JMAP REGENTS BY TYPE

The NY Geometry Regents Exam Questions from Spring 2014 to January 2024 Sorted by Type www.jmap.org

Geometry Multiple Choice Regents Exam Questions

1 What is an equation of a circle whose center is $(1,4)$ and diameter is 10 ?

1) $x^{2}-2 x+y^{2}-8 y=8$
2) $x^{2}+2 x+y^{2}+8 y=8$
3) $x^{2}-2 x+y^{2}-8 y=83$
4) $x^{2}+2 x+y^{2}+8 y=83$

2 A quadrilateral must be a parallelogram if

1) one pair of sides is parallel and one pair of angles is congruent
2) one pair of sides is congruent and one pair of angles is congruent
3) one pair of sides is both parallel and congruent
4) the diagonals are congruent

3 The Pyramid of Memphis, in Tennessee, stands 107 yards tall and has a square base whose side is 197 yards long.

What is the volume of the Pyramid of Memphis, to the nearest cubic yard?

1) 751,818
2) $1,384,188$
3) $2,076,212$
4) $4,152,563$

4 Which three-dimensional figure will result when a rectangle 6 inches long and 5 inches wide is continuously rotated about the longer side?

1) a rectangular prism with a length of 6 inches, width of 6 inches, and height of 5 inches
2) a rectangular prism with a length of 6 inches, width of 5 inches, and height of 5 inches
3) a cylinder with a radius of 5 inches and a height of 6 inches
4) a cylinder with a radius of 6 inches and a height of 5 inches

5 Triangles ABC and RST are graphed on the set of axes below.

Which sequence of rigid motions will prove $\triangle A B C \cong \triangle R S T$?

1) a line reflection over $y=x$
2) a rotation of 180° centered at $(1,0)$
3) a line reflection over the x-axis followed by a translation of 6 units right
4) a line reflection over the x-axis followed by a line reflection over $y=1$

6 In the diagram below of Circle O, diameter $\overline{A O B}$ and chord $\overline{C B}$ are drawn, and $\mathrm{m} \angle B=28^{\circ}$.

What is $\mathrm{m} \overparen{B C}$?

1) 56°
2) 124°
3) 152°
4) 166°

7 In circle B below, diameter $\overline{R T}$, radius $\overline{B E}$, and chord $\overline{R E}$ are drawn.

If $\mathrm{m} \angle T R E=15^{\circ}$ and $B E=9$, then the area of sector $E B R$ is

1) 3.375π
2) 6.75π
3) 33.75π
4) 37.125π

8 Which transformation carries the parallelogram below onto itself?

1) a reflection over $y=x$
2) a reflection over $y=-x$
3) a rotation of 90° counterclockwise about the origin
4) a rotation of 180° counterclockwise about the origin

9 In the diagram below of circle $O, \overline{A C}$ and $\overline{B C}$ are chords, and $\mathrm{m} \angle A C B=70^{\circ}$.

If $O A=9$, the area of the shaded sector $A O B$ is

1) 3.5π
2) 7π
3) 15.75π
4) 31.5π

Geometry Multiple Choice Regents Exam Questions
www.jmap.org
10 The table below shows the population and land area, in square miles, of four counties in New York State at the turn of the century.

County	$\mathbf{2 0 0 0}$ Census Population	$\mathbf{2 0 0 0}$ Land Area $\left(\mathrm{mi}^{2}\right)$
Broome	200,536	706.82
Dutchess	280,150	801.59
Niagara	219,846	522.95
Saratoga	200,635	811.84

Which county had the greatest population density?

1) Broome
2) Niagara
3) Dutchess
4) Saratoga

11 On the set of axes below, $\overline{A B}$ is dilated by a scale factor of $\frac{5}{2}$ centered at point P.

Which statement is always true?

1) $\overline{P A} \cong \overline{A A^{\prime}}$
2) $\overline{A B} \| \overline{A^{\prime} B^{\prime}}$
3) $A B=A^{\prime} B^{\prime}$
4) $\frac{5}{2}\left(A^{\prime} B^{\prime}\right)=A B$

12 In the diagram below of circle O, chords $\overline{A D}$ and $\overline{B C}$ intersect at E, and chords $\overline{A B}$ and $\overline{C D}$ are drawn.

Which statement must always be true?

1) $\overline{A B} \cong \overline{C D}$
2) $\overline{A D} \cong \overline{B C}$
3) $\angle B \cong \angle C$
4) $\angle A \cong \angle C$

13 Which expression is equal to $\sin 30^{\circ}$?

1) $\tan 30^{\circ}$
2) $\sin 60^{\circ}$
3) $\cos 60^{\circ}$
4) $\cos 30^{\circ}$

14 Given the information marked on the diagrams below, which pair of triangles can not always be proven congruent?

1)

$$
\triangle A B C \text { and } \triangle D B C
$$

2)

$\triangle E F G$ and $\triangle H I G$

3) $\triangle K L J$ and $\triangle M J L$

4) $\triangle N O P$ and $\triangle R S P$

15 In circle O two secants, $\overline{A B P}$ and $\overline{C D P}$, are drawn to external point P. If $\mathrm{m} \overparen{A C}=72^{\circ}$, and $\mathrm{m} \overparen{B D}=34^{\circ}$, what is the measure of $\angle P$?

1) 19°
2) 38°
3) 53°
4) 106°

16 A 15-foot ladder leans against a wall and makes an angle of 65° with the ground. What is the horizontal distance from the wall to the base of the ladder, to the nearest tenth of a foot?

1) 6.3
2) 7.0
3) 12.9
4) 13.6

17 Circle O with a radius of 9 is drawn below. The measure of central angle $A O C$ is 120°.

What is the area of the shaded sector of circle O ?

1) 6π
2) 12π
3) 27π
4) 54π

18 What is an equation of a line that is perpendicular to the line whose equation is $2 y+3 x=1$?

1) $y=\frac{2}{3} x+\frac{5}{2}$
2) $y=\frac{3}{2} x+2$
3) $y=-\frac{2}{3} x+1$
4) $y=-\frac{3}{2} x+\frac{1}{2}$

19 Which transformation does not always preserve distance?

1) $(x, y) \rightarrow(x+2, y)$
2) $(x, y) \rightarrow(-y,-x)$
3) $(x, y) \rightarrow(2 x, y-1)$
4) $(x, y) \rightarrow(3-x, 2-y)$

20 In the diagram below, $\overline{A F K B} \| \overline{C H L M}, \overline{F H} \cong \overline{L H}$, $\overline{F L} \cong \overline{K L}$, and $\overline{L F}$ bisects $\angle H F K$.

Which statement is always true?

1) $2(\mathrm{~m} \angle H L F)=\mathrm{m} \angle C H E$
2) $2(\mathrm{~m} \angle F L K)=\mathrm{m} \angle L K B$
3) $\mathrm{m} \angle A F D=\mathrm{m} \angle B K L$
4) $\mathrm{m} \angle D F K=\mathrm{m} \angle K L F$

21 Triangle JGR is similar to triangle MST. Which statement is not always true?

1) $\angle J \cong \angle M$
2) $\angle G \cong \angle T$
3) $\angle R \cong \angle T$
4) $\angle G \cong \angle S$

22 What are the coordinates of the center and length of the radius of the circle whose equation is
$x^{2}+y^{2}+2 x-16 y+49=0$?

1) center $(1,-8)$ and radius 4
2) center $(-1,8)$ and radius 4
3) center $(1,-8)$ and radius 16
4) center $(-1,8)$ and radius 16

23 Darnell models a cup with the cylinder below. He measured the diameter of the cup to be 10 cm and the height to be 9 cm .

If Darnell fills the cup with water to a height of 8 cm , what is the volume of the water in the cup, to the nearest cubic centimeter?

1) 628
2) 707
3) 2513
4) 2827

24 As shown in the diagram below, right triangle $A B C$ has side lengths of 8 and 15.

If the triangle is continuously rotated about $\overline{A C}$, the resulting figure will be

1) a right cone with a radius of 15 and a height of 8
2) a right cone with a radius of 8 and a height of 15
3) a right cylinder with a radius of 15 and a height of 8
4) a right cylinder with a radius of 8 and a height of 15

Geometry Multiple Choice Regents Exam Questions
www.jmap.org
25 A cylindrical pool has a diameter of 16 feet and height of 4 feet. The pool is filled to $\frac{1}{2}$ foot below the top. How much water does the pool contain, to the nearest gallon? [$1 \mathrm{ft}^{3}=7.48$ gallons]

1) 704
2) 804
3) 5264
4) 6016

26 In the diagram of equilateral triangle $A B C$ shown below, E and F are the midpoints of $\overline{A C}$ and $\overline{B C}$, respectively.

If $E F=2 x+8$ and $A B=7 x-2$, what is the perimeter of trapezoid $A B F E$?

1) 36
2) 60
3) 100
4) 120

27 Jaden is comparing two cones. The radius of the base of cone A is twice as large as the radius of the base of cone B. The height of cone B is twice the height of cone A. The volume of cone A is

1) twice the volume of cone B
2) four times the volume of cone B
3) equal to the volume of cone B
4) equal to half the volume of cone B

28 In right triangle $A B C, \mathrm{~m} \angle C=90^{\circ}$ and $A C \neq B C$. Which trigonometric ratio is equivalent to $\sin B$?

1) $\cos A$
2) $\cos B$
3) $\tan A$
4) $\tan B$

29 In the diagram below of $\triangle C E R, \overline{L A} \| \overline{C R}$.

If $C L=3.5, L E=7.5$, and $E A=9.5$, what is the length of $\overline{A R}$, to the nearest tenth?

