JMAP
 REGENTS BY STATE STANDARD: TOPIC

NY Geometry Regents Exam Questions from Spring 2014 to January 2024 Sorted by State Standard: Topic

www.jmap.org

TABLE OF CONTENTS

TOPIC	STANDARD	SUBTOPIC QUESTION NUMBER
TOOLS OF GEOMETRY	G.GMD.B. 4	Rotations of Two-Dimensions Objects... 1
	G.GMD.B. 4	Cross-Sections of Three-Dimensional Objects............................... 18
	G.CO.D. 12	Constructions.. 31
	G.CO.D. 13	Constructions.. 50
LINES AND ANGLES	G.GPE.B. 6	Directed Line Segments.. 57
	G.CO.C. 9	Lines and Angles .. 79
	G.GPE.B. 5	Parallel and Perpendicular Lines .. 91
TRIANGLES	G.SRT.C. 8	30-60-90 Triangles .. 110
	G.SRT.B. 5	Isosceles Triangle Theorem.. 112
	G.CO.C. 10	Side Splitter Theorem.. 114
	G.CO.C. 10	Interior and Exterior Angles of Triangles.................................... 138
	G.CO.C. 10	Exterior Angle Theorem.. 143
	G.CO.C. 10	Angle Side Relationship ... 148
	G.CO.C. 10	Midsegments.. 150
	G.CO.C. 10	Medians, Altitudes and Bisectors .. 156
	G.CO.C. 10	Centroid, Orthocenter, Incenter and Circumcenter........................ 160
	G.GPE.B. 4	Triangles in the Coordinate Plane... 164
POLYGONS	G.CO.C. 11	Interior and Exterior Angles of Polygons 173
	G.CO.C. 11	Parallelograms ... 188
	G.CO.C. 11	Trapezoids ... 200
	G.CO.C. 11	Special Quadrilaterals.. 202
	G.GPE.B. 4	Quadrilaterals in the Coordinate Plane .. 221
	G.GPE.B. 7	Polygons in the Coordinate Plane.. 242
CONICS	G.C.A. 2	Chords, Secants and Tangents ... 255
	G.C.A. 3	Inscribed Quadrilaterals... 289
	G.GPE.A. 1	Equations of Circles.. 294
	G.GPE.B. 4	Circles in the Coordinate Plane .. 316
MEASURING IN THE PLANE AND SPACE	G.MG.A. 3	Area of Polygons .. 319
	G.MG.A. 3	Surface Area .. 322
	G.GMD.A. 1	Circumference .. 323
	G.MG.A. 3	Compositions of Polygons and Circles...................................... 325
	G.C.B. 5	Arc Length... 329
	G.C.B. 5	Sectors .. 333
	G.GMD.A. 1	Volume .. 354
	G.GMD.A. 3	Volume .. 357
	G.MG.A. 2	Density.. 411
TRANSFORMATIONS	G.SRT.A. 1	Line Dilations .. 438
	G.CO.A. 5	Rotations.. 469
	G.CO.A. 5	Reflections.. 471
	G.SRT.A. 2	Dilations ... 473
	G.CO.A. 3	Mapping a Polygon onto Itself ... 489
	G.CO.A. 5	Compositions of Transformations .. 511
	G.SRT.A. 2	Compositions of Transformations .. 537
	G.CO.B. 6	Properties of Transformations ... 545
	G.CO.A. 2	Identifying Transformations ... 560
	G.CO.A. 2	Analytical Representations of Transformations............................ 574
	G.SRT.B. 5	Similarity .. 577
TRIGONOMETRY	G.SRT.C. 6	Trigonometric Ratios ... 624
	G.SRT.C. 7	Cofunctions.. 630
	G.SRT.C. 8	Using Trigonometry to Find a Side .. 653
	G.SRT.C. 8	Using Trigonometry to Find an Angle... 691
LOGIC	G.CO.B. 7	Triangle Congruency ... 710
	G.CO.B. 8	Triangle Congruency ... 723
	G.SRT.B. 5	Triangle Congruency .. 724
	G.CO.C. 10	Triangle Proofs .. 728
	G.SRT.B. 5	Triangle Proofs ... 732
	G.CO.C. 11	Quadrilateral Proofs.. 744
	G.SRT.B. 5	Quadrilateral Proofs... 747
	G.SRT.B. 5	Circle Proofs.. 760
	G.SRT.A. 3	Similarity Proofs.. 763
	G.C.A. 1	Similarity Proofs... 770

Geometry Regents Exam Questions by State Standard: Topic

TOOLS OF GEOMETRY

G.GMD.B.4: ROTATIONS OF

TWO-DIMENSIONAL OBJECTS
1 Which object is formed when right triangle RST shown below is rotated around leg $R S$?

1) a pyramid with a square base
2) an isosceles triangle
3) a right triangle
4) a cone

2 If the rectangle below is continuously rotated about side w, which solid figure is formed?

1) pyramid
2) rectangular prism
3) cone
4) cylinder

3 The rectangle drawn below is continuously rotated about side S.

Which three-dimensional figure is formed by this rotation?

1) rectangular prism
2) square pyramid
3) cylinder
4) cone

4 Circle O is centered at the origin. In the diagram below, a quarter of circle O is graphed.

Which three-dimensional figure is generated when the quarter circle is continuously rotated about the y-axis?

1) cone
2) sphere
3) cylinder
4) hemisphere

5 If an equilateral triangle is continuously rotated around one of its medians, which 3-dimensional object is generated?

1) cone
2) pyramid
3) prism
4) sphere

6 If a rectangle is continuously rotated around one of its sides, what is the three-dimensional figure formed?

1) rectangular prism
2) cylinder
3) sphere
4) cone

7 A circle is continuously rotated about its diameter. Which three-dimensional object will be formed?

1) cone
2) prism
3) sphere
4) cylinder

8 A student has a rectangular postcard that he folds in half lengthwise. Next, he rotates it continuously about the folded edge. Which three-dimensional object below is generated by this rotation?
1)

2)

3)

9 Triangle $A B C$, with vertices at $A(0,0), B(3,5)$, and $C(0,5)$, is graphed on the set of axes shown below.

Which figure is formed when $\triangle A B C$ is rotated continuously about $\overline{B C}$?
1)

2)
3)

4)

10 As shown in the diagram below, right triangle $A B C$ has side lengths of 8 and 15 .

If the triangle is continuously rotated about $\overline{A C}$, the resulting figure will be

1) a right cone with a radius of 15 and a height of 8
2) a right cone with a radius of 8 and a height of 15
3) a right cylinder with a radius of 15 and a height of 8
4) a right cylinder with a radius of 8 and a height of 15

11 An isosceles right triangle whose legs measure 6 is continuously rotated about one of its legs to form a three-dimensional object. The three-dimensional object is a

1) cylinder with a diameter of 6
2) cylinder with a diameter of 12
3) cone with a diameter of 6
4) cone with a diameter of 12

12 Square MATH has a side length of 7 inches. Which three-dimensional object will be formed by continuously rotating square MATH around side $\overline{A T}$?

1) a right cone with a base diameter of 7 inches
2) a right cylinder with a diameter of 7 inches
3) a right cone with a base radius of 7 inches
4) a right cylinder with a radius of 7 inches

13 Which three-dimensional figure will result when a rectangle 6 inches long and 5 inches wide is continuously rotated about the longer side?

1) a rectangular prism with a length of 6 inches, width of 6 inches, and height of 5 inches
2) a rectangular prism with a length of 6 inches, width of 5 inches, and height of 5 inches
3) a cylinder with a radius of 5 inches and a height of 6 inches
4) a cylinder with a radius of 6 inches and a height of 5 inches

14 In the diagram below, right triangle $A B C$ has legs whose lengths are 4 and 6.

What is the volume of the three-dimensional object formed by continuously rotating the right triangle around $\overline{A B}$?

1) 32π
2) 48π
3) 96π
4) 144π

15 A rectangle whose length and width are 10 and 6, respectively, is shown below. The rectangle is continuously rotated around a straight line to form an object whose volume is 150π.

Which line could the rectangle be rotated around?

1) a long side
2) a short side
3) the vertical line of symmetry
4) the horizontal line of symmetry

16 In right triangle $M T H$ shown below, $\mathrm{m} \angle H=90^{\circ}$, $H T=8$, and $H M=5$.

Determine and state, to the nearest tenth, the volume of the three-dimensional solid formed by rotating $\triangle M T H$ continuously around $\overline{M H}$.

17 In isosceles triangle $A B C$ shown below, $\overline{A B} \cong \overline{A C}$, and altitude $\overline{A D}$ is drawn.

The length of $\overline{A D}$ is 12 cm and the length of $\overline{B C}$ is 10 cm . Determine and state, to the nearest cubic centimeter, the volume of the solid formed by continuously rotating $\triangle A B C$ about $\overline{A D}$.

G.GMD.B.4: CROSS-SECTIONS OF

 THREE-DIMENSIONAL OBJECTS18 In the diagram below, a plane intersects a square pyramid parallel to its base.

Which two-dimensional shape describes this cross section?

1) circle
2) square
3) triangle
4) pentagon

19 A square pyramid is intersected by a plane passing through the vertex and perpendicular to the base.

Which two-dimensional shape describes this cross section?

1) square
2) triangle
3) pentagon
4) rectangle

20 A plane intersects a cylinder perpendicular to its bases.

This cross section can be described as a

1) rectangle
2) parabola
3) triangle
4) circle

21 A right hexagonal prism is shown below. A two-dimensional cross section that is perpendicular to the base is taken from the prism.

Which figure describes the two-dimensional cross section?

1) triangle
2) rectangle
3) pentagon
4) hexagon

22 Which figure can have the same cross section as a sphere?
1)

3)

4)

23 William is drawing pictures of cross sections of the right circular cone below.

Which drawing can not be a cross section of a cone?
1)

2)

4)

24 The cross section of a regular pyramid contains the altitude of the pyramid. The shape of this cross section is a

1) circle
2) square
3) triangle
4) rectangle

25 A right cylinder is cut perpendicular to its base.
The shape of the cross section is a

1) circle
2) cylinder
3) rectangle
4) triangular prism

26 A plane intersects a hexagonal prism. The plane is perpendicular to the base of the prism. Which two-dimensional figure is the cross section of the plane intersecting the prism?

1) triangle
2) trapezoid
3) hexagon
4) rectangle

27 A plane intersects a sphere. Which two-dimensional shape is formed by this cross section?

1) rectangle
2) triangle
3) square
4) circle

28 A two-dimensional cross section is taken of a three-dimensional object. If this cross section is a triangle, what can not be the three-dimensional object?

1) cone
2) cylinder
3) pyramid
4) rectangular prism

29 Which figure(s) below can have a triangle as a two-dimensional cross section?
I. cone
II. cylinder
III. cube
IV. square pyramid

1) I, only
2) IV, only
3) I, II, and IV, only
4) I, III, and IV, only

30 A right circular cylinder has a diameter of 8 inches and a height of 12 inches. Which two-dimensional figure shows a cross section that is perpendicular to the base and passes through the center of the base?

2)

4)

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

G.CO.D.12: CONSTRUCTIONS

31 Use a compass and straightedge to construct a line parallel to $\overleftrightarrow{A B}$ through point C, shown below. [Leave all construction marks.]

32 Using a compass and straightedge, construct the line of reflection over which triangle $R S T$ reflects onto triangle $R^{\prime} S^{\prime} T^{\prime}$. [Leave all construction marks.]

33 Given $M T$ below, use a compass and straightedge to construct a 45° angle whose vertex is at point M. [Leave all construction marks.]
$M T$

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

34 Using the construction below, state the degree measure of $\angle C A D$. Explain why.

35 Using a compass and straightedge, construct the angle bisector of $\angle A B C$. [Leave all construction marks.]

36 Using a compass and straightedge, construct an altitude of triangle $A B C$ below. [Leave all construction marks.]

37 In $\triangle A B C$ below, use a compass and straightedge to construct the altitude from C to $A B$. [Leave all construction marks.]

38 In the diagram of $\triangle A B C$ shown below, use a compass and straightedge to construct the median to $\overline{A B}$. [Leave all construction marks.]

39 Using a compass and straightedge, construct the median to side $\overline{A C}$ in $\triangle A B C$ below. [Leave all construction marks.]

40 Using a compass and straightedge, construct a midsegment of $\triangle A H L$ below. [Leave all construction marks.]

41 Segment CA is drawn below. Using a compass and straightedge, construct isosceles right triangle CAT where $\overline{C A} \perp \overline{C T}$ and $\overline{C A} \cong \overline{C T}$. [Leave all construction marks.]

42 Triangle $X Y Z$ is shown below. Using a compass and straightedge, on the line below, construct and label $\triangle A B C$, such that $\triangle A B C \cong \triangle X Y Z$. [Leave all construction marks.] Based on your construction, state the theorem that justifies why $\triangle A B C$ is congruent to $\triangle X Y Z$.

43 Using a compass and straightedge, dilate triangle $A B C$ by a scale factor of 2 centered at C. [Leave all construction marks.]

44 Using a compass and straightedge, construct and label $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a dilation with a scale factor of 2 and centered at B. [Leave all construction marks.] Describe the relationship between the lengths of $\overline{A C}$ and $\overline{A^{\prime} C^{\prime}}$.

45 Triangle $A B C$ is shown below. Using a compass and straightedge, construct the dilation of $\triangle A B C$ centered at B with a scale factor of 2 . [Leave all construction marks.]

Is the image of $\triangle A B C$ similar to the original triangle? Explain why.

46 Given points A, B, and C, use a compass and straightedge to construct point D so that $A B C D$ is a parallelogram. [Leave all construction marks.]

$$
{ }^{\circ} \mathrm{C}
$$

${ }^{\bullet} \mathrm{A}$

${ }^{\bullet}$ B

47 Given: Trapezoid $J K L M$ with $\overline{J K} \| \overline{M L}$ Using a compass and straightedge, construct the altitude from vertex J to $\overline{M L}$. [Leave all construction marks.]

48 In the diagram below, radius $\overline{O A}$ is drawn in circle O. Using a compass and a straightedge, construct a line tangent to circle O at point A. [Leave all construction marks.]

49 In the circle below, $\overline{A B}$ is a chord. Using a compass and straightedge, construct a diameter of the circle. [Leave all construction marks.]

G.CO.D.13: CONSTRUCTIONS

50 Given circle O with radius $\overline{O A}$, use a compass and straightedge to construct an equilateral triangle inscribed in circle O. [Leave all construction marks.]

51 Construct an equilateral triangle inscribed in circle T shown below. [Leave all construction marks.]

52 Use a compass and straightedge to construct an inscribed square in circle T shown below. [Leave all construction marks.]

53 The diagram below shows circle O with diameter
$\overline{A B}$. Using a compass and straightedge, construct a square that is inscribed in circle O. [Leave all construction marks.]

54 Using a straightedge and compass, construct a square inscribed in circle O below. [Leave all construction marks.]

Determine the measure of the arc intercepted by two adjacent sides of the constructed square.
Explain your reasoning.

55 Using a compass and straightedge, construct a regular hexagon inscribed in circle O. [Leave all construction marks.]

56 Using a compass and straightedge, construct a regular hexagon inscribed in circle O below. Label it $A B C D E F$. [Leave all construction marks.]

If chords $\overline{F B}$ and $\overline{F C}$ are drawn, which type of triangle, according to its angles, would $\triangle F B C$ be? Explain your answer.

LINES AND ANGLES

G.GPE.B.6: DIRECTED LINE SEGMENTS

57 In the diagram below, $\overline{A C}$ has endpoints with coordinates $A(-5,2)$ and $C(4,-10)$.

If B is a point on $\overline{A C}$ and $A B: B C=1: 2$, what are the coordinates of B ?

1) $(-2,-2)$
2) $\left(-\frac{1}{2},-4\right)$
3) $\left(0,-\frac{14}{3}\right)$
4) $(1,-6)$

58 Point Q is on $\overline{M N}$ such that $M Q: Q N=2: 3$. If M has coordinates $(3,5)$ and N has coordinates $(8,-5)$, the coordinates of Q are

1) $(5,1)$
2) $(5,0)$
3) $(6,-1)$
4) $(6,0)$

59 Line segment $R W$ has endpoints $R(-4,5)$ and $W(6,20)$. Point P is on $\overline{R W}$ such that $R P: P W$ is 2:3. What are the coordinates of point P ?

1) $(2,9)$
2) $(0,11)$
3) $(2,14)$
4) $(10,2)$

60 Directed line segment $D E$ has endpoints $D(-4,-2)$ and $E(1,8)$. Point F divides $\overline{D E}$ such that $D F: F E$ is $2: 3$. What are the coordinates of F ?

1) (-3.0)
2) $(-2,2)$
3) $(-1,4)$
4) $(2,4)$

61 The coordinates of the endpoints of directed line segment $A B C$ are $A(-8,7)$ and $C(7,-13)$. If $A B: B C=3: 2$, the coordinates of B are

1) $(1,-5)$
2) $(-2,-1)$
3) $(-3,0)$
4) $(3,-6)$

62 What are the coordinates of point C on the directed segment from $A(-8,4)$ to $B(10,-2)$ that partitions the segment such that $A C: C B$ is $2: 1$?

1) $(1,1)$
2) $(-2,2)$
3) $(2,-2)$
4) $(4,0)$

63 The coordinates of the endpoints of $\overline{Q S}$ are $Q(-9,8)$ and $S(9,-4)$. Point R is on $\overline{Q S}$ such that $Q R: R S$ is in the ratio of $1: 2$. What are the coordinates of point R ?

1) $(0,2)$
2) $(3,0)$
3) $(-3,4)$
4) $(-6,6)$

64 The endpoints of directed line segment $P Q$ have coordinates of $P(-7,-5)$ and $Q(5,3)$. What are the coordinates of point A, on $\overline{P Q}$, that divide $\overline{P Q}$ into a ratio of $1: 3$?

1) $A(-1,-1)$
2) $A(2,1)$
3) $A(3,2)$
4) $A(-4,-3)$

65 The endpoints of $\overline{A B}$ are $A(-5,3)$ and $B(7,-5)$.
Point P is on $\overline{A B}$ such that $A P: P B=3: 1$. What are the coordinates of point P ?

1) $(-2,-3)$
2) $(1,-1)$
3) $(-2,1)$
4) $(4,-3)$

66 Directed line segment $A J$ has endpoints whose coordinates are $A(5,7)$ and $J(-10,-8)$. Point E is on $\overline{A J}$ such that $A E: E J$ is $2: 3$. What are the coordinates of point E ?

1) $(1,-1)$
2) $(-5,-3)$
3) $(-4,-2)$
4) $(-1,1)$

67 Point P divides the directed line segment from point $A(-4,-1)$ to point $B(6,4)$ in the ratio 2:3. The coordinates of point P are

1) $(-1,1)$
2) $(0,1)$
3) $(1,0)$
4) $(2,2)$

68 The coordinates of the endpoints of $\overline{A B}$ are $A(-8,-2)$ and $B(16,6)$. Point P is on $\overline{A B}$. What are the coordinates of point P, such that $A P: P B$ is $3: 5$?

1) $(1,1)$
2) $(7,3)$
3) $(9.6,3.6)$
4) $(6.4,2.8)$

69 What are the coordinates of the point on the directed line segment from $K(-5,-4)$ to $L(5,1)$ that partitions the segment into a ratio of 3 to 2 ?

1) $(-3,-3)$
2) $(-1,-2)$
3) $\left(0,-\frac{3}{2}\right)$
4) $(1,-1)$

70 The coordinates of the endpoints of $\overline{S C}$ are $S(-7,3)$ and $C(2,-6)$. If point M is on $\overline{S C}$, what are the coordinates of M such that $S M: M C$ is 1:2?

1) $(-4,0)$
2) $(0,-4)$
3) $(-1,-3)$
4) $\left(-\frac{5}{2},-\frac{3}{2}\right)$

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

71 Point M divides $\overline{A B}$ so that $A M: M B=1: 2$. If A has coordinates $(-1,-3)$ and B has coordinates
$(8,9)$, the coordinates of M are

1) $(2,1)$
2) $\left(\frac{5}{3}, 0\right)$
3) $(5,5)$
4) $\left(\frac{23}{3}, 8\right)$

72 Point P is on the directed line segment from point $X(-6,-2)$ to point $Y(6,7)$ and divides the segment in the ratio 1:5. What are the coordinates of point P ?

1) $\left(4,5 \frac{1}{2}\right)$
2) $\left(-\frac{1}{2},-4\right)$
3) $\left(-4 \frac{1}{2}, 0\right)$
4) $\left(-4,-\frac{1}{2}\right)$

73 The coordinates of the endpoints of $\overline{A B}$ are $A(-6,-5)$ and $B(4,0)$. Point P is on $\overline{A B}$. Determine and state the coordinates of point P, such that $A P: P B$ is $2: 3$. [The use of the set of axes below is optional.]

74 Directed line segment $P T$ has endpoints whose coordinates are $P(-2,1)$ and $T(4,7)$. Determine the coordinates of point J that divides the segment in the ratio 2 to 1 . [The use of the set of axes below is optional.]

75 Directed line segment $A B$ has endpoints whose coordinates are $A(-2,5)$ and $B(8,-1)$. Determine and state the coordinates of P, the point which divides the segment in the ratio $3: 2$. [The use of the set of axes below is optional.]

76 Line segment $P Q$ has endpoints $P(-5,1)$ and $Q(5,6)$, and point R is on $\overline{P Q}$. Determine and state the coordinates of R, such that $P R: R Q=2: 3$. [The use of the set of axes below is optional.]

77 The endpoints of $\overline{D E F}$ are $D(1,4)$ and $F(16,14)$. Determine and state the coordinates of point E, if $D E: E F=2: 3$.

78 Point P is on segment $A B$ such that $A P: P B$ is $4: 5$. If A has coordinates (4,2), and B has coordinates $(22,2)$, determine and state the coordinates of P.

G.CO.C.9: LINES AND ANGLES

79 In the diagram below, $\overline{A E F B} \| \overline{C G D}$, and $\overline{G E}$ and $\overline{G F}$ are drawn.

If $\mathrm{m} \angle E F G=32^{\circ}$ and $\mathrm{m} \angle A E G=137^{\circ}$, what is $\mathrm{m} \angle E G F$?

1) 11°
2) 43°
3) 75°
4) 105°

80 As shown in the diagram below, $\overleftrightarrow{A B C} \| \overleftrightarrow{E F G}$ and $\overline{B F} \cong \overline{E F}$.

If $\mathrm{m} \angle C B F=42.5^{\circ}$, then $\mathrm{m} \angle E B F$ is

1) 42.5°
2) 68.75°
3) 95°
4) 137.5°

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

81 In the diagram below, $\overleftrightarrow{A B C D} \| \overleftrightarrow{E H K}$, and $\overleftrightarrow{M B H P}$ and $\overleftrightarrow{N C H L}$ are drawn such that $\overline{B C} \cong \overline{B H}$.

If $\mathrm{m} \angle N C D=62^{\circ}$, what is $\mathrm{m} \angle P H K$?

1) 118°
2) 68°
3) 62°
4) 56°

82 In the diagram below, $\overline{D B}$ and $\overline{A F}$ intersect at point C, and $\overline{A D}$ and $\overline{F B E}$ are drawn.

If $A C=6, D C=4, F C=15, \mathrm{~m} \angle D=65^{\circ}$, and $\mathrm{m} \angle C B E=115^{\circ}$, what is the length of $\overline{C B}$?

1) 10
2) 12
3) 17
4) 22.5

83 In the diagram below, $\overline{F A D} \| \overline{E H C}$, and $\overline{A B H}$ and $B C$ are drawn.

If $\mathrm{m} \angle F A B=48^{\circ}$ and $\mathrm{m} \angle E C B=18^{\circ}$, what is $\mathrm{m} \angle A B C$?

1) 18°
2) 48°
3) 66°
4) 114°

84 In the diagram below, $\overline{A B} \| \overrightarrow{D E F}, \overline{A E}$ and $\overline{B D}$ intersect at $C, \mathrm{~m} \angle B=43^{\circ}$, and $\mathrm{m} \angle C E F=152^{\circ}$.

Which statement is true?

1) $\mathrm{m} \angle D=28^{\circ}$
2) $\mathrm{m} \angle A=43^{\circ}$
3) $\mathrm{m} \angle A C D=71^{\circ}$
4) $\mathrm{m} \angle B C E=109^{\circ}$

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

85 In the diagram below, $\overline{A F K B} \| \overline{C H L M}, \overline{F H} \cong \overline{L H}$, $\overline{F L} \cong \overline{K L}$, and $\overline{L F}$ bisects $\angle H F K$.

Which statement is always true?

1) $2(\mathrm{~m} \angle H L F)=\mathrm{m} \angle C H E$
2) $2(\mathrm{~m} \angle F L K)=\mathrm{m} \angle L K B$
3) $\mathrm{m} \angle A F D=\mathrm{m} \angle B K L$
4) $\mathrm{m} \angle D F K=\mathrm{m} \angle K L F$

86 Steve drew line segments $A B C D, E F G, B F$, and $C F$ as shown in the diagram below. Scalene $\triangle B F C$ is formed.

Which statement will allow Steve to prove $\overline{A B C D} \| \overline{E F G}$?

1) $\angle C F G \cong \angle F C B$
2) $\angle A B F \cong \angle B F C$
3) $\angle E F B \cong \angle C F B$
4) $\angle C B F \cong \angle G F C$

87 In the diagram below, $\overleftrightarrow{F E}$ bisects $\overline{A C}$ at B, and $\overleftrightarrow{G E}$ bisects $\overline{B D}$ at C.

Which statement is always true?

1) $\overline{A B} \cong \overline{D C}$
2) $\overline{F B} \cong \overline{E B}$
3) $\overleftrightarrow{B D}$ bisects $\overline{G E}$ at C.
4) $\overleftrightarrow{A C}$ bisects $\overline{F E}$ at B.

88 In the diagram below, lines ℓ, m, n, and p intersect line r.

Which statement is true?

1) $\ell \| n$
2) $\ell \| p$
3) $m \| p$
4) $m \| n$

89 Segment $C D$ is the perpendicular bisector of $\overline{A B}$ at E. Which pair of segments does not have to be congruent?

1) $\overline{A D}, \overline{B D}$
2) $\overline{A C}, \overline{B C}$
3) $\overline{A E}, \overline{B E}$
4) $\overline{D E}, \overline{C E}$

90 In the diagram below, $\overline{E F}$ intersects $\overline{A B}$ and $\overline{C D}$ at \underline{G} and \underline{H}, respectively, and $\overline{G I}$ is drawn such that $\overline{G H} \cong \overline{I H}$.

If $\mathrm{m} \angle E G B=50^{\circ}$ and $\mathrm{m} \angle D I G=115^{\circ}$, explain why $\overline{A B} \| \overline{C D}$.

G.GPE.B.5: PARALLEL AND PERPENDICULAR LINES

91 Given $\overline{M N}$ shown below, with $M(-6,1)$ and $N(3,-5)$, what is an equation of the line that passes through point $P(6,1)$ and is parallel to $\overline{M N}$?

1) $y=-\frac{2}{3} x+5$
2) $y=-\frac{2}{3} x-3$
3) $y=\frac{3}{2} x+7$
4) $y=\frac{3}{2} x-8$

92 Which equation represents the line that passes through the point $(-2,2)$ and is parallel to
$y=\frac{1}{2} x+8$?

1) $y=\frac{1}{2} x$
2) $y=-2 x-3$
3) $y=\frac{1}{2} x+3$
4) $y=-2 x+3$

93 Which equation represents a line parallel to the line whose equation is $-2 x+3 y=-4$ and passes through the point $(1,3)$?

1) $y-3=-\frac{3}{2}(x-1)$
2) $y-3=\frac{2}{3}(x-1)$
3) $y+3=-\frac{3}{2}(x+1)$
4) $y+3=\frac{2}{3}(x+1)$

94 The equation of a line is $3 x-5 y=8$. All lines perpendicular to this line must have a slope of

1) $\frac{3}{5}$
2) $\frac{5}{3}$
3) $-\frac{3}{5}$
4) $-\frac{5}{3}$

95 Which equation represents a line that is perpendicular to the line represented by $y=\frac{2}{3} x+1$?

1) $3 x+2 y=12$
2) $3 x-2 y=12$
3) $y=\frac{3}{2} x+2$
4) $y=-\frac{2}{3} x+4$

96 What is an equation of a line that is perpendicular to the line whose equation is $2 y+3 x=1$?

1) $y=\frac{2}{3} x+\frac{5}{2}$
2) $y=\frac{3}{2} x+2$
3) $y=-\frac{2}{3} x+1$
4) $y=-\frac{3}{2} x+\frac{1}{2}$

97 Which equation represents a line that is perpendicular to the line whose equation is $y-3 x=4$?

1) $y=-\frac{1}{3} x-4$
2) $y=\frac{1}{3} x+4$
3) $y=-3 x+4$
4) $y=3 x-4$

98 Which equation represents a line that is perpendicular to the line represented by $2 x-y=7$?

1) $y=-\frac{1}{2} x+6$
2) $y=\frac{1}{2} x+6$
3) $y=-2 x+6$
4) $y=2 x+6$

99 An equation of a line perpendicular to the line represented by the equation $y=-\frac{1}{2} x-5$ and passing through $(6,-4)$ is

1) $y=-\frac{1}{2} x+4$
2) $y=-\frac{1}{2} x-1$
3) $y=2 x+14$
4) $y=2 x-16$

100 What is an equation of the line that passes through the point $(6,8)$ and is perpendicular to a line with equation $y=\frac{3}{2} x+5$?

1) $y-8=\frac{3}{2}(x-6)$
2) $y-8=-\frac{2}{3}(x-6)$
3) $y+8=\frac{3}{2}(x+6)$
4) $y+8=-\frac{2}{3}(x+6)$

101 What is an equation of a line that is perpendicular to the line whose equation is $2 y=3 x-10$ and passes through $(-6,1)$?

1) $y=-\frac{2}{3} x-5$
2) $y=-\frac{2}{3} x-3$
3) $y=\frac{2}{3} x+1$
4) $y=\frac{2}{3} x+10$

102 An equation of the line perpendicular to the line whose equation is $4 x-5 y=6$ and passes through the point $(-2,3)$ is

1) $y+3=-\frac{5}{4}(x-2)$
2) $y-3=-\frac{5}{4}(x+2)$
3) $y+3=\frac{4}{5}(x-2)$
4) $y-3=\frac{4}{5}(x+2)$

103 What is an equation of a line which passes through $(6,9)$ and is perpendicular to the line whose equation is $4 x-6 y=15$?

1) $y-9=-\frac{3}{2}(x-6)$
2) $y-9=\frac{2}{3}(x-6)$
3) $y+9=-\frac{3}{2}(x+6)$
4) $y+9=\frac{2}{3}(x+6)$

104 What is an equation of the perpendicular bisector of the line segment shown in the diagram below?

1) $y+2 x=0$
2) $y-2 x=0$
3) $2 y+x=0$
4) $2 y-x=0$

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

105 Line segment $N Y$ has endpoints $N(-11,5)$ and $Y(5,-7)$. What is the equation of the perpendicular bisector of $\overline{N Y}$?

1) $y+1=\frac{4}{3}(x+3)$
2) $y+1=-\frac{3}{4}(x+3)$
3) $y-6=\frac{4}{3}(x-8)$
4) $y-6=-\frac{3}{4}(x-8)$

106 Segment $J M$ has endpoints $J(-5,1)$ and $M(7,-9)$. An equation of the perpendicular bisector of $\overline{J M}$ is

1) $y-4=\frac{5}{6}(x+1)$
2) $y+4=\frac{5}{6}(x-1)$
3) $y-4=\frac{6}{5}(x+1)$
4) $y+4=\frac{6}{5}(x-1)$

107 The endpoints of $\overline{A B}$ are $A(0,4)$ and $B(-4,6)$. Which equation of a line represents the perpendicular bisector of $\overline{A B}$?

1) $y=-\frac{1}{2} x+4$
2) $y=-2 x+1$
3) $y=2 x+8$
4) $y=2 x+9$

109 Determine and state an equation of the line perpendicular to the line $5 x-4 y=10$ and passing through the point $(5,12)$.

TRIANGLES

G.SRT.C.8: 30-60-90 TRIANGLES

110 The diagram shows rectangle $A B C D$, with diagonal $\overline{B D}$.

What is the perimeter of rectangle $A B C D$, to the nearest tenth?

1) 28.4
2) 32.8
3) 48.0
4) 62.4

111 An equilateral triangle has sides of length 20. To the nearest tenth, what is the height of the equilateral triangle?

1) 10.0
2) 11.5
3) 17.3
4) 23.1

108 Write an equation of the line that is parallel to the line whose equation is $3 y+7=2 x$ and passes through the point $(2,6)$.

G.SRT.B.5: ISOSCELES TRIANGLE THEOREM

112 In the diagram below of $\triangle A E D$ and $\overline{A B C D}$, $\overline{A E} \cong \overline{D E}$.

Which statement is always true?

1) $\overline{E B} \cong \overline{E C}$
2) $\overline{A C} \cong \overline{D B}$
3) $\angle E B A \cong \angle E C D$
4) $\angle E A C \cong \angle E D B$

113 In triangle $C E M, C E=3 x+10, M E=5 x-14$, and $C M=2 x-6$. Determine and state the value of x that would make CEM an isosceles triangle with the vertex angle at E.

G.SRT.B.5: SIDE SPLITTER THEOREM

114 In the diagram of $\triangle A D C$ below, $\overline{E B} \| \overline{D C}, A E=9$, $E D=5$, and $A B=9.2$.

What is the length of $\overline{A C}$, to the nearest tenth?

1) 5.1
2) 5.2
3) 14.3
4) 14.4

115 In the diagram of $\triangle A B C$, points D and E are on $\overline{A B}$ and $\overline{C B}$, respectively, such that $\overline{A C} \| \overline{D E}$.

If $A D=24, D B=12$, and $D E=4$, what is the length of $\overline{A C}$?

1) 8
2) 12
3) 16
4) 72

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

116 Given $\triangle M R O$ shown below, with trapezoid PTRO, $M R=9, M P=2$, and $P O=4$.

What is the length of $\overline{T R}$?

1) 4.5
2) 5
3) 3
4) 6

117 In the diagram below, triangle $A C D$ has points B and E on sides $\overline{A C}$ and $\overline{A D}$, respectively, such that $\overline{B E} \| \overline{C D}, A B=1, B C=3.5$, and $A D=18$.

What is the length of $\overline{A E}$, to the nearest tenth?

1) 14.0
2) 5.1
3) 3.3
4) 4.0

118 In the diagram of $\triangle A B C$ below, $\overline{D E}$ is parallel to $\overline{A B}, C D=15, A D=9$, and $A B=40$.

The length of $\overline{D E}$ is

1) 15
2) 24
3) 25
4) 30

119 In the diagram below of $\triangle P Q R, \overline{S T}$ is drawn parallel to $\overline{P R}, P S=2, S Q=5$, and $T R=5$.

What is the length of $\overline{Q R}$?

1) 7
2) 2
3) $12 \frac{1}{2}$
4) $17 \frac{1}{2}$

120 In triangle $A B C$, points D and E are on sides $\overline{A B}$ and $\overline{B C}$, respectively, such that $\overline{D E} \| \overline{A C}$, and $A D: D B=3: 5$.

If $D B=6.3$ and $A C=9.4$, what is the length of $D E$, to the nearest tenth?

1) 3.8
2) 5.6
3) 5.9
4) 15.7

121 In right triangle $A B C$ shown below, point D is on $\overline{A B}$ and point E is on $\overline{C B}$ such that $\overline{A C} \| \overline{D E}$.

If $A B=15, B C=12$, and $E C=7$, what is the length of $\overline{B D}$?

1) 8.75
2) 6.25
3) 5
4) 4

122 In the diagram below of $\triangle A B C, D$ is a point on $\overline{B A}, E$ is a point on $\overline{B C}$, and $\overline{D E}$ is drawn.

If $B D=5, D A=12$, and $B E=7$, what is the length of $\overline{B C}$ so that $\overline{A C} \| \overline{D E}$?

1) 23.8
2) 16.8
3) 15.6
4) 8.6

123 In the diagram below, $\overline{B C}$ connects points B and C on the congruent sides of isosceles triangle $A D E$, such that $\triangle A B C$ is isosceles with vertex angle A.

If $A B=10, B D=5$, and $D E=12$, what is the length of $\overline{B C}$?

1) 6
2) 7
3) 8
4) 9

124 In the diagram below of $\triangle R S T, L$ is a point on $\overline{R S}$, and M is a point on $\overline{R T}$, such that $L M \| S T$.

If $R L=2, L S=6, L M=4$, and $S T=x+2$, what is the length of $\overline{S T}$?

1) 10
2) 12
3) 14
4) 16

125 In the diagram below of $\triangle C E R, \overline{L A} \| \overline{C R}$.

If $C L=3.5, L E=7.5$, and $E A=9.5$, what is the length of $\overline{A R}$, to the nearest tenth?

1) 5.5
2) 4.4
3) 3.0
4) 2.8

126 In triangle $\underline{A B C}$ below, D is a point on $\overline{A B}$ and E is a point on $\overline{A C}$, such that $\overline{D E} \| \overline{B C}$.

If $A D=12, D B=8$, and $E C=10$, what is the length of $\overline{A C}$?

1) 15
2) 22
3) 24
4) 25

127 In the diagram of $\triangle S R A$ below, $\overline{K P}$ is drawn such that $\angle S K P \cong \angle S R A$.

If $S K=10, S P=8$, and $P A=6$, what is the length of $\overline{K R}$, to the nearest tenth?

1) 4.8
2) 7.5
3) 8.0
4) 13.3

128 In the diagram of $\triangle A B C$ below, points D and E are on sides $\overline{A B}$ and $\overline{C B}$ respectively, such that $\overline{D E} \| \overline{A C}$.

If $E B$ is 3 more than $D B, A B=14$, and $C B=21$, what is the length of $\overline{A D}$?

1) 6
2) 8
3) 9
4) 12

129 In the diagram below of $\triangle A B C, \overline{T V}$ intersects $\overline{A B}$ and $\overline{A C}$ at points T and V respectively, and $\mathrm{m} \angle A T V=\mathrm{m} \angle A B C$.

If $A T=4, B C=18, T B=5$, and $A V=6$, what is the perimeter of quadrilateral $T B C V$?

1) 38.5
2) 39.5
3) 40.5
4) 44.9

130 In the diagram below, $\triangle A B C \sim \triangle A D E$.

Which measurements are justified by this similarity?

1) $A D=3, A B=6, A E=4$, and $A C=12$
2) $A D=5, A B=8, A E=7$, and $A C=10$
3) $A D=3, A B=9, A E=5$, and $A C=10$
4) $A D=2, A B=6, A E=5$, and $A C=15$

131 In triangle $A B C$ below, D is a point on $\overline{A B}$ and E is a point on $\overline{A C}$, such that $\overline{D E} \| \overline{B C}$.

Which statement is always true?

1) $\angle A D E$ and $\angle A B C$ are right angles.
2) $\triangle A D E \sim \triangle A B C$
3) $D E=\frac{1}{2} B C$
4) $\overline{A D} \cong \overline{D B}$

132 Triangle $A D F$ is drawn and $\overline{B C} \| \overline{D F}$.

Which statement must be true?

1) $\frac{A B}{B C}=\frac{B D}{D F}$
2) $B C=\frac{1}{2} D F$
3) $A B: A D=A C: C F$
4) $\angle A C B \cong \angle A F D$

133 In the diagram below of right triangle $A E D$, $\overline{B C} \| \overline{D E}$.

Which statement is always true?

1) $\frac{A C}{B C}=\frac{D E}{A E}$
2) $\frac{A B}{A D}=\frac{B C}{D E}$
3) $\frac{A C}{C E}=\frac{B C}{D E}$
4) $\frac{D E}{B C}=\frac{D B}{A B}$

134 In $\triangle A B C$ below, $\overline{D E}$ is drawn such that D and E are on $\overline{A B}$ and $\overline{A C}$, respectively.

If $\overline{D E} \| \overline{B C}$, which equation will always be true?

1) $\frac{A D}{D E}=\frac{D B}{B C}$
2) $\frac{A D}{D E}=\frac{A B}{B C}$
3) $\frac{A D}{B C}=\frac{D E}{D B}$
4) $\frac{A D}{B C}=\frac{D E}{A B}$

135 In the diagram below of $\triangle A C T, \overleftrightarrow{E S}$ is drawn parallel to $\overline{A T}$ such that E is on $\overline{C A}$ and S is on $\overline{C T}$.

Which statement is always true?

1) $\frac{C E}{C A}=\frac{C S}{S T}$
2) $\frac{C E}{E S}=\frac{E A}{A T}$
3) $\frac{C E}{E A}=\frac{C S}{S T}$
4) $\frac{C E}{S T}=\frac{E A}{C S}$

136 The diagram below shows triangle $A B C$ with point X on side $\overline{A B}$ and point Y on side $\overline{C B}$.

Which information is sufficient to prove that $\triangle B X Y \sim \triangle B A C$?

1) $\angle B$ is a right angle.
2) $\overline{X Y}$ is parallel to $\overline{A C}$.
3) $\triangle A B C$ is isosceles.
4) $\overline{A X} \cong \overline{C Y}$

137 In $\triangle C E D$ as shown below, points A and B are located on sides $\overline{C E}$ and $\overline{E D}$, respectively. Line segment $A B$ is drawn such that $A E=3.75, A C=5$, $E B=4.5$, and $B D=6$.

Explain why $\overline{A B}$ is parallel to $\overline{C D}$.

G.CO.C.10: INTERIOR AND EXTERIOR ANGLES OF TRIANGLES

138 In the diagram below of $\triangle A C D, \overline{D B}$ is a median to $\overline{A C}$, and $\overline{A B} \cong \overline{D B}$.

If $\mathrm{m} \angle D A B=32^{\circ}$, what is $\mathrm{m} \angle B D C$?

1) 32°
2) 52°
3) 58°
4) 64°

139 In the diagram below, $\overline{D E}$ divides $\overline{A B}$ and $\overline{A C}$ proportionally, $\mathrm{m} \angle C=26^{\circ}, \mathrm{m} \angle A=82^{\circ}$, and $\overline{D F}$ bisects $\angle B D E$.

The measure of angle $D F B$ is

1) 36°
2) 54°
3) 72°
4) 82°

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

140 In the diagram below of triangle $M N O, \angle M$ and $\angle O$ are bisected by $\overline{M S}$ and $\overline{O R}$, respectively. Segments $M S$ and $O R$ intersect at T, and $\mathrm{m} \angle N=40^{\circ}$.

If $\mathrm{m} \angle T M R=28^{\circ}$, the measure of angle $O T S$ is

1) 40°
2) 50°
3) 60°
4) 70°

141 In the diagram of $\triangle A B C$ below, $\overline{A E}$ bisects angle $B A C$, and altitude $\overline{B D}$ is drawn.

If $\mathrm{m} \angle C=50^{\circ}$ and $\mathrm{m} \angle A B C=60^{\circ}, \mathrm{m} \angle F E B$ is

1) 35°
2) 40°
3) 55°
4) 85°

142 In the diagram below, $\mathrm{m} \angle B D C=100^{\circ}$, $\mathrm{m} \angle A=50^{\circ}$, and $\mathrm{m} \angle D B C=30^{\circ}$.

Which statement is true?

1) $\triangle A B D$ is obtuse.
2) $\triangle A B C$ is isosceles.
3) $\mathrm{m} \angle A B D=80^{\circ}$
4) $\triangle A B D$ is scalene.

G.CO.C.10: EXTERIOR ANGLE THEOREM

143 Given $\triangle A B C$ with $\mathrm{m} \angle B=62^{\circ}$ and side $\overline{A C}$ extended to D, as shown below.

Which value of x makes $\overline{A B} \cong \overline{C B}$?

1) 59°
2) 62°
3) 118°
4) 121°

144 In $\triangle A B C$ shown below, side $\overline{A C}$ is extended to point D with $\mathrm{m} \angle D A B=(180-3 x)^{\circ}$, $\mathrm{m} \angle B=(6 x-40)^{\circ}$, and $\mathrm{m} \angle C=(x+20)^{\circ}$.

What is $\mathrm{m} \angle B A C$?

1) 20°
2) 40°
3) 60°
4) 80°

145 In the diagram below of triangle $A B C, \overline{A C}$ is extended through point C to point D, and $\overline{B E}$ is drawn to $\overline{A C}$.

Which equation is always true?

1) $\mathrm{m} \angle 1=\mathrm{m} \angle 3+\mathrm{m} \angle 2$
2) $\mathrm{m} \angle 5=\mathrm{m} \angle 3-\mathrm{m} \angle 2$
3) $\mathrm{m} \angle 6=\mathrm{m} \angle 3-\mathrm{m} \angle 2$
4) $\mathrm{m} \angle 7=\mathrm{m} \angle 3+\mathrm{m} \angle 2$

146 The measure of one of the base angles of an isosceles triangle is 42°. The measure of an exterior angle at the vertex of the triangle is

1) 42°
2) 84°
3) 96°
4) 138°

147 If one exterior angle of a triangle is acute, then the triangle must be

1) right
2) acute
3) obtuse
4) equiangular

G.CO.C.10: ANGLE SIDE RELATIONSHIP

148 In the diagram of quadrilateral $N A V Y$ below, $\mathrm{m} \angle Y N A=30^{\circ}, \mathrm{m} \angle Y A N=38^{\circ}, \mathrm{m} \angle A V Y=94^{\circ}$, and $\mathrm{m} \angle V A Y=46^{\circ}$.

Which segment has the shortest length?

1) $\overline{A Y}$
2) $\overline{N Y}$
3) $\overline{V A}$
4) $\overline{V Y}$

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

149 In $\triangle A B C$, side $\overline{B C}$ is extended through C to D. If $\mathrm{m} \angle A=30^{\circ}$ and $\mathrm{m} \angle A C D=110^{\circ}$, what is the longest side of $\triangle A B C$?

1) $\overline{A C}$
2) $\overline{B C}$
3) $\overline{A B}$
4) $\overline{C D}$

G.CO.C.10: MIDSEGMENTS

150 In $\triangle A B C, M$ is the midpoint of $\overline{A B}$ and N is the midpoint of $\overline{A C}$. If $M N=x+13$ and $B C=5 x-1$, what is the length of $\overline{M N}$?

1) 3.5
2) 9
3) 16.5
4) 22

151 In quadrilateral $A B C D$ below, $\overline{A B} \| \overline{C D}$, and E, H, and F are the midpoints of $\overline{A D}, \overline{A C}$, and $\overline{B C}$, respectively.

If $A B=24, C D=18$, and $A H=10$, then $F H$ is

1) 9
2) 10
3) 12
4) 21

152 In the diagram of equilateral triangle $A B C$ shown below, E and F are the midpoints of $\overline{A C}$ and $\overline{B C}$, respectively.

If $E F=2 x+8$ and $A B=7 x-2$, what is the perimeter of trapezoid $A B F E$?

1) 36
2) 60
3) 100
4) 120

153 In the diagram below, $\overline{D E}, \overline{D F}$, and $\overline{E F}$ are midsegments of $\triangle A B C$.

The perimeter of quadrilateral $A D E F$ is equivalent to

1) $A B+B C+A C$
2) $\frac{1}{2} A B+\frac{1}{2} A C$
3) $2 A B+2 A C$
4) $A B+A C$

154 In the diagram below of $\triangle A B C, D, E$, and F are the midpoints of $\overline{A B}, \overline{B C}$, and $\overline{C A}$, respectively.

What is the ratio of the area of $\triangle C F E$ to the area of $\triangle C A B$?

1) $1: 1$
2) $1: 2$
3) $1: 3$
4) $1: 4$

155 The area of $\triangle T A P$ is $36 \mathrm{~cm}^{2}$. A second triangle, $J O E$, is formed by connecting the midpoints of each side of $\triangle T A P$. What is the area of $J O E$, in square centimeters?

1) 9
2) 12
3) 18
4) 27

G.CO.C.10: MEDIANS, ALTITUDES AND BISECTORS

156 Segment $A B$ is the perpendicular bisector of $\overline{C D}$ at point M. Which statement is always true?

1) $\overline{C B} \cong \overline{D B}$
2) $\overline{C D} \cong \overline{A B}$
3) $\triangle A C D \sim \triangle B C D$
4) $\triangle A C M \sim \triangle B C M$

157 In triangle $M A H$ below, $\overline{M T}$ is the perpendicular bisector of $\overline{A H}$.

Which statement is not always true?

1) $\triangle M A H$ is isosceles.
2) $\triangle M A T$ is isosceles.
3) $\overline{M T}$ bisects $\angle A M H$.
4) $\angle A$ and $\angle T M H$ are complementary.

158 In $\triangle A B C, \overline{B D}$ is the perpendicular bisector of $\overline{A D C}$. Based upon this information, which statements below can be proven?
I. $\overline{B D}$ is a median.
II. $\overline{B D}$ bisects $\angle A B C$.
III. $\triangle A B C$ is isosceles.

1) I and II, only
2) I and III, only
3) II and III, only
4) I, II, and III

159 In isosceles $\triangle M N P$, line segment $N O$ bisects vertex $\angle M N P$, as shown below. If $M P=16$, find the length of $\overline{M O}$ and explain your answer.

G.CO.C.10: CENTROID, ORTHOCENTER, INCENTER \& CIRCUMCENTER

160 If the altitudes of a triangle meet at one of the triangle's vertices, then the triangle is

1) a right triangle
2) an acute triangle
3) an obtuse triangle
4) an equilateral triangle

161 In triangle $S R K$ below, medians $\overline{S C}, \overline{K E}$, and $\overline{R L}$ intersect at M.

Which statement must always be true?

1) $3(M C)=S C$
2) $M C=\frac{1}{3}(S M)$
3) $R M=2 M C$
4) $S M=K M$

162 In the diagram below of isosceles triangle $A B C$, $\overline{A B} \cong \overline{C B}$ and angle bisectors $\overline{A D}, \overline{B F}$, and $\overline{C E}$ are drawn and intersect at X.

If $\mathrm{m} \angle B A C=50^{\circ}$, find $\mathrm{m} \angle A X C$.

163 In $\triangle X Y Z$, shown below, medians $\overline{X E}, \overline{Y F}$, and $\overline{Z D}$ intersect at C.

If $C E=5, Y F=21$, and $X Z=15$, determine and state the perimeter of triangle CFX.

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org
G.GPE.B.4: TRIANGLES IN THE COORDINATE PLANE

164 In the diagram below, $\triangle A B C$ has vertices $A(4,5)$, $B(2,1)$, and $C(7,3)$.

What is the slope of the altitude drawn from A to $\overline{B C}$?

1) $\frac{2}{5}$
2) $\frac{3}{2}$
3) $-\frac{1}{2}$
4) $-\frac{5}{2}$

165 On the set of axes below, $\triangle A B C$, altitude $\overline{C G}$, and median $\overline{C M}$ are drawn.

Which expression represents the area of $\triangle A B C$?

1) $\frac{(B C)(A C)}{2}$
2) $\frac{(G C)(B C)}{2}$
3) $\frac{(C M)(A B)}{2}$
4) $\frac{(G C)(A B)}{2}$

166 The coordinates of the vertices of $\triangle R S T$ are $R(-2,-3), S(8,2)$, and $T(4,5)$. Which type of triangle is $\triangle R S T$?

1) right
2) acute
3) obtuse
4) equiangular

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

167 A triangle has vertices $A(-2,4), B(6,2)$, and $C(1,-1)$. Prove that $\triangle A B C$ is an isosceles right triangle. [The use of the set of axes below is optional.]

168 Triangle $A B C$ has vertices with coordinates $A(-1,-1), B(4,0)$, and $C(0,4)$. Prove that $\triangle A B C$ is an isosceles triangle but not an equilateral triangle. [The use of the set of axes below is optional.]

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

169 Triangle $A B C$ has vertices with $A(x, 3), B(-3,-1)$, and $C(-1,-4)$. Determine and state a value of x that would make triangle $A B C$ a right triangle.
Justify why $\triangle A B C$ is a right triangle. [The use of the set of axes below is optional.]

170 On the set of axes below, $\triangle D E F$ has vertices at the coordinates $D(1,-1), E(3,4)$, and $F(4,2)$, and point G has coordinates $(3,1)$. Owen claims the median from point E must pass through point G. Is Owen correct? Explain why.

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

171 Triangle $R S T$ has vertices with coordinates $R(-3,-2), S(3,2)$ and $T(4,-4)$. Determine and state an equation of the line parallel to $\overline{R T}$ that passes through point S. [The use of the set of axes below is optional.]

