffer from food-borne illness if the number of spores exceeds 100 . Using the exponential regression equation, determine the maximum amount of time, to the nearest quarter hour, that the meat can be kept at room temperature safely.

607 Which function shown below has a greater average rate of change on the interval [$-2,4]$? Justify your answer.

\mathbf{x}	$\mathbf{f}(\mathbf{x})$
-4	0.3125
-3	0.625
-2	1.25
-1	2.5
0	5
1	10
2	20
3	40
4	80
5	160
6	320

$$
g(x)=4 x^{3}-5 x^{2}+3
$$

608 Algebraically solve the system:

$$
\begin{gathered}
(x-2)^{2}+(y-3)^{2}=20 \\
y=-2 x+7
\end{gathered}
$$

609 Solve the equation $\sqrt{49-10 x}+5=2 x$ algebraically.

610 On the set of axes below, graph $y=f(x)$ and $y=g(x)$ for the given functions.

$$
\begin{gathered}
f(x)=x^{3}-3 x^{2} \\
g(x)=2 x-5
\end{gathered}
$$

State the number of solutions to the equation $f(x)=g(x)$.

611 Solve the following system of equations algebraically for all values of x, y, and z :

$$
\begin{gathered}
x+y+z=1 \\
2 x+4 y+6 z=2 \\
-x+3 y-5 z=11
\end{gathered}
$$

612 One of the medical uses of Iodine-131 (I-131), a radioactive isotope of iodine, is to enhance x-ray images. The half-life of I-131 is approximately 8.02 days. A patient is injected with 20 milligrams of I-131. Determine, to the nearest day, the amount of time needed before the amount of I-131 in the patient's body is approximately 7 milligrams.

613 In contract negotiations between a local government agency and its workers, it is estimated that there is a 50% chance that an agreement will be reached on the salaries of the workers. It is estimated that there is a 70% chance that there will be an agreement on the insurance benefits. There is a 20% chance that no agreement will be reached on either issue. Find the probability that an agreement will be reached on both issues. Based on this answer, determine whether the agreement on salaries and the agreement on insurance are independent events. Justify your answer.

614 State officials claim 82% of a community want to repeal the 30 mph speed limit on an expressway. A community organization devises a simulation based on the claim that 82% of the community supports the repeal. Each dot on the graph below represents the proportion of community members who support the repeal. The graph shows 200 simulated surveys, each of sample size 60.

Based on the simulation, determine an interval containing the middle 95% of plausible proportions. Round your answer to the nearest thousandth. The community organization conducted its own sample survey of 60 people and found 70% supported the repeal. Based on the results of the simulation, explain why the organization should question the State officials' claim.

615 Joseph was curious to determine if scent improves memory. A test was created where better memory is indicated by higher test scores. A controlled experiment was performed where one group was given the test on scented paper and the other group was given the test on unscented paper. The summary statistics from the experiment are given below.

	Scented Paper	Unscented Paper
\bar{x}	23	18
$\mathrm{~s}_{\mathrm{x}}$	2.898	2.408

Calculate the difference in means in the experimental test grades (scented -unscented). A simulation was conducted in which the subjects' scores were rerandomized into two groups 1000 times. The differences of the group means were calculated each time. The results are shown below.

Use the simulation results to determine the interval representing the middle 95% of the difference in means, to the nearest hundredth. Is the difference in means in Joseph's experiment statistically significant based on the simulation? Explain.

616 Graph $c(x)=-9(3)^{x-4}+2$ on the axes below.

Describe the end behavior of $c(x)$ as x approaches positive infinity. Describe the end behavior of $c(x)$ as x approaches negative infinity.

617 A Foucault pendulum can be used to demonstrate that the Earth rotates. The time, t, in seconds, that it takes for one swing or period of the pendulum can be modeled by the equation $t=2 \pi \sqrt{\frac{L}{g}}$ where L is the length of the pendulum in meters and g is a constant of $9.81 \mathrm{~m} / \mathrm{s}^{2}$. The first Foucault pendulum was constructed in 1851 and has a pendulum length of 67 m . Determine, to the nearest tenth of a second, the time it takes this pendulum to complete one swing. Another Foucault pendulum at the United Nations building takes 9.6 seconds to complete one swing. Determine, to the nearest tenth of a meter, the length of this pendulum.

618 Write an equation for a sine function with an amplitude of 2 and a period of $\frac{\pi}{2}$. On the grid below, sketch the graph of the equation in the interval 0 to 2π.

619 Solve the equation $\sqrt{2 x-7}+x=5$ algebraically, and justify the solution set.

620 A student is chosen at random from the student body at a given high school. The probability that the student selects Math as the favorite subject is $\frac{1}{4}$. The probability that the student chosen is a junior is $\frac{116}{459}$. If the probability that the student selected is a junior or that the student chooses Math as the favorite subject is $\frac{47}{108}$, what is the exact probability that the student selected is a junior whose favorite subject is Math? Are the events "the student is a junior" and "the student's favorite subject is Math" independent of each other?
Explain your answer.

621 On the graph below, draw at least one complete cycle of a sine graph passing through point $(0,2)$ that has an amplitude of 3 , a period of π, and a midline at $y=2$.

Based on your graph, state an interval in which the graph is increasing.

622 On a certain tropical island, there are currently 500 palm trees and 200 flamingos. Suppose the palm tree population is decreasing at an annual rate of 3% per year and the flamingo population is growing at a continuous rate of 2% per year. Write two functions, $P(x)$ and $F(x)$, that represent the number of palm trees and flamingos on this island, respectively, x years from now. State the solution to the equation $P(x)=F(x)$, rounded to the nearest year. Interpret the meaning of this value within the given context.

623 Solve the given equation algebraically for all values of $x .3 \sqrt{x}-2 x=-5$

624 In a random sample of 250 men in the United States, age 21 or older, 139 are married. The graph below simulated samples of 250 men, 200 times, assuming that 139 of the men are married.

a) Based on the simulation, create an interval in which the middle 95% of the number of married men may fall. Round your answer to the nearest integer.
b) A study claims " 50 percent of men 21 and older in the United States are married." Do your results from part a contradict this claim? Explain.

625 A public radio station held a fund-raiser. The table below summarizes the donor category and method of donation.

		Donor Category	
		Supporter	Patron
Method of Donation	Phone calls	400	672
	Online	1200	2016

To the nearest thousandth, find the probability that a randomly selected donor was categorized as a supporter, given that the donation was made online. Do these data indicate that being a supporter is independent of donating online? Justify your answer.

Algebra II 4 Point Regents Exam Questions www.jmap.org

626
Graph $y=\log _{2}(x+3)-5$ on the set of axes below. Use an appropriate scale to include both intercepts.

Describe the behavior of the given function as x approaches -3 and as x approaches positive infinity.

627 The half-life of a radioactive substance is 15 years. Write an equation that can be used to determine the amount, $s(t)$, of 200 grams of this substance that remains after t years. Determine algebraically, to the nearest year, how long it will take for $\frac{1}{10}$ of this substance to remain.

628 Factor completely over the set of integers:
$16 x^{4}-81$. Sara graphed the polynomial
$y=16 x^{4}-81$ and stated "All the roots of $y=16 x^{4}-81$ are real." Is Sara correct? Explain your reasoning.

629 Patricia creates a cubic polynomial function, $p(x)$, with a leading coefficient of 1 . The zeros of the function are 2,3 , and -6 . Write an equation for $p(x)$. Sketch $y=p(x)$ on the set of axes below.

630
Find algebraically the zeros for $p(x)=x^{3}+x^{2}-4 x-4$. On the set of axes below, graph $y=p(x)$.

631 Two classes of students were entered into an experiment to see whether using an interactive whiteboard leads to better grades. It was observed that the mean grade of students in the class with the interactive whiteboard was 0.6 points higher than the class without it. To determine if the observed difference is statistically significant, the classes were rerandomized 5000 times to study these random differences in the mean grades. The output of the simulation is summarized in the histogram below.

Determine an interval containing the middle 95\% of the simulation results. Round your answer to the nearest hundredth. Does the interval indicate that the difference between the classes' grades is significant? Explain.

632 Carla wants to start a college fund for her daughter Lila. She puts $\$ 63,000$ into an account that grows at a rate of 2.55% per year, compounded monthly. Write a function, $C(t)$, that represents the amount of money in the account t years after the account is opened, given that no more money is deposited into or withdrawn from the account. Calculate algebraically the number of years it will take for the account to reach $\$ 100,000$, to the nearest hundredth of a year.

633 The function $v(x)=x(3-x)(x+4)$ models the volume, in cubic inches, of a rectangular solid for $0 \leq x \leq 3$. Graph $y=v(x)$ over the domain $0 \leq x \leq 3$.

To the nearest tenth of a cubic inch, what is the maximum volume of the rectangular solid?

634 Sketch $p(x)=-\log _{2}(x+3)+2$ on the axes below.

Describe the end behavior of $p(x)$ as $x \rightarrow-3$.
Describe the end behavior of $p(x)$ as $x \rightarrow \infty$

635 A radio station claims to its advertisers that the mean number of minutes commuters listen to the station is 30 . The station conducted a survey of 500 of their listeners who commute. The sample statistics are shown below.

$\overline{\mathrm{x}}$	29.11
s_{x}	20.718

A simulation was run 1000 times based upon the results of the survey. The results of the simulation appear below.

Based on the simulation results, is the claim that commuters listen to the station on average 30 minutes plausible? Explain your response including an interval containing the middle 95% of the data, rounded to the nearest hundredth.

636 Solve the system of equations algebraically.

$$
\begin{gathered}
x^{2}+y^{2}=25 \\
y+5=2 x
\end{gathered}
$$

637 Alexa earns \$33,000 in her first year of teaching and earns a 4% increase in each successive year. Write a geometric series formula, S_{n}, for Alexa's total earnings over n years. Use this formula to find Alexa's total earnings for her first 15 years of teaching, to the nearest cent.

638 Jim is looking to buy a vacation home for $\$ 172,600$ near his favorite southern beach. The formula to compute a mortgage payment, M, is
$M=P \bullet \frac{r(1+r)^{N}}{(1+r)^{N}-1}$ where P is the principal
amount of the loan, r is the monthly interest rate, and N is the number of monthly payments. Jim's bank offers a monthly interest rate of 0.305% for a 15 -year mortgage. With no down payment, determine Jim's mortgage payment, rounded to the nearest dollar. Algebraically determine and state the down payment, rounded to the nearest dollar, that Jim needs to make in order for his mortgage payment to be $\$ 1100$.

639 Ayva designed an experiment to determine the effect of a new energy drink on a group of 20 volunteer students. Ten students were randomly selected to form group 1 while the remaining 10 made up group 2 . Each student in group 1 drank one energy drink, and each student in group 2 drank one cola drink. Ten minutes later, their times were recorded for reading the same paragraph of a novel. The results of the experiment are shown below.

Group 1 (seconds)	Group 2 (seconds)
17.4	23.3
18.1	18.8
18.2	22.1
19.6	12.7
18.6	16.9
16.2	24.4
16.1	21.2
15.3	21.2
17.8	16.3
19.7	14.5
Mean $=17.7$	Mean $=19.1$

Ayva thinks drinking energy drinks makes students read faster. Using information from the experimental design or the results, explain why Ayva's hypothesis may be incorrect. Using the given results, Ayva randomly mixes the 20 reading times, splits them into two groups of 10, and simulates the difference of the means 232 times.

Ayva has decided that the difference in mean reading times is not an unusual occurrence. Support her decision using the results of the simulation. Explain your reasoning.

640 Elaina has decided to run the Buffalo half-marathon in May. She researched training plans on the Internet and is looking at two possible plans: Jillian's 12-week plan and Josh's 14 -week plan. The number of miles run per week for each plan is plotted below.

Which one of the plans follows an arithmetic pattern? Explain how you arrived at your answer. Write a recursive definition to represent the number of miles run each week for the duration of the plan you chose. Jillian's plan has an alternative if Elaina wanted to train instead for a full 26 -mile marathon. Week one would start at 13 miles and follow the same pattern for the half-marathon, but it would continue for 14 weeks. Write an explicit formula, in simplest form, to represent the number of miles run each week for the full-marathon training plan.

641 The height, $h(t)$ in cm , of a piston, is given by the equation $h(t)=12 \cos \left(\frac{\pi}{3} t\right)+8$, where t represents the number of seconds since the measurements began. Determine the average rate of change, in $\mathrm{cm} / \mathrm{sec}$, of the piston's height on the interval $1 \leq t \leq 2$. At what value(s) of t, to the nearest tenth of a second, does $h(t)=0$ in the interval $1 \leq t \leq 5$? Justify your answer.

642 Given $f(x)=3 x^{3}-4 x^{2}+2 x-1$ and $g(x)=x-4$, state the quotient and remainder of $\frac{f(x)}{g(x)}$, in the form $q(x)+\frac{r(x)}{g(x)}$. Is $x=4$ a root of $f(x)$? Explain your answer.

643 Solve the system of equations shown below algebraically.

$$
\begin{aligned}
& (x-3)^{2}+(y+2)^{2}=16 \\
& 2 x+2 y=10
\end{aligned}
$$

644 Stephen's Beverage Company is considering whether to produce a new brand of cola. The company will launch the product if at least 25% of cola drinkers will buy the product. Fifty cola drinkers are randomly selected to take a blind taste-test of products A, B, and the new product. Nine out of fifty participants preferred Stephen's new cola to products A and B. The company then devised a simulation based on the requirement that 25% of cola drinkers will buy the product. Each dot in the graph shown below represents the proportion of people who preferred Stephen's new product, each of sample size 50 , simulated 100 times.

Proportion Preferring Stephen's Product
Assume the set of data is approximately normal and the company wants to be 95% confident of its results. Does the sample proportion obtained from the blind taste-test, nine out of fifty, fall within the margin of error developed from the simulation? Justify your answer. The company decides to continue developing the product even though only nine out of fifty participants preferred its brand of cola in the taste-test. Describe how the simulation data could be used to support this decision.

645 Solve for x algebraically:
$\frac{1}{x-6}+\frac{x}{x-2}=\frac{4}{x^{2}-8 x+12}$

646 Graph the following function on the axes below.

$$
f(x)=\log _{3}(2-x)
$$

State the domain of f. State the equation of the asymptote.

647 The monthly high temperature (${ }^{\circ} \mathrm{F}$) in Buffalo, New York can be modeled by $B(m)=24.9 \sin (0.5 m-2.05)+55.25$, where m is the number of the month and January $=1$. Find the average rate of change in the monthly high temperature between June and October, to the nearest hundredth. Explain what this value represents in the given context.

648 To determine if the type of music played while taking a quiz has a relationship to results, 16 students were randomly assigned to either a room softly playing classical music or a room softly playing rap music. The results on the quiz were as follows:

Classical: 74, 83, 77, 77, 84, 82, 90, 89
Rap: $\quad 77,80,78,74,69,72,78,69$
Rap: $\quad 77,80,78,74,69,72,78,69$
John correctly rounded the difference of the means of his experimental groups as 7. How did John obtain this value and what does it represent in the given context? Justify your answer. To determine if there is any significance in this value, John rerandomized the 16 scores into two groups of 8 , calculated the difference of the means, and simulated this process 250 times as shown below.

Classical vs. Rap

Does the simulation support the theory that there may be a significant difference in quiz scores? Explain.

649 Solve the following system of equations algebraically for x, y, and z.

$$
\begin{aligned}
2 x+4 y-3 z & =12 \\
3 x-2 y+2 z & =-9 \\
-x+y-3 z & =0
\end{aligned}
$$

650 Solve the following system of equations algebraically for all values of x, y, and z :

$$
\begin{gathered}
x+3 y+5 z=45 \\
6 x-3 y+2 z=-10 \\
-2 x+3 y+8 z=72
\end{gathered}
$$

651 Juan and Filipe practice at the driving range before playing golf. The number of wins and corresponding practice times for each player are shown in the table below.

	Juan Wins	Felipe Wins
Short Practice Time	8	10
Long Practice Time	15	12

Given that the practice time was long, determine the exact probability that Filipe wins the next match. Determine whether or not the two events "Filipe wins" and "long practice time" are independent. Justify your answer.

652 Using the formula below, determine the monthly payment on a 5 -year car loan with a monthly percentage rate of 0.625% for a car with an original cost of $\$ 21,000$ and a $\$ 1000$ down payment, to the nearest cent.

$$
\begin{gathered}
P_{n}=P M T\left(\frac{1-(1+i)^{-n}}{i}\right) \\
P_{n}=\text { present amount borrowed } \\
n=\text { number of monthly pay periods } \\
P M T=\text { monthly payment } \\
i=\text { interest rate per month }
\end{gathered}
$$

The affordable monthly payment is $\$ 300$ for the same time period. Determine an appropriate down payment, to the nearest dollar.

653
When observed by researchers under a microscope, a smartphone screen contained approximately 11,000 bacteria per square inch. Bacteria, under normal conditions, double in population every 20 minutes.
a) Assuming an initial value of 11,000 bacteria, write a function, $p(t)$, that can be used to model the population of bacteria, p, on a smartphone screen, where t represents the time in minutes after it is first observed under a microscope.
b) Using $p(t)$ from part a, determine algebraically, to the nearest hundredth of a minute, the amount of time it would take for a smartphone screen that was not touched or cleaned to have a population of $1,000,000$ bacteria per square inch.

654 Monthly mortgage payments can be found using the formula below:

$$
\begin{gathered}
M=\frac{P\left(\frac{r}{12}\right)\left(1+\frac{r}{12}\right)^{n}}{\left(1+\frac{r}{12}\right)^{n}-1} \\
M=\text { monthly payment } \\
P=\text { amount borrowed } \\
r=\text { annual interest rate } \\
n=\text { number of monthly payments }
\end{gathered}
$$

The Banks family would like to borrow $\$ 120,000$ to purchase a home. They qualified for an annual interest rate of 4.8%. Algebraically determine the fewest number of whole years the Banks family would need to include in the mortgage agreement in order to have a monthly payment of no more than $\$ 720$.

655 Solve for all values of $p: \frac{3 p}{p-5}-\frac{2}{p+3}=\frac{p}{p+3}$

656 Solve algebraically for all values of x : $\sqrt{6-2 x}+x=2(x+15)-9$

657 After sitting out of the refrigerator for a while, a turkey at room temperature $\left(68^{\circ} \mathrm{F}\right)$ is placed into an oven at 8 a.m., when the oven temperature is $325^{\circ} \mathrm{F}$. Newton's Law of Heating explains that the temperature of the turkey will increase proportionally to the difference between the temperature of the turkey and the temperature of the oven, as given by the formula below:

$$
T=T_{a}+\left(T_{0}-T_{a}\right) e^{-k t}
$$

$T_{a}=$ the temperature surrounding the object
$T_{0}=$ the initial temperature of the object
$t=$ the time in hours
$T=$ the temperature of the object after t hours
$k=$ decay constant
The turkey reaches the temperature of approximately $100^{\circ} \mathrm{F}$ after 2 hours. Find the value of k, to the nearest thousandth, and write an equation to determine the temperature of the turkey after t hours. Determine the Fahrenheit temperature of the turkey, to the nearest degree, at 3 p.m.

658 During the summer, Adam saved $\$ 4000$ and Betty saved $\$ 3500$. Adam deposited his money in Bank A at an annual rate of 2.4% compounded monthly. Betty deposited her money in Bank B at an annual rate of 4% compounded quarterly. Write two functions that represent the value of each account after t years if no other deposits or withdrawals are made, where Adam's account value is represented by $A(t)$, and Betty's by $B(t)$. Using technology, determine, to the nearest tenth of a year, how long it will take for the two accounts to have the same amount of money in them. Justify your answer.

659 Given: $f(x)=2 x^{2}+x-3$ and $g(x)=x-1$
Express $f(x) \bullet g(x)-[f(x)+g(x)]$ as a polynomial in standard form.

660 Joette is playing a carnival game. To win a prize, one has to correctly guess which of five equally sized regions a spinner will land on, as shown in the diagram below.

She complains that the game is unfair because her favorite number, 2 , has only been spun once in ten times she played the game. State the proportion of 2's that were spun. State the theoretical probability of spinning a 2 . The simulation output below shows the results of simulating ten spins of a fair spinner, repeated 100 times.

Does the output indicate that the carnival game was unfair? Explain your answer.

661 Given $a(x)=x^{4}+2 x^{3}+4 x-10$ and $b(x)=x+2$, determine $\frac{a(x)}{b(x)}$ in the form $q(x)+\frac{r(x)}{b(x)}$. Is $b(x)$ a factor of $a(x)$? Explain.

Algebra II 4 Point Regents Exam Questions

 www.jmap.org662 a) On the axes below, sketch at least one cycle of a sine curve with an amplitude of 2 , a midline at $y=-\frac{3}{2}$, and a period of 2π.

b) Explain any differences between a sketch of $y=2 \sin \left(x-\frac{\pi}{3}\right)-\frac{3}{2}$ and the sketch from part a.

663 Solve the following system of equations algebraically for all values of a, b, and c.

$$
\begin{gathered}
a+4 b+6 c=23 \\
a+2 b+c=2 \\
6 b+2 c=a+14
\end{gathered}
$$

664 Evaluate $j(-1)$ given
$j(x)=2 x^{4}-x^{3}-35 x^{2}+16 x+48$. Explain what your answer tells you about $x+1$ as a factor.
Algebraically find the remaining zeros of $j(x)$.

665 Given $z(x)=6 x^{3}+b x^{2}-52 x+15, z(2)=35$, and $z(-5)=0$, algebraically determine all the zeros of $z(x)$.

666 Solve the following system of equations algebraically for all values of x, y, and z :

$$
\begin{aligned}
2 x+3 y-4 z & =-1 \\
x-2 y+5 z & =3 \\
-4 x+y+z & =16
\end{aligned}
$$

667 The graph of $y=f(x)$ is shown below. The function has a leading coefficient of 1 .

Write an equation for $f(x)$. The function g is formed by translating function f left 2 units. Write an equation for $g(x)$.

668 Algebraically solve for $x: 2 x=6+2 \sqrt{x-1}$

669 Seventy-two students are randomly divided into two equally-sized study groups. Each member of the first group (group 1) is to meet with a tutor after school twice each week for one hour. The second group (group 2), is given an online subscription to a tutorial account that they can access for a maximum of two hours each week. Students in both groups are given the same tests during the year. A summary of the two groups' final grades is shown below:

	Group 1	Group 2
$\overline{\mathrm{x}}$	80.16	83.8
S_{x}	6.9	5.2

Calculate the mean difference in the final grades (group 1 - group 2) and explain its meaning in the context of the problem. A simulation was conducted in which the students' final grades were rerandomized 500 times. The results are shown below.

Use the simulation to determine if there is a significant difference in the final grades. Explain your answer.

670 Two versions of a standardized test are given, an April version and a May version. The statistics for the April version show a mean score of 480 and a standard deviation of 24 . The statistics for the May version show a mean score of 510 and a standard deviation of 20 . Assume the scores are normally distributed. Joanne took the April version and scored in the interval 510-540. What is the probability, to the nearest ten thousandth, that a test paper selected at random from the April version scored in the same interval? Maria took the May version. In what interval must Maria score to claim she scored as well as Joanne?

671 a) Algebraically determine the roots, in simplest $a+b i$ form, to the equation below.

$$
x^{2}-2 x+7=4 x-10
$$

b) Consider the system of equations below.

$$
\begin{gathered}
y=x^{2}-2 x+7 \\
y=4 x-10
\end{gathered}
$$

The graph of this system confirms the solution from part a is imaginary. Explain why.

672 In order to decrease the percentage of its residents who drive to work, a large city launches a campaign to encourage people to use public transportation instead. Before starting the campaign, the city's Department of Transportation uses census data to estimate that 65% of its residents drive to work. The Department of Transportation conducts a simulation, shown below, run 400 times based on this estimate. Each dot represents the proportion of 200 randomly selected residents who drive to work.

Use the simulation results to construct a plausible interval containing the middle 95% of the data. Round your answer to the nearest hundredth. One year after launching the campaign, the Department of Transportation conducts a survey of 200 randomly selected city residents and finds that 122 of them drive to work. Should the department conclude that the city's campaign was effective? Use statistical evidence from the simulation to explain your answer.

673 Mary bought a pack of candy. The manufacturer claims that 30% of the candies manufactured are red. In her pack, 14 of the 60 candies are red. She ran a simulation of 300 samples, assuming the manufacturer is correct. The results are shown below.

Based on the simulation, determine the middle 95% of plausible values that the proportion of red candies in a pack is within. Based on the simulation, is it unusual that Mary's pack had 14 red candies out of a total of 60 ? Explain.

674 The table below gives air pressures in kPa at selected altitudes above sea level measured in kilometers.

\mathbf{x}	Altitude (km)	0	1	2	3	4	5
\mathbf{y}	Air Pressure (kPa)	101	90	79	70	62	54

Write an exponential regression equation that models these data rounding all values to the nearest thousandth. Use this equation to algebraically determine the altitude, to the nearest hundredth of a kilometer, when the air pressure is 29 kPa .

675 Write an explicit formula for a_{n}, the nth term of the recursively defined sequence below.

$$
\begin{aligned}
& a_{1}=x+1 \\
& a_{n}=x\left(a_{n-1}\right)
\end{aligned}
$$

For what values of x would $a_{n}=0$ when $n>1$?

676
Determine, to the nearest tenth of a year, how long it would take an investment to double at a $3 \frac{3}{4} \%$ interest rate, compounded continuously.

677 Determine an equation for the parabola with focus $(4,-1)$ and directrix $y=-5$. (Use of the grid below is optional.)

Algebra II 6 Point Regents Exam Questions

678 Titanium-44 is a radioactive isotope such that every 63 years, its mass decreases by half. For a sample of titanium- 44 with an initial mass of 100 grams, write a function that will give the mass of the sample remaining after any amount of time. Define all variables. Scientists sometimes use the average yearly decrease in mass for estimation purposes. Use the average yearly decrease in mass of the sample between year 0 and year 10 to predict the amount of the sample remaining after 40 years. Round your answer to the nearest tenth. Is the actual mass of the sample or the estimated mass greater after 40 years? Justify your answer.

679 Seth's parents gave him \$5000 to invest for his 16th birthday. He is considering two investment options. Option A will pay him 4.5\% interest compounded annually. Option B will pay him 4.6% compounded quarterly. Write a function of option A and option B that calculates the value of each account after n years. Seth plans to use the money after he graduates from college in 6 years. Determine how much more money option B will earn than option A to the nearest cent. Algebraically determine, to the nearest tenth of a year, how long it would take for option B to double Seth's initial investment.

680 A radioactive substance has a mass of 140 g at 3 p.m. and 100 g at 8 p.m. Write an equation in the form $A=A_{0}\left(\frac{1}{2}\right)^{\frac{t}{h}}$ that models this situation, where h is the constant representing the number of hours in the half-life, A_{0} is the initial mass, and A is the mass t hours after $3 \mathrm{p} . \mathrm{m}$. Using this equation, solve for h, to the nearest ten thousandth. Determine when the mass of the radioactive substance will be 40 g . Round your answer to the nearest tenth of an hour.

681 The value of a certain small passenger car based on its use in years is modeled by
$V(t)=28482.698(0.684)^{t}$, where $V(t)$ is the value in dollars and t is the time in years. Zach had to take out a loan to purchase the small passenger car. The function $Z(t)=22151.327(0.778)^{t}$, where $Z(t)$ is measured in dollars, and t is the time in years, models the unpaid amount of Zach's loan over time. Graph $V(t)$ and $Z(t)$ over the interval $0 \leq t \leq 5$, on the set of axes below.

State when $V(t)=Z(t)$, to the nearest hundredth, and interpret its meaning in the context of the problem. Zach takes out an insurance policy that requires him to pay a $\$ 3000$ deductible in case of a collision. Zach will cancel the collision policy when the value of his car equals his deductible. To the nearest year, how long will it take Zach to cancel this policy? Justify your answer.

The ocean tides near Carter Beach follow a repeating pattern over time, with the amount of time between each low and high tide remaining relatively constant. On a certain day, low tide occurred at 8:30 a.m. and high tide occurred at 3:00 p.m. At high tide, the water level was 12 inches above the average local sea level; at low tide it was 12 inches below the average local sea level. Assume that high tide and low tide are the maximum and minimum water levels each day, respectively. Write a cosine function of the form $f(t)=A \cos (B t)$, where A and B are real numbers, that models the water level, $f(t)$, in inches above or below the average Carter Beach sea level, as a function of the time measured in t hours since 8:30 a.m. On the grid below, graph one cycle of this function.