1) 5.5
2) 4.4
3) 3.0
4) 2.8

30 What is the volume of a hemisphere that has a diameter of 12.6 cm , to the nearest tenth of a cubic centimeter?

1) 523.7
2) 1047.4
3) 4189.6
4) 8379.2

Geometry Multiple Choice Regents Exam Questions www.jmap.org

31 On the set of axes below, pentagon $A B C D E$ is congruent to $A " B " C " D " E "$.

Which describes a sequence of rigid motions that maps $A B C D E$ onto $A " B^{\prime \prime} C^{\prime \prime} D^{\prime \prime} E^{\prime \prime}$?

1) a rotation of 90° counterclockwise about the origin followed by a reflection over the x-axis
2) a rotation of 90° counterclockwise about the origin followed by a translation down 7 units
3) a reflection over the y-axis followed by a reflection over the x-axis
4) a reflection over the x-axis followed by a rotation of 90° counterclockwise about the origin

32 Point P divides the directed line segment from point $A(-4,-1)$ to point $B(6,4)$ in the ratio 2:3. The coordinates of point P are

1) $(-1,1)$
2) $(0,1)$
3) $(1,0)$
4) $(2,2)$

33 In the diagram below, rectangle $A B C D$ has vertices whose coordinates are $A(7,1), B(9,3), C(3,9)$, and $D(1,7)$.

Which transformation will not carry the rectangle onto itself?

1) a reflection over the line $y=x$
2) a reflection over the line $y=-x+10$
3) a rotation of 180° about the point $(6,6)$
4) a rotation of 180° about the point $(5,5)$

34 In $\triangle A B C$ below, angle C is a right angle.

Which statement must be true?

1) $\sin A=\cos B$
2) $\sin A=\tan B$
3) $\sin B=\tan A$
4) $\sin B=\cos B$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

35 If the altitudes of a triangle meet at one of the triangle's vertices, then the triangle is

1) a right triangle
2) an acute triangle
3) an obtuse triangle
4) an equilateral triangle

36 The diagram below models a countertop designed for a kitchen. The countertop is made of solid oak and is 3 inches thick.

If oak weighs approximately 44 pounds per cubic foot, the approximate weight, in pounds, of the countertop is

1) 630
2) 730
3) 750
4) 870

37 In the diagram below, $\overline{A C}$ and $\overline{B D}$ intersect at E.

Which information is always sufficient to prove
$\triangle A B E \cong \triangle C D E$?

1) $\overline{A B} \| \overline{C D}$
2) $\overline{A B} \cong \overline{C D}$ and $\overline{B E} \cong \overline{D E}$
3) E is the midpoint of $\overline{A C}$.
4) $\overline{B D}$ and $\overline{A C}$ bisect each other.

38 In the diagram below, $\triangle A B C \cong \triangle D E C$.

Which transformation will map $\triangle A B C$ onto $\triangle D E C$?

1) a rotation
2) a line reflection
3) a translation followed by a dilation
4) a line reflection followed by a second line reflection

39 Quadrilateral $E B C F$ and $\overline{A D}$ are drawn below, such that $A B C D$ is a parallelogram, $\overline{E B} \cong \overline{F B}$, and $\overline{E F} \perp \overline{F H}$.

If $\mathrm{m} \angle E=62^{\circ}$ and $\mathrm{m} \angle C=51^{\circ}$, what is $\mathrm{m} \angle F H B$?

1) 79°
2) 76°
3) 73°
4) 62°

40 If the line represented by $y=-\frac{1}{4} x-2$ is dilated by a scale factor of 4 centered at the origin, which statement about the image is true?

1) The slope is $-\frac{1}{4}$ and the y-intercept is -8 .
2) The slope is $-\frac{1}{4}$ and the y-intercept is -2 .
3) The slope is -1 and the y-intercept is -8 .
4) The slope is -1 and the y-intercept is -2 .

41 The line $-3 x+4 y=8$ is transformed by a dilation centered at the origin. Which linear equation could represent its image?

1) $y=\frac{4}{3} x+8$
2) $y=\frac{3}{4} x+8$
3) $y=-\frac{3}{4} x-8$
4) $y=-\frac{4}{3} x-8$

42 As shown in the diagram below, the radius of a cone is 2.5 cm and its slant height is 6.5 cm .

How many cubic centimeters are in the volume of the cone?

1) 12.5π
2) 13.5π
3) 30.0π
4) 37.5π

43 A rectangle is graphed on the set of axes below.

A reflection over which line would carry the rectangle onto itself?

1) $y=2$
2) $y=10$
3) $y=\frac{1}{2} x-3$
4) $y=-\frac{1}{2} x+7$

44 The line whose equation is $6 x+3 y=3$ is dilated by a scale factor of 2 centered at the point $(0,0)$. An equation of its image is

1) $y=-2 x+1$
2) $y=-2 x+2$
3) $y=-4 x+1$
4) $y=-4 x+2$

45 Right triangle $A C T$ has $\mathrm{m} \angle A=90^{\circ}$. Which expression is always equivalent to $\cos T$?

1) $\cos C$
2) $\sin C$
3) $\tan T$
4) $\sin T$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

46 On the set of axes below, $\triangle B L U$ has vertices with coordinates $B(-3,-2), L(-2,5)$, and $U(1,1)$.

What is the area of $\triangle B L U$?

1) 11
2) 12.5
3) 14
4) 17.1

47 In the diagram below of triangle $A B C, \overline{A C}$ is extended through point C to point D, and $\overline{B E}$ is drawn to $\overline{A C}$.

Which equation is always true?

1) $\mathrm{m} \angle 1=\mathrm{m} \angle 3+\mathrm{m} \angle 2$
2) $\mathrm{m} \angle 5=\mathrm{m} \angle 3-\mathrm{m} \angle 2$
3) $\mathrm{m} \angle 6=\mathrm{m} \angle 3-\mathrm{m} \angle 2$
4) $\mathrm{m} \angle 7=\mathrm{m} \angle 3+\mathrm{m} \angle 2$

48 In quadrilateral $Q R S T$, diagonals $\overline{Q S}$ and $\overline{R T}$ intersect at M. Which statement would always prove quadrilateral QRST is a parallelogram?

1) $\angle T Q R$ and $\angle Q R S$ are supplementary.
2) $\overline{Q M} \cong \overline{S M}$ and $\overline{Q T} \cong \overline{R S}$
3) $\overline{Q R} \cong \overline{T S}$ and $\overline{Q T} \cong \overline{R S}$
4) $\overline{Q R} \cong \overline{T S}$ and $\overline{Q T} \| \overline{R S}$

49 In the diagram below of right triangle KMI, altitude $\overline{I G}$ is drawn to hypotenuse $\overline{K M}$.

If $K G=9$ and $I G=12$, the length of $\overline{I M}$ is

1) 15
2) 16
3) 20
4) 25

50 In the diagram below, $\triangle D O G \sim \triangle C A T$, where $\angle G$ and $\angle T$ are right angles.

Which expression is always equivalent to $\sin D$?

1) $\cos A$
2) $\sin A$
3) $\tan A$
4) $\cos C$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

51 A square is graphed on the set of axes below, with vertices at $(-1,2),(-1,-2),(3,-2)$, and $(3,2)$.

Which transformation would not carry the square onto itself?

1) reflection over the y-axis
2) reflection over the x-axis
3) rotation of 180 degrees around point $(1,0)$
4) reflection over the line $y=x-1$

52 In the diagram below of $\triangle A B C, D$ and E are the midpoints of $\overline{A B}$ and $\overline{A C}$, respectively, and $\overline{D E}$ is drawn.

I. AA similarity
II. SSS similarity
III. SAS similarity

Which methods could be used to prove
$\triangle A B C \sim \triangle A D E$?

1) I and II, only
2) II and III, only
3) I and III, only
4) I, II, and III

53 A regular hexagon is rotated about its center. Which degree measure will carry the regular hexagon onto itself?

1) 45°
2) 90°
3) 120°
4) 135°

54 In the diagram below, $\overline{B C}$ connects points B and C on the congruent sides of isosceles triangle $A D E$, such that $\triangle A B C$ is isosceles with vertex angle A.

If $A B=10, B D=5$, and $D E=12$, what is the length of $\overline{B C}$?

1) 6
2) 7
3) 8
4) 9

55 The endpoints of directed line segment $P Q$ have coordinates of $P(-7,-5)$ and $Q(5,3)$. What are the coordinates of point A, on $\overline{P Q}$, that divide $\overline{P Q}$ into a ratio of 1:3?

1) $A(-1,-1)$
2) $A(2,1)$
3) $A(3,2)$
4) $A(-4,-3)$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

56 In the diagram below of right triangle $M D L$, altitude $\overline{D G}$ is drawn to hypotenuse $\overline{M L}$.

If $M G=3$ and $G L=24$, what is the length of $\overline{D G}$?

1) 8
2) 9
3) $\sqrt{63}$
4) $\sqrt{72}$

57 Segment $A B$ is the perpendicular bisector of $\overline{C D}$ at point M. Which statement is always true?

1) $\overline{C B} \cong \overline{D B}$
2) $\overline{C D} \cong \overline{A B}$
3) $\triangle A C D \sim \triangle B C D$
4) $\triangle A C M \sim \triangle B C M$

58 In the diagram below of parallelogram $A B C D$, $\overline{A F G B}, \overline{C F}$ bisects $\angle D C B, \overline{D G}$ bisects $\angle A D C$, and $\overline{C F}$ and $\overline{D G}$ intersect at E.