172 Triangle $P Q R$ has vertices $P(-3,-1), Q(-1,7)$, and $R(3,3)$, and points A and B are midpoints of $\overline{P Q}$ and $\overline{R Q}$, respectively. Use coordinate geometry to prove that $\overline{A B}$ is parallel to $\overline{P R}$ and is half the length of $P R$. [The use of the set of axes below is optional.]

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

POLYGONS

G.CO.C.11: INTERIOR AND EXTERIOR ANGLES OF POLYGONS

173 In the diagram of parallelogram $F R E D$ shown below, $\overline{E D}$ is extended to A, and $\overline{A F}$ is drawn such that $\overline{A F} \cong \overline{D F}$.

If $\mathrm{m} \angle R=124^{\circ}$, what is $\mathrm{m} \angle A F D$?

1) 124°
2) 112°
3) 68°
4) 56°

174 In the diagram below, $A B C D$ is a parallelogram, $\overline{A B}$ is extended through B to E, and $\overline{C E}$ is drawn.

If $\overline{C E} \cong \overline{B E}$ and $\mathrm{m} \angle D=112^{\circ}$, what is $\mathrm{m} \angle E$?

1) 44°
2) 56°
3) 68°
4) 112°

175 In the diagram below of parallelogram ROCK, $\mathrm{m} \angle C$ is 70° and $\mathrm{m} \angle R O S$ is 65°.

What is $\mathrm{m} \angle K S O$?

1) 45°
2) 110°
3) 115°
4) 135°

176 In parallelogram $P Q R S, \overline{Q P}$ is extended to point T and $\overline{S T}$ is drawn.

If $\overline{S T} \cong \overline{S P}$ and $\mathrm{m} \angle R=130^{\circ}$, what is $\mathrm{m} \angle P S T$?

1) 130°
2) 80°
3) 65°
4) 50°

177 In parallelogram $A B C D$ shown below, $\overline{E B}$ bisects $\angle A B C$.

If $\mathrm{m} \angle A=40^{\circ}$, then $\mathrm{m} \angle B E D$ is

1) 40°
2) 70°
3) 110°
4) 140°

178 In the diagram below of parallelogram $A B C D$, diagonal $\overline{B E D}$ and $\overline{E F}$ are drawn, $\overline{E F} \perp \overline{D F C}$, $\mathrm{m} \angle D A B=111^{\circ}$, and $\mathrm{m} \angle D B C=39^{\circ}$.

What is $\mathrm{m} \angle D E F$?

1) 30°
2) 51°
3) 60°
4) 120°

179 In parallelogram $Q R S T$ shown below, diagonal $\overline{T R}$ is drawn, U and V are points on $\overline{T S}$ and $\overline{Q R}$, respectively, and $\overline{U V}$ intersects $\overline{T R}$ at W.

If $\mathrm{m} \angle S=60^{\circ}, \mathrm{m} \angle S R T=83^{\circ}$, and $\mathrm{m} \angle T W U=35^{\circ}$, what is $\mathrm{m} \angle W V Q$?

1) 37°
2) 60°
3) 72°
4) 83°

180 In the diagram below of parallelogram $A B C D$, $\overline{A F G B}, \overline{C F}$ bisects $\angle D C B, \overline{D G}$ bisects $\angle A D C$, and $\overline{C F}$ and $\overline{D G}$ intersect at E.

If $\mathrm{m} \angle B=75^{\circ}$, then the measure of $\angle E F A$ is

1) 142.5°
2) 127.5°
3) 52.5°
4) 37.5°

181 Quadrilateral $E B C F$ and $\overline{A D}$ are drawn below, such that $A B C D$ is a parallelogram, $\overline{E B} \cong \overline{F B}$, and $\overline{E F} \perp \overline{F H}$.

If $\mathrm{m} \angle E=62^{\circ}$ and $\mathrm{m} \angle C=51^{\circ}$, what is $\mathrm{m} \angle F H B$?

1) 79°
2) 76°
3) 73°
4) 62°

182 In the diagram below, point E is located inside square $A B C D$ such that $\triangle A B E$ is equilateral, and $\overline{C E}$ is drawn.

What is $\mathrm{m} \angle B E C$?

1) 30°
2) 60°
3) 75°
4) 90°

183 The diagram below shows parallelogram LMNO with diagonal $\overline{L N}, \mathrm{~m} \angle M=118^{\circ}$, and $\mathrm{m} \angle L N O=22^{\circ}$.

Explain why $\mathrm{m} \angle N L O$ is 40 degrees.

184 In parallelogram $A B C D$ shown below, $\mathrm{m} \angle D A C=98^{\circ}$ and $\mathrm{m} \angle A C D=36^{\circ}$.

What is the measure of angle B ? Explain why.

185 In parallelogram $A B C D$ shown below, the bisectors of $\angle A B C$ and $\angle D C B$ meet at E, a point on $\overline{A D}$.

If $\mathrm{m} \angle A=68^{\circ}$, determine and state $\mathrm{m} \angle B E C$.

186 Trapezoid $A B C D$, where $\overline{A B} \| \overline{C D}$, is shown below. Diagonals $\overline{A C}$ and $\overline{D B}$ intersect $\overline{M N}$ at E, and $\overline{A D} \cong \overline{A E}$.

If $\mathrm{m} \angle D A E=35^{\circ}, \mathrm{m} \angle D C E=25^{\circ}$, and $\mathrm{m} \angle N E C=30^{\circ}$, determine and state $\mathrm{m} \angle A B D$.

187 Parallelogram $A B C D$ is adjacent to rhombus $D E F G$, as shown below, and $\overline{F C}$ intersects $\overline{A G D}$ at H.

If $\mathrm{m} \angle B=118^{\circ}$ and $\mathrm{m} \angle A H C=138^{\circ}$, determine and state $\mathrm{m} \angle G F H$.

G.CO.C.11: PARALLELOGRAMS

188 Which statement about parallelograms is always true?

1) The diagonals are congruent.
2) The diagonals bisect each other.
3) The diagonals are perpendicular.
4) The diagonals bisect their respective angles.

189 A quadrilateral must be a parallelogram if

1) one pair of sides is parallel and one pair of angles is congruent
2) one pair of sides is congruent and one pair of angles is congruent
3) one pair of sides is both parallel and congruent
4) the diagonals are congruent

190 Parallelogram HAND is drawn below with diagonals $\overline{H N}$ and $\overline{A D}$ intersecting at S.

Which statement is always true?

1) $A N=\frac{1}{2} A D$
2) $A S=\frac{1}{2} A D$
3) $\angle A H S \cong \angle A N S$
4) $\angle H D S \cong \angle N D S$

191 Quadrilateral MATH has both pairs of opposite sides congruent and parallel. Which statement about quadrilateral MATH is always true?

1) $\overline{M T} \cong \overline{A H}$
2) $\overline{M T} \perp \overline{A H}$
3) $\angle M H T \cong \angle A T H$
4) $\angle M A T \cong \angle M H T$

192 In quadrilateral $B L U E$ shown below, $\overline{B E} \cong \overline{U L}$.

Which information would be sufficient to prove quadrilateral $B L U E$ is a parallelogram?

1) $\overline{B L} \| \overline{E U}$
2) $\overline{L U} \| \overline{B E}$
3) $\overline{B E} \cong \overline{B L}$
4) $\overline{L U} \cong \overline{E U}$

193 In the diagram below, lines ℓ and m intersect lines n and p to create the shaded quadrilateral as shown.

Which congruence statement would be sufficient to prove the quadrilateral is a parallelogram?

1) $\angle 1 \cong \angle 6$ and $\angle 9 \cong \angle 14$
2) $\angle 5 \cong \angle 10$ and $\angle 6 \cong \angle 9$
3) $\angle 5 \cong \angle 7$ and $\angle 10 \cong \angle 15$
4) $\angle 6 \cong \angle 9$ and $\angle 9 \cong \angle 11$

194 In the diagram below, lines k and ℓ intersect lines m and n at points A, B, C, and D.

Which statement is sufficient to prove $A B C D$ is a parallelogram?

1) $\angle 1 \cong \angle 3$
2) $\angle 4 \cong \angle 7$
3) $\angle 2 \cong \angle 5$ and $\angle 5 \cong \angle 7$
4) $\angle 1 \cong \angle 3$ and $\angle 3 \cong \angle 4$

195 In quadrilateral $Q R S T$, diagonals $\overline{Q S}$ and $\overline{R T}$ intersect at M. Which statement would always prove quadrilateral QRST is a parallelogram?

1) $\angle T Q R$ and $\angle Q R S$ are supplementary.
2) $\overline{Q M} \cong \overline{S M}$ and $\overline{Q T} \cong \overline{R S}$
3) $\overline{Q R} \cong \overline{T S}$ and $\overline{Q T} \cong \overline{R S}$
4) $\overline{Q R} \cong \overline{T S}$ and $\overline{Q T} \| \overline{R S}$

196 Quadrilateral $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}$ is shown in the diagram below.

Which information is not enough to prove $A B C D$ is a parallelogram?

1) $\overline{A B} \cong \overline{C D}$ and $\overline{A B} \| \overline{D C}$
2) $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \cong \overline{D A}$
3) $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \| \overline{A D}$
4) $\overline{A B} \| \overline{D C}$ and $\overline{B C} \| \overline{A D}$

197 Quadrilateral $A B C D$ has diagonals $\overline{A C}$ and $\overline{B D}$. Which information is not sufficient to prove $A B C D$ is a parallelogram?

1) $\overline{A C}$ and $\overline{B D}$ bisect each other.
2) $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \cong \overline{A D}$
3) $\overline{A B} \cong \overline{C D}$ and $\overline{A B} \| \overline{C D}$
4) $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \| \overline{A D}$

198 Quadrilateral BEST has diagonals that intersect at point D. Which statement would not be sufficient to prove quadrilateral $B E S T$ is a parallelogram?

1) $\overline{B D} \cong \overline{S D}$ and $\overline{E D} \cong \overline{T D}$
2) $\overline{B E} \cong \overline{S T}$ and $\overline{E S} \cong \overline{T B}$
3) $\overline{E S} \cong \overline{T B}$ and $\overline{B E} \| \overline{T S}$
4) $\overline{E S} \| \overline{B T}$ and $\overline{B E} \| \overline{T S}$

199 In parallelogram $A B C D$ with $\overline{A C} \perp \overline{B D}, A C=12$ and $B D=16$. What is the perimeter of $A B C D$?

1) 10
2) 24
3) 40
4) 56

G.CO.C.11: TRAPEZOIDS

200 In trapezoid $A B C D$ below, $\overline{A B} \| \overline{C D}$.

If $A E=5.2, A C=11.7$, and $C D=10.5$, what is the length of $\overline{A B}$, to the nearest tenth?

1) 4.7
2) 6.5
3) 8.4
4) 13.1

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

Geometry Regents Exam Questions by State Standard: Topic

201 In the diagram below of isosceles trapezoid $S T A R$, diagonals $\overline{A S}$ and $\overline{R T}$ intersect at O and $\overline{S T} \| \overline{R A}$, with nonparallel sides $\overline{S R}$ and $\overline{T A}$.

Which pair of triangles are not always similar?

1) $\triangle S T O$ and $\triangle A R O$
2) $\triangle S O R$ and $\triangle T O A$
3) $\triangle S R A$ and $\triangle A T S$
4) $\triangle S R T$ and $\triangle T A S$

G.CO.C.11: SPECIAL QUADRILATERALS

202 Which information is not sufficient to prove that a parallelogram is a square?

1) The diagonals are both congruent and perpendicular.
2) The diagonals are congruent and one pair of adjacent sides are congruent.
3) The diagonals are perpendicular and one pair of adjacent sides are congruent.
4) The diagonals are perpendicular and one pair of adjacent sides are perpendicular.

203 A parallelogram must be a rectangle when its

1) diagonals are perpendicular
2) diagonals are congruent
3) opposite sides are parallel
4) opposite sides are congruent

205 A parallelogram must be a rhombus if its diagonals

1) are congruent
2) bisect each other
3) do not bisect its angles
4) are perpendicular to each other

206 Which set of statements would describe a parallelogram that can always be classified as a rhombus?
I. Diagonals are perpendicular bisectors of each other.
II. Diagonals bisect the angles from which they are drawn.
III. Diagonals form four congruent isosceles right triangles.

1) I and II
2) I and III
3) II and III
4) I, II, and III

207 In the diagram below, if $\triangle A B E \cong \triangle C D F$ and $\overline{A E F C}$ is drawn, then it could be proven that quadrilateral $A B C D$ is a

1) square
2) rhombus
3) rectangle
4) parallelogram

204 A parallelogram is always a rectangle if

1) the diagonals are congruent
2) the diagonals bisect each other
3) the diagonals intersect at right angles
4) the opposite angles are congruent

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

208 Which polygon does not always have congruent diagonals?

1) square
2) rectangle
3) rhombus
4) isosceles trapezoid

209 A quadrilateral has diagonals that are perpendicular but not congruent. This quadrilateral could be

1) a square
2) a rhombus
3) a rectangle
4) an isosceles trapezoid

210 Which quadrilateral has diagonals that are always perpendicular?

1) rectangle
2) rhombus
3) trapezoid
4) parallelogram

211 In the diagram below of square CASH, diagonals $\overline{A H}$ and $\overline{C S}$ intersect at Z.

Which statement is true?

1) $\mathrm{m} \angle A C Z>\mathrm{m} \angle Z C H$
2) $\mathrm{m} \angle A C Z<\mathrm{m} \angle A S Z$
3) $\mathrm{m} \angle A Z C=\mathrm{m} \angle S H C$
4) $\mathrm{m} \angle A Z C=\mathrm{m} \angle Z C H$

212 Parallelogram BETH, with diagonals $\overline{B T}$ and $\overline{H E}$, is drawn below.

What additional information is sufficient to prove that $B E T H$ is a rectangle?

1) $\overline{B T} \perp \overline{H E}$
2) $\overline{B E} \| \overline{H T}$
3) $\overline{B T} \cong \overline{H E}$
4) $\overline{B E} \cong \overline{E T}$

213 In parallelogram $A B C D$, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E. Which statement proves $A B C D$ is a rectangle?

1) $\overline{A C} \cong \overline{B D}$
2) $\overline{A B} \perp \overline{B D}$
3) $\overline{A C} \perp \overline{B D}$
4) $\overline{A C}$ bisects $\angle B C D$

214 The diagram below shows parallelogram $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}$ intersecting at E.

What additional information is sufficient to prove that parallelogram $A B C D$ is also a rhombus?

1) $\overline{B D}$ bisects $\overline{A C}$.
2) $\overline{A B}$ is parallel to $\overline{C D}$.
3) $\overline{A C}$ is congruent to $\overline{B D}$.
4) $\overline{A C}$ is perpendicular to $\overline{B D}$.

215 If $A B C D$ is a parallelogram, which statement would prove that $A B C D$ is a rhombus?

1) $\angle A B C \cong \angle C D A$
2) $\overline{A C} \cong \overline{B D}$
3) $\overline{A C} \perp \overline{B D}$
4) $\overline{A B} \perp \overline{C D}$

216 Parallelogram EATK has diagonals $\overline{E T}$ and $\overline{A K}$. Which information is always sufficient to prove EATK is a rhombus?

1) $\overline{E A} \perp \overline{A T}$
2) $\overline{E A} \cong \overline{A T}$
3) $\overline{E T} \cong \overline{A K}$
4) $\overline{E T} \cong \overline{A T}$

217 In parallelogram $A B C D$, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E. Which statement does not prove parallelogram $A B C D$ is a rhombus?

1) $\overline{A C} \cong \overline{D B}$
2) $\overline{A B} \cong \overline{B C}$
3) $\overline{A C} \perp \overline{D B}$
4) $\overline{A C}$ bisects $\angle D C B$

218 In rhombus TIGE, diagonals $\overline{T G}$ and $\overline{I E}$ intersect at R. The perimeter of TIGE is 68 , and $T G=16$.

What is the length of diagonal $\overline{I E}$?

1) 15
2) 30
3) 34
4) 52

219 In rhombus VENU, diagonals $\overline{V N}$ and $\overline{E U}$ intersect at S. If $V N=12$ and $E U=16$, what is the perimeter of the rhombus?

1) 80
2) 40
3) 20
4) 10

220 In the diagram of rhombus $P Q R S$ below, the diagonals $\overline{P R}$ and $\overline{Q S}$ intersect at point $T, P R=16$, and $Q S=30$. Determine and state the perimeter of PQRS.

G.GPE.B.4: QUADRILATERALS IN THE COORDINATE PLANE

221 On the set of axes below, the coordinates of three vertices of trapezoid $A B C D$ are $A(2,1), B(5,4)$, and $D(-2,3)$.

Which point could be vertex C ?

1) $(1,5)$
2) $(4,10)$
3) $(-1,6)$
4) $(-3,8)$

222 The coordinates of the vertices of parallelogram $C D E H$ are $C(-5,5), D(2,5), E(-1,-1)$, and $H(-8,-1)$. What are the coordinates of P, the point of intersection of diagonals $\overline{C E}$ and $\overline{D H}$?

1) $(-2,3)$
2) $(-2,2)$
3) $(-3,2)$
4) $(-3,-2)$

223 Rectangle $A B C D$ has two vertices at coordinates $A(-1,-3)$ and $B(6,5)$. The slope of $\overline{B C}$ is

1) $-\frac{7}{8}$
2) $\frac{7}{8}$
3) $-\frac{8}{7}$
4) $\frac{8}{7}$

224 Parallelogram $A B C D$ has coordinates $A(0,7)$ and $C(2,1)$. Which statement would prove that $A B C D$ is a rhombus?

1) The midpoint of $\overline{A C}$ is $(1,4)$.
2) The length of $\overline{B D}$ is $\sqrt{40}$.
3) The slope of $\overline{B D}$ is $\frac{1}{3}$.
4) The slope of $\overline{A B}$ is $\frac{1}{3}$.

225 The diagonals of rhombus TEAM intersect at $P(2,1)$. If the equation of the line that contains diagonal $\overline{T A}$ is $y=-x+3$, what is the equation of a line that contains diagonal $E M$?

1) $y=x-1$
2) $y=x-3$
3) $y=-x-1$
4) $y=-x-3$

226 A quadrilateral has vertices with coordinates $(-3,1),(0,3),(5,2)$, and $(-1,-2)$. Which type of quadrilateral is this?

1) rhombus
2) rectangle
3) square
4) trapezoid

227
In the coordinate plane, the vertices of $\triangle R S T$ are $R(6,-1), S(1,-4)$, and $T(-5,6)$. Prove that $\triangle R S T$ is a right triangle. State the coordinates of point P such that quadrilateral $R S T P$ is a rectangle. Prove that your quadrilateral RSTP is a rectangle. [The use of the set of axes below is optional.]

229 The coordinates of the vertices of $\triangle A B C$ are $A(1,2), B(-5,3)$, and $C(-6,-3)$. Prove that $\triangle A B C$ is isosceles. State the coordinates of point D such that quadrilateral $A B C D$ is a square. Prove that your quadrilateral $A B C D$ is a square. [The use of the set of axes below is optional.]

230 The coordinates of the vertices of $\triangle A B C$ are $A(-2,4), B(-7,-1)$, and $C(-3,-3)$. Prove that $\triangle A B C$ is isosceles. State the coordinates of $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$, after a translation 5 units to the right and 5 units down. Prove that quadrilateral $A A^{\prime} C^{\prime} C$ is a rhombus. [The use of the set of axes below is optional.]

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

231 Given: Triangle $D U C$ with coordinates $D(-3,-1)$, $U(-1,8)$, and $C(8,6)$
Prove: $\triangle D U C$ is a right triangle
Point U is reflected over $\overline{D C}$ to locate its image point, U^{\prime}, forming quadrilateral $D U C U^{\prime}$.
Prove quadrilateral $D U C U^{\prime}$ is a square.
[The use of the set of axes below is optional.]

232 In square $G E O M$, the coordinates of G are (2,-2) and the coordinates of O are $(-4,2)$. Determine and state the coordinates of vertices E and M. [The use of the set of axes below is optional.]

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

233 The coordinates of the vertices of quadrilateral HYPE are $H(-3,6), Y(2,9), P(8,-1)$, and $E(3,-4)$. Prove HYPE is a rectangle. [The use of the set of axes below is optional.]

234 The vertices of quadrilateral MATH have coordinates $M(-4,2), A(-1,-3), T(9,3)$, and $H(6,8)$. Prove that quadrilateral MATH is a parallelogram. Prove that quadrilateral MATH is a rectangle. [The use of the set of axes below is optional.]

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

235 The coordinates of the vertices of quadrilateral $A B C D$ are $A(0,4), B(3,8), C(8,3)$, and $D(5,-1)$. Prove that $A B C D$ is a parallelogram, but not a rectangle. [The use of the set of axes below is optional.]

236 Quadrilateral NATS has coordinates $N(-4,-3)$, $A(1,2), T(8,1)$, and $S(3,-4)$. Prove quadrilateral NATS is a rhombus. [The use of the set of axes below is optional.]

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

237 Parallelogram MATH has vertices $M(-7,-2)$, $A(0,4), T(9,2)$, and $H(2,-4)$. Prove that parallelogram MATH is a rhombus. [The use of the set of axes below is optional.] Determine and state the area of MATH.

238 In rhombus MATH, the coordinates of the endpoints of the diagonal $\overline{M T}$ are $M(0,-1)$ and $T(4,6)$. Write an equation of the line that contains diagonal $\overline{A H}$. [Use of the set of axes below is optional.] Using the given information, explain how you know that your line contains diagonal $A H$.

239 Quadrilateral $P Q R S$ has vertices $P(-2,3), Q(3,8)$, $R(4,1)$, and $S(-1,-4)$. Prove that $P Q R S$ is a rhombus. Prove that $P Q R S$ is not a square. [The use of the set of axes below is optional.]

240 Riley plotted $A(-1,6), B(3,8), C(6,-1)$, and $D(1,0)$ to form a quadrilateral. Prove that Riley's quadrilateral $A B C D$ is a trapezoid. [The use of the set of axes below is optional.] Riley defines an isosceles trapezoid as a trapezoid with congruent diagonals. Use Riley's definition to prove that $A B C D$ is not an isosceles trapezoid.

241 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$. Prove that quadrilateral MATH is a trapezoid. State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$. Prove that quadrilateral $M Y T H$ is a rectangle. [The use of the set of axes below is optional.]

G.GPE.B.7: POLYGONS IN THE COORDINATE PLANE

242 On the set of axes below, the vertices of $\triangle P Q R$ have coordinates $P(-6,7), Q(2,1)$, and $R(-1,-3)$.

What is the area of $\triangle P Q R$?

1) 10
2) 20
3) 25
4) 50

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

243 On the set of axes below, $\triangle B L U$ has vertices with coordinates $B(-3,-2), L(-2,5)$, and $U(1,1)$.

What is the area of $\triangle B L U$?

1) 11
2) 12.5
3) 14
4) 17.1

244 Triangle $D A N$ is graphed on the set of axes below. The vertices of $\triangle D A N$ have coordinates $D(-6,-1)$, $A(6,3)$, and $N(-3,10)$.

What is the area of $\triangle D A N$?

1) 60
2) 120
3) $20 \sqrt{13}$
4) $40 \sqrt{13}$

245 Triangle RST is graphed on the set of axes below.

How many square units are in the area of $\triangle R S T$?

1) $9 \sqrt{3}+15$
2) $9 \sqrt{5}+15$
3) 45
4) 90

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

246 On the set of axes below, rectangle WIND has vertices with coordinates $W(-4,2), I(4,0), N(3,-4)$, and $D(-5,-2)$.

What is the area of rectangle WIND?

1) 17
2) 31
3) 32
4) 34

247 On the set of axes below, rhombus $A B C D$ has vertices whose coordinates are $A(1,2), B(4,6)$, $C(7,2)$, and $D(4,-2)$.

What is the area of rhombus $A B C D$?

1) 20
2) 24
3) 25
4) 48

248 The vertices of square RSTV have coordinates $R(-1,5), S(-3,1), T(-7,3)$, and $V(-5,7)$. What is the perimeter of RSTV?

1) $\sqrt{20}$
2) $\sqrt{40}$
3) $4 \sqrt{20}$
4) $4 \sqrt{40}$

249 Rhombus STAR has vertices $S(-1,2), T(2,3)$, $A(3,0)$, and $R(0,-1)$. What is the perimeter of rhombus STAR?

1) $\sqrt{34}$
2) $4 \sqrt{34}$
3) $\sqrt{10}$
4) $4 \sqrt{10}$

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

250 The endpoints of one side of a regular pentagon are $(-1,4)$ and $(2,3)$. What is the perimeter of the pentagon?

1) $\sqrt{10}$
2) $5 \sqrt{10}$
3) $5 \sqrt{2}$
4) $25 \sqrt{2}$

251 The coordinates of vertices A and B of $\triangle A B C$ are $A(3,4)$ and $B(3,12)$. If the area of $\triangle A B C$ is 24 square units, what could be the coordinates of point C?

1) $(3,6)$
2) $(8,-3)$
3) $(-3,8)$
4) $(6,3)$

252 Determine and state the area of triangle $P Q R$, whose vertices have coordinates $P(-2,-5), Q(3,5)$, and $R(6,1)$. [The use of the set of axes below is optional.]

253 The vertices of $\triangle A B C$ have coordinates $A(-2,-1)$, $B(10,-1)$, and $C(4,4)$. Determine and state the area of $\triangle A B C$. [The use of the set of axes below is optional.]

254 Triangle $A B C$ with coordinates $A(-2,5), B(4,2)$, and $C(-8,-1)$ is graphed on the set of axes below.

Determine and state the area of $\triangle A B C$.
G.C.A.2: CHORDS, SECANTS AND TANGENTS

255 In the diagram below of circle O, chord $\overline{D F}$ bisects chord $\overline{B C}$ at E.

If $B C=12$ and $F E$ is 5 more than $D E$, then $F E$ is 1) 13
2) 9
3) 6
4) 4

256 In the diagram below of circle O, chords $\overline{J T}$ and $\overline{E R}$ intersect at M.

If $E M=8$ and $R M=15$, the lengths of $\overline{J M}$ and $\overline{T M}$ could be

1) 12 and 9.5
2) 14 and 8.5
3) 16 and 7.5
4) 18 and 6.5

257 In the diagram below, chords $\overline{P Q}$ and $\overline{R S}$ of circle O intersect at T.

Which relationship must always be true?

1) $R T=T Q$
2) $R T=T S$
3) $R T+T S=P T+T Q$
4) $R T \times T S=P T \times T Q$

258 A circle centered at the origin passes through $A(-3,4)$.

What is the equation of the line tangent to the circle at A ?

1) $y-4=\frac{4}{3}(x+3)$
2) $y-4=\frac{3}{4}(x+3)$
3) $y+4=\frac{4}{3}(x-3)$
4) $y+4=\frac{3}{4}(x-3)$

259 In the figure shown below, quadrilateral TAEO is circumscribed around circle D. The midpoint of $\overline{T A}$ is R, and $\overline{H O} \cong \overline{P E}$.

If $A P=10$ and $E O=12$, what is the perimeter of quadrilateral $T A E O$?

1) 56
2) 64
3) 72
4) 76

260 In the diagram shown below, $\overline{A C}$ is tangent to circle O at A and to circle P at $C, \overline{O P}$ intersects $\overline{A C}$ at $B, O A=4, A B=5$, and $P C=10$.

What is the length of $\overline{B C}$?

1) 6.4
2) 8
3) 12.5
4) 16

261 Lines $A E$ and $B D$ are tangent to circles O and P at A, E, B, and D, as shown in the diagram below. If $A C: C E=5: 3$, and $B D=56$, determine and state the length of $\overline{C D}$.

262 In the circle below, secants $\overline{T S R}$ and $\overline{T M H}$ intersect at $T, S R=5, H M=9, T M=3$, and $T S=x$.

Which equation could be used to find the value of x ?

1) $x(x+5)=36$
2) $x(x+5)=27$
3) $3 x=45$
4) $5 x=27$

263 In circle O, secants $\overline{A D B}$ and $\overline{A E C}$ are drawn from external point A such that points D, B, E, and C are on circle O. If $A D=8, A E=6$, and $E C$ is 12 more than $B D$, the length of $\overline{B D}$ is

1) 6
2) 22
3) 36
4) 48

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

264 In the diagram below, secants $\overline{R S T}$ and $\overline{R Q P}$, drawn from point R, intersect circle O at S, T, Q, and P.

If $R S=6, S T=4$, and $R P=15$, what is the length of $\overline{R Q}$?

265 In the diagram shown below, $\overline{P A}$ is tangent to circle T at A, and secant $\overline{P B C}$ is drawn where point B is on circle T.

If $P B=3$ and $B C=15$, what is the length of $\overline{P A}$?

1) $3 \sqrt{5}$
2) $3 \sqrt{6}$
3) 3
4) 9

266 Circle O is drawn below with secant $\overline{B C D}$. The length of tangent $\overline{A D}$ is 24 .

If the ratio of $D C: C B$ is $4: 5$, what is the length of $\overline{C B}$?

1) 36
2) 20
3) 16
4) 4

267 In the diagram below of circle O, secant $\overline{A B C}$ and tangent $\overline{A D}$ are drawn.

If $C A=12.5$ and $C B=4.5$, determine and state the length of $\overline{D A}$.

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

268 In the diagram below of circle O, chord $\overline{C D}$ is parallel to diameter $\overline{A O B}$ and $\mathrm{mCD}=130$.

What is $\mathrm{m} \overparen{A C}$?

1) 25
2) 50
3) 65
4) 115

269 In the diagram below of circle O with diameter $\overline{B C}$ and radius $\overline{O A}$, chord $\overline{D C}$ is parallel to chord $\overline{B A}$.

If $\mathrm{m} \angle B C D=30^{\circ}$, determine and state $\mathrm{m} \angle A O B$.

270 In the diagram below of circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E.

If $\mathrm{m} \overparen{A C}=72^{\circ}$ and $\mathrm{m} \angle A E C=58^{\circ}$, how many degrees are in $\mathrm{m} \overparen{D B}$?

1) 108°
2) 65°
3) 44°
4) 14°

271 In circle A below, chord $\overline{B C}$ and diameter $\overline{D A E}$ intersect at F.

If $\mathrm{m} \overparen{C D}=46^{\circ}$ and $\mathrm{m} \overparen{D B}=102^{\circ}$, what is $\mathrm{m} \angle C F E$?

272 In the diagram below, $\overline{D C}, \overline{A C}, \overline{D O B}, \overline{C B}$, and $\overline{A B}$ are chords of circle $O, \overleftrightarrow{F D E}$ is tangent at point D, and radius $\overline{A O}$ is drawn. Sam decides to apply this theorem to the diagram: "An angle inscribed in a semi-circle is a right angle."

Which angle is Sam referring to?

1) $\angle A O B$
2) $\angle B A C$
3) $\angle D C B$
4) $\angle F D B$

273 In the diagram below, $\mathrm{m} \widehat{A B C}=268^{\circ}$.

What is the number of degrees in the measure of $\angle A B C$?

1) 134°
2) 92°
3) 68°
4) 46°

274 In the diagram below of Circle O, diameter $\overline{A O B}$ and chord $\overline{C B}$ are drawn, and $\mathrm{m} \angle B=28^{\circ}$.

What is $\mathrm{m} \overparen{B C}$?

1) 56°
2) 124°
3) 152°
4) 166°

275 In the diagram below, $\overline{B C}$ is the diameter of circle A.

Point D, which is unique from points B and C, is plotted on circle A. Which statement must always be true?

1) $\triangle B C D$ is a right triangle.
2) $\triangle B C D$ is an isosceles triangle.
3) $\triangle B A D$ and $\triangle C B D$ are similar triangles.
4) $\triangle B A D$ and $\triangle C A D$ are congruent triangles.

276 In the diagram below of circle $O, \overline{O B}$ and $\overline{O C}$ are radii, and chords $\overline{A B}, \overline{B C}$, and $\overline{A C}$ are drawn.

Which statement must always be true?

1) $\angle B A C \cong \angle B O C$
2) $\mathrm{m} \angle B A C=\frac{1}{2} \mathrm{~m} \angle B O C$
3) $\triangle B A C$ and $\triangle B O C$ are isosceles.
4) The area of $\triangle B A C$ is twice the area of $\triangle B O C$.

277 In circle M below, diameter $\overline{A C}$, chords $\overline{A B}$ and $\overline{B C}$, and radius $\overline{M B}$ are drawn.

Which statement is not true?

1) $\triangle A B C$ is a right triangle.
2) $\triangle A B M$ is isosceles.
3) $\mathrm{m} \overparen{B C}=\mathrm{m} \angle B M C$
4) $\mathrm{m} \overparen{A B}=\frac{1}{2} \mathrm{~m} \angle A C B$

278 In the diagram of circle A shown below, chords $\overline{C D}$ and $\overline{E F}$ intersect at G, and chords $\overline{C E}$ and $\overline{F D}$ are drawn.

Which statement is not always true?

1) $\overline{C G} \cong \overline{F G}$
2) $\angle C E G \cong \angle F D G$
3) $\frac{C E}{E G}=\frac{F D}{D G}$
4) $\triangle C E G \sim \triangle F D G$

279 In the diagram below of circle O, chords $\overline{A D}$ and $\overline{B C}$ intersect at E, and chords $\overline{A B}$ and $\overline{C D}$ are drawn.

Which statement must always be true?

1) $\overline{A B} \cong \overline{C D}$
2) $\overline{A D} \cong \overline{B C}$
3) $\angle B \cong \angle C$
4) $\angle A \cong \angle C$

280 In the diagram below of circle O, points K, A, T, I, and E are on the circle, $\triangle K A E$ and $\triangle I T E$ are drawn, $\overparen{K E} \cong \overparen{E I}$, and $\angle E K A \cong \angle E I T$.

Which statement about $\triangle K A E$ and $\triangle I T E$ is always true?

1) They are neither congruent nor similar.
2) They are similar but not congruent.
3) They are right triangles.
4) They are congruent.

281 In the diagram below of circle O, secants $\overline{C F D}$ and $\overline{C H E}$ are drawn from external point C.

If $\mathrm{m} \overparen{D E}=136^{\circ}$ and $\mathrm{m} \angle C=44^{\circ}$, then $\mathrm{m} \widehat{F H}$ is

1) 46°
2) 48°
3) 68°
4) 88°

282 In circle O two secants, $\overline{A B P}$ and $\overline{C D P}$, are drawn to external point P. If $\mathrm{m} \overparen{A C}=72^{\circ}$, and $\mathrm{m} \overparen{B D}=34^{\circ}$, what is the measure of $\angle P$?

1) 19°
2) 38°
3) 53°
4) 106°

283 As shown in the diagram below, secants $\overrightarrow{P W R}$ and $\overrightarrow{P T S}$ are drawn to circle O from external point P.

If $\mathrm{m} \angle R P S=35^{\circ}$ and $\mathrm{m} \overparen{R S}=121^{\circ}$, determine and state mWT .

284 Diameter $\overline{R O Q}$ of circle O is extended through Q to point P, and tangent $\overline{P A}$ is drawn. If $\mathrm{m} \overparen{R A}=100^{\circ}$, what is $\mathrm{m} \angle P$?

1) 10°
2) 20°
3) 40°
4) 50°

285 In the diagram below, tangent $\overline{D A}$ and secant $\overline{D B C}$ are drawn to circle O from external point D, such that $\overparen{A C} \cong \overparen{B C}$.

If $\mathrm{m} \overparen{B C}=152^{\circ}$, determine and state $\mathrm{m} \angle D$.

286 In the diagram below of circle K, secant $\overline{P L K E}$ and tangent $\overline{P Z}$ are drawn from external point P.

If $m \overparen{m Z}=56^{\circ}$, determine and state the degree measure of angle P.

287 In the circle below, $\overline{A D}, \overline{A C}, \overline{B C}$, and $\overline{D C}$ are chords, $\overleftrightarrow{E D F}$ is tangent at point D, and $\overline{A D} \| \overline{B C}$.

Which statement is always true?

1) $\angle A D E \cong \angle C A D$
2) $\angle C D F \cong \angle A C B$
3) $\angle B C A \cong \angle D C A$
4) $\angle A D C \cong \angle A D E$

288 In circle O shown below, diameter $\overline{A C}$ is perpendicular to $\overline{C D}$ at point C, and chords $\overline{A B}$, $\overline{B C}, \overline{A E}$, and $\overline{C E}$ are drawn.

Which statement is not always true?

1) $\angle A C B \cong \angle B C D$
2) $\angle A B C \cong \angle A C D$
3) $\angle B A C \cong \angle D C B$
4) $\angle C B A \cong \angle A E C$

G.C.A.3: INSCRIBED QUADRILATERALS

289 In the diagram below, quadrilateral $A B C D$ is inscribed in circle P.

What is $\mathrm{m} \angle A D C$?

1) 70°
2) 72°
3) 108°
4) 110°

290 In the diagram below, quadrilateral $A B C D$ is inscribed in circle $O, \mathrm{~m} \angle A=(2 x)^{\circ}$,
$\mathrm{m} \angle B=(x-10)^{\circ}$, and $\mathrm{m} \angle C=(x+15)^{\circ}$.

What is $\mathrm{m} \angle D$?

1) 55°
2) 70°
3) 110°
4) 135°

291 Quadrilateral $A B C D$ is inscribed in circle O, as shown below.

If $\mathrm{m} \angle A=80^{\circ}, \mathrm{m} \angle B=75^{\circ}, \mathrm{m} \angle C=(y+30)^{\circ}$, and $\mathrm{m} \angle D=(x-10)^{\circ}$, which statement is true?

1) $x=85$ and $y=50$
2) $x=90$ and $y=45$
3) $x=110$ and $y=75$
4) $x=115$ and $y=70$

292 Linda is designing a circular piece of stained glass with a diameter of 7 inches. She is going to sketch a square inside the circular region. To the nearest tenth of an inch, the largest possible length of a side of the square is

1) 3.5
2) 4.9
3) 5.0
4) 6.9

293 In the diagram below, quadrilateral $A B C D$ is inscribed in circle O, and $\mathrm{m} \overparen{C D}: \mathrm{m} \overparen{D A}: \mathrm{m} \overparen{A B}: \mathrm{m} \overparen{B C}=2: 3: 5: 5$.

Determine and state $\mathrm{m} \angle B$.

G.GPE.A.1: EQUATIONS OF CIRCLES

294 Kevin's work for deriving the equation of a circle is shown below.

$$
x^{2}+4 x=-\left(y^{2}-20\right)
$$

STEP $1 x^{2}+4 x=-y^{2}+20$
STEP $2 x^{2}+4 x+4=-y^{2}+20-4$
STEP $3(x+2)^{2}=-y^{2}+20-4$
STEP $4(x+2)^{2}+y^{2}=16$
In which step did he make an error in his work?

1) Step 1
2) Step 2
3) Step 3
4) $\operatorname{Step} 4$

295 If $x^{2}+4 x+y^{2}-6 y-12=0$ is the equation of a circle, the length of the radius is

1) 25
2) 16
3) 5
4) 4

296 The equation of a circle is $x^{2}+y^{2}+6 y=7$. What are the coordinates of the center and the length of the radius of the circle?

1) center $(0,3)$ and radius 4
2) center ($0,-3$) and radius 4
3) center $(0,3)$ and radius 16
4) center $(0,-3)$ and radius 16

297 What are the coordinates of the center and length of the radius of the circle whose equation is
$x^{2}+6 x+y^{2}-4 y=23$?

1) $(3,-2)$ and 36
2) $(3,-2)$ and 6
3) $(-3,2)$ and 36
4) $(-3,2)$ and 6

298 What are the coordinates of the center and the length of the radius of the circle represented by the equation $x^{2}+y^{2}-4 x+8 y+11=0$?

1) center $(2,-4)$ and radius 3
2) center $(-2,4)$ and radius 3
3) center $(2,-4)$ and radius 9
4) center $(-2,4)$ and radius 9

299 The equation of a circle is $x^{2}+y^{2}-12 y+20=0$. What are the coordinates of the center and the length of the radius of the circle?

1) center $(0,6)$ and radius 4
2) center ($0,-6$) and radius 4
3) center $(0,6)$ and radius 16
4) center $(0,-6)$ and radius 16

300 The equation of a circle is $x^{2}+y^{2}-6 x+2 y=6$. What are the coordinates of the center and the length of the radius of the circle?

1) center $(-3,1)$ and radius 4
2) center $(3,-1)$ and radius 4
3) center $(-3,1)$ and radius 16
4) center ($3,-1$) and radius 16

301 The equation of a circle is $x^{2}+8 x+y^{2}-12 y=144$. What are the coordinates of the center and the length of the radius of the circle?

1) center $(4,-6)$ and radius 12
2) center $(-4,6)$ and radius 12
3) center ($4,-6$) and radius 14
4) center $(-4,6)$ and radius 14

302 What are the coordinates of the center and the length of the radius of the circle whose equation is $x^{2}+y^{2}=8 x-6 y+39$?

1) center $(-4,3)$ and radius 64
2) center $(4,-3)$ and radius 64
3) center $(-4,3)$ and radius 8
4) center ($4,-3$) and radius 8

303 What are the coordinates of the center and length of the radius of the circle whose equation is
$x^{2}+y^{2}+2 x-16 y+49=0$?

1) center ($1,-8$) and radius 4
2) center $(-1,8)$ and radius 4
3) center $(1,-8)$ and radius 16
4) center $(-1,8)$ and radius 16

304 An equation of circle M is $x^{2}+y^{2}+6 x-2 y+1=0$. What are the coordinates of the center and the length of the radius of circle M ?

1) center $(3,-1)$ and radius 9
2) center $(3,-1)$ and radius 3
3) center $(-3,1)$ and radius 9
4) center $(-3,1)$ and radius 3

305 The equation of a circle is $x^{2}+y^{2}+12 x=-27$. What are the coordinates of the center and the length of the radius of the circle?

1) center $(6,0)$ and radius 3
2) center $(6,0)$ and radius 9
3) center $(-6,0)$ and radius 3
4) center $(-6,0)$ and radius 9

306 What are the coordinates of the center and the length of the radius of the circle whose equation is $x^{2}+y^{2}-12 y-20.25=0$?

1) center (0,6) and radius 7.5
2) center $(0,-6)$ and radius 7.5
3) center $(0,12)$ and radius 4.5
4) center $(0,-12)$ and radius 4.5

307 The equation of a circle is $x^{2}+y^{2}-6 y+1=0$. What are the coordinates of the center and the length of the radius of this circle?

1) center $(0,3)$ and radius $=2 \sqrt{2}$
2) center $(0,-3)$ and radius $=2 \sqrt{2}$
3) center $(0,6)$ and radius $=\sqrt{35}$
4) center $(0,-6)$ and radius $=\sqrt{35}$

308 What is an equation of a circle whose center is $(1,4)$ and diameter is 10 ?

1) $x^{2}-2 x+y^{2}-8 y=8$
2) $x^{2}+2 x+y^{2}+8 y=8$
3) $x^{2}-2 x+y^{2}-8 y=83$
4) $x^{2}+2 x+y^{2}+8 y=83$

309 What is an equation of a circle whose center is at $(2,-4)$ and is tangent to the line $x=-2$?

1) $(x-2)^{2}+(y+4)^{2}=4$
2) $(x-2)^{2}+(y+4)^{2}=16$
3) $(x+2)^{2}+(y-4)^{2}=4$
4) $(x+2)^{2}+(y-4)^{2}=16$

310 An equation of circle O is $x^{2}+y^{2}+4 x-8 y=-16$. The statement that best describes circle O is the
$1)$ center is $(2,-4)$ and is tangent to the x-axis
$2)$ center is $(2,-4)$ and is tangent to the y-axis
$3)$ center is $(-2,4)$ and is tangent to the x-axis
4) center is $(-2,4)$ and is tangent to the y-axis

311 What is an equation of circle O shown in the graph below?

1) $x^{2}+10 x+y^{2}+4 y=-13$
2) $x^{2}-10 x+y^{2}-4 y=-13$
3) $x^{2}+10 x+y^{2}+4 y=-25$
4) $x^{2}-10 x+y^{2}-4 y=-25$

312 The graph below shows $\overline{A B}$, which is a chord of circle O. The coordinates of the endpoints of $\overline{A B}$ are $A(3,3)$ and $B(3,-7)$. The distance from the midpoint of $\overline{A B}$ to the center of circle O is 2 units.

What could be a correct equation for circle O ?

1) $(x-1)^{2}+(y+2)^{2}=29$
2) $(x+5)^{2}+(y-2)^{2}=29$
3) $(x-1)^{2}+(y-2)^{2}=25$
4) $(x-5)^{2}+(y+2)^{2}=25$

313 Determine and state the coordinates of the center and the length of the radius of a circle whose equation is $x^{2}+y^{2}-6 x=56-8 y$.

314 Determine and state the coordinates of the center and the length of the radius of the circle whose equation is $x^{2}+y^{2}+6 x=6 y+63$.

315 Determine and state the coordinates of the center and the length of the radius of the circle represented by the equation
$x^{2}+16 x+y^{2}+12 y-44=0$.

G.GPE.B.4: CIRCLES IN THE COORDINATE

 PLANE316 The center of circle Q has coordinates (3,-2). If circle Q passes through $R(7,1)$, what is the length of its diameter?

1) 50
2) 25
3) 10
4) 5

317 A circle whose center is the origin passes through the point $(-5,12)$. Which point also lies on this circle?

1) $(10,3)$
2) $(-12,13)$
3) $(11,2 \sqrt{12})$
4) $(-8,5 \sqrt{21})$

318 A circle has a center at $(1,-2)$ and radius of 4. Does the point $(3.4,1.2)$ lie on the circle? Justify your answer.

MEASURING IN THE PLANE AND SPACE
 G.MG.A.3: AREA OF POLYGONS

319 The surface of the roof of a house is modeled by two congruent rectangles with dimensions 40 feet by 16 feet, as shown below.

Roofing shingles are sold in bundles. Each bundle covers $33 \frac{1}{3}$ square feet. What is the minimum number of bundles that must be purchased to completely cover both rectangular sides of the roof?

1) 20
2) 2
3) 39
4) 4

320 A farmer has 64 feet of fence to enclose a rectangular vegetable garden. Which dimensions would result in the biggest area for this garden?

1) the length and the width are equal
2) the length is 2 more than the width
3) the length is 4 more than the width
4) the length is 6 more than the width

321 Keira has a square poster that she is framing and placing on her wall. The poster has a diagonal 58 cm long and fits exactly inside the frame. The width of the frame around the picture is 4 cm .

Determine and state the total area of the poster and frame to the nearest tenth of a square centimeter.

G.MG.A.3: SURFACE AREA

322 A gallon of paint will cover approximately 450 square feet. An artist wants to paint all the outside surfaces of a cube measuring 12 feet on each edge. What is the least number of gallons of paint he must buy to paint the cube?

1) 1
2) 2
3) 3
4) 4

G.GMD.A.1: CIRCUMFERENCE

323 A circle with a radius of 5 was divided into 24 congruent sectors. The sectors were then rearranged, as shown in the diagram below.

To the nearest integer, the value of x is

1) 31
2) 16
3) 12
4) 10

324 A designer needs to create perfectly circular necklaces. The necklaces each need to have a radius of 10 cm . What is the largest number of necklaces that can be made from 1000 cm of wire?

1) 15
2) 16
3) 31
4) 32

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

G.MG.A.3: COMPOSITIONS OF POLYGONS

 AND CIRCLES325 A countertop for a kitchen is modeled with the dimensions shown below. An 18 -inch by 21 -inch rectangle will be removed for the installation of the sink.

What is the area of the top of the installed countertop, to the nearest square foot?

1) 26
2) 23
3) 22
4) 19

326 Francisco needs the three pieces of glass shown below to complete a stained glass window. The shapes, two triangles and a trapezoid, are measured in inches.

Glass can be purchased in rectangular sheets that are 12 inches wide. What is the minimum length of a sheet of glass, in inches, that Francisco must purchase in order to have enough to complete the window?

1) 20
2) 25
3) 29
4) 34

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

327 A walking path at a local park is modeled on the grid below, where the length of each grid square is 10 feet. The town needs to submit paperwork to pave the walking path. Determine and state, to the nearest square foot, the area of the walking path.

328 A man is spray-painting the tops of 10 patio tables. Five tables have round tops, with diameters of 4 feet, and five tables have rectangular tops, with dimensions of 4 feet by 6 feet. A can of spray paint covers 25 square feet. How many cans of spray paint must be purchased to paint all of the tabletops?

G.C.B.5: ARC LENGTH

329 In the diagram below, the circle shown has radius 10. Angle B intercepts an arc with a length of 2π.

What is the measure of angle B, in radians?

1) $10+2 \pi$
2) 20π
3) $\frac{\pi}{5}$
4) $\frac{5}{\pi}$

330 The diagram below shows circle O with radii $\overline{O A}$ and $\overline{O B}$. The measure of angle $A O B$ is 120°, and the length of a radius is 6 inches.

Which expression represents the length of arc $A B$, in inches?

1) $\frac{120}{360}(6 \pi)$
2) $120(6)$
3) $\frac{1}{3}(36 \pi)$
4) $\frac{1}{3}(12 \pi)$

331 In the diagram below, two concentric circles with center O, and radii $\overline{O C}, \overline{O D}, \overline{O G E}$, and $\overline{O D F}$ are drawn.

If $O C=4$ and $O E=6$, which relationship between the length of arc $E F$ and the length of arc $C D$ is always true?

1) The length of arc $E F$ is 2 units longer than the length of arc $C D$.
2) The length of arc $E F$ is 4 units longer than the length of arc $C D$.
3) The length of arc $E F$ is 1.5 times the length of arc CD.
4) The length of arc $E F$ is 2.0 times the length of arc $C D$.

332 In the diagram below, Circle 1 has radius 4, while Circle 2 has radius 6.5. Angle A intercepts an arc of length π, and angle B intercepts an arc of length $\frac{13 \pi}{8}$.

Dominic thinks that angles A and B have the same radian measure. State whether Dominic is correct or not. Explain why.

G.C.B.5: SECTORS

333 In circle O, diameter $\overline{A B}$, chord $\overline{B C}$, and radius $\overline{O C}$ are drawn, and the measure of arc $B C$ is 108°.

Some students wrote these formulas to find the area of sector $C O B$:

$$
\begin{array}{ll}
\text { Amy } & \frac{3}{10} \cdot \pi \cdot(B C)^{2} \\
\text { Beth } & \frac{108}{360} \cdot \pi \cdot(O C)^{2} \\
\text { Carl } & \frac{3}{10} \cdot \pi \cdot\left(\frac{1}{2} A B\right)^{2} \\
& \frac{108}{360} \cdot \pi \cdot \frac{1}{2}(A B)^{2}
\end{array}
$$

Which students wrote correct formulas?

1) Amy and Dex
2) Beth and Carl
3) Carl and Amy
4) Dex and Beth

334 A circle with a diameter of 10 cm and a central angle of 30° is drawn below.

What is the area, to the nearest tenth of a square centimeter, of the sector formed by the 30° angle?

1) 5.2
2) 6.5
3) 13.1
4) 26.2

335 In the diagram below of circle $O, G O=8$ and $\mathrm{m} \angle G O J=60^{\circ}$.

What is the area, in terms of π, of the shaded region?

1) $\frac{4 \pi}{3}$
2) $\frac{20 \pi}{3}$
3) $\frac{32 \pi}{3}$
4) $\frac{160 \pi}{3}$

336 Circle O with a radius of 9 is drawn below. The measure of central angle $A O C$ is 120°.

What is the area of the shaded sector of circle O ?

1) 6π
2) 12π
3) 27π
4) 54π

337 In circle P below, diameter $\overline{A C}$ and radius $\overline{B P}$ are drawn such that $\mathrm{m} \angle A P B=110^{\circ}$.

If $A C=12$, what is the area of shaded sector $B P C$?

1) $\frac{7}{6} \pi$
2) 7π
3) 11π
4) 28π

338 Triangle $F G H$ is inscribed in circle O, the length of radius $\overline{O H}$ is 6 , and $\overline{F H} \cong \overline{O G}$.

What is the area of the sector formed by angle FOH ?

1) 2π
2) $\frac{3}{2} \pi$
3) 6π
4) 24π

339 In circle B below, diameter $\overline{R T}$, radius $\overline{B E}$, and chord $\overline{R E}$ are drawn.

If $\mathrm{m} \angle T R E=15^{\circ}$ and $B E=9$, then the area of sector $E B R$ is

1) 3.375π
2) 6.75π
3) 33.75π
4) 37.125π

340 In the diagram below of circle O, tangent $\overline{A B}$ is drawn from external point B, and secant $\overline{B C O E}$ and diameter $\overline{A O D}$ are drawn.

If $\mathrm{m} \angle O B A=36^{\circ}$ and $O C=10$, what is the area of shaded sector $D O E$?