People who fish in Carter Beach know that a certain species of fish is most plentiful when the water level is increasing. Explain whether you would recommend fishing for this species at 7:30 p.m. or 10:30 p.m. using evidence from the given context.

683 Griffin is riding his bike down the street in Churchville, N.Y. at a constant speed, when a nail gets caught in one of his tires. The height of the nail above the ground, in inches, can be represented by the trigonometric function $f(t)=-13 \cos (0.8 \pi t)+13$, where t represents the time (in seconds) since the nail first became caught in the tire. Determine the period of $f(t)$. Interpret what the period represents in this context. On the grid below, graph at least one cycle of $f(t)$ that includes the y-intercept of the function.

Does the height of the nail ever reach 30 inches above the ground? Justify your answer.

684 Website popularity ratings are often determined using models that incorporate the number of visits per week a website receives. One model for ranking websites is $P(x)=\log (x-4)$, where x is the number of visits per week in thousands and $P(x)$ is the website's popularity rating. According to this model, if a website is visited 16,000 times in one week, what is its popularity rating, rounded to the nearest tenth? Graph $y=P(x)$ on the axes below.

An alternative rating model is represented by $R(x)=\frac{1}{2} x-6$, where x is the number of visits per week in thousands. Graph $R(x)$ on the same set of axes. For what number of weekly visits will the two models provide the same rating?

685 The speed of a tidal wave, s, in hundreds of miles per hour, can be modeled by the equation $s=\sqrt{t}-2 t+6$, where t represents the time from its origin in hours. Algebraically determine the time when $s=0$. How much faster was the tidal wave traveling after 1 hour than 3 hours, to the nearest mile per hour? Justify your answer.

686 Drugs break down in the human body at different rates and therefore must be prescribed by doctors carefully to prevent complications, such as overdosing. The breakdown of a drug is represented by the function $N(t)=N_{0}(e)^{-r t}$, where $N(t)$ is the amount left in the body, N_{0} is the initial dosage, r is the decay rate, and t is time in hours. Patient $A, A(t)$, is given 800 milligrams of a drug with a decay rate of 0.347 . Patient $B, B(t)$, is given 400 milligrams of another drug with a decay rate of 0.231 . Write two functions, $A(t)$ and $B(t)$, to represent the breakdown of the respective drug given to each patient. Graph each function on the set of axes below.

To the nearest hour, t, when does the amount of the given drug remaining in patient B begin to exceed the amount of the given drug remaining in patient A ? The doctor will allow patient A to take another 800 milligram dose of the drug once only 15% of the original dose is left in the body. Determine, to the nearest tenth of an hour, how long patient A will have to wait to take another 800 milligram dose of the drug.

687 The volume of air in an average lung during breathing can be modeled by the graph below.

Using the graph, write an equation for $N(t)$, in the form $N(t)=A \sin (B t)+C$. That same lung, when engaged in exercise, has a volume that can be modeled by $E(t)=2000 \sin (\pi t)+3200$, where $E(t)$ is volume in mL and t is time in seconds. Graph at least one cycle of $E(t)$ on the same grid as $N(t)$. How many times during the 5-second interval will $N(t)=E(t)$?

688 A manufacturer of sweatshirts finds that profits and costs fluctuate depending on the number of products created. Creating more products doesn't always increase profits because it requires additional costs, such as building a larger facility or hiring more workers. The manufacturer determines the profit, $p(x)$, in thousands of dollars, as a function of the number of sweatshirts sold, x, in thousands. This function, p, is given below.

$$
p(x)=-x^{3}+11 x^{2}-7 x-69
$$

Graph $y=p(x)$, over the interval $0 \leq x \leq 9$, on the set of axes below.

Over the given interval, state the coordinates of the maximum of p and round all values to the nearest integer. Explain what this point represents in terms of the number of sweatshirts sold and profit. Determine how many sweatshirts, to the nearest whole sweatshirt, the manufacturer would need to produce in order to first make a positive profit. Justify your answer.

689 Sarah is fighting a sinus infection. Her doctor prescribed a nasal spray and an antibiotic to fight the infection. The active ingredients, in milligrams, remaining in the bloodstream from the nasal spray, $n(t)$, and the antibiotic, $a(t)$, are modeled in the functions below, where t is the time in hours since the medications were taken.

$$
\begin{aligned}
& n(t)=\frac{t+1}{t+5}+\frac{18}{t^{2}+8 t+15} \\
& a(t)=\frac{9}{t+3}
\end{aligned}
$$

Determine which drug is made with a greater initial amount of active ingredient. Justify your answer. Sarah's doctor told her to take both drugs at the same time. Determine algebraically the number of hours after taking the medications when both medications will have the same amount of active ingredient remaining in her bloodstream.

690 The Manford family started savings accounts for their twins, Abby and Brett, on the day they were born. They invested $\$ 8000$ in an account for each child. Abby's account pays 4.2% annual interest compounded quarterly. Brett's account pays 3.9\% annual interest compounded continuously. Write a function, $A(t)$, for Abby's account and a function, $B(t)$, for Brett's account that calculates the value of each account after t years. Determine who will have more money in their account when the twins turn 18 years old, and find the difference in the amounts in the accounts to the nearest cent. Algebraically determine, to the nearest tenth of a year, how long it takes for Brett's account to triple in value.

691 Tony is evaluating his retirement savings. He currently has $\$ 318,000$ in his account, which earns an interest rate of 7% compounded annually. He wants to determine how much he will have in the account in the future, even if he makes no additional contributions to the account. Write a function, $A(t)$, to represent the amount of money that will be in his account in t years. Graph $A(t)$ where $0 \leq t \leq 20$ on the set of axes below.

Tony's goal is to save $\$ 1,000,000$. Determine algebraically, to the nearest year, how many years it will take for him to achieve his goal. Explain how your graph of $A(t)$ confirms your answer.

692 Objects cool at different rates based on the formula below.
$T=\left(T_{0}-T_{R}\right) e^{-r t}+T_{R}$
T_{0} : initial temperature
T_{R} : room temperature
r : rate of cooling of the object
t : time in minutes that the object cools to a temperature, T
Mark makes T-shirts using a hot press to transfer designs to the shirts. He removes a shirt from a press that heats the shirt to $400^{\circ} \mathrm{F}$. The rate of cooling for the shirt is 0.0735 and the room temperature is $75^{\circ} \mathrm{F}$. Using this information, write an equation for the temperature of the shirt, T, after t minutes. Use the equation to find the temperature of the shirt, to the nearest degree, after five minutes. At the same time, Mark's friend Jeanine removes a hoodie from a press that heats the hoodie to $450^{\circ} \mathrm{F}$. After eight minutes, the hoodie measured $270^{\circ} \mathrm{F}$. The room temperature is still $75^{\circ} \mathrm{F}$. Determine the rate of cooling of the hoodie, to the nearest ten thousandth. The T-shirt and hoodie were removed at the same time. Determine when the temperature will be the same, to the nearest minute.

693 A technology company is comparing two plans for speeding up its technical support time. Plan A can be modeled by the function $A(x)=15.7(0.98)^{x}$ and plan B can be modeled by the function $B(x)=11(0.99)^{x}$ where x is the number of customer service representatives employed by the company and $A(x)$ and $B(x)$ represent the average wait time, in minutes, of each customer. Graph $A(x)$ and $B(x)$ in the interval $0 \leq x \leq 100$ on the set of axes below.

To the nearest integer, solve the equation $A(x)=B(x)$. Determine, to the nearest minute, $B(100)-A(100)$. Explain what this value represents in the given context.

Algebra II 6 Point Regents Exam Questions

www.jmap.org
694 The resting blood pressure of an adult patient can be modeled by the function P below, where $P(t)$ is the pressure in millimeters of mercury after time t in seconds.

$$
P(t)=24 \cos (3 \pi t)+120
$$

On the set of axes below, graph $y=P(t)$ over the domain $0 \leq t \leq 2$.

Determine the period of P. Explain what this value represents in the given context. Normal resting blood pressure for an adult is 120 over 80 . This means that the blood pressure oscillates between a maximum of 120 and a minimum of 80. Adults with high blood pressure (above 140 over 90) and adults with low blood pressure (below 90 over 60) may be at risk for health disorders. Classify the given patient's blood pressure as low, normal, or high and explain your reasoning.

695 The Beaufort Wind Scale was devised by British Rear Admiral Sir Francis Beaufort, in 1805 based upon observations of the effects of the wind. Beaufort numbers, B, are determined by the equation $B=1.69 \sqrt{s+4.45}-3.49$, where s is the speed of the wind in mph , and B is rounded to the nearest integer from 0 to 12 .

Beaufort Wind Scale	
Beaufort Number	Force of Wind
0	Calm
1	Light air
2	Light breeze
3	Gentle breeze
4	Moderate breeze
5	Fresh breeze
6	Steady breeze
7	Moderate gale
8	Fresh gale
9	Strong gale
10	Whole gale
11	Storm
12	Hurricane

Using the table above, classify the force of wind at a speed of 30 mph . Justify your answer. In 1946, the scale was extended to accommodate strong hurricanes. A strong hurricane received a B value of exactly 15 .
Algebraically determine the value of s, to the nearest $m p h$. Any B values that round to 10 receive a Beaufort number of 10 . Using technology, find an approximate range of wind speeds, to the nearest mph , associated with a Beaufort number of 10 .

696 The population, in millions of people, of the United States can be represented by the recursive formula below, where a_{0} represents the population in 1910 and n represents the number of years since 1910.

$$
\begin{aligned}
& a_{0}=92.2 \\
& a_{n}=1.015 a_{n-1}
\end{aligned}
$$

Identify the percentage of the annual rate of growth from the equation $a_{n}=1.015 a_{n-1}$. Write an exponential function, P, where $P(t)$ represents the United States population in millions of people, and t is the number of years since 1910. According to this model, determine algebraically the number of years it takes for the population of the United States to be approximately 300 million people. Round your answer to the nearest year.

Algebra II 6 Point Regents Exam Questions

 www.jmap.org697 A major car company analyzes its revenue, $R(x)$, and costs $C(x)$, in millions of dollars over a fifteen-year period. The company represents its revenue and costs as a function of time, in years, x, using the given functions.

$$
\begin{gathered}
R(x)=550 x^{3}-12,000 x^{2}+83,000 x+7000 \\
C(x)=880 x^{3}-21,000 x^{2}+150,000 x-160,000
\end{gathered}
$$

The company's profits can be represented as the difference between its revenue and costs. Write the profit function, $P(x)$, as a polynomial in standard form. Graph $y=P(x)$ on the set of axes below over the domain $2 \leq x \leq 16$.

Over the given domain, state when the company was the least profitable and the most profitable, to the nearest year. Explain how you determined your answer.

Algebra II Multiple Choice Regents Exam Questions

Answer Section

1 ANS: 2

REF: 061705aii NAT: A.REI.D. 11 TOP: Other Systems
2 ANS: 3 REF: 061710aii NAT: S.IC.A. 2 TOP: Analysis of Data
3 ANS: 4

REF: 061622aii NAT: A.REI.D. 11 TOP: Other Systems
4 ANS: 2

$$
(2-y i)(2-y i)=4-4 y i+y^{2} i^{2}=-y^{2}-4 y i+4
$$

REF: 061603aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers

5 ANS: 2

REF: 061609aii NAT: S.ID.A. 4 TOP: Normal Distributions
KEY: percent

6 ANS: 4
$x(x+7)\left[\frac{3 x+25}{x+7}-5=\frac{3}{x}\right]$
$x(3 x+25)-5 x(x+7)=3(x+7)$
$3 x^{2}+25 x-5 x^{2}-35 x=3 x+21$
$2 x^{2}+13 x+21=0$
$(2 x+7)(x+3)=0$
$x=-\frac{7}{2},-3$
REF: fall1501aii NAT: A.REI.A. 2 TOP: Solving Rationals
KEY: rational solutions
7 ANS: 3
REF: 012401aii
NAT: S.IC.B. 3 TOP: Analysis of Data
8 ANS: 1

$$
\cos \theta=-\frac{6}{10}=-\frac{3}{5}
$$

REF: 061617aii NAT: F.TF.A. 2 TOP: Determining Trigonometric Functions
KEY: extension to reals
9 ANS: 2

-4| 1 | -11 | 16 | 84 |
| ---: | ---: | ---: | ---: |
| | -4 | 60 | -304 |
| 1 | -15 | 76 | |

Since there is a remainder when the cubic is divided by $x+4$, this binomial is not a factor.
REF: 081720aii NAT: A.APR.B. 2 TOP: Remainder and Factor Theorems
10 ANS: 2
Combining (1) and (3): $-6 c=-18$ Combining (1) and (2): $5 a+3 c=-1 \quad$ Using (3): $-(-2)-5 b-5(3)=2$

$$
c=3 \quad \begin{aligned}
5 a+3(3) & =-1 \\
5 a & =-10 \\
a & =-2
\end{aligned}
$$

$$
2-5 b-15=2
$$

REF: 081623aii NAT: A.REI.C. 6 TOP: Solving Linear Systems
KEY: three variables

11 ANS: 2
$i=\frac{6.24 \%}{12}=.52 \% \quad R=\frac{(18000)(.52 \%)}{1-(1+.52 \%)^{-12 \cdot 6}} \approx 300.36$
REF: 012420aii NAT: F.IF.B. 4 TOP: Evaluating Exponential Expressions
12 ANS: 2 REF: 011720aii NAT: A.APR.B. 2 TOP: Remainder and Factor Theorems
13 ANS: 1
A reference triangle can be sketched using the coordinates $(-4,3)$ in the second quadrant to find the value of $\sin \theta$.

REF: spr1503aii NAT: F.TF.A. 2 TOP: Determining Trigonometric Functions
KEY: extension to reals
14
ANS: 4
REF: 061716aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents
KEY: variables
15 ANS: 1

$$
(x+3)^{2}+(2 x-4)^{2}=8 \quad b^{2}-4 a c
$$

$x^{2}+6 x+9+4 x^{2}-16 x+16=8 \quad 100-4(5)(17)<0$

$$
5 x^{2}-10 x+17=0
$$

REF: 081719aii NAT: A.REI.C. 7 TOP: Quadratic-Linear Systems
16 ANS: 4
The vertex is $(2,-1)$ and $p=2 . y=-\frac{1}{4(2)}(x-2)^{2}-1$
REF: 081619aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions
17 ANS: 1
$d=18 ; r= \pm \frac{5}{4}$
REF: 011714aii NAT: F.BF.A. 1 TOP: Sequences KEY: explicit

18 ANS: 4
$4 x^{2}=-98$
$x^{2}=-\frac{98}{4}$
$x^{2}=-\frac{49}{2}$
$x= \pm \sqrt{-\frac{49}{2}}= \pm \frac{7 i}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}= \pm \frac{7 i \sqrt{2}}{2}$
REF: 061707aii NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: complex solutions | taking square roots
19 ANS: 2 REF: 081717aii NAT: S.IC.B. 3 TOP: Analysis of Data
KEY: type
20 ANS: 4
$\frac{-3 x^{2}-5 x+2}{x^{3}+2 x^{2}}=\frac{(-3 x+1)(x+2)}{x^{2}(x+2)}=\frac{-3 x}{x^{2}}+\frac{1}{x^{2}}=-3 x^{-1}+x^{-2}$
REF: 061723aii NAT: A.APR.D. 6 TOP: Expressions with Negative Exponents
KEY: variables
21 ANS: 4
$m^{5}+m^{3}-6 m=m\left(m^{4}+m^{2}-6\right)=m\left(m^{2}+3\right)\left(m^{2}-2\right)$
REF: 011703aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials
KEY: higher power
22 ANS: 1

REF: 061618aii NAT: F.IF.C. 7 TOP: Graphing Logarithmic Functions
23 ANS: 3
$f(x)=-f(x)$, so $f(x)$ is odd. $g(-x) \neq g(x)$, so $g(x)$ is not even. $g(-x) \neq-g(x)$, so $g(x)$ is not odd. $h(-x)=h(x)$, so $h(x)$ is even.

REF: fall1502aii NAT: F.BF.B. 3 TOP: Even and Odd Functions

24 ANS: 3
$\sqrt{56-x}=x \quad-8$ is extraneous.

$$
\begin{aligned}
56-x & =x^{2} \\
0 & =x^{2}+x-56 \\
0 & =(x+8)(x-7) \\
x & =7
\end{aligned}
$$

REF: 061605aii NAT: A.REI.A. 2 TOP: Solving Radicals
KEY: extraneous solutions
25 ANS: 3
(3) repeats 3 times over 2π.

REF: 011722aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions
KEY: recognize | bimodalgraph
26 ANS: 2

$$
\begin{aligned}
x & =\frac{y+1}{y-2} \\
x y-2 x & =y+1 \\
x y-y & =2 x+1 \\
y(x-1) & =2 x+1 \\
y & =\frac{2 x+1}{x-1}
\end{aligned}
$$

REF: 081714aii NAT: F.BF.B. 4 TOP: Inverse of Functions
KEY: rational
27 ANS: 2
$M E=\left(z \sqrt{\frac{p(1-p)}{n}}\right)=\left(1.96 \sqrt{\frac{(0.55)(0.45)}{900}}\right) \approx 0.03$ or $\frac{1}{\sqrt{900}} \approx 0.03$

	REF: 081612aii	NAT: S.IC.B.4	TOP: Analysis of Data		
28	ANS: 4	REF: 081622aii	NAT: F.BF.A.1	TOP: Modeling Exponential Functions	
29	ANS: 2	REF: 011709aii	NAT: S.IC.B.5	TOP: Analysis of Data	
30	ANS: 3	REF: 012404aii	NAT: A.APR.B.3	TOP: Express Exponentials as Logarithms	
31	ANS: 4	REF: 061601aii	NAT: N.RN.A.2	TOP: Radicals and Rational Exponents	
	KEY: variables				
32	ANS: 2				

$\frac{212}{1334} \approx .16 M E=\left(z \sqrt{\frac{p(1-p)}{n}}\right)=\left(1.96 \sqrt{\frac{(0.16)(0.84)}{1334}}\right) \approx 0.02$ or $\frac{1}{\sqrt{1334}} \approx .027$
REF: 081716aii NAT: S.IC.B. 4 TOP: Analysis of Data

33 ANS: 3

$$
\begin{gathered}
2 d\left(d^{3}+3 d^{2}-9 d-27\right) \\
2 d\left(d^{2}(d+3)-9(d+3)\right) \\
2 d\left(d^{2}-9\right)(d+3) \\
2 d(d+3)(d-3)(d+3) \\
2 d(d+3)^{2}(d-3)
\end{gathered}
$$

REF: 081615aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials
KEY: factoring by grouping
34 ANS: 1 REF: 011704aii NAT: F.TF.C. 8 TOP: Proving Trigonometric Identities KEY: basic
35 ANS: 3
$r=\frac{-2 \sqrt{3}}{\sqrt{6}}=\frac{-2}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{-2 \sqrt{2}}{2}=-\sqrt{2} \quad a_{7}=\sqrt{6}(-\sqrt{2})^{7-1}=\sqrt{6}(-\sqrt{2})^{6}=\sqrt{6} \cdot 2^{3}=8 \sqrt{6}$

REF: 012410aii NAT: F.BF.A. 1 TOP: Sequences KEY: explicit
36 ANS: 3

$$
-33 t^{2}+360 t=700+5 t
$$

$-33 t^{2}+355 t-700=0$

$$
t=\frac{-355 \pm \sqrt{355^{2}-4(-33)(-700)}}{2(-33)} \approx 3,8
$$

REF: 081606aii NAT: A.REI.D. 11 TOP: Quadratic-Linear Systems
37 ANS: 4
$4\left(x^{2}-6 x+9\right)+4\left(y^{2}+18 y+81\right)=76+36+324$

$$
4(x-3)^{2}+4(y+9)^{2}=436
$$

REF: 061619aii NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
38 ANS: 1

$$
\begin{aligned}
x^{2}+2 x-8 & =0 \\
(x+4)(x-2) & =0 \\
x & =-4,2
\end{aligned}
$$

REF: 081701aii NAT: A.APR.D. 6 TOP: Undefined Rationals
39 ANS: 3
$0.75^{\frac{1}{10}} \approx .9716$
REF: 061713aii NAT: A.SSE.B. 3 TOP: Modeling Exponential Functions

40 ANS: 4
$\left(\frac{-54 x^{9}}{y^{4}}\right)^{\frac{2}{3}}=\frac{(2 \cdot-27)^{\frac{2}{3}} x^{\frac{18}{3}}}{y^{\frac{8}{3}}}=\frac{2^{\frac{2}{3}} \cdot 9 x^{6}}{y^{2} \cdot y^{\frac{2}{3}}}=\frac{9 x^{63} \sqrt{4}}{y^{2} \sqrt[3]{y^{2}}}$
REF: 081723aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents
KEY: variables
41 ANS: 1
$\frac{2 x}{x-2}\left(\frac{x}{x}\right)-\frac{11}{x}\left(\frac{x-2}{x-2}\right)=\frac{8}{x^{2}-2 x}$

$$
2 x^{2}-11 x+22=8
$$

$$
2 x^{2}-11 x+14=0
$$

$$
(2 x-7)(x-2)=0
$$

$$
x=\frac{7}{2}, 2
$$

REF: 061719aii NAT: A.REI.A. 2 TOP: Solving Rationals
42 ANS: 1 REF: 012405aii NAT: A.APR.B. 3 TOP: Graphing Polynomial Functions
43 ANS: 1
$\frac{f(x)}{g(x)}=\frac{2 x^{2}+7 x-15}{3-2 x}=\frac{(2 x-3)(x+5)}{-(2 x-3)}=\frac{x+5}{-1}=-x-5$
REF: 012412aii NAT: F.BF.A. 1 TOP: Operations with Functions
44
ANS: 1
$\frac{157}{25+47+157}$
REF: 081607aii NAT: S.CP.A. 4 TOP: Conditional Probability
45 ANS: 1 REF: 061701aii NAT: A.APR.B. 3 TOP: Graphing Polynomial Functions
normCar(1440, 1465, 1450,8.5) 0 B4149

REF: 081604aii NAT: S.ID.A. 4 TOP: Normal Distributions
KEY: probability
47
ANS: 2
The 2010 population is 110 million.
REF: 061718aii NAT: F.LE.B. 5 TOP: Modeling Exponential Functions

48 ANS: 3 REF: 012418aii NAT: S.IC.B. 6 TOP: Analysis of Data
49 ANS: 1

REF: fall1503aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: division
50
ANS: 3

REF: 012406aii NAT: A.REI.D. 11 TOP: Other Systems
51 ANS: 3
Self selection causes bias.
REF: 061703aii NAT: S.IC.B. 3 TOP: Analysis of Data
KEY: bias
52 ANS: 3
REF: 081618aii
NAT: F.BF.A. 2 TOP: Sequences
53 ANS: 4
$496 \pm 2(115)$
REF: 011718aii NAT: S.ID.A. 4 TOP: Normal Distributions KEY: interval

54 ANS: 3

$$
\begin{gathered}
-2\left(-\frac{1}{2} x^{2}=-6 x+20\right) \\
x^{2}-12 x=-40 \\
x^{2}-12 x+36=-40+36 \\
(x-6)^{2}=-4 \\
x-6= \pm 2 i \\
x=6 \pm 2 i
\end{gathered}
$$

REF: fall1504aii NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: complex solutions | completing the square
55 ANS: 1
Distance from the focus to the directrix is 2 , so $p=1$. Vertex is $(-3,1) . y=\frac{1}{4(1)}(x+3)^{2}+1$
REF: 012409aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions
56 ANS: 1

2 | 1 | 0 | -4 | -4 | 8 |
| ---: | ---: | ---: | ---: | ---: |
| | 2 | 4 | 0 | -8 |
| 1 | 2 | 0 | -4 | 0 |

Since there is no remainder when the quartic is divided by $x-2$, this binomial is a factor.
REF: 061711aii NAT: A.APR.B. 2 TOP: Remainder and Factor Theorems
57 ANS: 3
REF: 061602aii NAT: A.CED.A. 1 TOP: Modeling Rationals
58 ANS: 4
The vertex is $(1,0)$ and $p=2 . y=\frac{1}{4(2)}(x-1)^{2}+0$

REF: 061717aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions
59 ANS: 1 REF: 081722aii NAT: S.IC.B.6 TOP: Analysis of Data
60 ANS: 4
Bar Harbor Phoenix

	Bar Harbor	Phoenix
Minimum	31.386	66.491
Midline	55.3	86.729
Maximum	79.214	106.967
Range	47.828	40.476

REF: 061715aii NAT: F.IF.B. 4 TOP: Graphing Trigonometric Functions
KEY: maximum/minimum
61 ANS: 2
REF: 012402aii NAT: A.REI.B. 4 TOP: Using the Discriminant
KEY: determine nature of roots given equation

62 ANS: 2
$\cos \theta= \pm \sqrt{1-\left(\frac{-\sqrt{2}}{5}\right)^{2}}= \pm \sqrt{\frac{25}{25}-\frac{2}{25}}= \pm \frac{\sqrt{23}}{5}$
REF: 061712aii NAT: F.TF.C. 8 TOP: Determining Trigonometric Functions
63 ANS: 3 REF: 011708aii NAT: F.BF.B. 4 TOP: Inverse of Functions
KEY: exponential
64 ANS: 1
$x=\frac{-3 \pm \sqrt{3^{2}-4(2)(2)}}{2(2)}=\frac{-3 \pm \sqrt{-7}}{4}=-\frac{3}{4} \pm \frac{i \sqrt{7}}{4}$
REF: 061612aii NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: complex solutions | quadratic formula
65 ANS: 4 REF: 081718aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions
KEY: amplitude
66 ANS: 3

$$
H(t) \text { is at a minimum at } 70(-1)+80=10
$$

REF: 061613aii NAT: F.IF.B. 4 TOP: Graphing Trigonometric Functions
KEY: maximum/minimum
67 ANS: 2
REF: 061620aii
NAT: F.IF.B. 4 TOP: Graphing Polynomial Functions
68 ANS: 2
REF: 061724aii NAT: A.SSE.B. 4 TOP: Series
KEY: geometric
69 ANS: 3
$x^{2}+2 x+1=-5+1$

$$
\begin{aligned}
(x+1)^{2} & =-4 \\
x+1 & = \pm 2 i \\
x & =-1 \pm 2 i
\end{aligned}
$$

REF: 081703aii NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: complex solutions | completing the square
REF: 081610aii
NAT: F.IF.B. 4
TOP: Graphing Trigonometric Functions
KEY: increasing/decreasing

72 ANS: 3
$\log _{0.8}\left(\frac{V}{17000}\right)=t \quad \frac{17,000(0.8)^{3}-17,000(0.8)^{1}}{3-1} \approx-2450$

$$
\begin{aligned}
0.8^{t} & =\frac{V}{17000} \\
V & =17000(0.8)^{t}
\end{aligned}
$$

REF: 081709aii NAT: F.IF.B. 6 TOP: Rate of Change
73 ANS: 1
The graph of $y=\sin x$ is unchanged when rotated 180° about the origin.
REF: 081614aii NAT: F.BF.B. 3 TOP: Even and Odd Functions
74 ANS: 2

$$
\begin{array}{rlrl}
\sqrt{x+14} & =\sqrt{2 x+5}+1 & \sqrt{22+14}-\sqrt{2(22)+5}=1 \\
x+14 & =2 x+5+2 \sqrt{2 x+5}+1 & 6-7 & \neq 1 \\
-x+8 & =2 \sqrt{2 x+5} &
\end{array}
$$

$$
x^{2}-16 x+64=8 x+20
$$

$$
x^{2}-24 x+44=0
$$

$$
(x-22)(x-2)=0
$$

$$
x=2,22
$$

REF: 081704aii NAT: A.REI.A. 2 TOP: Solving Radicals
KEY: advanced
75 ANS: 3
$\frac{f(7)-f(-7)}{7--7}=\frac{=2^{-0.25(7)} \cdot \sin \left(\frac{\pi}{2}(7)\right)-2^{-0.25(-7)} \cdot \sin \left(\frac{\pi}{2}(-7)\right)}{14} \approx-0.26$
REF: 061721aii NAT: F.IF.B. 6 TOP: Rate of Change
76 ANS: 4
(1) $\frac{B(60)-B(10)}{60-10} \approx 28 \%$ (2) $\frac{B(69)-B(19)}{69-19} \approx 33 \%$ (3) $\frac{B(72)-B(36)}{72-36} \approx 38 \%$ (4) $\frac{B(73)-B(60)}{73-60} \approx 46 \%$

REF: 011721aii NAT: F.IF.B. 6 TOP: Rate of Change
ANS: 3
$1.0525^{\frac{1}{12}} \approx 1.00427$
REF: 061621aii NAT: F.BF.A. 1 TOP: Modeling Exponential Functions

78 ANS: 1
$P(28)=5(2)^{\frac{98}{28}} \approx 56$
REF: 011702aii NAT: F.LE.A. 2 TOP: Modeling Exponential Functions
79 ANS: 4
$(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}$
REF: 012417aii NAT: A.APR.C. 4 TOP: Polynomial Identities
80 ANS: 2
$x(30-0.01 x)-\left(0.15 x^{3}+0.01 x^{2}+2 x+120\right)=30 x-0.01 x^{2}-0.15 x^{3}-0.01 x^{2}-2 x-120$ $=-0.15 x^{3}-0.02 x^{2}+28 x-120$

REF: 061709aii NAT: F.BF.A. 1 TOP: Operations with Functions
81 ANS: 1
The zeros of the polynomial are at $-b$, and c. The sketch of a polynomial of degree 3 with a negative leading coefficient should have end behavior showing as x goes to negative infinity, $f(x)$ goes to positive infinity. The multiplicities of the roots are correctly represented in the graph.