If $\mathrm{m} \angle B=75^{\circ}$, then the measure of $\angle E F A$ is

1) 142.5°
2) 127.5°
3) 52.5°
4) 37.5°

59 A vertical mine shaft is modeled in the diagram below. At a point on the ground 50 feet from the top of the mine, a ventilation tunnel is dug at an angle of 47°.

What is the length of the tunnel, to the nearest foot?

1) 47
2) 54
3) 68
4) 73

60 The surface of the roof of a house is modeled by two congruent rectangles with dimensions 40 feet by 16 feet, as shown below.

Roofing shingles are sold in bundles. Each bundle covers $33 \frac{1}{3}$ square feet. What is the minimum number of bundles that must be purchased to completely cover both rectangular sides of the roof?

1) 20
2) 2
3) 39
4) 4

Geometry Multiple Choice Regents Exam Questions

www.jmap.org
61 Francisco needs the three pieces of glass shown below to complete a stained glass window. The shapes, two triangles and a trapezoid, are measured in inches.

Glass can be purchased in rectangular sheets that are 12 inches wide. What is the minimum length of a sheet of glass, in inches, that Francisco must purchase in order to have enough to complete the window?

1) 20
2) 25
3) 29
4) 34

62 In parallelogram $P Q R S, \overline{Q P}$ is extended to point T and $\overline{S T}$ is drawn.

If $\overline{S T} \cong \overline{S P}$ and $\mathrm{m} \angle R=130^{\circ}$, what is $\mathrm{m} \angle P S T$?

1) 130°
2) 80°
3) 65°
4) 50°

63 Which polygon does not always have congruent diagonals?

1) square
2) rectangle
3) rhombus
4) isosceles trapezoid

64 A rhombus is graphed on the set of axes below.

Which transformation would carry the rhombus onto itself?

1) 180° rotation counterclockwise about the origin
2) reflection over the line $y=\frac{1}{2} x+1$
3) reflection over the line $y=0$
4) reflection over the line $x=0$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

65 Trapezoid $A B C D$ is drawn such that $\overline{A B} \| \overline{D C}$.
Trapezoid $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is the image of trapezoid $A B C D$ after a rotation of 110° counterclockwise about point P.

- P

Which statement is always true?

1) $\angle A \cong \angle D^{\prime}$
2) $\overline{A C} \cong \overline{B^{\prime} D^{\prime}}$
3) $\overline{A^{\prime} B^{\prime}} \| \overline{D^{\prime} C^{\prime}}$
4) $\overline{B^{\prime} A^{\prime}} \cong \overline{C^{\prime} D^{\prime}}$

66 In the diagram below, lines k and ℓ intersect lines m and n at points A, B, C, and D.

Which statement is sufficient to prove $A B C D$ is a parallelogram?

1) $\angle 1 \cong \angle 3$
2) $\angle 4 \cong \angle 7$
3) $\angle 2 \cong \angle 5$ and $\angle 5 \cong \angle 7$
4) $\angle 1 \cong \angle 3$ and $\angle 3 \cong \angle 4$

67 In rhombus TIGE, diagonals $\overline{T G}$ and $\overline{I E}$ intersect at R. The perimeter of TIGE is 68 , and $T G=16$.

What is the length of diagonal $\overline{I E}$?

1) 15
2) 30
3) 34
4) 52

68 Lou has a solid clay brick in the shape of a rectangular prism with a length of 8 inches, a width of 3.5 inches, and a height of 2.25 inches. If the clay weighs $1.055 \mathrm{oz} / \mathrm{in}^{3}$, how much does Lou's brick weigh, to the nearest ounce?

1) 66
2) 64
3) 63
4) 60

69 In the diagram below of $\triangle A C D, \overline{D B}$ is a median to $\overline{A C}$, and $\overline{A B} \cong \overline{D B}$.

If $\mathrm{m} \angle D A B=32^{\circ}$, what is $\mathrm{m} \angle B D C$?

1) 32°
2) 52°
3) 58°
4) 64°

70 In the diagram of quadrilateral $N A V Y$ below, $\mathrm{m} \angle Y N A=30^{\circ}, \mathrm{m} \angle Y A N=38^{\circ}, \mathrm{m} \angle A V Y=94^{\circ}$, and $\mathrm{m} \angle V A Y=46^{\circ}$.

Which segment has the shortest length?

1) $\overline{A Y}$
2) $\overline{N Y}$
3) $\overline{V A}$
4) $\overline{V Y}$

71 The equation of line t is $3 x-y=6$. Line m is the image of line t after a dilation with a scale factor of $\frac{1}{2}$ centered at the origin. What is an equation of the line m ?

1) $y=\frac{3}{2} x-3$
2) $y=\frac{3}{2} x-6$
3) $y=3 x+3$
4) $y=3 x-3$

72 The area of $\triangle T A P$ is $36 \mathrm{~cm}^{2}$. A second triangle, $J O E$, is formed by connecting the midpoints of each side of $\triangle T A P$. What is the area of $J O E$, in square centimeters?

1) 9
2) 12
3) 18
4) 27

73 A countertop for a kitchen is modeled with the dimensions shown below. An 18-inch by 21 -inch rectangle will be removed for the installation of the sink.

What is the area of the top of the installed countertop, to the nearest square foot?

1) 26
2) 23
3) 22
4) 19

74 The equation of a circle is $x^{2}+y^{2}+12 x=-27$. What are the coordinates of the center and the length of the radius of the circle?

1) center $(6,0)$ and radius 3
2) center $(6,0)$ and radius 9
3) center $(-6,0)$ and radius 3
4) center $(-6,0)$ and radius 9

75 Square MATH has a side length of 7 inches. Which three-dimensional object will be formed by continuously rotating square MATH around side $\overline{A T}$?

1) a right cone with a base diameter of 7 inches
2) a right cylinder with a diameter of 7 inches
3) a right cone with a base radius of 7 inches
4) a right cylinder with a radius of 7 inches

76 In the diagram below of $\triangle A B C, X$ and Y are points on $\overline{A B}$ and $\overline{A C}$, respectively, such that $\mathrm{m} \angle A Y X=\mathrm{m} \angle B$.

Which statement is not always true?

1) $\frac{A X}{A C}=\frac{X Y}{C B}$
2) $\frac{A Y}{A B}=\frac{A X}{A C}$
3) $(A Y)(C B)=(X Y)(A B)$
4) $(A Y)(A B)=(A C)(A X)$

77 In the diagram below, quadrilateral $A B C D$ is inscribed in circle $O, \mathrm{~m} \angle A=(2 x)^{\circ}$, $\mathrm{m} \angle B=(x-10)^{\circ}$, and $\mathrm{m} \angle C=(x+15)^{\circ}$.

What is $\mathrm{m} \angle D$?

1) 55°
2) 70°
3) 110°
4) 135°

78 The area of a sector of a circle with a radius measuring 15 cm is $75 \pi \mathrm{~cm}^{2}$. What is the measure of the central angle that forms the sector?

1) 72°
2) 120°
3) 144°
4) 180°

79 A standard-size golf ball has a diameter of 1.680 inches. The material used to make the golf ball weighs 0.6523 ounce per cubic inch. What is the weight, to the nearest hundredth of an ounce, of one golf ball?

1) 1.10
2) 1.62
3) 2.48
4) 3.81

80 In $\triangle A B C, M$ is the midpoint of $\overline{A B}$ and N is the midpoint of $\overline{A C}$. If $M N=x+13$ and $B C=5 x-1$, what is the length of $\overline{M N}$?

1) 3.5
2) 9
3) 16.5
4) 22

81 The equation of a circle is $x^{2}+8 x+y^{2}-12 y=144$. What are the coordinates of the center and the length of the radius of the circle?

1) center (4,-6) and radius 12
2) center $(-4,6)$ and radius 12
3) center ($4,-6$) and radius 14
4) center $(-4,6)$ and radius 14

Geometry Multiple Choice Regents Exam Questions www.jmap.org

82 In quadrilateral $A B C D$ below, $\overline{A B} \| \overline{C D}$, and E, H, and F are the midpoints of $\overline{A D}, \overline{A C}$, and $\overline{B C}$, respectively.

If $A B=24, C D=18$, and $A H=10$, then $F H$ is

1) 9
2) 10
3) 12
4) 21

83 In the diagram below, $\triangle C A R$ is mapped onto $\triangle B U S$ after a sequence of rigid motions.

If $A R=3 x+4, R C=5 x-10, C A=2 x+6$, and $S B=4 x-4$, what is the length of $\overline{S B}$?

1) 6
2) 16
3) 20
4) 28

84 In parallelogram $A B C D$, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E. Which statement proves $A B C D$ is a rectangle?

1) $\overline{A C} \cong \overline{B D}$
2) $\overline{A B} \perp \overline{B D}$
3) $\overline{A C} \perp \overline{B D}$
4) $\overline{A C}$ bisects $\angle B C D$

85 Triangle $P Q R$ is shown on the set of axes below.

Which quadrant will contain point $R^{\prime \prime}$, the image of point R, after a 90° clockwise rotation centered at $(0,0)$ followed by a reflection over the x-axis?

1) I
2) II
3) III
4) IV

86 The diagram below shows triangle $A B C$ with point X on side $\overline{A B}$ and point Y on side $\overline{C B}$.

Which information is sufficient to prove that $\triangle B X Y \sim \triangle B A C$?

1) $\angle B$ is a right angle.
2) $X Y$ is parallel to $A C$.
3) $\triangle A B C$ is isosceles.
4) $\overline{A X} \cong \overline{C Y}$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

87 The figure below shows a rhombus with noncongruent diagonals.

Which transformation would not carry this rhombus onto itself?