1) $\frac{3 \pi}{10}$
2) 3π
3) 10π
4) 15π

341 In the diagram below of circle $O, \overline{A C}$ and $\overline{B C}$ are chords, and $\mathrm{m} \angle A C B=70^{\circ}$.

If $O A=9$, the area of the shaded sector $A O B$ is

1) 3.5π
2) 7π
3) 15.75π
4) 31.5π

342 In the diagram below of circle O, the area of the shaded sector $L O M$ is $2 \pi \mathrm{~cm}^{2}$.

If the length of $\overline{N L}$ is 6 cm , what is $\mathrm{m} \angle N$?

1) 10°
2) 20°
3) 40°
4) 80°

343 What is the area of a sector of a circle with a radius of 8 inches and formed by a central angle that measures 60° ?

1) $\frac{8 \pi}{3}$
2) $\frac{16 \pi}{3}$
3) $\frac{32 \pi}{3}$
4) $\frac{64 \pi}{3}$

344 In a circle with a diameter of 32 , the area of a sector is $\frac{512 \pi}{3}$. The measure of the angle of the sector, in radians, is

1) $\frac{\pi}{3}$
2) $\frac{4 \pi}{3}$
3) $\frac{16 \pi}{3}$
4) $\frac{64 \pi}{3}$

345 The area of a sector of a circle with a radius measuring 15 cm is $75 \pi \mathrm{~cm}^{2}$. What is the measure of the central angle that forms the sector?

1) 72°
2) 120°
3) 144°
4) 180°

346 In the diagram below of circle O, the area of the shaded sector $A O C$ is 12π in 2 and the length of $\overline{O A}$ is 6 inches. Determine and state $\mathrm{m} \angle A O C$.

347 In the diagram below, the circle has a radius of 25 inches. The area of the unshaded sector is 500π in 2.

Determine and state the degree measure of angle Q, the central angle of the shaded sector.

348 In the diagram below, circle O has a radius of 10 .

If $\mathrm{m} \overparen{A B}=72^{\circ}$, find the area of shaded sector $A O B$, in terms of π.

349 The diagram below models the projection of light from a lighthouse, L. The sector has a radius of 38 miles and spans 102°.

Determine and state the area of the sector, to the nearest square mile.

350 In the diagram below of circle O, diameter $\overline{A B}$ and radii $\overline{O C}$ and $\overline{O D}$ are drawn. The length of $\overline{A B}$ is 12 and the measure of $\angle C O D$ is 20 degrees.

If $\overparen{A C} \cong \overparen{B D}$, find the area of sector $B O D$ in terms of π.

351 In the diagram below of circle O, the measure of inscribed angle $A B C$ is 36° and the length of $\overline{O A}$ is 4 inches.

Determine and state, to the nearest tenth of a square inch, the area of the shaded sector.

352 Determine and state, in terms of π, the area of a sector that intercepts a 40° arc of a circle with a radius of 4.5.

353 A circle has a radius of 6.4 inches. Determine and state, to the nearest square inch, the area of a sector whose arc measures 80°.

G.GMD.A.1: VOLUME

354 Two stacks of 23 quarters each are shown below. One stack forms a cylinder but the other stack does not form a cylinder.

Use Cavelieri's principle to explain why the volumes of these two stacks of quarters are equal.

355 Sue believes that the two cylinders shown in the diagram below have equal volumes.

Is Sue correct? Explain why.

356 The diagram below shows two figures. Figure A is a right triangular prism and figure B is an oblique triangular prism. The base of figure A has a height of 5 and a length of 8 and the height of prism A is 14. The base of figure B has a height of 8 and a length of 5 and the height of prism B is 14 .

Use Cavalieri's Principle to explain why the volumes of these two triangular prisms are equal.

G.GMD.A.3: VOLUME

357 A fish tank in the shape of a rectangular prism has dimensions of 14 inches, 16 inches, and 10 inches. The tank contains 1680 cubic inches of water. What percent of the fish tank is empty?

1) 10
2) 25
3) 50
4) 75

358 A gardener wants to buy enough mulch to cover a rectangular garden that is 3 feet by 10 feet. One bag contains 2 cubic feet of mulch and costs $\$ 3.66$. How much will the minimum number of bags cost to cover the garden with mulch 3 inches deep?

1) $\$ 3.66$
2) $\$ 10.98$
3) $\$ 14.64$
4) $\$ 29.28$

359 A sandbox in the shape of a rectangular prism has a length of 43 inches and a width of 30 inches. Jack uses bags of sand to fill the sandbox to a depth of 9 inches. Each bag of sand has a volume of 0.5 cubic foot. What is the minimum number of bags of sand that must be purchased to fill the sandbox?

1) 14
2) 13
3) 7
4) 4

360 Ian needs to replace two concrete sections in his sidewalk, as modeled below. Each section is 36 inches by 36 inches and 4 inches deep. He can mix his own concrete for $\$ 3.25$ per cubic foot.

How much money will it cost Ian to replace the two concrete sections?

361 The volume of a triangular prism is $70 \mathrm{in}^{3}$. The base of the prism is a right triangle with one leg whose measure is 5 inches. If the height of the prism is 4 inches, determine and state the length, in inches, of the other leg of the triangle.

362 Darnell models a cup with the cylinder below. He measured the diameter of the cup to be 10 cm and the height to be 9 cm .

If Darnell fills the cup with water to a height of 8 cm , what is the volume of the water in the cup, to the nearest cubic centimeter?

1) 628
2) 707
3) 2513
4) 2827

363 Tennis balls are sold in cylindrical cans with the balls stacked one on top of the other. A tennis ball has a diameter of 6.7 cm . To the nearest cubic centimeter, what is the minimum volume of the can that holds a stack of 4 tennis balls?

1) 236
2) 282
3) 564
4) 945

364 A cylindrical pool has a diameter of 16 feet and height of 4 feet. The pool is filled to $\frac{1}{2}$ foot below the top. How much water does the pool contain, to the nearest gallon? [$1 \mathrm{ft}^{3}=7.48$ gallons]

1) 704
2) 804
3) 5264
4) 6016

365 A small town is installing a water storage tank in the shape of a cylinder. The tank must be able to hold at least 100,000 gallons of water. The tank must have a height of exactly 30 feet. [1 cubic foot holds 7.48 gallons of water] What should the minimum diameter of the tank be, to the nearest foot?

1) 12
2) 24
3) 65
4) 75

366 A barrel of fuel oil is a right circular cylinder where the inside measurements of the barrel are a diameter of 22.5 inches and a height of 33.5 inches. There are 231 cubic inches in a liquid gallon. Determine and state, to the nearest tenth, the gallons of fuel that are in a barrel of fuel oil.

367 A large water basin is in the shape of a right cylinder. The inside of the basin has a diameter of $8 \frac{1}{4}$ feet and a height of 3 feet. Determine and state, to the nearest cubic foot, the number of cubic feet of water that it will take to fill the basin to a level of $\frac{1}{2}$ foot from the top.

368 Theresa has a rectangular pool 30 ft long, 15 ft wide, and 4 ft deep. Theresa fills her pool using city water at a rate of $\$ 3.95$ per 100 gallons of water. Nancy has a circular pool with a diameter of 24 ft and a depth of 4 ft . Nancy fills her pool with a water delivery service at a rate of $\$ 200$ per 6000 gallons. If Theresa and Nancy both fill their pools 6 inches from the top of the pool, determine and state who paid more to fill her pool.
[$1 \mathrm{ft}^{3}$ water $=7.48$ gallons]

369 A child-sized swimming pool can be modeled by a cylinder. The pool has a diameter of $6 \frac{1}{2}$ feet and a height of 12 inches. The pool is filled with water to $\frac{2}{3}$ of its height. Determine and state the volume of the water in the pool, to the nearest cubic foot. One cubic foot equals 7.48 gallons of water. Determine and state, to the nearest gallon, the number of gallons of water in the pool.

370 A small can of soup is a right circular cylinder with a base diameter of 7 cm and a height of 9 cm . A large container is also a right circular cylinder with a base diameter of 9 cm and a height of 13 cm . Determine and state the volume of the small can and the volume of the large container to the nearest cubic centimeter. What is the minimum number of small cans that must be opened to fill the large container? Justify your answer.

371 A gas station has a cylindrical fueling tank that holds the gasoline for its pumps, as modeled below. The tank holds a maximum of 20,000 gallons of gasoline and has a length of 34.5 feet.

A metal pole is used to measure how much gas is in the tank. To the nearest tenth of a foot, how long does the pole need to be in order to reach the bottom of the tank and still extend one foot outside the tank? Justify your answer. [$1 \mathrm{ft}^{3}=7.48$ gallons]

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

372 A concrete footing is a cylinder that is placed in the ground to support a building structure. The cylinder is 4 feet tall and 12 inches in diameter. A contractor is installing 10 footings.

If a bag of concrete mix makes $\frac{2}{3}$ of a cubic foot of concrete, determine and state the minimum number of bags of concrete mix needed to make all 10 footings.

373 A manufacturer is designing a new container for their chocolate-covered almonds. Their original container was a cylinder with a height of 18 cm and a diameter of 14 cm . The new container can be modeled by a rectangular prism with a square base and will contain the same amount of chocolate-covered almonds.

If the new container's height is 16 cm , determine and state, to the nearest tenth of a centimeter, the side length of the new container if both containers contain the same amount of almonds. A store owner who sells the chocolate-covered almonds displays them on a shelf whose dimensions are 80 cm long and 60 cm wide. The shelf can only hold one layer of new containers when each new container sits on its square base. Determine and state the maximum number of new containers the store owner can fit on the shelf.

374 As shown in the diagram below, a regular pyramid has a square base whose side measures 6 inches.

If the altitude of the pyramid measures 12 inches, its volume, in cubic inches, is

1) 72
2) 144
3) 288
4) 432

375 The Pyramid of Memphis, in Tennessee, stands 107 yards tall and has a square base whose side is 197 yards long.

What is the volume of the Pyramid of Memphis, to the nearest cubic yard?

1) 751,818
2) $1,384,188$
3) $2,076,212$
4) $4,152,563$

376 A regular pyramid has a square base. The perimeter of the base is 36 inches and the height of the pyramid is 15 inches. What is the volume of the pyramid in cubic inches?

1) 180
2) 405
3) 540
4) 1215

377 A child's tent can be modeled as a pyramid with a square base whose sides measure 60 inches and whose height measures 84 inches. What is the volume of the tent, to the nearest cubic foot?

1) 35
2) 58
3) 82
4) 175

378 A tent is in the shape of a right pyramid with a square floor. The square floor has side lengths of 8 feet. If the height of the tent at its center is 6 feet, what is the volume of the tent, in cubic feet?

1) 48
2) 128
3) 192
4) 384

379 What is the volume, in cubic centimeters, of a right square pyramid with base edges that are 64 cm long and a slant height of 40 cm ?

1) 8192.0
2) $13,653 . \overline{3}$
3) $32,768.0$
4) $54,613 . \overline{3}$

380 The pyramid shown below has a square base, a height of 7 , and a volume of 84 .

What is the length of the side of the base?

1) 6
2) 12
3) 18
4) 36

381 The Great Pyramid of Giza was constructed as a regular pyramid with a square base. It was built with an approximate volume of $2,592,276$ cubic meters and a height of 146.5 meters. What was the length of one side of its base, to the nearest meter?

1) 73
2) 77
3) 133
4) 230

382 The base of a pyramid is a rectangle with a width of 4.6 cm and a length of 9 cm . What is the height, in centimeters, of the pyramid if its volume is 82.8 cm^{3} ?

1) 6
2) 2
3) 9
4) 18

383 As shown in the diagram below, the radius of a cone is 2.5 cm and its slant height is 6.5 cm .

How many cubic centimeters are in the volume of the cone?

1) 12.5π
2) 13.5π
3) 30.0π
4) 37.5π

384 In the diagram below, a cone has a diameter of 16 inches and a slant height of 17 inches.

What is the volume of the cone, in cubic inches?

1) 320π
2) 363π
3) 960π
4) 1280π

385 What is the volume of a right circular cone that has a height of 7.2 centimeters and a radius of 2.5 centimeters, to the nearest tenth of a cubic centimeter?

1) 37.7
2) 47.1
3) 113.1
4) 141.4

386 A water cup in the shape of a cone has a height of 4 inches and a maximum diameter of 3 inches. What is the volume of the water in the cup, to the nearest tenth of a cubic inch, when the cup is filled to half its height?

1) 1.2
2) 3.5
3) 4.7
4) 14.1

387 A cone has a volume of 108π and a base diameter of 12 . What is the height of the cone?

1) 27
2) 9
3) 3
4) 4

388 An ice cream waffle cone can be modeled by a right circular cone with a base diameter of 6.6 centimeters and a volume of 54.45π cubic centimeters. What is the number of centimeters in the height of the waffle cone?

1) $3 \frac{3}{4}$
2) 5
3) 15
4) $24 \frac{3}{4}$

389 Jaden is comparing two cones. The radius of the base of cone A is twice as large as the radius of the base of cone B. The height of cone B is twice the height of cone A. The volume of cone A is

1) twice the volume of cone B
2) four times the volume of cone B
3) equal to the volume of cone B
4) equal to half the volume of cone B

390 In the diagram below, a right circular cone has a diameter of 10 and a slant height of 13 .

Determine and state the volume of the cone, in terms of π.

391 A candle maker uses a mold to make candles like the one shown below.

The height of the candle is 13 cm and the circumference of the candle at its widest measure is 31.416 cm . Use modeling to approximate how much wax, to the nearest cubic centimeter, is needed to make this candle. Justify your answer.

392 Sally and Mary both get ice cream from an ice cream truck. Sally's ice cream is served as a cylinder with a diameter of 4 cm and a total height of 8 cm . Mary's ice cream is served as a cone with a diameter of 7 cm and a total height of 12.5 cm . Assume that ice cream fills Sally's cylinder and Mary's cone.

Who was served more ice cream, Sally or Mary? Justify your answer. Determine and state how much more is served in the larger ice cream than the smaller ice cream, to the nearest cubic centimeter.

393 A water glass can be modeled by a truncated right cone (a cone which is cut parallel to its base) as shown below.

The diameter of the top of the glass is 3 inches, the diameter at the bottom of the glass is 2 inches, and the height of the glass is 5 inches. The base with a diameter of 2 inches must be parallel to the base with a diameter of 3 inches in order to find the height of the cone. Explain why. Determine and state, in inches, the height of the larger cone. Determine and state, to the nearest tenth of a cubic inch, the volume of the water glass.

394 What is the volume of a hemisphere that has a diameter of 12.6 cm , to the nearest tenth of a cubic centimeter?

1) 523.7
2) 1047.4
3) 4189.6
4) 8379.2

395 If the circumference of a standard lacrosse ball is 19.9 cm , what is the volume of this ball, to the nearest cubic centimeter?

1) 42
2) 133
3) 415
4) 1065

396 The diameter of a basketball is approximately 9.5 inches and the diameter of a tennis ball is approximately 2.5 inches. The volume of the basketball is about how many times greater than the volume of the tennis ball?

1) 3591
2) 65
3) 55
4) 4

397 Randy's basketball is in the shape of a sphere with a maximum circumference of 29.5 inches. Determine and state the volume of the basketball, to the nearest cubic inch.

398 Izzy is making homemade clay pendants in the shape of a solid hemisphere, as modeled below. Each pendant has a radius of 2.8 cm .

How much clay, to the nearest cubic centimeter, does Izzy need to make 100 pendants?

399 A large snowman is made of three spherical snowballs with radii of 1 foot, 2 feet, and 3 feet, respectively. Determine and state the amount of snow, in cubic feet, that is used to make the snowman. [Leave your answer in terms of π.]

400 When volleyballs are purchased, they are not fully inflated. A partially inflated volleyball can be modeled by a sphere whose volume is approximately $180 \mathrm{in}^{3}$. After being fully inflated, its volume is approximately $294 \mathrm{in}^{3}$. To the nearest tenth of an inch, how much does the radius increase when the volleyball is fully inflated?

401 A company is creating an object from a wooden cube with an edge length of 8.5 cm . A right circular cone with a diameter of 8 cm and an altitude of 8 cm will be cut out of the cube. Which expression represents the volume of the remaining wood?

1) $(8.5)^{3}-\pi(8)^{2}(8)$
2) $(8.5)^{3}-\pi(4)^{2}(8)$
3) $(8.5)^{3}-\frac{1}{3} \pi(8)^{2}(8)$
4) $(8.5)^{3}-\frac{1}{3} \pi(4)^{2}(8)$

402 The diagram below models a countertop designed for a kitchen. The countertop is made of solid oak and is 3 inches thick.

If oak weighs approximately 44 pounds per cubic foot, the approximate weight, in pounds, of the countertop is

1) 630
2) 730
3) 750
4) 870

403 A solid metal prism has a rectangular base with sides of 4 inches and 6 inches, and a height of 4 inches. A hole in the shape of a cylinder, with a radius of 1 inch, is drilled through the entire length of the rectangular prism.

What is the approximate volume of the remaining solid, in cubic inches?

1) 19
2) 77
3) 93
4) 96

404 A fabricator is hired to make a 27 -foot-long solid metal railing for the stairs at the local library. The railing is modeled by the diagram below. The railing is 2.5 inches high and 2.5 inches wide and is comprised of a rectangular prism and a half-cylinder.

How much metal, to the nearest cubic inch, will the railing contain?

1) 151
2) 795
3) 1808
4) 2025

405 The greenhouse pictured below can be modeled as a rectangular prism with a half-cylinder on top. The rectangular prism is 20 feet wide, 12 feet high, and 45 feet long. The half-cylinder has a diameter of 20 feet.

To the nearest cubic foot, what is the volume of the greenhouse?

1) 17,869
2) 24,937
3) 39,074
4) 67,349

406 A vendor is using an 8 -ft by 8 -ft tent for a craft fair. The legs of the tent are 9 ft tall and the top forms a square pyramid with a height of 3 ft .

What is the volume, in cubic feet, of space the tent occupies?

1) 256
2) 640
3) 672
4) 768

407 Josh is making a square-based fire pit out of concrete for his backyard, as modeled by the right prism below. He plans to make the outside walls of the fire pit 3.5 feet on each side with a height of 1.5 feet. The concrete walls of the fire pit are going to be 9 inches thick.

If a bag of concrete mix will fill $0.6 \mathrm{ft}^{3}$, determine
and state the minimum number of bags needed to
If a bag of concrete mix will fill $0.6 \mathrm{ft}^{3}$, determine
and state the minimum number of bags needed to build the fire pit.

408 A storage tank is in the shape of a cylinder with a hemisphere on the top. The highest point on the inside of the storage tank is 13 meters above the floor of the storage tank, and the diameter inside the cylinder is 8 meters. Determine and state, to the nearest cubic meter, the total volume inside the storage tank.

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

409 A cargo trailer, pictured below, can be modeled by a rectangular prism and a triangular prism. Inside the trailer, the rectangular prism measures 6 feet wide and 10 feet long. The walls that form the triangular prism each measure 4 feet wide inside the trailer. The diagram below is of the floor, showing the inside measurements of the trailer.

If the inside height of the trailer is 6.5 feet, what is the total volume of the inside of the trailer, to the nearest cubic foot?

Geometry Regents Exam Questions by State Standard: Topic
www.jmap.org

Geometry Regents Exam Questions by State Standard: Topic

410 A rectangular in-ground pool is modeled by the prism below. The inside of the pool is 16 feet wide and 35 feet long. The pool has a shallow end and a deep end, with a sloped floor connecting the two ends. Without water, the shallow end is 9 feet long and 4.5 feet deep, and the deep end of the pool is 12.5 feet long.

If the sloped floor has an angle of depression of 16.5 degrees, what is the depth of the pool at the deep end, to the nearest tenth of a foot? Find the volume of the inside of the pool to the nearest cubic foot. A garden hose is used to fill the pool. Water comes out of the hose at a rate of 10.5 gallons per minute. How much time, to the nearest hour, will it take to fill the pool 6 inches from the top? [$1 \mathrm{ft}^{3}=7.48$ gallons]

G.MG.A.2: DENSITY

411 The table below shows the population and land area, in square miles, of four counties in New York State at the turn of the century.

County	$\mathbf{2 0 0 0}$ Census Population	$\mathbf{2 0 0 0}$ Land Area $\left(\mathrm{mi}^{2}\right)$
Broome	200,536	706.82
Dutchess	280,150	801.59
Niagara	219,846	522.95
Saratoga	200,635	811.84

Which county had the greatest population density?

1) Broome
2) Niagara
3) Dutchess
4) Saratoga

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

412 The 2010 U.S. Census populations and population densities are shown in the table below.

State	Population Density $\left(\frac{\text { people }}{\mathrm{mi}^{2}}\right)$	Population in $\mathbf{2 0 1 0}$
Florida	350.6	$18,801,310$
Illinois	231.1	$12,830,632$
New York	411.2	$19,378,102$
Pennsylvania	283.9	$12,702,379$

Based on the table above, which list has the states' areas, in square miles, in order from largest to smallest?

1) Illinois, Florida, New York, Pennsylvania
2) New York, Florida, Illinois, Pennsylvania
3) New York, Florida, Pennsylvania, Illinois
4) Pennsylvania, New York, Florida, Illinois

413 A shipping container is in the shape of a right rectangular prism with a length of 12 feet, a width of 8.5 feet, and a height of 4 feet. The container is completely filled with contents that weigh, on average, 0.25 pound per cubic foot. What is the weight, in pounds, of the contents in the container?

1) 1,632
2) 408
3) 102
4) 92

415 The density of the American white oak tree is 752 kilograms per cubic meter. If the trunk of an American white oak tree has a circumference of 4.5 meters and the height of the trunk is 8 meters, what is the approximate number of kilograms of the trunk?

1) 13
2) 9694
3) 13,536
4) 30,456

416 A regular pyramid with a square base is made of solid glass. It has a base area of $36 \mathrm{~cm}^{2}$ and a height of 10 cm . If the density of glass is 2.7 grams per cubic centimeter, the mass of the pyramid, in grams, is

1) 120
2) 324
3) 360
4) 972

417 The square pyramid below models a toy block made of maple wood.

Each side of the base measures 4.5 cm and the height of the pyramid is 10 cm . If the density of maple is $0.676 \mathrm{~g} / \mathrm{cm}^{3}$, what is the mass of the block, to the nearest tenth of a gram?

1) 45.6
2) 67.5
3) 136.9
4) 202.5

418 A hemispherical water tank has an inside diameter of 10 feet. If water has a density of 62.4 pounds per cubic foot, what is the weight of the water in a full tank, to the nearest pound?

1) 16,336
2) 32,673
3) 130,690
4) 261,381

419 A hemispherical tank is filled with water and has a diameter of 10 feet. If water weighs 62.4 pounds per cubic foot, what is the total weight of the water in a full tank, to the nearest pound?

1) 16,336
2) 32,673
3) 130,690
4) 261,381

420 Molly wishes to make a lawn ornament in the form of a solid sphere. The clay being used to make the sphere weighs .075 pound per cubic inch. If the sphere's radius is 4 inches, what is the weight of the sphere, to the nearest pound?

1) 34
2) 20
3) 15
4) 4

421 A standard-size golf ball has a diameter of 1.680 inches. The material used to make the golf ball weighs 0.6523 ounce per cubic inch. What is the weight, to the nearest hundredth of an ounce, of one golf ball?

1) 1.10
2) 1.62
3) 2.48
4) 3.81

422 Seawater contains approximately 1.2 ounces of salt per liter on average. How many gallons of seawater, to the nearest tenth of a gallon, would contain 1 pound of salt?

1) 3.3
2) 3.5
3) 4.7
4) 13.3

423 A jewelry company makes copper heart pendants. Each heart uses $0.75 \mathrm{in}^{3}$ of copper and there is 0.323 pound of copper per cubic inch. If copper costs $\$ 3.68$ per pound, what is the total cost for 24 copper hearts?

1) $\$ 5.81$
2) $\$ 21.40$
3) $\$ 66.24$
4) $\$ 205.08$

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

424 A wooden cube has an edge length of 6 centimeters and a mass of 137.8 grams. Determine the density of the cube, to the nearest thousandth. State which type of wood the cube is made of, using the density table below.

Type of Wood	Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
Pine	0.373
Hemlock	0.431
Elm	0.554
Birch	0.601
Ash	0.638
Maple	0.676
Oak	0.711

425 During an experiment, the same type of bacteria is grown in two petri dishes. Petri dish A has a diameter of 51 mm and has approximately 40,000 bacteria after 1 hour. Petri dish B has a diameter of 75 mm and has approximately 72,000 bacteria after 1 hour.

Determine and state which petri dish has the greater population density of bacteria at the end of the first hour.

426 A contractor needs to purchase 500 bricks. The dimensions of each brick are 5.1 cm by 10.2 cm by 20.3 cm , and the density of each brick is $1920 \mathrm{~kg} / \mathrm{m}^{3}$. The maximum capacity of the contractor's trailer is 900 kg . Can the trailer hold the weight of 500 bricks? Justify your answer.

427 A rectangular tabletop will be made of maple wood that weighs 43 pounds per cubic foot. The tabletop will have a length of eight feet, a width of three feet, and a thickness of one inch. Determine and state the weight of the tabletop, in pounds.

428 Trees that are cut down and stripped of their branches for timber are approximately cylindrical. A timber company specializes in a certain type of tree that has a typical diameter of 50 cm and a typical height of about 10 meters. The density of the wood is 380 kilograms per cubic meter, and the wood can be sold by mass at a rate of $\$ 4.75$ per kilogram. Determine and state the minimum number of whole trees that must be sold to raise at least $\$ 50,000$.

429 A candle in the shape of a right pyramid is modeled below. Each side of the square base measures 12 centimeters. The slant height of the pyramid measures 16 centimeters.

Determine and state the volume of the candle, to the nearest cubic centimeter. The wax used to make the candle weighs 0.032 ounce per cubic centimeter. Determine and state the weight of the candle, to the nearest ounce.

430 A packing box for baseballs is the shape of a rectangular prism with dimensions of $2 \mathrm{ft} \times 1 \mathrm{ft} \times 18 \mathrm{in}$. Each baseball has a diameter of 2.94 inches.

Determine and state the maximum number of baseballs that can be packed in the box if they are stacked in layers and each layer contains an equal number of baseballs. The weight of a baseball is approximately 0.025 pound per cubic inch. Determine and state, to the nearest pound, the total weight of all the baseballs in the fully packed box.

431 A bakery sells hollow chocolate spheres. The larger diameter of each sphere is 4 cm . The thickness of the chocolate of each sphere is 0.5 cm . Determine and state, to the nearest tenth of a cubic centimeter, the amount of chocolate in each hollow sphere. The bakery packages 8 of them into a box. If the density of the chocolate is $1.308 \mathrm{~g} / \mathrm{cm}^{3}$, determine and state, to the nearest gram, the total mass of the chocolate in the box.

432 Walter wants to make 100 candles in the shape of a cone for his new candle business. The mold shown below will be used to make the candles. Each mold will have a height of 8 inches and a diameter of 3 inches. To the nearest cubic inch, what will be the total volume of 100 candles?

Walter goes to a hobby store to buy the wax for his candles. The wax costs $\$ 0.10$ per ounce. If the weight of the wax is 0.52 ounce per cubic inch, how much will it cost Walter to buy the wax for 100 candles? If Walter spent a total of $\$ 37.83$ for the molds and charges $\$ 1.95$ for each candle, what is Walter's profit after selling 100 candles?

433 A snow cone consists of a paper cone completely filled with shaved ice and topped with a hemisphere of shaved ice, as shown in the diagram below. The inside diameter of both the cone and the hemisphere is 8.3 centimeters. The height of the cone is 10.2 centimeters.

The desired density of the shaved ice is $0.697 \mathrm{~g} / \mathrm{cm}^{3}$, and the cost, per kilogram, of ice is $\$ 3.83$. Determine and state the cost of the ice needed to make 50 snow cones.

434 The water tower in the picture below is modeled by the two-dimensional figure beside it. The water tower is composed of a hemisphere, a cylinder, and a cone. Let C be the center of the hemisphere and let D be the center of the base of the cone.

If $A C=8.5$ feet, $B F=25$ feet, and $\mathrm{m} \angle E F D=47^{\circ}$, determine and state, to the nearest cubic foot, the volume of the water tower. The water tower was constructed to hold a maximum of 400,000 pounds of water. If water weighs 62.4 pounds per cubic foot, can the water tower be filled to 85% of its volume and not exceed the weight limit? Justify your answer.

435 Shae has recently begun kickboxing and purchased training equipment as modeled in the diagram below. The total weight of the bag, pole, and unfilled base is 270 pounds. The cylindrical base is 18 inches tall with a diameter of 20 inches. The dry sand used to fill the base weighs 95.46 lbs per cubic foot.

To the nearest pound, determine and state the total weight of the training equipment if the base is filled to 85% of its capacity.

436 New streetlights will be installed along a section of the highway. The posts for the streetlights will be 7.5 m tall and made of aluminum. The city can choose to buy the posts shaped like cylinders or the posts shaped like rectangular prisms. The cylindrical posts have a hollow core, with aluminum 2.5 cm thick, and an outer diameter of 53.4 cm . The rectangular-prism posts have a hollow core, with aluminum 2.5 cm thick, and a square base that measures 40 cm on each side. The density of aluminum is $2.7 \mathrm{~g} / \mathrm{cm} 3$, and the cost of aluminum is $\$ 0.38$ per kilogram. If all posts must be the same shape, which post design will cost the town less? How much money will be saved per streetlight post with the less expensive design?

437 A machinist creates a solid steel part for a wind turbine engine. The part has a volume of 1015 cubic centimeters. Steel can be purchased for $\$ 0.29$ per kilogram, and has a density of 7.95 $\mathrm{g} / \mathrm{cm}^{3}$. If the machinist makes 500 of these parts, what is the cost of the steel, to the nearest dollar?

TRANSFORMATIONS
 G.SRT.A.1: LINE DILATIONS

438 In the diagram below, $\overline{C D}$ is the image of $\overline{A B}$ after a dilation of scale factor k with center E.

Which ratio is equal to the scale factor k of the dilation?

1) $\frac{E C}{E A}$
2) $\frac{B A}{E A}$
3) $\frac{E A}{B A}$
4) $\frac{E A}{E C}$

439 After a dilation with center (0,0), the image of $\overline{D B}$ is $\overline{D^{\prime} B^{\prime}}$. If $D B=4.5$ and $D^{\prime} B^{\prime}=18$, the scale factor of this dilation is

1) $\frac{1}{5}$
2) 5
3) $\frac{1}{4}$
4) 4

440 The line represented by $2 y=x+8$ is dilated by a scale factor of k centered at the origin, such that the image of the line has an equation of $y-\frac{1}{2} x=2$.
What is the scale factor?

1) $k=\frac{1}{2}$
2) $k=2$
3) $k=\frac{1}{4}$
4) $k=4$

441 After a dilation centered at the origin, the image of $\overline{C D}$ is $\overline{C^{\prime} D^{\prime}}$. If the coordinates of the endpoints of these segments are $C(6,-4), D(2,-8), C^{\prime}(9,-6)$, and $D^{\prime}(3,-12)$, the scale factor of the dilation is

1) $\frac{3}{2}$
2) $\frac{2}{3}$
3) 3
4) $\frac{1}{3}$

442 On the graph below, point $A(3,4)$ and $\overline{B C}$ with coordinates $B(4,3)$ and $C(2,1)$ are graphed.

What are the coordinates of B^{\prime} and C^{\prime} after $\overline{B C}$ undergoes a dilation centered at point A with a scale factor of 2 ?

1) $B^{\prime}(5,2)$ and $C^{\prime}(1,-2)$
2) $B^{\prime}(6,1)$ and $C^{\prime}(0,-1)$
3) $B^{\prime}(5,0)$ and $C^{\prime}(1,-2)$
4) $B^{\prime}(5,2)$ and $C^{\prime}(3,0)$

443 On the set of axes below, the endpoints of $\overline{A B}$ have coordinates $A(-3,4)$ and $B(5,2)$.

If $\overline{A B}$ is dilated by a scale factor of 2 centered at $(3,5)$, what are the coordinates of the endpoints of its image, $\overline{A^{\prime} B^{\prime}}$?

1) $A^{\prime}(-7,5)$ and $B^{\prime}(9,1)$
2) $A^{\prime}(-1,6)$ and $B^{\prime}(7,4)$
3) $A^{\prime}(-6,8)$ and $B^{\prime}(10,4)$
4) $A^{\prime}(-9,3)$ and $B^{\prime}(7,-1)$

444 Line segment $A^{\prime} B^{\prime}$, whose endpoints are $(4,-2)$ and $(16,14)$, is the image of $\overline{A B}$ after a dilation of $\frac{1}{2}$ centered at the origin. What is the length of $\overline{A B}$?

1) 5
2) 10
3) 20
4) 40

445 A three-inch line segment is dilated by a scale factor of 6 and centered at its midpoint. What is the length of its image?

1) 9 inches
2) 2 inches
3) 15 inches
4) 18 inches

446 A line that passes through the points whose coordinates are $(1,1)$ and $(5,7)$ is dilated by a scale factor of 3 and centered at the origin. The image of the line

1) is perpendicular to the original line
2) is parallel to the original line
3) passes through the origin
4) is the original line

447 The line whose equation is $3 x-5 y=4$ is dilated by a scale factor of $\frac{5}{3}$ centered at the origin. Which statement is correct?

1) The image of the line has the same slope as the pre-image but a different y-intercept.
2) The image of the line has the same y-intercept as the pre-image but a different slope.
3) The image of the line has the same slope and the same y-intercept as the pre-image.
4) The image of the line has a different slope and a different y-intercept from the pre-image.

448 A line segment is dilated by a scale factor of 2 centered at a point not on the line segment. Which statement regarding the relationship between the given line segment and its image is true?

1) The line segments are perpendicular, and the image is one-half of the length of the given line segment.
2) The line segments are perpendicular, and the image is twice the length of the given line segment.
3) The line segments are parallel, and the image is twice the length of the given line segment.
4) The line segments are parallel, and the image is one-half of the length of the given line segment.

449 If the line represented by $y=-\frac{1}{4} x-2$ is dilated by a scale factor of 4 centered at the origin, which statement about the image is true?

1) The slope is $-\frac{1}{4}$ and the y-intercept is -8 .
2) The slope is $-\frac{1}{4}$ and the y-intercept is -2 .
3) The slope is -1 and the y-intercept is -8 .
4) The slope is -1 and the y-intercept is -2 .

450 A line is dilated by a scale factor of $\frac{1}{3}$ centered at a point on the line. Which statement is correct about the image of the line?

1) Its slope is changed by a scale factor of $\frac{1}{3}$.
2) Its y-intercept is changed by a scale factor of $\frac{1}{3}$.
3) Its slope and y-intercept are changed by a scale factor of $\frac{1}{3}$.
4) The image of the line and the pre-image are the same line.

451 An equation of line p is $y=\frac{1}{3} x+4$. An equation of line q is $y=\frac{2}{3} x+8$. Which statement about lines p and q is true?

1) A dilation of $\frac{1}{2}$ centered at the origin will map line q onto line p.
2) A dilation of 2 centered at the origin will map line p onto line q.
3) Line q is not the image of line p after a dilation because the lines are not parallel.
4) Line q is not the image of line p after a dilation because the lines do not pass through the origin.

452 On the set of axes below, $\overleftrightarrow{A B}$ is drawn and passes through $A(-2,6)$ and $B(4,0)$.

If $\overleftrightarrow{C D}$ is the image of $\overleftrightarrow{A B}$ after a dilation with a scale factor of $\frac{1}{2}$ centered at the origin, which equation represents $\overleftrightarrow{C D}$?

1) $y=-x+4$
2) $y=-x+2$
3) $y=-\frac{1}{2} x+4$
4) $y=-\frac{1}{2} x+2$

453 The equation of line h is $2 x+y=1$. Line m is the image of line h after a dilation of scale factor 4 with respect to the origin. What is the equation of the line m ?

1) $y=-2 x+1$
2) $y=-2 x+4$
3) $y=2 x+4$
4) $y=2 x+1$

454 The line $y=2 x-4$ is dilated by a scale factor of $\frac{3}{2}$ and centered at the origin. Which equation represents the image of the line after the dilation?

1) $y=2 x-4$
2) $y=2 x-6$
3) $y=3 x-4$
4) $y=3 x-6$

455 What is an equation of the image of the line $y=\frac{3}{2} x-4$ after a dilation of a scale factor of $\frac{3}{4}$ centered at the origin?

1) $y=\frac{9}{8} x-4$
2) $y=\frac{9}{8} x-3$
3) $y=\frac{3}{2} x-4$
4) $y=\frac{3}{2} x-3$

456 The equation of line t is $3 x-y=6$. Line m is the image of line t after a dilation with a scale factor of $\frac{1}{2}$ centered at the origin. What is an equation of the line m ?

1) $y=\frac{3}{2} x-3$
2) $y=\frac{3}{2} x-6$
3) $y=3 x+3$
4) $y=3 x-3$

457 The line whose equation is $6 x+3 y=3$ is dilated by a scale factor of 2 centered at the point $(0,0)$. An equation of its image is

1) $y=-2 x+1$
2) $y=-2 x+2$
3) $y=-4 x+1$
4) $y=-4 x+2$

458 The line $3 y=-2 x+8$ is transformed by a dilation centered at the origin. Which linear equation could be its image?

1) $2 x+3 y=5$
2) $2 x-3 y=5$
3) $3 x+2 y=5$
4) $3 x-2 y=5$

459 The line represented by the equation $4 y=3 x+7$ is transformed by a dilation centered at the origin. Which linear equation could represent its image?

1) $3 x-4 y=9$
2) $3 x+4 y=9$
3) $4 x-3 y=9$
4) $4 x+3 y=9$

460 The line $-3 x+4 y=8$ is transformed by a dilation centered at the origin. Which linear equation could represent its image?

1) $y=\frac{4}{3} x+8$
2) $y=\frac{3}{4} x+8$
3) $y=-\frac{3}{4} x-8$
4) $y=-\frac{4}{3} x-8$

461 Line $y=3 x-1$ is transformed by a dilation with a scale factor of 2 and centered at $(3,8)$. The line's image is

1) $y=3 x-8$
2) $y=3 x-4$
3) $y=3 x-2$
4) $y=3 x-1$

462 Line $M N$ is dilated by a scale factor of 2 centered at the point $(0,6)$. If $\overleftrightarrow{M N}$ is represented by $y=-3 x+6$, which equation can represent $\overleftrightarrow{M^{\prime} N^{\prime}}$, the image of $\overleftrightarrow{M N}$?

1) $y=-3 x+12$
2) $y=-3 x+6$
3) $y=-6 x+12$
4) $y=-6 x+6$

463 On the set of axes below, $\overline{A B}$ is dilated by a scale factor of $\frac{5}{2}$ centered at point P.

Which statement is always true?

1) $\overline{P A} \cong \overline{A A^{\prime}}$
2) $\overline{A B} \| \overline{A^{\prime} B^{\prime}}$
3) $A B=A^{\prime} B^{\prime}$
4) $\frac{5}{2}\left(A^{\prime} B^{\prime}\right)=A B$

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

464 The coordinates of the endpoints of $\overline{A B}$ are $A(2,3)$ and $B(5,-1)$. Determine the length of $\overline{A^{\prime} B^{\prime}}$, the image of $\overline{A B}$, after a dilation of $\frac{1}{2}$ centered at the origin. [The use of the set of axes below is optional.]

465 Line n is represented by the equation $3 x+4 y=20$. Determine and state the equation of line p, the image of line n, after a dilation of scale factor $\frac{1}{3}$ centered at the point $(4,2)$. [The use of the set of axes below is optional.] Explain your answer.

466
Aliyah says that when the line $4 x+3 y=24$ is dilated by a scale factor of 2 centered at the point $(3,4)$, the equation of the dilated line is $y=-\frac{4}{3} x+16$. Is Aliyah correct? Explain why. [The use of the set of axes below is optional.]

467 Line $A B$ is dilated by a scale factor of 2 centered at point A.

Evan thinks that the dilation of $\overline{A B}$ will result in a line parallel to $\overline{A B}$, not passing through points A or B. Nathan thinks that the dilation of $\overline{A B}$ will result in the same line, $\overline{A B}$. Who is correct? Explain why.

468 Line ℓ is mapped onto line m by a dilation centered at the origin with a scale factor of 2 . The equation of line ℓ is $3 x-y=4$. Determine and state an equation for line m.

G.CO.A.5: ROTATIONS

469
Which point shown in the graph below is the image of point P after a counterclockwise rotation of 90° about the origin?

1) A
2) B
3) C
4) D

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

470 The grid below shows $\triangle A B C$ and $\triangle D E F$.

Let $\triangle A^{\prime} B^{\prime} C^{\prime}$ be the image of $\triangle A B C$ after a rotation about point A. Determine and state the location of B^{\prime} if the location of point C^{\prime} is $(8,-3)$. Explain your answer. Is $\triangle D E F$ congruent to $\triangle A^{\prime} B^{\prime} C^{\prime}$? Explain your answer.

G.CO.A.5: REFLECTIONS

471 What is the image of $(4,3)$ after a reflection over the line $y=1$?

1) $(-2,3)$
2) $(-4,3)$
3) $(4,-1)$
4) $(4,-3)$

472 Triangle $A B C$ is graphed on the set of axes below. Graph and label $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a reflection over the line $x=1$.

G.SRT.A.2: DILATIONS

473 In the diagram below, $\triangle G H J$ is dilated by a scale factor of $\frac{1}{2}$ centered at point B to map onto $\triangle C D F$.

B•
If $\mathrm{m} \angle D F C=40^{\circ}$, what is $\mathrm{m} \angle H J G$?

1) 20°
2) 40°
3) 60°
4) 80°

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

474 In the diagram below, $\triangle A B E$ is the image of $\triangle A C D$ after a dilation centered at the origin. The coordinates of the vertices are $A(0,0), B(3,0)$, $C(4.5,0), D(0,6)$, and $E(0,4)$.

The ratio of the lengths of $\overline{B E}$ to $\overline{C D}$ is

1) $\frac{2}{3}$
2) $\frac{3}{2}$
3) $\frac{3}{4}$
4) $\frac{4}{3}$

475 On the set of axes below, $\triangle R S T$ is the image of $\triangle A B C$ after a dilation centered at point P.

The scale factor of the dilation that maps $\triangle A B C$ onto $\triangle R S T$ is

1) $\frac{1}{3}$
2) 2
3) 3
4) $\frac{2}{3}$

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

476 On the set of axes below, $\triangle D E F$ is the image of $\triangle A B C$ after a dilation of scale factor $\frac{1}{3}$.

The center of dilation is at

1) $(0,0)$
2) $(2,-3)$
3) $(0,-2)$
4) $(-4,0)$

477 Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a dilation centered at the origin. The coordinates of the vertices of $\triangle A B C$ are $A(-2,1), B(2,4)$, and $C(2,-3)$.

If the coordinates of A^{\prime} are $(-4,2)$, the coordinates of B^{\prime} are

1) $(8,4)$
2) $(4,8)$
3) $(4,-6)$
4) $(1,2)$

478 The image of $\triangle A B C$ after a dilation of scale factor k centered at point A is $\triangle A D E$, as shown in the diagram below.

Which statement is always true?

1) $2 A B=A D$
2) $\overline{A D} \perp \overline{D E}$
3) $\frac{A C}{B C} \| \frac{C E}{D E}$

479 If $\triangle A B C$ is dilated by a scale factor of 3 , which statement is true of the image $\triangle A^{\prime} B^{\prime} C^{\prime}$?

1) $3 A^{\prime} B^{\prime}=A B$
2) $B^{\prime} C^{\prime}=3 B C$
3) $\mathrm{m} \angle A^{\prime}=3(\mathrm{~m} \angle A)$
4) $3\left(\mathrm{~m} \angle C^{\prime}\right)=\mathrm{m} \angle C$

480 If $\triangle T A P$ is dilated by a scale factor of 0.5 , which statement about the image, $\Delta T^{\prime} A^{\prime} P^{\prime}$, is true?

1) $\mathrm{m} \angle T^{\prime} A^{\prime} P^{\prime}=\frac{1}{2}(\mathrm{~m} \angle T A P)$
2) $\mathrm{m} \angle T^{\prime} A^{\prime} P^{\prime}=2(\mathrm{~m} \angle T A P)$
3) $T A=2\left(T^{\prime} A^{\prime}\right)$
4) $T A=\frac{1}{2}\left(T^{\prime} A^{\prime}\right)$

481 Given square $R S T V$, where $R S=9 \mathrm{~cm}$. If square $R S T V$ is dilated by a scale factor of 3 about a given center, what is the perimeter, in centimeters, of the image of $R S T V$ after the dilation?

1) 12
2) 27
3) 36
4) 108

482 Triangle RJM has an area of 6 and a perimeter of 12. If the triangle is dilated by a scale factor of 3 centered at the origin, what are the area and perimeter of its image, triangle $R^{\prime} J^{\prime} M^{\prime}$?

1) area of 9 and perimeter of 15
2) area of 18 and perimeter of 36
3) area of 54 and perimeter of 36
4) area of 54 and perimeter of 108

483 A triangle is dilated by a scale factor of 3 with the center of dilation at the origin. Which statement is true?

1) The area of the image is nine times the area of the original triangle.
2) The perimeter of the image is nine times the perimeter of the original triangle.
3) The slope of any side of the image is three times the slope of the corresponding side of the original triangle.
4) The measure of each angle in the image is three times the measure of the corresponding angle of the original triangle.

484 Rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is the image of rectangle $A B C D$ after a dilation centered at point A by a scale factor of $\frac{2}{3}$. Which statement is correct?

1) Rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ has a perimeter that is $\frac{2}{3}$ the perimeter of rectangle $A B C D$.
2) Rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ has a perimeter that is $\frac{3}{2}$ the perimeter of rectangle $A B C D$.
3) Rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ has an area that is $\frac{2}{3}$ the area of rectangle $A B C D$.
4) Rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ has an area that is $\frac{3}{2}$ the area of rectangle $A B C D$.

485
Triangle $A B C$ and point $D(1,2)$ are graphed on the set of axes below.

Graph and label $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$, after a dilation of scale factor 2 centered at point D.

487 Triangle $A B C$ and triangle $A D E$ are graphed on the set of axes below.

Describe a transformation that maps triangle $A B C$ onto triangle $A D E$. Explain why this transformation makes triangle $A D E$ similar to triangle $A B C$.

Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of triangle $A B C$ after a dilation with a scale factor of $\frac{1}{2}$ and centered at point A. Is triangle $A B C$ congruent to triangle $A^{\prime} B^{\prime} C^{\prime}$? Explain your answer.

G.CO.A.3: MAPPING A POLYGON ONTO ITSELF

489 A regular pentagon is shown in the diagram below.

If the pentagon is rotated clockwise around its center, the minimum number of degrees it must be rotated to carry the pentagon onto itself is

1) 54°
2) 72°
3) 108°
4) 360°

490 A regular pentagon is rotated about its center. What is the minimum number of degrees needed to carry the pentagon onto itself?

1) 72°
2) 108°
3) 144°
4) 360°

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

491 The regular polygon below is rotated about its center.

Which angle of rotation will carry the figure onto itself?

1) 60°
2) 108°
3) 216°
4) 540°

492 A regular hexagon is rotated about its center. Which degree measure will carry the regular hexagon onto itself?

1) 45°
2) 90°
3) 120°
4) 135°

493 Which rotation about its center will carry a regular decagon onto itself?

1) 54°
2) 162°
3) 198°
4) 252°

494 A regular decagon is rotated n degrees about its center, carrying the decagon onto itself. The value of n could be

1) 10°
2) 150°
3) 225°
4) 252°

495 Which polygon always has a minimum rotation of 180° about its center to carry it onto itself?
1)

Rectangle
2)

3)

496 Which regular polygon has a minimum rotation of 36° about its center that carries the polygon onto itself?

1) pentagon
2) octagon
3) nonagon
4) decagon

497 Which regular polygon has a minimum rotation of 45° to carry the polygon onto itself?

1) octagon
2) decagon
3) hexagon
4) pentagon

498 Which figure will not carry onto itself after a 120 -degree rotation about its center?

1) equilateral triangle
2) regular hexagon
3) regular octagon
4) regular nonagon

499 Which regular polygon would carry onto itself after a rotation of 300° about its center?

1) decagon
2) nonagon
3) octagon
4) hexagon

500 Which figure always has exactly four lines of reflection that map the figure onto itself?

1) square
2) rectangle
3) regular octagon
4) equilateral triangle

501 In the diagram below, a square is graphed in the coordinate plane.

A reflection over which line does not carry the square onto itself?

1) $x=5$
2) $y=2$
3) $y=x$
4) $x+y=4$

502 A rectangle is graphed on the set of axes below.

A reflection over which line would carry the rectangle onto itself?

1) $y=2$
2) $y=10$
3) $y=\frac{1}{2} x-3$
4) $y=-\frac{1}{2} x+7$

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

503 As shown in the graph below, the quadrilateral is a rectangle.

Which transformation would not map the rectangle onto itself?

1) a reflection over the x-axis
2) a reflection over the line $x=4$
3) a rotation of 180° about the origin
4) a rotation of 180° about the point $(4,0)$

504 In the diagram below, rectangle $A B C D$ has vertices whose coordinates are $A(7,1), B(9,3), C(3,9)$, and $D(1,7)$.

Which transformation will not carry the rectangle onto itself?

1) a reflection over the line $y=x$
2) a reflection over the line $y=-x+10$
3) a rotation of 180° about the point $(6,6)$
4) a rotation of 180° about the point $(5,5)$

505 The figure below shows a rhombus with noncongruent diagonals.

Which transformation would not carry this rhombus onto itself?

1) a reflection over the shorter diagonal
2) a reflection over the longer diagonal
3) a clockwise rotation of 90° about the intersection of the diagonals
4) a counterclockwise rotation of 180° about the intersection of the diagonals

506 Which transformation carries the parallelogram below onto itself?

1) a reflection over $y=x$
2) a reflection over $y=-x$
3) a rotation of 90° counterclockwise about the origin
4) a rotation of 180° counterclockwise about the origin

507 A rhombus is graphed on the set of axes below.

Which transformation would carry the rhombus onto itself?

1) 180° rotation counterclockwise about the origin
2) reflection over the line $y=\frac{1}{2} x+1$
3) reflection over the line $y=0$
4) reflection over the line $x=0$

508 A square is graphed on the set of axes below, with vertices at $(-1,2),(-1,-2),(3,-2)$, and $(3,2)$.

Which transformation would not carry the square onto itself?

1) reflection over the y-axis
2) reflection over the x-axis
3) rotation of 180 degrees around point $(1,0)$
4) reflection over the line $y=x-1$

509 Which transformation would not carry a square onto itself?

1) a reflection over one of its diagonals
2) a 90° rotation clockwise about its center
3) a 180° rotation about one of its vertices
4) a reflection over the perpendicular bisector of one side

510 A regular hexagon is rotated in a counterclockwise direction about its center. Determine and state the minimum number of degrees in the rotation such that the hexagon will coincide with itself.

G.CO.A.5: COMPOSITIONS OF TRANFORMATIONS

511 In the diagram below, congruent figures 1, 2, and 3 are drawn.

Which sequence of transformations maps figure 1 onto figure 2 and then figure 2 onto figure 3 ?

1) a reflection followed by a translation
2) a rotation followed by a translation
3) a translation followed by a reflection
4) a translation followed by a rotation

512 A sequence of transformations maps rectangle $A B C D$ onto rectangle $A " B " C " D$ ", as shown in the diagram below.

Which sequence of transformations maps $A B C D$ onto $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ and then maps $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ onto A"B"C"D"?

1) a reflection followed by a rotation
2) a reflection followed by a translation
3) a translation followed by a rotation
4) a translation followed by a reflection

513 Identify which sequence of transformations could map pentagon $A B C D E$ onto pentagon $A " B " C " D " E$ ", as shown below.

1) dilation followed by a rotation
2) translation followed by a rotation
3) line reflection followed by a translation
4) line reflection followed by a line reflection

514 On the set of axes below, triangle $A B C$ is graphed. Triangles $A^{\prime} B^{\prime} C^{\prime}$ and $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the images of triangle $A B C$, are graphed after a sequence of rigid motions.

Identify which sequence of rigid motions maps $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}$ and then maps $\triangle A^{\prime} B^{\prime} C^{\prime}$ onto $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime}$.

1) a rotation followed by another rotation
2) a translation followed by a reflection
3) a reflection followed by a translation
4) a reflection followed by a rotation

515 Triangle $A B C$ and triangle $D E F$ are graphed on the set of axes below.

Which sequence of transformations maps triangle $A B C$ onto triangle $D E F$?