REF: spr1501aii NAT: A.APR.B. 3 TOP: Graphing Polynomial Functions
KEY: bimodalgraph
82 ANS: 4
The scenario represents a decreasing geometric sequence with a common ratio of 0.80 .
REF: 061610aii NAT: F.BF.A. 1 TOP: Sequences KEY: recursive
83 ANS: 2

REF: 011716aii NAT: A.REI.D. 11 TOP: Other Systems
84 ANS: 4
$(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \neq x^{3}+3 x y+y^{3}$
REF: 081620aii NAT: A.APR.C. 4 TOP: Polynomial Identities

85 ANS: 3
$\frac{1}{J}=\frac{1}{F}-\frac{1}{W}$
$\frac{1}{J}=\frac{W-F}{F W}$
$J=\frac{F W}{W-F}$
REF: 081617aii NAT: A.REI.A. 2 TOP: Solving Rationals
KEY: rational solutions
86 ANS: 1
The car lost approximately 19% of its value each year.
REF: 081613aii NAT: F.LE.B. 5 TOP: Modeling Exponential Functions
87 ANS: 4
$d=32(.8)^{b-1} S_{n}=\frac{32-32(.8)^{12}}{1-.8} \approx 149$
REF: 081721aii NAT: A.SSE.B. 4 TOP: Series KEY: geometric
88 ANS: 1
REF: 081609aii NAT: F.BF.B. 6
TOP: Sigma Notation
KEY: represent
89 ANS: 2
The vertex of the parabola is $(0,0)$. The distance, p, between the vertex and the focus or the vertex and the directrix is 1. $y=\frac{-1}{4 p}(x-h)^{2}+k$

$$
\begin{aligned}
& y=\frac{-1}{4(1)}(x-0)^{2}+0 \\
& y=-\frac{1}{4} x^{2}
\end{aligned}
$$

REF: 081706aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions
90 ANS: 1
$\cos \theta=-\frac{3}{5} ;$ sec $\theta=-\frac{5}{3}$
REF: 012421aii NAT: F.TF.C. 8 TOP: Determining Trigonometric Functions
91 ANS: 4 REF: 081708aii NAT: A.APR.B. 3 TOP: Solving Polynomial Equations

92 ANS: 4

$$
\begin{aligned}
y=g(x)=(x-2)^{2} \quad(x-2)^{2} & =3 x-2 \quad y=3(6)-2=16 \\
x^{2}-4 x+4 & =3 x-2 \quad y=3(1)-2=1 \\
x^{2}-7 x+6 & =0 \\
(x-6)(x-1) & =0 \\
x & =6,1
\end{aligned}
$$

REF: 011705aii NAT: A.REI.C. 7 TOP: Quadratic-Linear Systems
93 ANS: 3 REF: 011710aii NAT: F.BF.A. 1 TOP: Operations with Functions
94 ANS: 3

$$
\begin{gathered}
\left(x^{2}-49\right)\left(\frac{7}{x+7}+\frac{4 x}{x-7}=\frac{3 x+7}{x-7}\right) \\
7(x-7)+4 x(x+7)=(3 x+7)(x+7) \\
7 x-49+4 x^{2}+28 x=3 x^{2}+21 x+7 x+49 \\
4 x^{2}+35 x-49=3 x^{2}+28 x+49 \\
x^{2}+7 x-98=0 \\
(x+14)(x-7)=0 \\
x=-14,7
\end{gathered}
$$

REF: 012422aii NAT: A.REI.A. 2 TOP: Solving Rationals
95 ANS: 2
$\begin{array}{llllll}3 & 1 & -1 & -21 & 45 & 0\end{array}$

3	6	-45	0

$x^{3}+2 x^{2}-15 x=0$
$x\left(x^{2}+2 x-15\right)=0$
$x(x+5)(x-3)=0$

$$
x=0,-5,3
$$

REF: 012403aii NAT: A.APR.B. 3 TOP: Solving Polynomial Equations
96 ANS: 1

$$
\begin{aligned}
\frac{A}{P} & =e^{r t} \\
0.42 & =e^{r t} \\
\ln 0.42 & =\ln e^{r t} \\
-0.87 & \approx r t
\end{aligned}
$$

REF: 011723aii NAT: F.BF.A. 1 TOP: Modeling Exponential Functions

97 ANS: 4
$F=325-185 e^{-0.4(0)}=325-185=140$
REF: 012415aii NAT: F.IF.B. 4 TOP: Evaluating Exponential Expressions
98 ANS: 3
$x^{2}+6 x+9=-10+9$

$$
\begin{aligned}
(x+3)^{2} & =-1 \\
x+3 & = \pm i \\
x & =-3 \pm i
\end{aligned}
$$

REF: 012416aii NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: complex solutions | completing the square
99 ANS: 4 REF: 081624aii NAT: F.BF.A. 2 TOP: Sequences
100 ANS: 4
If $1-i$ is one solution, the other is $1+i . \quad(x-(1-i))(x-(1+i))=0$
$x^{2}-x-i x-x+i x+\left(1-i^{2}\right)=0$

$$
x^{2}-2 x+2=0
$$

REF: 081601aii NAT: A.REI.B. 4 TOP: Complex Conjugate Root Theorem
ANS: 4
period $=\frac{2 \pi}{B}$
$\frac{1}{60}=\frac{2 \pi}{B}$
$B=120 \pi$
REF: 061624aii NAT: F.TF.B. 5 TOP: Modeling Trigonometric Functions
102 ANS: 4
The maximum volume of $p(x)=-(x+2)(x-10)(x-14)$ is about 56 , at $x=12.1$
REF: 081712aii NAT: F.IF.B. 4 TOP: Graphing Polynomial Functions
103 ANS: 3 REF: 081705aii NAT: F.IF.B. 4 TOP: Graphing Trigonometric Functions
KEY: increasing/decreasing
104 ANS: 1
(2) is not recursive

REF: 081608aii NAT: F.BF.A. 2 TOP: Sequences
105 ANS: 2
$6 x i^{3}(-4 x i+5)=-24 x^{2} i^{4}+30 x i^{3}=-24 x^{2}(1)+30 x(-1)=-24 x^{2}-30 x i$
REF: 061704aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers
106 ANS: 3
REF: 081724aii
NAT: F.BF.A. 2 TOP: Sequences

107 ANS: 4

As the range is $[4,10]$, the midline is $y=\frac{4+10}{2}=7$.

REF: fall1506aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions
KEY: mixed
108 ANS: 2

REF: 081603aii NAT: A.REI.D. 11 TOP: Other Systems
109 ANS: 1
[1] 1.2 131 PDocr Prex

REF: 081711aii NAT: S.ID.A. 4 TOP: Normal Distributions
KEY: percent
110 ANS: 3
$\left(\frac{1}{2}\right)^{\frac{1}{73.83}} \approx 0.990656$
REF: 081710aii NAT: A.SSE.B. 3 TOP: Modeling Exponential Functions
111 ANS: 4
$x=\frac{8 \pm \sqrt{(-8)^{2}-4(6)(29)}}{2(6)}=\frac{8 \pm \sqrt{-632}}{12}=\frac{8 \pm i \sqrt{4} \sqrt{158}}{12}=\frac{2}{3} \pm \frac{1}{6} i \sqrt{158}$

REF: 011711aii NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: complex solutions | quadratic formula
112 ANS: 4
REF: 012423aii NAT: A.SSE.B. 4 TOP: Series
KEY: geometric

113 ANS: 2
$x - 3 \longdiv { 2 x ^ { 4 } + 0 x ^ { 3 } - 5 x ^ { 2 } + 3 x - 2 }$
$\underline{2 x^{4}-6 x^{3}}$
$6 x^{3}-5 x^{2}$
$6 x^{3}-18 x^{2}$
$13 x^{2}+3 x$
$13 x^{2}-39 x$
$42 x-2$
$\underline{42 x-126}$
124
REF: 012408aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: division
114 ANS: 3
REF: 061722aii NAT: A.CED.A. 1 TOP: Modeling Rationals
115 ANS: 4
$k^{4}-4 k^{2}+8 k^{3}-32 k+12 k^{2}-48$
$k^{2}\left(k^{2}-4\right)+8 k\left(k^{2}-4\right)+12\left(k^{2}-4\right)$
$\left(k^{2}-4\right)\left(k^{2}+8 k+12\right)$
$(k+2)(k-2)(k+6)(k+2)$
REF: fall1505aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials
KEY: factoring by grouping
116 ANS: 4
$\frac{m(c)}{g(c)}=\frac{c+1}{1-c^{2}}=\frac{c+1}{(1+c)(1-c)}=\frac{1}{1-c}$
REF: 061608aii NAT: F.BF.A. 1 TOP: Operations with Functions
117 ANS: 1
The probability of rain equals the probability of rain, given that Sean pitches.
REF: 061611aii NAT: S.CP.A. 3 TOP: Conditional Probability
118 ANS: 2
$h(x)$ does not have a y-intercept.
REF: 011719aii NAT: F.IF.C. 9 TOP: Comparing Functions

119 ANS: 1
II. Ninth graders drive to school less often; III.Students know little about adults; IV. Calculus students love math!

REF: 081602aii NAT: S.IC.B. 3 TOP: Analysis of Data
KEY: bias
120 ANS: 3 REF: 061607aii NAT: S.IC.A. 2 TOP: Analysis of Data
121
ANS: 3
REF: 061720aii
NAT: F.BF.A. 1 TOP: Sequences
KEY: function notation
ANS: 4
REF: 081707aii
NAT: F.TF.A. 2 TOP: Reference Angles
KEY: bimodalgraph
123 ANS: 2
$\left(m^{\frac{5}{3}}\right)^{-\frac{1}{2}}=m^{-\frac{5}{6}}=\frac{1}{\sqrt[6]{m^{5}}}$
REF: 011707aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents
KEY: variables
124

ANS: 2

$$
\begin{aligned}
x & =-\frac{3}{4} y+2 \\
-4 x & =3 y-8 \\
-4 x+8 & =3 y \\
-\frac{4}{3} x+\frac{8}{3} & =y
\end{aligned}
$$

REF: 061616aii NAT: F.BF.B. 4 TOP: Inverse of Functions
KEY: linear

A parabola with a focus of $(0,4)$ and a directrix of $y=2$ is sketched as follows:
 By inspection, it is determined that the vertex of the parabola is $(0,3)$. It is also evident that the distance, p, between the vertex and the focus is 1 . It is possible to use the formula $(x-h)^{2}=4 p(y-k)$ to derive the equation of the parabola as follows: $(x-0)^{2}=4(1)(y-3)$

$$
\begin{aligned}
x^{2} & =4 y-12 \\
x^{2}+12 & =4 y \\
\frac{x^{2}}{4}+3 & =y
\end{aligned}
$$

or A point (x, y) on the parabola must be the same distance from the focus as it is from the directrix. For any such point (x, y), the distance to the focus is $\sqrt{(x-0)^{2}+(y-4)^{2}}$ and the distance to the directrix is $y-2$. Setting this equal leads to: $x^{2}+y^{2}-8 y+16=y^{2}-4 y+4$

$$
\begin{aligned}
& x^{2}+16=4 y+4 \\
& \frac{x^{2}}{4}+3=y
\end{aligned}
$$

REF: spr1502aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions
126 ANS: 1

$$
\begin{aligned}
8\left(2^{x+3}\right) & =48 \\
2^{x+3} & =6 \\
(x+3) \ln 2 & =\ln 6 \\
x+3 & =\frac{\ln 6}{\ln 2} \\
x & =\frac{\ln 6}{\ln 2}-3
\end{aligned}
$$

REF: 061702aii NAT: F.LE.A. 4 TOP: Exponential Equations
KEY: without common base
ANS: 3
The graph shows three real zeros, and has end behavior matching the given end behavior.
REF: 061604aii NAT: F.IF.C. 7 TOP: Graphing Polynomial Functions
KEY: bimodalgraph

128 ANS: 3
$d=10 \log \frac{6.3 \times 10^{-3}}{1.0 \times 10^{-12}} \approx 98$
REF: 011715aii NAT: F.IF.B. 4 TOP: Evaluating Logarithmic Expressions
129 ANS: 1
(1) $\frac{9-0}{2-1}=9$ (2) $\frac{17-0}{3.5-1}=6.8$ (3) $\frac{0-0}{5-1}=0$ (4) $\frac{17--5}{3.5-1} \approx 6.3$

REF: 011724aii NAT: F.IF.B. 6 TOP: Rate of Change
130 ANS: 3
Since $x+4$ is a factor of $p(x)$, there is no remainder.
REF: 081621aii NAT: A.APR.B. 2 TOP: Remainder and Factor Theorems
ANS: 2
$y=x^{3}-3$
$x=y^{3}-3$
$x+3=y^{3}$
$\sqrt[3]{x+3}=y$
REF: 012419aii NAT: F.BF.B. 4 TOP: Inverse of Functions
KEY: polynomial
132
ANS: 3
$(m-2)^{2}(m+3)=\left(m^{2}-4 m+4\right)(m+3)=m^{3}+3 m^{2}-4 m^{2}-12 m+4 m+12=m^{3}-m^{2}-8 m+12$
REF: 081605aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials
KEY: factoring by grouping
ANS: 3
$P=210 x^{\frac{4}{3}} y^{\frac{7}{3}}=210 x^{\frac{3}{3}} x^{\frac{1}{3}} y^{\frac{6}{3}} y^{\frac{1}{3}}=210 x \cdot x^{\frac{1}{3}} y^{2} y^{\frac{1}{3}}=210 x y^{2} \sqrt[3]{x y}$
REF: 012413aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents

134 ANS: 1
$2 x - 1 \longdiv { 4 x ^ { 3 } + 0 x ^ { 2 } + 9 x - 5 }$

$$
\begin{aligned}
& \frac{4 x^{3}-2 x^{2}}{2 x^{2}+9 x} \\
& \frac{2 x^{2}-x}{10 x-5} \\
& \underline{10 x-5}
\end{aligned}
$$

REF: 081713aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: division
135 ANS: 1
$\frac{2(x-4)}{(x+3)(x-4)}+\frac{3(x+3)}{(x-4)(x+3)}=\frac{2 x-2}{x^{2}-x-12}$

$$
\begin{aligned}
2 x-8+3 x+9 & =2 x-2 \\
3 x & =-3 \\
x & =-1
\end{aligned}
$$

REF: 011717aii NAT: A.REI.A. 2 TOP: Solving Rationals
KEY: rational solutions
136 ANS: 2
$9.82 \pm 2(1.4)$
REF: 012411aii NAT: S.IC.B. 4 TOP: Analysis of Data
137
ANS: 1

$$
\begin{aligned}
x^{3}(x-4)-9 x(x-4) & =0 \\
\left(x^{3}-9 x\right)(x-4) & =0 \\
x\left(x^{2}-9\right)(x-4) & =0 \\
x(x+3)(x-3)(x-4) & =0 \\
x & =0, \pm 3,4
\end{aligned}
$$

REF: 061606aii NAT: A.APR.B. 3 TOP: Solving Polynomial Equations

138

REF: 012414aii NAT: F.IF.B. 4 TOP: Graphing Polynomial Functions
ANS: 2
$B(t)=750\left(1.16^{\frac{1}{12}}\right)^{12 t} \approx 750(1.012)^{12 t} \quad B(t)=750\left(1+\frac{0.16}{12}\right)^{12 t}$ is wrong, because the growth is an annual rate that is not compounded monthly.

REF: spr1504aii NAT: A.SSE.B. 3 TOP: Modeling Exponential Functions
ANS: 2
$x + 2 \longdiv { x ^ { 3 } + 2 x ^ { 2 } + x + 6 }$

$$
\begin{aligned}
& \frac{x^{3}+2 x^{2}}{0 x^{2}+x} \\
& \frac{0 x^{2}+0 x}{x+6} \\
& \underline{x+2}
\end{aligned}
$$

4

REF: 081611aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: division
141 ANS: 1

1) let $y=x+2$, then $y^{2}+2 y-8$

$$
\begin{aligned}
& (y+4)(y-2) \\
& (x+2+4)(x+2-2) \\
& (x+6) x
\end{aligned}
$$

REF: 081715aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials KEY: multivariable

142 ANS: 4

REF: 012407aii NAT: A.REI.C. 7 TOP: Quadratic-Linear Systems
ANS: 2

REF: 011712aii NAT: A.REI.D. 11 TOP: Other Systems
144 ANS: 1
REF: 081616aii NAT: F.TF.A. 1 TOP: Unit Circle
KEY: bimodalgraph
145 ANS: 3
REF: 011706aii NAT: S.IC.B. 3 TOP: Analysis of Data
KEY: type
146
ANS: 4 REF: 061706aii NAT: F.IF.B. 4 TOP: Graphing Trigonometric Functions ANS: 2

$$
2 x + 3 \longdiv { 4 x ^ { 3 } + 0 x ^ { 2 } + 5 x + 1 0 }
$$

$$
\begin{aligned}
& \frac{4 x^{3}+6 x^{2}}{-6 x^{2}+5 x} \\
& \frac{-6 x^{2}-9 x}{14 x+10} \\
& \underline{14 x+21} \\
& -11
\end{aligned}
$$

REF: 061614aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: division

148
ANS: 4

REF: 061615aii NAT: F.IF.C. 7 TOP: Graphing Exponential Functions
149 ANS: 1
$50\left(1.19^{\frac{1}{12}}\right)^{12 t} \approx 50(1.015)^{12 t}$
REF: 012424aii NAT: A.SSE.B. 3 TOP: Modeling Exponential Functions
150 ANS: 3
The pattern suggests an exponential pattern, not linear or sinusoidal. A 4% growth rate is accurate, while a 43% growth rate is not.

REF: 011713aii NAT: S.ID.B. 6 TOP: Regression KEY: choose model
151 ANS: 2 REF: 011701aii NAT: F.IF.B. 4 TOP: Graphing Trigonometric Functions
152 ANS: 3
$(3 k-2 i)^{2}=9 k^{2}-12 k i+4 i^{2}=9 k^{2}-12 k i-4$
REF: 081702aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers ANS: 1 REF: 061708aii NAT: F.TF.B. 5 TOP: Modeling Trigonometric Functions ANS: 2
The events are independent because $P(A$ and $B)=P(A) \cdot P(B)$.

$$
0.125=0.5 \cdot 0.25
$$

If $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)=0.25+0.5-.125=0.625$, then the events are not mutually exclusive because $P(A$ or $B)=P(A)+P(B)$

$$
0.625 \neq 0.5+0.25
$$

REF: 061714aii NAT: S.CP.B. 7 TOP: Theoretical Probability ANS: 4 REF: 012014aii NAT: S.IC.B. 5 TOP: Analysis of Data

Algebra II Multiple Choice Regents Exam Questions

Answer Section

156 ANS: 4
(1) and (3) are not recursive

REF: 012013aii NAT: F.BF.A. 2 TOP: Sequences
157 ANS: 3 REF: 012003aii NAT: A.APR.C. 4 TOP: Polynomial Identities
158 ANS: 2 REF: 082203aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions
KEY: amplitude
159 ANS: 1

$-2 |$| 1 | -1 | -11 | 5 | 30 |
| ---: | ---: | ---: | ---: | ---: |
| | -2 | 6 | 10 | -30 |
| 1 | -3 | -5 | 15 | 0 |

Since there is no remainder when the quartic is divided by $x+2$, this binomial is a factor.
REF: 082320aii NAT: A.APR.B. 2 TOP: Remainder and Factor Theorems
160 ANS: 3
$x^{2}-6 x+9-\left(x^{2}+6 x+9\right)=-12 x$
REF: 062210aii NAT: F.BF.A. 1 TOP: Operations with Functions
161
ANS: 1
$2 x + 4 \longdiv { 2 x ^ { 3 } + 0 x ^ { 2 } + 2 x - 7 }$

$$
\begin{array}{r}
\frac{2 x^{3}+4 x^{2}}{-4 x^{2}+2 x} \\
-4 x^{2}-8 x
\end{array}
$$

$$
10 x-7
$$

$$
\underline{10 x+20}
$$

$$
-27
$$

REF: 062313aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: division

162 ANS: 3
$x=\frac{2}{3} y+\frac{1}{6}$
$6 x=4 y+1$
$4 y=6 x-1$
$y=\frac{6}{4} x-\frac{1}{4}$
REF: 062321aii NAT: F.BF.B. 4 TOP: Inverse of Functions
KEY: linear
163 ANS: 3
$M=\frac{240000\left(\frac{4.5 \%}{12}\right)\left(1+\frac{4.5 \%}{12}\right)^{15 \times 12}}{\left(1+\frac{4.5 \%}{12}\right)^{15 \times 12}-1} \approx 1835.98$

REF: 062209aii NAT: F.IF.B. 4 TOP: Evaluating Exponential Expressions
164 ANS: 2
The mass of the carbon-14 is decreasing by half every 5715 years.
REF: 062211aii NAT: F.LE.B. 5 TOP: Modeling Exponential Functions
165 ANS: 2

$40-(20+22-15)=13$
REF: 062204aii
166 ANS: 2
KEY: geometric
167 ANS: 2
$1=\frac{2 \pi}{k}$
$k=2 \pi$
REF: 012313aii NAT: F.TF.B. 5 TOP: Modeling Trigonometric Functions

168
ANS: 1
$\frac{20}{14+20+6}=\frac{1}{2}$
REF: 082303aii NAT: S.CP.A. 4 TOP: Conditional Probability
ANS: 4
$2 \times 0.035=0.07$ or $M E=\left(z \sqrt{\frac{p(1-p)}{n}}\right)=\left(1.96 \sqrt{\frac{(0.65)(0.35)}{200}}\right) \approx 0.07$
REF: 012319aii NAT: S.IC.B. 4 TOP: Analysis of Data
170 ANS: 3

$$
\begin{aligned}
(6-k i)^{2} & =27-36 i \\
36-12 k i+k^{2} i^{2} & =27-36 i \\
9-k^{2}-12 k i & =-36 i
\end{aligned}
$$

Set real part equal to real part: $9-k^{2}=0$ Set imaginary part equal to imaginary part: $\quad-12 k i=-36 i$

$$
\begin{aligned}
k= \pm 3 \quad \frac{-12 k i}{-12 i} & =\frac{-36 i}{-12 i} \\
k & =3
\end{aligned}
$$

REF: 012308aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers
171 ANS: 4
The distance between the focus and directrix is $1--3=4 . p$ is half this distance, or 2 . The vertex of the parabola is $(4,-1)$. Since the directrix is above the focus, the parabola faces downward. $y=-\frac{1}{4 p}(x-h)^{2}+k$

$$
\begin{aligned}
& y=-\frac{1}{4(2)}(x-4)^{2}-1 \\
& y+1=-\frac{1}{8}(x-4)^{2}
\end{aligned}
$$

REF: 012322aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions
172 ANS: 3
$x=-\frac{2 y}{5}+4 \quad y=-\frac{5}{2}(6)+10=-5$
$5 x=-2 y+20$
$2 y=-5 x+20$
$y=-\frac{5}{2} x+10$
REF: 082223aii NAT: F.BF.B. 4 TOP: Inverse of Functions
KEY: linear
173
ANS: 4
REF: 012008aii
NAT: S.CP.A. 3 TOP: Conditional Probability

174 ANS: 1
$\frac{-12}{16}=\frac{9}{-12}=\frac{-6.75}{9}$
REF: 012017aii NAT: F.IF.A. 3 TOP: Sequences KEY: difference or ratio
175 ANS: 2

$$
\begin{aligned}
2 x^{4}-x^{3}-16 x+8 & =0 \\
x^{3}(2 x-1)-8(2 x-1) & =0 \\
\left(x^{3}-8\right)(2 x-1) & =0
\end{aligned}
$$

$$
x=2, \frac{1}{2}
$$

REF: 012307aii NAT: A.APR.B. 2 TOP: Remainder and Factor Theorems
176 ANS: 4
$(x-2 i)(x-2 i)=x^{2}-4 x i+4 i^{2}=x^{2}-4 x i-4$
REF: 082202aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers
177 ANS: 4
$\frac{1}{2} x^{2}+2 x=\frac{1}{4} x-8 \quad b^{2}-4 a c$
$2 x^{2}+8 x=x-32 \quad 7^{2}-4(2)(32)<0$
$2 x^{2}+7 x+32=0$
REF: 012310aii NAT: A.REI.C. 7 TOP: Quadratic-Linear Systems
ANS: 1
$50(.9)^{t}=25$

$$
t \approx 6.57
$$

REF: 082317aii NAT: A.CED.A. 1 TOP: Exponential Decay
179 ANS: 3
between 000 and 449 , inclusive $\rightarrow \frac{450}{1000}=45 \%$
REF: 012024aii NAT: S.IC.B. 3 TOP: Analysis of Data
KEY: type
180 ANS: 1
$\frac{x\left(x^{2}-9\right)}{-\left(x^{2}-9\right)}=-x$
REF: 012023aii
NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: factoring
181 ANS: 3
REF: 012015aii NAT: S.IC.B. 3 TOP: Analysis of Data
KEY: type

182 ANS: 1
$\log 3^{x+4}=\log 28$
$\frac{(x+4) \log 3}{\log 3}=\frac{\log 28}{\log 3}$

$$
\begin{aligned}
x+4 & =\frac{\log 28}{\log 3} \\
x & =\log _{3} 28-4
\end{aligned}
$$

REF: 082306aii NAT: A.CED.A. 1 TOP: Exponential Equations
KEY: without common base
ANS: 4
$\frac{15000}{12000}=\frac{12000 e^{.025 t}}{12000}$
$1.25=e^{.025 t}$
$\ln 1.25=\ln e^{.025 t}$
$\ln 1.25=.025 t$
$\frac{\ln 1.25}{.025}=t$
REF: 082209aii NAT: F.LE.A. 4 TOP: Exponential Growth
184 ANS: 3
$x=\frac{1}{2} y+2$
$2 x=y+4$
$y=2 x-4$
REF: 012315aii NAT: F.BF.B. 4 TOP: Inverse of Functions
KEY: linear
185 ANS: 2
$.962^{10} \approx .679$
REF: 082311aii NAT: A.SSE.B. 3 TOP: Modeling Exponential Functions
186 ANS: 2
REF: 082222aii NAT: A.CED.A. 1 TOP: Modeling Rationals
ANS: 3 REF: 012005aii NAT: F.IF.B. 4 TOP: Graphing Polynomial Functions
ANS: 3 REF: 012002aii NAT: F.BF.A. 1 TOP: Operations with Functions

189 ANS: 2

$$
x^{2}=3 x+40 . x=-5 \text { is an extraneous solution. }
$$

$x^{2}-3 x-40=0$
$(x-8)(x+5)=0$

$$
x=8,-5
$$

REF: 012010aii NAT: A.REI.A. 2 TOP: Solving Radicals
KEY: extraneous solutions
190
ANS: 4 REF: 082318aii NAT: F.IF.B. 4 TOP: Graphing Polynomial Functions
ANS: 3

$$
\begin{aligned}
& x+y+z=2 \quad x-2 y-z=-4 \quad 2 x-y=-2 \quad x+2+z=2 \quad x+z=0 \quad 0+2+z=2 \\
& \underline{x-2 y-z=-4} \quad \underline{x-9 y+z=-18} \quad \underline{2 x-11 y=-22} \quad x-2(2)-z=-4 \quad \underline{x-z=0} \quad z=0 \\
& 2 x-y=-2 \quad 2 x-11 y=-22 \quad 10 y=20 \quad 2 x=0 \\
& y=2 \quad x=0
\end{aligned}
$$

REF: 062311aii NAT: A.REI.C. 6 TOP: Solving Linear Systems
KEY: three variables
192
ANS: 1
$x^{2}-4 x+4=-13+4$

$$
\begin{aligned}
(x-2)^{2} & =-9 \\
x-2 & = \pm 3 i \\
x & =2 \pm 3 i
\end{aligned}
$$

REF: 062312aii NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: complex solutions | completing the square
193 ANS: 4 REF: 082301aii NAT: S.IC.B. 3 TOP: Analysis of Data
ANS: 4
1) is a correct formula, but not recursive
REF: 082216aii NAT: F.BF.A. 2 TOP: Sequences
195 ANS: 2 REF: 062219aii NAT: F.TF.A. 1 TOP: Unit Circle
196
ANS: 4
REF: 082205aii
NAT: F.TF.A. 2 TOP: Unit Circle
ANS: 3 REF: 082201aii NAT: S.IC.B. 3 TOP: Analysis of Data
KEY: type
198 ANS: 2

1) 1 real, mult. 2 ; 3) not a quadratic; 4) not a function.