1) a reflection over the shorter diagonal
2) a reflection over the longer diagonal
3) a clockwise rotation of 90° about the intersection of the diagonals
4) a counterclockwise rotation of 180° about the intersection of the diagonals

88 A vendor is using an 8 -ft by 8 -ft tent for a craft fair. The legs of the tent are 9 ft tall and the top forms a square pyramid with a height of 3 ft .

What is the volume, in cubic feet, of space the tent occupies?

1) 256
2) 640
3) 672
4) 768

89 An equation of the line perpendicular to the line whose equation is $4 x-5 y=6$ and passes through the point $(-2,3)$ is

1) $y+3=-\frac{5}{4}(x-2)$
2) $y-3=-\frac{5}{4}(x+2)$
3) $y+3=\frac{4}{5}(x-2)$
4) $y-3=\frac{4}{5}(x+2)$

90 A regular pentagon is rotated about its center. What is the minimum number of degrees needed to carry the pentagon onto itself?

1) 72°
2) 108°
3) 144°
4) 360°

91 A gardener wants to buy enough mulch to cover a rectangular garden that is 3 feet by 10 feet. One bag contains 2 cubic feet of mulch and costs $\$ 3.66$. How much will the minimum number of bags cost to cover the garden with mulch 3 inches deep?

1) $\$ 3.66$
2) $\$ 10.98$
3) $\$ 14.64$
4) $\$ 29.28$

92 If $\triangle T A P$ is dilated by a scale factor of 0.5 , which statement about the image, $\Delta T^{\prime} A^{\prime} P^{\prime}$, is true?

1) $\mathrm{m} \angle T^{\prime} A^{\prime} P^{\prime}=\frac{1}{2}(\mathrm{~m} \angle T A P)$
2) $\mathrm{m} \angle T^{\prime} A^{\prime} P^{\prime}=2(\mathrm{~m} \angle T A P)$
3) $T A=2\left(T^{\prime} A^{\prime}\right)$
4) $T A=\frac{1}{2}\left(T^{\prime} A^{\prime}\right)$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

93 In the diagram below of circle O, tangent $\overline{A B}$ is drawn from external point B, and secant $\overline{B C O E}$ and diameter $\overline{A O D}$ are drawn.

If $\mathrm{m} \angle O B A=36^{\circ}$ and $O C=10$, what is the area of shaded sector $D O E$?

1) $\frac{3 \pi}{10}$
2) 3π
3) 10π
4) 15π

94 In the diagram below, a plane intersects a square pyramid parallel to its base.

Which two-dimensional shape describes this cross section?

1) circle
2) square
3) triangle
4) pentagon

95 Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a dilation centered at the origin. The coordinates of the vertices of $\triangle A B C$ are $A(-2,1), B(2,4)$, and $C(2,-3)$.

If the coordinates of A^{\prime} are $(-4,2)$, the coordinates of B^{\prime} are

1) $(8,4)$
2) $(4,8)$
3) $(4,-6)$
4) $(1,2)$

96 What are the coordinates of the center and the length of the radius of the circle whose equation is $x^{2}+y^{2}=8 x-6 y+39$?

1) center $(-4,3)$ and radius 64
2) center $(4,-3)$ and radius 64
3) center $(-4,3)$ and radius 8
4) center (4,-3) and radius 8

Geometry Multiple Choice Regents Exam Questions
www.jmap.org
97 Point M divides $\overline{A B}$ so that $A M: M B=1: 2$. If A has coordinates $(-1,-3)$ and B has coordinates $(8,9)$, the coordinates of M are

1) $(2,1)$
2) $\left(\frac{5}{3}, 0\right)$
3) $(5,5)$
4) $\left(\frac{23}{3}, 8\right)$

98 Diameter $\overline{R O Q}$ of circle O is extended through Q to point P, and tangent $\overline{P A}$ is drawn. If $\mathrm{m} \overparen{R A}=100^{\circ}$, what is $\mathrm{m} \angle P$?

1) 10°
2) 20°
3) 40°
4) 50°

99 The measure of one of the base angles of an isosceles triangle is 42°. The measure of an exterior angle at the vertex of the triangle is

1) 42°
2) 84°
3) 96°
4) 138°

100 The line represented by $2 y=x+8$ is dilated by a scale factor of k centered at the origin, such that the image of the line has an equation of $y-\frac{1}{2} x=2$.
What is the scale factor?

1) $k=\frac{1}{2}$
2) $k=2$
3) $k=\frac{1}{4}$
4) $k=4$

101 Right triangle $A B C$ is shown below.

Which trigonometric equation is always true for triangle $A B C$?

1) $\sin A=\cos C$
2) $\cos A=\sin A$
3) $\cos A=\cos C$
4) $\tan A=\tan C$

102 An equation of circle M is $x^{2}+y^{2}+6 x-2 y+1=0$. What are the coordinates of the center and the length of the radius of circle M ?

1) center $(3,-1)$ and radius 9
2) center $(3,-1)$ and radius 3
3) center $(-3,1)$ and radius 9
4) center $(-3,1)$ and radius 3

103 The rectangle drawn below is continuously rotated about side S.

Which three-dimensional figure is formed by this rotation?

1) rectangular prism
2) square pyramid
3) cylinder
4) cone

Geometry Multiple Choice Regents Exam Questions www.jmap.org

104 In triangle $A B C$ below, D is a point on $\overline{A B}$ and E is a point on $\overline{A C}$, such that $\overline{D E} \| \overline{B C}$.

Which statement is always true?

1) $\angle A D E$ and $\angle A B C$ are right angles.
2) $\triangle A D E \sim \triangle A B C$
3) $D E=\frac{1}{2} B C$
4) $\overline{A D} \cong \overline{D B}$

105 In the diagram below of $\triangle A B C, \overline{T V}$ intersects $\overline{A B}$ and $\overline{A C}$ at points T and V respectively, and $\mathrm{m} \angle A T V=\mathrm{m} \angle A B C$.

If $A T=4, B C=18, T B=5$, and $A V=6$, what is the perimeter of quadrilateral $T B C V$?

1) 38.5
2) 39.5
3) 40.5
4) 44.9

106 In the diagram below of right triangle $E F G$, altitude $\overline{F H}$ intersects hypotenuse $\overline{E G}$ at H.

If $F H=9$ and $E F=15$, what is $E G$?

1) 6.75
2) 12
3) 18.75
4) 25

107 A cone has a volume of 108π and a base diameter of 12 . What is the height of the cone?

1) 27
2) 9
3) 3
4) 4

108 Quadrilateral BEST has diagonals that intersect at point D. Which statement would not be sufficient to prove quadrilateral $B E S T$ is a parallelogram?

1) $\overline{B D} \cong \overline{S D}$ and $\overline{E D} \cong \overline{T D}$
2) $\overline{B E} \cong \overline{S T}$ and $\overline{E S} \cong \overline{T B}$
3) $\overline{E S} \cong \overline{T B}$ and $\overline{B E} \| \overline{T S}$
4) $\overline{E S} \| \overline{B T}$ and $\overline{B E} \| \overline{T S}$

109 A circle is continuously rotated about its diameter. Which three-dimensional object will be formed?

1) cone
2) prism
3) sphere
4) cylinder

Geometry Multiple Choice Regents Exam Questions www.jmap.org

110 On the set of axes below, $\triangle D E F$ is the image of $\triangle A B C$ after a dilation of scale factor $\frac{1}{3}$.

The center of dilation is at

1) $(0,0)$
2) $(2,-3)$
3) $(0,-2)$
4) $(-4,0)$

111 What is an equation of the image of the line $y=\frac{3}{2} x-4$ after a dilation of a scale factor of $\frac{3}{4}$ centered at the origin?

1) $y=\frac{9}{8} x-4$
2) $y=\frac{9}{8} x-3$
3) $y=\frac{3}{2} x-4$
4) $y=\frac{3}{2} x-3$

112 In the diagram below, a cone has a diameter of 16 inches and a slant height of 17 inches.

What is the volume of the cone, in cubic inches?

1) 320π
2) 363π
3) 960π
4) 1280π

113 On the set of axes below, the coordinates of three vertices of trapezoid $A B C D$ are $A(2,1), B(5,4)$, and $D(-2,3)$.

Which point could be vertex C ?

1) $(1,5)$
2) $(4,10)$
3) $(-1,6)$
4) $(-3,8)$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

114 In the diagram below, $A B C D$ is a rectangle, and diagonal $\overline{B D}$ is drawn. Line ℓ, a vertical line of symmetry, and line m, a horizontal line of symmetry, intersect at point E.

Which sequence of transformations will map $\triangle A B D$ onto $\triangle C D B$?

1) a reflection over line ℓ followed by a 180° rotation about point E
2) a reflection over line ℓ followed by a reflection over line m
3) a 180° rotation about point B
4) a reflection over $\overline{D B}$

115 In right triangle $A B C$ shown below, point D is on $\overline{A B}$ and point E is on $\overline{C B}$ such that $\overline{A C} \| \overline{D E}$.

If $A B=15, B C=12$, and $E C=7$, what is the length of $\overline{B D}$?

1) 8.75
2) 6.25
3) 5
4) 4

116 On the set of axes below, $\triangle A B C$ has vertices at $A(-2,0), B(2,-4), C(4,2)$, and $\triangle D E F$ has vertices at $D(4,0), E(-4,8), F(-8,-4)$.

Which sequence of transformations will map
$\triangle A B C$ onto $\triangle D E F$?