1) a reflection over the x-axis followed by a reflection over the y-axis
2) a 180° rotation about the origin followed by a reflection over the line $y=x$
3) a 90° clockwise rotation about the origin followed by a reflection over the y-axis
4) a translation 8 units to the right and 1 unit up followed by a 90° counterclockwise rotation about the origin

516 In the diagram below, $\triangle A B C \cong \triangle D E F$.

Which sequence of transformations maps $\triangle A B C$ onto $\triangle D E F$?

1) a reflection over the x-axis followed by a translation
2) a reflection over the y-axis followed by a translation
3) a rotation of 180° about the origin followed by a translation
4) a counterclockwise rotation of 90° about the origin followed by a translation

517 Triangles $A B C$ and $R S T$ are graphed on the set of axes below.

Which sequence of rigid motions will prove $\triangle A B C \cong \triangle R S T$?

1) a line reflection over $y=x$
2) a rotation of 180° centered at $(1,0)$
3) a line reflection over the x-axis followed by a translation of 6 units right
4) a line reflection over the x-axis followed by a line reflection over $y=1$

518 On the set of axes below, $\triangle A B C$ has vertices at $A(-2,0), B(2,-4), C(4,2)$, and $\triangle D E F$ has vertices at $D(4,0), E(-4,8), F(-8,-4)$.

Which sequence of transformations will map $\triangle A B C$ onto $\triangle D E F$?

1) a dilation of $\triangle A B C$ by a scale factor of 2 centered at point A
2) a dilation of $\triangle A B C$ by a scale factor of $\frac{1}{2}$ centered at point A
3) a dilation of $\triangle A B C$ by a scale factor of 2 centered at the origin, followed by a rotation of 180° about the origin
4) a dilation of $\triangle A B C$ by a scale factor of $\frac{1}{2}$ centered at the origin, followed by a rotation of 180° about the origin

519 On the set of axes below, pentagon $A B C D E$ is congruent to $A " B " C " D " E "$.

Which describes a sequence of rigid motions that maps $A B C D E$ onto $A " B^{\prime \prime} C^{\prime \prime} D^{\prime \prime} E^{\prime \prime}$?

1) a rotation of 90° counterclockwise about the origin followed by a reflection over the x-axis
2) a rotation of 90° counterclockwise about the origin followed by a translation down 7 units
3) a reflection over the y-axis followed by a reflection over the x-axis
4) a reflection over the x-axis followed by a rotation of 90° counterclockwise about the origin

520 On the set of axes below, $\triangle L E T$ and $\triangle L$ " E " T " are graphed in the coordinate plane where $\triangle L E T \cong \triangle L " E " T$ ".

Which sequence of rigid motions maps $\triangle L E T$ onto $\Delta L " E " T$ "?

1) a reflection over the y-axis followed by a reflection over the x-axis
2) a rotation of 180° about the origin
3) a rotation of 90° counterclockwise about the origin followed by a reflection over the y-axis
4) a reflection over the x-axis followed by a rotation of 90° clockwise about the origin

521 On the set of axes below, congruent triangles $A B C$ and $D E F$ are drawn.

Which sequence of transformations maps $\triangle A B C$ onto $\triangle D E F$?

1) A counterclockwise rotation of 90 degrees about the origin, followed by a translation 8 units to the right.
2) A counterclockwise rotation of 90 degrees about the origin, followed by a reflection over the y-axis.
3) A counterclockwise rotation of 90 degrees about the origin, followed by a translation 4 units down.
4) A clockwise rotation of 90 degrees about the origin, followed by a reflection over the x-axis.

522 In the diagram below, $A B C D$ is a rectangle, and diagonal $\overline{B D}$ is drawn. Line ℓ, a vertical line of symmetry, and line m, a horizontal line of symmetry, intersect at point E.

Which sequence of transformations will map $\triangle A B D$ onto $\triangle C D B$?

1) a reflection over line ℓ followed by a 180° rotation about point E
2) a reflection over line ℓ followed by a reflection over line m
3) a 180° rotation about point B
4) a reflection over $\overline{D B}$

523 Describe a sequence of transformations that will map $\triangle A B C$ onto $\triangle D E F$ as shown below.

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

524 The graph below shows $\triangle A B C$ and its image, $\triangle A " B " C "$.

Describe a sequence of rigid motions which would map $\triangle A B C$ onto $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.

525 On the set of axes below, $\triangle A B C \cong \triangle D E F$.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle D E F$.

526 On the set of axes below, $\triangle A B C$ is graphed with coordinates $A(-2,-1), B(3,-1)$, and $C(-2,-4)$. Triangle $Q R S$, the image of $\triangle A B C$, is graphed with coordinates $Q(-5,2), R(-5,7)$, and $S(-8,2)$.

Describe a sequence of transformations that would map $\triangle A B C$ onto $\triangle Q R S$.

527 On the set of axes below, $\triangle A B C \cong \triangle S T U$.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle S T U$.

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

528 On the set of axes below, $\triangle D O G \cong \triangle C A T$.

Describe a sequence of transformations that maps $\triangle D O G$ onto $\triangle C A T$.

On the set of axes below, $\triangle A B C$ and $\triangle D E F$ are graphed.

Describe a sequence of rigid motions that would map $\triangle A B C$ onto $\triangle D E F$.

530 Triangles $A B C$ and $D E F$ are graphed on the set of axes below.

Describe a sequence of transformations that maps $\triangle A B C$ onto $\triangle D E F$.

531 Quadrilateral MATH and its image $M^{\prime \prime} A " T$ " H " are graphed on the set of axes below.

Describe a sequence of transformations that maps quadrilateral $M A T H$ onto quadrilateral $M^{\prime \prime} A " T^{\prime \prime} H^{\prime \prime}$.

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

532 Quadrilaterals BIKE and GOLF are graphed on the set of axes below.

Describe a sequence of transformations that maps quadrilateral BIKE onto quadrilateral GOLF.

533 Trapezoids $A B C D$ and $A " B " C " D$ " are graphed on the set of axes below.

Describe a sequence of transformations that maps trapezoid $A B C D$ onto trapezoid $A " B " C " D$ ".

534 On the set of axes below, congruent quadrilaterals ROCK and $R^{\prime} O^{\prime} C^{\prime} K^{\prime}$ are graphed.

Describe a sequence of transformations that would map quadrilateral $R O C K$ onto quadrilateral $R^{\prime} O^{\prime} C^{\prime} K^{\prime}$.

535 Triangle $A B C$ and triangle $D E F$ are drawn below.

If $\overline{A B} \cong \overline{D E}, \overline{A C} \cong \overline{D F}$, and $\angle A \cong \angle D$, write a sequence of transformations that maps triangle $A B C$ onto triangle $D E F$.

536 In the diagram below, $\triangle A B C$ has coordinates $A(1,1), B(4,1)$, and $C(4,5)$. Graph and label $\triangle A " B^{\prime \prime} C^{\prime}$, the image of $\triangle A B C$ after the translation five units to the right and two units up followed by the reflection over the line $y=0$.

G.SRT.A.2: COMPOSITIONS OF

 TRANSFORMATIONS537 Triangle $P Q R$ is shown on the set of axes below.

Which quadrant will contain point $R^{\prime \prime}$, the image of point R, after a 90° clockwise rotation centered at $(0,0)$ followed by a reflection over the x-axis?

1) I
2) II
3) III
4) IV

538 Which sequence of transformations will map $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}$?

1) reflection and translation
2) rotation and reflection
3) translation and dilation
4) dilation and rotation

539 Given: $\triangle A E C, \triangle D E F$, and $\overline{F E} \perp \overline{C E}$

What is a correct sequence of similarity transformations that shows $\triangle A E C \sim \triangle D E F$?

1) a rotation of 180 degrees about point E followed by a horizontal translation
2) a counterclockwise rotation of 90 degrees about point E followed by a horizontal translation
3) a rotation of 180 degrees about point E followed by a dilation with a scale factor of 2 centered at point E
4) a counterclockwise rotation of 90 degrees about point E followed by a dilation with a scale factor of 2 centered at point E

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

540 In the diagram below, $\triangle D E F$ is the image of $\triangle A B C$ after a clockwise rotation of 180° and a dilation where $A B=3, B C=5.5, A C=4.5$, $D E=6, F D=9$, and $E F=11$.

Which relationship must always be true?

1) $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle D}=\frac{1}{2}$
2) $\frac{\mathrm{m} \angle C}{\mathrm{~m} \angle F}=\frac{2}{1}$
3) $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle C}=\frac{\mathrm{m} \angle F}{\mathrm{~m} \angle D}$
4) $\frac{\mathrm{m} \angle B}{\mathrm{~m} \angle E}=\frac{\mathrm{m} \angle C}{\mathrm{~m} \angle F}$

541 In the diagram below, $\triangle A D E$ is the image of $\triangle A B C$ after a reflection over the line $A C$ followed by a dilation of scale factor $\frac{A E}{A C}$ centered at point A.

Which statement must be true?

1) $\mathrm{m} \angle B A C \cong \mathrm{~m} \angle A E D$
2) $\mathrm{m} \angle A B C \cong \mathrm{~m} \angle A D E$
3) $\mathrm{m} \angle D A E \cong \frac{1}{2} \mathrm{~m} \angle B A C$
4) $\mathrm{m} \angle A C B \cong \frac{1}{2} \mathrm{~m} \angle D A B$

542 In regular hexagon $A B C D E F$ shown below, $\overline{A D}$, $\overline{B E}$, and $\overline{C F}$ all intersect at G.

When $\triangle A B G$ is reflected over $\overline{B G}$ and then rotated 180° about point $G, \triangle A B G$ is mapped onto

1) $\triangle F E G$
2) $\triangle A F G$
3) $\triangle C B G$
4) $\triangle D E G$

543 Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a dilation followed by a translation. Which statement(s) would always be true with respect to this sequence of transformations?
I. $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$
II. $\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime}$
III. $\overline{A B} \| \overline{A^{\prime} B^{\prime}}$
IV. $A A^{\prime}=B B^{\prime}$

1) II, only
2) I and II
3) II and III
4) II, III, and IV

544 In the diagram below, triangles $X Y Z$ and $U V Z$ are drawn such that $\angle X \cong \angle U$ and $\angle X Z Y \cong \angle U Z V$.

Describe a sequence of similarity transformations that shows $\triangle X Y Z$ is similar to $\triangle U V Z$.

G.CO.B.6: PROPERTIES OF

 TRANSFORMATIONS545 In the diagram below, $\triangle A B C$ with sides 13,15 , and 16 , is mapped onto $\triangle D E F$ after a clockwise rotation of 90° about point P.

If $D E=2 x-1$, what is the value of x ?

1) 7
2) 7.5
3) 8
4) 8.5

546 In the diagram below, $\triangle C A R$ is mapped onto $\triangle B U S$ after a sequence of rigid motions.

If $A R=3 x+4, R C=5 x-10, C A=2 x+6$, and $S B=4 x-4$, what is the length of $\overline{S B}$?

1) 6
2) 16
3) 20
4) 28

547 In the diagram below, $\triangle A B C$ is reflected over line ℓ to create $\triangle D E F$.

If $\mathrm{m} \angle A=40^{\circ}$ and $\mathrm{m} \angle B=95^{\circ}$, what is $\mathrm{m} \angle F$?

1) 40°
2) 45°
3) 85°
4) 95°

548 Rhombus $A B C D$ can be mapped onto rhombus KLMN by a rotation about point P, as shown below.

What is the measure of $\angle K N M$ if the measure of $\angle C A D=35$?

1) 35°
2) 55°
3) 70°
4) 110°

549 In the diagram below, a sequence of rigid motions maps $A B C D$ onto JKLM.

If $\mathrm{m} \angle A=82^{\circ}, \mathrm{m} \angle B=104^{\circ}$, and $\mathrm{m} \angle L=121^{\circ}$, the measure of $\angle M$ is

1) 53°
2) 82°
3) 104°
4) 121°

550 The image of $\triangle A B C$ after a rotation of 90° clockwise about the origin is $\triangle D E F$, as shown below.

Which statement is true?

1) $\overline{B C} \cong \overline{D E}$
2) $\overline{A B} \cong \overline{D F}$
3) $\angle C \cong \angle E$
4) $\angle A \cong \angle D$

551 After a counterclockwise rotation about point X, scalene triangle $A B C$ maps onto $\triangle R S T$, as shown in the diagram below.

Which statement must be true?

1) $\angle A \cong \angle R$
2) $\angle A \cong \angle S$
3) $\overline{C B} \cong \overline{T R}$
4) $\overline{C A} \cong \overline{T S}$

552 In the diagram below, a line reflection followed by a rotation maps $\triangle A B C$ onto $\triangle D E F$.

Which statement is always true?

1) $\overline{B C} \cong \overline{E F}$
2) $\overline{A C} \cong \overline{D E}$
3) $\angle A \cong \angle F$
4) $\angle B \cong \angle D$

553 Quadrilateral $A B C D$ is graphed on the set of axes below.

When $A B C D$ is rotated 90° in a counterclockwise direction about the origin, its image is quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. Is distance preserved under this rotation, and which coordinates are correct for the given vertex?

1) no and $C^{\prime}(1,2)$
2) no and $D^{\prime}(2,4)$
3) yes and $A^{\prime}(6,2)$
4) yes and $B^{\prime}(-3,4)$

554 Trapezoid $A B C D$ is drawn such that $\overline{A B} \| \overline{D C}$.
Trapezoid $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is the image of trapezoid $A B C D$ after a rotation of 110° counterclockwise about point P.

Which statement is always true?

1) $\angle A \cong \angle D^{\prime}$
2) $\overline{A C} \cong \overline{B^{\prime} D^{\prime}}$
3) $\overline{A^{\prime} B^{\prime}} \| \overline{D^{\prime} C^{\prime}}$
4) $\overline{B^{\prime} A^{\prime}} \cong \overline{C^{\prime} D^{\prime}}$

555 If $\triangle A B C$ is mapped onto $\triangle D E F$ after a line reflection and $\triangle D E F$ is mapped onto $\triangle X Y Z$ after a translation, the relationship between $\triangle A B C$ and
$\triangle X Y Z$ is that they are always

1) congruent and similar
2) congruent but not similar
3) similar but not congruent
4) neither similar nor congruent

556 Quadrilateral MATH is congruent to quadrilateral $W X Y Z$. Which statement is always true?

1) $M A=X Y$
2) $\mathrm{m} \angle H=\mathrm{m} \angle W$
3) Quadrilateral $W X Y Z$ can be mapped onto quadrilateral MATH using a sequence of rigid motions.
4) Quadrilateral MATH and quadrilateral $W X Y Z$ are the same shape, but not necessarily the same size.

557 Triangle MNP is the image of triangle JKL after a 120° counterclockwise rotation about point Q. If the measure of angle L is 47° and the measure of angle N is 57°, determine the measure of angle M. Explain how you arrived at your answer.

558 Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of triangle $A B C$ after a translation of 2 units to the right and 3 units up. Is triangle $A B C$ congruent to triangle $A^{\prime} B^{\prime} C^{\prime}$? Explain why.

559 In the diagram below, parallelogram EFGH is mapped onto parallelogram IJKH after a reflection over line ℓ.

Use the properties of rigid motions to explain why parallelogram $E F G H$ is congruent to parallelogram IJKH.

G.CO.A.2: IDENTIFYING
 TRANSFORMATIONS

560 In the diagram below, which single transformation was used to map triangle A onto triangle B ?

1) line reflection
2) rotation
3) dilation
4) translation

561 In the diagram below, line m is parallel to line n. Figure 2 is the image of Figure 1 after a reflection over line m. Figure 3 is the image of Figure 2 after a reflection over line n.

Which single transformation would carry Figure 1 onto Figure 3?

1) a dilation
2) a rotation
3) a reflection
4) a translation

562 Which transformation would not always produce an image that would be congruent to the original figure?

1) translation
2) dilation
3) rotation
4) reflection

563 On the set of axes below, rectangle $A B C D$ can be proven congruent to rectangle KLMN using which transformation?

1) rotation
2) translation
3) reflection over the x-axis
4) reflection over the y-axis

564 Which transformation of $\overline{O A}$ would result in an image parallel to $\overline{O A}$?

1) a translation of two units down
2) a reflection over the x-axis
3) a reflection over the y-axis
4) a clockwise rotation of 90° about the origin

565 The graph below shows two congruent triangles, $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$.

Which rigid motion would map $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}$?

1) a rotation of 90 degrees counterclockwise about the origin
2) a translation of three units to the left and three units up
3) a rotation of 180 degrees about the origin
4) a reflection over the line $y=x$

566 In the diagram below, $\triangle A B C \cong \triangle D E C$.

Which transformation will map $\triangle A B C$ onto $\triangle D E C$?

1) a rotation
2) a line reflection
3) a translation followed by a dilation
4) a line reflection followed by a second line reflection

567 The vertices of $\triangle J K L$ have coordinates $J(5,1)$, $K(-2,-3)$, and $L(-4,1)$. Under which transformation is the image $\triangle J^{\prime} K^{\prime} L^{\prime}$ not congruent to $\triangle J K L$?

1) a translation of two units to the right and two units down
2) a counterclockwise rotation of 180 degrees around the origin
3) a reflection over the x-axis
4) a dilation with a scale factor of 2 and centered at the origin

568 If $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$, under which transformation will the triangles not be congruent?

1) reflection over the x-axis
2) translation to the left 5 and down 4
3) dilation centered at the origin with scale factor 2
4) rotation of 270° counterclockwise about the origin

569 Under which transformation would $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$, not be congruent to $\triangle A B C$?

1) reflection over the y-axis
2) rotation of 90° clockwise about the origin
3) translation of 3 units right and 2 units down
4) dilation with a scale factor of 2 centered at the origin

570 The image of $\triangle D E F$ is $\triangle D^{\prime} E^{\prime} F^{\prime}$. Under which transformation will he triangles not be congruent?

1) a reflection through the origin
2) a reflection over the line $y=x$
3) a dilation with a scale factor of 1 centered at $(2,3)$
4) a dilation with a scale factor of $\frac{3}{2}$ centered at the origin

571 On the set of axes below, $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$.

Triangle $A B C$ maps onto $\triangle A^{\prime} B^{\prime} C^{\prime}$ after a

1) reflection over the line $y=-x$
2) reflection over the line $y=-x+2$
3) rotation of 180° centered at $(1,1)$
4) rotation of 180° centered at the origin

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

572 On the set of axes below, congruent triangles $A B C$ and $D E F$ are graphed.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle D E F$.

573 Triangle $A B C$ has vertices at $A(-5,2), B(-4,7)$, and $C(-2,7)$, and triangle $D E F$ has vertices at $D(3,2)$, $E(2,7)$, and $F(0,7)$. Graph and label $\triangle A B C$ and $\triangle D E F$ on the set of axes below. Determine and state the single transformation where $\triangle D E F$ is the image of $\triangle A B C$. Use your transformation to explain why $\triangle A B C \cong \triangle D E F$.

G.CO.A.2: ANALYTICAL REPRESENTATIONS OF TRANSFORMATIONS

574 Which transformation would result in the perimeter of a triangle being different from the perimeter of its image?

1) $(x, y) \rightarrow(y, x)$
2) $(x, y) \rightarrow(x,-y)$
3) $(x, y) \rightarrow(4 x, 4 y)$
4) $(x, y) \rightarrow(x+2, y-5)$

575 The vertices of $\triangle P Q R$ have coordinates $P(2,3)$, $Q(3,8)$, and $R(7,3)$. Under which transformation of $\triangle P Q R$ are distance and angle measure preserved?

1) $(x, y) \rightarrow(2 x, 3 y)$
2) $(x, y) \rightarrow(x+2,3 y)$
3) $(x, y) \rightarrow(2 x, y+3)$
4) $(x, y) \rightarrow(x+2, y+3)$

576 Which transformation does not always preserve distance?

1) $(x, y) \rightarrow(x+2, y)$
2) $(x, y) \rightarrow(-y,-x)$
3) $(x, y) \rightarrow(2 x, y-1)$
4) $(x, y) \rightarrow(3-x, 2-y)$

G.SRT.B.5: SIMILARITY

577 Triangle JGR is similar to triangle MST. Which statement is not always true?

1) $\angle J \cong \angle M$
2) $\angle G \cong \angle T$
3) $\angle R \cong \angle T$
4) $\angle G \cong \angle S$

578 In $\triangle S C U$ shown below, points T and O are on $\overline{S U}$ and $\overline{C U}$, respectively. Segment $O T$ is drawn so that $\angle C \cong \angle O T U$.

If $T U=4, O U=5$, and $O C=7$, what is the length of $\overline{S T}$?

1) 5.6
2) 8.75
3) 11
4) 15

579 In triangle $C H R, O$ is on $\overline{H R}$, and D is on $\overline{C R}$ so that $\angle H \cong \angle R D O$.

If $\underline{R D}=4, R O=6$, and $O H=4$, what is the length of $\overline{C D}$?

1) $2 \frac{2}{3}$
2) $6 \frac{2}{3}$
3) 11
4) 15

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

580 In the diagram below, $\overline{A D}$ intersects $\overline{B E}$ at C, and $\overline{A B} \| \overline{D E}$.

If $C D=6.6 \mathrm{~cm}, D E=3.4 \mathrm{~cm}, C E=4.2 \mathrm{~cm}$, and $B C=5.25 \mathrm{~cm}$, what is the length of $\overline{A C}$, to the nearest hundredth of a centimeter?

1) 2.70
2) 3.34
3) 5.28
4) 8.25

581 In the diagram below, $\overline{A F}$, and $\overline{D B}$ intersect at C, and $\overline{A D}$ and $\overline{F B E}$ are drawn such that $\mathrm{m} \angle D=65^{\circ}$, $\mathrm{m} \angle C B E=115^{\circ}, D C=7.2, A C=9.6$, and $F C=21.6$.

What is the length of $\overline{C B}$?

1) 3.2
2) 4.8
3) 16.2
4) 19.2

582 In $\triangle A B C$ shown below, $\angle A C B$ is a right angle, E is a point on $\overline{A C}$, and $\overline{E D}$ is drawn perpendicular to hypotenuse $\overline{A B}$.

If $\underline{A B}=9, B C=6$, and $D E=4$, what is the length of $\overline{A E}$?

1) 5
2) 6
3) 7
4) 8

583 In the diagram below, $\overline{E F} \| \overline{H G}, E F=5, H G=12$, $F I=1.4 x+3$, and $H I=6.1 x-6.5$.

What is the length of $\overline{H I}$?

1) 1
2) 5
3) 10
4) 24

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

584 In the diagram below, $\triangle A B C \sim \triangle D E F$.

If $A B=6$ and $A C=8$, which statement will justify similarity by SAS?

1) $D E=9, D F=12$, and $\angle A \cong \angle D$
2) $D E=8, D F=10$, and $\angle A \cong \angle D$
3) $D E=36, D F=64$, and $\angle C \cong \angle F$
4) $D E=15, D F=20$, and $\angle C \cong \angle F$

585 The ratio of similarity of $\triangle B O Y$ to $\triangle G R L$ is 1:2. If $B O=x+3$ and $G R=3 x-1$, then the length of $\overline{G R}$ is

1) 5
2) 7
3) 10
4) 20

586 Using the information given below, which set of triangles can not be proven similar?
1)

2)

3)

587 Given right triangle $A B C$ with a right angle at C, $\mathrm{m} \angle B=61^{\circ}$. Given right triangle $R S T$ with a right angle at $T, \mathrm{~m} \angle R=29^{\circ}$.

Which proportion in relation to $\triangle A B C$ and $\triangle R S T$ is not correct?

1) $\frac{A B}{R S}=\frac{R T}{A C}$
2) $\frac{B C}{S T}=\frac{A B}{R S}$
3) $\frac{B C}{S T}=\frac{A C}{R T}$
4) $\frac{A B}{A C}=\frac{R S}{R T}$

588 In the diagram below of isosceles triangle $A H E$ with the vertex angle at $H, \overline{C B} \perp \overline{A E}$ and $\overline{F D} \perp \overline{A E}$.

Which statement is always true?

1) $\frac{A H}{A C}=\frac{E H}{E F}$
2) $\frac{A C}{E F}=\frac{A B}{E D}$
3) $\frac{A B}{E D}=\frac{C B}{F E}$
4) $\frac{A D}{A B}=\frac{B E}{D E}$

589 As shown in the diagram below, $\overline{A B}$ and $\overline{C D}$ intersect at E, and $\overline{A C} \| \overline{B D}$.

Given $\triangle A E C \sim \triangle B E D$, which equation is true?

1) $\frac{C E}{D E}=\frac{E B}{E A}$
2) $\frac{A E}{B E}=\frac{A C}{B D}$
3) $\frac{E C}{A E}=\frac{B E}{E D}$
4) $\frac{E D}{E C}=\frac{A C}{B D}$

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

590 In the diagram below, $\overline{X S}$ and $\overline{Y R}$ intersect at Z. Segments $X Y$ and $R S$ are drawn perpendicular to $\overline{Y R}$ to form triangles $X Y Z$ and $S R Z$.

Which statement is always true?

1) $(X Y)(S R)=(X Z)(R Z)$
2) $\triangle X Y Z \cong \triangle S R Z$
3) $\overline{X S} \cong \overline{Y R}$
4) $\frac{X Y}{S R}=\frac{Y Z}{R Z}$

591 Triangles $A B C$ and $D E F$ are drawn below.

If $A B=9, B C=15, D E=6, E F=10$, and $\angle B \cong \angle E$, which statement is true?

1) $\angle C A B \cong \angle D E F$
2) $\frac{A B}{C B}=\frac{F E}{D E}$
3) $\triangle A B C \sim \triangle D E F$
4) $\frac{A B}{D E}=\frac{F E}{C B}$

592 In the diagram below of $\triangle A B C, X$ and Y are points on $\overline{A B}$ and $\overline{A C}$, respectively, such that $\mathrm{m} \angle A Y X=\mathrm{m} \angle B$.

Which statement is not always true?

1) $\frac{A X}{A C}=\frac{X Y}{C B}$
2) $\frac{A Y}{A B}=\frac{A X}{A C}$
3) $(A Y)(C B)=(X Y)(A B)$
4) $(A Y)(A B)=(A C)(A X)$

593 In the diagram below, $A C=7.2$ and $C E=2.4$.

Which statement is not sufficient to prove $\triangle A B C \sim \triangle E D C$?

1) $\overline{A B} \| \overline{E D}$
2) $D E=2.7$ and $A B=8.1$
3) $C D=3.6$ and $B C=10.8$
4) $D E=3.0, A B=9.0, C D=2.9$, and $B C=8.7$

594 To find the distance across a pond from point B to point C, a surveyor drew the diagram below. The measurements he made are indicated on his diagram.

Use the surveyor's information to determine and state the distance from point B to point C, to the nearest yard.

In the model below, a support wire for a telephone pole is attached to the pole and anchored to a stake in the ground 15 feet from the base of the telephone pole. Jamal places a 6 -foot wooden pole under the support wire parallel to the telephone pole, such that one end of the pole is on the ground and the top of the pole is touching the support wire. He measures the distance between the bottom of the pole and the stake in the ground.

Jamal says he can approximate how high the support wire attaches to the telephone pole by using similar triangles. Explain why the triangles are similar.

596 Triangles RST and XYZ are drawn below. If $R S=6, S T=14, X Y=9, Y Z=21$, and $\angle S \cong \angle Y$, is $\triangle R S T$ similar to $\triangle X Y Z$? Justify your answer.

597 In $\triangle A D C$ below, $\overline{E B}$ is drawn such that $A B=4.1$, $A E=5.6, B C=8.22$, and $E D=3.42$.

Is $\triangle A B E$ similar to $\triangle A D C$? Explain why.

598 A flagpole casts a shadow 16.60 meters long. Tim stands at a distance of 12.45 meters from the base of the flagpole, such that the end of Tim's shadow meets the end of the flagpole's shadow. If Tim is 1.65 meters tall, determine and state the height of the flagpole to the nearest tenth of a meter.

599 The aspect ratio (the ratio of screen width to height) of a rectangular flat-screen television is 16:9. The length of the diagonal of the screen is the television's screen size. Determine and state, to the nearest inch, the screen size (diagonal) of this flat-screen television with a screen height of 20.6 inches.

600 In the diagram below, $\triangle A B C \sim \triangle D E C$.

If $A C=12, D C=7, D E=5$, and the perimeter of $\triangle A B C$ is 30 , what is the perimeter of $\triangle D E C$?

1) 12.5
2) 14.0
3) 14.8
4) 17.5

601 In right triangles $A B C$ and $R S T$, hypotenuse $A B=4$ and hypotenuse $R S=16$. If $\triangle A B C \sim \triangle R S T$, then $1: 16$ is the ratio of the corresponding

1) legs
2) areas
3) volumes
4) perimeters

602 In $\triangle R S T$ shown below, altitude $\overline{S U}$ is drawn to $\overline{R T}$ at U.

If $S U=h, U T=12$, and $R T=42$, which value of h will make $\triangle R S T$ a right triangle with $\angle R S T$ as a right angle?

1) $6 \sqrt{3}$
2) $6 \sqrt{10}$
3) $6 \sqrt{14}$
4) $6 \sqrt{35}$

603 In the diagram of right triangle $A B C, \overline{C D}$ intersects hypotenuse $\overline{A B}$ at D.

If $A D=4$ and $D B=6$, which length of $\overline{A C}$ makes $\overline{C D} \perp \overline{A B}$?

1) $2 \sqrt{6}$
2) $2 \sqrt{10}$
3) $2 \sqrt{15}$
4) $4 \sqrt{2}$

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

604 In the diagram below of $\triangle A B C, \angle A B C$ is a right angle, $A C=12, A D=8$, and altitude $\overline{B D}$ is drawn.

What is the length of $\overline{B C}$?

1) $4 \sqrt{2}$
2) $4 \sqrt{3}$
3) $4 \sqrt{5}$
4) $4 \sqrt{6}$

605 In the diagram below of right triangle $A B C$, altitude $\overline{B D}$ is drawn to hypotenuse $\overline{A C}$.

If $B D=4, A D=x-6$, and $C D=x$, what is the length of $\overline{C D}$?

1) 5
2) 2
3) 8
4) 11

606 In the diagram below of right triangle $K M I$, altitude $\overline{I G}$ is drawn to hypotenuse $\overline{K M}$.

If $K G=9$ and $I G=12$, the length of $\overline{I M}$ is

1) 15
2) 16
3) 20
4) 25

607 In right triangle $R S T$ below, altitude $\overline{S V}$ is drawn to hypotenuse $\overline{R T}$.

 $\overline{S T}$, to the nearest tenth?

1) 6.5
2) 7.7
3) 11.0
4) 12.1

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

608 In the diagram below of right triangle $E F G$, altitude $\overline{F H}$ intersects hypotenuse $\overline{E G}$ at H.

If $F H=9$ and $E F=15$, what is $E G$?

1) 6.75
2) 12
3) 18.75
4) 25

609 In the diagram below of right triangle $M D L$, altitude $\overline{D G}$ is drawn to hypotenuse $\overline{M L}$.

If $M G=3$ and $G L=24$, what is the length of $\overline{D G}$?

1) 8
2) 9
3) $\sqrt{63}$
4) $\sqrt{72}$

610 In the diagram below of right triangle MET, altitude $\overline{E S}$ is drawn to hypotenuse $\overline{M T}$.

If $M E=6$ and $S M=4$, what is $M T$?

1) 9
2) 8
3) 5
4) 4

611 Line segment $C D$ is the altitude drawn to hypotenuse $\overline{E F}$ in right triangle $E C F$. If $E C=10$ and $E F=24$, then, to the nearest tenth, $E D$ is

1) 4.2
2) 5.4
3) 15.5
4) 21.8

612 In right triangle $R S T$, altitude $\overline{T V}$ is drawn to hypotenuse $\overline{R S}$. If $R V=12$ and $R T=18$, what is the length of $\overline{S V}$?

1) $6 \sqrt{5}$
2) 15
3) $6 \sqrt{6}$
4) 27

613 In the diagram below, $\overline{C D}$ is the altitude drawn to the hypotenuse $\overline{A B}$ of right triangle $A B C$.

Which lengths would not produce an altitude that measures $6 \sqrt{2}$?

1) $A D=2$ and $D B=36$
2) $A D=3$ and $A B=24$
3) $A D=6$ and $D B=12$
4) $A D=8$ and $A B=17$

614 Kirstie is testing values that would make triangle $K L M$ a right triangle when $\overline{L N}$ is an altitude, and $K M=16$, as shown below.

Which lengths would make triangle KLM a right triangle?

1) $L M=13$ and $K N=6$
2) $L M=12$ and $N M=9$
3) $K L=11$ and $K N=7$
4) $L N=8$ and $N M=10$

615 In the diagram of $\triangle C A T$ below, $\mathrm{m} \angle A=90^{\circ}$ and altitude $\overline{A E}$ is drawn from vertex A.

Which statement is always true?

1) $\frac{C E}{A E}=\frac{A E}{E T}$
2) $\frac{A E}{C E}=\frac{A E}{E T}$
3) $\frac{A C}{C E}=\frac{A T}{E T}$
4) $\frac{C E}{A C}=\frac{A C}{E T}$

616 In the accompanying diagram of right triangle $A B C$, altitude $\overline{B D}$ is drawn to hypotenuse $\overline{A C}$.

Which statement must always be true?

1) $\frac{A D}{A B}=\frac{B C}{A C}$
2) $\frac{A D}{A B}=\frac{A B}{A C}$
3) $\frac{B D}{B C}=\frac{A B}{A D}$
4) $\frac{A B}{B C}=\frac{B D}{A C}$

617 In the diagram below of right triangle $A B C$, altitude $\overline{C D}$ intersects hypotenuse $\overline{A B}$ at D.

Which equation is always true?

1) $\frac{A D}{A C}=\frac{C D}{B C}$
2) $\frac{A D}{C D}=\frac{B D}{C D}$
3) $\frac{A C}{C D}=\frac{B C}{C D}$
4) $\frac{A D}{A C}=\frac{A C}{B D}$

618 In right triangle $A B C$ shown below, altitude $\overline{C D}$ is drawn to hypotenuse $\overline{A B}$. Explain why $\triangle A B C \sim \triangle A C D$.

619 In right triangle $P R T, \mathrm{~m} \angle P=90^{\circ}$, altitude $\overline{P Q}$ is drawn to hypotenuse $\overline{R T}, R T=17$, and $P R=15$.

Determine and state, to the nearest tenth, the length of $\overline{R Q}$.

620 In the diagram below of right triangle $B A L$, altitude $\overline{A D}$ is drawn to hypotenuse $\overline{B D L}$. The length of $\overline{A D}$ is 6 .

If the length of $\overline{D L}$ is four times the length of $\overline{B D}$, determine and state the length of $\overline{B D}$.

621 In the diagram below of right triangle $A C B$, altitude $\overline{C D}$ is drawn to hypotenuse $\overline{A B}, A D=2$ and $A C=6$.

Determine and state the length of $\overline{A B}$.

Geometry Regents Exam Questions by State Standard: Topic

622 Right triangle $S T R$ is shown below, with $\mathrm{m} \angle T=90^{\circ}$. Altitude $\overline{T Q}$ is drawn to $\overline{S Q R}$, and $T Q=8$.

If the ratio $S Q: Q R$ is $1: 4$, determine and state the length of $\overline{S R}$.

623 In the diagram below, the line of sight from the park ranger station, P, to the lifeguard chair, L, on the beach of a lake is perpendicular to the path joining the campground, C, and the first aid station, F. The campground is 0.25 mile from the lifeguard chair. The straight paths from both the campground and first aid station to the park ranger station are perpendicular.

If the path from the park ranger station to the campground is 0.55 mile, determine and state, to the nearest hundredth of a mile, the distance between the park ranger station and the lifeguard chair. Gerald believes the distance from the first aid station to the campground is at least 1.5 miles. Is Gerald correct? Justify your answer.

TRIGONOMETRY
G.SRT.C.6: TRIGONOMETRIC RATIOS

624 In right triangle $L M N$ shown below, $\mathrm{m} \angle M=90^{\circ}$, $M N=12$, and $L M=16$.

The ratio of $\cos N$ is

1) $\frac{12}{20}$
2) $\frac{16}{20}$
3) $\frac{12}{16}$
4) $\frac{16}{12}$

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

625 In the diagram below of right triangle $A B C$, $A C=8$, and $A B=17$.

Which equation would determine the value of angle A?

1) $\sin A=\frac{8}{17}$
2) $\tan A=\frac{8}{15}$
3) $\quad \cos A=\frac{15}{17}$
4) $\tan A=\frac{15}{8}$

626 In the diagram of right triangle $A D E$ below, $\overline{B C} \| \overline{D E}$.

Which ratio is always equivalent to the sine of $\angle A$?

1) $\frac{A D}{D E}$
2) $\frac{A E}{A D}$
3) $\frac{B C}{A B}$
4) $\frac{A B}{A C}$

627 In the diagram below, $\triangle C D E$ is the image of $\triangle C A B$ after a dilation of $\frac{D E}{A B}$ centered at C.

Which statement is always true?

1) $\sin A=\frac{C E}{C D}$
2) $\cos A=\frac{C D}{C E}$
3) $\sin A=\frac{D E}{C D}$
4) $\cos A=\frac{D E}{C E}$

628 In the diagram below, $\triangle E R M \sim \triangle J T M$.

Which statement is always true?

1) $\cos J=\frac{R M}{R E}$
2) $\cos R=\frac{J M}{J T}$
3) $\tan T=\frac{R M}{E M}$
4) $\tan E=\frac{T M}{J M}$

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

629 In the diagram below of right triangle $A B C$, altitude $\overline{B D}$ is drawn.

Which ratio is always equivalent to $\cos A$?

1) $\frac{A B}{B C}$
2) $\frac{B D}{B C}$
3) $\frac{B D}{A B}$
4) $\frac{B C}{A C}$

G.SRT.C.7: COFUNCTIONS

630 In the diagram below, $\triangle D O G \sim \triangle C A T$, where $\angle G$ and $\angle T$ are right angles.

Which expression is always equivalent to $\sin D$?

1) $\cos A$
2) $\sin A$
3) $\tan A$
4) $\cos C$

631 In right triangle $A B C, \mathrm{~m} \angle C=90^{\circ}$ and $A C \neq B C$. Which trigonometric ratio is equivalent to $\sin B$?

1) $\cos A$
2) $\cos B$
3) $\tan A$
4) $\tan B$

632 Right triangle $A C T$ has $\mathrm{m} \angle A=90^{\circ}$. Which expression is always equivalent to $\cos T$?

1) $\cos C$
2) $\sin C$
3) $\tan T$
4) $\sin T$

633 In $\triangle A B C$ below, angle C is a right angle.

Which statement must be true?

1) $\sin A=\cos B$
2) $\sin A=\tan B$
3) $\sin B=\tan A$
4) $\sin B=\cos B$

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

634 Right triangle $A B C$ is shown below.

Which trigonometric equation is always true for triangle $A B C$?

1) $\sin A=\cos C$
2) $\cos A=\sin A$
3) $\cos A=\cos C$
4) $\tan A=\tan C$

635 In scalene triangle $A B C$ shown in the diagram below, $\mathrm{m} \angle C=90^{\circ}$.

Which equation is always true?

1) $\sin A=\sin B$
2) $\cos A=\cos B$
3) $\cos A=\sin C$
4) $\sin A=\cos B$

636 In $\triangle A B C$, the complement of $\angle B$ is $\angle A$. Which statement is always true?

1) $\tan \angle A=\tan \angle B$
2) $\sin \angle A=\sin \angle B$
3) $\cos \angle A=\tan \angle B$
4) $\sin \angle A=\cos \angle B$

637 Right triangle $T M R$ is a scalene triangle with the right angle at M. Which equation is true?

1) $\sin M=\cos T$
2) $\sin R=\cos R$
3) $\sin T=\cos R$
4) $\sin T=\cos M$

638 If scalene triangle $X Y Z$ is similar to triangle $Q R S$ and $\mathrm{m} \angle X=90^{\circ}$, which equation is always true?

1) $\sin Y=\sin S$
2) $\cos R=\cos Z$
3) $\cos Y=\sin Q$
4) $\sin R=\cos Z$

639 Which expression is always equivalent to $\sin x$ when $0^{\circ}<x<90^{\circ}$?

1) $\cos \left(90^{\circ}-x\right)$
2) $\cos \left(45^{\circ}-x\right)$
3) $\cos (2 x)$
4) $\cos x$

640 The expression $\sin 57^{\circ}$ is equal to

1) $\tan 33^{\circ}$
2) $\cos 33^{\circ}$
3) $\tan 57^{\circ}$
4) $\cos 57^{\circ}$

641 Which expression is equal to $\sin 30^{\circ}$?

1) $\tan 30^{\circ}$
2) $\sin 60^{\circ}$
3) $\cos 60^{\circ}$
4) $\cos 30^{\circ}$

642 In $\triangle A B C$, where $\angle C$ is a right angle,
$\cos A=\frac{\sqrt{21}}{5}$. What is $\sin B ?$

1) $\frac{\sqrt{21}}{5}$
2) $\frac{\sqrt{21}}{2}$
3) $\frac{2}{5}$
4) $\frac{5}{\sqrt{21}}$

643 In right triangle $A B C, \mathrm{~m} \angle C=90^{\circ}$. If $\cos B=\frac{5}{13}$, which function also equals $\frac{5}{13}$?

1) $\tan A$
2) $\tan B$
3) $\sin A$
4) $\sin B$

644 In a right triangle, $\sin (40-x)^{\circ}=\cos (3 x)^{\circ}$. What is the value of x ?

1) 10
2) 15
3) 20
4) 25

645 In a right triangle, the acute angles have the relationship $\sin (2 x+4)=\cos (46)$. What is the value of x ?

1) 20
2) 21
3) 24
4) 25

646 If $\sin (2 x+7)^{\circ}=\cos (4 x-7)^{\circ}$, what is the value of x ?

1) 7
2) 15
3) 21
4) 30

647 For the acute angles in a right triangle, $\sin (4 x)^{\circ}=\cos (3 x+13)^{\circ}$. What is the number of degrees in the measure of the smaller angle?

1) 11°
2) 13°
3) 44°
4) 52°

648 When instructed to find the length of $\overline{H J}$ in right triangle $H J G$, Alex wrote the equation $\sin 28^{\circ}=\frac{H J}{20}$ while Marlene wrote $\cos 62^{\circ}=\frac{H J}{20}$. Are both students' equations correct? Explain why.

649 Explain why $\cos (x)=\sin (90-x)$ for x such that $0<x<90$.

650 Find the value of R that will make the equation $\sin 73^{\circ}=\cos R$ true when $0^{\circ}<R<90^{\circ}$. Explain your answer.

651 In right triangle $A B C$ with the right angle at C, $\sin A=2 x+0.1$ and $\cos B=4 x-0.7$. Determine and state the value of x. Explain your answer.

652 Given: Right triangle $A B C$ with right angle at C. If $\sin A$ increases, does $\cos B$ increase or decrease? Explain why.
G.SRT.C.8: USING TRIGONOMETRY TO FIND A SIDE

653 Given the right triangle in the diagram below, what is the value of x, to the nearest foot?

1) 11
2) 17
3) 18
4) 22

654 Yolanda is making a springboard to use for gymnastics. She has 8 -inch-tall springs and wants to form a 16.5° angle with the base, as modeled in the diagram below.

To the nearest tenth of an inch, what will be the length of the springboard, x ?

1) 2.3
2) 8.3
3) 27.0
4) 28.2

655 As shown in the diagram below, the angle of elevation from a point on the ground to the top of the tree is 34°.

If the point is 20 feet from the base of the tree, what is the height of the tree, to the nearest tenth of a foot?

1) 29.7
2) 16.6
3) 13.5
4) 11.2

656 A man was parasailing above a lake at an angle of elevation of 32° from a boat, as modeled in the diagram below.

If 129.5 meters of cable connected the boat to the parasail, approximately how many meters above the lake was the man?

1) 68.6
2) 80.9
3) 109.8
4) 244.4

657 The diagram below shows a tree growing vertically on a hillside. The angle formed by the tree trunk and the hillside is 100°. The distance from the base of the tree to the bottom of the hill is 140 feet.

What is the vertical drop, x, to the base of the hill, to the nearest foot?

1) 24
2) 25
3) 70
4) 138

658 A vertical mine shaft is modeled in the diagram below. At a point on the ground 50 feet from the top of the mine, a ventilation tunnel is dug at an angle of 47°.

What is the length of the tunnel, to the nearest foot?

1) 47
2) 54
3) 68
4) 73

659 A tipping platform is a ramp used to unload trucks, as shown in the diagram below.

The truck is on a 75 -foot-long ramp. The ramp is tipped at an angle of 30°. What is the height of the upper end of the ramp, x, to the nearest tenth of a foot?

1) 68.7
2) 65.0
3) 43.3
4) 37.5

660 A 20-foot support post leans against a wall, making a 70° angle with the ground. To the nearest tenth of a foot, how far up the wall will the support post reach?

1) 6.8
2) 6.9
3) 18.7
4) 18.8

661 A ladder 20 feet long leans against a building, forming an angle of 71° with the level ground. To the nearest foot, how high up the wall of the building does the ladder touch the building?

1) 15
2) 16
3) 18
4) 19

662 In right triangle $A B C, \mathrm{~m} \angle A=32^{\circ}, \mathrm{m} \angle B=90^{\circ}$, and $A C=6.2 \mathrm{~cm}$. What is the length of $\overline{B C}$, to the nearest tenth of a centimeter?

1) 3.3
2) 3.9
3) 5.3
4) 11.7

663 From a point on the ground one-half mile from the base of a historic monument, the angle of elevation to its top is 11.87°. To the nearest foot, what is the height of the monument?

1) 543
2) 555
3) 1086
4) 1110

664 In right triangle $A B C, \mathrm{~m} \angle A=90^{\circ}, \mathrm{m} \angle B=18^{\circ}$, and $A C=8$. To the nearest tenth, the length of $\overline{B C}$ is

1) 2.5
2) 8.4
3) 24.6
4) 25.9

665 Chelsea is sitting 8 feet from the foot of a tree.
From where she is sitting, the angle of elevation of her line of sight to the top of the tree is 36°. If her line of sight starts 1.5 feet above ground, how tall is the tree, to the nearest foot?

1) 8
2) 7
3) 6
4) 4

666 A 15-foot ladder leans against a wall and makes an angle of 65° with the ground. What is the horizontal distance from the wall to the base of the ladder, to the nearest tenth of a foot?

1) 6.3
2) 7.0
3) 12.9
4) 13.6

667 The diagram below shows two similar triangles.

If $\tan \theta=\frac{3}{7}$, what is the value of x, to the nearest tenth?

1) 1.2
2) 5.6
3) 7.6
4) 8.8

668 A carpenter leans an extension ladder against a house to reach the bottom of a window 30 feet above the ground. As shown in the diagram below, the ladder makes a 70° angle with the ground. To the nearest foot, determine and state the length of the ladder.

669 In the diagram below, a window of a house is 15 feet above the ground. A ladder is placed against the house with its base at an angle of 75° with the ground. Determine and state the length of the ladder to the nearest tenth of a foot.

670 The Leaning Tower of Pisa in Italy is known for its slant, which occurred after its construction began. The angle of the slant is 86.03° from the ground. The low side of the tower reaches a height of 183.27 feet from the ground.

Determine and state the slant height, x, of the low side of the tower, to the nearest hundredth of a foot.

671 A rock-climbing wall at a local park has a right triangular section that slants toward the climber, as shown in the picture below. The height of the wall is 5 meters and the slanted section begins 1.2 meters up the wall at an angle of 14 degrees.

Determine and state, to the nearest hundredth, the number of meters in the length of the section of the wall that is slanted (hypotenuse).

672 Diego needs to install a support beam to hold up his new birdhouse, as modeled below. The base of the birdhouse is $24 \frac{1}{2}$ inches long. The support beam will form an angle of 38° with the vertical post. Determine and state the approximate length of the support beam, x, to the nearest inch.

673 As shown in the diagram below, an island (I) is due north of a marina (M). A boat house (H) is 4.5 miles due west of the marina. From the boat house, the island is located at an angle of 54° from the marina.

Determine and state, to the nearest tenth of a mile, the distance from the boat house (H) to the island (I). Determine and state, to the nearest tenth of a mile, the distance from the island (I) to the marina (M).

674 A homeowner is building three steps leading to a deck, as modeled by the diagram below. All three step rises, $\overline{H A}, \overline{F G}$, and $\overline{D E}$, are congruent, and all three step runs, $\overline{H G}, \overline{F E}$, and $\overline{D C}$, are congruent. Each step rise is perpendicular to the step run it joins. The measure of $\angle C A B=36^{\circ}$ and $\angle C B A=90^{\circ}$.

If each step run is parallel to $\overline{A B}$ and has a length of 10 inches, determine and state the length of each step rise, to the nearest tenth of an inch. Determine and state the length of $\overline{A C}$, to the nearest inch.

675 As modeled in the diagram below, an access ramp starts on flat ground and ends at the beginning of the top step. Each step is 6 inches tall and 8 inches deep.

If the angle of elevation of the ramp is 4.76°, determine and state the length of the ramp, to the nearest tenth of a foot. Determine and state, to the nearest tenth of a foot, the horizontal distance, d, from the bottom of the stairs to the bottom of the ramp.

676 David has just finished building his treehouse and still needs to buy a ladder to be attached to the ledge of the treehouse and anchored at a point on the ground, as modeled below. David is standing 1.3 meters from the stilt supporting the treehouse. This is the point on the ground where he has decided to anchor the ladder. The angle of elevation from his eye level to the bottom of the treehouse is 56 degrees. David's eye level is 1.5 meters above the ground.

Determine and state the minimum length of a ladder, to the nearest tenth of a meter, that David will need to buy for his treehouse.

677 A telephone pole 11 meters tall needs to be stabilized with a support beam, as modeled below.

Two conditions for proper support are:

- The beam reaches the telephone pole at 70% of the telephone pole's height above the ground.
- The beam forms a 65° angle with the ground.

Determine and state, to the nearest tenth of a meter, the length of the support beam that meets these conditions for this telephone pole. Determine and state, to the nearest tenth of a meter, how far the support beam must be placed from the base of the pole to meet the conditions.

678 Trish is a surveyor who was asked to estimate the distance across a pond. She stands at point $C, 85$ meters from point D, and locates points A and B on either side of the pond such that A, D, and B are collinear.

Trish approximates the measure of angle $D C B$ to be 35° and the measure of angle $A C D$ to be 75°. Determine and state the distance across the pond, $\overline{A B}$, to the nearest meter.

679 As shown below, a canoe is approaching a lighthouse on the coastline of a lake. The front of the canoe is 1.5 feet above the water and an observer in the lighthouse is 112 feet above the water.

(Not drawn to scale)
At 5:00, the observer in the lighthouse measured the angle of depression to the front of the canoe to be 6°. Five minutes later, the observer measured and saw the angle of depression to the front of the canoe had increased by 49°. Determine and state, to the nearest foot per minute, the average speed at which the canoe traveled toward the lighthouse.

680 As shown in the diagram below, a ship is heading directly toward a lighthouse whose beacon is 125 feet above sea level. At the first sighting, point A, the angle of elevation from the ship to the light was 7°. A short time later, at point D, the angle of elevation was 16°.

To the nearest foot, determine and state how far the ship traveled from point A to point D.

681 Cathy wants to determine the height of the flagpole shown in the diagram below. She uses a survey instrument to measure the angle of elevation to the top of the flagpole, and determines it to be 34.9°. She walks 8 meters closer and determines the new measure of the angle of elevation to be 52.8°. At each measurement, the survey instrument is 1.7 meters above the ground.

Determine and state, to the nearest tenth of a meter, the height of the flagpole.

682 The map below shows the three tallest mountain peaks in New York State: Mount Marcy, Algonquin Peak, and Mount Haystack. Mount Haystack, the shortest peak, is 4960 feet tall. Surveyors have determined the horizontal distance between Mount Haystack and Mount Marcy is 6336 feet and the horizontal distance between Mount Marcy and Algonquin Peak is 20,493 feet.

The angle of depression from the peak of Mount Marcy to the peak of Mount Haystack is 3.47 degrees. The angle of elevation from the peak of Algonquin Peak to the peak of Mount Marcy is 0.64 degrees. What are the heights, to the nearest foot, of Mount Marcy and Algonquin Peak? Justify your answer.

683 The map of a campground is shown below.
Campsite C, first aid station F, and supply station S lie along a straight path. The path from the supply station to the tower, T, is perpendicular to the path from the supply station to the campsite. The length of path $\overline{F S}$ is 400 feet. The angle formed by path $\overline{T F}$ and path $\overline{F S}$ is 72°. The angle formed by path $T C$ and path $C S$ is 55°.