REF: 012324aii NAT: A.REI.B. 4 TOP: Using the Discriminant

199 ANS: 2
$\left(x^{2}+3\right)^{2}-2\left(x^{2}+3\right)-24$ let $u=x^{2}+3$

$$
\begin{aligned}
& u^{2}-2 u-24 \\
& (u-6)(u+4) \\
& \left(x^{2}+3-6\right)\left(x^{2}+3+4\right)
\end{aligned}
$$

REF: 062310aii
ANS: 2
NAT: A.SSE.A. 2 TOP: Factoring Polynomials
ANS: 2
$f(x)=f(-x)$
$x^{2}+1=(-x)^{2}+1$
$x^{2}+1=x^{2}+1$
REF: 082323aii NAT: F.BF.B. 3 TOP: Even and Odd Functions
ANS: 4
REF: 062215aii
NAT: F.IF.C. 7 TOP: Graphing Logarithmic Functions
ANS: 2
Since the distance from the focus to the directrix is $2, p=1$ and the vertex of the parabola is $(0,5)$.

$$
\begin{aligned}
y & =\frac{1}{4 p}(x-h)^{2}+k \\
y & =\frac{1}{4(1)}(x-0)^{2}+5 \\
y & =\frac{1}{4} x^{2}+5 \\
y-5 & =\frac{1}{4} x^{2} \\
4(y-5) & =x^{2}
\end{aligned}
$$

REF: 062323aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions
$y=1.77(1.18)^{x} \quad y(41) \approx 1,850,950$
REF: 062314aii NAT: S.ID.B. 6 TOP: Regression KEY: exponential
ANS: 1
$1.0325^{\frac{1}{12}} \approx 1.0027$
REF: 012323aii NAT: A.SSE.B. 3 TOP: Modeling Exponential Functions

206 ANS: 1
$\left(1.03^{\frac{1}{12}}\right)^{12 t} \approx 1.00247^{12 t}$
REF: 062224aii NAT: A.SSE.B. 3 TOP: Modeling Exponential Functions
207 ANS: 4
REF: 082220aii
ANS: 2
REF: 082204aii NAT: S.IC.B. 3 TOP: Analysis of Data
KEY: type
209 ANS: 2
$\sqrt{(-2)^{2}+(-3)^{2}}=\sqrt{13} ; \tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{\frac{-3}{\sqrt{13}}}{\frac{-2}{\sqrt{13}}}=\frac{3}{2}$
REF: 062304aii NAT: F.TF.A. 2 TOP: Determining Trigonometric Functions
KEY: extension to reals
210 ANS: 2

1) $x \rightarrow \infty, f(x) \rightarrow \infty$; 3) quartic polynomial; 4) three real roots

REF: 012318aii NAT: F.IF.B. 4 TOP: Graphing Polynomial Functions
211 ANS: 4 REF: 012314aii NAT: S.IC.B. 3 TOP: Analysis of Data KEY: type
212 ANS: 3

$$
\begin{aligned}
\sin ^{2} A+\left(\frac{\sqrt{5}}{3}\right)^{2} & =1 \quad \text { Since } \tan A<0, \sin A=-\frac{2}{3} \\
\sin ^{2} A+\frac{5}{9} & =\frac{9}{9} \\
\sin ^{2} A & =\frac{4}{9} \\
\sin A & = \pm \frac{2}{3}
\end{aligned}
$$

REF: 012320aii NAT: F.TF.C. 8 TOP: Determining Trigonometric Functions

213 ANS: 4

$$
\begin{aligned}
y & =-(x-1)^{2}+5 \quad 3+y=4 \\
4-x & =-x^{2}+2 x-1+5 \quad y=1 \\
x^{2}-3 x & =0 \\
x(x-3) & =0 \\
x & =0,3
\end{aligned}
$$

REF: 082305aii NAT: A.REI.C. 7 TOP: Quadratic-Linear Systems
214 ANS: 4
$g(x): \frac{10-6}{4-2}=2 t(x): \frac{3--5}{4-2}=4$
REF: 062212ai NAT: F.IF.B. 6 TOP: Rate of Change
215 ANS: 1
$\frac{(x+3)(x+2)}{(x-5)(x+2)}+\frac{6(x-5)}{(x+2)(x-5)}=\frac{6+10 x}{(x-5)(x+2)} 5$ is extraneous.

$$
\begin{aligned}
x^{2}+5 x+6+6 x-30 & =10 x+6 \\
x^{2}+x-30 & =0 \\
(x+6)(x-5) & =0 \\
x & =-6,5
\end{aligned}
$$

REF: 062319aii NAT: A.REI.A. 2 TOP: Solving Rationals
ANS: 2
$5 x^{2}-4 x+2=0 \frac{4 \pm \sqrt{(-4)^{2}-4(5)(2)}}{2(5)}=\frac{4 \pm \sqrt{-24}}{10}=\frac{4 \pm 2 i \sqrt{6}}{10}=\frac{2 \pm i \sqrt{6}}{5}$
REF: 012020aii NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: complex solutions | quadratic formula
217 ANS: 4

1) -1 is also a zero. 2) $x^{2}(x-a)+16(x-a)=\left(x^{2}+16\right)(x-a) a$ is the only zero. 3) $-a$ is the only zero. 4) $x^{2}(x-a)-9(x-a)=\left(x^{2}-9\right)(x-a)$.

REF: 012019aii NAT: A.APR.B. 3 TOP: Solving Polynomial Equations

218 ANS: 3
$\frac{x+2}{x}+\frac{x}{3}=\frac{2 x^{2}+6}{3 x} 0$ is extraneous.
$\frac{x^{2}+3 x+6}{3 x}=\frac{2 x^{2}+6}{3 x}$
$x^{2}+3 x+6=2 x^{2}+6$

$$
\begin{aligned}
x^{2}-3 x & =0 \\
x(x-3) & =0 \\
x & =0,3
\end{aligned}
$$

REF: 012309aii NAT: A.REI.A. 2 TOP: Solving Rationals
219 ANS: 3
$e^{\left(-\frac{3}{0.6}\right)} \approx 0.006738$
REF: 062315aii NAT: A.SSE.B. 3 TOP: Modeling Exponential Functions
220 ANS: 1 REF: 062308aii NAT: F.IF.C. 7 TOP: Graphing Logarithmic Functions
221 ANS: 4
REF: 062216aii NAT: S.IC.B. 3 TOP: Analysis of Data
KEY: type
222 ANS: 1
$x + 2 \longdiv { x ^ { 3 } - 2 x ^ { 2 } - x + 6 } \begin{array} { r } { x ^ { 4 } - 5 x ^ { 2 } + 4 x + 1 4 } \end{array}$

$$
x^{4}+2 x^{3}
$$

$$
-2 x^{3}-5 x^{2}
$$

$$
\underline{-2 x^{3}-4 x^{2}}
$$

$$
-x^{2}+4 x
$$

$$
-x^{2}-2 x
$$

$$
6 x+14
$$

$$
\underline{6 x+12}
$$

2
REF: 012305aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: division
223
ANS: 1
$0.5^{\frac{1}{0.0803}} \approx 0.000178$
REF: 082224aii NAT: A.SSE.B. 3 TOP: Modeling Exponential Functions

224 ANS: 3

$$
x=12 y-4
$$

$x+4=12 y$
$\frac{x+4}{12}=y$
REF: 082304aii NAT: F.BF.B. 4 TOP: Inverse of Functions
KEY: linear
225 ANS: 1
The product of the roots equals $(3+i)(3-i)=9-i^{2}=10=\frac{c}{a}$. OR

$$
\begin{aligned}
(x-(3+i))(x-(3-i)) & =0 \\
(x-3-i)(x-3+i) & =0 \\
((x-3)-i)((x-3)+i) & =0 \\
(x-3)^{2}-i^{2} & =0 \\
x^{2}-6 x+9+1 & =0 \\
x^{2}-6 x+10 & =0
\end{aligned}
$$

REF: 082208aii NAT: A.REI.B. 4 TOP: Complex Conjugate Root Theorem
ANS: 4 REF: 062309aii NAT: F.IF.C. 9 TOP: Comparing Functions ANS: 3
$x + 2 \longdiv { 2 x ^ { 2 } + 5 x + 8 }$
$\underline{2 x^{2}+4 x}$
$x+8$
$\underline{x+2}$
6
REF: 012007aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: division
228
ANS: 2
$.43 \pm 2(0.05)$ contains about 95% of the data.
REF: 062317aii NAT: S.IC.B. 4 TOP: Analysis of Data

229
ANS: 1

REF: 082210aii NAT: A.REI.D. 11 TOP: Other Systems

REF: 012317aii NAT: A.REI.D. 11 TOP: Other Systems
ANS: 1

$$
\ln e^{x+2}=\ln \frac{7}{5}
$$

$(x+2) \ln e=\ln \frac{7}{5}$

$$
x=-2+\ln \frac{7}{5}
$$

REF: 062207aii NAT: F.LE.A. 4 TOP: Exponential Equations
KEY: without common base
ANS: 2 REF: 082324aii
ANS: 2 REF: 082313aii
NAT: A.APR.B. 3 TOP: Graphing Polynomial Functions
KEY: percent
ANS: 4
$\left(x^{2}-y^{2}\right)+(2 x y)^{2}=x^{2}+4 x^{2} y^{2}-y^{2}$
$(x-y)+\left(x^{2}-x y+y^{2}\right)=x^{2}+x-y-x y+y^{2}$
$(x-y)(x-y)\left(x^{2}+y^{2}\right)=\left(x^{2}-2 x y+y^{2}\right)\left(x^{2}+y^{2}\right)=x^{4}-2 x^{3} y+x^{2} y^{2}+x^{2} y^{2}-2 x y^{3}+y^{4}$
REF: 062322aii NAT: A.APR.C. 4 TOP: Polynomial Identities
ANS: 4
$45 \%+31 \%-58 \%=18 \%$
REF: 082307aii NAT: S.CP.B. 7 TOP: Theoretical Probability

ANS: 3
$3 i\left(a i-6 i^{2}\right)=3 a i^{2}-18 i^{3}=-3 a+18 i$
REF: 062307aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers
ANS: 1
$2000\left(1+\frac{.032}{12}\right)^{12 t} \approx 2000(1.003)^{12 t}$
REF: 012004aii NAT: F.BF.A. 1 TOP: Modeling Exponential Functions
ANS: 2

1) $\frac{29860-629}{1910-1850} \approx 487$; 2) $\frac{790390-494290}{2010-1990} \approx 14805$; 3) $\frac{251808-132459}{1970-1950} \approx 5967$; 4) $\frac{251808-14575}{1970-1890} \approx 2965$

REF: 062301aii NAT: F.IF.B. 6 TOP: Rate of Change
ANS: 1
$x+y+z=9 \quad 4-y-z=-14-6+z=9$
$\underline{x-y-z=-1} \quad 4-y+z=21 \quad z=11$

$$
2 x=8 \quad-y-z=-5
$$

$$
\begin{gathered}
x=4 \quad \frac{-y+z=17}{-2 y=12}
\end{gathered}
$$

$$
y=-6
$$

REF: 012018aii NAT: A.REI.C. 6 TOP: Solving Linear Systems
KEY: three variables
240
$x^{3}-x^{2} y i-x y^{2}+x^{2} y i-x y^{2} i^{2}-y^{3} i=x^{3}-x y^{2}-x y^{2}(-1)-y^{3} i=x^{3}-y^{3} i$
REF: 062223aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers
ANS: 4
$f(0)=4 \sin (2(0))=0 ; g(0)=3(0)^{4}+2(0)^{3}+7=7 ; h(0)=5 e^{2(0)}+3=8 ; j(0)=6 \log _{2}(3(0)+4)=12$
REF: 082310aii NAT: F.IF.C. 9 TOP: Comparing Functions
ANS: 2

$$
\begin{gathered}
2 x^{3}+x^{2}-18 x-9 \\
x^{2}(2 x+1)-9(2 x+1) \\
\left(x^{2}-9\right)(2 x+1) \\
(x+3)(x-3)(2 x+1)
\end{gathered}
$$

REF: 082206aii NAT: A.APR.B. 2 TOP: Remainder and Factor Theorems
ANS: 4
REF: 012303aii
REF: 062206aii

244 ANS: 2

245 ANS: 1
REF: 082221aii
NAT: F.BF.B. 6 TOP: Sigma Notation
KEY: represent
246 ANS: 3
$S_{20}=\frac{-2-(-2)(-3)^{20}}{1-(-3)}=1,743,392,200$

REF: 012306aii NAT: A.SSE.B. 4 TOP: Series KEY: geometric
247 ANS: 3
To determine student opinion, survey the widest range of students.
REF: 062202aii NAT: S.IC.B. 3 TOP: Analysis of Data
KEY: bias
248 ANS: 1
$7-3 i+x^{2}-4 x i+4 i^{2}-4 i-2 x^{2}=7-7 i-x^{2}-4 x i-4=3-x^{2}-4 x i-7 i=\left(3-x^{2}\right)-(4 x+7) i$
REF: 012022aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers
249 ANS: 2

$$
\begin{array}{r}
x - 2 \longdiv { x ^ { 2 } + 2 x + 4 } \\
\frac{x^{3}-2 x^{2}}{2 x^{2}+0 x-2} \\
\underline{2 x^{2}-4 x} \\
4 x-2 \\
\underline{4 x-8}
\end{array}
$$

6

REF: 082217aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: division
250
ANS: 3
$\frac{4}{k^{2}-8 k+12}=\frac{k(k-6)+(k-2)}{k^{2}-8 k+12} k=6$ is extraneous

$$
\begin{aligned}
& 4=k^{2}-6 k+k-2 \\
& 0=k^{2}-5 k-6 \\
& 0=(k-6)(k+1) \\
& k=6,-1
\end{aligned}
$$

REF: 082218aii NAT: A.REI.A. 2 TOP: Solving Rationals

251 ANS: 3
$a=105,0<b<1$
REF: 082314aii NAT: F.BF.A. 1 TOP: Modeling Exponential Functions
252 ANS: 2
$p(x)=4^{x}, q(x)=\left(\frac{5}{9}\right)^{x}, r(x)=5.29^{x}, s(x)=2^{x}$
REF: 012304aii NAT: F.IF.C. 7 TOP: Graphing Exponential Functions
253 ANS: 2

REF: 012316aii NAT: F.IF.B. 4 TOP: Graphing Polynomial Functions
254 ANS: 2

REF: 012021aii NAT: A.REI.D. 11 TOP: Other Systems
ANS: 2 REF: 082308aii NAT: A.REI.B. 4 TOP: Using the Discriminant
KEY: determine nature of roots given equation, graph, table

256 ANS: 3
$y=-6 x+\frac{1}{2}$
$x=-6 y+\frac{1}{2}$
$x-\frac{1}{2}=-6 y$
$-\frac{1}{6}\left(x-\frac{1}{2}\right)=y$
REF: 062217aii NAT: F.BF.B. 4 TOP: Inverse of Functions
KEY: linear
ANS: 1
REF: 062214aii
NAT: S.ID.A. 4 TOP: Normal Distributions
KEY: predict
258 ANS: 3
REF: 062205aii
NAT: F.BF.B. 3 TOP: Transformations with Functions
ANS: 4
REF: 012016ai
NAT: F.IF.B. 4 TOP: Graphing Trigonometric Functions
KEY: increasing/decreasing
260 ANS: 3
REF: 062302aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials
261 ANS: 1
$\sqrt[4]{81 x^{8} y^{6}}=81^{\frac{1}{4}} x^{\frac{8}{4}} y^{\frac{6}{4}}=3 x^{2} y^{\frac{3}{2}}$
REF: 012001aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents
KEY: variables

REF: 062316aii NAT: S.ID.A. 4 TOP: Normal Distributions
KEY: percent

263
264

ANS: 3
REF: 082214ai
NAT: F.IF.C. 7
TOP: Graphing Exponential Functions
ANS: 1
$\left(a \sqrt[3]{2 b^{2}}\right)\left(\sqrt[3]{4 a^{2} b}\right)=a \sqrt[3]{8 a^{2} b^{3}}=2 a b \sqrt[3]{a^{2}}$
REF: 082213aii NAT: N.RN.A. 2 TOP: Operations with Radicals KEY: with variables, index > 2

265 ANS: 3
$\frac{-2}{\sqrt{5^{2}-2^{2}}}=\frac{-2}{\sqrt{21}}$
REF: 082312aii NAT: F.TF.C. 8 TOP: Determining Trigonometric Functions
ANS: 2
$\frac{x^{2}+3 x}{x^{2}+5 x+6}=\frac{x(x+3)}{(x+2)(x+3)}$
REF: 082215aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: factoring
267
$95.4 x-6 x^{2}-\left(0.18 x^{3}+0.02 x^{2}+4 x+180\right)$
REF: 082322aii NAT: F.BF.A. 1 TOP: Operations with Functions
ANS: 2
REF: 012311aii
NAT: A.APR.C. 4 TOP: Polynomial Identities

$$
\begin{aligned}
s(x) & =x^{4}-9 x^{2}+3 x^{3}-27 x-10 x^{2}+90 \\
& =x^{2}\left(x^{2}-9\right)+3 x\left(x^{2}-9\right)-10\left(x^{2}-9\right) \\
& =\left(x^{2}+3 x-10\right)\left(x^{2}-9\right) \\
& =(x+5)(x-2)(x+3)(x-3)
\end{aligned}
$$

REF: 062303aii NAT: A.APR.B. 3 TOP: Solving Polynomial Equations
ANS: 4
I. $\left(\frac{y}{x^{3}}\right)^{-1}=\frac{x^{3}}{y}$; II. $\sqrt[3]{x^{9}}\left(y^{-1}\right)=\frac{x^{\frac{9}{3}}}{y}=\frac{x^{3}}{y}$; III. $\frac{x^{64} \sqrt{y^{8}}}{x^{3} y^{3}}=\frac{x^{3} y^{\frac{8}{4}}}{y^{3}}=\frac{x^{3}}{y}$

REF: 062320aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents

271 ANS: 1
$u=x+2 \quad u^{2}-5 u+6$

$$
\begin{gathered}
(u-3)(u-2) \\
(x+2-3)(x+2-2) \\
(x-1) x
\end{gathered}
$$

REF: 012301aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials
KEY: higher power
272 ANS: 4

1) $d(2)=2$; 2) $d(1)=12$; 3) $d(9) \approx 11$; 4) $d(-1)=2$

REF: 062220aii NAT: F.IF.B. 4 TOP: Graphing Trigonometric Functions
ANS: 3
$(x+a)^{2}+5(x+a)+4$ let $u=x+a$

$$
\begin{aligned}
& u^{2}+5 u+4 \\
& (u+4)(u+1) \\
& (x+a+4)(x+a+1)
\end{aligned}
$$

REF: 012006aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials
KEY: multivariable
274 ANS: 2
$2 x+4 y-2 z=2-x-3 y+2 z=0 \quad x+y=2 \quad 3+2 y-z=1 \quad 2 y-z=-2$

REF: 062208aii NAT: A.REI.C. 6 TOP: Solving Linear Systems
KEY: three variables
275
ANS: 3

$$
\begin{aligned}
\sqrt{3 x+18} & =x \quad-3 \text { is extraneous. } \\
3 x+18 & =x^{2} \\
x^{2}-3 x-18 & =0 \\
(x-6)(x+3) & =0 \\
x & =6,-3
\end{aligned}
$$

REF: 082315aii NAT: A.REI.A. 2 TOP: Solving Radicals
KEY: extraneous solutions

276 ANS: 2
$\frac{x^{2}+12}{x^{2}+3}=\frac{x^{2}+3}{x^{2}+3}+\frac{9}{x^{2}+3}=1+\frac{9}{x^{2}+3}$
REF: 062218aii NAT: A.APR.D. 7 TOP: Addition and Subtraction of Rationals
277 ANS: 1

1) $A(20)>0 ; 2) .5 \times .5=.25$; 3) true; 4) $A(7) \approx 9.9$

REF: 082211aii NAT: F.LE.B. 5 TOP: Modeling Exponential Functions
ANS: 2

REF: 082319aii NAT: A.REI.D. 11 TOP: Other Systems
279 ANS: 4
$\frac{13}{13+11}=\frac{13}{24}$
REF: 012011aii NAT: S.CP.A. 4 TOP: Conditional Probability
280 ANS: 1
2) $\left(x^{4}-x^{2} y^{2}+y^{4}\right) \neq\left(x^{2}-y^{2}\right)\left(x^{2}-y^{2}\right)$; 3) $x^{6}+y^{6} \neq\left(x^{3}+y^{3}\right)^{2}$; 4) $\frac{x^{6}+y^{6}}{x^{2}+y^{2}} \neq x^{6}+y^{6}-\left(x^{2}+y^{2}\right)$

REF: 082219aii NAT: A.APR.C. 4 TOP: Polynomial Identities
281 ANS: 2
$-23(1)+56=33 ;-23(-1)+56=79$
REF: 062305aii NAT: F.IF.B. 4 TOP: Graphing Trigonometric Functions
ANS: 2
$a \sqrt[5]{a^{4}}=a^{\frac{5}{5}} \cdot a^{\frac{4}{5}}=a^{\frac{9}{5}}$
REF: 062306aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents

283
ANS: 2
$4300 e^{0.07 x}=5123$

$$
\begin{aligned}
\ln e^{0.07 x} & =\ln \frac{5123}{4300} \\
0.07 x & =\ln \frac{5123}{4300} \\
x & =\frac{\ln \frac{5123}{4300}}{0.07} \\
x & \approx 2.5
\end{aligned}
$$

REF: 012302aii NAT: F.LE.A. 4 TOP: Exponential Equations
KEY: without common base
ANS: 2

$$
\begin{array}{r}
\frac{2 x^{2}-3 x+5}{x + 3 \longdiv { 2 x ^ { 3 } + 3 x ^ { 2 } - 4 x + 5 }} \\
\frac{2 x^{3}+6 x^{2}}{-3 x^{2}-4 x} \\
\frac{-3 x^{2}-9 x}{5 x+5} \\
\frac{5 x+15}{-10}
\end{array}
$$

REF: 082302aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: division
ANS: 2 REF: 062222aii NAT: F.IF.C. 9 TOP: Comparing Functions
ANS: 4
$\log 2^{t}=\log \sqrt{10}$ 2) $\left.\left.\frac{\log \sqrt{10}}{\log 2}=\log _{2} \sqrt{10}, 1\right) \log _{2} \sqrt{10}=\log _{2} 10^{\frac{1}{2}}=\frac{1}{2} \log _{2} 10,3\right) \log _{4} 10=\frac{\log _{2} 10}{\log _{2} 4}=\frac{1}{2} \log _{2} 10$ $t \log 2=\log \sqrt{10}$
$t=\frac{\log \sqrt{10}}{\log 2}$
REF: 012009aii NAT: F.LE.A. 4 TOP: Exponential Equations
KEY: without common base

287 ANS: 3
The distance from the vertex to the focus, p, is 4 . Since the focus is below the vertex, p is negative.
$y=-\frac{1}{4(4)}(x-2)^{2}+1$

REF: 082212aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions
ANS: 3
$\frac{x^{\frac{1}{5}}}{x^{\frac{1}{2}}}=x^{\frac{1}{5}-\frac{1}{2}}=x^{-\frac{3}{10}}=\frac{1}{x^{\frac{3}{10}}}=\frac{1}{\sqrt[10]{x^{3}}}$
REF: 012312aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents
289
ANS: 1
$\frac{N(6)-N(0)}{6-0} \approx-8.93$
REF: 012012aii NAT: F.IF.B. 6 TOP: Rate of Change
290 ANS: 2
$a_{2}=8+\log _{2+1} 1=8+0=8$
$a_{3}=8+\log _{3+1} 2=8+\frac{1}{2}=8.5$
REF: 062221aii NAT: F.IF.A. 3 TOP: Sequences KEY: recursive
291 ANS: 4
Translate the parent \log function 2 to the right and reflect over the x-axis.
REF: 082207aii NAT: F.IF.C. 7 TOP: Graphing Logarithmic Functions
292 ANS: 1
The vertical distance from the directrix to the vertex, p, is 2 . The vertical distance from the vertex to the focus must also be 2 .