1) a dilation of $\triangle A B C$ by a scale factor of 2 centered at point A
2) a dilation of $\triangle A B C$ by a scale factor of $\frac{1}{2}$ centered at point A
3) a dilation of $\triangle A B C$ by a scale factor of 2 centered at the origin, followed by a rotation of 180° about the origin
4) a dilation of $\triangle A B C$ by a scale factor of $\frac{1}{2}$ centered at the origin, followed by a rotation of 180° about the origin

117 Segment $J M$ has endpoints $J(-5,1)$ and $M(7,-9)$. An equation of the perpendicular bisector of $\overline{J M}$ is

1) $y-4=\frac{5}{6}(x+1)$
2) $y+4=\frac{5}{6}(x-1)$
3) $y-4=\frac{6}{5}(x+1)$
4) $y+4=\frac{6}{5}(x-1)$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

118 In $\triangle A B C$ below, $\overline{D E}$ is drawn such that D and E are on $\overline{A B}$ and $\overline{A C}$, respectively.

If $\overline{D E} \| \overline{B C}$, which equation will always be true?

1) $\frac{A D}{D E}=\frac{D B}{B C}$
2) $\frac{A D}{D E}=\frac{A B}{B C}$
3) $\frac{A D}{B C}=\frac{D E}{D B}$
4) $\frac{A D}{B C}=\frac{D E}{A B}$

119 The coordinates of the endpoints of $\overline{S C}$ are $S(-7,3)$ and $C(2,-6)$. If point M is on $\overline{S C}$, what are the coordinates of M such that $S M: M C$ is 1:2?

1) $(-4,0)$
2) $(0,-4)$
3) $(-1,-3)$
4) $\left(-\frac{5}{2},-\frac{3}{2}\right)$

120 The coordinates of the vertices of parallelogram $C D E H$ are $C(-5,5), D(2,5), E(-1,-1)$, and $H(-8,-1)$. What are the coordinates of P, the point of intersection of diagonals $\overline{C E}$ and $\overline{D H}$?

1) $(-2,3)$
2) $(-2,2)$
3) $(-3,2)$
4) $(-3,-2)$

121 Given right triangle $A B C$ with a right angle at C, $\mathrm{m} \angle B=61^{\circ}$. Given right triangle $R S T$ with a right angle at $T, \mathrm{~m} \angle R=29^{\circ}$.

Which proportion in relation to $\triangle A B C$ and $\triangle R S T$ is not correct?

1) $\frac{A B}{R S}=\frac{R T}{A C}$
2) $\frac{B C}{S T}=\frac{A B}{R S}$
3) $\frac{B C}{S T}=\frac{A C}{R T}$
4) $\frac{A B}{A C}=\frac{R S}{R T}$

122 In right triangles $A B C$ and $R S T$, hypotenuse $A B=4$ and hypotenuse $R S=16$. If $\triangle A B C \sim \triangle R S T$, then 1:16 is the ratio of the corresponding

1) legs
2) areas
3) volumes
4) perimeters

123 What are the coordinates of the center and the length of the radius of the circle whose equation is $x^{2}+y^{2}-12 y-20.25=0$?

1) center $(0,6)$ and radius 7.5
2) center $(0,-6)$ and radius 7.5
3) center $(0,12)$ and radius 4.5
4) center $(0,-12)$ and radius 4.5

124 Triangle $A D F$ is drawn and $\overline{B C} \| \overline{D F}$.

Which statement must be true?

1) $\frac{A B}{B C}=\frac{B D}{D F}$
2) $B C=\frac{1}{2} D F$
3) $A B: A D=A C: C F$
4) $\angle A C B \cong \angle A F D$

125 Kayla was cutting right triangles from wood to use for an art project. Two of the right triangles she cut are shown below.

If $\triangle A B C \sim \triangle D E F$, with right angles B and E, $B C=15 \mathrm{~cm}$, and $A C=17 \mathrm{~cm}$, what is the measure of $\angle F$, to the nearest degree?

1) 28°
2) 41°
3) 62°
4) 88°

126 In the diagram below of parallelogram $A B C D$, diagonal $\overline{B E D}$ and $\overline{E F}$ are drawn, $\overline{E F} \perp \overline{D F C}$, $\mathrm{m} \angle D A B=111^{\circ}$, and $\mathrm{m} \angle D B C=39^{\circ}$.

What is $\mathrm{m} \angle D E F$?

1) 30°
2) 51°
3) 60°
4) 120°

127 A circle centered at the origin passes through $A(-3,4)$.

What is the equation of the line tangent to the circle at A ?

1) $y-4=\frac{4}{3}(x+3)$
2) $y-4=\frac{3}{4}(x+3)$
3) $y+4=\frac{4}{3}(x-3)$
4) $y+4=\frac{3}{4}(x-3)$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

128 In the diagram below of right triangle $A B C$, altitude $\overline{C D}$ intersects hypotenuse $\overline{A B}$ at D.

Which equation is always true?

1) $\frac{A D}{A C}=\frac{C D}{B C}$
2) $\frac{A D}{C D}=\frac{B D}{C D}$
3) $\frac{A C}{C D}=\frac{B C}{C D}$
4) $\frac{A D}{A C}=\frac{A C}{B D}$

129 If one exterior angle of a triangle is acute, then the triangle must be

1) right
2) acute
3) obtuse
4) equiangular

130 A jewelry company makes copper heart pendants. Each heart uses $0.75 \mathrm{in}^{3}$ of copper and there is 0.323 pound of copper per cubic inch. If copper costs $\$ 3.68$ per pound, what is the total cost for 24 copper hearts?

1) $\$ 5.81$
2) $\$ 21.40$
3) $\$ 66.24$
4) $\$ 205.08$

131 Parallelogram BETH, with diagonals $\overline{B T}$ and $\overline{H E}$, is drawn below.

What additional information is sufficient to prove that $B E T H$ is a rectangle?

1) $\overline{B T} \perp \overline{H E}$
2) $\overline{B E} \| \overline{H T}$
3) $\overline{B T} \cong \overline{H E}$
4) $\overline{B E} \cong \overline{E T}$

132 A quadrilateral has diagonals that are perpendicular but not congruent. This quadrilateral could be

1) a square
2) a rhombus
3) a rectangle
4) an isosceles trapezoid

133 After a dilation centered at the origin, the image of $\overline{C D}$ is $\overline{C^{\prime} D^{\prime}}$. If the coordinates of the endpoints of these segments are $C(6,-4), D(2,-8), C^{\prime}(9,-6)$, and $D^{\prime}(3,-12)$, the scale factor of the dilation is

1) $\frac{3}{2}$
2) $\frac{2}{3}$
3) 3
4) $\frac{1}{3}$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

134 Chelsea is sitting 8 feet from the foot of a tree.
From where she is sitting, the angle of elevation of her line of sight to the top of the tree is 36°. If her line of sight starts 1.5 feet above ground, how tall is the tree, to the nearest foot?

1) 8
2) 7
3) 6
4) 4

135 On the set of axes below, rhombus $A B C D$ has vertices whose coordinates are $A(1,2), B(4,6)$, $C(7,2)$, and $D(4,-2)$.

What is the area of rhombus $A B C D$?

1) 20
2) 24
3) 25
4) 48

136 What is the image of $(4,3)$ after a reflection over the line $y=1$?

1) $(-2,3)$
2) $(-4,3)$
3) $(4,-1)$
4) $(4,-3)$

137 Which statement about parallelograms is always true?

1) The diagonals are congruent.
2) The diagonals bisect each other.
3) The diagonals are perpendicular.
4) The diagonals bisect their respective angles.

138 In $\triangle A B C$ shown below, $\angle A C B$ is a right angle, E is a point on $\overline{A C}$, and $\overline{E D}$ is drawn perpendicular to hypotenuse $\overline{A B}$.

If $\overline{A B}=9, B C=6$, and $D E=4$, what is the length of $\overline{A E}$?

1) 5
2) 6
3) 7
4) 8

139 If a rectangle is continuously rotated around one of its sides, what is the three-dimensional figure formed?

1) rectangular prism
2) cylinder
3) sphere
4) cone

140 What is the volume, in cubic centimeters, of a right square pyramid with base edges that are 64 cm long and a slant height of 40 cm ?

1) 8192.0
2) $13,653 . \overline{3}$
3) $32,768.0$
4) $54,613 . \overline{3}$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

141 On the set of axes below, rectangle WIND has vertices with coordinates $W(-4,2), I(4,0), N(3,-4)$, and $D(-5,-2)$.

What is the area of rectangle WIND?

1) 17
2) 31
3) 32
4) 34

142 In the diagram below of isosceles trapezoid $S T A R$, diagonals $\overline{A S}$ and $\overline{R T}$ intersect at O and $\overline{S T} \| \overline{R A}$, with nonparallel sides $\overline{S R}$ and $\overline{T A}$.

Which pair of triangles are not always similar?

1) $\triangle S T O$ and $\triangle A R O$
2) $\triangle S O R$ and $\triangle T O A$
3) $\triangle S R A$ and $\triangle A T S$
4) $\triangle S R T$ and $\triangle T A S$

143 A square pyramid is intersected by a plane passing through the vertex and perpendicular to the base.

Which two-dimensional shape describes this cross section?

1) square
2) triangle
3) pentagon
4) rectangle

144 On the set of axes below, the endpoints of $\overline{A B}$ have coordinates $A(-3,4)$ and $B(5,2)$.

If $\overline{A B}$ is dilated by a scale factor of 2 centered at $(3,5)$, what are the coordinates of the endpoints of its image, $\overline{A^{\prime} B^{\prime}}$?