Determine and state, to the nearest foot, the distance from the campsite to the tower.

684 Nick wanted to determine the length of one blade of the windmill pictured below. He stood at a point on the ground 440 feet from the windmill's base. Using surveyor's tools, Nick measured the angle between the ground and the highest point reached by the top blade and found it was 38.8°. He also measured the angle between the ground and the lowest point of the top blade, and found it was 30°.

Determine and state a blade's length, x, to the nearest foot.

685 Cape Canaveral, Florida is where NASA launches rockets into space. As modeled in the diagram below, a person views the launch of a rocket from observation area $A, 3280$ feet away from launch pad B. After launch, the rocket was sighted at C with an angle of elevation of 15°. The rocket was later sighted at D with an angle of elevation of 31°.

Determine and state, to the nearest foot, the distance the rocket traveled between the two sightings, C and D.

686 As modeled in the diagram below, a building has a height of 50 meters. The angle of depression from the top of the building to the top of the tree, T, is 13.3°. The angle of depression from the top of the building to the bottom of the tree, B, is 22.2°.

Determine and state, to the nearest meter, the height of the tree.

687 Barry wants to find the height of a tree that is modeled in the diagram below, where $\angle C$ is a right angle. The angle of elevation from point A on the ground to the top of the tree, H, is 40°. The angle of elevation from point B on the ground to the top of the tree, H, is 80°. The distance between points A and B is 85 feet.

Barry claims that $\triangle A B H$ is isosceles. Explain why Barry is correct. Determine and state, to the nearest foot, the height of the tree.

688 A flagpole casts a shadow on the ground 91 feet long, with a 53° angle of elevation from the end of the shadow to the top of the flagpole. Determine and state, to the nearest tenth of a foot, the height of the flagpole.

689 A support wire reaches from the top of a pole to a clamp on the ground. The pole is perpendicular to the level ground and the clamp is 10 feet from the base of the pole. The support wire makes a 68° angle with the ground. Find the length of the support wire to the nearest foot.

690 Freda, who is training to use a radar system, detects an airplane flying at a constant speed and heading in a straight line to pass directly over her location. She sees the airplane at an angle of elevation of 15° and notes that it is maintaining a constant altitude of 6250 feet. One minute later, she sees the airplane at an angle of elevation of 52°. How far has the airplane traveled, to the nearest foot? Determine and state the speed of the airplane, to the nearest mile per hour.

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org
G.SRT.C.8: USING TRIGONOMETRY TO FIND AN ANGLE

691 In the diagram of right triangle $A B C$ shown below, $A B=14$ and $A C=9$.

What is the measure of $\angle A$, to the nearest degree?

1) 33
2) 40
3) 50
4) 57

692 In the diagram of $\triangle R S T$ below, $\mathrm{m} \angle T=90^{\circ}$, $R S=65$, and $S T=60$.

What is the measure of $\angle S$, to the nearest degree?

1) 23°
2) 43°
3) 47°
4) 67°

693 In the diagram of $\triangle A B C$ below, $\mathrm{m} \angle C=90^{\circ}$, $C B=13$, and $A B=16$.

What is the measure of $\angle A$, to the nearest degree?

1) 36°
2) 39°
3) 51°
4) 54°

694 In the diagram below of right triangle $S U N$, where $\angle N$ is a right angle, $S U=13.6$ and $S N=12.3$.

What is $\angle S$, to the nearest degree?

1) 25°
2) 42°
3) 48°
4) 65°

695 To build a handicapped-access ramp, the building code states that for every 1 inch of vertical rise in height, the ramp must extend out 12 inches horizontally, as shown in the diagram below.

What is the angle of inclination, x, of this ramp, to the nearest hundredth of a degree?

1) 4.76
2) 4.78
3) 85.22
4) 85.24

696 An airplane took off at a constant angle of elevation. After the plane traveled for 25 miles, it reached an altitude of 5 miles, as modeled below.

To the nearest tenth of a degree, what was the angle of elevation?

697 As shown in the diagram below, a symmetrical roof frame rises 4 feet above a house and has a width of 24 feet.

Determine and state, to the nearest degree, the angle of elevation of the roof frame.

698 The diagram below shows a ramp connecting the ground to a loading platform 4.5 feet above the ground. The ramp measures 11.75 feet from the ground to the top of the loading platform.

Determine and state, to the nearest degree, the angle of elevation formed by the ramp and the ground.

699 In right triangle $A B C$, hypotenuse $\overline{A B}$ has a length of 26 cm , and side $\overline{B C}$ has a length of 17.6 cm . What is the measure of angle B, to the nearest degree?

1) 48°
2) 47°
3) 43°
4) 34°

700 A man who is 5 feet 9 inches tall casts a shadow of 8 feet 6 inches. Assuming that the man is standing perpendicular to the ground, what is the angle of elevation from the end of the shadow to the top of the man's head, to the nearest tenth of a degree?

1) 34.1
2) 34.5
3) 42.6
4) 55.9

701 A 12-foot ladder leans against a building and reaches a window 10 feet above ground. What is the measure of the angle, to the nearest degree, that the ladder forms with the ground?

1) 34
2) 40
3) 50
4) 56

Zach placed the foot of an extension ladder 8 feet from the base of the house and extended the ladder 25 feet to reach the house. To the nearest degree, what is the measure of the angle the ladder makes with the ground?

1) 18
2) 19
3) 71
4) 72

703 In the diagram below of $\triangle H A R$ and $\triangle N T Y$, angles H and N are right angles, and $\triangle H A R \sim \triangle N T Y$.

If $A R=13$ and $H R=12$, what is the measure of angle Y, to the nearest degree?

1) 23°
2) 25°
3) 65°
4) 67°

704 Kayla was cutting right triangles from wood to use for an art project. Two of the right triangles she cut are shown below.

If $\triangle A B C \sim \triangle D E F$, with right angles B and E, $B C=15 \mathrm{~cm}$, and $A C=17 \mathrm{~cm}$, what is the measure of $\angle F$, to the nearest degree?

1) 28°
2) 41°
3) 62°
4) 88°

705 In the diagram below, $\triangle S B C \sim \triangle C M J$ and $\cos J=\frac{3}{5}$.

Determine and state $\mathrm{m} \angle S$, to the nearest degree.

706 A ladder leans against a building. The top of the ladder touches the building 10 feet above the ground. The foot of the ladder is 4 feet from the building. Find, to the nearest degree, the angle that the ladder makes with the level ground.

Bob places an 18-foot ladder 6 feet from the base of his house and leans it up against the side of his house. Find, to the nearest degree, the measure of the angle the bottom of the ladder makes with the ground.

708
As modeled below, a movie is projected onto a large outdoor screen. The bottom of the 60 -foot-tall screen is 12 feet off the ground. The projector sits on the ground at a horizontal distance of 75 feet from the screen.

Determine and state, to the nearest tenth of a degree, the measure of θ, the projection angle.

As modeled below, a projector mounted on a ceiling is 3.74 m from a wall, where a whiteboard is displayed. The vertical distance from the ceiling to the top of the whiteboard is 0.41 m , and the height of the whiteboard is 1.17 m .

Determine and state the projection angle, θ, to the nearest tenth of a degree.

LOGIC

G.CO.B.7: TRIANGLE CONGRUENCY

710 Which statement is sufficient evidence that $\triangle D E F$ is congruent to $\triangle A B C$?

1) $A B=D E$ and $B C=E F$
2) $\angle D \cong \angle A, \angle B \cong \angle E, \angle C \cong \angle F$
3) There is a sequence of rigid motions that maps $\overline{A B}$ onto $\overline{D E}, \overline{B C}$ onto $\overline{E F}$, and $\overline{A C}$ onto $\overline{D F}$.
4) There is a sequence of rigid motions that maps point A onto point $D, \overline{A B}$ onto $\overline{D E}$, and $\angle B$ onto $\angle E$.

711 Triangles $J O E$ and $S A M$ are drawn such that $\angle E \cong \angle M$ and $\overline{E J} \cong \overline{M S}$. Which mapping would not always lead to $\triangle J O E \cong \triangle S A M$?

1) $\angle J$ maps onto $\angle S$
2) $\angle O$ maps onto $\angle A$
3) $\overline{E O}$ maps onto $\overline{M A}$
4) $\overline{J O}$ maps onto $\overline{S A}$

712 In the two distinct acute triangles $A B C$ and $D E F$, $\angle B \cong \angle E$. Triangles $A B C$ and $D E F$ are congruent when there is a sequence of rigid motions that maps

1) $\angle A$ onto $\angle D$, and $\angle C$ onto $\angle F$
2) $\overline{A C}$ onto $\overline{D F}$, and $\overline{B C}$ onto $\overline{E F}$
3) $\angle C$ onto $\angle F$, and $\overline{B C}$ onto $\overline{E F}$
4) point A onto point D, and $\overline{A B}$ onto $\overline{D E}$

713 Triangles YEG and POM are two distinct non-right triangles such that $\angle G \cong \angle M$. Which statement is sufficient to prove $\triangle Y E G$ is always congruent to $\triangle P O M$?

1) $\angle E \cong \angle O$ and $\angle Y \cong \angle P$
2) $\overline{Y G} \cong \overline{P M}$ and $\overline{Y E} \cong \overline{P O}$
3) There is a sequence of rigid motions that maps $\angle E$ onto $\angle O$ and $\overline{Y E}$ onto $\overline{P O}$.
4) There is a sequence of rigid motions that maps point Y onto point P and $\overline{Y G}$ onto $\overline{P M}$.

714 Given right triangles $A B C$ and $D E F$ where $\angle C$ and $\angle F$ are right angles, $\overline{A C} \cong \overline{D F}$ and $\overline{C B} \cong \overline{F E}$. Describe a precise sequence of rigid motions which would show $\triangle A B C \cong \triangle D E F$.

715 In the diagram below, $\triangle A B C$ and $\triangle X Y Z$ are graphed.

Use the properties of rigid motions to explain why $\triangle A B C \cong \triangle X Y Z$.

716 As graphed on the set of axes below, $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a sequence of transformations.

Is $\triangle A^{\prime} B^{\prime} C^{\prime}$ congruent to $\triangle A B C$? Use the properties of rigid motion to explain your answer.

717 In the graph below, $\triangle A B C$ has coordinates $A(-9,2), B(-6,-6)$, and $C(-3,-2)$, and $\triangle R S T$ has coordinates $R(-2,9), S(5,6)$, and $T(2,3)$.

Is $\triangle A B C$ congruent to $\triangle R S T$? Use the properties of rigid motions to explain your reasoning.

718 In the diagram below of $\triangle A B C$ and $\triangle X Y Z$, a sequence of rigid motions maps $\angle A$ onto $\angle X$, $\angle C$ onto $\angle Z$, and $\overline{A C}$ onto $\overline{X Z}$.

Determine and state whether $\overline{B C} \cong \overline{Y Z}$. Explain why.

719 In the diagram below, right triangle $P Q R$ is transformed by a sequence of rigid motions that maps it onto right triangle NML.

Write a set of three congruency statements that would show ASA congruency for these triangles.

720 In the diagram below, $\overline{A C} \cong \overline{D F}$ and points A, C, D, and F are collinear on line ℓ.

Let $\triangle D^{\prime} E^{\prime} F^{\prime}$ be the image of $\triangle D E F$ after a translation along ℓ, such that point D is mapped onto point A. Determine and state the location of F^{\prime}. Explain your answer. Let $\triangle D^{\prime \prime} E " F "$ be the image of $\triangle D^{\prime} E^{\prime} F^{\prime}$ after a reflection across line ℓ. Suppose that E "is located at B. Is $\triangle D E F$ congruent to $\triangle A B C$? Explain your answer.

721 After a reflection over a line, $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$. Explain why triangle $A B C$ is congruent to triangle $\triangle A^{\prime} B^{\prime} C^{\prime}$.

722 Given: D is the image of A after a reflection over $\overleftrightarrow{C H}$
$\overleftrightarrow{C H}$ is the perpendicular bisector of $\overrightarrow{B C E}$ $\triangle A B C$ and $\triangle D E C$ are drawn
Prove: $\triangle A B C \cong \triangle D E C$

G.CO.B.8: TRIANGLE CONGRUENCY

723 In the diagram of $\triangle L A C$ and $\triangle D N C$ below, $\overline{L A} \cong \overline{D N}, \overline{C A} \cong \overline{C N}$, and $\overline{D A C} \perp \overline{L C N}$.

a) Prove that $\triangle L A C \cong \triangle D N C$.
b) Describe a sequence of rigid motions that will map $\triangle L A C$ onto $\triangle D N C$.

G.SRT.B.5: TRIANGLE CONGRUENCY

724 In the diagram below of quadrilateral $A D B E, \overline{D E}$ is the perpendicular bisector of $\overline{A B}$.

Which statement is always true?

1) $\angle A D C \cong \angle B D C$
2) $\angle E A C \cong \angle D A C$
3) $\overline{A D} \cong \overline{B E}$
4) $\overline{A E} \cong \overline{A D}$

725 Given the information marked on the diagrams below, which pair of triangles can not always be proven congruent?

1)

2)

3)
$\triangle K L J$ and $\triangle M J L$

4)
$\triangle N O P$ and $\triangle R S P$

726 Given $\triangle A B C \cong \triangle D E F$, which statement is not always true?

1) $\overline{B C} \cong \overline{D F}$
2) $\mathrm{m} \angle A=\mathrm{m} \angle D$
3) area of $\triangle A B C=$ area of $\triangle D E F$
4) perimeter of $\triangle A B C=$ perimeter of $\triangle D E F$

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

727 Skye says that the two triangles below are congruent. Margaret says that the two triangles are similar.

Are Skye and Margaret both correct? Explain why.

G.CO.C.10: TRIANGLE PROOFS

728 Line segment $E A$ is the perpendicular bisector of $\overline{Z T}$, and $\overline{Z E}$ and $\overline{T E}$ are drawn.

Which conclusion can not be proven?

1) $E A$ bisects angle $Z E T$.
2) Triangle EZT is equilateral.
3) $\overline{E A}$ is a median of triangle $E Z T$.
4) Angle Z is congruent to angle T.

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

729 Given the theorem, "The sum of the measures of the interior angles of a triangle is 180°," complete the proof for this theorem.

Given: $\triangle A B C$
Prove: $\mathrm{m} \angle 1+\mathrm{m} \angle 2+\mathrm{m} \angle 3=180^{\circ}$
Fill in the missing reasons below.

Statements	Reasons
(1) $\triangle A B C$	(1) Given
(2) Through point C, draw $\overleftrightarrow{D C E}$ parallel to $\overline{A B}$.	(2)
(3) $\mathrm{m} \angle 1=\mathrm{m} \angle A C D, \mathrm{~m} \angle 3=\mathrm{m} \angle B C E$	(3)
(4) $\mathrm{m} \angle A C D+\mathrm{m} \angle 2+\mathrm{m} \angle B C E=180^{\circ}$	(4)
(5) $\mathrm{m} \angle 1+\mathrm{m} \angle 2+\mathrm{m} \angle 3=180^{\circ}$	(5)

730 Given: $\triangle X Y Z, \overline{X Y} \cong \overline{Z Y}$, and $\overline{Y W}$ bisects $\angle X Y Z$ Prove that $\angle Y W Z$ is a right angle.

731 Prove the sum of the exterior angles of a triangle is 360°.

G.SRT.B.5: TRIANGLE PROOFS

732 Parallelogram $A B C D$ with diagonal $\overline{D B}$ is drawn below. Line segment $E F$ is drawn such that it bisects $\overline{D B}$ at M.

Which triangle congruence method would prove that $\triangle E M B \sim \triangle F M D$?

1) ASA, only
2) AAS, only
3) both ASA and AAS
4) neither ASA nor AAS

733 Given: $\triangle A B E$ and $\triangle C B D$ shown in the diagram below with $\overline{D B} \cong \overline{B E}$

Which statement is needed to prove
$\triangle A B E \cong \triangle C B D$ using only SAS \cong SAS?

1) $\angle C D B \cong \angle A E B$
2) $\angle A F D \cong \angle E F C$
3) $\overline{A D} \cong \overline{C E}$
4) $\overline{A E} \cong \overline{C D}$

734 In the diagram below, $\overline{A K S}, \overline{N K C}, \overline{A N}$, and $\overline{S C}$ are drawn such that $\overline{A N} \cong \overline{S C}$.

Which additional statement is sufficient to prove $\triangle K A N \cong \triangle K S C$ by AAS?

1) $\overline{A S}$ and $\overline{N C}$ bisect each other.
2) K is the midpoint of $\overline{N C}$.
3) $\overline{A S} \perp \overline{C N}$
4) $\overline{A N} \| \overline{S C}$

735 In the diagram below, $\overline{A C}$ and $\overline{B D}$ intersect at E.

Which information is always sufficient to prove $\triangle A B E \cong \triangle C D E$?

1) $\overline{A B} \| \overline{C D}$
2) $\overline{A B} \cong \overline{C D}$ and $\overline{B E} \cong \overline{D E}$
3) E is the midpoint of $\overline{A C}$.
4) $\overline{B D}$ and $\overline{A C}$ bisect each other.

736 Kelly is completing a proof based on the figure below.

She was given that $\angle A \cong \angle E D F$, and has already proven $\overline{A B} \cong \overline{D E}$. Which pair of corresponding parts and triangle congruency method would not prove $\triangle A B C \cong \triangle D E F$?

1) $\overline{A C} \cong \overline{D F}$ and SAS
2) $\overline{B C} \cong \overline{E F}$ and SAS
3) $\angle C \cong \angle F$ and AAS
4) $\angle C B A \cong \angle F E D$ and ASA

737 In the diagram of triangles $A B D$ and $C B E$ below, sides $\overline{A D}$ and $\overline{C E}$ intersect at F, and $\angle A D B \cong \angle C E B$.

Which statement can not be proven?

1) $\triangle A D B \cong \triangle C E B$
2) $\angle E A F \cong \angle D C F$
3) $\triangle A D B \sim \triangle C E B$
4) $\triangle E A F \sim \triangle D C F$

738 Two right triangles must be congruent if

1) an acute angle in each triangle is congruent
2) the lengths of the hypotenuses are equal
3) the corresponding legs are congruent
4) the areas are equal

739 In $\triangle A B C, A B=5, A C=12$, and $\mathrm{m} \angle A=90^{\circ}$. In $\triangle D E F, \mathrm{~m} \angle D=90^{\circ}, D F=12$, and $E F=13$. Brett claims $\triangle A B C \cong \triangle D E F$ and $\triangle A B C \sim \triangle D E F$. Is Brett correct? Explain why.

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

740 Given: $\triangle A B C, \overline{A E C}, \overline{B D E}$ with $\angle A B E \cong \angle C B E$, and $\angle A D E \cong \angle C D E$
Prove: $\overline{B D E}$ is the perpendicular bisector of $\overline{A C}$

Fill in the missing statement and reasons below.

Statements	Reasons
$1 \triangle A B C, \overline{A E C}, \overline{B D E}$ with $\angle A B E \cong \angle C B E$, and $\angle A D E \cong \angle C D E$	1 Given
$2 \overline{\overline{B D} \cong \overline{B D}}$	2
$3 \angle B D A$ and $\angle A D E$ are supplementary. $\angle B D C$ and $\angle C D E$ are supplementary.	3 Linear pairs of angles are supplementary.
4	4 Supplements of congruent angles are congruent.
$5 \triangle A B D \cong \triangle C B D$	5 ASA
$6 \overline{A D} \cong \overline{C D}, \overline{A B} \cong \overline{C B}$	6
$7 \overline{B D E}$ is the perpendicular bisector of $\overline{A C}$.	7

G.CO.C.11: QUADRILATERAL PROOFS

744 In parallelogram $A B C D$ shown below, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E.

Prove: $\angle A C D \cong \angle C A B$

745 Given: Parallelogram $A B C D, \overline{B F} \perp \overline{A F D}$, and $\overline{D E} \perp \overline{B E C}$

Prove: BEDF is a rectangle

746 Given: Quadrilateral $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}$ that bisect each other, and $\angle 1 \cong \angle 2$

Prove: $\triangle A C D$ is an isosceles triangle and $\triangle A E B$ is a right triangle

G.SRT.B.5: QUADRILATERAL PROOFS

747 Given: Parallelogram $A B C D$ with diagonal $\overline{A C}$ drawn

Prove: $\triangle A B C \cong \triangle C D A$

748 In the diagram of parallelogram $A B C D$ below, $\overline{B E} \perp \overline{C E D}, \overline{D F} \perp \overline{B F C}, \overline{C E} \cong \overline{C F}$.

Prove $A B C D$ is a rhombus.

749 Given: Parallelogram $\overline{A N D R}$ with $\overline{A W}$ and $\overline{D E}$ bisecting $\overline{N W D}$ and $\overline{R E A}$ at points W and E, respectively

Prove that $\triangle A N W \cong \triangle D R E$. Prove that quadrilateral $A W D E$ is a parallelogram.

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

750 Isosceles trapezoid $A B C D$ has bases $\overline{D C}$ and $\overline{A B}$ with nonparallel legs $\overline{A D}$ and $\overline{B C}$. Segments $A E$, $B E, C E$, and $D E$ are drawn in trapezoid $A B C D$ such that $\angle C D E \cong \angle D C E, \overline{A E} \perp \overline{D E}$, and $\overline{B E} \perp \overline{C E}$.

Prove $\triangle A D E \cong \triangle B C E$ and prove $\triangle A E B$ is an isosceles triangle.

751 In quadrilateral $A B C D, \overline{A B} \cong \overline{C D}, \overline{A B} \| \overline{C D}$, and $\overline{B F}$ and $\overline{D E}$ are perpendicular to diagonal $\overline{A C}$ at points F and E.

Prove: $\overline{A E} \cong \overline{C F}$

752 In the diagram of quadrilateral $A B C D$ with diagonal $\overline{A C}$ shown below, segments $G H$ and $E F$ are drawn, $\overline{A E} \cong \overline{C G}, \overline{B E} \cong \overline{D G}, \overline{A H} \cong \overline{C F}$, and $\overline{A D} \cong \overline{C B}$.

Prove: $\overline{E F} \cong \overline{G H}$

753 In quadrilateral $A B C D, E$ and F are points on $\overline{B C}$ and $\overline{A D}$, respectively, and $\overline{B G D}$ and $\overline{E G F}$ are drawn such that $\angle A B G \cong \angle C D G, \overline{A B} \cong \overline{C D}$, and $\overline{C E} \cong \overline{A F}$.

Prove: $\overline{F G} \cong \overline{E G}$

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

754 Given: Parallelogram $P Q R S, \overline{Q T} \perp \overline{P S}, \overline{S U} \perp \overline{Q R}$

Prove: $\overline{P T} \cong \overline{R U}$

755 In the diagram of quadrilateral $A B C D$ below, $\overline{A B} \cong \overline{C D}$, and $\overline{A B} \| \overline{C D}$. Segments $C E$ and $A F$ are drawn to diagonal $\overline{B D}$ such that $\overline{B E} \cong \overline{D F}$.

Prove: $\overline{C E} \cong \overline{A F}$

756 Given: Quadrilateral $A B C D, \overline{A B} \cong \overline{C D}, \overline{A B} \| \overline{C D}$, diagonal $\overline{A C}$ intersects $\overline{E F}$ at G, and $\overline{D E} \cong \overline{B F}$

Prove: G is the midpoint of $\overline{E F}$

757 Given: Quadrilateral $A B C D$ is a parallelogram with diagonals $\overline{A C}$ and $\overline{B D}$ intersecting at E

Prove: $\triangle A E D \cong \triangle C E B$
Describe a single rigid motion that maps $\triangle A E D$ onto $\triangle C E B$.

758 Given: Quadrilateral $M A T H, \overline{H M} \cong \overline{A T}$, $\overline{H T} \cong \overline{A M}, \overline{H E} \perp \overline{M E A}$, and $\overline{H A} \perp \overline{A T}$

Prove: $T A \bullet H A=H E \bullet T H$

759 Given: Quadrilateral $A B C D, \overline{A C}$ and $\overline{E F}$ intersect at $H, \overline{E F}\|\overline{A D}, \overline{E F}\| \overline{B C}$, and $\overline{A D} \cong \overline{B C}$.

Prove: $(E H)(C H)=(F H)(A H)$

G.SRT.B.5: CIRCLE PROOFS

760 In the diagram below, secant $\overline{A C D}$ and tangent $\overline{A B}$ are drawn from external point A to circle O.

Prove the theorem: If a secant and a tangent are drawn to a circle from an external point, the product of the lengths of the secant segment and its external segment equals the length of the tangent segment squared. $\left(A C \cdot A D=A B^{2}\right)$

761 Given: Circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E

Theorem: If two chords intersect in a circle, the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments of the other chord. Prove this theorem by proving $A E \cdot E B=C E \cdot E D$.

762 In the diagram below of circle $\underline{O, \text { tangent }} \overleftrightarrow{E C}$ is drawn to diameter $\overline{A C}$. Chord $\overline{B C}$ is parallel to secant $\overline{A D E}$, and chord $\overline{A B}$ is drawn.

Prove: $\frac{B C}{C A}=\frac{A B}{E C}$

G.SRT.A.3: SIMILARITY PROOFS

763 In the diagram below, $\angle G R S \cong \angle A R T, G R=36$, $S R=45, A R=15$, and $R T=18$.

Which triangle similarity statement is correct?

1) $\triangle G R S \sim \triangle A R T$ by AA.
2) $\triangle G R S \sim \triangle A R T$ by SAS.
3) $\triangle G R S \sim \triangle A R T$ by SSS.
4) $\triangle G R S$ is not similar to $\triangle A R T$.

764 In the diagram below, $\overline{A B}\|\overline{D F C}, \overline{E D A}\| \overline{C B G}$, and $\overline{E F B}$ and $\overline{A G}$ are drawn.

Which statement is always true?

1) $\triangle D E F \cong \triangle C B F$
2) $\triangle B A G \cong \triangle B A E$
3) $\triangle B A G \sim \triangle A E B$
4) $\triangle D E F \sim \triangle A E B$

765 In the diagram below of $\triangle A B C, D$ and E are the midpoints of $\overline{A B}$ and $\overline{A C}$, respectively, and $\overline{D E}$ is drawn.

I. AA similarity
II. SSS similarity
III. SAS similarity

Which methods could be used to prove
$\triangle A B C \sim \triangle A D E$?

1) I and II, only
2) II and III, only
3) I and III, only
4) I, II, and III

766 In the diagram below, $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a transformation.

Describe the transformation that was performed. Explain why $\triangle A^{\prime} B^{\prime} C^{\prime} \sim \triangle A B C$.

767 In the diagram below, $\overline{G I}$ is parallel to $\overline{N T}$, and $\overline{I N}$ intersects $\overline{G T}$ at A.

Prove: $\triangle G I A \sim \triangle T N A$

768 Given: Parallelogram $A B C D, \overline{E F G}$, and diagonal $\overline{D F B}$

Prove: $\triangle D E F \sim \triangle B G F$

769 In the diagram below of quadrilateral $F A C T, \overline{B R}$ intersects diagonal $\overline{A T}$ at $E, \overline{A F} \| \overline{C T}$, and $\overline{A F} \cong \overline{C T}$.

Prove: $(A B)(T E)=(A E)(T R)$

G.C.A.1: SIMILARITY PROOFS

770 As shown in the diagram below, circle A has a radius of 3 and circle B has a radius of 5 .

Use transformations to explain why circles A and B are similar.

Geometry Regents Exam Questions by State Standard: Topic

Answer Section

PTS: 2 REF: 061718geo NAT: G.GMD.B. 4 TOP: Rotations of Two-Dimensional Objects
15 ANS: 3

$$
\begin{aligned}
v=\pi r^{2} h & \text { (1) } 6^{2} \cdot 10=360 \\
150 \pi=\pi r^{2} h & \text { (2) } 10^{2} \cdot 6=600 \\
150=r^{2} h & \text { (3) } 5^{2} \cdot 6=150 \\
& \text { (4) } 3^{2} \cdot 10=900
\end{aligned}
$$

PTS: 2 REF: 081713geo NAT: G.GMD.B. 4 TOP: Rotations of Two-Dimensional Objects

16
$\frac{1}{3} \pi \times 8^{2} \times 5 \approx 335.1$
PTS: 2 REF: 082226geo NAT: G.GMD.B. 4 TOP: Rotations of Two-Dimensional Objects
17 ANS:
$\frac{1}{3} \pi \times 5^{2} \times 12=100 \pi \approx 314$
PTS: 2 REF: 012425geo NAT: G.GMD.B. 4 TOP: Rotations of Two-Dimensional Objects
18 ANS: 2 PTS: 2 REF: 062202geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
19 ANS: 2 PTS: 2 REF: 062301geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
20 ANS: 1 PTS: 2 REF: 082211geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
21 ANS: 2 PTS: 2 REF: 011805geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
22 ANS: 2 PTS: 2 REF: 061506geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
23 ANS: 1 PTS: 2 REF: 011601geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
24 ANS: 3 PTS: 2 REF: 081613geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
25 ANS: 3 PTS: 2 REF: 081805geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
26 ANS: 4 PTS: 2 REF: 011723geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
27 ANS: 4 PTS: 2 REF: 082301geo NAT: G.GMD.B. 4 TOP: Cross-Sections of Three-Dimensional Objects
28 ANS: 2 PTS: 2 REF: 081701geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
29 ANS: 4 PTS: 2 REF: 012019geo NAT: G.GMD.B. 4 TOP: Cross-Sections of Three-Dimensional Objects
30 ANS: 4 PTS: 2 REF: 012415geo NAT: G.GMD.B. 4 TOP: Cross-Sections of Three-Dimensional Objects

31 ANS:

PTS: 2
REF: 062231geo
NAT: G.CO.D. 12 TOP: Constructions KEY: parallel and perpendicular lines
32
ANS:

PTS: 2
REF: 011725geo NAT: G.CO.D. 12 TOP: Constructions KEY: line bisector
ANS:

PTS: 2 REF: 012029geo NAT: G.CO.D. 12 TOP: Constructions KEY: parallel and perpendicular lines

34 ANS:
$30^{\circ} \triangle C A D$ is an equilateral triangle, so $\angle C A B=60^{\circ}$. Since $\overrightarrow{A D}$ is an angle bisector, $\angle C A D=30^{\circ}$.
PTS: 2
REF: 081929geo NAT: G.CO.D. 12 TOP: Constructions
KEY: polygons
35 ANS:

PTS: 2 REF: 012325geo NAT: G.CO.D. 12 TOP: Constructions
KEY: angle bisector
36 ANS:

PTS: 2 REF: fall1409geo NAT: G.CO.D. 12 TOP: Constructions KEY: parallel and perpendicular lines
ANS:

PTS: 2
REF: 062325geo NAT: G.CO.D. 12 TOP: Constructions KEY: parallel and perpendicular lines

ANS:

PTS: 2
REF: 081628geo NAT: G.CO.D. 12 TOP: Constructions KEY: line bisector
ANS:

PTS: 2
REF: 061829geo NAT: G.CO.D. 12 TOP: Constructions KEY: line bisector

PTS: 2
REF: 082329geo NAT: G.CO.D. 12 TOP: Constructions KEY: line bisector

41 ANS:

PTS: 2
REF: 012427geo NAT: G.CO.D. 12 TOP: Constructions KEY: polygons
42

PTS: 4
REF: 011634geo NAT: G.CO.D. 12 TOP: Constructions KEY: congruent and similar figures
ANS:

PTS: 2 REF: 082227geo NAT: G.CO.D. 12 TOP: Constructions KEY: congruent and similar figures

44 ANS:

The length of $\overline{A^{\prime} C^{\prime}}$ is twice $\overline{A C}$.
PTS: 4 REF: 081632geo NAT: G.CO.D. 12 TOP: Constructions KEY: congruent and similar figures
45 ANS:

Yes, because a dilation preserves angle measure.
PTS: 4
REF: 081932geo
NAT: G.CO.D. 12 TOP: Constructions
KEY: congruent and similar figures
46 ANS:

PTS: 2
REF: 011929geo NAT: G.CO.D. 12 TOP: Constructions
KEY: polygons

47 ANS:

PTS: 2
REF: 061725geo NAT: G.CO.D. 12 TOP: Constructions KEY: parallel and perpendicular lines
48 ANS:

PTS: 2
REF: 061631geo
NAT: G.CO.D. 12 TOP: Constructions
KEY: parallel and perpendicular lines
ANS:

PTS: 2
REF: 081825geo NAT: G.CO.D. 12 TOP: Constructions KEY: parallel and perpendicular lines

50 ANS:

PTS: 2 REF: 061931geo NAT: G.CO.D. 13 TOP: Constructions
51 ANS:

PTS: 2 REF: 081526geo NAT: G.CO.D. 13 TOP: Constructions
52 ANS:

PTS: 2
REF: 061525geo NAT: G.CO.D. 13 TOP: Constructions

53 ANS:

PTS: 2 REF: 011826geo NAT: G.CO.D. 13 TOP: Constructions
54 ANS:

Since the square is inscribed, each vertex of the square is on the circle and the diagonals of the square are diameters of the circle. Therefore, each angle of the square is an inscribed angle in the circle that intercepts the circle at the endpoints of the diameters. Each angle of the square, which is an inscribed angle, measures 90 degrees. Therefore, the measure of the arc intercepted by two adjacent sides of the square is 180 degrees because it is twice the measure of its inscribed angle.

PTS: 4 REF: fall1412geo NAT: G.CO.D. 13 TOP: Constructions
55 ANS:

PTS: 2 REF: 081728geo NAT: G.CO.D. 13 TOP: Constructions

56 ANS:

Right triangle because $\angle C B F$ is inscribed in a semi-circle.
PTS: 4 REF: 011733geo NAT: G.CO.D. 13 TOP: Constructions
57 ANS: 1
$x=-5+\frac{1}{3}(4--5)=-5+3=-2 \quad y=2+\frac{1}{3}(-10-2)=2-4=-2$
PTS: 2 REF: 011806geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
58 ANS: 1
$3+\frac{2}{5}(8-3)=3+\frac{2}{5}(5)=3+2=55+\frac{2}{5}(-5-5)=5+\frac{2}{5}(-10)=5-4=1$
PTS: 2 REF: 011720geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
59 ANS: 2
$-4+\frac{2}{5}(6--4)=-4+\frac{2}{5}(10)=-4+4=05+\frac{2}{5}(20-5)=5+\frac{2}{5}(15)=5+6=11$
PTS: 2 REF: 061715geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
60 ANS: 2
$-4+\frac{2}{5}(1--4)=-4+\frac{2}{5}(5)=-4+2=-2-2+\frac{2}{5}(8--2)=-2+\frac{2}{5}(10)=-2+4=2$
PTS: 2 REF: 061814geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
61 ANS: 1
$-8+\frac{3}{5}(7--8)=-8+9=17+\frac{3}{5}(-13-7)=7-12=-5$
PTS: 2 REF: 081815geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
62 ANS: 4 $-8+\frac{2}{3}(10--8)=-8+\frac{2}{3}(18)=-8+12=44+\frac{2}{3}(-2-4)=4+\frac{2}{3}(-6)=4-4=0$

PTS: 2 REF: 061919geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
63 ANS: 3
$-9+\frac{1}{3}(9--9)=-9+\frac{1}{3}(18)=-9+6=-38+\frac{1}{3}(-4-8)=8+\frac{1}{3}(-12)=8-4=4$
PTS: 2 REF: 081903geo NAT: G.GPE.B. 6 TOP: Directed Line Segments

64 ANS: 4
$-7+\frac{1}{4}(5--7)=-7+\frac{1}{4}(12)=-7+3=-4-5+\frac{1}{4}(3--5)=-5+\frac{1}{4}(8)=-5+2=-3$
PTS: 2 REF: 012005geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
65 ANS: 4
$-5+\frac{3}{4}(7--5)=-5+\frac{3}{4}(12)=-5+9=43+\frac{3}{4}(-5-3)=3+\frac{3}{4}(-8)=3-6=-3$
PTS: 2 REF: 082302geo NAT: G.GPE.B. 6 TOP: Directed Line Segments 66 ANS: 4
$5+\frac{2}{5}(-10-5)=5+\frac{2}{5}(-15)=5-6=-17+\frac{2}{5}(-8-7)=7+\frac{2}{5}(-15)=7-6=1$
PTS: 2 REF: 012410geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
67 ANS: 2
$-4+\frac{2}{5}(6--4)=-4+\frac{2}{5}(10)=-4+4=0-1+\frac{2}{5}(4--1)=-1+\frac{2}{5}(5)=-1+2=1$
PTS: 2 REF: 062222geo NAT: G.GPE.B. 6 TOP: Directed Line Segments 68 ANS: 1 $-8+\frac{3}{8}(16--8)=-8+\frac{3}{8}(24)=-8+9=1-2+\frac{3}{8}(6--2)=-2+\frac{3}{8}(8)=-2+3=1$

PTS: 2 REF: 081717geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
69 ANS: 4
$-5+\frac{3}{5}(5--5)-4+\frac{3}{5}(1--4)$
$-5+\frac{3}{5}(10) \quad-4+\frac{3}{5}(5)$
$-5+6 \quad-4+3$
$1 \quad-1$
PTS: 2 REF: spr1401geo NAT: G.GPE.B. 6 TOP: Directed Line Segments 70 ANS: 1
$-7+\frac{1}{3}(2--7)=-7+\frac{1}{3}(9)=-7+3=-43+\frac{1}{3}(-6-3)=3+\frac{1}{3}(-9)=3-3=0$
PTS: 2 REF: 082213geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
71 ANS: 1
$-1+\frac{1}{3}(8--1)=-1+\frac{1}{3}(9)=-1+3=2-3+\frac{1}{3}(9--3)=-3+\frac{1}{3}(12)=-3+4=1$
PTS: 2
REF: 011915geo NAT: G.GPE.B. 6 TOP: Directed Line Segments

72 ANS: 4
$x=-6+\frac{1}{6}(6--6)=-6+2=-4 \quad y=-2+\frac{1}{6}(7--2)=-2+\frac{9}{6}=-\frac{1}{2}$
PTS: 2
73 ANS:

$$
\begin{array}{cc}
-6+\frac{2}{5}(4--6) & -5+\frac{2}{5}(0--5) \\
-6+\frac{2}{5}(10) & -5+\frac{2}{5}(5) \\
-6+4 & -5+2 \\
-2 & -3
\end{array}
$$

PTS: 2 REF: 061527geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
74 ANS:

PTS: 2
REF: 011627geo NAT: G.GPE.B. 6 TOP: Directed Line Segments

75 ANS:

$$
\begin{aligned}
& x=-2+\frac{3}{5}(8+2)=-2+6=4 \\
& y=5+\frac{3}{5}(-1-5)=\frac{25}{5}-\frac{18}{5}=\frac{7}{5}
\end{aligned}
$$

PTS: 2
REF: 012328geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
76 ANS:

$$
\begin{array}{cc}
-5+\frac{2}{5}(5--5) & 1+\frac{2}{5}(6-1)(-1,3) \\
-5+\frac{2}{5}(10) & 1+\frac{2}{5}(5) \\
-5+4 & 1+2 \\
-1 & 3
\end{array}
$$

PTS: 2 REF: 062327geo NAT: G.GPE.B. 6 TOP: Directed Line Segments 77 ANS:
$\frac{2}{5} \cdot(16-1)=6 \frac{2}{5} \cdot(14-4)=4 \quad(1+6,4+4)=(7,8)$
PTS: 2
REF: 081531geo NAT: G.GPE.B. 6 TOP: Directed Line Segments

78 ANS:
$4+\frac{4}{9}(22-4) 2+\frac{4}{9}(2-2)(12,2)$

$$
4+\frac{4}{9}(18) \quad 2+\frac{4}{9}(0)
$$

$$
4+8 \quad 2+0
$$

$$
12 \quad 2
$$

PTS: 2 REF: 061626geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
79 ANS: 4 PTS: 2 REF: 081801geo NAT: G.CO.C. 9
TOP: Lines and Angles
80 ANS: 2

PTS: 2 REF: 011818geo NAT: G.CO.C. 9 TOP: Lines and Angles
81 ANS: 4

PTS: 2 REF: 012421geo NAT: G.CO.C. 9 TOP: Lines and Angles
82 ANS: 1
$\frac{f}{4}=\frac{15}{6}$
$f=10$
PTS: 2 REF: 061617geo NAT: G.CO.C. 9 TOP: Lines and Angles
83 ANS: 3 $180-(48+66)=180-114=66$

PTS: 2
REF: 012001geo NAT: G.CO.C. 9 TOP: Lines and Angles

84	ANS: 3	RTS: 2	REF: 061802geo
TOP: Lines and Angles	NAT: G.CO.C. 9		
85	ANS: 4 PTS: 2	REF: 062318geo	NAT: G.CO.C. 9
TOP: Lines and Angles			
86	ANS: 1		
	Alternate interior angles		

PTS: 2 REF: 061517geo NAT: G.CO.C. 9 TOP: Lines and Angles
87 ANS: 1
PTS: 2
REF: 011606geo NAT: G.CO.C. 9
TOP: Lines and Angles
88 ANS: 2 PTS: 2
REF: 081601geo NAT: G.CO.C. 9
TOP: Lines and Angles
89 ANS: 4 PTS: 2
REF: 081611geo NAT: G.CO.C. 9
TOP: Lines and Angles
90 ANS:
Since linear angles are supplementary, $\mathrm{m} \angle G I H=65^{\circ}$. Since $\overline{G H} \cong \overline{I H}, \mathrm{~m} \angle G H I=50^{\circ}(180-(65+65))$. Since $\angle E G B \cong \angle G H I$, the corresponding angles formed by the transversal and lines are congruent and $\overline{A B} \| \overline{C D}$.

PTS: 4 REF: 061532geo NAT: G.CO.C. 9 TOP: Lines and Angles
91 ANS: 1

$$
\begin{aligned}
m=-\frac{2}{3} 1 & =\left(-\frac{2}{3}\right) 6+b \\
1 & =-4+b \\
5 & =b
\end{aligned}
$$

PTS: 2 REF: 081510geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: write equation of parallel line
92 ANS: 3
$y=m x+b$
$2=\frac{1}{2}(-2)+b$
$3=b$

PTS: 2 REF: 011701geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: write equation of parallel line
93 ANS: 2
$m=\frac{-(-2)}{3}=\frac{2}{3}$
PTS: 2 REF: 061916geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: write equation of parallel line

94 ANS: 4
The slope of a line in standard form is $-\frac{A}{B}$ so the slope of this line is $\frac{3}{5}$ Perpendicular lines have slope that are the opposite and reciprocal of each other.

PTS: 2 REF: 012313geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: find slope of perpendicular line
95 ANS: 1
The slope of $3 x+2 y=12$ is $-\frac{3}{2}$, which is the opposite reciprocal of $\frac{2}{3}$.
PTS: 2 REF: 081811geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: identify perpendicular lines
96 ANS: 1
$m=\frac{-A}{B}=\frac{-3}{2} m_{\perp}=\frac{2}{3}$
PTS: 2 REF: 081908geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: identify perpendicular lines
97 ANS: 1
$y=3 x+4, m=3, m_{\perp}=-\frac{1}{3}$
PTS: 2 REF: 012405geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: identify perpendicular lines
98 ANS: 1
$m=\frac{-A}{B}=\frac{-2}{-1}=2$
$m_{\perp}=-\frac{1}{2}$
PTS: 2 REF: 061509geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: identify perpendicular lines
99
ANS: 4
$m=-\frac{1}{2} \quad-4=2(6)+b$
$m_{\perp}=2 \quad-4=12+b$
PTS: 2 REF: 011602geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: write equation of perpendicular line

100
ANS: 2
$m=\frac{3}{2}$
$m_{\perp}=-\frac{2}{3}$
PTS: 2 REF: 061812geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: write equation of perpendicular line
ANS: 2
$m=\frac{3}{2} \quad . \quad 1=-\frac{2}{3}(-6)+b$
$m_{\perp}=-\frac{2}{3} \quad \begin{aligned} 1 & =4+b \\ -3 & =b\end{aligned}$
PTS: 2 REF: 061719geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: write equation of perpendicular line
ANS: 2
$m=\frac{-4}{-5}=\frac{4}{5}$
$m_{\perp}=-\frac{5}{4}$
PTS: 2
REF: 082308geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: write equation of perpendicular line
ANS: 1
$m=\frac{-4}{-6}=\frac{2}{3}$
$m_{\perp}=-\frac{3}{2}$
PTS: 2
REF: 011820geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: write equation of perpendicular line
ANS: 4
The segment's midpoint is the origin and slope is -2 . The slope of a perpendicular line is $\frac{1}{2} . \quad y=\frac{1}{2} x+0$

$$
2 y=x
$$

$$
2 y-x=0
$$

PTS: 2
REF: 081724geo
NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: perpendicular bisector

105 ANS: 1
$m=\left(\frac{-11+5}{2}, \frac{5+-7}{2}\right)=(-3,-1) m=\frac{5--7}{-11-5}=\frac{12}{-16}=-\frac{3}{4} m_{\perp}=\frac{4}{3}$
PTS: 2 REF: 061612geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: perpendicular bisector
106 ANS: 4
$\left(\frac{-5+7}{2}, \frac{1-9}{2}\right)=(1,-4) m=\frac{1--9}{-5-7}=\frac{10}{-12}=-\frac{5}{6} m_{\perp}=\frac{6}{5}$
PTS: 2 REF: 062220geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: perpendicular bisector
107 ANS: 4
$\left(\frac{-4+0}{2}, \frac{6+4}{2}\right) \rightarrow(-2,5) ; \frac{6-4}{-4-0}=\frac{2}{-4}=-\frac{1}{2} ; m_{\perp}=2 ; y-5=2(x+2)$

$$
\begin{aligned}
& y=2 x+4+5 \\
& y=2 x+9
\end{aligned}
$$

PTS: 2 REF: 062324geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: perpendicular bisector
108
ANS.
$3 y+7=2 x \quad y-6=\frac{2}{3}(x-2)$
$3 y=2 x-7$
$y=\frac{2}{3} x-\frac{7}{3}$
PTS: 2 REF: 011925geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: write equation of parallel line
ANS:
$m=\frac{5}{4} ; m_{\perp}=-\frac{4}{5} \quad y-12=-\frac{4}{5}(x-5)$
PTS: 2 REF: 012031geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: write equation of perpendicular line
110 ANS: 2
$6+6 \sqrt{3}+6+6 \sqrt{3} \approx 32.8$
PTS: 2 REF: 011709geo NAT: G.SRT.C. 8 TOP: 30-60-90 Triangles
111
$\sqrt{20^{2}-10^{2}} \approx 17.3$
PTS: 2 REF: 081608geo NAT: G.SRT.C. 8 TOP: 30-60-90 Triangles

112 ANS: 4
Isosceles triangle theorem.
PTS: 2 REF: 062207geo NAT: G.SRT.B. 5 TOP: Isosceles Triangle Theorem
113 ANS:

$$
\begin{aligned}
5 x-14 & =3 x+10 \\
2 x & =24 \\
x & =12
\end{aligned}
$$

PTS: 2 REF: 082326geo NAT: G.SRT.B. 5 TOP: Isosceles Triangle Theorem
114 ANS: 3
$\frac{9}{5}=\frac{9.2}{x} 5.1+9.2=14.3$
$9 x=46$
$x \approx 5.1$
PTS: 2
REF: 061511geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
115 ANS: 2
$\frac{12}{4}=\frac{36}{x}$
$12 x=144$

$$
x=12
$$

PTS: 2 REF: 061621geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
116 ANS: 4

$$
\begin{aligned}
\frac{2}{4} & =\frac{9-x}{x} \\
36-4 x & =2 x \\
x & =6
\end{aligned}
$$

PTS: 2 REF: 061705geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
117 ANS: 4
$\frac{1}{3.5}=\frac{x}{18-x}$
$3.5 x=18-x$
$4.5 x=18$
$x=4$
PTS: 2
REF: 081707geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem

118 ANS: 3
$\frac{24}{40}=\frac{15}{x}$

$$
\begin{aligned}
24 x & =600 \\
x & =25
\end{aligned}
$$

PTS: 2
REF: 011813geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
119 ANS: 4

$$
\begin{aligned}
\frac{5}{7} & =\frac{x}{x+5} 12 \frac{1}{2}+5=17 \frac{1}{2} \\
5 x+25 & =7 x \\
2 x & =25 \\
x & =12 \frac{1}{2}
\end{aligned}
$$

PTS: 2 REF: 061821geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem 120 ANS: 3
$\frac{x}{6.3}=\frac{3}{5} \quad \frac{y}{9.4}=\frac{6.3}{6.3+3.78}$
$x=3.78 \quad y \approx 5.9$
PTS: 2 REF: 081816geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
121 ANS: 2
$\frac{x}{15}=\frac{5}{12}$

$$
x=6.25
$$

PTS: 2 REF: 011906geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
122 ANS: 1
$5 x=12 \cdot 7 \quad 16.8+7=23.8$
$5 x=84$
$x=16.8$
PTS: 2 REF: 061911geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
123 ANS: 3
$\frac{10}{x}=\frac{15}{12}$

$$
x=8
$$

PTS: 2
REF: 081918geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem

124 ANS: 4

$$
\begin{aligned}
\frac{2}{4} & =\frac{8}{x+2} \quad 14+2=16 \\
2 x+4 & =32 \\
x & =14
\end{aligned}
$$

PTS: 2 REF: 012024geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
125 ANS: 2

$$
\frac{7.5}{3.5}=\frac{9.5}{x}
$$

$$
x \approx 4.4
$$

PTS: 2 REF: 012303geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem 126 ANS: 4

$$
\begin{aligned}
\frac{x}{10} & =\frac{12}{8} \quad 15+10=25 \\
x & =15
\end{aligned}
$$

PTS: 2 REF: 082314geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
127 ANS: 2
$\frac{10}{x}=\frac{8}{6}$
$8 x=60$
$x=7.5$
PTS: 2 REF: 012402geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
128 ANS: 2
$\frac{x}{x+3}=\frac{14}{21} \quad 14-6=8$

$$
\begin{aligned}
21 x & =14 x+42 \\
7 x & =42 \\
x & =6
\end{aligned}
$$

PTS: 2 REF: 081812geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem

129 ANS: 4

PTS: 2
REF: 082222geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem 130 ANS: 4 $\frac{2}{6}=\frac{5}{15}$

PTS: 2 REF: 081517geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
131 ANS: 2
$\angle A D E \cong \angle A B C$ and $\angle A E D \cong \angle A C B$
PTS: 2 REF: 062214geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
132 ANS: 4 PTS: 2 REF: 062321geo NAT: G.SRT.B. 5
TOP: Side Splitter Theorem
133 ANS: 2
$\triangle A C B \sim \triangle A E D$
PTS: 2 REF: 061811geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
134 ANS: 2
$\triangle A C B \sim \triangle A E D$
PTS: 2 REF: 012308geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
135 ANS: 3 PTS: 2 REF: 062307geo NAT: G.SRT.B. 5
TOP: Side Splitter Theorem
136 ANS: 2
If (2) is true, $\angle A C B \cong \angle X Y B$ and $\angle C A B \cong \angle Y X B$.
PTS: 2 REF: 082202geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
137 ANS:
$\frac{3.75}{5}=\frac{4.5}{6} \quad \overline{A B}$ is parallel to $\overline{C D}$ because $\overline{A B}$ divides the sides proportionately.
$39.375=39.375$
PTS: 2 REF: 061627geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem

138
ANS: 3

PTS: 2 REF: 081905geo NAT: G.CO.C. 10 TOP: Exterior Angle Theorem
ANS: 2
$\angle B=180-(82+26)=72 ; \angle D E C=180-26=154 ; \angle E D B=360-(154+26+72)=108 ; \angle B D F=\frac{108}{2}=54 ;$
$\angle D F B=180-(54+72)=54$
PTS: 2 REF: 061710geo NAT: G.CO.C. 10 TOP: Interior and Exterior Angles of Triangles ANS: 4

PTS: 2 REF: 061717geo NAT: G.CO.C. 10 TOP: Interior and Exterior Angles of Triangles
ANS: 4

PTS: 2 REF: 012305geo NAT: G.CO.C. 10 TOP: Interior and Exterior Angles of Triangles 142 ANS: 2

PTS: 2
REF: 081604geo NAT: G.CO.C. 10 TOP: Interior and Exterior Angles of Triangles

143 ANS: 4

PTS: 2 REF: 081711geo NAT: G.CO.C. 10 TOP: Exterior Angle Theorem
144 ANS: 3
$6 x-40+x+20=180-3 x \mathrm{~m} \angle B A C=180-(80+40)=60$

$$
\begin{aligned}
10 x & =200 \\
x & =20
\end{aligned}
$$

PTS: 2 REF: 011809geo NAT: G.CO.C. 10 TOP: Exterior Angle Theorem
145 ANS: 4 PTS: 2 REF: 011916geo NAT: G.CO.C. 10
TOP: Exterior Angle Theorem
146 ANS: 2
180-(180-42-42)
PTS: 2 REF: 062317geo NAT: G.CO.C. 10 TOP: Exterior Angle Theorem
147 ANS: 3 PTS: 2 REF: 062215geo NAT: G.CO.C. 10
TOP: Exterior Angle Theorem
148 ANS: 3
$\angle N$ is the smallest angle in $\triangle N Y A$, so side $\overline{A Y}$ is the shortest side of $\triangle N Y A . \angle V Y A$ is the smallest angle in $\triangle V Y A$, so side $\overline{V A}$ is the shortest side of both triangles.