REF: 062213aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions
ANS: 4
$M=\frac{45000\left(\frac{6.75 \%}{12}\right)\left(1+\frac{6.75 \%}{12}\right)^{5 \times 12}}{\left(1+\frac{6.75 \%}{12}\right)^{5 \times 12}-1} \approx 885.76$
REF: 082316aii NAT: F.IF.B. 4 TOP: Evaluating Exponential Expressions
294 ANS: 1
REF: 062201aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents

295 ANS: 4
$\frac{x^{2}+6}{x^{2}+4}=\frac{x^{2}+4}{x^{2}+4}+\frac{2}{x^{2}+4}=1+\frac{2}{x^{2}+4}$
REF: 082321aii NAT: A.APR.D. 7 TOP: Addition and Subtraction of Rationals
296 ANS: 1
$x + 3 \longdiv { 2 x ^ { 3 } + 7 x ^ { 2 } - 3 x - 2 5 }$
$\underline{2 x^{3}+6 x^{2}}$

$$
x^{2}-3 x
$$

$$
\underline{x^{2}+3 x}
$$

$$
-6 x-25
$$

$$
\underline{-6 x-18}
$$

-7
REF: 062203aii
KEY: division
NAT: A.APR.D. 6 TOP: Rational Expressions
ANS: 1
ANS: 1
REF: 082309aii
REF: 062318aii
NAT: F.BF.A. 1
TOP: Modeling Exponential Functions
ANS: 1
REF: 081804aii
NAT: F.IF.C. 9
TOP: Comparing Functions

Algebra II Multiple Choice Regents Exam Questions

Answer Section

300
ANS: 1
$\left(x^{\frac{3}{2}}\right)^{2}=x^{3}$
REF: 061908aii
NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents
KEY: variables
301
ANS: 2 REF: 011901a
KEY: mean and standard deviation
302 ANS: 2
(1) $0.4 \cdot 0.3 \neq 0.2$, (2) $0.8 \cdot 0.25=0.2$, (3) $P(A \mid B)=P(A)=0.2$, (4) $0.2 \neq 0.15 \cdot 0.05$
$0.2 \neq 0.2 \cdot 0.2$
REF: 011912aii NAT: S.CP.A. 3 TOP: Conditional Probability
303 ANS: 4

$$
\begin{aligned}
\frac{2}{x} & =\frac{4 x}{x+3} \\
2 x+6 & =4 x^{2} \\
4 x^{2}-2 x-6 & =0 \\
2\left(2 x^{2}-x-3\right) & =0 \\
(2 x-3)(x+1) & =0 \\
x & =\frac{3}{2},-1
\end{aligned}
$$

REF: 061809aii NAT: A.REI.A. 2 TOP: Solving Rationals
ANS: 1
In vertex form, the parabola is $y=-\frac{1}{4(2)}(x+4)^{2}+3$. The vertex is $(-4,3)$ and $p=2.3+2=5$
REF: 011816aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions

305
ANS: 1

1) $\left.(x+3)^{2}-16=x^{2}+6 x+9-16=x^{2}+6 x-7=(x+7)(x-1) ; 2\right) \quad u=x+3 \quad$; 3)

$$
u^{2}-10 u-2 u+20
$$

$$
u(u-10)-2(u-10)
$$

$$
(u-2)(u-10)
$$

$$
(x+3-2)(x+3-10)
$$

$$
(x+1)(x-7)
$$

$\left.\frac{(x-1)(x-7)(x+1)}{(x+1)}=(x-1)(x-7) ; 4\right) \frac{(x+7)(x+1)(x+3)}{(x+3)}=(x+7)(x+1)$
REF: 061808aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: factoring
306
ANS: 3
$1^{3}-k(1)^{2}+2(1)=0$

$$
k=3
$$

REF: 061812aii NAT: A.APR.B. 2 TOP: Remainder and Factor Theorems
307 ANS: 1

$$
\begin{aligned}
p(x) & =r(x)-c(x) \\
-0.5 x^{2}+250 x-300 & =-0.3 x^{2}+150 x-c(x) \\
c(x) & =0.2 x^{2}-100 x+300
\end{aligned}
$$

REF: 061813aii NAT: F.BF.A. 1 TOP: Operations with Functions
ANS: 4
$f(x)=(x+1)(x-1)(x-2)=\left(x^{2}-1\right)(x-2)=x^{3}-2 x^{2}-x+2$
REF: 081921aii NAT: A.APR.B. 3 TOP: Solving Polynomial Equations
309 ANS: 2
REF: 081816aii NAT: F.IF.C. 7 TOP: Graphing Logarithmic Functions
KEY: bimodalgraph
310 ANS: 2
REF: 061804aii NAT: S.ID.B. 6 TOP: Regression
KEY: choose model
311
ANS: 1

$$
\begin{aligned}
-4(-1)-3=1 \quad 8 & =\frac{2 \pi}{b} \\
b & =\frac{\pi}{4}
\end{aligned}
$$

REF: 081820aii NAT: F.IF.B. 4 TOP: Graphing Trigonometric Functions KEY: maximum/minimum

312 ANS: 3
$\sqrt{x+1}=x+1$

$$
\begin{aligned}
x+1 & =x^{2}+2 x+1 \\
0 & =x^{2}+x \\
0 & =x(x+1) \\
x & =-1,0
\end{aligned}
$$

REF: 011802aii NAT: A.REI.A. 2 TOP: Solving Radicals
KEY: extraneous solutions
313 ANS: 3
$-3+5 i-\left(4+24 i-2 i-12 i^{2}\right)=-3+5 i-(16+22 i)=-19-17 i$
REF: 081815aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers
314 ANS: 1
$x-\frac{4}{x-1}=2 \quad x=\frac{3 \pm \sqrt{(-3)^{2}-4(1)(-2)}}{2(1)}=\frac{3 \pm \sqrt{17}}{2}$
$x(x-1)-4=2(x-1)$
$x^{2}-x-4=2 x-2$
$x^{2}-3 x-2=0$
REF: 011812aii NAT: A.REI.A. 2 TOP: Solving Rationals
KEY: rational solutions
315 ANS: 4
$\sqrt{3 x^{2} y} \cdot \sqrt[3]{27 x^{3} y^{2}}=3^{\frac{1}{2}} x y^{\frac{1}{2}} \cdot 3^{\frac{2}{2}} x y^{\frac{2}{3}}=3^{\frac{3}{2}} x^{2} y^{\frac{7}{6}}$
REF: 081914aii NAT: N.RN.A. 2 TOP: Operations with Radicals
KEY: with variables, index > 2
316 ANS: 4 REF: 081906aii NAT: S.IC.B. 3 TOP: Analysis of Data
KEY: type
317 ANS: 1

REF: 011908aii NAT: F.IF.B. 4 TOP: Graphing Polynomial Functions

318
ANS: 3
REF: 081819aii
NAT: A.REI.D. 11 TOP: Other Systems
ANS: 2 $x=-6(y-2)$
$-\frac{x}{6}=y-2$
$-\frac{x}{6}+2=y$

REF: 011821aii NAT: F.BF.B. 4 TOP: Inverse of Functions
KEY: linear
320 ANS: 4
$0.48 \cdot 0.25=0.12$
REF: 061811aii NAT: S.CP.A. 2 TOP: Probability of Compound Events
KEY: probability

REF: 011803aii NAT: A.REI.C. 6 TOP: Solving Linear Systems
KEY: three variables
325
ANS: 2
REF: 061816aii NAT: F.IF.C. 7 TOP: Graphing Polynomial Functions
KEY: bimodalgraph
ANS: 3
$y=278(0.5)^{\frac{18}{1.8}} \approx 0.271$

REF: 011920aii NAT: F.LE.A. 2 TOP: Modeling Exponential Functions
ANS: 4
$(x-y)^{2}=x^{2}-2 x y+y^{2}(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}$

REF: 061902aii NAT: A.APR.C. 4 TOP: Polynomial Identities
ANS: 2 REF: 081908aii NAT: F.IF.B. 4 TOP: Graphing Polynomial Functions
ANS: 4
The vertex is $(2,2)$ and $p=3.3+2=5$

REF: 081823aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions
ANS: 4
$3 x-(-2 x+14)=163(6)-4 z=2$

$$
\begin{array}{rlrl}
5 x & =30 & -4 z & =-16 \\
x & =6 & z & =4
\end{array}
$$

ANS: 1 REF: 011815aii NAT: F.TF.A. 2 TOP: Unit Circle
ANS: 3

The vertex is $(-3,5)$ and $p=2 . y=\frac{-1}{4(2)}(x+3)^{2}+5$

REF: 011914aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions

329 ANS: 3
KEY: type
330
ANS: 4
$S_{7}=\frac{85000-85000(1.06)^{7}}{1-1.06} \approx 713476.20$
REF: 061905aii NAT: A.SSE.B. 4 TOP: Series KEY: geometric
ANS: 1 REF: 011902aii NAT: F.IF.C. 7 TOP: Graphing Logarithmic Functions
ANS: 2
$b^{2}=2 b^{2}-64-8$ is extraneous.
$-b^{2}=-64$
$b= \pm 8$
REF: 061919aii NAT: A.REI.A. 2 TOP: Solving Radicals
KEY: extraneous solutions
ANS: 2 REF: 081802aii NAT: S.IC.B. 3 TOP: Analysis of Data
KEY: type
334 ANS: 2
$n^{2}\left(n^{2}-9\right)+4 n\left(n^{2}-9\right)-12\left(n^{2}-9\right)$

$$
\begin{gathered}
\left(n^{2}+4 n-12\right)\left(n^{2}-9\right) \\
(n+6)(n-2)(n+3)(n-3)
\end{gathered}
$$

REF: 061911aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials
KEY: factoring by grouping
ANS: 2
REF: 011806aii
NAT: A.APR.C. 4 TOP: Polynomial Identities
ANS: 2
REF: 081904aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials
KEY: higher power
ANS: 4

REF: 011924aii NAT: A.REI.D. 11 TOP: Other Systems

338 ANS: 3

41.1	Rup $\square^{\text {a }} \times$
Define $t(a)=\frac{1}{0.0105} \cdot \ln \left(\frac{a}{5000}\right)$	Done
$t(8000)-t(6000)$	0.013699
$\begin{gathered} 8000-6000 \\ t(12000)-t(9000) \end{gathered}$	0.009133
12000-9000	
1	

REF: 081922aii NAT: F.IF.B. 6 TOP: Rate of Change
ANS: 2
If $\cos \theta=\frac{7}{25}, \sin \theta= \pm \frac{24}{25}$, and $\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{-\frac{24}{25}}{\frac{7}{25}}=-\frac{24}{7}$
REF: 081811aii NAT: F.TF.C. 8 TOP: Determining Trigonometric Functions
340 ANS: 1
$x^{2}+2 x+1=(x+1)^{2}$
REF: 011919aii NAT: A.APR.B. 3 TOP: Graphing Polynomial Functions
ANS: 1
$1.025^{\frac{1}{12}} \approx 1.00206$
REF: 081924aii NAT: A.SSE.B. 3 TOP: Modeling Exponential Functions
342 ANS: 4
$\ln e^{0.3 x}=\ln \frac{5918}{87}$
$x=\frac{\ln \frac{5918}{87}}{0.3}$
REF: 081801aii NAT: F.LE.A. 4 TOP: Exponential Equations
KEY: without common base
343
ANS: 1
$6-(3 x-2 i)(3 x-2 i)=6-\left(9 x^{2}-12 x i+4 i^{2}\right)=6-9 x^{2}+12 x i+4=-9 x^{2}+12 x i+10$
REF: 061915aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers

$$
\begin{aligned}
121(b)^{2} & =64 \quad 64\left(\frac{8}{11}\right)^{2} \approx 34 \\
b & =\frac{8}{11}
\end{aligned}
$$

REF: 011904aii NAT: F.BF.A. 1 TOP: Sequences KEY: explicit

ANS: 3
$\frac{x^{2}(x+2)-9(x+2)}{x\left(x^{2}-x-6\right)}=\frac{\left(x^{2}-9\right)(x+2)}{x(x-3)(x+2)}=\frac{(x+3)(x-3)}{x(x-3)}=\frac{x+3}{x}$
REF: 061803aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: factoring
ANS: 3
$1.04^{\frac{1}{12}} \approx 1.0032737$
REF: 011906aii NAT: A.SSE.B. 3 TOP: Modeling Exponential Functions

354 ANS: 4
KEY: bias
355 ANS: 1
$9110=5000 e^{30 r}$
$\ln \frac{911}{500}=\ln e^{30 r}$
$\frac{\ln \frac{911}{500}}{30}=r$
$r \approx .02$
REF: 011810aii
NAT: F.LE.A. 4 TOP: Exponential Growth
356 ANS: 2
REF: 061917aii NAT: F.LE.B. 5 TOP: Modeling Exponential Functions

357
ANS: 1
$84.1 \% \times 750 \approx 631$
REF: 011923aii
NAT: S.ID.A. 4 TOP: Normal Distributions
KEY: predict
ANS: 4
ANS: 2
REF: 011808aii
REF: 081911aii

NAT: A.SSE.B. 3 TOP: Modeling Exponential Functions
NAT: F.BF.B. 3 TOP: Even and Odd Functions

360 ANS: 3
$\frac{c^{2}-d^{2}}{d^{2}+c d-2 c^{2}}=\frac{(c+d)(c-d)}{(d+2 c)(d-c)}=\frac{-(c+d)}{d+2 c}=\frac{-c-d}{d+2 c}$
REF: 011818aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: factoring
361 ANS: 4
There is no x-intercept.
REF: 011823aii NAT: F.IF.C. 7 TOP: Graphing Exponential Functions
362 ANS: 2
$P(B) \cdot P(A \mid B)=P(A$ and $B)$
$P(B) \cdot 0.8=0.2$

$$
P(B)=0.25
$$

REF: 081913aii NAT: S.CP.A. 3 TOP: Conditional Probability
363
ANS: 4
$a=\frac{14-4}{2}=5, d=\frac{14+4}{2}=9$
REF: 061810aii NAT: F.TF.B. 5 TOP: Modeling Trigonometric Functions

364 ANS: 2
$x=\frac{2 \pm \sqrt{(-2)^{2}-4(5)(4)}}{2(5)}=\frac{2 \pm \sqrt{-76}}{10}=\frac{2 \pm i \sqrt{4} \sqrt{19}}{10}=\frac{1}{5} \pm \frac{i \sqrt{19}}{5}$
REF: 011905aii NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: complex solutions | quadratic formula
365
ANS: 2
$f(x)=f(-x)$
$x^{2}-4=(-x)^{2}-4$
$x^{2}-4=x^{2}-4$
REF: 061806aii NAT: F.BF.B. 3 TOP: Even and Odd Functions
366 ANS: 4
$1.06^{\frac{1}{52}}$
REF: 061924aii
NAT: F.BF.A. 1 TOP: Modeling Exponential Functions
367 ANS: 4
REF: 081912aii
NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions
KEY: mixed
368 ANS: 2

$$
\begin{array}{rlrl}
x^{2}+4 x-1 & =x-3 & y+3=-1 \\
x^{2}+3 x+2 & =0 & y=-4 \\
(x+2)(x+1) & =0 & \\
x & =-2,-1 &
\end{array}
$$

REF: 061801aii NAT: A.REI.C. 7 TOP: Quadratic-Linear Systems
369 ANS: 4
$\frac{5+9}{2}=7$, vertex: $(-2,7) ; p=7-9=-2, y=\frac{1}{4(-2)}(x+2)^{2}+7$

$$
\begin{aligned}
& y-7=\frac{1}{-8}(x+2)^{2} \\
& -8(y-7)=(x+2)^{2}
\end{aligned}
$$

REF: 061821aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions
370 ANS: 3
$x=\frac{-2 \pm \sqrt{2^{2}-4(3)(7)}}{2(3)}=\frac{-2 \pm \sqrt{-80}}{6}=\frac{-2 \pm i \sqrt{16} \sqrt{5}}{6}=-\frac{1}{3} \pm \frac{2 i \sqrt{5}}{3}$
REF: 081809aii NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: complex solutions | quadratic formula

371 ANS: 2

$$
\begin{array}{ccccc}
x+y-z=6 & 2 x+2 y-2 z=12 & 5 y-4 z=31 & 5 y-2(-4)=23 & x+3-(-4)=6 \\
\frac{-x+4 y-z=17}{5 y-2 z=23} & \frac{2 x-3 y+2 z=-19}{5 y-4 z=31} & \frac{5 y-2 z=23}{-2 z=8} & 5 y=15 & x=-1 \\
z=-4 & &
\end{array}
$$

REF: 061923aii NAT: A.REI.C. 6 TOP: Solving Linear Systems
KEY: three variables
372 ANS: 3

$$
\begin{aligned}
x^{2}-4 x-5 & =4 x^{2}-40 x+100 \\
3 x^{2}-36 x+105 & =0 \\
x^{2}-12 x+35 & =0 \\
(x-7)(x-5) & =0 \\
x & =5,7
\end{aligned}
$$

REF: 081807aii NAT: A.REI.A. 2 TOP: Solving Radicals
KEY: extraneous solutions
373 ANS: 2
$x=4 y+5$
$x-5=4 y$
$\frac{1}{4} x-\frac{5}{4}=y$
REF: 061909aii NAT: F.BF.B. 4 TOP: Inverse of Functions
KEY: linear
374 ANS: 4

$$
\left(x^{6} y^{4}-9\right)\left(x^{4}-16\right)
$$

$\left(x^{3} y^{2}+3\right)\left(x^{3} y^{2}-3\right)\left(x^{2}+4\right)\left(x^{2}-4\right)$
REF: 081814aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials KEY: factoring by grouping
ANS: 1

$$
x-\frac{20}{x}=8
$$

$$
x^{2}-8 x-20=0
$$

$$
(x-10)(x+2)=0
$$

$$
x=10,-2
$$

REF: 061916aii
NAT: A.CED.A. 1 TOP: Modeling Rationals

376
ANS: 4
$\log _{2}(x-1)-1=0$

$$
\begin{aligned}
\log _{2}(x-1) & =1 \\
x-1 & =2^{1} \\
x & =3
\end{aligned}
$$

REF: 061819aii NAT: F.IF.C. 7 TOP: Graphing Logarithmic Functions
ANS: 4 REF: 081817aii NAT: F.BF.B. 3 TOP: Transformations with Functions
ANS: 3 REF: 061824aii NAT: A.CED.A. 1 TOP: Modeling Rationals
ANS: 4
$120=68+(195-68) e^{-0.05 t}$

$$
52=127 e^{-0.05 t}
$$

$\ln \frac{52}{127}=\ln e^{-0.05 t}$
$\ln \frac{52}{127}=-0.05 t$
$\frac{\ln \frac{52}{127}}{-0.05}=t$

$$
18 \approx t
$$

REF: 081918aii NAT: F.LE.A. 4 TOP: Exponential Decay
ANS: 2
$1.00643^{12} \approx 1.08$
REF: 081808aii NAT: A.SSE.B. 3 TOP: Modeling Exponential Functions
ANS: 1
REF: 081903ai
NAT: F.LE.A. 2 TOP: Families of Functions
ANS: 1
KEY: geometric

$$
x^{3}+2 x^{2}-9 x-18=0 \quad x^{3}-9 x+2 x^{2}-18=0 \quad x^{3}-9 x+2 x^{2}-18=0
$$

$$
x^{2}(x+2)-9(x+2)=0 x\left(x^{2}-9\right)+2\left(x^{2}-9\right)=0 x\left(x^{2}-9\right)+2\left(x^{2}-9\right)=0
$$

$$
(x+2)\left(x^{2}-9\right)=0
$$

REF: 011903aii NAT: A.APR.B. 3 TOP: Solving Polynomial Equations
ANS: 2
REF: 011804aii
NAT: F.IF.B. 4 TOP: Graphing Trigonometric Functions
ANS: 3
REF: 061906aii
NAT: F.LE.A. 2 TOP: Families of Functions

387
ANS: 3

$$
\begin{aligned}
\frac{2}{3 x+1} & =\frac{1}{x}-\frac{6 x}{3 x+1}-\frac{1}{3} \text { is extraneous. } \\
\frac{6 x+2}{3 x+1} & =\frac{1}{x} \\
6 x^{2}+2 x & =3 x+1 \\
6 x^{2}-x-1 & =0 \\
(2 x-1)(3 x+1) & =0 \\
x & =\frac{1}{2},-\frac{1}{3}
\end{aligned}
$$

REF: 011915aii NAT: A.REI.A. 2 TOP: Solving Rationals
REF: 011820aii NAT: S.IC.A. 2 TOP: Analysis of Data
ANS: 4

$$
w x^{2}+w=0
$$

$w\left(x^{2}+1\right)=0$

$$
\begin{aligned}
x^{2} & =-1 \\
x & = \pm i
\end{aligned}
$$

REF: 061912aii NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: complex solutions | taking square roots
390
ANS: 2

$$
x=\frac{y}{y+2}
$$

$x y+2 x=y$

$$
x y-y=-2 x
$$

$$
y(x-1)=-2 x
$$

$$
y=\frac{-2 x}{x-1}
$$

REF: 081924aii NAT: F.BF.B. 4 TOP: Inverse of Functions KEY: rational
391
ANS: 4
$p(5)=2(5)^{3}-3(5)+5=240$
REF: 011819aii NAT: A.APR.B. 2 TOP: Remainder and Factor Theorems

392 ANS: 3

REF: 011817aii NAT: F.IF.B. 4 TOP: Graphing Polynomial Functions
ANS: 1
2) linear, 3) quadratic, 4) cubic

REF: 061920aii NAT: F.LE.A. 2 TOP: Families of Functions
394 ANS: 4

$$
\begin{aligned}
m^{3}-2 m^{2}+4 m-8 & =0 \\
m^{2}(m-2)+4(m-2) & =0 \\
\left(m^{2}+4\right)(m-2) & =0
\end{aligned}
$$

REF: 081821aii NAT: A.APR.B. 3 TOP: Solving Polynomial Equations
395
ANS: 2
$\frac{85}{210+85}$
REF: 081818aii NAT: S.CP.A. 1 TOP: Venn Diagrams
396
ANS: 1

$$
\begin{gathered}
(2 x-i)^{2}-(2 x-i)(2 x+3 i) \\
(2 x-i)[(2 x-i)-(2 x+3 i)] \\
(2 x-i)(-4 i) \\
-8 x i+4 i^{2} \\
-8 x i-4
\end{gathered}
$$

REF: 011911aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers

397

KEY: percent
ANS: 1
$3 x + 1 \longdiv { 9 x - 1 } \frac { 3 x + 0 x - 2 } { }$

$$
\begin{array}{r}
\frac{9 x^{2}+3 x}{-3 x-2} \\
\frac{-3 x-1}{-1}
\end{array}
$$

REF: 081910aii NAT: A.APR.D. 6 TOP: Rational Expressions KEY: division
$2 x - 1 \longdiv { 1 0 x ^ { 3 } - 3 x ^ { 2 } + 7 x + 3 }$

$$
\begin{aligned}
& \frac{10 x^{3}-5 x^{2}}{2 x^{2}-7 x} \\
& \underline{2 x^{2}-x} \\
& -6 x+3 \\
& -6 x+3
\end{aligned}
$$

REF: 011809aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: division
ANS: 4
1 year $=365$ days
REF: 061823aii NAT: A.SSE.B. 3 TOP: Modeling Exponential Functions

401 ANS: 4
$1+\frac{.009}{12}=1.00075$
REF: 011918aii NAT: A.SSE.B. 3 TOP: Modeling Exponential Functions
402 ANS: 2

REF: 081920aii NAT: A.REI.D. 11 TOP: Other Systems
403 ANS: 2
$y=\frac{1}{2} x+8 \quad x=\frac{1}{2} y+8$

$$
\begin{aligned}
2 x & =y+16 \\
y & =2 x-16
\end{aligned}
$$

REF: 081806aii NAT: F.BF.B. 4 TOP: Inverse of Functions
KEY: linear
404 ANS: 2
$u=x+2 \quad u^{2}+4 u+3$

$$
\begin{gathered}
(u+3)(u+1) \\
(x+2+3)(x+2+1) \\
(x+5)(x+3)
\end{gathered}
$$

REF: 081901aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials
KEY: higher power
REF: 061921ai
NAT: A.APR.B. 3 TOP: Graphing Polynomial Functions
406 ANS: 1
The cosine function has been translated +3 . Since the maximum is 5 and the minimum is 1 , the amplitude is 2 . $\frac{\pi}{3}=\frac{2 \pi}{b}$.
$b=6$

REF: 011913aii
NAT: F.TF.B. 5 TOP: Modeling Trigonometric Functions

407 ANS: 4
(1) quadratic has two roots and both are real $(-2,0)$ and $(-0,5,0)$, (2) $x= \pm \sqrt{32}-3$, (3) the real root is 3 , with a multiplicity of 2, (4) $x= \pm 4 i$

REF: 011909aii NAT: A.REI.B. 4 TOP: Using the Discriminant
KEY: determine nature of roots given equation, graph, table
408 ANS: 4
$(a+b+c)^{2}=a^{2}+a b+a c+a b+b^{2}+b c+a c+a b+c^{2}$

$$
x=a^{2}+b^{2}+c^{2}+2(a b+b c+a c)
$$

$$
x=y+2 z
$$

REF: 061822aii NAT: A.APR.C. 4 TOP: Polynomial Identities
409 ANS: 2
$0.254 \pm 2(0.060) \rightarrow(0.134,0.374)$
REF: 061913aii NAT: S.IC.B. 5 TOP: Analysis of Data
410 ANS: 2

REF: 061817aii NAT: S.ID.A. 4 TOP: Normal Distributions
KEY: probability
411 ANS: 4
REF: 081810aii
NAT: F.BF.A. 2 TOP: Sequences
412 ANS: 2
$S_{20}=\frac{.01-.01(3)^{20}}{1-3}=17,433,922$
REF: 011822aii
NAT: A.SSE.B. 4 TOP: Series
KEY: geometric
413 ANS: 4
$\frac{n}{m}=\frac{\sqrt{a^{5}}}{a}=\frac{a^{\frac{5}{2}}}{a^{\frac{2}{2}}}=a^{\frac{3}{2}}=\sqrt{a^{3}}$
REF: 011811aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents
KEY: variables
414 ANS: 1 REF: 011814aii NAT: A.REI.D. 11 TOP: Other Systems

415 ANS: 4
$x(x-2)\left(\frac{10}{x^{2}-2 x}+\frac{4}{x}=\frac{5}{x-2}\right) 2$ is extraneous.

$$
\begin{gathered}
10+4(x-2)=5 x \\
10+4 x-8=5 x \\
2=x
\end{gathered}
$$

REF: 081915aii NAT: A.REI.A. 2 TOP: Solving Rationals
KEY: rational solutions
416 ANS: 2
$4 x \bullet x^{\frac{2}{3}}+2 x^{\frac{5}{3}}=4 x^{\frac{5}{3}}+2 x^{\frac{5}{3}}=6 x^{\frac{5}{3}}=6 \sqrt[3]{x^{5}}$
REF: 061820aii NAT: N.RN.A. 2 TOP: Operations with Radicals
KEY: with variables, index > 2
417 ANS: 3
$T(19)=8 \sin (0.3(19)-3)+74 \approx 77$
REF: 061922aii NAT: F.IF.B. 4 TOP: Graphing Trigonometric Functions
418 ANS: 3
$8 r^{3}=216 S_{12}=\frac{8-8(3)^{12}}{1-3}=2125760$

$$
\begin{aligned}
r^{3} & =27 \\
r & =3
\end{aligned}
$$

REF: 081902aii NAT: A.SSE.B. 4 TOP: Series KEY: geometric
419 ANS: 3

$$
\begin{aligned}
x^{2}+(2 x)^{2} & =5 \quad y=2 x= \pm 2 \\
x^{2}+4 x^{2} & =5 \\
5 x^{2} & =5 \\
x & = \pm 1
\end{aligned}
$$

REF: 081916aii NAT: A.REI.C. 7 TOP: Quadratic-Linear Systems
ANS: 4
The maximum of p is 5 . The minimum of f is $-\frac{21}{4}\left(x=\frac{-6}{2(4)}=-\frac{3}{4}\right.$
$\left.f\left(-\frac{3}{4}\right)=4\left(-\frac{3}{4}\right)^{2}+6\left(-\frac{3}{4}\right)-3=4\left(\frac{9}{16}\right)-\frac{18}{4}-\frac{12}{4}=-\frac{21}{4}\right) . \frac{20}{4}-\left(-\frac{21}{4}\right)=\frac{41}{4}=10.25$
REF: 011922aii NAT: F.IF.C. 9 TOP: Comparing Functions

421 ANS: 3
$e^{b t}=\frac{c}{a}$
$\ln e^{b t}=\ln \frac{c}{a}$
$b t \ln e=\ln \frac{c}{a}$
$t=\frac{\ln \frac{c}{a}}{b}$
REF: 011813aii NAT: F.LE.A. 4 TOP: Exponential Equations
KEY: without common base
422 ANS: 2 REF: 011910aii NAT: S.IC.B. 3 TOP: Analysis of Data
KEY: bias
423 ANS: 3
$y=x^{3}-2$
$x=y^{3}-2$
$x+2=y^{3}$
$\sqrt[3]{x+2}=y$
REF: 061815aii NAT: F.BF.B. 4 TOP: Inverse of Functions
KEY: polynomial
424 ANS: 1
$\frac{N(10)-N(1)}{10-1} \approx-2.03, \frac{N(20)-N(10)}{20-10} \approx-1.63, \frac{N(25)-N(15)}{25-15} \approx-1.46, \frac{N(30)-N(1)}{30-1} \approx-1.64$
REF: 061807aii NAT: F.IF.B. 6 TOP: Rate of Change
425 ANS: 3

$$
\begin{aligned}
(x+4)^{2}-10 & =3 x+6 \quad y=3(-5)+6=-9 \\
x^{2}+8 x+16-10 & =3 x+6 \quad y=3(0)+6=6 \\
x^{2}+5 x & =0 \\
x(x+5) & =0 \\
x & =-5,0
\end{aligned}
$$

REF: 061903aii NAT: A.REI.C. 7 TOP: Quadratic-Linear Systems
ANS: 4
REF: 011805aii NAT: F.LE.B. 5 TOP: Modeling Exponential Functions

427 ANS: 1
$100\left(\frac{1}{2}\right)^{\frac{d}{8}}=100 e^{k d}$

$$
\left(\frac{1}{2}\right)^{\frac{1}{8}}=e^{k}
$$

$$
k \approx-0.087
$$

REF: 061818aii NAT: F.LE.A. 4 TOP: Exponential Decay
428 ANS: 1
$1240(1.06)^{x}=890(1.11)^{x}$

$$
x \approx 7
$$

REF: 061814aii NAT: A.REI.D. 11 TOP: Other Systems
ANS: 1 REF: 061904aii NAT: F.IF.B. 6 TOP: Rate of Change
430 ANS: 2 REF: 061802aii NAT: F.IF.C. 7 TOP: Graphing Exponential Functions
431 ANS: 2
$P=\frac{2 \pi}{\frac{\pi}{45}}=90$
REF: 081822aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions
KEY: period
432 ANS: 3
$(x+3 i)^{2}-(2 x-3 i)^{2}=x^{2}+6 x i+9 i^{2}-\left(4 x^{2}-12 x i+9 i^{2}\right)=-3 x^{2}+18 x i$
REF: 061805aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers
ANS: 3
$\frac{x^{\frac{2}{3}} \cdot x^{\frac{5}{2}}}{x^{\frac{1}{6}}}=\frac{x^{\frac{4}{6}} \cdot x^{\frac{15}{6}}}{x^{\frac{1}{6}}}=x^{\frac{18}{6}}=x^{3}$
REF: 081812aii NAT: N.RN.A. 2 TOP: Operations with Radicals
KEY: with variables, index > 2
434 ANS: 4
$400 \cdot .954 \approx 380$
REF: 061918aii NAT: S.ID.A. 4 TOP: Normal Distributions
KEY: predict
435
ANS: 3
REF: 011917aii NAT: F.BF.B. 4 TOP: Inverse of Functions
KEY: exponential
REF: 081803aii
NAT: F.BF.A. 1 TOP: Operations with Functions

437 ANS: 1
$-\sqrt{1-\left(-\frac{3}{4}\right)^{2}}=-\sqrt{\frac{16}{16}-\frac{9}{16}}=-\sqrt{\frac{7}{16}}=-\frac{\sqrt{7}}{4}$
REF: 081905aii NAT: F.TF.C. 8 TOP: Determining Trigonometric Functions
ANS: 4 REF: 061907aii NAT: A.APR.B. 2 TOP: Remainder and Factor Theorems ANS: 1
The time of the next high tide will be the midpoint of consecutive low tides.
REF: 011907aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions
KEY: mixed
440
ANS: 3
$2 x^{3}-4 x^{2}-x+\frac{14}{x+6}$
$x + 6 \longdiv { 2 x ^ { 4 } + 8 x ^ { 3 } - 2 5 x ^ { 2 } - 6 x + 1 4 }$
$\underline{2 x^{4}+12 x^{3}}$
$-4 x^{3}-25 x^{2}$
$-4 x^{3}-24 x^{2}$
$-x^{2}-6 x$
$-x^{2}-6 x$

REF: 081805aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: division
441 ANS: 3
$440 \times 2.3 \% \approx 10$
REF: 011807aii NAT: S.ID.A. 4 TOP: Normal Distributions
KEY: predict
442
$5000\left(1+\frac{.035}{12}\right)^{12 \cdot 6} \approx 6166.50$
REF: 081917aii NAT: F.LE.A. 2 TOP: Modeling Exponential Functions

Algebra II 2 Point Regents Exam Questions Answer Section

443 ANS:
A student is more likely to jog if both siblings jog. 1 jogs: $\frac{416}{2239} \approx 0.19$. both jog: $\frac{400}{1780} \approx 0.22$
REF: 061732aii NAT: S.CP.A. 4 TOP: Conditional Probability
ANS:

REF: 011729aii NAT: F.IF.C. 7 TOP: Graphing Polynomial Functions
445 ANS:

$$
\begin{aligned}
\left(x^{\frac{5}{3}}\right)^{\frac{6}{5}} & =\left(y^{\frac{5}{6}}\right)^{\frac{6}{5}} \\
x^{2} & =y
\end{aligned}
$$

REF: 011730aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents
KEY: variables
446 ANS:
Randomly assign participants to two groups. One group uses the toothpaste with ingredient X and the other group uses the toothpaste without ingredient X.