1) $A^{\prime}(-7,5)$ and $B^{\prime}(9,1)$
2) $A^{\prime}(-1,6)$ and $B^{\prime}(7,4)$
3) $A^{\prime}(-6,8)$ and $B^{\prime}(10,4)$
4) $\quad A^{\prime}(-9,3)$ and $B^{\prime}(7,-1)$

145 Right triangle $T M R$ is a scalene triangle with the right angle at M. Which equation is true?

1) $\sin M=\cos T$
2) $\sin R=\cos R$
3) $\sin T=\cos R$
4) $\sin T=\cos M$

146 A 12-foot ladder leans against a building and reaches a window 10 feet above ground. What is the measure of the angle, to the nearest degree, that the ladder forms with the ground?

1) 34
2) 40
3) 50
4) 56

147 In the diagram of $\triangle S R A$ below, $\overline{K P}$ is drawn such that $\angle S K P \cong \angle S R A$.

If $S K=10, S P=8$, and $P A=6$, what is the length of $\overline{K R}$, to the nearest tenth?

1) 4.8
2) 7.5
3) 8.0
4) 13.3

148 Zach placed the foot of an extension ladder 8 feet from the base of the house and extended the ladder 25 feet to reach the house. To the nearest degree, what is the measure of the angle the ladder makes with the ground?

1) 18
2) 19
3) 71
4) 72

149 Which quadrilateral has diagonals that are always perpendicular?

1) rectangle
2) rhombus
3) trapezoid
4) parallelogram

150 In the circle below, secants $\overline{T S R}$ and $\overline{T M H}$ intersect at $T, S R=5, H M=9, T M=3$, and $T S=x$.

Which equation could be used to find the value of x ?

1) $x(x+5)=36$
2) $x(x+5)=27$
3) $3 x=45$
4) $5 x=27$

151 If scalene triangle $X Y Z$ is similar to triangle $Q R S$ and $\mathrm{m} \angle X=90^{\circ}$, which equation is always true?

1) $\sin Y=\sin S$
2) $\cos R=\cos Z$
3) $\cos Y=\sin Q$
4) $\sin R=\cos Z$

152 In the diagram below of circle O, points K, A, T, I, and E are on the circle, $\triangle K A E$ and $\triangle I T E$ are drawn, $\overparen{K E} \cong \overparen{E I}$, and $\angle E K A \cong \angle E I T$.

Which statement about $\triangle K A E$ and $\triangle I T E$ is always true?

1) They are neither congruent nor similar.
2) They are similar but not congruent.
3) They are right triangles.
4) They are congruent.

153 In the diagram below, point E is located inside square $A B C D$ such that $\triangle A B E$ is equilateral, and $\overline{C E}$ is drawn.

What is $\mathrm{m} \angle B E C$?

1) 30°
2) 60°
3) 75°
4) 90°

154 On the set of axes below, triangle $A B C$ is graphed. Triangles $A^{\prime} B^{\prime} C^{\prime}$ and $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the images of triangle $A B C$, are graphed after a sequence of rigid motions.

Identify which sequence of rigid motions maps $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}$ and then maps $\triangle A^{\prime} B^{\prime} C^{\prime}$ onto $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime}$.

1) a rotation followed by another rotation
2) a translation followed by a reflection
3) a reflection followed by a translation
4) a reflection followed by a rotation

155 A regular pyramid with a square base is made of solid glass. It has a base area of $36 \mathrm{~cm}^{2}$ and a height of 10 cm . If the density of glass is 2.7 grams per cubic centimeter, the mass of the pyramid, in grams, is

1) 120
2) 324
3) 360
4) 972

Geometry Multiple Choice Regents Exam Questions www.jmap.org

156 On the set of axes below, $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$.

Triangle $A B C$ maps onto $\triangle A^{\prime} B^{\prime} C^{\prime}$ after a

1) reflection over the line $y=-x$
2) reflection over the line $y=-x+2$
3) rotation of 180° centered at $(1,1)$
4) rotation of 180° centered at the origin

157 What are the coordinates of point C on the directed segment from $A(-8,4)$ to $B(10,-2)$ that partitions the segment such that $A C: C B$ is 2:1?

1) $(1,1)$
2) $(-2,2)$
3) $(2,-2)$
4) $(4,0)$

158 Which equation represents a line that is perpendicular to the line represented by $y=\frac{2}{3} x+1$?

1) $3 x+2 y=12$
2) $3 x-2 y=12$
3) $y=\frac{3}{2} x+2$
4) $y=-\frac{2}{3} x+4$

159 In the diagram below of right triangle SUN, where $\angle N$ is a right angle, $S U=13.6$ and $S N=12.3$.

What is $\angle S$, to the nearest degree?

1) 25°
2) 42°
3) 48°
4) 65°

160 In the diagram below of $\triangle A B C, D$ is a point on $\overline{B A}, E$ is a point on $\overline{B C}$, and $\overline{D E}$ is drawn.

If $B D=5, D A=12$, and $B E=7$, what is the length of $\overline{B C}$ so that $\overline{A C} \| \overline{D E}$?

1) 23.8
2) 16.8
3) 15.6
4) 8.6

Geometry Multiple Choice Regents Exam Questions www.jmap.org

161 From a point on the ground one-half mile from the base of a historic monument, the angle of elevation to its top is 11.87°. To the nearest foot, what is the height of the monument?

1) 543
2) 555
3) 1086
4) 1110

162 In the diagram below, chords $\overline{P Q}$ and $\overline{R S}$ of circle O intersect at T.

Which relationship must always be true?

1) $R T=T Q$
2) $R T=T S$
3) $R T+T S=P T+T Q$
4) $R T \times T S=P T \times T Q$

163 Quadrilateral MATH is congruent to quadrilateral WXYZ. Which statement is always true?

1) $M A=X Y$
2) $\mathrm{m} \angle H=\mathrm{m} \angle W$
3) Quadrilateral $W X Y Z$ can be mapped onto quadrilateral MATH using a sequence of rigid motions.
4) Quadrilateral MATH and quadrilateral $W X Y Z$ are the same shape, but not necessarily the same size.

164 In the diagram below of $\triangle A C T, \overleftrightarrow{E S}$ is drawn parallel to $\overline{A T}$ such that E is on $\overline{C A}$ and S is on $\overline{C T}$.

Which statement is always true?

1) $\frac{C E}{C A}=\frac{C S}{S T}$
2) $\frac{C E}{E S}=\frac{E A}{A T}$
3) $\frac{C E}{E A}=\frac{C S}{S T}$
4) $\frac{C E}{S T}=\frac{E A}{C S}$

165 In the circle below, $\overline{A D}, \overline{A C}, \overline{B C}$, and $\overline{D C}$ are chords, $\overleftrightarrow{E D F}$ is tangent at point D, and $\overline{A D} \| \overline{B C}$.

Which statement is always true?

1) $\angle A D E \cong \angle C A D$
2) $\angle C D F \cong \angle A C B$
3) $\angle B C A \cong \angle D C A$
4) $\angle A D C \cong \angle A D E$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

166 In right triangle $L M N$ shown below, $\mathrm{m} \angle M=90^{\circ}$, $M N=12$, and $L M=16$.

The ratio of $\cos N$ is

1) $\frac{12}{20}$
2) $\frac{16}{20}$
3) $\frac{12}{16}$
4) $\frac{16}{12}$

167 In the diagram of $\triangle A B C$ below, $\mathrm{m} \angle C=90^{\circ}$, $C B=13$, and $A B=16$.

What is the measure of $\angle A$, to the nearest degree?

1) 36°
2) 39°
3) 51°
4) 54°

168 On the set of axes below, $\triangle L E T$ and $\triangle L$ " E " T " are graphed in the coordinate plane where $\triangle L E T \cong \triangle L " E " T$ ".

Which sequence of rigid motions maps $\triangle L E T$ onto $\triangle L$ "E"T"?

1) a reflection over the y-axis followed by a reflection over the x-axis
2) a rotation of 180° about the origin
3) a rotation of 90° counterclockwise about the origin followed by a reflection over the y-axis
4) a reflection over the x-axis followed by a rotation of 90° clockwise about the origin

169 In $\triangle A B C$, side $\overline{B C}$ is extended through C to D. If $\mathrm{m} \angle A=30^{\circ}$ and $\mathrm{m} \angle A C D=110^{\circ}$, what is the longest side of $\triangle A B C$?

1) $\overline{A C}$
2) $\overline{B C}$
3) $\overline{A B}$
4) $\overline{C D}$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

170 The equation of a line is $3 x-5 y=8$. All lines perpendicular to this line must have a slope of

1) $\frac{3}{5}$
2) $\frac{5}{3}$
3) $-\frac{3}{5}$
4) $-\frac{5}{3}$

171 A line is dilated by a scale factor of $\frac{1}{3}$ centered at a point on the line. Which statement is correct about the image of the line?

1) Its slope is changed by a scale factor of $\frac{1}{3}$.
2) Its y-intercept is changed by a scale factor of $\frac{1}{3}$.
3) Its slope and y-intercept are changed by a scale factor of $\frac{1}{3}$.
4) The image of the line and the pre-image are the same line.

172 In circle P below, diameter $\overline{A C}$ and radius $\overline{B P}$ are drawn such that $\mathrm{m} \angle A P B=110^{\circ}$.

If $A C=12$, what is the area of shaded sector $B P C$?

1) $\frac{7}{6} \pi$
2) 7π
3) 11π
4) 28π

173 In the diagram below, $\triangle C D E$ is the image of $\triangle C A B$ after a dilation of $\frac{D E}{A B}$ centered at C.