PTS: 2 REF: 011919geo NAT: G.CO.C. 10 TOP: Angle Side Relationship
149 ANS: 1

PTS: 2 REF: 082310geo NAT: G.CO.C. 10 TOP: Angle Side Relationship
150 ANS: 4

$$
\begin{aligned}
2(x+13) & =5 x-1 \quad M N=9+13=22 \\
2 x+26 & =5 x-1 \\
27 & =3 x \\
x & =9
\end{aligned}
$$

PTS: 2 REF: 062322geo NAT: G.CO.C. 10 TOP: Midsegments

151 ANS: 3
$\frac{1}{2} \times 24=12$
PTS: 2 REF: 012009geo NAT: G.CO.C. 10 TOP: Midsegments
152 ANS: 3
$2(2 x+8)=7 x-2 \quad A B=7(6)-2=40$. Since $\overline{E F}$ is a midsegment, $E F=\frac{40}{2}=20$. Since $\triangle A B C$ is equilateral,
$4 x+16=7 x-2$
$18=3 x$
$6=x$
$A E=B F=\frac{40}{2}=20.40+20+20+20=100$
PTS: 2 REF: 061923geo NAT: G.CO.C. 10 TOP: Midsegments
153 ANS: 4 PTS: 2 REF: 011704geo NAT: G.CO.C. 10
TOP: Midsegments
154 ANS: 4 PTS: 2 REF: 081716geo NAT: G.CO.C. 10
TOP: Midsegments
155 ANS: 1
$\frac{36}{4}=9$
PTS: 2 REF: 012321geo NAT: G.CO.C. 10 TOP: Midsegments
156 ANS: 1
PTS: 2
REF: 012316geo NAT: G.CO.C. 10
TOP: Medians, Altitudes and Bisectors
157 ANS: 2 PTS: 2
REF: 012012geo NAT: G.CO.C. 10
TOP: Medians, Altitudes and Bisectors
158 ANS: 4 PTS: 2
REF: 081822geo NAT: G.CO.C. 10
TOP: Medians, Altitudes and Bisectors
159 ANS:
$\triangle M N O$ is congruent to $\triangle P N O$ by SAS. Since $\triangle M N O \cong \triangle P N O$, then $\overline{M O} \cong \overline{P O}$ by CPCTC. So $\overline{N O}$ must divide $\overline{M P}$ in half, and $M O=8$.

PTS: 2 REF: fall1405geo NAT: G.CO.C. 10 TOP: Medians, Altitudes and Bisectors
160 ANS: 1 PTS: 2 REF: 081904geo NAT: G.CO.C. 10
TOP: Centroid, Orthocenter, Incenter and Circumcenter
161 ANS: 1
M is a centroid, and cuts each median 2:1.
PTS: 2
REF: 061818geo NAT: G.CO.C. 10
TOP: Centroid, Orthocenter, Incenter and Circumcenter

ANS:
$180-2(25)=130$
PTS: 2
REF: 011730geo NAT: G.CO.C. 10
TOP: Centroid, Orthocenter, Incenter and Circumcenter
163 ANS:

PTS: 2
REF: 012030geo NAT: G.CO.C. 10
TOP: Centroid, Orthocenter, Incenter and Circumcenter
ANS: 4
The slope of $\overline{B C}$ is $\frac{2}{5}$. Altitude is perpendicular, so its slope is $-\frac{5}{2}$.
PTS: 2 REF: 061614geo NAT: G.GPE.B. 4 TOP: Triangles in the Coordinate Plane
165
TOP: Triangles in the Coordinate Plane
ANS: 1
$m_{\overline{R T}}=\frac{5--3}{4--2}=\frac{8}{6}=\frac{4}{3} m_{\overline{S T}}=\frac{5-2}{4-8}=\frac{3}{-4}=-\frac{3}{4}$ Slopes are opposite reciprocals, so lines form a right angle.
PTS: 2 REF: 011618geo NAT: G.GPE.B. 4 TOP: Triangles in the Coordinate Plane 167 ANS:

Triangle with vertices $A(-2,4), B(6,2)$, and $C(1,-1)$ (given); $m_{\overline{A C}}=-\frac{5}{3}, m_{B C}=\frac{3}{5}$,
definition of slope; Because the slopes of the legs of the triangle are opposite reciprocals, the legs are perpendicular (definition of perpendicular); $\angle C$ is a right angle (definition of right angle); $\triangle A B C$ is a right triangle (if a triangle has a right angle, it is a right triangle); $\overline{A C} \cong \overline{B C}=\sqrt{34}$ (distance formula); $\triangle A B C$ is an isosceles triangle (an isosceles triangle has two congruent sides).

PTS: 4 REF: 011932geo NAT: G.GPE.B. 4 TOP: Triangles in the Coordinate Plane

168
ANS:

Because $\overline{A B} \cong \overline{A C}, \triangle A B C$ has two congruent sides and is isosceles. Because $\overline{A B} \cong \overline{B C}$ is not true, $\triangle A B C$ has sides that are not congruent and $\triangle A B C$ is not equilateral.

PTS: 4
REF: 061832geo NAT: G.GPE.B. 4 TOP: Triangles in the Coordinate Plane
169
The slopes of perpendicular line are opposite reciprocals. Since the lines are perpendicular, they, form right angles
and a right triangle. $m_{\overline{B C}}=-\frac{3}{2}-1=\frac{2}{3}(-3)+b$ or $-4=\frac{2}{3}(-1)+b$

$$
\begin{aligned}
& m_{\perp}=\frac{2}{3} \quad-1=-2+b \quad \frac{-12}{3}=\frac{-2}{3}+b \\
& 3=\frac{2}{3} x+1 \quad-\frac{10}{3}=b \\
& 2=\frac{2}{3} x \quad 3=\frac{2}{3} x-\frac{10}{3} \\
& 3=x \\
& 9=2 x-10 \\
& 19=2 x \\
& 9.5=x
\end{aligned}
$$

PTS: 4
REF: 081533geo NAT: G.GPE.B. 4 TOP: Triangles in the Coordinate Plane
170 ANS:
No. The midpoint of $\overline{D F}$ is $\left(\frac{1+4}{2}, \frac{-1+2}{2}\right)=(2.5,0.5)$. A median from point E must pass through the midpoint.
PTS: 2
REF: 011930geo NAT: G.GPE.B. 4 TOP: Triangles in the Coordinate Plane

171 ANS:
$\frac{-2--4}{-3-4}=\frac{2}{-7} ; y-2=-\frac{2}{7}(x-3)$
PTS: 2 REF: 062331geo NAT: G.GPE.B. 4 TOP: Triangles in the Coordinate Plane
172 ANS:

PTS: 4 REF: 081732geo NAT: G.GPE.B. 4 TOP: Triangles in the Coordinate Plane
173 ANS: 3

PTS: 2 REF: 081508geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
174 ANS: 1 180-(68•2)

PTS: 2 REF: 081624geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
175 ANS: 4

PTS: 2 REF: 081708geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons

176
ANS: 2

PTS: 2 REF: 061921geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
177 ANS: 3

PTS: 2 REF: 082215geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons 178

ANS: 3

PTS: 2 REF: 062306geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
179
ANS: 3

PTS: 2 REF: 011603geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
ANS: 2

PTS: 2
REF: 081907geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons

181 ANS: 1

PTS: 2 REF: 062221geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons 182 ANS: 3

PTS: 2 REF: 082315geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons 183 ANS:

Opposite angles in a parallelogram are congruent, so $\mathrm{m} \angle O=118^{\circ}$. The interior angles of a triangle equal 180°. $180-(118+22)=40$.

PTS: 2 REF: 061526geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons 184 ANS:
$\angle D=46^{\circ}$ because the angles of a triangle equal $180^{\circ} . \angle B=46^{\circ}$ because opposite angles of a parallelogram are congruent.

PTS: 2 REF: 081925geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons 185 ANS:

PTS: 2
REF: 081826geo
NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons

186
ANS:
47.5°

PTS: 2
REF: 082230geo
NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
187 ANS:

$$
20^{\circ}
$$

PTS: 2 REF: 011926geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
188 ANS: 2
PTS: 2
REF: 011912geo NAT: G.CO.C. 11
TOP: Parallelograms
189 ANS: $3 \quad$ PTS: 2
TOP: Parallelograms
190 ANS: 2 PTS: 2
TOP: Parallelograms
191 ANS: 4 PTS: 2
TOP: Parallelograms
192 ANS: 2
PTS: 2
REF: 061912geo NAT: G.CO.C. 11
REF: 011802geo NAT: G.CO.C. 11
REF: 081813geo NAT: G.CO.C. 11

TOP: Parallelograms
193 ANS: 4
$\angle 6$ and $\angle 9$ are alternate interior angles; since congruent, $\ell \| m . \angle 9$ and $\angle 11$ are corresponding angles; since congruent, $n \| p$. Both pairs of opposite sides are parallel.

PTS: 2 REF: 082319geo NAT: G.CO.C. 11 TOP: Parallelograms
194 ANS: 3
Therefore $\angle 2 \cong \angle 7$. Since opposite angles are congruent, $A B C D$ is a parallelogram.
PTS: 2 REF: 062209geo NAT: G.CO.C. 11 TOP: Parallelograms
195 ANS: 3 PTS: 2 REF: 081913geo NAT: G.CO.C. 11
TOP: Parallelograms

196 ANS: 3
(3) Could be a trapezoid.

PTS: 2 REF: 081607geo NAT: G.CO.C. 11 TOP: Parallelograms
197 ANS: 4 PTS: 2 REF: 061513geo NAT: G.CO.C. 11
TOP: Parallelograms
198 ANS: 3
3) Could be an isosceles trapezoid.

PTS: 2 REF: 012318geo NAT: G.CO.C. 11 TOP: Parallelograms
199 ANS: 3
The half diagonals have lengths of 6 and 8 , so each side of $A B C D$ is 10 .
PTS: 2
REF: 012417geo NAT: G.CO.C. 11 TOP: Parallelograms
200 ANS: 1
$\frac{6.5}{10.5}=\frac{5.2}{x}$
$x=8.4$
PTS: 2
REF: 012006geo NAT: G.CO.C. 11 TOP: Trapezoids

Geometry Regents Exam Questions by State Standard: Topic

Answer Section

PTS: 2 REF: 081714geo NAT: G.CO.C. 11 TOP: Special Quadrilaterals
216 ANS: 2 PTS: 2
REF: 012420geo NAT: G.CO.C. 11
TOP: Special Quadrilaterals
217 ANS: 1

1) opposite sides; 2) adjacent sides; 3) perpendicular diagonals; 4) diagonal bisects angle

PTS: 2 REF: 061609geo NAT: G.CO.C. 11 TOP: Special Quadrilaterals
218 ANS: 2
$E R=\sqrt{17^{2}-8^{2}}=15$

PTS: 2 REF: 061917geo NAT: G.CO.C. 11 TOP: Special Quadrilaterals

219 ANS: 2
$\sqrt{8^{2}+6^{2}}=10$ for one side
PTS: 2 REF: 011907geo NAT: G.CO.C. 11 TOP: Special Quadrilaterals
220 ANS:
The four small triangles are 8-15-17 triangles. $4 \times 17=68$
PTS: 2 REF: 081726geo NAT: G.CO.C. 11 TOP: Special Quadrilaterals
221 ANS: 4
$m_{\overline{A D}}=\frac{3-1}{-2-2}=\frac{2}{-4}=-\frac{1}{2} \quad$ A pair of opposite sides is parallel.
$m_{B C}=\frac{8-4}{-3-5}=\frac{4}{-8}=-\frac{1}{2}$
PTS: 2 REF: 082321geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
222 ANS: 3
$M_{x}=\frac{-5+-1}{2}=-\frac{6}{2}=-3 M_{y}=\frac{5+-1}{2}=\frac{4}{2}=2$.
PTS: 2 REF: 081902geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
KEY: general
223 ANS: 1
$m_{\overline{A B}}=\frac{-3-5}{-1-6}=\frac{-8}{-7}=\frac{8}{7}$
PTS: 2 REF: 062315geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
224 ANS: 3
$\frac{7-1}{0-2}=\frac{6}{-2}=-3$ The diagonals of a rhombus are perpendicular.

PTS: 2 REF: 011719geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
225 ANS: 1
$m_{\text {TA }}^{-}=-1 \quad y=m x+b$
$m_{\overline{E M}}=1 \quad 1=1(2)+b$

$$
-1=b
$$

PTS: 2 REF: 081614geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
KEY: general
226 ANS: 4
$\frac{-2-1}{-1--3}=\frac{-3}{2} \quad \frac{3-2}{0-5}=\frac{1}{-5} \quad \frac{3-1}{0--3}=\frac{2}{3} \quad \frac{2--2}{5--1}=\frac{4}{6}=\frac{2}{3}$
PTS: 2
REF: 081522geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
KEY: general

227
ANS:
$m_{\overline{T S}}=\frac{-10}{6}=-\frac{5}{3} m_{\overline{S R}}=\frac{3}{5}$ Since the slopes of $\overline{T S}$ and $\overline{S R}$ are opposite reciprocals, they are perpendicular and form a right angle. $\triangle R S T$ is a right triangle because $\angle S$ is a right angle. $P(0,9) m_{\overline{R P}}=\frac{-10}{6}=-\frac{5}{3} m_{P T}=\frac{3}{5}$
Since the slopes of all four adjacent sides ($\overline{T S}$ and $\overline{S R}, \overline{S R}$ and $\overline{R P}, \overline{P T}$ and $\overline{T S}, \overline{R P}$ and $\overline{P T}$) are opposite reciprocals, they are perpendicular and form right angles. Quadrilateral $R S T P$ is a rectangle because it has four right angles.

PTS: 6 REF: 061536geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane KEY: grids
ANS:
$\triangle P A T$ is an isosceles triangle because sides $\overline{A P}$ and $\overline{A T}$ are congruent $\left(\sqrt{3^{2}+11^{2}}=\sqrt{7^{2}+9^{2}}=\sqrt{130}\right)$.
$R(2,9)$. Quadrilateral PART is a parallelogram because the opposite sides are parallel since they have equal slopes

$$
\left(m_{\overline{A R}}=\frac{4}{6}=\frac{2}{3} ; m_{\overline{P T}}=\frac{4}{6}=\frac{2}{3} ; m_{\overline{P A}}=-\frac{11}{3} ; m_{\overline{R T}}=-\frac{11}{3}\right)
$$

PTS: 6
REF: 011835geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane KEY: grids

ANS:
$A B=\sqrt{(-5-1)^{2}+(3-2)^{2}}=\sqrt{37}, B C=\sqrt{(-5--6)^{2}+(3--3)^{2}}=\sqrt{37}$ (because $A B=B C, \triangle A B C$ is isosceles). $(0,-4) . A D=\sqrt{(1-0)^{2}+(2--4)^{2}}=\sqrt{37}, C D=\sqrt{(-6-0)^{2}+(-3--4)^{2}}=\sqrt{37}$, $m_{\overline{A B}}=\frac{3-2}{-5-1}=-\frac{1}{6}, m_{\overline{C B}}=\frac{3--3}{-5--6}=6(A B C D$ is a square because all four sides are congruent, consecutive sides
are perpendicular since slopes are opposite reciprocals and so $\angle B$ is a right angle).

PTS: 6 REF: 081935geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane KEY: grids
ANS:
$\sqrt{(-2--7)^{2}+(4--1)^{2}}=\sqrt{(-2--3)^{2}+(4--3)^{2}}$ Since $\overline{A B}$ and $\overline{A C}$ are congruent, $\triangle A B C$ is isosceles.

$$
\sqrt{50}=\sqrt{50}
$$

$A^{\prime}(3,-1), B^{\prime}(-2,-6), C^{\prime}(2,-8) . A C=\sqrt{50} A A^{\prime}=\sqrt{(-2-3)^{2}+(4--1)^{2}}, A^{\prime} C^{\prime}=\sqrt{50}$ (translation preserves

$$
=\sqrt{50}
$$

distance), $C C^{\prime}=\sqrt{(-3-2)^{2}+(-3--8)^{2}}$ Since all four sides are congruent, $A A^{\prime} C^{\prime} C$ is a rhombus.

PTS: 6
REF: 062235geo
NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane KEY: grids

231
ANS:
$m_{\overline{D U}}=\frac{9}{2} m_{\overline{U C}}=-\frac{2}{9}$ Since the slopes of $\overline{D U}$ and $\overline{U C}$ are opposite reciprocals, they are perpendicular and form a right angle. $\triangle D U C$ is a right triangle because $\angle D U C$ is a right angle. Each side of quadrilateral $D U C U^{\prime}$ is $\sqrt{9^{2}+2^{2}}=\sqrt{85}$. Quadrilateral $D U C U^{\prime}$ is a square because all four side are congruent and it has a right angle.

PTS: 6
REF: 012335geo
NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
232 ANS:

PTS: 2 REF: 011731geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane KEY: grids
ANS:

1) Quadrilateral $H Y P E$ with $H(-3,6), Y(2,9), P(8,-1)$, and $E(3,-4)$ (Given); 2) Slope of $\overline{H Y}$ and $\overline{P E}$ is $\frac{3}{5}$, slope of $\overline{Y P}$ and $\overline{E H}$ is $-\frac{5}{3}$ (Slope determined graphically); 3) $\overline{H Y} \perp \overline{Y P}, \overline{P E} \perp \overline{E H}$, $\overline{Y P} \perp \overline{P E}, \overline{E Y} \perp \overline{H Y}$ (The slopes of perpendicular lines are opposite reciprocals); 4) $\angle H, \angle Y, \angle P, \angle E$ are right angles (Perpendicular lines form right angles); 5) HYPE is a rectangle (A rectangle has four right angles).

PTS: 4
KEY: grids

234
ANS:

$$
m_{\overline{M H}}=\frac{6}{10}=\frac{3}{5}, m_{\overline{A T}}=\frac{6}{10}=\frac{3}{5}, m_{\overline{M A}}=-\frac{5}{3}, m_{H T}=-\frac{5}{3} ; \overline{M H} \| \overline{A T} \text { and } \overline{M A} \| \overline{H T} .
$$

MATH is a parallelogram since both sides of opposite sides are parallel. $m_{M A}=-\frac{5}{3}, m_{A T}=\frac{3}{5}$. Since the slopes are negative reciprocals, $\overline{M A} \perp \overline{A T}$ and $\angle A$ is a right angle. MATH is a rectangle because it is a parallelogram with a right angle.

PTS: 6 REF: 081835geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane KEY: grids
ANS:

$\overline{A D}$ and $\overline{B C}$ have equal slope, so are parallel. $\overline{A B}$ and $\overline{C D}$ have equal slope, so are parallel. Since both pairs of opposite sides are parallel, $A B C D$ is a parallelogram. The slope of $\overline{A B}$ and $\overline{B C}$ are not opposite reciprocals, so they are not perpendicular, and so $\angle B$ is not a right angle. $A B C D$ is not a rectangle since all four angles are not right angles.

PTS: 4
REF: 082334geo
NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane

236 ANS:

$$
\begin{aligned}
\overline{A N} & \cong \overline{A T} \cong \overline{T S} \cong \overline{S N} \\
\sqrt{5^{2}+5^{2}} & =\sqrt{7^{2}+1^{2}}=\sqrt{5^{2}+5^{2}}=\sqrt{7^{2}+1^{2}} \\
\sqrt{50} & =\sqrt{50}=\sqrt{50}=\sqrt{50}
\end{aligned}
$$

because all four sides are congruent.
PTS: 4 REF: 012032geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane KEY: grids
ANS:
A rhombus has four congruent sides. Since each side measures $\sqrt{85}$, all four sides of MATH are congruent, and

MATH is a rhombus. $16 \times 8-(21+9+21+9)=68$

PTS: 4 REF: 062334geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
238 ANS:
$M\left(\frac{4+0}{2}, \frac{6-1}{2}\right)=M\left(2, \frac{5}{2}\right) m=\frac{6--1}{4-0}=\frac{7}{4} m_{\perp}=-\frac{4}{7} y-2.5=-\frac{4}{7}(x-2)$ The diagonals, $\overline{M T}$ and $\overline{A H}$, of rhombus MATH are perpendicular bisectors of each other.

PTS: 4
REF: fall1411geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane KEY: grids

239 ANS:
$\overline{P Q} \sqrt{(8-3)^{2}+(3--2)^{2}}=\sqrt{50} \overline{Q R} \sqrt{(1-8)^{2}+(4-3)^{2}}=\sqrt{50} \overline{R S} \sqrt{(-4-1)^{2}+(-1-4)^{2}}=\sqrt{50}$ $\overline{P S} \sqrt{(-4-3)^{2}+(-1--2)^{2}}=\sqrt{50} P Q R S$ is a rhombus because all sides are congruent. $m_{P Q}=\frac{8-3}{3--2}=\frac{5}{5}=1$ $m_{\overline{Q R}}=\frac{1-8}{4-3}=-7$ Because the slopes of adjacent sides are not opposite reciprocals, they are not perpendicular

and do not form a right angle. Therefore $P Q R S$ is not a square.
PTS: 6 REF: 061735geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane KEY: grids
ANS:

$$
\begin{aligned}
& m_{\overline{A D}}=\frac{0-6}{1--1}=-3 \overline{A D} \| \overline{B C} \text { because their slopes are equal. } A B C D \text { is a trapezoid } \\
& m_{\overline{B C}}=\frac{-1-8}{6-3}=-3
\end{aligned}
$$

because it has a pair of parallel sides. $A C=\sqrt{(-1-6)^{2}+(6--1)^{2}}=\sqrt{98} A B C D$ is not an isosceles trapezoid

$$
B D=\sqrt{(8-0)^{2}+(3-1)^{2}}=\sqrt{68}
$$

because its diagonals are not congruent.
PTS: 4
KEY: grids

241
ANS:

The slope of $\overline{M A}$ and $\overline{T H}$ equals $-\frac{1}{2}$. Distinct lines with equal slope are parallel. MATH is a trapezoid because it has a pair of parallel lines. (7,3). The slope of $\overline{M Y}$ and $\overline{T H}$ equals $-\frac{1}{2}$. The slope of $\overline{Y T}$ and $\overline{H M}$ equals 2 . The slopes of each side are opposite reciprocals and therefore perpendicular. Perpendicular sides form right angles, so MYTH has four right angles and is a rectangle.

PTS: 6 REF: 012435geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
ANS: 3
PTS: 2
REF: 061702geo NAT: G.GPE.B. 7
TOP: Polygons in the Coordinate Plane
ANS: 2
$7 \times 4-\frac{1}{2}((7)(1)+(3)(4)+(4)(3))=28-\frac{7}{2}-6-6=12.5$
PTS: 2 REF: 012407geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
ANS: 1

$$
(12 \cdot 11)-\left(\frac{1}{2}(12 \cdot 4)+\frac{1}{2}(7 \cdot 9)+\frac{1}{2}(11 \cdot 3)\right)=60
$$

PTS: 2
REF: 061815geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane

245 ANS: 3

PTS: 2
REF: 061622geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
246 ANS: 4

$$
\sqrt{8^{2}+2^{2}} \times \sqrt{4^{2}+1^{2}}=\sqrt{68} \times \sqrt{17}=\sqrt{4} \sqrt{17} \times \sqrt{17}=2 \cdot 17=34
$$

PTS: 2
REF: 082214geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
247 ANS: 2 Create two congruent triangles by drawing $\overline{B D}$, which has a length of 8 . Each triangle has an area of $\frac{1}{2}(8)(3)=12$.

PTS: 2 REF: 012018geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
248 ANS: 3
$4 \sqrt{(-1--3)^{2}+(5-1)^{2}}=4 \sqrt{20}$
PTS: 2 REF: 081703geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
249 ANS: 4
$4 \sqrt{(-1-2)^{2}+(2-3)^{2}}=4 \sqrt{10}$
PTS: 2 REF: 081808geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
250
$\sqrt{(-1-2)^{2}+(4-3)^{2}}=\sqrt{10}$
PTS: 2 REF: 011615geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane

251 ANS: 3

$$
\begin{aligned}
A & =\frac{1}{2} a b \quad 3-6=-3=x \\
24 & =\frac{1}{2} a(8) \frac{4+12}{2}=8=y \\
a & =6
\end{aligned}
$$

PTS: 2
REF: 081615geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
252 ANS:

PTS: 2 REF: 061926geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane 253 ANS:

PTS: 2 REF: 081928geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane 254 ANS:

$$
6 \times 12-\frac{1}{2}(12 \times 3)-\frac{1}{2}(6 \times 6)-\frac{1}{2}(6 \times 3)=27
$$

PTS: 2
REF: 012331geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane

255
ANS: 2
$6 \cdot 6=x(x-5)$

$$
\begin{aligned}
36 & =x^{2}-5 x \\
0 & =x^{2}-5 x-36 \\
0 & =(x-9)(x+4) \\
x & =9
\end{aligned}
$$

PTS: 2
REF: 061708geo
NAT: G.C.A. 2
TOP: Chords, Secants and Tangents
KEY: intersecting chords, length
ANS: 3
$8 \cdot 15=16 \cdot 7.5$
PTS: 2
REF: 061913geo
NAT: G.C.A. 2
TOP: Chords, Secants and Tangents
KEY: intersecting chords, length
ANS: 4 PTS: 2
TOP: Chords, Secants and Tangents
REF: 081922geo NAT: G.C.A. 2
KEY: intersecting chords, length
ANS: 2
slope of $\overline{O A}=\frac{4-0}{-3-0}=-\frac{4}{3} m_{\perp}=\frac{3}{4}$
PTS: 2 REF: 082223geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: radius drawn to tangent

PTS: 2 REF: 081814geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents KEY: tangents drawn from common point, length
ANS: 3
$5 \cdot \frac{10}{4}=\frac{50}{4}=12.5$
PTS: 2
REF: 081512geo NAT: G.C.A. 2
KEY: common tangents

261 ANS:
$\frac{3}{8} \cdot 56=21$
PTS: 2 REF: 081625geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: common tangents
262
ANS: 1 PTS: 2
REF: 082320geo NAT: G.C.A. 2
TOP: Chords, Secants and Tangents
KEY: secants drawn from common point, length
263 ANS: 2

$$
\begin{aligned}
8(x+8) & =6(x+18) \\
8 x+64 & =6 x+108 \\
2 x & =44 \\
x & =22
\end{aligned}
$$

PTS: 2 REF: 011715geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents KEY: secants drawn from common point, length
264 ANS:

$$
10 \cdot 6=15 x
$$

$$
x=4
$$

PTS: 2 REF: 061828geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents KEY: secants drawn from common point, length
ANS: 2
$x^{2}=3 \cdot 18$
$x=\sqrt{3 \cdot 3 \cdot 6}$
$x=3 \sqrt{6}$
PTS: 2 REF: 081712geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: secant and tangent drawn from common point, length
266
ANS: 2
$24^{2}=4 x \cdot 9 x \quad 5 \cdot 4=20$
$576=36 x^{2}$
$16=x^{2}$
$4=x$
PTS: 2 REF: 012312geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents KEY: secant and tangent drawn from common point, length

267
ANS:
$x^{2}=8 \times 12.5$
$x=10$
PTS: 2
REF: 012028geo NAT: G.C.A. 2
KEY: secant and tangent drawn from common point, length
268
ANS: 1
Parallel chords intercept congruent arcs. $\frac{180-130}{2}=25$

PTS: 2
REF: 081704geo NAT: G.C.A. 2
KEY: parallel lines
269
ANS:

$$
180-2(30)=120
$$

PTS: 2
REF: 011626geo NAT: G.C.A. 2
KEY: parallel lines
270
ANS: 3
$\frac{x+72}{2}=58$

$$
\begin{aligned}
x+72 & =116 \\
x & =44
\end{aligned}
$$

PTS: 2 REF: 061817geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents KEY: intersecting chords, angle
271 ANS:

PTS: 2
REF: 081827geo
NAT: G.C.A. 2
TOP: Chords, Secants and Tangents KEY: intersecting chords, angle

PTS: 2
REF: 011621geo
KEY: inscribed
TOP: Chords, Secants and Tangents

273 ANS: 4
$\frac{1}{2}(360-268)=46$
PTS: 2 REF: 061704geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: inscribed
274 ANS: 2

PTS: 2 REF: 062305geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: inscribed
275 ANS: 1
The other statements are true only if $\overline{A D} \perp \overline{B C}$.
PTS: 2 REF: 081623geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: inscribed
276
ANS: 2 PTS: 2
TOP: Chords, Secants and Tangents
REF: 061610geo NAT: G.C.A. 2
KEY: inscribed
ANS: 4 PTS: 2
TOP: Chords, Secants and Tangents
278 ANS: $1 \quad$ PTS: 2
TOP: Chords, Secants and Tangents
REF: 011816geo NAT: G.C.A. 2
KEY: inscribed
REF: 061508geo NAT: G.C.A. 2
KEY: inscribed
ANS: 4

PTS: 2
REF: 082218geo
NAT: G.C.A. 2
TOP: Chords, Secants and Tangents
KEY: inscribed
PTS: 2
REF: 011905geo NAT: G.C.A. 2
TOP: Chords, Secants and Tangents
KEY: inscribed

281 ANS: 2
$\frac{136-x}{2}=44$
$136-x=88$
$48=x$
PTS: 2
REF: 012414geo NAT: G.C.A. 2
TOP: Chords, Secants and Tangents KEY: secants drawn from common point, angle
ANS: 1

PTS: 2 REF: 061918geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents KEY: secants drawn from common point, angle
ANS:
$\frac{121-x}{2}=35$
$121-x=70$
$x=51$
PTS: 2
REF: 011927geo NAT: G.C.A. 2
TOP: Chords, Secants and Tangents
KEY: secants drawn from common point, angle
284
ANS: 1
$\frac{100-80}{2}=10$
PTS: 2
REF: 062219geo NAT: G.C.A. 2
KEY: secant and tangent drawn from common point, angle
285
ANS:
$\frac{152-56}{2}=48$
PTS: 2
REF: 011728geo NAT: G.C.A. 2 KEY: secant and tangent drawn from common point, angle

TOP: Chords, Secants and Tangents

TOP: Chords, Secants and Tangents

ANS:
$\frac{124-56}{2}=34$
PTS: 2 REF: 081930geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents KEY: secant and tangent drawn from common point, angle
ANS: 2
Since $\overline{A D} \| \overline{B C}, \overparen{A B} \cong \overparen{C D} . \mathrm{m} \angle A C B=\frac{1}{2} \mathrm{~m} \overparen{A B}$

$$
\mathrm{m} \angle C D F=\frac{1}{2} \mathrm{~m} \overparen{C D}
$$

PTS: 2
REF: 012323geo NAT: G.C.A. 2
KEY: chords and tangents
288
ANS: 1 PTS: 2
TOP: Chords, Secants and Tangents
ANS: 3 PTS: 2
TOP: Inscribed Quadrilaterals
290 ANS: 4

$$
\begin{aligned}
2 x+x+15 & =180 \quad 180-45=135 \\
3 x & =165 \\
x & =55
\end{aligned}
$$

PTS: 2 REF: 082224geo NAT: G.C.A. 3 TOP: Inscribed Quadrilaterals
291 ANS: 4
Opposite angles of an inscribed quadrilateral are supplementary.
PTS: 2 REF: 011821geo NAT: G.C.A. 3 TOP: Inscribed Quadrilaterals
292 ANS: 2

$$
\begin{aligned}
s^{2}+s^{2} & =7^{2} \\
2 s^{2} & =49 \\
s^{2} & =24.5 \\
s & \approx 4.9
\end{aligned}
$$

PTS: 2
REF: 081511geo NAT: G.C.A. 3
TOP: Inscribed Quadrilaterals

293 ANS:
$\frac{2+3}{15} \cdot 360=120 \frac{120}{2}=60$
PTS: 2 REF: 062226geo
ANS: 2
PTS: 2
TOP: Equations of Circles
295
ANS: 3
$x^{2}+4 x+4+y^{2}-6 y+9=12+4+9$

$$
(x+2)^{2}+(y-3)^{2}=25
$$

PTS: 2
REF: 081509geo
NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
296
ANS: 2
$x^{2}+y^{2}+6 y+9=7+9$
$x^{2}+(y+3)^{2}=16$
PTS: 2
REF: 061514geo
NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
297

298
PTS: 2
REF: 011617geo
NAT: G.GPE.A. 1 TOP: Equations of Circles
ANS: 1

NAT: G.C.A. 3 TOP: Inscribed Quadrilaterals
REF: 061603geo NAT: G.GPE.A. 1
KEY: find center and radius | completing the square

ANS: 4
$x^{2}+6 x+9+y^{2}-4 y+4=23+9+4$

$$
(x+3)^{2}+(y-2)^{2}=36
$$

$x^{2}-4 x+4+y^{2}+8 y+16=-11+4+16$

$$
(x-2)^{2}+(y+4)^{2}=9
$$

PTS: 2
REF: 081616geo
NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
299
ANS: 1
$x^{2}+y^{2}-12 y+36=-20+36$

$$
x^{2}+(y-6)^{2}=16
$$

PTS: 2
REF: 061712geo
NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square

300
ANS: 2
$x^{2}+y^{2}-6 x+2 y=6$
$x^{2}-6 x+9+y^{2}+2 y+1=6+9+1$

$$
(x-3)^{2}+(y+1)^{2}=16
$$

PTS: 2
REF: 011812geo
NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
ANS: 4
$x^{2}+8 x+16+y^{2}-12 y+36=144+16+36$

$$
(x+4)^{2}+(y-6)^{2}=196
$$

PTS: 2 REF: 061920geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
ANS: 4

$$
x^{2}-8 x+y^{2}+6 y=39
$$

$x^{2}-8 x+16+y^{2}+6 y+9=39+16+9$

$$
(x-4)^{2}+(y+3)^{2}=64
$$

PTS: 2 REF: 081906geo NAT: G.GPE.A. 1 TOP: Equations of Circles KEY: completing the square
ANS: 2
$x^{2}+2 x+1+y^{2}-16 y+64=-49+1+64$

$$
(x+1)^{2}+(y-8)^{2}=16
$$

PTS: 2 REF: 012314geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
304
ANS: 4

$$
x^{2}+6 x+y^{2}-2 y=-1
$$

$x^{2}+6 x+9+y^{2}-2 y+1=-1+9+1$

$$
(x+3)^{2}+(y-1)^{2}=9
$$

PTS: 2 REF: 062309geo NAT: G.GPE.A. 1 TOP: Equations of Circles KEY: completing the square
305
ANS: 3
$x^{2}+12 x+36+y^{2}=-27+36$

$$
(x+6)^{2}+y^{2}=9
$$

PTS: 2
REF: 082313geo
NAT: G.GPE.A. 1 TOP: Equations of Circles KEY: completing the square

306 ANS: 1
$x^{2}+y^{2}-12 y+36=20.25+36 \sqrt{56.25}=7.5$

$$
x^{2}+(y-6)^{2}=56.25
$$

PTS: 2 REF: 082219geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
307
ANS: 1
$x^{2}+y^{2}-6 y+9=-1+9$
$x^{2}+(y-3)^{2}=8$
PTS: 2 REF: 011718geo NAT: G.GPE.A. 1 TOP: Equations of Circles KEY: completing the square
308 ANS: 1

$$
(x-1)^{2}+(y-4)^{2}=\left(\frac{10}{2}\right)^{2}
$$

$x^{2}-2 x+1+y^{2}-8 y+16=25$

$$
x^{2}-2 x+y^{2}-8 y=8
$$

PTS: 2
REF: 011920geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: write equation, given center and radius
309 ANS: 2
The line $x=-2$ will be tangent to the circle at $(-2,-4)$. A segment connecting this point and $(2,-4)$ is a radius of the circle with length 4.

PTS: 2 REF: 012020geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: other
310 ANS: 4
$x^{2}+4 x+4+y^{2}-8 y+16=-16+4+16$

$$
(x+2)^{2}+(y-4)^{2}=4
$$

PTS: 2
REF: 081821geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
311 ANS: 2

$$
\begin{aligned}
(x-5)^{2}+(y-2)^{2} & =16 \\
x^{2}-10 x+25+y^{2}-4 y+4 & =16 \\
x^{2}-10 x+y^{2}-4 y & =-13
\end{aligned}
$$

PTS: 2
REF: 061820geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: write equation, given graph

312 ANS: 1

Since the midpoint of $\overline{A B}$ is $(3,-2)$, the center must be either $(5,-2)$ or $(1,-2)$.
$r=\sqrt{2^{2}+5^{2}}=\sqrt{29}$
PTS: 2 REF: 061623geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: other
313 ANS:
$x^{2}-6 x+9+y^{2}+8 y+16=56+9+16(3,-4) ; r=9$

$$
(x-3)^{2}+(y+4)^{2}=81
$$

PTS: 2
REF: 081731geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
314 ANS:
$x^{2}+6 x+9+y^{2}-6 y+9=63+9+9(-3,3) ; r=9$

$$
(x+3)^{2}+(y-3)^{2}=81
$$

PTS: 2 REF: 062230geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
315 ANS:
$x^{2}+16 x++64+y^{2}+12 y+36=44+64+36(-8,-6) ; r=12$
$(x+8)^{2}+(y+6)^{2}=144$
PTS: 2 REF: 012430geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
316 ANS: 3
$r=\sqrt{(7-3)^{2}+(1--2)^{2}}=\sqrt{16+9}=5$
PTS: 2 REF: 061503geo NAT: G.GPE.B. 4 TOP: Circles in the Coordinate Plane
317 ANS: 3
$\sqrt{(-5)^{2}+12^{2}}=\sqrt{169} \sqrt{11^{2}+(2 \sqrt{12})^{2}}=\sqrt{121+48}=\sqrt{169}$
PTS: 2
REF: 011722geo NAT: G.GPE.B. 4 TOP: Circles in the Coordinate Plane

318 ANS:
Yes. $\quad(x-1)^{2}+(y+2)^{2}=4^{2}$

$$
\begin{aligned}
(3.4-1)^{2}+(1.2+2)^{2} & =16 \\
5.76+10.24 & =16 \\
16 & =16
\end{aligned}
$$

PTS: 2 REF: 081630geo NAT: G.GPE.B. 4 TOP: Circles in the Coordinate Plane
319 ANS: 3
$2 \times \frac{40 \times 16}{33 \frac{1}{3}}=38.4$
PTS: 2 REF: 012404geo NAT: G.MG.A. 3 TOP: Area of Polygons
320 ANS: 1
$\frac{64}{4}=1616^{2}=256 \quad 2 w+2(w+2)=6415 \times 17=255 \quad 2 w+2(w+4)=64 \quad 14 \times 18=252 \quad 2 w+2(w+6)=64$
$w=15$
$w=14$
$w=13$
$13 \times 19=247$
PTS: 2 REF: 011708geo NAT: G.MG.A. 3 TOP: Area of Polygons
321 ANS:
$x^{2}+x^{2}=58^{2} \quad A=(\sqrt{1682}+8)^{2} \approx 2402.2$

$$
\begin{aligned}
2 x^{2} & =3364 \\
x & =\sqrt{1682}
\end{aligned}
$$

PTS: 4
REF: 081734geo NAT: G.MG.A. 3 TOP: Area of Polygons
322 ANS: 2
$S A=6 \cdot 12^{2}=864$
$\frac{864}{450}=1.92$
PTS: 2 REF: 061519geo NAT: G.MG.A. 3 TOP: Surface Area
323 ANS: 2
x is $\frac{1}{2}$ the circumference. $\frac{C}{2}=\frac{10 \pi}{2} \approx 16$
PTS: 2
REF: 061523geo NAT: G.GMD.A. 1 TOP: Circumference
324 ANS: 1
$\frac{1000}{20 \pi} \approx 15.9$
PTS: 2 REF: 011623geo NAT: G.GMD.A. 1 TOP: Circumference

325 ANS: 4
$(8 \times 2)+(3 \times 2)-\left(\frac{18}{12} \times \frac{21}{12}\right) \approx 19$
PTS: 2 REF: 081917geo NAT: G.MG.A. 3 TOP: Compositions of Polygons and Circles
KEY: area
326 ANS: 1
PTS: 2
REF: 011918geo
NAT: G.MG.A. 3
TOP: Compositions of Polygons and Circles
KEY: area
327 ANS:
$2 \times(90 \times 10)+(\pi)\left(30^{2}\right)-(\pi)\left(20^{2}\right) \approx 3371$
PTS: 2 REF: 011931geo NAT: G.MG.A. 3 TOP: Compositions of Polygons and Circles
KEY: area
328 ANS:
$\frac{5 \pi(2)^{2}+5(6)(4)}{25} \approx 7.38 \mathrm{cans}$
PTS: 2 REF: 082328geo NAT: G.MG.A. 3 TOP: Compositions of Polygons and Circles
KEY: area
329
ANS: 3
$\theta=\frac{s}{r}=\frac{2 \pi}{10}=\frac{\pi}{5}$
PTS: 2 REF: fall1404geo NAT: G.C.B. 5 TOP: Arc Length
KEY: angle
330
ANS: 4
$C=12 \pi \frac{120}{360}(12 \pi)=\frac{1}{3}(12 \pi)$
PTS: 2
REF: 061822geo
NAT: G.C.B. 5
TOP: Arc Length
KEY: arc length
331 ANS: 3
$\frac{s_{L}}{s_{S}}=\frac{6 \theta}{4 \theta}=1.5$

PTS: 2
REF: 011824geo
NAT: G.C.B. 5
TOP: Arc Length
KEY: arc length

332 ANS:
$s=\theta \cdot r \quad s=\theta \cdot r \quad$ Yes, both angles are equal.
$\pi=A \cdot 4 \frac{13 \pi}{8}=B \cdot 6.5$
$\frac{\pi}{4}=A$

$$
\frac{\pi}{4}=B
$$

PTS: 2
REF: 061629geo
NAT: G.C.B. 5 TOP: Arc Length
KEY: arc length
333 ANS: 2
PTS: 2
REF: 081619geo NAT: G.C.B. 5
TOP: Sectors
334 ANS: 2
$\frac{30}{360}(5)^{2}(\pi) \approx 6.5$
PTS: 2
REF: 081818geo
NAT: G.C.B. 5
TOP: Sectors
335 ANS: 4
$\frac{300}{360} \cdot 8^{2} \pi=\frac{160 \pi}{3}$
PTS: 2
REF: 011721geo
NAT: G.C.B. 5
TOP: Sectors
336 ANS: 4
$\left(\frac{360-120}{360}\right)(\pi)\left(9^{2}\right)=54 \pi$
PTS: 2 REF: 081912geo NAT: G.C.B. 5 TOP: Sectors
337 ANS: 2
$\frac{70}{360} \cdot 6^{2} \pi=7 \pi$
PTS: 2
REF: 082309geo
NAT: G.C.B. 5
TOP: Sectors
338 ANS: 3
$\frac{60}{360} \cdot 6^{2} \pi=6 \pi$
PTS: 2
REF: 081518geo
NAT: G.C.B. 5
TOP: Sectors
339 ANS: 3
$\frac{150}{360} \cdot 9^{2} \pi=33.75 \pi$

PTS: 2
340 ANS: 4
$\frac{54}{360} \cdot 10^{2} \pi=15 \pi$
PTS: 2
REF: 062224geo
NAT: G.C.B. 5
TOP: Sectors

341 ANS: 4
$\frac{140}{360} \cdot 9^{2} \pi=31.5 \pi$
PTS: 2 REF: 012317geo NAT: G.C.B. 5 TOP: Sectors
342 ANS: 3
$\frac{x}{360} \cdot 3^{2} \pi=2 \pi \quad 180-80=100$

$$
x=80 \quad \frac{180-100}{2}=40
$$

PTS: 2 REF: 011612geo NAT: G.C.B. 5 TOP: Sectors
343 ANS: 3
$\frac{60}{360} \cdot 8^{2} \pi=\frac{1}{6} \cdot 64 \pi=\frac{32 \pi}{3}$
PTS: 2 REF: 061624geo NAT: G.C.B. 5 TOP: Sectors
344 ANS: 2
$\frac{\frac{512 \pi}{3}}{\left(\frac{32}{2}\right)^{2} \pi} \cdot 2 \pi=\frac{4 \pi}{3}$

PTS: 2 REF: 081723geo NAT: G.C.B. 5 TOP: Sectors
345 ANS: 2

$$
\begin{aligned}
\frac{x}{360}(15)^{2} \pi & =75 \pi \\
x & =120
\end{aligned}
$$

PTS: 2 REF: 011914geo NAT: G.C.B. 5 TOP: Sectors
346 ANS:

$$
\begin{aligned}
A=6^{2} \pi=36 \pi \quad 36 \pi \cdot \frac{x}{360} & =12 \pi \\
x & =360 \cdot \frac{12}{36} \\
x & =120
\end{aligned}
$$

PTS: 2
REF: 061529geo
NAT: G.C.B. 5
TOP: Sectors

347 ANS:

$$
\begin{aligned}
\frac{Q}{360}(\pi)\left(25^{2}\right) & =(\pi)\left(25^{2}\right)-500 \pi \\
Q & =\frac{125 \pi(360)}{625 \pi} \\
Q & =72
\end{aligned}
$$

PTS: 2
REF: 011828geo
NAT: G.C.B. 5
TOP: Sectors
348 ANS:
$\frac{72}{360}(\pi)\left(10^{2}\right)=20 \pi$
PTS: 2 REF: 061928geo NAT: G.C.B. 5 TOP: Sectors
349 ANS:
$\frac{102}{360}(\pi)\left(38^{2}\right) \approx 1285$
PTS: 2 REF: 012426geo NAT: G.C.B. 5 TOP: Sectors 350 ANS:
$\frac{\left(\frac{180-20}{2}\right)}{360} \times \pi(6)^{2}=\frac{80}{360} \times 36 \pi=8 \pi$

PTS: 4
REF: spr1410geo NAT: G.C.B. 5 TOP: Sectors
351 ANS:

PTS: 2
REF: 082231geo NAT: G.C.B. 5
352 ANS:
$\frac{40}{360} \cdot \pi(4.5)^{2}=2.25 \pi$
PTS: 2
REF: 061726geo
NAT: G.C.B. 5
TOP: Sectors
353
ANS:
$\frac{80}{360} \cdot \pi(6.4)^{2} \approx 29$
PTS: 2
REF: 062328geo
NAT: G.C.B. 5
TOP: Sectors

354 ANS:
Each quarter in both stacks has the same base area. Therefore, each corresponding cross-section of the stacks will have the same area. Since the two stacks of quarters have the same height of 23 quarters, the two volumes must be the same.

PTS: 2 REF: spr1405geo NAT: G.GMD.A. 1 TOP: Volume
355 ANS:
Yes. The bases of the cylinders have the same area and the cylinders have the same height.
PTS: 2 REF: 081725geo NAT: G.GMD.A. 1 TOP: Volume
356 ANS:
Each triangular prism has the same base area. Therefore, each corresponding cross-section of the prisms will have the same area. Since the two prisms have the same height of 14 , the two volumes must be the same.