REF: 061626aii NAT: S.IC.B. 3 TOP: Analysis of Data
KEY: type
ANS:
Self selection is a cause of bias because people with more free time are more likely to respond.
REF: 061828aii NAT: S.IC.B. 3 TOP: Analysis of Data
KEY: bias
448
ANS:
Applying the commutative property, $\left(3^{\frac{1}{5}}\right)^{2}$ can be rewritten as $\left(3^{2}\right)^{\frac{1}{5}}$ or $9^{\frac{1}{5}}$. A fractional exponent can be rewritten as a radical with the denominator as the index, or $9^{\frac{1}{5}}=\sqrt[5]{9}$.

REF: 081626aii NAT: N.RN.A. 1 TOP: Radicals and Rational Exponents

449 ANS:
$\frac{306.25-156.25}{70-50}=\frac{150}{20}=7.5$ Between $50-70 \mathrm{mph}$, each additional mph in speed requires 7.5 more feet to stop.
REF: 081631aii NAT: F.IF.B. 6 TOP: Rate of Change
450
ANS:

REF: 011831aii NAT: F.IF.C. 7 TOP: Graphing Polynomial Functions
451 ANS:
Since there are six flavors, each flavor can be assigned a number, 1-6. Use the simulation to see the number of times the same number is rolled 4 times in a row.

REF: 081728aii NAT: S.IC.A. 2 TOP: Analysis of Data
452 ANS:

$$
\begin{gathered}
-6(x+3)\left(\frac{-3}{x+3}-\frac{x}{6}+1=0\right) \\
18+x(x+3)-6(x+3)=0 \\
18+x^{2}+3 x-6 x-18=0 \\
x^{2}-3 x=0 \\
x(x-3)=0 \\
x=0,3
\end{gathered}
$$

REF: 081829aii NAT: A.REI.A. 2 TOP: Solving Rationals
KEY: rational solutions
453 ANS:
Rewrite $\frac{4}{3}$ as $\frac{1}{3} \cdot \frac{4}{1}$, using the power of a power rule.
REF: 081725aii NAT: N.RN.A. 1 TOP: Radicals and Rational Exponents
$a_{1}=12$
$a_{n}=a_{n-1}+6$
REF: 012430aii NAT: F.BF.A. 2 TOP: Sequences

455 ANS:
$(1-i)(1-i)(1-i)=\left(1-2 i+i^{2}\right)(1-i)=-2 i(1-i)=-2 i+2 i^{2}=-2-2 i$
REF: 011725aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers 456 ANS:
$20 e^{.05 t}=30 e^{.03 t}$
$\frac{\frac{2}{3} e^{.05 t}}{e^{.05 t}}=\frac{e^{.03 t}}{e^{.05 t}}$
$\ln \frac{2}{3}=\ln e^{-.02 t}$
$\ln \frac{2}{3}=-.02 t \ln e$
$\frac{\ln \frac{2}{3}}{-.02}=t$
$20.3 \approx t$
REF: 011829aii NAT: A.REI.D. 11 TOP: Other Systems
457 ANS:
$x^{3}-2 x^{2}-9 x+18=x^{2}(x-2)-9(x-2)=\left(x^{2}-9\right)(x-2)=(x+3)(x-3)(x-2)$
REF: 082226aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials
KEY: factoring by grouping
458 ANS:
Light wave C. The periods for A, B, and C are 280, 220 and 320.
REF: 012030aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions
KEY: period
459
ANS:
$\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{-7 / 25}{-24 / 25} \cos \theta=\frac{-24}{25}$
REF: 061928aii NAT: F.TF.C. 8 TOP: Determining Trigonometric Functions

460 ANS:

$$
\begin{aligned}
\sqrt{x-4} & =-x+6 \quad \sqrt{x-4}=-8+6=-2 \text { is extraneous. } \\
x-4 & =x^{2}-12 x+36 \\
0 & =x^{2}-13 x+40 \\
0 & =(x-8)(x-5) \\
x & =5,8
\end{aligned}
$$

REF: 061730aii NAT: A.REI.A. 2 TOP: Solving Radicals
KEY: extraneous solutions
461 ANS:

69
REF: 061726aii NAT: S.ID.A. 4 TOP: Normal Distributions
KEY: percent
462 ANS:
$\frac{x^{\frac{8}{3}}}{x^{\frac{4}{3}}}=x^{y}$
$x^{\frac{4}{3}}=x^{y}$
$\frac{4}{3}=y$
REF: spr1505aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents
KEY: numbers
463
$-\frac{1}{2} i^{3}(3 i-4)-3 i^{2}=-\frac{3}{2} i^{4}+2 i^{3}-3 i^{2}=-\frac{3}{2}-2 i+3=\frac{3}{2}-2 i$
REF: 081927aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers
464 ANS:
$\frac{-1}{\sqrt{2^{2}+(-1)^{2}}}=-\frac{1}{\sqrt{5}}$
REF: 061832aii NAT: F.TF.A. 2 TOP: Determining Trigonometric Functions KEY: extension to reals

465 ANS:
Let x equal the first integer and $x+1$ equal the next. $(x+1)^{2}-x^{2}=x^{2}+2 x+1-x^{2}=2 x+1.2 x+1$ is an odd integer.

REF: fall1511aii NAT: A.APR.C. 4 TOP: Polynomial Identities
466 ANS:
$a_{1}=3 \quad a_{2}=7 \quad a_{3}=15 \quad a_{4}=31 ;$ No, because there is no common ratio: $\frac{7}{3} \neq \frac{15}{7}$
REF: 061830aii NAT: F.BF.A. 2 TOP: Sequences
467

REF: 011932aii NAT: F.IF.C. 7 TOP: Graphing Logarithmic Functions
ANS:
Using a 95\% level of confidence, $x \pm 2$ standard deviations sets the usual wait time as 150-302 seconds. 360 seconds is unusual.

REF: 081629aii NAT: S.IC.B. 6 TOP: Analysis of Data
469 ANS:

$$
\begin{aligned}
g(3)=0 ; \quad 0 & =3^{3}+a(3)^{2}-5(3)+6 \\
0 & =27+9 a-15+6 \\
-18 & =9 a \\
a & =-2
\end{aligned}
$$

REF: 062328aii NAT: A.APR.B. 2 TOP: Remainder and Factor Theorems

470 ANS:

$$
\begin{aligned}
t^{2}+\left(\frac{4}{7}\right)^{2} & =1 \quad-\frac{\sqrt{33}}{7} \\
t^{2}+\frac{16}{49} & =\frac{49}{49} \\
t^{2} & =\frac{33}{49} \\
t & =\frac{ \pm \sqrt{33}}{7}
\end{aligned}
$$

REF: 011931aii NAT: F.TF.A. 2 TOP: Unit Circle
471 ANS:

$$
\begin{gathered}
-x\left(2 x^{3}-x^{2}-18 x+9\right) \\
-x\left(x^{2}(2 x-1)-9(2 x-1)\right) \\
-x\left(x^{2}-9\right)(2 x-1) \\
-x(x+3)(x-3)(2 x-1)
\end{gathered}
$$

REF: 062228aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials
KEY: factoring by grouping
472 ANS:
$\frac{9}{6}=1.5 \quad a_{1}=6$

$$
a_{n}=1.5 \cdot a_{n-1}
$$

REF: 061931aii NAT: F.BF.A. 1 TOP: Sequences KEY: recursive
473 ANS:
$2 x^{3}-3 x^{2}-18 x+27$
$x^{2}(2 x-3)-9(2 x-3)$

$$
\left(x^{2}-9\right)(2 x-3)
$$

$(x+3)(x-3)(2 x-3)$
REF: 082325aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials
474 ANS:
$F(t)=169.136(.971)^{t}$
REF: 062232aii NAT: S.ID.B. 6 TOP: Regression KEY: exponential

475 ANS:
$f(4)=2(4)^{3}-5(4)^{2}-11(4)-4=128-80-44-4=0$ Any method that demonstrates 4 is a zero of $f(x)$ confirms

that $x-4$ is a factor, as suggested by the Remainder Theorem.
REF: spr1507aii NAT: A.APR.B. 2 TOP: Remainder and Factor Theorems
476 ANS:
$250(1)+2450=2700$ The maximum lung capacity of a person is 2700 mL .
REF: 081928aii NAT: F.IF.B. 4 TOP: Graphing Trigonometric Functions
477 ANS:
$\frac{x \cdot x^{\frac{3}{2}}}{x^{\frac{5}{3}}}=\frac{x^{\frac{6}{6}} \cdot x^{\frac{9}{6}}}{x^{\frac{10}{6}}}=x^{\frac{5}{6}}$
REF: 082331aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents
478 ANS:
$P(S \cap M)=P(S)+P(M)-P(S \cup M)=\frac{649}{1376}+\frac{433}{1376}-\frac{974}{1376}=\frac{108}{1376}$
REF: 061629aii NAT: S.CP.B. 7 TOP: Theoretical Probability
479 ANS:
The expression is of the form $y^{2}-5 y-6$ or $(y-6)(y+1)$. Let $y=4 x^{2}+5 x$:
$\left(4 x^{2}+5 x-6\right)\left(4 x^{2}+5 x+1\right)$
$(4 x-3)(x+2)(4 x+1)(x+1)$
REF: fall1512aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials
KEY: $a>1$
480 ANS:

$$
\begin{aligned}
\frac{63}{189}=\frac{1}{3} \quad a_{1} & =189 \\
a_{n} & =\frac{1}{3} a_{n-1}
\end{aligned}
$$

REF: 062329aii NAT: F.BF.A. 1 TOP: Sequences KEY: recursive

481 ANS:

$$
\begin{aligned}
\left(x^{2}+y^{2}\right)^{2} & =\left(x^{2}-y^{2}\right)^{2}+(2 x y)^{2} \\
x^{4}+2 x^{2} y^{2}+y^{4} & =x^{4}-2 x^{2} y^{2}+y^{4}+4 x^{2} y^{2} \\
x^{4}+2 x^{2} y^{2}+y^{4} & =x^{4}+2 x^{2} y^{2}+y^{4}
\end{aligned}
$$

REF: 081727aii NAT: A.APR.C. 4 TOP: Polynomial Identities
482 ANS:
$r(2)=-6$. Since there is a remainder when the cubic is divided by $x-2$, this binomial is not a factor.

2 \begin{tabular}{r}
1

1

-4 \& -2 \& -4 \& 0

\hline
\end{tabular}

REF: 061725aii NAT: A.APR.B. 2 TOP: Remainder and Factor Theorems
483
ANS:

$$
(a+b)^{3}=a^{3}+b^{3} \quad \text { No. Erin's shortcut only works if } a=0, b=0 \text { or } a=-b .
$$

$a^{3}+3 a^{2} b+3 a b^{2}+b^{3}=a^{3}+b^{3}$

$$
\begin{aligned}
3 a b^{2}+3 a^{2} b & =0 \\
3 a b(b+a) & =0 \\
a & =0, b=0, a=-b
\end{aligned}
$$

REF: 011927aii NAT: A.APR.C. 4 TOP: Polynomial Identities
484 ANS:
$x^{3}+4 x^{2}-9 x-36=x^{2}(x+4)-9(x+4)=\left(x^{2}-9\right)(x+4)=(x+3)(x-3)(x+4)$
REF: 012425aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials
485 ANS:

$$
\begin{aligned}
2 x^{2}-7 x+4 & =11-2 x \quad y=11-2\left(\frac{7}{2}\right)=4 \quad\left\{\left(\frac{7}{2}, 4\right),(-1,13)\right\} \\
2 x^{2}-5 x-7 & =0 \quad y=11-2(-1)=13 \\
(2 x-7)(x+1) & =0 \\
x & =\frac{7}{2},-1
\end{aligned}
$$

REF: 082232aii
NAT: A.REI.C. 7 TOP: Quadratic-Linear Systems
486 ANS:

$$
\begin{aligned}
x^{2}+8 x-5 & =8 x-4 \\
x^{2}-1 & =0 \\
x & = \pm 1
\end{aligned}
$$

REF: 082326aii NAT: A.REI.C. 7 TOP: Quadratic-Linear Systems

487 ANS:

REF: 012032aii
NAT: F.IF.C. 7
488 ANS:
$\left(\frac{y^{\frac{17}{8}}}{y^{\frac{10}{8}}}\right)^{-4}=y^{n} \quad n=-\frac{7}{2}$

$$
\left(y^{\frac{7}{8}}\right)^{-4}=y^{n}
$$

$$
y^{-\frac{7}{2}}=y^{n}
$$

REF: 082228aii NAT: A.APR.D. 6 TOP: Expressions with Negative Exponents KEY: variables
ANS:

REF: 061927aii NAT: F.IF.C. 7 TOP: Graphing Logarithmic Functions
490
ANS:
$P(A+B)=P(A) \cdot P(B \mid A)=0.8 \cdot 0.85=0.68$
REF: 011928aii NAT: S.CP.A. 3 TOP: Conditional Probability

491 ANS:
The denominator of the rational exponent represents the index of a root, and the 4 th root of 81 is 3 and 3^{3} is 27 .
REF: 011832aii NAT: N.RN.A. 1 TOP: Radicals and Rational Exponents
492 ANS:
$x=\frac{-5 \pm \sqrt{5^{2}-4(3)(8)}}{2(3)}=-\frac{5}{6} \pm \frac{i \sqrt{71}}{6}$

REF: 082327aii NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: complex solutions | quadratic formula
ANS:
$\frac{103}{110+103}=\frac{103}{213}$
REF: 061825aii NAT: S.CP.A. 4 TOP: Conditional Probability
494 ANS:
No, because $P(M / R) \neq P(M)$

$$
\begin{aligned}
& \frac{70}{180} \neq \frac{230}{490} \\
& 0.38 \neq 0.47
\end{aligned}
$$

REF: 011731aii NAT: S.CP.A. 4 TOP: Conditional Probability 495 ANS:
$0<e^{\frac{\left(\ln \frac{1}{2}\right)}{1590}}<1$, so $M(t)$ represents decay.
REF: 011728aii NAT: F.IF.C. 7 TOP: Graphing Exponential Functions 496 ANS:
$r=\frac{360}{300}=1.2 S_{n}=\frac{300-300(1.2)^{n}}{1-1.2} S_{10}=\frac{300-300(1.2)^{10}}{1-1.2} \approx 7787.6$

REF: 012029aii NAT: A.SSE.B. 4 TOP: Series KEY: geometric 497 ANS:

REF: 081732aii NAT: A.APR.B. 3 TOP: Graphing Polynomial Functions

REF: 062231aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions
KEY: graph
ANS:
p is the distance from the focus to the vertex: $8-7=1 . p$ is the distance from the directrix to the vertex:
$1=7-d . y=6$
$d=6$
REF: 082330aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions
ANS:
$a_{1}=4 \quad a_{8}=639$
$a_{n}=2 a_{n-1}+1$

REF: 081729aii NAT: F.BF.A. 1 TOP: Sequences KEY: recursive
ANS:
$x=\frac{-5 \pm \sqrt{5^{2}-4(2)(8)}}{2(2)}=-\frac{5}{4} \pm \frac{i \sqrt{39}}{4}$
REF: 061827aii NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: complex solutions | quadratic formula
502
ANS:
$\sqrt{4 x+1}=11-x \quad 20$ is extraneous.

$$
\begin{aligned}
4 x+1 & =121-22 x+x^{2} \\
0 & =x^{2}-26 x+120 \\
0 & =(x-6)(x-20) \\
x & =6,20
\end{aligned}
$$

REF: 082227aii NAT: A.REI.A. 2 TOP: Solving Radicals
KEY: extraneous solutions

503
ANS:
$P(W / D)=\frac{P\left(W^{\wedge} D\right)}{P(D)}=\frac{.4}{.5}=.8$
REF: 081726aii NAT: S.CP.B. 6 TOP: Conditional Probability
504 ANS:
$\frac{10.1--2}{2}-\frac{2.5--0.1}{2}=6.05-1.3=4.75$
REF: 081930aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions
KEY: amplitude
505
ANS:
$\left(x^{2}-6\right)\left(x^{2}+2\right)$
REF: 081825aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials
KEY: higher power
506 ANS:
$\sqrt[3]{x} \cdot \sqrt{x}=x^{\frac{1}{3}} \cdot x^{\frac{1}{2}}=x^{\frac{2}{6}} \cdot x^{\frac{3}{6}}=x^{\frac{5}{6}}$
REF: 061731aii NAT: N.RN.A. 2 TOP: Operations with Radicals
KEY: with variables, index > 2
507 ANS:
$\frac{2 x^{\frac{3}{2}}}{2 x^{\frac{2}{2}}}=x^{\frac{1}{2}}=\sqrt{x}$
REF: 081826aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents
KEY: variables
508
ANS:
$\frac{1}{x}-\frac{1}{3}=-\frac{1}{3 x}$
$\frac{3-x}{3 x}=-\frac{1}{3 x}$
$3-x=-1$
$x=4$

REF: 061625aii NAT: A.REI.A. 2 TOP: Solving Rationals
KEY: rational solutions
509
ANS:
$x^{2}(4 x-1)+4(4 x-1)=\left(x^{2}+4\right)(4 x-1)$
REF: 061727aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials
KEY: factoring by grouping

510 ANS:
$a^{x+1}=a^{\frac{2}{3}}$
$x+1=\frac{2}{3}$

$$
x=-\frac{1}{3}
$$

REF: 012326aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents
511 ANS:

$$
\begin{aligned}
x^{2}+(x-28)^{2} & =400 \quad y=12-28=-16 \quad y=16-28=-12 \\
x^{2}+x^{2}-56 x+784 & =400 \\
2 x^{2}-56 x+384 & =0 \\
x^{2}-28 x+192 & =0 \\
(x-16)(x-12) & =0 \\
x & =12,16
\end{aligned}
$$

REF: 081831aii NAT: A.REI.C. 7 TOP: Quadratic-Linear Systems
512 ANS:

$$
\begin{gathered}
x^{4}-5 x^{2}+4 \\
\left(x^{2}-4\right)\left(x^{2}-1\right) \\
(x+2)(x-2)(x+1)(x-1)
\end{gathered}
$$

REF: 012331aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials
513 ANS:
Amplitude, because the height of the graph shows the volume of the air.
REF: 081625aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions
KEY: mixed
514 ANS:
$\frac{1}{3} \times \frac{5}{12}=\frac{5}{36}$
REF: 012327aii NAT: S.CP.A. 2 TOP: Probability of Compound Events KEY: probability

515 ANS:
$\frac{x^{3}+9}{x^{3}+8}=\frac{x^{3}+8}{x^{3}+8}+\frac{1}{x^{3}+8}$
$\frac{x^{3}+9}{x^{3}+8}=\frac{x^{3}+9}{x^{3}+8}$
REF: 061631aii NAT: A.APR.D. 7 TOP: Addition and Subtraction of Rationals
516 ANS:
$0.133696 \times 9256 \approx 1237$
REF: 082230aii NAT: S.ID.A. 4 TOP: Normal Distributions
KEY: predict
517 ANS:

REF: 081830aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions
KEY: graph
518
$\frac{1}{8}+\frac{1}{6}=\frac{1}{t_{b}} ; \frac{24 t_{b}}{8}+\frac{24 t_{b}}{6}=\frac{24 t_{b}}{t_{b}}$

$$
\begin{aligned}
3 t_{b}+4 t_{b} & =24 \\
t_{b} & =\frac{24}{7} \approx 3.4
\end{aligned}
$$

REF: 011827aii NAT: A.REI.A. 2 TOP: Solving Rationals
519 ANS:
Based on these data, the two events do not appear to be independent. $P(F)=\frac{106}{200}=0.53$, while $P(F \mid T)=\frac{54}{90}=0.6, P(F \mid R)=\frac{25}{65}=0.39$, and $P(F \mid C)=\frac{27}{45}=0.6$. The probability of being female are not the same as the conditional probabilities. This suggests that the events are not independent.

REF: fall1508aii NAT: S.CP.A. 4 TOP: Conditional Probability

520 ANS:
$\sqrt[3]{81}=\sqrt[3]{3^{4}}=3^{\frac{4}{3}} \quad a=\frac{4}{3}$
REF: 062230aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents
KEY: variables
521 ANS:
sample: pails of oranges; population: truckload of oranges. It is likely that about 5\% of all the oranges are unsatisfactory.

REF: 011726aii NAT: S.IC.A. 2 TOP: Analysis of Data
522 ANS:
$x - 2 \longdiv { 3 x + 1 3 } 3 x ^ { 2 } + 7 x - 2 0 \quad 3 x + 1 3 + \frac { 6 } { x - 2 }$
$3 x^{2}-6 x$
$13 x-20$
$\underline{13 x-26}$
6

REF: 011732aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: division
523 ANS:
The denominator of the rational exponent represents the index of a root, and the numerator of the rational exponent represents the power of the base. $(\sqrt{9})^{5}=243$

REF: 081926aii NAT: N.RN.A. 1 TOP: Radicals and Rational Exponents
524 ANS:
$j(-x)=(-x)^{4}-3(-x)^{2}-4=x^{2}-3 x^{2}-4$ Since $j(x)=j(-x)$, the function is even.
REF: 081731aii NAT: F.BF.B. 3 TOP: Even and Odd Functions
525 ANS:
Translation 3 units right and 4 units up
REF: 012027aii NAT: F.IF.C. 7 TOP: Graphing Exponential Functions

526 ANS:

$$
\begin{aligned}
\frac{7}{2 x}-\frac{2}{x+1} & =\frac{1}{4} \\
\frac{7 x+7-4 x}{2 x^{2}+2 x} & =\frac{1}{4} \\
2 x^{2}+2 x & =12 x+28 \\
x^{2}-5 x-14 & =0 \\
(x-7)(x+2) & =0 \\
x & =7,-2
\end{aligned}
$$

REF: 061926aii NAT: A.REI.A. 2 TOP: Solving Rationals
KEY: rational solutions
527 ANS:

$$
\begin{aligned}
A & =P e^{r t} \\
135000 & =100000 e^{5 r} \\
1.35 & =e^{5 r} \\
\ln 1.35 & =\ln e^{5 r} \\
\ln 1.35 & =5 r \\
.06 & \approx r \text { or } 6 \%
\end{aligned}
$$

REF: 061632aii NAT: F.LE.A. 4 TOP: Exponential Growth
528 ANS:
$\ln e^{0.49 x}=\ln 7.5$

$$
\begin{aligned}
0.49 x & =\ln 7.5 \\
x & =\frac{\ln 7.5}{0.49} \approx 4.112
\end{aligned}
$$

REF: 062330aii NAT: F.LE.A. 4 TOP: Exponential Equations
KEY: without common base
ANS:
No. $\left(\sqrt[7]{x^{2}}\right)\left(\sqrt[5]{x^{3}}\right)=x^{\frac{2}{7}} \cdot x^{\frac{3}{5}}=x^{\frac{31}{35}}=\sqrt[35]{x^{31}}$
REF: 061929aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents
KEY: variables

530 ANS:

The vertex of the parabola is $(4,-3)$. The x-coordinate of the focus and the vertex is the same. Since the distance from the vertex to the directrix is 3 , the distance from the vertex to the focus is 3 , so the y-coordinate of the focus is 0 . The coordinates of the focus are $(4,0)$.