Which statement is always true?

1) $\sin A=\frac{C E}{C D}$
2) $\cos A=\frac{C D}{C E}$
3) $\sin A=\frac{D E}{C D}$
4) $\cos A=\frac{D E}{C E}$

174 The expression $\sin 57^{\circ}$ is equal to

1) $\tan 33^{\circ}$
2) $\cos 33^{\circ}$
3) $\tan 57^{\circ}$
4) $\cos 57^{\circ}$

175 In rhombus VENU, diagonals $\overline{V N}$ and $\overline{E U}$ intersect at S. If $V N=12$ and $E U=16$, what is the perimeter of the rhombus?

1) 80
2) 40
3) 20
4) 10

176 Which figure will not carry onto itself after a 120-degree rotation about its center?

1) equilateral triangle
2) regular hexagon
3) regular octagon
4) regular nonagon

Geometry Multiple Choice Regents Exam Questions www.jmap.org

177 In the diagram below of $\triangle A E D$ and $\overline{A B C D}$, $\overline{A E} \cong \overline{D E}$.

Which statement is always true?

1) $\overline{E B} \cong \overline{E C}$
2) $\overline{A C} \cong \overline{D B}$
3) $\angle E B A \cong \angle E C D$
4) $\angle E A C \cong \angle E D B$

178 What is an equation of a circle whose center is at $(2,-4)$ and is tangent to the line $x=-2$?

1) $(x-2)^{2}+(y+4)^{2}=4$
2) $(x-2)^{2}+(y+4)^{2}=16$
3) $(x+2)^{2}+(y-4)^{2}=4$
4) $(x+2)^{2}+(y-4)^{2}=16$

179 An equation of line p is $y=\frac{1}{3} x+4$. An equation of line q is $y=\frac{2}{3} x+8$. Which statement about lines p and q is true?

1) A dilation of $\frac{1}{2}$ centered at the origin will map line q onto line p.
2) A dilation of 2 centered at the origin will map line p onto line q.
3) Line q is not the image of line p after a dilation because the lines are not parallel.
4) Line q is not the image of line p after a dilation because the lines do not pass through the origin.

180 In the diagram below of right triangle $A B C$, altitude $\overline{B D}$ is drawn.

Which ratio is always equivalent to $\cos A$?

1) $\frac{A B}{B C}$
2) $\frac{B D}{B C}$
3) $\frac{B D}{A B}$
4) $\frac{B C}{A C}$

181 In the diagram below, lines ℓ and m intersect lines n and p to create the shaded quadrilateral as shown.

Which congruence statement would be sufficient to prove the quadrilateral is a parallelogram?

1) $\angle 1 \cong \angle 6$ and $\angle 9 \cong \angle 14$
2) $\angle 5 \cong \angle 10$ and $\angle 6 \cong \angle 9$
3) $\angle 5 \cong \angle 7$ and $\angle 10 \cong \angle 15$
4) $\angle 6 \cong \angle 9$ and $\angle 9 \cong \angle 11$

182 Rectangle $A B C D$ has two vertices at coordinates $A(-1,-3)$ and $B(6,5)$. The slope of $\overline{B C}$ is

1) $-\frac{7}{8}$
2) $\frac{7}{8}$
3) $-\frac{8}{7}$
4) $\frac{8}{7}$

183 A plane intersects a cylinder perpendicular to its bases.

This cross section can be described as a

1) rectangle
2) parabola
3) triangle
4) circle

184 The endpoints of $\overline{A B}$ are $A(0,4)$ and $B(-4,6)$. Which equation of a line represents the perpendicular bisector of $\overline{A B}$?

1) $y=-\frac{1}{2} x+4$
2) $y=-2 x+1$
3) $y=2 x+8$
4) $y=2 x+9$

185 In parallelogram $A B C D$ shown below, $\overline{E B}$ bisects $\angle A B C$.

If $\mathrm{m} \angle A=40^{\circ}$, then $\mathrm{m} \angle B E D$ is

1) 40°
2) 70°
3) 110°
4) 140°

186 On the set of axes below, congruent triangles $A B C$ and $D E F$ are drawn.

Which sequence of transformations maps $\triangle A B C$ onto $\triangle D E F$?

1) A counterclockwise rotation of 90 degrees about the origin, followed by a translation 8 units to the right.
2) A counterclockwise rotation of 90 degrees about the origin, followed by a reflection over the y-axis.
3) A counterclockwise rotation of 90 degrees about the origin, followed by a translation 4 units down.
4) A clockwise rotation of 90 degrees about the origin, followed by a reflection over the x-axis.

Geometry Multiple Choice Regents Exam Questions www.jmap.org

187 In right triangle $A B C, \mathrm{~m} \angle A=90^{\circ}, \mathrm{m} \angle B=18^{\circ}$, and $A C=8$. To the nearest tenth, the length of $\overline{B C}$ is

1) 2.5
2) 8.4
3) 24.6
4) 25.9

188 For the acute angles in a right triangle, $\sin (4 x)^{\circ}=\cos (3 x+13)^{\circ}$. What is the number of degrees in the measure of the smaller angle?

1) 11°
2) 13°
3) 44°
4) 52°

189 On the set of axes below, $\triangle R S T$ is the image of $\triangle A B C$ after a dilation centered at point P.

The scale factor of the dilation that maps $\triangle A B C$ onto $\triangle R S T$ is

1) $\frac{1}{3}$
2) 2
3) 3
4) $\frac{2}{3}$

190 What is the volume of a right circular cone that has a height of 7.2 centimeters and a radius of 2.5 centimeters, to the nearest tenth of a cubic centimeter?

1) 37.7
2) 47.1
3) 113.1
4) 141.4

191 A plane intersects a sphere. Which two-dimensional shape is formed by this cross section?

1) rectangle
2) triangle
3) square
4) circle

192 In triangle $A B C$ below, D is a point on $\overline{A B}$ and E is a point on $\overline{A C}$, such that $\overline{D E} \| \overline{B C}$.

If $A D=12, D B=8$, and $E C=10$, what is the length of $\overline{A C}$?

1) 15
2) 22
3) 24
4) 25

Geometry Multiple Choice Regents Exam Questions www.jmap.org

193 The diagram below shows a tree growing vertically on a hillside. The angle formed by the tree trunk and the hillside is 100°. The distance from the base of the tree to the bottom of the hill is 140 feet.

What is the vertical drop, x, to the base of the hill, to the nearest foot?

1) 24
2) 25
3) 70
4) 138

194 Triangles JOE and SAM are drawn such that $\angle E \cong \angle M$ and $\overline{E J} \cong \overline{M S}$. Which mapping would not always lead to $\triangle J O E \cong \triangle S A M$?

1) $\angle J$ maps onto $\angle S$
2) $\angle O$ maps onto $\angle A$
3) $\overline{E O}$ maps onto $\overline{M A}$
4) $\overline{J O}$ maps onto $\overline{S A}$

195 After a dilation with center (0,0), the image of $\overline{D B}$ is $\overline{D^{\prime} B^{\prime}}$. If $D B=4.5$ and $D^{\prime} B^{\prime}=18$, the scale factor of this dilation is

1) $\frac{1}{5}$
2) 5
3) $\frac{1}{4}$
4) 4

196 Which polygon always has a minimum rotation of 180° about its center to carry it onto itself?
1)

2)

3) trapezoid
4)

197 Which regular polygon has a minimum rotation of 36° about its center that carries the polygon onto itself?

1) pentagon
2) octagon
3) nonagon
4) decagon

198 If the circumference of a standard lacrosse ball is 19.9 cm , what is the volume of this ball, to the nearest cubic centimeter?

1) 42
2) 133
3) 415
4) 1065

199 In the diagram below of isosceles triangle AHE with the vertex angle at $H, \overline{C B} \perp \overline{A E}$ and $\overline{F D} \perp \overline{A E}$.

Which statement is always true?

1) $\frac{A H}{A C}=\frac{E H}{E F}$
2) $\frac{A C}{E F}=\frac{A B}{E D}$
3) $\frac{A B}{E D}=\frac{C B}{F E}$
4) $\frac{A D}{A B}=\frac{B E}{D E}$

200 In the diagram below of circle O, chords $\overline{J T}$ and $\overline{E R}$ intersect at M.

If $E M=8$ and $R M=15$, the lengths of $\overline{J M}$ and $\overline{T M}$ could be

1) 12 and 9.5
2) 14 and 8.5
3) 16 and 7.5
4) 18 and 6.5

201 In the diagram below, $\triangle A B C$ with sides 13,15 , and 16 , is mapped onto $\triangle D E F$ after a clockwise rotation of 90° about point P.

${ }^{\bullet} \mathrm{P}$
If $D E=2 x-1$, what is the value of x ?

1) 7
2) 7.5
3) 8
4) 8.5

202 In the diagram below of $\triangle R S T, L$ is a point on $\overline{R S}$, and M is a point on $\overline{R T}$, such that $L M \| S T$.

If $R L=2, L S=6, L M=4$, and $S T=x+2$, what is the length of $\overline{S T}$?

1) 10
2) 12
3) 14
4) 16

Geometry Multiple Choice Regents Exam Questions www.jmap.org

203 In triangle $\overline{M A H}$ below, $\overline{M T}$ is the perpendicular bisector of $\overline{A H}$.

Which statement is not always true?

1) $\triangle M A H$ is isosceles.
2) $\triangle M A T$ is isosceles.
3) $\overline{M T}$ bisects $\angle A M H$.
4) $\angle A$ and $\angle T M H$ are complementary.