PTS: 2 REF: 061727geo NAT: G.GMD.A. 1 TOP: Volume
ANS: 2
$14 \times 16 \times 10=2240 \frac{2240-1680}{2240}=0.25$
PTS: 2 REF: 011604geo NAT: G.GMD.A. 3 TOP: Volume
KEY: prisms
358
ANS: 3
$3 \times 10 \times \frac{3}{12}=7.5 \mathrm{ft}^{3} \frac{7.5}{2}=3.754 \times 3.66=14.64$
PTS: 2 REF: 062311geo NAT: G.GMD.A. 3 TOP: Volume
KEY: prisms
359 ANS: 1
$.5 \mathrm{ft}^{3} \times \frac{1728 \text { in }^{3}}{1 \mathrm{ft}^{3}}=864$ in $^{3} \frac{43 \text { in } \times 30 \text { in } \times 9 \text { in }}{864 \text { in }^{3}} \approx 13.4$
PTS: 2 REF: 012419geo NAT: G.GMD.A. 3 TOP: Volume
KEY: prisms
360
ANS:
$2\left(\frac{36}{12} \times \frac{36}{12} \times \frac{4}{12}\right) \times 3.25=19.50$
PTS: 2 REF: 081831geo NAT: G.GMD.A. 3 TOP: Volume
KEY: prisms

361 ANS:
$\frac{1}{2}(5)(L)(4)=70$ $10 L=70$

$$
L=7
$$

PTS: 2 REF: 012330geo NAT: G.GMD.A. 3 TOP: Volume
KEY: prisms
362 ANS: 1
$V=\pi r^{2} h=\pi \cdot 5^{2} \cdot 8 \approx 200 \pi$
PTS: 2
REF: 082304geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cylinders
363
ANS: 4
$V=\pi\left(\frac{6.7}{2}\right)^{2}(4 \cdot 6.7) \approx 945$
PTS: 2 REF: 081620geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cylinders
364 ANS: 3
$V=\pi(8)^{2}(4-0.5)(7.48) \approx 5264$
PTS: 2 REF: 012320geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cylinders
365 ANS: 2
$\frac{100000 \mathrm{~g}}{7.48 \mathrm{~g} / \mathrm{ft}^{3}}=\pi\left(r^{2}\right)(30 \mathrm{ft})$
$11.92 \mathrm{ft} \approx r$
$23.8 \approx d$

PTS: 2 REF: 012424geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cylinders
366 ANS:
$\frac{\pi \cdot 11.25^{2} \cdot 33.5}{231} \approx 57.7$
PTS: 4 REF: 061632geo NAT: G.GMD.A. 3 TOP: Volume KEY: cylinders
367
$\left(\frac{2.5}{3}\right)(\pi)\left(\frac{8.25}{2}\right)^{2}(3) \approx 134$
PTS: 2
REF: 081931geo NAT: G.GMD.A. 3 TOP: Volume KEY: cylinders

368 ANS:
Theresa. $(30 \times 15 \times(4-0.5)) \mathrm{ft}^{3} \times \frac{7.48 \mathrm{~g}}{1 \mathrm{ft}^{3}} \times \frac{\$ 3.95}{100 \mathrm{~g}}=\$ 465.35,\left(\pi \times 12^{2} \times(4-0.5)\right) \mathrm{ft}^{3} \times \frac{7.48 \mathrm{~g}}{1 \mathrm{ft}^{3}} \times \frac{\$ 200}{6000 \mathrm{~g}}=\$ 394.79$
PTS: 4
REF: 011933geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cylinders
369 ANS:
$V=\frac{2}{3} \pi\left(\frac{6.5}{2}\right)^{2}(1) \approx 2222 \cdot 7.48 \approx 165$
PTS: 4 REF: 061933geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cylinders
370 ANS:
$\pi(3.5)^{2}(9) \approx 346 ; \pi(4.5)^{2}(13) \approx 827 ; \frac{827}{346} \approx 2.4 ; 3$ cans
PTS: 4 REF: 062333geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cylinders
371 ANS:
$\begin{aligned} 20000 \mathrm{~g}\left(\frac{1 \mathrm{ft}^{3}}{7.48 \mathrm{~g}}\right)=2673.8 \mathrm{ft}^{3} \quad 2673.8 & =\pi r^{2}(34.5) 9.9+1=10.9 \\ r & \approx 4.967 \\ d & \approx 9.9\end{aligned}$
PTS: 4 REF: 061734geo NAT: G.GMD.A. 3 TOP: Volume KEY: cylinders
372 ANS:
$\frac{10 \pi(.5)^{2} 4}{\frac{2}{3}} \approx 47.1 \quad 48$ bags
PTS: 4 REF: 062234geo NAT: G.GMD.A. 3 TOP: Volume KEY: cylinders
373 ANS:
$\left(7^{2}\right) 18 \pi=16 x^{2} \frac{80}{13.2} \approx 6.1 \frac{60}{13.2} \approx 4.56 \times 4=24$

$$
13.2 \approx x
$$

PTS: 4 REF: 012034geo NAT: G.GMD.A. 3 TOP: Volume KEY: cylinders
374 ANS: 2
$V=\frac{1}{3} \cdot 6^{2} \cdot 12=144$
PTS: 2
REF: 011607geo NAT: G.GMD.A. 3 TOP: Volume
KEY: pyramids

375 ANS: 2
$V=\frac{1}{3} \cdot 197^{2} \cdot 107=1,384,188$
PTS: 2
REF: 082208geo NAT: G.GMD.A. 3 TOP: Volume
KEY: pyramids
ANS: 2
$V=\frac{1}{3}\left(\frac{36}{4}\right)^{2} \cdot 15=405$
PTS: 2 REF: 011822geo NAT: G.GMD.A. 3 TOP: Volume
KEY: pyramids
377 ANS: 2
$V=\frac{1}{3}\left(\frac{60}{12}\right)^{2}\left(\frac{84}{12}\right) \approx 58$

PTS: 2
KEY: pyramids
ANS: 2
$V=\frac{1}{3}(8)^{2} \cdot 6=128$
PTS: 2 REF: 061906geo NAT: G.GMD.A. 3 TOP: Volume
KEY: pyramids

PTS: 2
REF: 081921geo NAT: G.GMD.A. 3 TOP: Volume
KEY: pyramids
ANS: 1
$84=\frac{1}{3} \cdot s^{2} \cdot 7$
$6=s$
PTS: 2
REF: 061716geo NAT: G.GMD.A. 3 TOP: Volume
KEY: pyramids
381
ANS: 3
$\sqrt{40^{2}-\left(\frac{64}{2}\right)^{2}}=24 \quad V=\frac{1}{3}(64)^{2} \cdot 24=32768$

ANS: 4
$2592276=\frac{1}{3} \cdot s^{2} \cdot 146.5$
$230 \approx s$
PTS: 2
KEY: pyramids

382
ANS: 1
$82.8=\frac{1}{3}(4.6)(9) h$
$h=6$
PTS: 2
REF: 061810geo NAT: G.GMD.A. 3 TOP: Volume KEY: pyramids
ANS: 1
$h=\sqrt{6.5^{2}-2.5^{2}}=6, V=\frac{1}{3} \pi(2.5)^{2} 6=12.5 \pi$
PTS: 2
REF: 011923geo NAT: G.GMD.A. 3 TOP: Volume KEY: cones
ANS: 1
$r=8$, forming an 8-15-17 triple. $V=\frac{1}{3} \pi(8)^{2} 15=320 \pi$
PTS: 2
REF: 082318geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cones
385
2
$V=\frac{1}{3} \pi \cdot(2.5)^{2} \cdot 7.2 \cong 47.1$

PTS: 2 REF: 062303geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cones
386 ANS: 1
$V=\frac{1}{3} \pi\left(\frac{1.5}{2}\right)^{2}\left(\frac{4}{2}\right) \approx 1.2$
PTS: 2
REF: 011724geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cones
387

ANS: 2

$$
108 \pi=\frac{6^{2} \pi h}{3}
$$

$$
\frac{324 \pi}{36 \pi}=h
$$

$$
9=h
$$

PTS: 2
REF: 012002geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cones

ANS: 3

$$
V=\frac{1}{3} \pi r^{2} h
$$

$54.45 \pi=\frac{1}{3} \pi(3.3)^{2} h$

$$
h=15
$$

PTS: 2 REF: 011807geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cones
389 ANS: 1
$\frac{\frac{1}{3} \pi(2)^{2}\left(\frac{1}{2}\right)}{\frac{1}{3} \pi(1)^{2}(1)}=2$

PTS: 2 REF: 012010geo NAT: G.GMD.A. 3 TOP: Volume KEY: cones
390 ANS:
If $d=10, r=5$ and $h=12 \quad V=\frac{1}{3} \pi\left(5^{2}\right)(12)=100 \pi$

PTS: 2 REF: 062227geo NAT: G.GMD.A. 3 TOP: Volume KEY: cones
391 ANS:
$C=2 \pi r \quad V=\frac{1}{3} \pi \cdot 5^{2} \cdot 13 \approx 340$
$31.416=2 \pi r$
$5 \approx r$

PTS: 4
REF: 011734geo NAT: G.GMD.A. 3 TOP: Volume KEY: cones
392
ANS:
Mary. Sally: $V=\pi \cdot 2^{2} \cdot 8 \approx 100.5$ Mary: $V=\frac{1}{3} \pi \cdot 3.5^{2} \cdot 12.5 \approx 160.4 \quad 160.4-100.5 \approx 60$
PTS: 4
REF: 012332geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cones

393
ANS:
Similar triangles are required to model and solve a proportion. $\frac{x+5}{1.5}=\frac{x}{1} \quad \frac{1}{3} \pi(1.5)^{2}(15)-\frac{1}{3} \pi(1)^{2}(10) \approx 24.9$

$$
\begin{aligned}
x+5 & =1.5 x \\
5 & =.5 x \\
10 & =x \\
10+5 & =15
\end{aligned}
$$

PTS: 6 REF: 061636geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cones
394 ANS: 1
$V=\frac{1}{2} \times \frac{4}{3} \pi r^{3}=\frac{1}{2} \times \frac{4}{3} \pi \cdot\left(\frac{12.6}{2}\right)^{3} \approx 523.7$
PTS: 2 REF: 061910geo NAT: G.GMD.A. 3 TOP: Volume KEY: spheres
395 ANS: 2
$19.9=\pi d \quad \frac{4}{3} \pi\left(\frac{19.9}{2 \pi}\right)^{3} \approx 133$
$\frac{19.9}{\pi}=d$
PTS: 2 REF: 012310geo NAT: G.GMD.A. 3 TOP: Volume KEY: spheres
396 ANS: 3
$\frac{\frac{4}{3} \pi\left(\frac{9.5}{2}\right)^{3}}{\frac{4}{3} \pi\left(\frac{2.5}{2}\right)^{3}} \approx 55$

PTS: 2 REF: 011614geo NAT: G.GMD.A. 3 TOP: Volume KEY: spheres
397
ANS:
$29.5=2 \pi r \quad V=\frac{4}{3} \pi \cdot\left(\frac{29.5}{2 \pi}\right)^{3} \approx 434$
$r=\frac{29.5}{2 \pi}$
PTS: 2 REF: 061831geo NAT: G.GMD.A. 3 TOP: Volume
KEY: spheres

398
ANS:
$100 \times \frac{1}{2} \times \frac{4}{3} \times \pi \times 2.8^{3} \approx 4598$
PTS: 2
REF: 062229geo NAT: G.GMD.A. 3 TOP: Volume
KEY: spheres
399
$\frac{4}{3} \pi \cdot(1)^{3}+\frac{4}{3} \pi \cdot(2)^{3} \frac{4}{3} \pi \cdot(3)^{3}=\frac{4}{3} \pi+\frac{32}{3} \pi+\frac{108}{3} \pi=48 \pi$
PTS: 2 REF: 062329geo NAT: G.GMD.A. 3 TOP: Volume KEY: spheres
400
$\sqrt[3]{\frac{3 V_{f}}{4 \pi}}-\sqrt[3]{\frac{3 V_{p}}{4 \pi}}=\sqrt[3]{\frac{3(294)}{4 \pi}}-\sqrt[3]{\frac{3(180)}{4 \pi}} \approx 0.6$
PTS: 2 REF: 061728geo NAT: G.GMD.A. 3 TOP: Volume
KEY: spheres
401 ANS: 4
TOP: Volume KEY: compositions
402 ANS: 1
$44\left(\left(10 \times 3 \times \frac{1}{4}\right)+\left(9 \times 3 \times \frac{1}{4}\right)\right)=627$
PTS: 2
REF: 082221geo NAT: G.GMD.A. 3 TOP: Volume
KEY: compositions
403 ANS: 2
$4 \times 4 \times 6-\pi(1)^{2}(6) \approx 77$
PTS: 2
REF: 011711geo NAT: G.GMD.A. 3 TOP: Volume
KEY: compositions
404
ANS: 3
$2.5 \times 1.25 \times(27 \times 12)+\frac{1}{2} \pi(1.25)^{2}(27 \times 12) \approx 1808$
PTS: 2
REF: 061723geo NAT: G.GMD.A. 3 TOP: Volume
KEY: compositions
405
ANS: 1
$20 \cdot 12 \cdot 45+\frac{1}{2} \pi(10)^{2}(45) \approx 17869$
PTS: 2 REF: 061807geo NAT: G.GMD.A. 3 TOP: Volume
KEY: compositions

406 ANS: 2
$8 \times 8 \times 9+\frac{1}{3}(8 \times 8 \times 3)=640$
PTS: 2 REF: 011909geo NAT: G.GMD.A. 3 TOP: Volume
KEY: compositions
407
ANS:
$\frac{(3.5)^{2}(1.5)-(2)^{2}(1.5)}{.6} \approx 20.6 .21$ bags
PTS: 4 REF: 082332geo NAT: G.GMD.A. 3 TOP: Volume KEY: compositions
408 ANS:
$V=(\pi)\left(4^{2}\right)(9)+\left(\frac{1}{2}\right)\left(\frac{4}{3}\right)(\pi)\left(4^{3}\right) \approx 586$
PTS: 4
REF: 011833geo NAT: G.GMD.A. 3 TOP: Volume KEY: compositions
409
ANS:
$((10 \times 6)+\sqrt{7(7-6)(7-4)(7-4)})(6.5) \approx 442$
PTS: 4
REF: 081934geo NAT: G.GMD.A. 3 TOP: Volume KEY: compositions

Geometry Regents Exam Questions by State Standard: Topic

 Answer Section410 ANS:

$$
\begin{array}{rlrl}
\tan 16.5 & =\frac{x}{13.5} & 9 \times 16 \times 4.5 & =648 \quad 3752-(35 \times 16 \times .5)=3472 \\
x & \approx 4 & 13.5 \times 16 \times 4.5 & =972 \quad 3472 \times 7.48 \approx 25971 \\
4+4.5 & =8.5 & \frac{1}{2} \times 13.5 \times 16 \times 4 & =432 \\
& & \frac{25971}{10.5} \approx 2473.4 \\
12.5 \times 16 \times 8.5 & =\frac{1700}{} \frac{2473.4}{60} \approx 41
\end{array}
$$

PTS: 6 REF: 081736geo NAT: G.GMD.A. 3 TOP: Volume
KEY: compositions
411 ANS: 3
Broome: $\frac{200536}{706.82} \approx 284$ Dutchess: $\frac{280150}{801.59} \approx 349$ Niagara: $\frac{219846}{522.95} \approx 420$ Saratoga: $\frac{200635}{811.84} \approx 247$
PTS: 2 REF: 061902geo NAT: G.MG.A. 2 TOP: Density
412 ANS: 1
Illinois: $\frac{12830632}{231.1} \approx 55520$ Florida: $\frac{18801310}{350.6} \approx 53626$ New York: $\frac{19378102}{411.2} \approx 47126$ Pennsylvania:
$\frac{12702379}{283.9} \approx 44742$
PTS: 2 REF: 081720geo NAT: G.MG.A. 2 TOP: Density
413 ANS: 3
$V=12 \cdot 8.5 \cdot 4=408$
$W=408 \cdot 0.25=102$
PTS: 2 REF: 061507geo NAT: G.MG.A. 2 TOP: Density
414 ANS: 1
$8 \times 3.5 \times 2.25 \times 1.055=66.465$
PTS: 2 REF: 012014geo NAT: G.MG.A. 2 TOP: Density

415 ANS: 2

$$
\begin{aligned}
C & =\pi d \quad V=\pi\left(\frac{2.25}{\pi}\right)^{2} \cdot 8 \approx 12.8916 \quad W=12.8916 \cdot 752 \approx 9694 \\
4.5 & =\pi d \\
\frac{4.5}{\pi} & =d \\
\frac{2.25}{\pi} & =r
\end{aligned}
$$

PTS: 2 REF: 081617geo NAT: G.MG.A. 2 TOP: Density
416 ANS: 2
$\frac{1}{3}(36)(10)(2.7)=324$
PTS: 2 REF: 082312geo NAT: G.MG.A. 2 TOP: Density
417 ANS: 1
$\frac{1}{3}(4.5)^{2}(10)(0.676) \approx 45.6$
PTS: 2 REF: 062212geo NAT: G.MG.A. 2 TOP: Density
418 ANS: 1
$\frac{1}{2}\left(\frac{4}{3}\right) \pi \cdot 5^{3} \cdot 62.4 \approx 16,336$
PTS: 2 REF: 061620geo NAT: G.MG.A. 2 TOP: Density
419 ANS: 1
$V=\frac{\frac{4}{3} \pi\left(\frac{10}{2}\right)^{3}}{2} \approx 261.8 \cdot 62.4=16,336$
PTS: 2 REF: 081516geo NAT: G.MG.A. 2 TOP: Density
420 ANS: 2
$\frac{4}{3} \pi \cdot 4^{3}+0.075 \approx 20$
PTS: 2 REF: 011619geo NAT: G.MG.A. 2 TOP: Density
421 ANS: 2
$\frac{4}{3} \pi \times\left(\frac{1.68}{2}\right)^{3} \times 0.6523 \approx 1.62$
PTS: 2 REF: 081914geo NAT: G.MG.A. 2 TOP: Density

422 ANS: 2
$\frac{11}{1.2 \mathrm{oz}}\left(\frac{16 \mathrm{oz}}{1 \mathrm{lb}}\right)=\frac{13 . \overline{3} \mathrm{l}}{\mathrm{lb}} \frac{13 . \overline{3} \mathrm{l}}{\mathrm{b}}\left(\frac{1 \mathrm{~g}}{3.785 \mathrm{l}}\right) \approx \frac{3.5 \mathrm{~g}}{1 \mathrm{lb}}$
PTS: 2 REF: 061618geo NAT: G.MG.A. 2 TOP: Density
423 ANS: 2
$24 \mathrm{ht}\left(\frac{0.75 \mathrm{in}^{3}}{\mathrm{ht}}\right)\left(\frac{0.323 \mathrm{lb}}{1 \mathrm{in}^{3}}\right)\left(\frac{\$ 3.68}{\mathrm{lb}}\right) \approx \$ 21.40$
PTS: 2 REF: 012306geo NAT: G.MG.A. 2 TOP: Density
424 ANS:
$\frac{137.8}{6^{3}} \approx 0.638$ Ash
PTS: 2 REF: 081525geo NAT: G.MG.A. 2 TOP: Density 425 ANS:
$\frac{40000}{\pi\left(\frac{51}{2}\right)^{2}} \approx 19.6 \frac{72000}{\pi\left(\frac{75}{2}\right)^{2}} \approx 16.3$ Dish A

PTS: 2 REF: 011630geo NAT: G.MG.A. 2 TOP: Density
426 ANS:
No, the weight of the bricks is greater than $900 \mathrm{~kg} .500 \times(5.1 \mathrm{~cm} \times 10.2 \mathrm{~cm} \times 20.3 \mathrm{~cm})=528,003 \mathrm{~cm}^{3}$.
$528,003 \mathrm{~cm}^{3} \times \frac{1 \mathrm{~m}^{3}}{1000000 \mathrm{~cm}^{3}}=0.528003 \mathrm{~m}^{3} . \frac{1920 \mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.528003 \mathrm{~m}^{3} \approx 1013 \mathrm{~kg}$.
PTS: 2 REF: fall1406geo NAT: G.MG.A. 2 TOP: Density
427 ANS:
$8 \times 3 \times \frac{1}{12} \times 43=86$
PTS: 2 REF: 012027geo NAT: G.MG.A. 2 TOP: Density
428 ANS:
$r=25 \mathrm{~cm}\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)=0.25 \mathrm{~m} \quad V=\pi(0.25 \mathrm{~m})^{2}(10 \mathrm{~m})=0.625 \pi \mathrm{~m}^{3} \quad W=0.625 \pi \mathrm{~m}^{3}\left(\frac{380 \mathrm{~K}}{1 \mathrm{~m}^{3}}\right) \approx 746.1 \mathrm{~K}$
$n=\frac{\$ 50,000}{\left(\frac{\$ 4.75}{\mathrm{~K}}\right)(746.1 \mathrm{~K})}=14.1 \quad 15$ trees
PTS: 4 REF: spr1412geo NAT: G.MG.A. 2 TOP: Density

429 ANS:
$h=\sqrt{16^{2}-\left(\frac{12}{2}\right)^{2}}=\sqrt{220} \quad V=\frac{1}{3}(12)^{2} \sqrt{220} \approx 712 \quad 712 \times 0.32 \approx 23$
PTS: 4 REF: 012433geo NAT: G.MG.A. 2 TOP: Density 430 ANS:

24 in $\times 12$ in $\times 18$ in $2.94 \approx 3 \frac{24}{3} \times \frac{12}{3} \times \frac{18}{3}=192192\left(\frac{4}{3} \pi\right)\left(\frac{2.94}{2}\right)^{3}(0.025) \approx 64$
PTS: 4 REF: 082234geo NAT: G.MG.A. 2 TOP: Density 431 ANS:
$\frac{4 \pi}{3}\left(2^{3}-1.5^{3}\right) \approx 19.419 .4 \cdot 1.308 \cdot 8 \approx 203$
PTS: 4 REF: 081834geo NAT: G.MG.A. 2 TOP: Density 432 ANS:
$V=\frac{1}{3} \pi\left(\frac{3}{2}\right)^{2} \cdot 8 \approx 18.85 \cdot 100=18851885 \cdot 0.52 \cdot 0.10=98.021 .95(100)-(37.83+98.02)=59.15$
PTS: 6 REF: 081536geo NAT: G.MG.A. 2 TOP: Density 433 ANS:
$V=\frac{1}{3} \pi\left(\frac{8.3}{2}\right)^{2}(10.2)+\frac{1}{2} \cdot \frac{4}{3} \pi\left(\frac{8.3}{2}\right)^{3} \approx 183.961+149.693 \approx 333.65 \mathrm{~cm}^{3} 333.65 \times 50=16682.7 \mathrm{~cm}^{3}$
$16682.7 \times 0.697=11627.8 \mathrm{~g} 11.6278 \times 3.83=\$ 44.53$
PTS: 6 REF: 081636geo NAT: G.MG.A. 2 TOP: Density
434 ANS:
$\tan 47=\frac{x}{8.5} \quad$ Cone: $V=\frac{1}{3} \pi(8.5)^{2}(9.115) \approx 689.6$ Cylinder: $V=\pi(8.5)^{2}(25) \approx 5674.5$ Hemisphere:

$$
x \approx 9.115
$$

$V=\frac{1}{2}\left(\frac{4}{3} \pi(8.5)^{3}\right) \approx 1286.3689 .6+5674.5+1286.3 \approx 7650$ No, because $7650 \cdot 62.4=477,360$ $477,360 \cdot 85=405,756$, which is greater than 400,000 .

PTS: 6 REF: 061535geo NAT: G.MG.A. 2 TOP: Density
435 ANS:
$V=\pi(10)^{2}(18)=1800 \pi$ in $^{3} 1800 \pi \mathrm{in}^{3}\left(\frac{1 \mathrm{ft}^{3}}{12^{3} \mathrm{in}^{3}}\right)=\frac{25}{24} \pi \mathrm{ft}^{3} \frac{25}{24} \pi(95.46)(0.85) \approx 266266+270=536$
PTS: 4
REF: 061834geo NAT: G.MG.A. 2 TOP: Density

436 ANS:
C: $V=\pi(26.7)^{2}(750)-\pi(24.2)^{2}(750)=95,437.5 \pi$

$$
95,437.5 \pi \mathrm{~cm}^{3}\left(\frac{2.7 \mathrm{~g}}{\mathrm{~cm}^{3}}\right)\left(\frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}\right)\left(\frac{\$ 0.38}{\mathrm{~kg}}\right)=\$ 307.62
$$

P: $V=40^{2}(750)-35^{2}(750)=281,250 \quad \$ 307.62-288.56=\$ 19.06$ $281,250 \mathrm{~cm}^{3}\left(\frac{2.7 \mathrm{~g}}{\mathrm{~cm}^{3}}\right)\left(\frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}\right)\left(\frac{\$ 0.38}{\mathrm{~kg}}\right)=\$ 288.56$

PTS: 6 REF: 011736geo NAT: G.MG.A. 2 TOP: Density 437 ANS:
$500 \times 1015 \mathrm{cc} \times \frac{\$ 0.29}{\mathrm{~kg}} \times \frac{7.95 \mathrm{~g}}{\mathrm{cc}} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}=\$ 1170$
PTS: 2 REF: 011829geo NAT: G.MG.A. 2 TOP: Density 438 ANS: 1 PTS: 2 REF: 061518geo NAT: G.SRT.A. 1

TOP: Line Dilations
439 ANS: 4
$\frac{18}{4.5}=4$
PTS: 2 REF: 011901geo NAT: G.SRT.A. 1 TOP: Line Dilations 440 ANS: 1
$y=\frac{1}{2} x+4 \frac{2}{4}=\frac{1}{2}$
$y=\frac{1}{2} x+2$
PTS: 2 REF: 012008geo NAT: G.SRT.A. 1 TOP: Line Dilations 441 ANS: 1
$\frac{9}{6}=\frac{3}{2}$
PTS: 2
REF: 061905geo NAT: G.SRT.A. 1 TOP: Line Dilations
442 ANS: 1
B: $(4-3,3-4) \rightarrow(1,-1) \rightarrow(2,-2) \rightarrow(2+3,-2+4)$
C: $(2-3,1-4) \rightarrow(-1,-3) \rightarrow(-2,-6) \rightarrow(-2+3,-6+4)$
PTS: 2 REF: 011713geo NAT: G.SRT.A. 1 TOP: Line Dilations 443 ANS: 4

A: $(-3-3,4-5) \rightarrow(-6,-1) \rightarrow(-12,-2) \rightarrow(-12+3,-2+5)$
B: $(5-3,2-5) \rightarrow(2,-3) \rightarrow(4,-6) \rightarrow(4+3,-6+5)$
PTS: 2
REF: 012322geo NAT: G.SRT.A. 1 TOP: Line Dilations

444 ANS: 4
$\sqrt{(32-8)^{2}+(28--4)^{2}}=\sqrt{576+1024}=\sqrt{1600}=40$
PTS: 2 REF: 081621geo NAT: G.SRT.A. 1 TOP: Line Dilations
445 ANS: 4
$3 \times 6=18$
PTS: 2 REF: 061602geo NAT: G.SRT.A. 1 TOP: Line Dilations
446 ANS: 2
PTS: 2
REF: 011610geo
NAT: G.SRT.A. 1
TOP: Line Dilations
447 ANS: $1 \quad$ PTS: 2
REF: 011814geo NAT: G.SRT.A. 1
TOP: Line Dilations
448 ANS: 3 PTS: 2 REF: 061706geo NAT: G.SRT.A. 1
TOP: Line Dilations
449 ANS: 1
A dilation by a scale factor of 4 centered at the origin preserves parallelism and $(0,-2) \rightarrow(0,-8)$.
PTS: 2 REF: 081910geo NAT: G.SRT.A. 1 TOP: Line Dilations
450 ANS: 4
PTS: 2
REF: 062223geo NAT: G.SRT.A. 1
TOP: Line Dilations
451 ANS: 3 PTS: 2 REF: 082212geo NAT: G.SRT.A. 1
TOP: Line Dilations
452 ANS: 2 PTS: 2 REF: 012416geo NAT: G.SRT.A. 1
TOP: Line Dilations
453 ANS: 2
The given line $h, 2 x+y=1$, does not pass through the center of dilation, the origin, because the y-intercept is at $(0,1)$. The slope of the dilated line, m, will remain the same as the slope of line $h,-2$. All points on line h, such as $(0,1)$, the y-intercept, are dilated by a scale factor of 4 ; therefore, the y-intercept of the dilated line is $(0,4)$ because the center of dilation is the origin, resulting in the dilated line represented by the equation $y=-2 x+4$.

PTS: 2 REF: spr1403geo NAT: G.SRT.A. 1 TOP: Line Dilations
454 ANS: 2
The line $y=2 x-4$ does not pass through the center of dilation, so the dilated line will be distinct from $y=2 x-4$. Since a dilation preserves parallelism, the line $y=2 x-4$ and its image will be parallel, with slopes of 2 . To obtain the y-intercept of the dilated line, the scale factor of the dilation, $\frac{3}{2}$, can be applied to the y-intercept, $(0,-4)$. Therefore, $\left(0 \cdot \frac{3}{2},-4 \cdot \frac{3}{2}\right) \rightarrow(0,-6)$. So the equation of the dilated line is $y=2 x-6$.

PTS: 2
REF: fall1403geo NAT: G.SRT.A. 1 TOP: Line Dilations

455
ANS: 4
The line $y=\frac{3}{2} x-4$ does not pass through the center of dilation, so the dilated line will be distinct from $y=\frac{3}{2} x-4$. Since a dilation preserves parallelism, the line $y=\frac{3}{2} x-4$ and its image will be parallel, with slopes of $\frac{3}{2}$. To obtain the y-intercept of the dilated line, the scale factor of the dilation, $\frac{3}{4}$, can be applied to the y-intercept, $(0,-4)$. Therefore, $\left(0 \cdot \frac{3}{4},-4 \cdot \frac{3}{4}\right) \rightarrow(0,-3)$. So the equation of the dilated line is $y=\frac{3}{2} x-3$.

PTS: 2 REF: 011924geo NAT: G.SRT.A. 1 TOP: Line Dilations
456 ANS: 4
Another equation of line t is $y=3 x-6$. $-6 \bullet \frac{1}{2}=-3$
PTS: 2 REF: 012319geo NAT: G.SRT.A. 1 TOP: Line Dilations
457 ANS: 2
$3 y=-6 x+3$
$y=-2 x+1$
PTS: 2 REF: 062319geo NAT: G.SRT.A. 1 TOP: Line Dilations
458 ANS: 1
The line $3 y=-2 x+8$ does not pass through the center of dilation, so the dilated line will be distinct from $3 y=-2 x+8$. Since a dilation preserves parallelism, the line $3 y=-2 x+8$ and its image $2 x+3 y=5$ are parallel, with slopes of $-\frac{2}{3}$.

PTS: 2 REF: 061522geo NAT: G.SRT.A. 1 TOP: Line Dilations
459 ANS: 1
Since a dilation preserves parallelism, the line $4 y=3 x+7$ and its image $3 x-4 y=9$ are parallel, with slopes of $\frac{3}{4}$.
PTS: 2 REF: 081710geo NAT: G.SRT.A. 1 TOP: Line Dilations
460 ANS: 2
The slope of $-3 x+4 y=8$ is $\frac{3}{4}$.
PTS: 2 REF: 061907geo NAT: G.SRT.A. 1 TOP: Line Dilations
461 ANS: 4
The line $y=3 x-1$ passes through the center of dilation, so the dilated line is not distinct.
PTS: 2 REF: 081524geo NAT: G.SRT.A. 1 TOP: Line Dilations
462 ANS: 2
The line $y=-3 x+6$ passes through the center of dilation, so the dilated line is not distinct.
PTS: 2 REF: 061824geo NAT: G.SRT.A. 1 TOP: Line Dilations

463 ANS: 2
PTS: 2
REF: 081901geo NAT: G.SRT.A. 1
TOP: Line Dilations
464 ANS:

$$
\sqrt{(2.5-1)^{2}+(-.5-1.5)^{2}}=\sqrt{2.25+4}=2.5
$$

PTS: 2 REF: 081729geo NAT: G.SRT.A. 1 TOP: Line Dilations 465 ANS:

The line is on the center of dilation, so the line does not change. $p: 3 x+4 y=20$
PTS: 2
REF: 061731geo NAT: G.SRT.A. 1 TOP: Line Dilations
466 ANS:
No, The line $4 x+3 y=24$ passes through the center of dilation, so the dilated line is not distinct.
$4 x+3 y=24$

$$
\begin{aligned}
3 y & =-4 x+24 \\
y & =-\frac{4}{3} x+8
\end{aligned}
$$

PTS: 2 REF: 081830geo NAT: G.SRT.A. 1 TOP: Line Dilations 467 ANS:

Nathan, because a line dilated through a point on the line results in the same line.
PTS: 2 REF: 082331geo NAT: G.SRT.A. 1 TOP: Line Dilations
$\ell: y=3 x-4$
$m: y=3 x-8$
PTS: 2 REF: 011631geo NAT: G.SRT.A. 1 TOP: Line Dilations
ANS: 1 PTS: 2 REF: 081605geo NAT: G.CO.A. 5
TOP: Rotations
KEY: grids

470 ANS:
$A B C-$ point of reflection $\rightarrow(-y, x)+$ point of reflection $\quad \triangle D E F \cong \triangle A^{\prime} B^{\prime} C^{\prime}$ because $\triangle D E F$ is a reflection of
$A(2,-3)-(2,-3)=(0,0) \rightarrow(0,0)+(2,-3)=A^{\prime}(2,-3)$
$B(6,-8)-(2,-3)=(4,-5) \rightarrow(5,4)+(2,-3)=B^{\prime}(7,1)$
$C(2,-9)-(2,-3)=(0,-6) \rightarrow(6,0)+(2,-3)=C^{\prime}(8,-3)$
$\triangle A^{\prime} B^{\prime} C^{\prime}$ and reflections preserve distance.
PTS: 4 REF: 081633geo NAT: G.CO.A. 5 TOP: Rotations
KEY: grids
471 ANS: 3
$3-1=2$
$1-2=-1$
PTS: 2 REF: 082317geo NAT: G.CO.A. 5 TOP: Reflections 472 ANS:

PTS: 2
KEY: grids
473 ANS: 2
TOP: Dilations
474 ANS: 1
$\frac{4}{6}=\frac{3}{4.5}=\frac{2}{3}$
PTS: 2
475 ANS: 1
$\frac{1}{3}, \frac{3}{9}, \frac{\sqrt{10}}{\sqrt{90}}$

PTS: 2
REF: 082206geo
NAT: G.SRT.A. 2 TOP: Dilations

476 ANS: 2
$x_{0}=\frac{k x_{1}-x_{2}}{k-1}=\frac{\frac{1}{3}(-4)-0}{\frac{1}{3}-1}=\frac{\frac{-4}{3}}{\frac{-2}{3}}=2 \quad y_{0}=\frac{k y_{1}-y_{2}}{k-1}=\frac{\frac{1}{3}(0)--2}{\frac{1}{3}-1}=\frac{2}{\frac{-2}{3}}=-3$

PTS: 2 REF: 062313geo NAT: G.SRT.A. 2 TOP: Dilations 477 ANS: 2
$\frac{(-4,2)}{(-2,1)}=2$
PTS: 2
REF: 062201geo
NAT: G.SRT.A. 2 TOP: Dilations
ANS: 4
TOP: Dilations
479 ANS: 2
PTS: 2
REF: 061516geo NAT: G.SRT.A. 2
TOP: Dilations
480 ANS: 3
(1) and (2) are false as dilations preserve angle measure. (4) would be true if the scale factor was 2.

PTS: 2 REF: 082323geo NAT: G.SRT.A. 2 TOP: Dilations
481 ANS: 4
$9 \cdot 3=27,27 \cdot 4=108$
PTS: 2
REF: 061805geo NAT: G.SRT.A. 2 TOP: Dilations
482 ANS: 3
$6 \cdot 3^{2}=5412 \cdot 3=36$
PTS: 2 REF: 081823geo NAT: G.SRT.A. 2 TOP: Dilations
483 ANS: 1
$3^{2}=9$
PTS: 2 REF: 081520geo NAT: G.SRT.A. 2 TOP: Dilations
484 ANS: 1 PTS: 2 REF: 011811geo NAT: G.SRT.A. 2
TOP: Dilations
485 ANS:
$A(-2,1) \rightarrow(-3,-1) \rightarrow(-6,-2) \rightarrow(-5,0), B(0,5) \rightarrow(-1,3) \rightarrow(-2,6) \rightarrow(-1,8)$, $C(4,-1) \rightarrow(3,-3) \rightarrow(6,-6) \rightarrow(7,-4)$

PTS: 2
REF: 061826geo NAT: G.SRT.A. 2 TOP: Dilations

ANS:

A dilation preserves slope, so the slopes of $\overline{Q R}$ and $\overline{Q^{\prime} R^{\prime}}$ are equal. Because the slopes are equal, $Q^{\prime} R^{\prime} \| Q R$.

PTS: 4 REF: 011732geo NAT: G.SRT.A. 2 TOP: Dilations
KEY: grids
487 ANS:
A dilation of 3 centered at A. A dilation preserves angle measure, so the triangles are similar.
PTS: 4 REF: 011832geo NAT: G.SRT.A. 2 TOP: Dilations
488 ANS:
No, because dilations do not preserve distance.
PTS: 2 REF: 061925geo NAT: G.SRT.A. 2 TOP: Dilations
489 ANS: 2
Segments drawn from the center of the regular pentagon bisect each angle of the pentagon, and create five isosceles triangles as shown in the diagram below. Since each exterior angle equals the angles formed by the segments drawn from the center of the regular pentagon, the minimum degrees necessary to carry a regular polygon onto itself are equal to the measure of an exterior angle of the regular polygon.

PTS: 2 REF: spr1402geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
490 ANS: 1
$\frac{360^{\circ}}{5}=72^{\circ}$
PTS: 2 REF: 062204geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
491 ANS: 3
$\frac{360^{\circ}}{5}=72^{\circ} 216^{\circ}$ is a multiple of 72°
PTS: 2 REF: 061819geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself

492 ANS: 3
$\frac{360^{\circ}}{6}=60^{\circ} 120^{\circ}$ is a multiple of 60°
PTS: 2 REF: 012011geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself 493 ANS: 4
$\frac{360^{\circ}}{10}=36^{\circ} 252^{\circ}$ is a multiple of 36°
PTS: 2 REF: 011717geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself 494 ANS: 4
$\frac{360^{\circ}}{10}=36^{\circ} 252^{\circ}$ is a multiple of 36°
PTS: 2 REF: 081722geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself 495 ANS: 1
2) 90°; 3) 360°; 4) 72°

PTS: 2 REF: 012311geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself 496 ANS: 4
$\frac{360^{\circ}}{n}=36$

$$
n=10
$$

PTS: 2 REF: 082205geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself 497 ANS: 1
$\frac{360^{\circ}}{45^{\circ}}=8$
PTS: 2 REF: 061510geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself 498 ANS: 3

1) $\frac{360}{3}=120$; 2) $\frac{360}{6}=60$; 3) $\frac{360}{8}=45$; 4) $\frac{360}{9}=40.120$ is not a multiple of 45.

PTS: 2 REF: 062320geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself 499 ANS: 4
$\frac{360}{6}=60$ and 300 is a multiple of 60.
PTS: 2 REF: 082306geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
500 ANS: 1
PTS: 2
REF: 061707geo NAT: G.CO.A. 3
TOP: Mapping a Polygon onto Itself
501 ANS: $1 \quad$ PTS: 2
TOP: Mapping a Polygon onto Itself
502 ANS: $1 \quad$ PTS: 2
TOP: Mapping a Polygon onto Itself

ANS: 3
The x-axis and line $x=4$ are lines of symmetry and $(4,0)$ is a point of symmetry.

	PTS: 2 REF: 081706geo	NAT: G.CO.A. 3	TOP:	Mapping a Polygon onto Itself
504	ANS: 3 PTS: 2	REF: 081817geo	NAT:	G.CO.A. 3
	TOP: Mapping a Polygon onto Itself			
505	ANS: 3 PTS: 2	REF: 011904geo	NAT:	G.CO.A. 3
	TOP: Mapping a Polygon onto Itself			
506	ANS: 4 PTS: 2	REF: 061904geo	NAT:	G.CO.A. 3
	TOP: Mapping a Polygon onto Itself			
507	ANS: 4 PTS: 2	REF: 081923geo	NAT:	G.CO.A. 3
	TOP: Mapping a Polygon onto Itself			
508	ANS: 1 PTS: 2	REF: 082209geo	NAT:	G.CO.A. 3
	TOP: Mapping a Polygon onto Itself			
509	ANS: 3 PTS: 2	REF: 011815geo	NAT:	G.CO.A. 3
	TOP: Mapping a Polygon onto Itself			
510	ANS:			
	$\frac{360}{6}=60$			
	$\overline{6}=60$			
	PTS: 2 REF: 081627geo	NAT: G.CO.A. 3	TOP:	Mapping a Polygon onto Itself
511	ANS: 4 PTS: 2	REF: 061504geo	NAT:	G.CO.A. 5
	TOP: Compositions of Transformations	KEY: identify		
512	ANS: 1 PTS: 2	REF: 081507geo	NAT:	G.CO.A. 5
	TOP: Compositions of Transformations	KEY: identify		
513	ANS: 3 PTS: 2	REF: 011710geo	NAT:	G.CO.A. 5
	TOP: Compositions of Transformations	KEY: identify		
514	ANS: 4 PTS: 2	REF: 061901geo	NAT:	G.CO.A. 5
	TOP: Compositions of Transformations	KEY: identify		
515	ANS: 1 PTS: 2	REF: 011608geo	NAT:	G.CO.A. 5
	TOP: Compositions of Transformations	KEY: identify		
516	ANS: 2 PTS: 2	REF: 061701geo	NAT:	G.CO.A. 5
	TOP: Compositions of Transformations	KEY: identify		
517	ANS: 2 PTS: 2	REF: 081909geo	NAT:	G.CO.A. 5
	TOP: Compositions of Transformations	KEY: identify		
518	ANS: 3 PTS: 2	REF: 011903geo	NAT:	G.CO.A. 5
	TOP: Compositions of Transformations	KEY: identify		
519	ANS: 2 PTS: 1	REF: 012017geo	NAT:	G.CO.A. 5
	TOP: Compositions of Transformations	KEY: identify		
	ANS: 3			

$1)$ and 2) are wrong because the orientation of $\triangle L E T$ has changed, implying one reflection has occurred. The sequence in 4) moves $\triangle L E T$ back to Quadrant II.

PTS: 2 REF: 062218geo NAT: G.CO.A. 5 TOP: Compositions of Transformations

KEY: identify
521 ANS: $1 \quad$ PTS: 2
TOP: Compositions of Transformations

REF: 062308geo NAT: G.CO.A. 5

522 ANS: $2 \quad$ PTS: 2	REF: 082220geo	NAT: G.CO.A. 5
TOP: Compositions of Transformations	KEY: identify	

523 ANS:
$T_{6,0}{ }^{\circ} r_{x-\text { axis }}$
PTS: 2 REF: 061625geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: identify
524 ANS:
$T_{0,-2} \circ r_{y-\text {-xis }}$
PTS: 2 REF: 011726geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: identify
525 ANS:
$r_{y=2}{ }^{\circ} r_{\text {y-xis }}$
PTS: 2 REF: 081927geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: identify
526 ANS:
$R_{(-5,2), 90^{\circ}} \circ T_{-3,1} \circ r_{\text {x-xxis }}$
PTS: 2 REF: 011928geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: identify
527 ANS:
$R_{90^{\circ}}$ or $T_{2,-6}{ }^{\circ} R_{(-4,2), 90^{\circ}}$ or $R_{270^{\circ}}{ }^{\circ} r_{\text {x-xxis }}{ }^{\circ} r_{y \text {-axis }}$
PTS: 2 REF: 061929geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: identify
528 ANS:
$T_{0,5}{ }^{\circ} r_{y-\text {-xis }}$

PTS: 2 REF: 082225geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: identify
529 ANS:
Rotate 90° clockwise about B and translate down 4 and right 3.
PTS: 2 REF: 012326geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: identify
530 ANS:
$T_{4,-4}$, followed by a 90° clockwise rotation about point D.
PTS: 2 REF: 062326geo NAT: G.CO.A. 5 TOP: Compositions of Transformations

531 ANS:
$R_{180^{\circ}}$ about $\left(-\frac{1}{2}, \frac{1}{2}\right)$
PTS: 2 REF: 081727geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: identify
532 ANS:
Reflection across the y-axis, then translation up 5 .
PTS: 2 REF: 061827geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: identify
533 ANS:
rotation 180° about the origin, translation 2 units down; rotation 180° about B, translation 6 units down and 6 units left; or reflection over x-axis, translation 2 units down, reflection over y-axis

PTS: 2
REF: 081828geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: identify
534
ANS:

$$
\text { Rotate } 180^{\circ} \text { about }\left(-1, \frac{1}{2}\right) \text {. }
$$

PTS: 2 REF: 082325geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
535 ANS:
Rotate $\triangle A B C$ clockwise about point C until $\overline{D F} \| \overline{A C}$. Translate $\triangle A B C$ along $\overline{C F}$ so that C maps onto F.
PTS: 2
REF: 061730geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: identify

536
ANS:

REF: 081626geo
NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: grids
537
ANS: 1
PTS: 2
REF: 012022geo NAT: G.SRT.A. 2
TOP: Compositions of Transformations
KEY: grids
REF: 061608geo NAT: G.SRT.A. 2
TOP: Compositions of Transformations
KEY: grids
539 ANS: $4 \quad$ PTS: 2
REF: 081609geo NAT: G.SRT.A. 2
KEY: grids
TOP: Compositions of Transformations
540
TOP: Compositions of Transformations
541
ANS: 2 PTS: 2
REF: 081514geo NAT: G.SRT.A. 2
KEY: grids
REF: 011702geo NAT: G.SRT.A. 2
TOP: Compositions of Transformations
542 ANS: 1 PTS: 2
TOP: Compositions of Transformations
KEY: grids
REF: 081804geo NAT: G.SRT.A. 2
KEY: grids
543 ANS: 1
NYSED accepts either (1) or (3) as a correct answer. Statement III is not true if A, B, A^{\prime} and B^{\prime} are collinear.
PTS: 2 REF: 061714geo NAT: G.SRT.A. 2 TOP: Compositions of Transformations KEY: basic
544 ANS:
Triangle $X^{\prime} Y^{\prime} Z^{\prime}$ is the image of $\triangle X Y Z$ after a rotation about point Z such that $\overline{Z X}$ coincides with $\overline{Z U}$. Since rotations preserve angle measure, $\overline{Z Y}$ coincides with $\overline{Z V}$, and corresponding angles X and Y, after the rotation, remain congruent, so $\overline{X Y} \| \overline{U V}$. Then, dilate $\triangle X^{\prime} Y^{\prime} Z^{\prime}$ by a scale factor of $\frac{Z U}{Z X}$ with its center at point Z. Since dilations preserve parallelism, $\overline{X Y}$ maps onto $\overline{U V}$. Therefore, $\triangle X Y Z \sim \triangle U V Z$.

PTS: 2
REF: spr1406geo NAT: G.SRT.A. 2 TOP: Compositions of Transformations
KEY: grids

545 ANS: 4
$2 x-1=16$

$$
x=8.5
$$

PTS: 2 REF: 011902geo NAT: G.CO.B. 6 TOP: Properties of Transformations
KEY: graphics
546 ANS: 3
$5 x-10=4 x-44(6)-4=20$
$x=6$
PTS: 2 REF: 012408geo NAT: G.CO.B. 6 TOP: Properties of Transformations
KEY: graphics
547 ANS: 2
$180-40-95=45$
PTS: 2 REF: 082201geo NAT: G.CO.B. 6 TOP: Properties of Transformations
KEY: graphics
548 ANS: 4
$90-35=5555 \times 2=110$
PTS: 2 REF: 012015geo NAT: G.CO.B. 6 TOP: Properties of Transformations
KEY: graphics
549 ANS: 1
$360-(82+104+121)=53$
PTS: 2 REF: 011801geo NAT: G.CO.B. 6 TOP: Properties of Transformations
KEY: graph
550 ANS: 4
The measures of the angles of a triangle remain the same after all rotations because rotations are rigid motions which preserve angle measure.

PTS: 2 REF: fall1402geo NAT: G.CO.B. 6 TOP: Properties of Transformations
KEY: graphics
551 ANS: 1 PTS: 2 REF: 061801geo NAT: G.CO.B. 6
TOP: Properties of Transformations KEY: graphics
552 ANS: 1
The lengths of the sides of a triangle remain the same after all rotations and reflections because rotations and reflections are rigid motions which preserve distance.

PTS: 2 REF: 012301geo NAT: G.CO.B. 6 TOP: Properties of Transformations
KEY: graphics
ANS: 4
TOP: Properties of Transformations
REF: 011611geo NAT: G.CO.B. 6
KEY: graphics
554 ANS: 3 PTS: 2
TOP: Properties of Transformations
REF: 062302geo NAT: G.CO.B. 6
KEY: graphics

555
ANS: 1
Distance and angle measure are preserved after a reflection and translation.
PTS: 2 REF: 081802geo NAT: G.CO.B. 6 TOP: Properties of Transformations
KEY: basic
556 ANS: 3
PTS: 2
REF: 082203geo NAT: G.CO.B. 6
TOP: Properties of Transformations KEY: basic
557 ANS:
$M=180-(47+57)=76$ Rotations do not change angle measurements.
PTS: 2 REF: 081629geo NAT: G.CO.B. 6 TOP: Properties of Transformations 558 ANS:

Yes, as translations do not change angle measurements.
PTS: 2 REF: 061825geo NAT: G.CO.B. 6 TOP: Properties of Transformations
KEY: basic
559 ANS:
Reflections preserve distance and angle measure.
PTS: 2 REF: 062228geo NAT: G.CO.B. 6 TOP: Properties of Transformations
KEY: graphics
560 ANS: $2 \quad$ PTS: 2
TOP: Identifying Transformations
561 ANS: 4 PTS: 2
TOP: Identifying Transformations
562 ANS: $2 \quad$ PTS: 2
TOP: Identifying Transformations
563 ANS: $3 \quad$ PTS: 2 TOP: Identifying Transformations
564 ANS: 1 PTS: 2
TOP: Identifying Transformations
565 ANS: 4 PTS: 2
TOP: Identifying Transformations
566 ANS: $2 \quad$ PTS: 2
TOP: Identifying Transformations
567 ANS: 4 PTS: 2
TOP: Identifying Transformations
568 ANS: $3 \quad$ PTS: 2
TOP: Identifying Transformations
569 ANS: 4 PTS: 2
TOP: Identifying Transformations
570 ANS: 4 PTS: 2
TOP: Identifying Transformations

REF: 081513geo NAT: G.CO.A. 2
KEY: graphics
REF: 061803geo NAT: G.CO.A. 2
KEY: graphics
REF: 081602geo NAT: G.CO.A. 2
KEY: basic
REF: 061616geo NAT: G.CO.A. 2
KEY: graphics
REF: 061604geo NAT: G.CO.A. 2
KEY: graphics
REF: 011803geo NAT: G.CO.A. 2
KEY: graphics
REF: 082322geo NAT: G.CO.A. 2
REF: 061502geo NAT: G.CO.A. 2
KEY: basic
REF: 081502geo NAT: G.CO.A. 2
KEY: basic
REF: 011706geo NAT: G.CO.A. 2
KEY: basic
REF: 081702geo NAT: G.CO.A. 2
KEY: basic

571 ANS: 3
Since orientation is preserved, a reflection has not occurred.
PTS: 2 REF: 062205geo NAT: G.CO.A. 2 TOP: Identifying Transformations
KEY: graphics
572 ANS:
Rotation of 90° counterclockwise about the origin.
PTS: 2 REF: 012428geo NAT: G.CO.A. 2 TOP: Identifying Transformations
573 ANS:

$r_{x=-1}$ Reflections are rigid motions that preserve distance, so $\triangle A B C \cong \triangle D E F$.
PTS: 4 REF: 061732geo NAT: G.CO.A. 2 TOP: Identifying Transformations
KEY: graphics
574 ANS: 3 PTS: 2 REF: 011605geo NAT: G.CO.A. 2
TOP: Analytical Representations of Transformations KEY: basic
575 ANS: 4 PTS: 2 REF: 011808geo NAT: G.CO.A. 2
TOP: Analytical Representations of Transformations KEY: basic
576 ANS: 3
A dilation does not preserve distance.
PTS: 2 REF: 062210geo NAT: G.CO.A. 2
TOP: Analytical Representations of Transformations KEY: basic
577 ANS: 2 PTS: 2 REF: 012003geo NAT: G.SRT.B. 5
TOP: Similarity KEY: basic
578 ANS: 3
$\frac{12}{4}=\frac{x}{5} \quad 15-4=11$
$x=15$
PTS: 2 REF: 011624geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
579 ANS: 3

$$
\begin{aligned}
\frac{x}{10} & =\frac{6}{4} \quad \overline{C D}=15-4=11 \\
x & =15
\end{aligned}
$$

PTS: 2 REF: 081612geo NAT: G.SRT.B. 5 TOP: Similarity KEY: basic

580 ANS: 4
$\frac{6.6}{x}=\frac{4.2}{5.25}$
$4.2 x=34.65$

$$
x=8.25
$$

PTS: 2 REF: 081705geo NAT: G.SRT.B. 5 TOP: Similarity KEY: basic
581 ANS: 3
$\triangle C F B \sim \triangle C A D \quad \frac{C B}{C F}=\frac{C D}{C A}$

$$
\begin{aligned}
\frac{x}{21.6} & =\frac{7.2}{9.6} \\
x & =16.2
\end{aligned}
$$

PTS: 2 REF: 061804geo NAT: G.SRT.B. 5 TOP: Similarity KEY: basic
582 ANS: 2
$\frac{4}{x}=\frac{6}{9}$
$x=6$
PTS: 2 REF: 061915geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
583 ANS: 4
$\frac{12}{6.1 x-6.5}=\frac{5}{1.4 x+3} \quad 6.1(5)-6.5=24$
$16.8 x+36=30.5 x-32.5$

$$
\begin{aligned}
68.5 & =13.7 x \\
5 & =x
\end{aligned}
$$

PTS: 2 REF: 062211geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
584 ANS: 1
$\frac{6}{8}=\frac{9}{12}$
PTS: 2 REF: 011613geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic

585 ANS: 4

$$
\begin{aligned}
\frac{1}{2} & =\frac{x+3}{3 x-1} \quad G R=3(7)-1=20 \\
3 x-1 & =2 x+6 \\
x & =7
\end{aligned}
$$

PTS: 2 REF: 011620geo NAT: G.SRT.B. 5 TOP: Similarity KEY: basic
586 ANS: 3

1) $\frac{12}{9}=\frac{4}{3}$ 2) AA 3) $\frac{32}{16} \neq \frac{8}{2}$ 4) SAS

PTS: 2
REF: 061605geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
587
ANS: 1
$\triangle A B C \sim \triangle R S T$
PTS: 2
REF: 011908geo NAT: G.SRT.B. 5 TOP: Similarity KEY: basic
588 ANS: 2

PTS: 2
REF: 062314geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
589
ANS: 2
PTS: 2
KEY: basic
TOP: Similarity
PTS: 2
KEY: basic
REF: 081519geo NAT: G.SRT.B. 5
590 ANS: 4
TOP: Similarity
REF: 011817geo NAT: G.SRT.B. 5
591 ANS: 3
$\frac{A B}{B C}=\frac{D E}{E F}$
$\frac{9}{15}=\frac{6}{10}$
$90=90$

PTS: 2
REF: 061515geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic

592 ANS: 4

PTS: 2
REF: 082324geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
593 ANS: 2
(1) AA; (3) SAS; (4) SSS. NYSED has stated that all students should be awarded credit regardless of their answer to this question.