REF: 061630aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions
531 ANS:
No. $0.852 \pm 2(0.029) \rightarrow 0.794-0.91$. 0.88 falls within this interval.
REF: 062332aii NAT: S.IC.A. 2 TOP: Analysis of Data
532

	DECA ${ }^{\text {a }}$ X
normCdf($690,900,680,120$)	0.433417
1	

REF: 012328aii NAT: S.ID.A. 4 TOP: Normal Distributions
KEY: percent
533 ANS:
$\left(2 x i^{3}-3 y\right)^{2}=4 x^{2} i^{6}-12 x y i^{3}+9 y^{2}=-4 x^{2}+12 x y i+9 y^{2}$
REF: 012431aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers
ANS:

$$
\begin{gathered}
\left(x^{3}+2 x-1\right)\left(x^{2}+7\right)-3\left(x^{4}-5 x\right) \\
x^{5}+7 x^{3}+2 x^{3}+14 x-x^{2}-7-3 x^{4}+15 x \\
x^{5}-3 x^{4}+9 x^{3}-x^{2}+29 x-7
\end{gathered}
$$

REF: 012330aii NAT: F.BF.A. 1 TOP: Operations with Functions
ANS:
$P(-2)=60 Q(-2)=0(x+2)$ is a factor of $Q(x)$ since $Q(-2)=0$.
REF: 081929aii NAT: A.APR.B. 2 TOP: Remainder and Factor Theorems

536 ANS:
$a_{1}=4$
$a_{n}=3 a_{n-1}$
REF: 081931aii NAT: F.BF.A. 1 TOP: Sequences KEY: recursive
537 ANS:
$2(0.042)=0.084 \approx 0.08$ The percent of users making in-app purchases will be within 8% of 35%.
REF: 081832aii NAT: S.IC.B. 4 TOP: Analysis of Data
538 ANS:
period is $\frac{2}{3}$. The wheel rotates once every $\frac{2}{3}$ second.
REF: 061728aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions
KEY: period
539 ANS:
$3 x+7=x^{2}-2 x+1 \quad-1$ is extraneous.

$$
0=x^{2}-5 x-6
$$

$$
0=(x-6)(x+1)
$$

$$
x=6,-1
$$

REF: 062326aii NAT: A.REI.A. 2 TOP: Solving Radicals
KEY: extraneous solutions
540
ANS:
$i^{2}=-1$, and not $1 ; 10+10 i$
REF: 011825aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers
ANS:
$B(t)=100(2)^{\frac{t}{30}}$
REF: 012031aii NAT: F.BF.A. 1 TOP: Modeling Exponential Functions
542
$\frac{V(7)-V(2)}{7-2} \approx 48$
REF: 012427aii NAT: F.IF.B. 6 TOP: Rate of Change

543 ANS:
$\frac{\sqrt[3]{x^{2} y^{5}}}{\sqrt[4]{x^{3} y^{4}}}=\frac{x^{\frac{2}{3}} y^{\frac{5}{3}}}{x^{\frac{3}{4}} y}=\frac{x^{\frac{8}{12}} y^{\frac{20}{12}}}{x^{\frac{9}{12}} y^{\frac{12}{12}}}=x^{-\frac{1}{12}} y^{\frac{2}{3}}$
REF: 011925aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents
KEY: variables
544 ANS:
$\left(\frac{1}{\sqrt[3]{y^{2}}}\right) y^{4}=\frac{y^{\frac{12}{3}}}{y^{\frac{2}{3}}}=y^{\frac{10}{3}} \quad n=\frac{10}{3}$
REF: 012428aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents
545 ANS:
No. $0.499 \pm 2(0.049) \rightarrow 0.401-0.597$. Since 0.43 falls within this interval, Robin's coin is likely not unfair.
REF: 061932aii NAT: S.IC.A. 2 TOP: Analysis of Data
546 ANS:
$S_{10}=\frac{15-15(1.03)^{10}}{1-1.03} \approx 171.958$
REF: 011929aii NAT: A.SSE.B. 4 TOP: Series KEY: geometric
547 ANS:
$\frac{x^{2}(2 x+1)-9(2 x+1)}{x(3-x)}=\frac{\left(x^{2}-9\right)(2 x+1)}{x(3-x)}=\frac{(x+3)(x-3)(2 x+1)}{x(3-x)}=\frac{(x+3)(2 x+1)}{-x}$
REF: 062331ai NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: factoring
548 ANS:
$D=1.223(2.652)^{A}$
REF: 011826aii NAT: S.ID.B. 6 TOP: Regression KEY: exponential
549 ANS:

REF: 011926aii NAT: F.IF.C. 7 TOP: Graphing Polynomial Functions

550 ANS:
$(4-3 i)(5+2 y i-5+2 y i)$
$(4-3 i)(4 y i)$
$16 y i-12 y i^{2}$
$12 y+16 y i$
REF: spr1506aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers 551 ANS:

Pick random names from a list of all students and ask each one his method.
REF: 062325aii NAT: S.IC.B. 3 TOP: Analysis of Data
552 ANS:
$\pi<\theta<2 \pi \rightarrow$ Quadrant III or IV θ must be in Quadrant IV, where $\tan \theta$ is negative.
$\cos \theta=\frac{\sqrt{3}}{4} \rightarrow$ Quadrant I or IV
REF: 012332aii NAT: F.TF.A. 2 TOP: Finding the Terminal Side of an Angle
553 ANS:

REF: 081932aii NAT: A.REI.D. 11 TOP: Other Systems
554 ANS:
No, because $P(F / C R) \neq P(F)$

$$
\begin{aligned}
\frac{36}{42+36} & \neq \frac{17+37+36+15}{39+17+42+12+17+37+36+15} \\
\frac{36}{78} & \neq \frac{105}{215} \\
\frac{6}{13} & \neq \frac{21}{43}
\end{aligned}
$$

REF: 082231aii NAT: S.CP.A. 4 TOP: Conditional Probability

555 ANS:
$S_{5}=\frac{6-6(.8)^{5}}{1-.8} \approx 20.17$
REF: 062226aii NAT: A.SSE.B. 4 TOP: Series KEY: geometric
556 ANS:
$\left(5 x i^{3}-4 i\right)^{2}=(-5 x i-4 i)^{2}=25 x^{2} i^{2}+40 x i^{2}+16 i^{2}=-25 x^{2}-40 x-16$
REF: 082329aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers
557 ANS:

REF: 061826aii NAT: F.IF.C. 7 TOP: Graphing Polynomial Functions
558 ANS:

$$
\begin{aligned}
& -2 x+1=-2 x^{2}+3 x+1 \\
& 2 x^{2}-5 x=0 \\
& x(2 x-5)=0 \\
& x=0, \frac{5}{2}
\end{aligned}
$$

REF: fall1507aii NAT: A.REI.C. 7 TOP: Quadratic-Linear Systems

559
ANS:
$x=(y-3)^{3}+1$
$x-1=(y-3)^{3}$
$\sqrt[3]{x-1}=y-3$
$\sqrt[3]{x-1}+3=y$
$f^{-1}(x)=\sqrt[3]{x-1}+3$
REF: fall1509aii NAT: F.BF.B. 4 TOP: Inverse of Functions
KEY: polynomial
560 ANS:
$\cos A=\frac{\cos A}{\sin A}$
$-3=\frac{\frac{3}{\sqrt{10}}}{\sin A}$
$\sin A=\frac{3}{-3 \sqrt{10}}=-\frac{1}{\sqrt{10}}$
REF: 082229aii NAT: F.TF.C. 8 TOP: Determining Trigonometric Functions

$x - 5 \longdiv { 2 x ^ { 3 } - 4 x ^ { 2 } - 7 x - 1 0 }$ Since there is a remainder, $x-5$ is not a factor.

$$
\underline{2 x^{3}-10 x^{2}}
$$

$$
6 x^{2}-7 x
$$

$$
6 x^{2}-30 x
$$

$$
23 x-10
$$

$$
\underline{23 x-115}
$$

105
REF: 061627aii NAT: A.APR.B. 2 TOP: Remainder and Factor Theorems

562 ANS:
$P(A \cup B)=P(A)+P(B)-P(A \cap B) A$ and B are independent since $P(A \cap B)=P(A) \cdot P(B)$
$0.8=0.6+0.5-P(A \cap B)$
$0.3=0.6 \cdot 0.5$
$P(A \cap B)=0.3$
$0.3=0.3$
REF: 081632aii NAT: S.CP.A. 2 TOP: Probability of Compound Events
KEY: independence
ANS:

$$
\begin{aligned}
\sqrt{x-5} & =-x+7 \quad \sqrt{x-5}=-9+7=-2 \text { is extraneous. } \\
x-5 & =x^{2}-14 x+49 \\
0 & =x^{2}-15 x+54 \\
0 & =(x-6)(x-9) \\
x & =6,9
\end{aligned}
$$

REF: spr1508aii NAT: A.REI.A. 2 TOP: Solving Radicals
KEY: extraneous solutions
564
ANS:
$\sin ^{2} \theta+(-0.7)^{2}=1 \quad$ Since θ is in Quadrant II, $\sin \theta=\sqrt{.51}$ and $\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{\sqrt{.51}}{-0.7} \approx-1.02$

$$
\begin{aligned}
\sin ^{2} \theta & =.51 \\
\sin \theta & = \pm \sqrt{.51}
\end{aligned}
$$

REF: 081628aii NAT: F.TF.C. 8 TOP: Determining Trigonometric Functions
$y=2.459(1.616)^{x}$
REF: 012329aii NAT: S.ID.B. 6 TOP: Regression KEY: exponential
566
$1200 \cdot 0.784 \approx 941$
REF: 081828aii NAT: S.ID.A. 4 TOP: Normal Distributions
KEY: predict

ANS:
$3 x^{3}+x^{2}+3 x y+y=x^{2}(3 x+1)+y(3 x+1)=\left(x^{2}+y\right)(3 x+1)$
REF: 011828aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials
KEY: factoring by grouping
ANS:
$\csc \theta=\frac{1}{\sin \theta}$, and $\sin \theta$ on a unit circle represents the y value of a point on the unit circle. Since $y=\sin \theta$, $\csc \theta=\frac{1}{y}$.

REF: 011727aii NAT: F.TF.A. 2 TOP: Reciprocal Trigonometric Relationships
569 $b^{2}-4 a c=(-4)^{2}-4(1)(13)=16-52=-36$ imaginary

REF: 062225aii NAT: A.REI.B. 4 TOP: Using the Discriminant KEY: determine nature of roots given equation, graph, table
ANS:

$$
\begin{aligned}
& \frac{2 a^{2}+5 a+2}{3 a-2} \begin{array}{l}
\frac{6 a^{3}+11 a^{2}-4 a-9}{} 2 a^{2}+5 a+2-\frac{5}{3 a-2} \\
\frac{6 a^{3}-4 a^{2}}{15 a^{2}-4 a} \\
\underline{15 a^{2}-10 a}
\end{array}
\end{aligned}
$$

$$
6 a-9
$$

$$
\underline{6 a-4}
$$

$$
-5
$$

REF: 061829aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: division
571

REF: 061628aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions KEY: graph

572 ANS:
$\frac{p(x)}{x-1}=x^{2}+7+\frac{5}{x-1}$
$p(x)=x^{3}-x^{2}+7 x-7+5$
$p(x)=x^{3}-x^{2}+7 x-2$
REF: 061930aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: division
573 ANS:
$m(3)=3^{3}-3^{2}-5(3)-3=27-9-15-3=0$ Since $m(3)=0$, there is no remainder when $m(x)$ is divided by $x-3$, and so $x-3$ is a factor.

REF: 012026aii NAT: A.APR.B. 2 TOP: Remainder and Factor Theorems
574 ANS:
q has the smaller minimum value for the domain $[-2,2]$. h 's minimum is $-1(2(-1)+1)$ and q 's minimum is -8 .
REF: 011830aii NAT: F.IF.C. 9 TOP: Comparing Functions
575 ANS:

REF: 012429aii NAT: S.ID.A. 4 TOP: Normal Distributions
KEY: percent
576 ANS:
$4 \% 8.75=1.25(1+r)^{49}$ or $8.75=1.25 e^{49 r}$

$$
\begin{array}{rlrl}
7 & =(1+r)^{49} & \ln 7 & =\ln e^{49 r} \\
r+1 & =\sqrt[49]{7} & \ln 7 & =49 r \\
r & \approx .04 & r & =\frac{\ln 7}{49} \\
r & \approx .04
\end{array}
$$

REF: 081730aii NAT: F.LE.A. 4 TOP: Exponential Growth
577 ANS:
$e^{0.0532}>1$, so $P(t)$ is increasing.
REF: 062327aii NAT: F.IF.C. 7 TOP: Graphing Exponential Functions

578 ANS:
$\frac{P(10.5)-P(0)}{10.5-0} \approx 10.76$ fruit flies per day
REF: 082332aii NAT: F.IF.B. 6 TOP: Rate of Change
579
ANS:

Since -4 is a zero, $x+4$ is a factor.
REF: 012426aii NAT: A.APR.B. 2 TOP: Remainder and Factor Theorems
580 ANS:
$M=\frac{(152500-15250)\left(\frac{.036}{12}\right)\left(1+\frac{.036}{12}\right)^{360}}{\left(1+\frac{.036}{12}\right)^{360}-1} \approx 624$
REF: 061831aii NAT: F.IF.B. 4 TOP: Evaluating Exponential Expressions
581 ANS:
$\left(p^{2} n^{\frac{1}{2}}\right)^{8} \sqrt{p^{5} n^{4}}=\left(p^{16} n^{4}\right) p^{2} n^{2} \sqrt{p}=p^{18} n^{6} \sqrt{p}$

REF: 012025aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents
ANS:
$\frac{B(11)-B(8)}{11-8} \approx-10.1$ The average monthly high temperature decreases 10.1° each month from August to November.

REF: 011930aii NAT: F.IF.B. 6 TOP: Rate of Change

583 ANS:

REF: 061729aii NAT: F.IF.C. 7 TOP: Graphing Exponential Functions
584 ANS:
About $38 \%\left(\frac{475}{1250}\right)$ of high school juniors in the population will choose a four-year college.
REF: 012432aii NAT: S.IC.A. 2 TOP: Analysis of Data
585
ANS:
$\xrightarrow[-5]{\frac{\pi}{2}}$
REF: 082328aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions KEY: graph
586
ANS:

vertex (3,6), focus (3,1), $p=5$, directrix $y=6+5=11$
REF: 012028aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions

587 ANS:
$\frac{13.9-9.4}{4-1}=1.5$ The average rate of change in the number of hours of daylight from January 1-April 1 is 1.5.
REF: 061925aii NAT: F.IF.B. 6 TOP: Rate of Change
588 ANS:
Yes. $\quad P(\mathrm{Bl})=P(\mathrm{Bl} \mid \mathrm{Gl})$
$0.14+0.26=\frac{.14}{.35}$

$$
.4=.4
$$

REF: 062229aii NAT: S.CP.A. 4 TOP: Conditional Probability
589 ANS:
$x i(-6 i)^{2}=x i\left(36 i^{2}\right)=36 x i^{3}=-36 x i$
REF: 081627aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers

REF: fall1510aii NAT: A.REI.D. 11 TOP: Other Systems
$\frac{p(8)-p(4)}{8-4} \approx 48.78$
REF: 081827aii NAT: F.IF.B. 6 TOP: Rate of Change
$0=\log _{10}(x-4)$ The x-intercept of h is $(2,0) . f$ has the larger value.

$$
\begin{aligned}
10^{0} & =x-4 \\
1 & =x-4 \\
x & =5
\end{aligned}
$$

REF: 081630aii NAT: F.IF.C. 9 TOP: Comparing Functions

593 ANS:
$\frac{3}{n}=\frac{2}{n^{2}} \quad 0$ is an extraneous solution.

$$
3 n^{2}=2 n
$$

$3 n^{2}-2 n=0$
$n(3 n-2)=0$

$$
n=0, \frac{2}{3}
$$

REF: 062227aii NAT: A.REI.A. 2 TOP: Solving Rationals
594 ANS:
$\frac{165+66-33}{825}=\frac{198}{825}$
REF: 081925aii NAT: S.CP.B. 6 TOP: Conditional Probability
595 ANS:

$$
\begin{aligned}
3\left(x^{3}+4 x^{2}-x-4\right) & =0 \\
\left(x^{2}(x+4)-(x+4)\right) & =0 \\
\left(x^{2}-1\right)(x+4) & =0 \\
x & = \pm 1,-4
\end{aligned}
$$

REF: 012325aii NAT: A.APR.B. 3 TOP: Solving Polynomial Equations 596 ANS:

$$
\frac{60-20}{4-2}=\frac{40}{2}=20
$$

REF: 082225aii NAT: F.IF.B. 6 TOP: Rate of Change

Algebra II 4 Point Regents Exam Questions Answer Section

597 ANS:
$0.506 \pm 2 \cdot 0.078=0.35-0.66$. The 32.5% value falls below the 95% confidence level.
REF: 061736aii NAT: S.IC.B. 5 TOP: Analysis of Data
598 ANS:
$\frac{3+42}{1500}=3 \% \frac{3}{3+12}=20 \%$ No, because a person is more likely to be allergic milk if he is also allergic to nuts.
REF: 012433aii NAT: S.CP.A. 4 TOP: Conditional Probability
599 ANS:
$2 x^{3}-10 x^{2}+11 x-7=2 x^{3}+h x^{2}+3 x-8 x^{2}-4 h x-12+k \quad h=-2$
$-2 x^{2}+8 x+5=h x^{2}-4 h x+k \quad k=5$
REF: 011733aii NAT: A.APR.C. 4 TOP: Polynomial Identities
600
ANS:

$$
\begin{array}{rlrl}
y & =-x+1 & y=-2+1=-1 \quad(2,-1) \\
(x-2)^{2}+(-x+1-3)^{2} & =16 & y=2+1=3 \quad(-2,3) \\
x^{2}-4 x+4+x^{2}+4 x+4 & =16 \\
2 x^{2} & =8 \\
x & =-2,2 &
\end{array}
$$

REF: 012035aii NAT: A.REI.C. 7 TOP: Quadratic-Linear Systems
601 ANS:
$a_{n}=100(.8)^{n-1} S_{20}=\frac{100-100(.8)^{20}}{1-.8} \approx 494$ No, because $494>40 \times 12$.
REF: 012033aii NAT: A.SSE.B. 4 TOP: Series KEY: geometric
602 ANS:
$N(t)=950 e^{0.0475 t}$ The base is e because growth is continuous. $N\left(\frac{36}{24}\right) \approx 1020$
REF: 081933aii NAT: F.LE.A. 2 TOP: Modeling Exponential Functions

603 ANS:
$\frac{6.25-2.25}{21-5}=\frac{4}{16}=\$.25$ fine per day. $2.25-5(.25)=\$ 1$ replacement fee. $a_{n}=1.25+(n-1)(.25) . a_{60}=\$ 16$
REF: 081734aii NAT: F.BF.A. 1 TOP: Sequences KEY: explicit
604 ANS:
$0.602 \pm 2 \cdot 0.066=0.47-0.73$. Since 0.50 falls within the 95% interval, this supports the concern there may be an even split.

REF: 061635aii NAT: S.IC.B. 5 TOP: Analysis of Data
605 ANS:
$P(P / K)=\frac{P\left(P^{\wedge} K\right)}{P(K)}=\frac{1.9}{2.3} \approx 82.6 \%$ A key club member has an 82.6% probability of being enrolled in AP Physics.
REF: 011735aii NAT: S.CP.B. 6 TOP: Conditional Probability
606 ANS:
$y=4.168(3.981)^{x} . \quad 100=4.168(3.981)^{x}$

$$
\begin{gathered}
\log \frac{100}{4.168}=\log (3.981)^{x} \\
\log \frac{100}{4.168}=x \log (3.981) \\
\frac{\log \frac{100}{4.168}}{\log (3.981)}=x \\
x \approx 2.25
\end{gathered}
$$

REF: 081736aii NAT: S.ID.B. 6 TOP: Regression KEY: exponential
$\frac{f(4)-f(-2)}{4--2}=\frac{80-1.25}{6}=13.125 g(x)$ has a greater rate of change
$\frac{g(4)-g(-2)}{4--2}=\frac{179--49}{6}=38$
REF: 061636aii NAT: F.IF.B. 6 TOP: Rate of Change

608
ANS:

$$
x^{2}-4 x+4+4 x^{2}-16 x+16=20
$$

$$
\begin{aligned}
5 x^{2}-20 x & =0 \\
5 x(x-4) & =0 \\
x & =0,4
\end{aligned}
$$

REF: 062335aii NAT: A.REI.C. 7 TOP: Quadratic-Linear Systems
609
ANS.
$\sqrt{49-10 x}=2 x-5 \quad-\frac{3}{2}$ is extraneous.

$$
\begin{aligned}
49-10 x & =4 x^{2}-20 x+25 \\
0 & =4 x^{2}-10 x-24 \\
0 & =2 x^{2}-5 x-12 \\
0 & =(2 x+3)(x-4) \\
x & =-\frac{3}{2}, 4
\end{aligned}
$$

REF: 012333aii NAT: A.REI.A. 2 TOP: Solving Radicals KEY: extraneous solutions
610 ANS:

REF: 062233aii NAT: A.REI.D. 11 TOP: Other Systems

$$
\begin{aligned}
& (x-2)^{2}+(-2 x+7-3)^{2}=20 \quad y=-2(0)+7=7 \quad(0,7),(4,-1) \\
& (x-2)^{2}+(-2 x+4)^{2}=20 \quad y=-2(4)+7=-1
\end{aligned}
$$

611 ANS:

$$
\begin{array}{cccccc}
x+y+z=1 & x+y+z=1 & x+y+z=1 & -2 z-z=3 & y-(-1)=3 & x+2-1=1 \\
x+2 y+3 z=1 & \frac{x+2 y+3 z=1}{} & \frac{-x+3 y-5 z=11}{} & -3 z=3 & y=2 & x=0 \\
-x+3 y-5 z=11 & y+2 z=0 & 4 y-4 z=12 & z=-1 & \\
y=-2 z & y-z=3 & &
\end{array}
$$

REF: 061733aii NAT: A.REI.C. 6 TOP: Solving Linear Systems
KEY: three variables
612 ANS:

$$
\begin{aligned}
7 & =20(0.5)^{\frac{t}{8.02}} \\
\log 0.35 & =\log 0.5^{\frac{t}{8.02}} \\
\log 0.35 & =\frac{t \log 0.5}{8.02} \\
\frac{8.02 \log 0.35}{\log 0.5} & =t \\
t & \approx 12
\end{aligned}
$$

REF: 081634aii NAT: F.LE.A. 4 TOP: Exponential Decay
613 ANS:

This scenario can be modeled with a Venn Diagram:

$P(S \cup I)_{c}=0.2, P(S \cup I)=0.8$. Then, $P(S \cap I)=P(S)+P(I)-P(S \cup I)$ If S and I are independent, then the

$$
\begin{aligned}
& =0.5+0.7-0.8 \\
& =0.4
\end{aligned}
$$

Product Rule must be satisfied. However, $(0.5)(0.7) \neq 0.4$. Therefore, salary and insurance have not been treated independently.

REF: spr1513aii NAT: S.CP.A. 2 TOP: Probability of Compound Events
KEY: independence
614 ANS:
$.819 \pm 2 . .053=.713-.925$. Since .70 does not fall within the 95% interval.
REF: 082236aii NAT: S.IC.A. 2 TOP: Analysis of Data
615 ANS:
$23-18=5, \bar{x} \pm 2 \sigma=-3.07-3.13$, Yes, a difference of 5 or more occurred three times out of a thousand, which is statistically significant.

REF: 061834aii NAT: S.IC.B. 5 TOP: Analysis of Data

616 ANS:

$$
\text { As } x \rightarrow \infty, c(x) \rightarrow-\infty \text {. As } x \rightarrow-\infty, c(x) \rightarrow 2 .
$$

REF: 012335aii NAT: F.IF.C. 7 TOP: Graphing Exponential Functions
617 ANS:
$t=2 \pi \sqrt{\frac{67}{9.81}} \approx 16.4 \quad 9.6=2 \pi \sqrt{\frac{L}{9.81}}$

$$
L \approx 22.9
$$

REF: 062234aii NAT: A.REI.A. 2 TOP: Solving Radicals KEY: context
618 ANS:
$y=2 \sin 4 x$

REF: 081934aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions KEY: graph
619 ANS:

$$
\begin{aligned}
& (\sqrt{2 x-7})^{2}=(5-x)^{2} \quad \sqrt{2(4)-7}+4=5 \sqrt{2(8)-7}+8=5 \\
& 2 x-7=25-10 x+x^{2} \quad \sqrt{1}=1 \quad \sqrt{9} \neq-3 \\
& 0=x^{2}-12 x+32 \\
& 0=(x-8)(x-4) \\
& x=4,8
\end{aligned}
$$

REF: 081635aii NAT: A.REI.A. 2 TOP: Solving Radicals
KEY: extraneous solutions

620 ANS:

$$
\frac{47}{108}=\frac{1}{4}+\frac{116}{459}-P(M \text { and } J) ; \text { No, because } \frac{31}{459} \neq \frac{1}{4} \cdot \frac{116}{459}
$$

$P(M$ and $J)=\frac{31}{459}$
REF: 011834aii NAT: S.CP.A. 3 TOP: Conditional Probability
621 ANS:

$$
0<x<\frac{\pi}{4}
$$

REF: 012436aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions
KEY: graph
622 ANS:
$P(x)=500(0.97)^{x} ; 18$; The number of palm trees and flamingos will be equal in 18 years.
$F(x)=200 e^{0.02 x}$
REF: 062336aii NAT: A.REI.D. 11 TOP: Other Systems
623 ANS:

$$
\begin{aligned}
3 \sqrt{x}-2 x & =-5 \quad 1 \text { is extraneous. } \\
3 \sqrt{x} & =2 x-5 \\
9 x & =4 x^{2}-20 x+25 \\
4 x^{2}-29 x+25 & =0 \\
(4 x-25)(x-1) & =0 \\
x & =\frac{25}{4}, 1
\end{aligned}
$$

REF: 011936aii NAT: A.REI.A. 2 TOP: Solving Radicals
KEY: extraneous solutions
624 ANS:
$138.905 \pm 2 \cdot 7.95=123-155$. No, since 125 (50% of 250) falls within the 95% interval.
REF: 011835aii NAT: S.IC.A. 2 TOP: Analysis of Data

625 ANS:
$\frac{1200}{1200+2016} \approx .373$. Yes, because $\frac{1600}{4288} \approx .373$ also.
REF: 062334aii NAT: S.CP.A. 4 TOP: Conditional Probability
626
ANS:

$$
\text { As } x \rightarrow-3, y \rightarrow-\infty . \text { As } x \rightarrow \infty, y \rightarrow \infty .
$$

REF: 061735aii NAT: F.IF.C. 7 TOP: Graphing Logarithmic Functions
ANS:
$s(t)=200(0.5)^{\frac{t}{15}} \quad \frac{1}{10}=(0.5)^{\frac{t}{15}}$

$$
\begin{aligned}
\log \frac{1}{10} & =\log (0.5)^{\frac{t}{15}} \\
-1 & =\frac{t \cdot \log (0.5)}{15} \\
t & =\frac{-15}{\log (0.5)} \approx 50
\end{aligned}
$$

REF: 061934aii NAT: F.LE.A. 4 TOP: Exponential Decay
628 ANS:
$16 x^{4}-81=\left(4 x^{2}+9\right)\left(4 x^{2}-9\right)=\left(4 x^{2}+9\right)(2 x+3)(2 x-3)$. No, because $\pm \frac{3 i}{2}$ are roots.

REF: 061933aii NAT: F.IF.B. 4 TOP: Graphing Polynomial Functions
629 ANS:
$p(x)=(x-2)(x-3)(x+6)$

REF: 062333aii NAT: F.IF.C. 7 TOP: Graphing Polynomial Functions

630 ANS:
$0=x^{2}(x+1)-4(x+1)$

$0=\left(x^{2}-4\right)(x+1)$
$0=(x+2)(x-2)(x+1)$
$x=-2,-1,2$
REF: 081633aii NAT: F.IF.C. 7 TOP: Graphing Polynomial Functions 631 ANS:
$0.01 \pm 2 \cdot 0.38=-0.75-0.77$. No, since 0.6 falls within the 95% interval.
REF: 082336aii NAT: S.IC.B. 5 TOP: Analysis of Data
632 ANS:
$C(t)=63000\left(1+\frac{0.0255}{12}\right)^{12 t} 63000\left(1+\frac{0.0255}{12}\right)^{12 t}=100000$

$$
\begin{aligned}
12 t \log (1.002125) & =\log \frac{100}{63} \\
t & \approx 18.14
\end{aligned}
$$

REF: 061835aii NAT: A.CED.A. 1 TOP: Exponential Growth
633 ANS:

REF: 082234aii NAT: F.IF.C. 7 TOP: Graphing Polynomial Functions

ANS:

As $x \rightarrow-3, y \rightarrow \infty$. As $x \rightarrow \infty, y \rightarrow-\infty .$.
REF: 082333aii NAT: F.IF.C. 7 TOP: Graphing Logarithmic Functions
635
ANS:
$29.101 \pm 2 \cdot 0.934=27.23-30.97$. Yes, since 30 falls within the 95% interval.
REF: 011935aii NAT: S.IC.A. 2 TOP: Analysis of Data
636 ANS:

$$
\begin{aligned}
x^{2}+(2 x-5)^{2} & =25 \quad y+5=2(0) \quad y+5=2(4) \quad(0,-5),(4,3) \\
x^{2}+4 x^{2}-20 x+25 & =25 \quad y=-5 \quad y=3 \\
5 x^{2}-20 x & =0 \\
5 x(x-4) & =0 \\
x & =0,4
\end{aligned}
$$

REF: 062236aii NAT: A.REI.C. 7 TOP: Quadratic-Linear Systems
637
ANS:
$S_{n}=\frac{33000-33000(1.04)^{n}}{1-1.04} S_{15}=\frac{33000-33000(1.04)^{15}}{1-1.04} \approx 660778.39$
REF: 061634aii NAT: A.SSE.B. 4 TOP: Series KEY: geometric
638 ANS:

$$
\begin{aligned}
M=172600 \bullet \frac{0.00305(1+0.00305)^{12 \cdot 15}}{(1+0.00305)^{12 \cdot 15}-1} \approx 1247 \quad 1100 & =(172600-x) \bullet \frac{0.00305(1+0.00305)^{12 \cdot 15}}{(1+0.00305)^{12 \cdot 15}-1} \\
1100 & \approx(172600-x) \bullet(0.007228) \\
152193 & \approx 172600-x \\
20407 & \approx x
\end{aligned}
$$

REF: 061734aii NAT: F.IF.B. 4 TOP: Evaluating Exponential Expressions
639
ANS:
Some of the students who did not drink energy drinks read faster than those who did drink energy drinks.
$17.7-19.1=-1.4$ Differences of -1.4 and less occur $\frac{25}{232}$ or about 10% of the time, so the difference is not unusual.