PTS: 2 REF: 061724geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
594 ANS:
$\frac{120}{230}=\frac{x}{315}$

$$
x=164
$$

PTS: 2 REF: 081527geo NAT: G.SRT.B. 5 TOP: Similarity KEY: basic
595 ANS:

$\angle D E A \cong \angle C B A$ because they are both right \angle s.
PTS: 2
REF: 081829geo NAT: G.SRT.B. 5 TOP: Similarity KEY: basic

596 ANS:
$\frac{6}{14}=\frac{9}{21}$ SAS
$126=126$
PTS: 2 REF: 081529geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
597 ANS:
Yes, because of SAS. $\quad \frac{A B}{A D}=\frac{A E}{A C}$

$$
\begin{aligned}
\frac{4.1}{3.42+5.6} & =\frac{5.6}{4.1+8.22} \\
50.512 & =50.512
\end{aligned}
$$

PTS: 2
REF: 012429geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
598
(2.45

$$
\begin{aligned}
16.6 & \frac{1.65}{4.15}
\end{aligned}=\frac{x}{16.6}, ~ \begin{aligned}
4.15 x & =27.39 \\
x & =6.6
\end{aligned}
$$

PTS: 2
REF: 061531geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
599 ANS:
$\frac{16}{9}=\frac{x}{20.6} \quad D=\sqrt{36.6^{2}+20.6^{2}} \approx 42$

$$
x \approx 36.6
$$

PTS: 4 REF: 011632geo NAT: G.SRT.B. 5 TOP: Similarity KEY: basic
600 ANS: 4
$\frac{7}{12} \cdot 30=17.5$
PTS: 2
REF: 061521geo NAT: G.SRT.B. 5 TOP: Similarity KEY: perimeter and area

601 ANS: 2
$\left(\frac{1}{4}\right)^{2}=\frac{1}{16}$
PTS: 2
REF: 082216geo NAT: G.SRT.B. 5 TOP: Similarity KEY: perimeter and area
602 ANS: 2
$h^{2}=30 \cdot 12$
$h^{2}=360$
$h=6 \sqrt{10}$
PTS: 2
REF: 061613geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
603 ANS: 2
$x^{2}=4 \cdot 10$
$x=\sqrt{40}$
$x=2 \sqrt{10}$
PTS: 2
REF: 081610geo NAT: G.SRT.B. 5 TOP: Similarity KEY: altitude
604 ANS: 2
$x^{2}=12(12-8)$
$x^{2}=48$
$x=4 \sqrt{3}$
PTS: 2 REF: 011823geo NAT: G.SRT.B. 5 TOP: Similarity KEY: altitude
605 ANS: 3

$$
\begin{aligned}
x(x-6) & =4^{2} \\
x^{2}-6 x-16 & =0 \\
(x-8)(x+2) & =0 \\
x & =8
\end{aligned}
$$

PTS: 2
REF: 081807geo NAT: G.SRT.B. 5 TOP: Similarity KEY: altitude

606 ANS: 3
$12^{2}=9 \cdot G M \quad I M^{2}=16 \cdot 25$
$G M=16 \quad I M=20$
PTS: 2 REF: 011910geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
607 ANS: 4
$x^{2}=10.2 \times 14.3$
$x \approx 12.1$
PTS: 2 REF: 012016geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
608 ANS: 3
$12 x=9^{2} \quad 6.75+12=18.75$
$12 x=81$

$$
x=\frac{82}{12}=\frac{27}{4}
$$

PTS: 2
REF: 062213geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
609 ANS: 4
$x^{2}=3 \times 24$
$x=\sqrt{72}$
PTS: 2
REF: 012315geo NAT: G.SRT.B. 5 TOP: Similarity KEY: altitude
610 ANS: 1
$6^{2}=4 x$
$x=9$
PTS: 2
REF: 012412geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
611 ANS: 1
$24 x=10^{2}$
$24 x=100$

$$
x \approx 4.2
$$

PTS: 2 REF: 061823geo NAT: G.SRT.B. 5 TOP: Similarity KEY: altitude

612 ANS: 2
$18^{2}=12(x+12)$
$324=12(x+12)$
$27=x+12$

$$
x=15
$$

PTS: 2 REF: 081920geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
613 ANS: 2
$\sqrt{3 \cdot 21}=\sqrt{63}=3 \sqrt{7}$
PTS: 2 REF: 011622geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
614 ANS: 2
$12^{2}=9 \cdot 16$
$144=144$
PTS: 2 REF: 081718geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
615 ANS: $1 \quad$ PTS: 2
REF: 012418geo NAT: G.SRT.B. 5
TOP: Similarity KEY: altitude
616 ANS: 2
$\overline{A B}=10$ since $\triangle A B C$ is a 6-8-10 triangle. $6^{2}=10 x$

$$
3.6=x
$$

PTS: 2 REF: 081820geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
617
ANS: $1 \quad$ PTS: 2
TOP: Similarity
KEY: altitude
618 ANS:
If an altitude is drawn to the hypotenuse of a triangle, it divides the triangle into two right triangles similar to each other and the original triangle.

PTS: 2
REF: 061729geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
619 ANS:

$$
\begin{aligned}
17 x & =15^{2} \\
17 x & =225 \\
x & \approx 13.2
\end{aligned}
$$

PTS: 2
REF: 061930geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude

620 ANS:

$$
\begin{aligned}
4 x \cdot x & =6^{2} \\
4 x^{2} & =36 \\
x^{2} & =9 \\
x & =3
\end{aligned}
$$

PTS: 2 REF: 082229geo NAT: G.SRT.B. 5 TOP: Similarity KEY: altitude
ANS:
$6^{2}=2(x+2) ; 16+2=18$
$36=2 x+4$
$32=2 x$
$16=x$
PTS: 2
REF: 062330geo NAT: G.SRT.B. 5 TOP: Similarity KEY: altitude

Geometry Regents Exam Questions by State Standard: Topic

 Answer Section622 ANS:
$4 x \cdot x=8^{2} 4+4(4)=20$
$4 x^{2}=64$
$x^{2}=16$
$x=4$

PTS: 2
REF: 082330geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
623 ANS:
$x=\sqrt{.55^{2}-.25^{2}} \cong 0.49$ No, $.49^{2}=.25 y .9604+.25<1.5$

$$
.9604=y
$$

PTS: 4 REF: 061534geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
624 ANS: 1
$\sin N=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{12}{20}$
PTS: 2 REF: 012307geo NAT: G.SRT.C. 6 TOP: Trigonometric Ratios
625 ANS: 4
$\tan A=\frac{\text { opposite }}{\text { adjacent }}=\frac{15}{8}$
PTS: 2 REF: 011917geo NAT: G.SRT.C. 6 TOP: Trigonometric Ratios
626 ANS: 3 PTS: 2 REF: 011714geo NAT: G.SRT.C. 6
TOP: Trigonometric Ratios
627 ANS: 1
A dilation preserves angle measure, so $\angle A \cong \angle C D E$.
PTS: 2 REF: 062203geo NAT: G.SRT.C. 6 TOP: Trigonometric Ratios
628 ANS: 4
PTS: 2
REF: 061615geo NAT: G.SRT.C.6
TOP: Trigonometric Ratios
629 ANS: 2
$\triangle A B C \sim \triangle B D C$
$\cos A=\frac{A B}{A C}=\frac{B D}{B C}$
PTS: 2 REF: 012023geo NAT: G.SRT.C. 6 TOP: Trigonometric Ratios
630 ANS: 1
PTS: 2
REF: 062312geo NAT: G.SRT.C. 7
TOP: Cofunctions

631	ANS: 1	PTS:	2	REF:	011922geo	NAT:	G.SRT.C. 7
	TOP: Cofunctions						
632	ANS: 2	PTS:	2	REF:	082311geo	NAT:	G.SRT.C. 7
	TOP: Cofunctions						
633	ANS: 1	PTS:	2	REF:	081919geo	NAT:	G.SRT.C. 7
	TOP: Cofunctions						
634	ANS: 1	PTS:	2	REF:	012304geo	NAT:	G.SRT.C. 7
	TOP: Cofunctions						
635	ANS: 4	PTS:	2	REF:	061512geo	NAT:	G.SRT.C. 7
	TOP: Cofunctions						
636	ANS: 4	PTS:	2	REF:	011609geo	NAT:	G.SRT.C. 7
	TOP: Cofunctions						
637	ANS: 3						
	Sine and cosine are	ofuncti	ons.				
	PTS: 2	REF:	062206geo	NAT:	G.SRT.C. 7	TOP:	Cofunctions
638	ANS: 4	PTS:	2	REF:	082210geo	NAT:	G.SRT.C. 7
	TOP: Cofunctions						
639	ANS: 1	PTS:	2	REF:	081504geo	NAT:	G.SRT.C. 7
	TOP: Cofunctions						
640	ANS: 2						
	$90-57=33$						
	PTS: 2	REF:	061909geo	NAT:	G.SRT.C. 7	TOP:	Cofunctions
641	ANS: 3						
	$90-30=60$						
	PTS: 2	REF:	012401geo	NAT:	G.SRT.C. 7	TOP:	Cofunctions
642	ANS: 1	PTS:	2	REF:	081606geo	NAT:	G.SRT.C. 7
	TOP: Cofunctions						
643	ANS: 3	PTS:	2	REF:	061703geo	NAT:	G.SRT.C. 7
	TOP: Cofunctions						
644	ANS: 4						
	$40-x+3 x=90$						
	$2 x=50$						
	$x=25$						

PTS: 2
REF: 081721geo NAT: G.SRT.C. 7 TOP: Cofunctions
645 ANS: 1
$2 x+4+46=90$

$$
\begin{aligned}
2 x & =40 \\
x & =20
\end{aligned}
$$

PTS: 2
REF: 061808geo NAT: G.SRT.C. 7 TOP: Cofunctions

646 ANS: 2

$$
\begin{aligned}
2 x+7+4 x-7 & =90 \\
6 x & =90 \\
x & =15
\end{aligned}
$$

PTS: 2 REF: 081824geo NAT: G.SRT.C. 7 TOP: Cofunctions
647 ANS: 3
$4 x+3 x+13=904(11)<3(11)+13$

$$
\begin{aligned}
7 x & =77 \\
x & =11
\end{aligned}
$$

PTS: 2 REF: 012021geo NAT: G.SRT.C. 7 TOP: Cofunctions
648 ANS:
Yes, because 28° and 62° angles are complementary. The sine of an angle equals the cosine of its complement.
PTS: 2 REF: 011727geo NAT: G.SRT.C. 7 TOP: Cofunctions
649 ANS:
The acute angles in a right triangle are always complementary. The sine of any acute angle is equal to the cosine of its complement.

PTS: 2 REF: spr1407geo NAT: G.SRT.C. 7 TOP: Cofunctions
650 ANS:
$73+R=90$ Equal cofunctions are complementary.
$R=17$
PTS: 2 REF: 061628geo NAT: G.SRT.C. 7 TOP: Cofunctions
651 ANS:
$4 x-.07=2 x+.01 \operatorname{Sin} A$ is the ratio of the opposite side and the hypotenuse while $\cos B$ is the ratio of the adjacent $2 x=0.8$
$x=0.4$
side and the hypotenuse. The side opposite angle A is the same side as the side adjacent to angle B. Therefore, $\sin A=\cos B$.

PTS: 2 REF: fall1407geo NAT: G.SRT.C. 7 TOP: Cofunctions
652 ANS:
$\cos B$ increases because $\angle A$ and $\angle B$ are complementary and $\sin A=\cos B$.
PTS: 2
REF: 011827geo NAT: G.SRT.C. 7 TOP: Cofunctions
653 ANS: 3
$\cos 40=\frac{14}{x}$
$x \approx 18$
PTS: 2 REF: 011712geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side

654 ANS: 4
$\sin 16.5=\frac{8}{x}$

$$
x \approx 28.2
$$

PTS: 2 REF: 081806ai NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
655 ANS: 3
$\tan 34=\frac{T}{20}$

$$
T \approx 13.5
$$

PTS: 2 REF: 061505geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: graphics
656
ANS: 1
$\sin 32=\frac{O}{129.5}$
$O \approx 68.6$
PTS: 2
657

658
PIS: 2
ANS: 4
$\cos 47=\frac{50}{x}$
$x \approx 73$
PTS: 2
REF: 012406geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side

$$
x=37.5
$$

PTS: 2
660 ANS: 4
$\sin 70=\frac{x}{20}$
$x \approx 18.8$
PTS: 2
REF: 061611geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: without graphics

661 ANS: 4

$$
\begin{aligned}
\sin 71 & =\frac{x}{20} \\
x & =20 \sin 71 \approx 19
\end{aligned}
$$

PTS: 2 REF: 061721geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: without graphics
662 ANS: 1
$\sin 32=\frac{x}{6.2}$

$$
x \approx 3.3
$$

PTS: 2 REF: 081719geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
663
ANS: 2
$\tan 11.87=\frac{x}{0.5(5280)}$

$$
x \approx 555
$$

PTS: 2 REF: 011913geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
664 ANS: 4
$\sin 18=\frac{8}{x}$

$$
x \approx 25.9
$$

PTS: 2 REF: 062316geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side

$$
\begin{aligned}
\tan 36 & =\frac{x}{8} \quad 5.8+1.5 \approx 7 \\
x & \approx 5.8
\end{aligned}
$$

PTS: 2 REF: 081915geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side 666 ANS: 1

$$
\begin{aligned}
\cos 65 & =\frac{x}{15} \\
x & \approx 6.3
\end{aligned}
$$

PTS: 2 REF: 081924geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side

667 ANS: 2
$\tan \theta=\frac{2.4}{x}$

$$
\begin{aligned}
& \frac{3}{7}=\frac{2.4}{x} \\
& x=5.6
\end{aligned}
$$

PTS: 2
668 ANS:
$\sin 70=\frac{30}{L}$
$L \approx 32$
PTS: 2
KEY: graphics
669 ANS:
$\sin 75=\frac{15}{x}$
$x=\frac{15}{\sin 75}$
$x \approx 15.5$
PTS: 2
KEY: graphics
670 ANS:
$\sin 86.03=\frac{183.27}{x}$

$$
x \approx 183.71
$$

PTS: 2
REF: 062225geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
671 ANS:

$$
\begin{aligned}
\cos 14 & =\frac{5-1.2}{x} \\
x & \approx 3.92
\end{aligned}
$$

PTS: 2
672 ANS:

$$
\sin 38=\frac{24.5}{x}
$$

PTS: 2
KEY: graphics
REF: 011629geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side

REF: 081631geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side

REF: 082228geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side

$$
x \approx 40
$$

REF: 012026geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side

673 ANS:

$$
\begin{array}{rlrl}
\cos 54 & =\frac{4.5}{m} \tan 54 & =\frac{h}{4.5} \\
m & \approx 7.7 & h & \approx 6.2
\end{array}
$$

PTS: 4 REF: 011834geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
674 ANS:

$$
\begin{aligned}
\tan 36 & =\frac{x}{10} \quad \cos 36=\frac{10}{y} 12.3607 \times 3 \approx 37 \\
x & \approx 7.3 \quad y \approx 12.3607
\end{aligned}
$$

PTS: 4 REF: 081833geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side 675 ANS:

$$
\begin{aligned}
\sin 4.76 & =\frac{1.5}{x} \quad \tan 4.76 \\
& =\frac{1.5}{x} \quad 18-\frac{16}{12} \approx 16.7 \\
x & \approx 18.1 \quad x
\end{aligned}
$$

PTS: 4 REF: 011934geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side 676 ANS:

$$
\begin{aligned}
\tan 56 & =\frac{x}{1.3} \quad \sqrt{(1.3 \tan 56)^{2}+1.5^{2}} \approx 3.7 \\
x & =1.3 \tan 56
\end{aligned}
$$

PTS: 4 REF: 012033geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: advanced
677 ANS:

$$
\begin{aligned}
\sin 65 & =\frac{7.7}{x} \cdot \tan 65
\end{aligned}=\frac{7.7}{y}, ~ y ~=8.5 \quad y \approx 3.6
$$

PTS: 4 REF: 082333geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side 678 ANS:

$$
\begin{aligned}
\tan 75 & =\frac{y}{85} \quad \tan 35
\end{aligned}=\frac{x}{85} \quad 317.2+59.5 \approx 377
$$

PTS: 4 REF: 012432geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side

679
ANS:
x represents the distance between the lighthouse and the canoe at 5:00; y represents the distance between the lighthouse and the canoe at 5:05. $\tan 6=\frac{112-1.5}{x} \tan (49+6)=\frac{112-1.5}{y} \frac{1051.3-77.4}{5} \approx 195$

$$
x \approx 1051.3 \quad y \approx 77.4
$$

PTS: 4 REF: spr1409geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: advanced
680 ANS:

$$
\left.\begin{array}{rl}
\tan 7 & =\frac{125}{x} \quad \tan 16
\end{array}\right) \frac{125}{y} \quad 1018-436 \approx 582
$$

PTS: 4
REF: 081532geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: advanced
ANS:
$\tan 52.8=\frac{h}{x}$

$$
x \tan 52.8=x \tan 34.9+8 \tan 34.9 \tan 52.8 \approx \frac{h}{9} \quad 11.86+1.7 \approx 13.6
$$

$$
h=x \tan 52.8
$$

$$
x \tan 52.8-x \tan 34.9=8 \tan 34.9
$$

$$
x \approx 11.86
$$

$\tan 34.9=\frac{h}{x+8}$

$$
h=(x+8) \tan 34.9
$$

$$
x=\frac{8 \tan 34.9}{\tan 52.8-\tan 34.9}
$$

$$
x \approx 9
$$

PTS: 6 REF: 011636geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: advanced
682 ANS:

$$
\begin{aligned}
\tan 3.47 & =\frac{M}{6336} \\
M & \approx 384 \\
4960+384 & =5344
\end{aligned}
$$

PTS: 6
REF: fall1413geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: advanced

683 ANS:

$$
\begin{aligned}
\tan 72 & =\frac{x}{400 \quad \sin 55}=\frac{400 \tan 72}{y} \\
x & =400 \tan 72 \quad y
\end{aligned}
$$

PTS: 4
REF: 061833geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: advanced
684 ANS:
$\tan 30=\frac{y}{440} \tan 38.8=\frac{h}{440} \quad 353.8-254 \approx 100$

$$
y \approx 254 \quad h \approx 353.8
$$

PTS: 4 REF: 061934geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: advanced
685 ANS:

$$
\begin{aligned}
& \tan 15=\frac{x}{3280} ; \tan 31=\frac{y}{3280} ; 1970.8-878.9 \approx 1092 \\
& x \approx 878.9 \quad x \approx 1970.8
\end{aligned}
$$

PTS: 4 REF: 062332geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side 686 ANS:

$$
\begin{array}{rlrl}
\tan 22.2 & =\frac{50}{x} \quad \tan 13.3 & =\frac{y}{122.52} \\
x & \approx 122.52 & y & \approx 29
\end{array}
$$

$50-29=21$
PTS: 4
REF: 082232geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: advanced
ANS:
Since $\angle A B H$ is $100^{\circ}, \angle A H B$ is 40°. An isosceles triangle has two congruent angles. $\cos 80=\frac{x}{85}$

$$
x \approx 14.8
$$

$$
\begin{aligned}
\tan 40 & =\frac{y}{85+14.8} \\
y & \approx 84
\end{aligned}
$$

PTS: 4 REF: 012334geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side

688 ANS:
$\tan 53=\frac{f}{91}$

$$
f \approx 120.8
$$

PTS: 2
REF: 082327geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
689 ANS:
$\cos 68=\frac{10}{x}$
$x \approx 27$
PTS: 2 REF: 061927geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
690 ANS:
$\tan 15=\frac{6250}{x} \quad \tan 52=\frac{6250}{y} \quad 23325.3-4883=18442 \frac{18442 \mathrm{ft}}{1 \mathrm{~min}}\left(\frac{1 \mathrm{mi}}{5280 \mathrm{ft}}\right)\left(\frac{60 \mathrm{~min}}{1 \mathrm{~h}}\right) \approx 210$
$x \approx 23325.3 \quad y \approx 4883$
PTS: 6
KEY: advanced
691
ANS: 3
$\cos A=\frac{9}{14}$
$A \approx 50^{\circ}$
PTS: 2 REF: 011616geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
692 ANS: 1
$\cos S=\frac{60}{65}$
$S \approx 23$
PTS: 2 REF: 061713geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
693 ANS: 4
$\sin A=\frac{13}{16}$

$$
A \approx 54^{\circ}
$$

PTS: 2 REF: 082207geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
694 ANS: 1 $\cos S=\frac{12.3}{13.6}$ $S \approx 25^{\circ}$

PTS: 2
REF: 062304geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle

695 ANS: 1
$\tan x=\frac{1}{12}$

$$
x \approx 4.76
$$

PTS: 2 REF: 081715geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle 696 ANS:
$\sin ^{-1}\left(\frac{5}{25}\right) \approx 11.5$
PTS: 2 REF: 081926geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
697 ANS:
$\tan ^{-1}\left(\frac{4}{12}\right) \approx 18$
PTS: 2 REF: 012327geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle 698 ANS:
$\sin x=\frac{4.5}{11.75}$

$$
x \approx 23
$$

PTS: 2 REF: 061528geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
699 ANS: 2
$\cos B=\frac{17.6}{26}$

$$
B \approx 47
$$

PTS: 2 REF: 061806geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle ANS: 1
The man's height, 69 inches, is opposite to the angle of elevation, and the shadow length, 102 inches, is adjacent to the angle of elevation. Therefore, tangent must be used to find the angle of elevation. $\tan x=\frac{69}{102}$

$$
x \approx 34.1
$$

PTS: 2
701
ANS: 4
$\sin x=\frac{10}{12}$
$x \approx 56$
PTS: 2 REF: 061922geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle

702
ANS: 3
$\cos x=\frac{8}{25}$

$$
x \approx 71
$$

PTS: 2 REF: 082303geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle ANS: 1 $\cos x=\frac{12}{13}$

$$
x \approx 23
$$

PTS: 2 REF: 081809ai NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
704
ANS: 1
$\cos C=\frac{15}{17}$
$C \approx 28$
PTS: 2 REF: 012007geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
705
ANS:
$\cos J=\frac{3}{5} \quad S \approx 90-53=37$

$$
J \approx 53
$$

PTS: 2 REF: 012431geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle 706 ANS:
$\tan x=\frac{10}{4}$

$$
x \approx 68
$$

PTS: 2 REF: 061630geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle 707 ANS:
$\cos W=\frac{6}{18}$

$$
W \approx 71
$$

PTS: 2 REF: 011831geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle 708 ANS:

$$
\begin{aligned}
& \tan x=\frac{12}{75} \quad \tan y=\frac{72}{75} \quad 43.83-9.09 \approx 34.7 \\
& x \approx 9.09 \quad y \approx 43.83
\end{aligned}
$$

PTS: 4 REF: 081634geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle

709 ANS:
$\tan y=\frac{1.58}{3.74} \quad \tan x=\frac{.41}{3.74} 22.90-6.26=16.6$
$y \approx 22.90 \quad x \approx 6.26$
PTS: 4 REF: 062232geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
710 ANS: 3 PTS: 2 REF: 061524geo NAT: G.CO.B. 7
TOP: Triangle Congruency
711 ANS: 4
d) is SSA

PTS: 2 REF: 061914geo NAT: G.CO.B. 7 TOP: Triangle Congruency
712 ANS: 3
NYSED has stated that all students should be awarded credit regardless of their answer to this question.
PTS: 2 REF: 061722geo NAT: G.CO.B. 7 TOP: Triangle Congruency
713 ANS: 3
(3) is AAS, which proves congruency. (1) is AAA, (2) is SSA and (4) is AS.

PTS: 2 REF: 012422geo NAT: G.CO.B. 7 TOP: Triangle Congruency
714 ANS:
Translate $\triangle A B C$ along $\overline{C F}$ such that point C maps onto point F, resulting in image $\triangle A^{\prime} B^{\prime} C^{\prime}$. Then reflect
$\triangle A^{\prime} B^{\prime} C^{\prime}$ over $\overline{D F}$ such that $\triangle A^{\prime} B^{\prime} C^{\prime}$ maps onto $\triangle D E F$.
or
Reflect $\triangle A B C$ over the perpendicular bisector of $\overline{E B}$ such that $\triangle A B C$ maps onto $\triangle D E F$.
PTS: 2 REF: fall1408geo NAT: G.CO.B. 7 TOP: Triangle Congruency
715 ANS:
The transformation is a rotation, which is a rigid motion.
PTS: 2 REF: 081530geo NAT: G.CO.B. 7 TOP: Triangle Congruency
716 ANS:
Yes. The sequence of transformations consists of a reflection and a translation, which are isometries which preserve distance and congruency.

PTS: 2 REF: 011628geo NAT: G.CO.B. 7 TOP: Triangle Congruency
717 ANS:
No. Since $\overline{B C}=5$ and $\overline{S T}=\sqrt{18}$ are not congruent, the two triangles are not congruent. Since rigid motions preserve distance, there is no rigid motion that maps $\triangle A B C$ onto $\triangle R S T$.

PTS: 2 REF: 011830geo NAT: G.CO.B. 7 TOP: Triangle Congruency
718 ANS:
Yes. $\angle A \cong \angle X, \angle C \cong \angle Z, \overline{A C} \cong \overline{X Z}$ after a sequence of rigid motions which preserve distance and angle measure, so $\triangle A B C \cong \triangle X Y Z$ by ASA. $\overline{B C} \cong \overline{Y Z}$ by СРСТС.

PTS: 2
REF: 081730geo
NAT: G.CO.B. 7 TOP: Triangle Congruency

719 ANS:
$\angle Q \cong \angle M \quad \angle P \cong \angle N \quad \overline{Q P} \cong \overline{M N}$
PTS: 2 REF: 012025geo NAT: G.CO.B. 7 TOP: Triangle Congruency
720 ANS:
Translations preserve distance. If point D is mapped onto point A, point F would map onto point C. $\triangle D E F \cong \triangle A B C$ as $\overline{A C} \cong \overline{D F}$ and points are collinear on line ℓ and a reflection preserves distance.

PTS: 4 REF: 081534geo NAT: G.CO.B. 7 TOP: Triangle Congruency
721 ANS:
Reflections are rigid motions that preserve distance.
PTS: 2 REF: 061530geo NAT: G.CO.B. 7 TOP: Triangle Congruency
722 ANS:
It is given that point D is the image of point A after a reflection in line $C H$. It is given that $\overleftrightarrow{C H}$ is the perpendicular bisector of $\overline{B C E}$ at point C. Since a bisector divides a segment into two congruent segments at its midpoint, $\overline{B C} \cong \overline{E C}$. Point E is the image of point B after a reflection over the line $C H$, since points B and E are equidistant from point C and it is given that $\overleftrightarrow{C H}$ is perpendicular to $\overline{B E}$. Point C is on $\overleftrightarrow{C H}$, and therefore, point C maps to itself after the reflection over $\overleftrightarrow{C H}$. Since all three vertices of triangle $A B C$ map to all three vertices of triangle $D E C$ under the same line reflection, then $\triangle A B C \cong \triangle D E C$ because a line reflection is a rigid motion and triangles are congruent when one can be mapped onto the other using a sequence of rigid motions.

PTS: 6 REF: spr1414geo NAT: G.CO.B. 7 TOP: Triangle Congruency
723 ANS:
$\overline{L A} \cong \overline{D N}, \overline{C A} \cong \overline{C N}$, and $\overline{D A C} \perp \overline{L C N}$ (Given). $\angle L C A$ and $\angle D C N$ are right angles (Definition of perpendicular lines). $\triangle L A C$ and $\triangle D N C$ are right triangles (Definition of a right triangle). $\triangle L A C \cong \triangle D N C$ (HL).
$\triangle L A C$ will map onto $\triangle D N C$ after rotating $\triangle L A C$ counterclockwise 90° about point C such that point L maps onto point D.

PTS: 4 REF: spr1408geo NAT: G.CO.B. 8 TOP: Triangle Congruency
724 ANS: 1

$\triangle A D C \cong \triangle B D C$ by SAS
PTS: 2 REF: 082316geo NAT: G.SRT.B. 5 TOP: Triangle Congruency
725 ANS: 4

1) SAS; 2) AAS; 3) SSS

PTS: 2 REF: 062216geo NAT: G.SRT.B. 5 TOP: Triangle Congruency

ANS: 1
PTS: 2
REF: 011703geo NAT: G.SRT.B. 5
TOP: Triangle Congruency
727 ANS:
Yes. The triangles are congruent because of SSS $\left(5^{2}+12^{2}=13^{2}\right)$. All congruent triangles are similar.
PTS: 2 REF: 061830geo NAT: G.SRT.B. 5 TOP: Triangle Congruency
728 ANS: 2

PTS: 2 REF: 061619geo NAT: G.CO.C. 10 TOP: Triangle Proofs
729 ANS:
(2) Euclid's Parallel Postulate; (3) Alternate interior angles formed by parallel lines and a transversal are congruent; (4) Angles forming a line are supplementary; (5) Substitution

PTS: 4 REF: 011633geo NAT: G.CO.C. 10 TOP: Triangle Proofs
730 ANS:

$\triangle X Y Z, \overline{X Y} \cong \overline{Z Y}$, and $\overline{Y W}$ bisects $\angle X Y Z$ (Given). $\triangle X Y Z$ is isosceles
(Definition of isosceles triangle). $\overline{Y W}$ is an altitude of $\triangle X Y Z$ (The angle bisector of the vertex of an isosceles triangle is also the altitude of that triangle). $\overline{Y W} \perp \overline{X Z}$ (Definition of altitude). $\angle Y W Z$ is a right angle (Definition of perpendicular lines).

PTS: 4
REF: spr1411geo NAT: G.CO.C. 10 TOP: Triangle Proofs

731 ANS:

As the sum of the measures of the angles of a triangle is $180^{\circ}, \mathrm{m} \angle A B C+\mathrm{m} \angle B C A+\mathrm{m} \angle C A B=180^{\circ}$. Each interior angle of the triangle and its exterior angle form a linear pair. Linear pairs are supplementary, so $\mathrm{m} \angle A B C+\mathrm{m} \angle F B C=180^{\circ}, \mathrm{m} \angle B C A+\mathrm{m} \angle D C A=180^{\circ}$, and $\mathrm{m} \angle C A B+\mathrm{m} \angle E A B=180^{\circ}$. By addition, the sum of these linear pairs is 540°. When the angle measures of the triangle are subtracted from this sum, the result is 360°, the sum of the exterior angles of the triangle.

PTS: 4
REF: fall1410geo
NAT: G.CO.C. 10
TOP: Triangle Proofs
732 ANS: 3

PTS: 2
REF: 082217geo
NAT: G.SRT.B. 5 TOP: Triangle Proofs
KEY: statements
733 ANS: 3
PTS: 2
REF: 081622geo
NAT: G.SRT.B. 5
TOP: Triangle Proofs
734 ANS: 4 PTS: 2
TOP: Triangle Proofs
KEY: statements
REF: 081810geo NAT: G.SRT.B. 5
KEY: statements
735 ANS: 4

PTS: 2
REF: 061908geo
NAT: G.SRT.B. 5 TOP: Triangle Proofs
KEY: statements
ANS: 2
PTS: 2
REF: 061709geo NAT: G.SRT.B. 5
TOP: Triangle Proofs
KEY: statements

PTS: 2
REF: 012423geo NAT: G.SRT.B. 5 TOP: Triangle Proofs
KEY: statements

738
ANS: 3

1) only proves AA; 2) need congruent legs for HL; 3) SAS; 4) only proves product of altitude and base is equal

PTS: 2 REF: 061607geo NAT: G.SRT.B. 5 TOP: Triangle Proofs
KEY: statements
739 ANS:
Yes. $\triangle A B C$ and $\triangle D E F$ are both 5-12-13 triangles and therefore congruent by SSS. All congruent triangles are similar.

PTS: 2 REF: 012329geo NAT: G.SRT.B. 5 TOP: Triangle Proofs
KEY: statements
740 ANS:
2 Reflexive; $4 \angle B D A \cong \angle B D C$; 6 CPCTC; 7 If points B and D are equidistant from the endpoints of $\overline{A C}$, then B and D are on the perpendicular bisector of $\overline{A C}$.

PTS: 4 REF: 081832geo NAT: G.SRT.B. 5 TOP: Triangle Proofs
KEY: proof
741 ANS:
$\triangle A B E \cong \triangle C B D$ (given); $\angle A \cong \angle C$ (CPCTC); $\angle A F D \cong \angle C F E$ (vertical angles are congruent); $\overline{A B} \cong \overline{C B}$, $\overline{D B} \cong \overline{E B}$ (СРСТС); $\overline{A D} \cong \overline{C E}$ (segment subtraction); $\triangle A F D \cong \triangle C F E$ (AAS)

PTS: 4 REF: 081933geo NAT: G.SRT.B. 5 TOP: Triangle Proofs
KEY: proof
742 ANS:
$\triangle A E B$ and $\triangle D F C, \overline{A B C D}, \overline{A E}\|\overline{D F}, \overline{E B}\| \overline{F C}, \overline{A C} \cong \overline{D B}$ (given); $\angle A \cong \angle D$ (Alternate interior angles formed by parallel lines and a transversal are congruent); $\angle E B A \cong \angle F C D$ (Alternate exterior angles formed by parallel lines and a transversal are congruent); $\overline{B C} \cong \overline{B C}$ (reflexive); $\overline{A B} \cong \overline{C D}$ (segment subtraction); $\triangle E A B \cong \triangle F D C$ (ASA)

PTS: 4 REF: 012333geo NAT: G.SRT.B. 5 TOP: Triangle Proofs
KEY: proof
743 ANS:
$\overline{R S}$ and $\overline{T V}$ bisect each other at point $X ; \overline{T R}$ and $\overline{S V}$ are drawn (given); $\overline{T X} \cong \overline{X V}$ and $\overline{R X} \cong \overline{X S}$ (segment bisectors create two congruent segments); $\angle T X R \cong \angle V X S$ (vertical angles are congruent); $\triangle T X R \cong \triangle V X S$ (SAS); $\angle T \cong \angle V$ (CPCTC); $\overline{T R} \| \overline{S V}$ (a transversal that creates congruent alternate interior angles cuts parallel lines).

PTS: 4 REF: 061733geo NAT: G.SRT.B. 5 TOP: Triangle Proofs
KEY: proof
744
ANS:
Parallelogram $A B C D$, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E (given). $\overline{D C}\|\overline{A B} ; \overline{D A}\| \overline{C B}$ (opposite sides of a parallelogram are parallel). $\angle A C D \cong \angle C A B$ (alternate interior angles formed by parallel lines and a transversal are congruent).

PTS: 2 REF: 081528geo NAT: G.CO.C. 11 TOP: Quadrilateral Proofs

745 ANS:
Parallelogram $A B C D, \overline{B F} \perp \overline{A F D}$, and $\overline{D E} \perp \overline{B E C}$ (given); $\overline{B C} \| \overline{A D}$ (opposite sides of a \square are $\|$); $\overline{B E} \| \overline{F D}$ (parts of $\|$ lines are $\|$); $\overline{B F} \| \overline{D E}$ (two lines \perp to the same line are $\|$); BEDF is \square (a quadrilateral with both pairs of opposite sides $\|$ is a \square); $\angle D E B$ is a right $\angle(\perp$ lines form right $\angle \mathrm{s}$); BEDF is a rectangle (a \square with one right \angle is a rectangle).

PTS: 6 REF: 061835geo NAT: G.CO.C. 11 TOP: Quadrilateral Proofs
746 ANS:
Quadrilateral $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}$ that bisect each other, and $\angle 1 \cong \angle 2$ (given); quadrilateral $A B C D$ is a parallelogram (the diagonals of a parallelogram bisect each other); $\overline{A B} \| \overline{C D}$ (opposite sides of a parallelogram are parallel); $\angle 1 \cong \angle 3$ and $\angle 2 \cong \angle 4$ (alternate interior angles are congruent); $\angle 2 \cong \angle 3$ and $\angle 3 \cong \angle 4$ (substitution); $\triangle A C D$ is an isosceles triangle (the base angles of an isosceles triangle are congruent); $\overline{A D} \cong \overline{D C}$ (the sides of an isosceles triangle are congruent); quadrilateral $A B C D$ is a rhombus (a rhombus has consecutive congruent sides); $\overline{A E} \perp \overline{B E}$ (the diagonals of a rhombus are perpendicular); $\angle B E A$ is a right angle (perpendicular lines form a right angle); $\triangle A E B$ is a right triangle (a right triangle has a right angle).

PTS: 6 REF: 061635geo NAT: G.CO.C. 11 TOP: Quadrilateral Proofs
747 ANS:
Parallelogram $A B C D$ with diagonal $\overline{A C}$ drawn (given). $\overline{A C} \cong \overline{A C}$ (reflexive property). $\overline{A D} \cong \overline{C B}$ and $\overline{B A} \cong \overline{D C}$ (opposite sides of a parallelogram are congruent). $\triangle A B C \cong \triangle C D A$ (SSS).

PTS: 2 REF: 011825geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs
748 ANS:
Parallelogram $A B C D, \overline{B E} \perp \overline{C E D}, \overline{D F} \perp \overline{B F C}, \overline{C E} \cong \overline{C F}$ (given). $\angle B E C \cong \angle D F C$ (perpendicular lines form right angles, which are congruent). $\angle F C D \cong \angle B C E$ (reflexive property). $\triangle B E C \cong \triangle D F C$ (ASA). $\overline{B C} \cong \overline{C D}$ (CPCTC). $A B C D$ is a rhombus (a parallelogram with consecutive congruent sides is a rhombus).

PTS: 6 REF: 081535geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs
749 ANS:
Parallelogram $A N D R$ with $\overline{A W}$ and $\overline{D E}$ bisecting $\overline{N W D}$ and $\overline{R E A}$ at points W and E (Given). $\overline{A N} \cong \overline{R D}$, $\overline{A R} \cong \overline{D N}$ (Opposite sides of a parallelogram are congruent). $A E=\frac{1}{2} A R$, WD $=\frac{1}{2} D N$, so $\overline{A E} \cong \overline{W D}$ (Definition of bisect and division property of equality). $\overline{A R} \| \overline{D N}$ (Opposite sides of a parallelogram are parallel). AWDE is a parallelogram (Definition of parallelogram). $R E=\frac{1}{2} A R, N W=\frac{1}{2} D N$, so $\overline{R E} \cong \overline{N W}$ (Definition of bisect and division property of equality). $\overline{E D} \cong \overline{A W}$ (Opposite sides of a parallelogram are congruent). $\triangle A N W \cong \triangle D R E$ (SSS).

PTS: 6 REF: 011635geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs

750 ANS:
Isosceles trapezoid $A B C D, \angle C D E \cong \angle D C E, \overline{A E} \perp \overline{D E}$, and $\overline{B E} \perp \overline{C E}$ (given); $\overline{A D} \cong \overline{B C}$ (congruent legs of isosceles trapezoid); $\angle D E A$ and $\angle C E B$ are right angles (perpendicular lines form right angles); $\angle D E A \cong \angle C E B$ (all right angles are congruent); $\angle C D A \cong \angle D C B$ (base angles of an isosceles trapezoid are congruent);
$\angle C D A-\angle C D E \cong \angle D C B-\angle D C E$ (subtraction postulate); $\triangle A D E \cong \triangle B C E$ (AAS); $\overline{E A} \cong \overline{E B}$ (CPCTC); $\angle E D A \cong \angle E C B$
$\triangle A E B$ is an isosceles triangle (an isosceles triangle has two congruent sides).
PTS: 6 REF: 081735geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs
751 ANS:
Quadrilateral $A B C D, \overline{A B} \cong \overline{C D}, \overline{A B} \| \overline{C D}$, and $\overline{B F}$ and $\overline{D E}$ are perpendicular to diagonal $\overline{A C}$ at points F and E (given). $\angle A E D$ and $\angle C F B$ are right angles (perpendicular lines form right angles). $\angle A E D \cong \angle C F B$ (All right angles are congruent). $A B C D$ is a parallelogram (A quadrilateral with one pair of sides congruent and parallel is a parallelogram). $\overline{A D} \| \overline{B C}$ (Opposite sides of a parallelogram are parallel). $\angle D A E \cong \angle B C F$ (Parallel lines cut by a transversal form congruent alternate interior angles). $\overline{D A} \cong \overline{B C}$ (Opposite sides of a parallelogram are congruent). $\triangle A D E \cong \triangle C B F$ (AAS). $\overline{A E} \cong \overline{C F}$ (СРСТС).

PTS: 6 REF: 011735geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs
752 ANS:
Quadrilateral $A B C D$ with diagonal $\overline{A C}$, segments $G H$ and $E F, \overline{A E} \cong \overline{C G}, \overline{B E} \cong \overline{D G}, \overline{A H} \cong \overline{C F}$, and $\overline{A D} \cong \overline{C B}$ (given); $\overline{H F} \cong \overline{H F}, \overline{A C} \cong \overline{A C}$ (reflexive property); $\overline{A H}+\overline{H F} \cong \overline{C F}+\overline{H F}, \overline{A E}+\overline{B E} \cong \overline{C G}+\overline{D G}$ (segment

$$
\overline{A F} \cong \overline{C H} \quad \overline{A B} \cong \overline{C D}
$$

addition); $\triangle A B C \cong \triangle C D A(\mathrm{SSS}) ; \angle E A F \cong \angle G C H$ (СРСТС); $\triangle A E F \cong \triangle C G H$ (SAS); $\overline{E F} \cong \overline{G H}$ (СРСТС).
PTS: 6 REF: 011935geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs
753 ANS:
Quadrilateral $A B C \underline{D}, E$ and F are points on $\overline{B C}$ and $\overline{A D}$, respectively, and $\overline{B G D}$ and $\overline{E G F}$ are drawn such that $\angle A B G \cong \angle C D G, \overline{A B} \cong \overline{C D}$, and $\overline{C E} \cong \overline{A F}$ (given); $\overline{B D} \cong \overline{B D}$ (reflexive); $\triangle A B D \cong \triangle C D B$ (SAS); $\overline{B C} \cong \overline{D A}$ (CPCTC); $\overline{B E}+\overline{C E} \cong \overline{A F}+\overline{D F}$ (segment addition); $\overline{B E} \cong \overline{D F}$ (segment subtraction); $\angle B G E \cong \angle D G F$ (vertical angles are congruent); $\angle C B D \cong \angle A D B$ (СРСТС); $\triangle E B G \cong \triangle F D G$ (AAS); $\overline{F G} \cong \overline{E G}$ (СРСТС).

PTS: 6 REF: 012035geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs
754 ANS:
Parallelogram $P Q R S, \overline{Q T} \perp \overline{P S}, \overline{S U} \perp \overline{Q R}$ (given); $\overline{Q U R} \cong \overline{P T S}$ (opposite sides of a parallelogram are parallel; Quadrilateral QUST is a rectangle (quadrilateral with parallel opposite sides and opposite right angles is a rectangle); $\overline{S U} \cong \overline{Q T}$ (opposite sides of a rectangle are congruent); $\overline{R S} \cong \overline{P Q}$ (opposite sides of a parallelogram are congruent); $\angle R U S$ and $\angle P T Q$ are right angles (the supplement of a right angle is a right angle), $\triangle R S U \cong \triangle P Q T$ (HL); $\overline{P T} \cong \overline{R U}$ (СРСТС)

PTS: 4 REF: 062233geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs

755
ANS:
In quadrilateral $A B C D, \overline{A B} \cong \overline{C D}$ and $\overline{A B} \| \overline{C D}$, segments $C E$ and $A F$ are drawn to diagonal $\overline{B D}$ such that $\overline{B E} \cong \overline{D F}$ (Given); $\angle A B F \cong \angle C D E$ (Parallel lines cut by a transversal form congruent interior angles); $\overline{E F} \cong \overline{F E}$ (Reflexive); $\overline{B E}+\overline{E F} \cong \overline{D F}+\overline{F E}$ (Addition); $\triangle A F B \cong \triangle C E D$ (SAS); $\overline{C E} \cong \overline{A F}$ (CPCTC).

$$
\overline{B F} \cong \overline{D E}
$$

PTS: 4
756
ANS:
Quadrilateral $A B C D, \overline{A B} \cong \overline{C D}, \overline{A B} \| \overline{C D}$, diagonal $\overline{A C}$ intersects $\overline{E F}$ at G, and $\overline{D E} \cong \overline{B F}$ (given); $A B C D$ is a parallelogram (a quadrilateral with a pair of opposite sides \|is a parallelogram); $\overline{A D} \cong \overline{C B}$ (opposite side of a parallelogram are congruent); $\overline{A E} \cong \overline{C F}$ (subtraction postulate); $\overline{A D} \| \overline{C B}$ (opposite side of a parallelogram are parallel); $\angle E A G \cong \angle F C G$ (if parallel sides are cut by a transversal, the alternate interior angles are congruent); $\angle A G E \cong \angle C G F$ (vertical angles); $\triangle A E G \cong \triangle C F G$ (AAS); $\overline{E G} \cong \overline{F G}$ (CPCTC): G is the midpoint of $\overline{E F}$ (since G divides $\overline{E F}$ into two equal parts, G is the midpoint of $\overline{E F}$).

PTS: 6 REF: 062335geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs
757 ANS:
Quadrilateral $A B C D$ is a parallelogram with diagonals $\overline{A C}$ and $\overline{B D}$ intersecting at E (Given). $\overline{A D} \cong \overline{B C}$ (Opposite sides of a parallelogram are congruent). $\angle A E D \cong \angle C E B$ (Vertical angles are congruent). $\overline{B C} \| \overline{D A}$ (Definition of parallelogram). $\angle D B C \cong \angle B D A$ (Alternate interior angles are congruent). $\triangle A E D \cong \triangle C E B$ (AAS). 180° rotation of $\triangle A E D$ around point E.

PTS: 4 REF: 061533geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs
758 ANS:
Quadrilateral MATH, $\overline{H M} \cong \overline{A T}, \overline{H T} \cong \overline{A M}, \overline{H E} \perp \overline{M E A}$, and $\overline{H A} \perp \overline{A T}$ (given); $\angle H E A$ and $\angle T A H$ are right angles (perpendicular lines form right angles); $\angle H E A \cong \angle T A H$ (all right angles are congruent); MATH is a parallelogram (a quadrilateral with two pairs of congruent opposite sides is a parallelogram); $\overline{M A} \| \overline{T H}$ (opposite sides of a parallelogram are parallel); $\angle T H A \cong \angle E A H$ (alternate interior angles of parallel lines and a transversal are congruent); $\triangle H E A \sim \triangle T A H$ (AA); $\frac{H A}{T H}=\frac{H E}{T A}$ (corresponding sides of similar triangles are in proportion); $T A \bullet H A=H E \bullet T H$ (product of means equals product of extremes).

PTS: 6 REF: 061935geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs

ANS:

1) Quadrilateral $A B C D, \overline{A C}$ and $\overline{E F}$ intersect at $H, \overline{E F} \| \overline{A D}$, $\overline{E F} \| \overline{B C}$, and $\overline{A D} \cong \overline{B C}$ (Given); 2) $\angle E H A \cong \angle F H C$ (Vertical angles are congruent); 3) $\overline{A D} \| \overline{B C}$ (Transitive property of parallel lines); 4) $A B C D$ is a parallelogram (Quadrilateral with a pair of sides both parallel and congruent); 5) $\overline{A B} \| \overline{C D}$ (Opposite sides of a parallelogram); 6) $\angle A E H \cong \angle C F H$ (Alternate interior angles formed by parallel lines and a transversal); 7) $\triangle A E H \sim \triangle C F H$ (AA); 8) $\frac{E H}{F H}=\frac{A H}{C H}$ (Corresponding sides of similar triangles are proportional); 8) $(E H)(C H)=(F H)(A H)$ (Product of means equals product of extremes).

PTS: 6 REF: 082235geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs
760 ANS:
Circle O, secant $\overline{A C D}$, tangent $\overline{A B}$ (Given). Chords $\overline{B C}$ and $\overline{B D}$ are drawn (Auxiliary lines). $\angle A \cong \angle A$, $\overparen{B C} \cong \overparen{B C}$ (Reflexive property). $\mathrm{m} \angle B D C=\frac{1}{2} \mathrm{~m} \overparen{B C}$ (The measure of an inscribed angle is half the measure of the intercepted arc). $\mathrm{m} \angle C B A=\frac{1}{2} \mathrm{~m} \overparen{B C}$ (The measure of an angle formed by a tangent and a chord is half the measure of the intercepted arc). $\angle B D C \cong \angle C B A$ (Angles equal to half of the same arc are congruent). $\triangle A B C \sim \triangle A D B(A A) . \frac{A B}{A C}=\frac{A D}{A B}$ (Corresponding sides of similar triangles are proportional). $A C \cdot A D=A B^{2}$ (In a proportion, the product of the means equals the product of the extremes).

PTS: 6 REF: spr1413geo NAT: G.SRT.B. 5 TOP: Circle Proofs
761 ANS:
Circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E (Given); Chords $\overline{C B}$ and $\overline{A D}$ are drawn (auxiliary lines drawn); $\angle C E B \cong \angle A E D$ (vertical angles); $\angle C \cong \angle A$ (Inscribed angles that intercept the same arc are congruent);
$\triangle B C E \sim \triangle D A E$ (AA); $\frac{A E}{C E}=\frac{E D}{E B}$ (Corresponding sides of similar triangles are proportional);
$A E \cdot E B=C E \cdot E D$ (The product of the means equals the product of the extremes).
PTS: 6 REF: 081635geo NAT: G.SRT.B. 5 TOP: Circle Proofs
762 ANS:
Circle O, tangent $\overline{E C}$ to diameter $\overline{A C}$, chord $\overline{B C} \|$ secant $\overline{A D E}$, and chord $\overline{A B}$ (given); $\angle B$ is a right angle (an angle inscribed in a semi-circle is a right angle); $\overleftrightarrow{E C} \perp \overline{O C}$ (a radius drawn to a point of tangency is perpendicular to the tangent); $\angle E C A$ is a right angle (perpendicular lines form right angles); $\angle B \cong \angle E C A$ (all right angles are congruent); $\angle B C A \cong \angle C A E$ (the transversal of parallel lines creates congruent alternate interior angles); $\triangle A B C \sim \triangle E C A(A A) ; \frac{B C}{C A}=\frac{A B}{E C}$ (Corresponding sides of similar triangles are in proportion).

PTS: 4
REF: 081733geo
NAT: G.SRT.B. 5 TOP: Circle Proofs

763 ANS: 4
$\frac{36}{45} \neq \frac{15}{18}$
$\frac{4}{5} \neq \frac{5}{6}$
PTS: 2 REF: 081709geo NAT: G.SRT.A. 3 TOP: Similarity Proofs
764 ANS: 4
AA
PTS: 2
REF: 061809geo NAT: G.SRT.A. 3 TOP: Similarity Proofs
765 ANS: 4

AA from diagram; SSS as the three corresponding sides are proportional; SAS as two corresponding sides are proportional and an angle is equal.

PTS: 2 REF: 012324geo NAT: G.SRT.A. 3 TOP: Similarity Proofs
766 ANS:
A dilation of $\frac{5}{2}$ about the origin. Dilations preserve angle measure, so the triangles are similar by AA.
PTS: 4 REF: 061634geo NAT: G.SRT.A. 3 TOP: Similarity Proofs
767 ANS:
$\overline{G I}$ is parallel to $\overline{N T}$, and $\overline{I N}$ intersects at A (given); $\angle I \cong \angle N, \angle G \cong \angle T$ (paralleling lines cut by a transversal form congruent alternate interior angles); $\triangle G I A \sim \triangle T N A(A A)$.

PTS: 2 REF: 011729geo NAT: G.SRT.A. 3 TOP: Similarity Proofs
768 ANS:
Parallelogram $A B C D, \overline{E F G}$, and diagonal $\overline{D F B}$ (given); $\angle D F E \cong \angle B F G$ (vertical angles); $\overline{A D} \| \overline{C B}$ (opposite sides of a parallelogram are parallel); $\angle E D F \cong \angle G B F$ (alternate interior angles are congruent); $\triangle D E F \sim \triangle B G F$ (AA).

PTS: 4 REF: 061633geo NAT: G.SRT.A. 3 TOP: Similarity Proofs

ANS:

Quadrilateral $F A C T, \overline{B R}$ intersects diagonal $\overline{A T}$ at $E, \overline{A F} \| \overline{C T}$, and $\overline{A F} \cong \overline{C T}$ (Given); $F A C T$ is a parallelogram (A quadrilateral with one pair of opposite sides parallel and congruent is a parallelogram); $\overline{A C} \cong \overline{F T}$ (Opposite sides of a parallelogram are parallel); $\angle B A E \cong \angle R T E, \angle A B E \cong \angle T R E$ (Parallel lines cut by a transversal form alternate interior angles that are congruent); $\triangle A B E \sim \triangle T R E$ (AA); $\frac{A B}{A E}=\frac{T R}{T E}$ (Corresponding sides of similar triangles are proportional); $(A B)(T E)=(A E)(T R)$ (Product of the means equals the product of the extremes).

PTS: 6 REF: 082335geo NAT: G.SRT.A. 3 TOP: Similarity Proofs
770 ANS:
Circle A can be mapped onto circle B by first translating circle A along vector $\overline{A B}$ such that A maps onto B, and then dilating circle A, centered at A, by a scale factor of $\frac{5}{3}$. Since there exists a sequence of transformations that maps circle A onto circle B, circle A is similar to circle B.

PTS: 2 REF: spr1404geo NAT: G.C.A. 1 TOP: Similarity Proofs