REF: 081636aii NAT: S.IC.B. 5 TOP: Analysis of Data

640 ANS:
Jillian's plan, because distance increases by one mile each week. $a_{1}=10 \quad a_{n}=n+12$

$$
a_{n}=a_{n-1}+1
$$

REF: 011734aii NAT: F.BF.A. 2 TOP: Sequences
641 ANS:
$\frac{h(2)-h(1)}{2-1}=-12, h(t)=0$ at $t \approx 2.2,3.8$, using a graphing calculator to find where $h(t)=0$.
REF: 061836aii NAT: F.IF.B. 4 TOP: Graphing Trigonometric Functions
642 ANS:
$x - 4 \longdiv { 3 x ^ { 3 } - 4 x ^ { 2 } + 2 x - 1 } 3 x ^ { 2 } + 8 x + 3 4 + \frac { 1 3 5 } { x - 4 } x = 4$ is not a root of $f(x)$ because $\frac{f(x)}{g(x)}$ has a remainder.
$3 x^{3}-12 x^{2}$

$$
8 x^{2}+2 x
$$

$$
8 x^{2}-32 x
$$

$$
34 x-1
$$

$$
\underline{34 x-136}
$$

135
REF: 082235aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: division
643

$$
\begin{aligned}
y & =-x+5 \quad y=-7+5=-2 \\
(x-3)^{2}+(-x+5+2)^{2} & =16 \quad y=-3+5=2 \\
x^{2}-6 x+9+x^{2}-14 x+49 & =16 \\
2 x^{2}-20 x+42 & =0 \\
x^{2}-10 x+21 & =0 \\
(x-7)(x-3) & =0 \\
x & =7,3
\end{aligned}
$$

REF: 061633aii NAT: A.REI.C. 7 TOP: Quadratic-Linear Systems

ANS:
Yes. The margin of error from this simulation indicates that 95% of the observations fall within ± 0.12 of the simulated proportion, 0.25 . The margin of error can be estimated by multiplying the standard deviation, shown to be 0.06 in the dotplot, by 2 , or applying the estimated standard error formula, $\left(\sqrt{\frac{p(1-p)}{n}}\right)$ or $\left(\sqrt{\frac{(0.25)(0.75)}{50}}\right)$
and multiplying by 2 . The interval 0.25 ± 0.12 includes plausible values for the true proportion of people who prefer Stephen's new product. The company has evidence that the population proportion could be at least 25%. As seen in the dotplot, it can be expected to obtain a sample proportion of 0.18 (9 out of 50) or less several times, even when the population proportion is 0.25 , due to sampling variability. Given this information, the results of the survey do not provide enough evidence to suggest that the true proportion is not at least 0.25 , so the development of the product should continue at this time.

REF: spr1512aii NAT: S.IC.B. 4 TOP: Analysis of Data
645 ANS:
$\frac{x-2}{(x-6)(x-2)}+\frac{x(x-6)}{(x-6)(x-2)}=\frac{4}{(x-6)(x-2)} .6$ is extraneous.

$$
\begin{aligned}
x-2+x^{2}-6 x & =4 \\
x^{2}-5 x-6 & =0 \\
(x-6)(x+1) & =0 \\
x & =6,-1
\end{aligned}
$$

REF: 082334aii NAT: A.REI.A. 2 TOP: Solving Rationals
646 ANS:

Domain: $x<2$, Asymptote $x=2$
REF: 012034aii NAT: F.IF.C. 7 TOP: Graphing Logarithmic Functions
647 ANS:
$\frac{B(10)-B(6)}{10-6} \approx-3.88$. The average monthly high temperature decreases about 4° each month from June and October.

REF: 012336aii NAT: F.IF.B. 6 TOP: Rate of Change

ANS:
John found the means of the scores of the two rooms and subtracted the means. The mean score for the classical room was 7 higher than the rap room (82-75). Yes, there is less than a 5% chance this difference occurring due to random chance. It is likely the difference was due to the music.

REF: 081836aii NAT: S.IC.B. 5 TOP: Analysis of Data
649 ANS:

$$
\begin{array}{cccccc}
2 x+4 y-3 z=12 & 2 x+4 y-3 z=12 & 8 x+z=-6 & 32 x+4 z=-24 & 8(-1)+z=-6 & -(-1)+y-3(2)=0 \\
2(3 x-2 y+2 z=-9) & 6 x-4 y+4 z=-18 & 2 x-8 z=-18 & \underline{x-4 z}=-9 & z=2 & y=5
\end{array}
$$

$$
4(-x+y-3 z=0) \quad-4 x+4 y-12 z=0
$$

$$
\begin{aligned}
33 x & =-33 \\
x & =-1
\end{aligned}
$$

REF: 082335aii NAT: A.REI.C. 6 TOP: Solving Linear Systems
KEY: three variables
650 ANS:

REF: spr1510aii NAT: A.REI.C. 6 TOP: Solving Linear Systems
KEY: three variables
651 ANS:
$P(F \mid L)=\frac{12}{27} P(F)=\frac{22}{45}$ Since $P(F \mid L) \neq P(F)$, the events are not independent.
REF: 061936aii NAT: S.CP.A. 4 TOP: Conditional Probability
652 ANS:
$20000=P M T\left(\frac{1-(1+.00625)^{-60}}{0.00625}\right) 21000-x=300\left(\frac{1-(1+.00625)^{-60}}{0.00625}\right)$
$P M T \approx 400.76$

$$
x \approx 6028
$$

REF: 011736aii NAT: F.IF.B. 4 TOP: Evaluating Exponential Expressions

$$
\begin{aligned}
& 6 x-3 y+2 z=-10 \quad x+3 y+5 z=45 \quad 4 x+10 z=62 \quad 4 x+4(7)=20 \quad 6(-2)-3 y+2(7)=-10 \\
& -2 x+3 y+8 z=72 \quad 6 x-3 y+2 z=-10 \quad 4 x+4 z=20 \quad 4 x=-8 \quad-3 y=-12 \\
& 4 x+10 z=62 \quad 7 x+7 z=35 \quad 6 z=42 \quad x=-2 \quad y=4 \\
& 4 x+4 z=20 \quad z=7
\end{aligned}
$$

653 ANS:
a) $p(t)=11000(2)^{\frac{t}{20}}$; b) $\quad \frac{1000000}{11000}=\frac{11000(2)^{\frac{t}{20}}}{11000}$

$$
\begin{aligned}
\log \frac{1000}{11} & =\log 2^{\frac{t}{20}} \\
\log \frac{1000}{11} & =\frac{t \cdot \log 2}{20} \\
\frac{20 \log \frac{1000}{11}}{\log 2} & =t
\end{aligned}
$$

$$
t \approx 130.13
$$

REF: 082233aii NAT: F.LE.A. 4 TOP: Exponential Growth
654 ANS:

$$
720=\frac{120000\left(\frac{.048}{12}\right)\left(1+\frac{.048}{12}\right)^{n}}{\left(1+\frac{.048}{12}\right)^{n}-1} \frac{275.2}{12} \approx 23 \text { years }
$$

$$
\begin{aligned}
720(1.004)^{n}-720 & =480(1.004)^{n} \\
240(1.004)^{n} & =720 \\
1.004^{n} & =3 \\
n \log 1.004 & =\log 3 \\
n & \approx 275.2 \text { months }
\end{aligned}
$$

REF: spr1509aii NAT: A.CED.A. 1 TOP: Exponential Growth

655 ANS:

$$
\begin{aligned}
\frac{3 p}{p-5} & =\frac{p+2}{p+3} \\
3 p^{2}+9 p & =p^{2}-3 p-10 \\
2 p^{2}+12 p+10 & =0 \\
p^{2}+6 p+5 & =0 \\
(p+5)(p+1) & =0 \\
p & =-5,-1
\end{aligned}
$$

REF: 081733aii NAT: A.REI.A. 2 TOP: Solving Rationals
KEY: rational solutions
656 ANS:

$$
\begin{array}{rlrl}
\sqrt{6-2 x}+x & =2 x+30-9 & \sqrt{6-2(-29)} \neq-29+21, \text { so }-29 \text { is extraneous. } \\
\sqrt{6-2 x} & =x+21 & \sqrt{64} \neq-8 \\
6-2 x & =x^{2}+42 x+441 & \\
x^{2}+44 x+435 & =0 \\
(x+29)(x+15) & =0 \\
x & =-29,-15
\end{array}
$$

REF: 061833aii NAT: A.REI.A. 2 TOP: Solving Radicals
KEY: extraneous solutions
657 ANS:

$$
100=325+(68-325) e^{-2 k} T=325-257 e^{-0.066 t}
$$

$$
-225=-257 e^{-2 k} \quad T=325-257 e^{-0.066(7)} \approx 163
$$

$$
k=\frac{\ln \left(\frac{-225}{-257}\right)}{-2}
$$

$$
k \approx 0.066
$$

REF: fall1513aii NAT: F.LE.A. 4 TOP: Exponential Growth

658
ANS:
$A(t)=4000\left(1+\frac{2.4 \%}{12}\right)^{12 t} \quad B(t)=3500\left(1+\frac{4 \%}{4}\right)^{4 t} \quad 8.4$, the value of t for which $A(t)=B(t)$
REF: 012435aii NAT: A.REI.D. 11 TOP: Other Systems
659 ANS:
$\left(2 x^{2}+x-3\right) \cdot(x-1)-\left[\left(2 x^{2}+x-3\right)+(x-1)\right]$

$$
\left(2 x^{3}-2 x^{2}+x^{2}-x-3 x+3\right)-\left(2 x^{2}+2 x-4\right)
$$

$$
2 x^{3}-3 x^{2}-6 x+7
$$

REF: 011833aii NAT: F.BF.A. 1 TOP: Operations with Functions ANS:
$\frac{1}{10}, \frac{1}{5}$, and no, since 0.10 clearly falls within 95% of 0.20 .
REF: 012334aii NAT: S.IC.A. 2 TOP: Analysis of Data
661 ANS:
$x + 2 \longdiv { x ^ { 3 } + 4 } x ^ { 4 } + 4 x - 1 0 x ^ { 3 } + 4 - \frac { 1 8 } { x + 2 }$. No, because there is a remainder.

$$
\begin{array}{ll}
\underline{x^{4}+2 x^{3}} \\
& \\
& \\
& \frac{4 x-10}{-18}
\end{array}
$$

REF: 011934aii NAT: A.APR.D. 6 TOP: Rational Expressions KEY: division

662 ANS:

Part a sketch is shifted $\frac{\pi}{3}$ units right.
REF: 081735aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions
KEY: graph
663 ANS:
$a+4 b+6 c=23 \quad a+2 b+c=2 \quad 8 b+3 c=16 \quad 2 b+5(4)=21 a+4\left(\frac{1}{2}\right)+6(4)=23$
$\underline{a+2 b+c=2} \quad \underline{-a+6 b+2 c=14} \quad \underline{8 b+20 c=84}$
$2 b+5 c=21 \quad 8 b+3 c=16 \quad 17 c=68$
$2 b=1$
$a+2+24=23$
$b=\frac{1}{2}$
$a=-3$

$$
c=4
$$

REF: 011933aii NAT: A.REI.C. 6 TOP: Solving Linear Systems
KEY: three variables
664 ANS:

$$
\begin{aligned}
j(-1)=2(-1)^{4}-(-1)^{3} & -35(-1)^{2}+16(-1)+48=2+1-35-16+48=0 ; x+1 \text { is a factor of } j(x) ; \\
2 x^{3}-3 x^{2}-32 x+48 & =0 \\
x^{2}(2 x-3)-16(2 x-3) & =0 \\
\left(x^{2}-16\right)(2 x-3) & =0 \\
x & = \pm 4, \frac{3}{2}
\end{aligned}
$$

REF: 081834aii NAT: A.APR.B. 2 TOP: Remainder and Factor Theorems

665 ANS:

$$
\begin{aligned}
& 0=6(-5)^{3}+b(-5)^{2}-52(-5)+15 \quad z(x)=6 x^{3}+19 x^{2}-52 x+15 \\
& 0=-750+25 b+260+15 \\
& 475=25 b \\
& 19=b \\
&-5 \begin{array}{rrrr}
6 & 19 & -52 & 15 \\
-30 & 55 & 15
\end{array} \\
& \begin{array}{rrrr}
6 & -11 & 3 & 0
\end{array} \\
& 6 x^{2}-11 x+3=0 \\
&(2 x-3)(3 x-1)=0 \\
& x=\frac{3}{2}, \frac{1}{3},-5
\end{aligned}
$$

REF: fall1515aii NAT: A.APR.B. 3 TOP: Solving Polynomial Equations
666 ANS:

$$
\begin{aligned}
& 4 x+6 y-8 z=-24 x+6 y-8 z=-2 \quad 4 x-8 y+20 z=12 \quad z+2=3 z-4 \quad y=3+2-4 x+5+3=16 \\
& 4 x-8 y+20 z=12 \quad \underline{-4 x+y+z=16} \quad \underline{-4 x+y+z=16} \quad 6=2 z \quad=5 \quad-4 x=8 \\
& -4 x+y+z=16 \quad 7 y-7 z=14 \quad-7 y+21 z=28 \quad z=3 \quad x=-2 \\
& y-z=2 \quad y-3 z=-4 \\
& y=z+2 \quad y=3 z-4
\end{aligned}
$$

REF: 081833aii NAT: A.REI.C. 6 TOP: Solving Linear Systems
KEY: three variables
667 ANS:
$f(x)=x^{2}(x+4)(x-3) ; g(x)=(x+2)^{2}(x+6)(x-1)$
REF: 011836aii NAT: F.BF.B. 3 TOP: Graphing Polynomial Functions
668 ANS:

$$
2 x-6=2 \sqrt{x-1} \quad 2 \text { is extraneous. }
$$

$$
\begin{aligned}
4 x^{2}-24 x+36 & =4(x-1) \\
x^{2}-6 x+9 & =x-1 \\
x^{2}-7 x+10 & =0 \\
(x-5)(x-2) & =0 \\
x & =2,5
\end{aligned}
$$

REF: 012434aii NAT: A.REI.A. 2 TOP: Solving Radicals
KEY: extraneous solutions

669 ANS:
The mean difference between the students' final grades in group 1 and group 2 is -3.64 . This value indicates that students who met with a tutor had a mean final grade of 3.64 points less than students who used an on-line subscription. One can infer whether this difference is due to the differences in intervention or due to which students were assigned to each group by using a simulation to rerandomize the students' final grades many (500) times. If the observed difference -3.64 is the result of the assignment of students to groups alone, then a difference of -3.64 or less should be observed fairly regularly in the simulation output. However, a difference of -3 or less occurs in only about 2% of the rerandomizations. Therefore, it is quite unlikely that the assignment to groups alone accounts for the difference; rather, it is likely that the difference between the interventions themselves accounts for the difference between the two groups' mean final grades.

REF: fall1514aii NAT: S.IC.B. 5 TOP: Analysis of Data
ANS:
$\operatorname{normcdf}(510,540,480,24)=0.0994 \quad z=\frac{510-480}{24}=1.251 .25=\frac{x-510}{20} \quad 2.5=\frac{x-510}{20} 535-560$

$$
z=\frac{540-480}{24}=2.5 \quad x=535 \quad x=560
$$

REF: fall1516aii NAT: S.ID.A. 4 TOP: Normal Distributions
KEY: probability
671 ANS:
$x^{2}-6 x=-17 \quad$ The solution is imaginary because the parabola and line do not intersect.
$x^{2}-6 x+9=-17+9$

$$
\begin{aligned}
(x-3)^{2} & =-8 \\
x-3 & = \pm 2 i \sqrt{2} \\
x & =3 \pm 2 i \sqrt{2}
\end{aligned}
$$

REF: 081936aii NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: complex solutions | completing the square
672 ANS:
$.651 \pm 2 \cdot .034=.58-.72$. No, since .61 (122/200) falls within the 95% interval.
REF: 062235aii NAT: S.IC.A. 2 TOP: Analysis of Data
673 ANS:
$0.301 \pm 2(0.058) \rightarrow 0.185-0.417 \frac{14}{60} \approx 0.23$. It is not unusual because 0.23 falls within this interval.
REF: 081935aii NAT: S.IC.B. 5 TOP: Analysis of Data

674 ANS:
$y=101.523(.883)^{x} \quad 29=101.523(.883)^{x}$

$$
\frac{29}{101.523}=(.883)^{x}
$$

$$
\log \frac{29}{101.523}=x \log (.883)
$$

$$
\frac{\log \frac{29}{101.523}}{\log (.883)}=x
$$

$$
x \approx 10.07
$$

REF: 012036aii NAT: S.ID.B. 6 TOP: Regression KEY: exponential
675 ANS:
$a_{n}=x^{n-1}(x+1) x^{n-1}=0 x+1=0$
$x=0 \quad x=-1$
REF: spr1511aii NAT: F.BF.A. 2 TOP: Sequences
676 ANS:
$2=e^{0.0375 t}$
$t \approx 18.5$
REF: 081835aii NAT: F.LE.A. 4 TOP: Exponential Growth
677 ANS:
$y=\frac{1}{4(2)}(x-4)^{2}-3 \square y=\frac{-1+-5}{2}=-3$. The vertex is $(4,-3)$ and $p=2$.
REF: 061935aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions

Algebra II 6 Point Regents Exam Questions

Answer Section

678 ANS:
$A(t)=100(0.5)^{\frac{t}{63}}$, where t is time in years, and $A(t)$ is the amount of titanium-44 left after t years.
$\frac{A(10)-A(0)}{10-0}=\frac{89.58132-100}{10}=-1.041868$ The estimated mass at $t=40$ is $100-40(-1.041868) \approx 58.3$. The actual mass is $A(40)=100(0.5)^{\frac{40}{63}} \approx 64.3976$. The estimated mass is less than the actual mass.

REF: fall1517aii NAT: F.LE.A. 2 TOP: Modeling Exponential Functions
679 ANS:

$$
\left.\begin{array}{rl}
A=5000(1.045)^{n} \quad 5000\left(1+\frac{.046}{4}\right)^{4(6)}-5000(1.045)^{6} \approx 6578.87-6511.30 \approx 67.5710000 & =5000\left(1+\frac{.046}{4}\right)^{4 n} \\
B=5000\left(1+\frac{.046}{4}\right)^{4 n} & 2
\end{array}\right)=1.0115^{4 n}, ~ \begin{aligned}
\log 2 & =4 n \cdot \log 1.0115 \\
n & =\frac{\log 2}{4 \log 1.0115} \\
n & \approx 15.2
\end{aligned}
$$

REF: 081637aii NAT: A.CED.A. 1 TOP: Exponential Growth ANS:

$$
\begin{array}{rlrl}
100=140\left(\frac{1}{2}\right)^{\frac{5}{h}} \log \frac{100}{140} & =\log \left(\frac{1}{2}\right)^{\frac{5}{h}} & 40 & =140\left(\frac{1}{2}\right)^{\frac{t}{10.3002}} \\
\log \frac{5}{7}= & \frac{5}{h} \log \frac{1}{2} & \log \frac{2}{7} & =\log \left(\frac{1}{2}\right)^{\frac{t}{10.3002}} \\
h & =\frac{5 \log \frac{1}{2}}{\log \frac{5}{7}} \approx 10.3002 \\
\log \frac{2}{7} & =\frac{t \log \left(\frac{1}{2}\right)}{10.3002} \\
t & =\frac{10.3002 \log \frac{2}{7}}{\log \frac{1}{2}} \approx 18.6
\end{array}
$$

REF: 061737aii NAT: F.LE.A. 4 TOP: Exponential Decay

ANS:

At 1.95 years, the value of the car equals the loan balance. Zach can cancel the policy after 6 years.

REF: 081737aii NAT: A.REI.D. 11 TOP: Other Systems
682 ANS:

The amplitude, 12, can be interpreted from the situation, since the water level has a minimum of -12 and a maximum of 12 . The value of A is -12 since at $8: 30$ it is low tide. The period of the function is 13 hours, and is expressed in the function through the parameter B. By experimentation with technology or using the relation $P=\frac{2 \pi}{B}$ (where P is the period), it is determined that $B=\frac{2 \pi}{13}$.
$f(t)=-12 \cos \left(\frac{2 \pi}{13} t\right)$

In order to answer the question about when to fish, the student must interpret the function and determine which choice, 7:30 pm or 10:30 pm, is on an increasing interval. Since the function is increasing from $t=13$ to $t=19.5$ (which corresponds to 9:30 pm to 4:00 am), 10:30 is the appropriate choice.

REF: spr1514aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions
KEY: graph

683 ANS:
period $=\frac{2 \pi}{0.8 \pi}=2.5$. The wheel rotates once every 2.5 seconds.

No, because the maximum of $f(t)=26$.

REF: 061937aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions KEY: graph
684
ANS:
$P(16)=\log (16-4) \approx 1.1$,

REF: 061837aii NAT: A.REI.D. 11 TOP: Other Systems
685 ANS:

$$
\begin{aligned}
0 & =\sqrt{t}-2 t+6 \quad 2\left(\frac{9}{4}\right)-6<0, \text { so } \frac{9}{4} \text { is extraneous. } \\
2 t-6 & =\sqrt{t} \\
4 t^{2}-24 t+36 & =t \\
4 t^{2}-25 t+36 & =0 \\
(4 t-9)(t-4) & =0 \\
t & =\frac{9}{4}, 4
\end{aligned}
$$

$$
(\sqrt{1}-2(1)+6)-(\sqrt{3}-2(3)+6)=5-\sqrt{3} \approx 3.268327 \mathrm{mph}
$$

REF: 011737aii NAT: A.REI.A. 2 TOP: Solving Radicals
KEY: context

ANS:

$$
800 e^{-0.347 t}=400 e^{-0.231 t}
$$

$$
0.15=e^{-0.347 t}
$$

$$
B(t)=400 e^{-0.231 t}
$$

$$
\ln 2 e^{-0.347 t}=\ln e^{-0.231 t}
$$

$$
\ln 0.15=\ln e^{-0.347 t}
$$

$$
\begin{array}{rlr}
\ln 2+\ln e^{-0.347 t}=\ln e^{-0.231 t} \quad \ln 0.15 & =-0.347 t \cdot \ln e \\
\ln 2-0.547 t- & \approx t
\end{array}
$$

$$
\ln 2-0.347 t=-0.231 t
$$

$$
5.5 \approx t
$$

REF: 061637aii NAT: A.REI.D. 11 TOP: Other Systems
687 ANS:
$N(t)=400 \sin \left(\frac{2 \pi}{5} t\right)+2400$.

4 times.

REF: 062337aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions KEY: graph

ANS:

$(7,78)$ If 7000 sweatshirts are sold, the profit is $\$ 78,000.3,549$, because that is when $p(x)$ is first greater than 0 .

REF: 012437aii NAT: F.IF.C. 7 TOP: Graphing Polynomial Functions
689 ANS: antibiotic $n(0)=\frac{0+1}{0+5}+\frac{18}{0^{2}+8(0)+15}=\frac{3}{15}+\frac{18}{15}=\frac{21}{15} \quad \frac{t+1}{t+5}+\frac{18}{t^{2}+8 t+15}=\frac{9}{t+3}$

$$
a(0)=\frac{9}{0+3}=3
$$

$$
\frac{(t+1)(t+3)}{(t+5)(t+3)}+\frac{18}{(t+3)(t+5)}=\frac{9(t+5)}{(t+3)(t+5)}
$$

$$
t^{2}+4 t+3+18=9 t+45
$$

$$
t^{2}-5 t-24=0
$$

$$
(t-8)(t+3)=0
$$

$$
t=8
$$

REF: 012037aii NAT: A.REI.A. 2 TOP: Solving Rationals KEY: rational solutions
690
ANS:
$A(t)=8000\left(1+\frac{.042}{4}\right)^{4 t} \quad A(18)=16970.900 \quad 24000=8000 e^{.039 t}$
$B(t)=8000 e^{.039 t}$

$$
B(18)=\underline{16142.274} \quad \ln 3=\ln e^{.039 t}
$$

$828.63 \ln 3=.039 t$
$t \approx 28.2$
REF: 082337aii NAT: A.CED.A. 1 TOP: Exponential Growth

691 ANS:
$A(t)=318000(1.07)^{t}$

$318000(1.07)^{t}=1000000$ The graph of $A(t)$ nearly intersects

$$
1.07^{t}=\frac{1000}{318}
$$

$$
t \log 1.07=\log \frac{1000}{318}
$$

$$
t=\frac{\log \frac{1000}{318}}{\log 1.07}
$$

$$
t \approx 17
$$

the point $(17,1000000)$.
REF: 011937aii NAT: A.CED.A. 1 TOP: Exponential Growth

$$
\begin{aligned}
& T=(400-75) e^{-0.0735 t}+75,325 e^{-0.0735(5)}+75 \approx 300,270=(450-75) e^{-8 r}+75,325 e^{-0.0735 t}+75 \\
&=375 e^{-0.0817 t}+75 \\
& r \approx 0.0817
\end{aligned}
$$

REF: 012337aii NAT: A.CED.A. 1 TOP: Exponential Decay
693

' 35 ; $B(100)-A(100) \approx 2$, which represents the difference of the average wait time when there are 100 CSRs between the plans.

REF: 082237aii NAT: A.REI.D. 11 TOP: Other Systems

694 ANS:

The period of P is $\frac{2}{3}$, which means the patient's blood pressure reaches a high every $\frac{2}{3}$ second and a low every $\frac{2}{3}$ second. The patient's blood pressure is high because 144 over 96 is greater than 120 over 80 .

REF: 011837aii NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions
KEY: graph
695
ANS:
$B=1.69 \sqrt{30+4.45}-3.49 \approx 6$, which is a steady breeze.

$$
\begin{aligned}
15 & =1.69 \sqrt{s+4.45}-3.49 \\
18.49 & =1.69 \sqrt{s+4.45} \\
\frac{18.49}{1.69} & =\sqrt{s+4.45} \\
\left(\frac{18.49}{1.69}\right)^{2} & =s+4.45
\end{aligned}
$$

$$
s=\left(\frac{18.49}{1.69}\right)^{2}-4.45
$$

$$
s \approx 115
$$

$9.5=1.69 \sqrt{s+4.45}-3.49 \quad 10.49=1.69 \sqrt{s+4.45}-3.4955-64$

$$
12.99=1.69 \sqrt{s+4.45}
$$

$$
13.98=1.69 \sqrt{s+4.45}
$$

$$
\frac{12.99}{1.69}=\sqrt{s+4.45} \quad \frac{13.98}{1.69}=\sqrt{s+4.45}
$$

$$
\begin{aligned}
\left(\frac{12.99}{1.69}\right)^{2} & =s+4.45 \\
s & =\left(\frac{12.99}{1.69}\right)^{2}-4.45
\end{aligned}
$$

$$
\left(\frac{13.98}{1.69}\right)^{2}=s+4.45
$$

$$
s=\left(\frac{13.98}{1.69}\right)^{2}-4.45
$$

$$
s \approx 55
$$

$$
s \approx 64
$$

REF: 081937aii NAT: A.REI.A. 2 TOP: Solving Radicals
KEY: context

696 ANS:
$1.5 \% ; P(t)=92.2(1.015)^{t} ; \quad \frac{300}{92.2}=(1.015)^{t}$

$$
\log \frac{300}{92.2}=t \log (1.015)
$$

$$
\frac{\log \frac{300}{92.2}}{\log (1.015)}=t
$$

$$
t \approx 79
$$

REF: 062237aii NAT: F.BF.A. 2 TOP: Sequences
697 ANS:
$P(x)=R(x)-C(x)=-330 x^{3}+9000 x^{2}-67000 x+167000$

Least profitable at year 5 because there is a minimum in $P(x)$. Most profitable at year 13 because there is a maximum in $P(x)$.

REF: 081837aii NAT: F.IF.C. 7 TOP: Graphing Polynomial Functions