204 A tent is in the shape of a right pyramid with a square floor. The square floor has side lengths of 8 feet. If the height of the tent at its center is 6 feet, what is the volume of the tent, in cubic feet?

1) 48
2) 128
3) 192
4) 384

205 Rhombus $A B C D$ can be mapped onto rhombus $K L M N$ by a rotation about point P, as shown below.

What is the measure of $\angle K N M$ if the measure of $\angle C A D=35$?

1) 35°
2) 55°
3) 70°
4) 110°

206 In the diagram below of quadrilateral $A D B E, \overline{D E}$ is the perpendicular bisector of $\overline{A B}$.

Which statement is always true?

1) $\angle A D C \cong \angle B D C$
2) $\angle E A C \cong \angle D A C$
3) $\overline{A D} \cong \overline{B E}$
4) $\overline{A E} \cong \overline{A D}$

207 On the set of axes below, $\triangle A B C$, altitude $\overline{C G}$, and median $\overline{C M}$ are drawn.

Which expression represents the area of $\triangle A B C$?

1) $\frac{(B C)(A C)}{2}$
2) $\frac{(G C)(B C)}{2}$
3) $\frac{(C M)(A B)}{2}$
4) $\frac{(G C)(A B)}{2}$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

208 In right triangle $R S T$ below, altitude $\overline{S V}$ is drawn to hypotenuse $\overline{R T}$.

If $R V=4.1$ and $T V=10.2$, what is the length of $\overline{S T}$, to the nearest tenth?

1) 6.5
2) 7.7
3) 11.0
4) 12.1

209 In the diagram of $\triangle A B C$ below, $\overline{A E}$ bisects angle $B A C$, and altitude $\overline{B D}$ is drawn.

If $\mathrm{m} \angle C=50^{\circ}$ and $\mathrm{m} \angle A B C=60^{\circ}, \mathrm{m} \angle F E B$ is

1) 35°
2) 40°
3) 55°
4) 85°

210 The square pyramid below models a toy block made of maple wood.

Each side of the base measures 4.5 cm and the height of the pyramid is 10 cm . If the density of maple is $0.676 \mathrm{~g} / \mathrm{cm}^{3}$, what is the mass of the block, to the nearest tenth of a gram?

1) 45.6
2) 67.5
3) 136.9
4) 202.5

211 Circle O is drawn below with secant $\overline{B C D}$. The length of tangent $\overline{A D}$ is 24 .

If the ratio of $D C: C B$ is $4: 5$, what is the length of $\overline{C B}$?

1) 36
2) 20
3) 16
4) 4

Geometry Multiple Choice Regents Exam Questions www.jmap.org

212 Which equation represents a line that is perpendicular to the line whose equation is $y-3 x=4$?

1) $y=-\frac{1}{3} x-4$
2) $y=\frac{1}{3} x+4$
3) $y=-3 x+4$
4) $y=3 x-4$

213 In the diagram below, a line reflection followed by a rotation maps $\triangle A B C$ onto $\triangle D E F$.

Which statement is always true?

1) $\overline{B C} \cong \overline{E F}$
2) $\overline{A C} \cong \overline{D E}$
3) $\angle A \cong \angle F$
4) $\angle B \cong \angle D$

214 Which figure(s) below can have a triangle as a two-dimensional cross section?
I. cone
II. cylinder
III. cube
IV. square pyramid

1) I, only
2) IV, only
3) I, II, and IV, only
4) I, III, and IV, only

215 In the diagram below, $\overline{F A D} \| \overline{E H C}$, and $\overline{A B H}$ and $\overline{B C}$ are drawn.

If $\mathrm{m} \angle F A B=48^{\circ}$ and $\mathrm{m} \angle E C B=18^{\circ}$, what is $\mathrm{m} \angle A B C$?

1) 18°
2) 48°
3) 66°
4) 114°

216 In right triangle $R S T$, altitude $\overline{T V}$ is drawn to hypotenuse $\overline{R S}$. If $R V=12$ and $R T=18$, what is the length of $\overline{S V}$?

1) $6 \sqrt{5}$
2) 15
3) $6 \sqrt{6}$
4) 27

217 In trapezoid $A B C D$ below, $\overline{A B} \| \overline{C D}$.

If $A E=5.2, A C=11.7$, and $C D=10.5$, what is the length of $\overline{A B}$, to the nearest tenth?

1) 4.7
2) 6.5
3) 8.4
4) 13.1

Geometry Multiple Choice Regents Exam Questions www.jmap.org

218 In the diagram below, $\triangle A B C$ is reflected over line ℓ to create $\triangle D E F$.

If $\mathrm{m} \angle A=40^{\circ}$ and $\mathrm{m} \angle B=95^{\circ}$, what is $\mathrm{m} \angle F$?

1) 40°
2) 45°
3) 85°
4) 95°

219 The coordinates of the endpoints of $\overline{Q S}$ are $Q(-9,8)$ and $S(9,-4)$. Point R is on $\overline{Q S}$ such that $Q R: R S$ is in the ratio of $1: 2$. What are the coordinates of point R ?

1) $(0,2)$
2) $(3,0)$
3) $(-3,4)$
4) $(-6,6)$

220 Which information is not sufficient to prove that a parallelogram is a square?

1) The diagonals are both congruent and perpendicular.
2) The diagonals are congruent and one pair of adjacent sides are congruent.
3) The diagonals are perpendicular and one pair of adjacent sides are congruent.
4) The diagonals are perpendicular and one pair of adjacent sides are perpendicular.

221 Which regular polygon would carry onto itself after a rotation of 300° about its center?

1) decagon
2) nonagon
3) octagon
4) hexagon

222 The endpoints of $\overline{A B}$ are $A(-5,3)$ and $B(7,-5)$.
Point P is on $\overline{A B}$ such that $A P: P B=3: 1$. What are the coordinates of point P ?

1) $(-2,-3)$
2) $(1,-1)$
3) $(-2,1)$
4) $(4,-3)$

223 In the diagram below of right triangle $A B C$, $A C=8$, and $A B=17$.

Which equation would determine the value of angle A?

1) $\sin A=\frac{8}{17}$
2) $\tan A=\frac{8}{15}$
3) $\cos A=\frac{15}{17}$
4) $\tan A=\frac{15}{8}$

Geometry Multiple Choice Regents Exam Questions

224 Line segment $C D$ is the altitude drawn to hypotenuse $\overline{E F}$ in right triangle $E C F$. If $E C=10$ and $E F=24$, then, to the nearest tenth, $E D$ is

1) 4.2
2) 5.4
3) 15.5
4) 21.8

225 A parallelogram is always a rectangle if

1) the diagonals are congruent
2) the diagonals bisect each other
3) the diagonals intersect at right angles
4) the opposite angles are congruent

226 A regular pyramid has a square base. The perimeter of the base is 36 inches and the height of the pyramid is 15 inches. What is the volume of the pyramid in cubic inches?

1) 180
2) 405
3) 540
4) 1215

227 In a right triangle, the acute angles have the relationship $\sin (2 x+4)=\cos (46)$. What is the value of x ?

1) 20
2) 21
3) 24
4) 25

228 Which rotation about its center will carry a regular decagon onto itself?

1) 54°
2) 162°
3) 198°
4) 252°

229 In the diagram below, $\overline{D E}$ divides $\overline{A B}$ and $\overline{A C}$ proportionally, $\mathrm{m} \angle C=26^{\circ}, \mathrm{m} \angle A=82^{\circ}$, and $\overline{D F}$ bisects $\angle B D E$.

The measure of angle $D F B$ is

1) 36°
2) 54°
3) 72°
4) 82°

230 In the diagram below, $\triangle G H J$ is dilated by a scale factor of $\frac{1}{2}$ centered at point B to map onto $\triangle C D F$.

B-
If $\mathrm{m} \angle D F C=40^{\circ}$, what is $\mathrm{m} \angle H J G$?

1) 20°
2) 40°
3) 60°
4) 80°

Geometry Multiple Choice Regents Exam Questions www.jmap.org

231 In the diagram below of right triangle MET, altitude $\overline{E S}$ is drawn to hypotenuse $\overline{M T}$.

If $M E=6$ and $S M=4$, what is $M T$?

1) 9
2) 8
3) 5
4) 4

232 In the diagram below, $\triangle A B C \cong \triangle D E F$.

Which sequence of transformations maps $\triangle A B C$ onto $\triangle D E F$?

1) a reflection over the x-axis followed by a translation
2) a reflection over the y-axis followed by a translation
3) a rotation of 180° about the origin followed by a translation
4) a counterclockwise rotation of 90° about the origin followed by a translation

233 Rhombus STAR has vertices $S(-1,2), T(2,3)$, $A(3,0)$, and $R(0,-1)$. What is the perimeter of rhombus STAR?

1) $\sqrt{34}$
2) $4 \sqrt{34}$
3) $\sqrt{10}$
4) $4 \sqrt{10}$

234 In the diagram below, $\mathrm{m} \widehat{A B C}=268^{\circ}$.

What is the number of degrees in the measure of $\angle A B C$?

1) 134°
2) 92°
3) 68°
4) 46°

235 A line segment is dilated by a scale factor of 2 centered at a point not on the line segment. Which statement regarding the relationship between the given line segment and its image is true?

1) The line segments are perpendicular, and the image is one-half of the length of the given line segment.
2) The line segments are perpendicular, and the image is twice the length of the given line segment.
3) The line segments are parallel, and the image is twice the length of the given line segment.
4) The line segments are parallel, and the image is one-half of the length of the given line segment.

Geometry Multiple Choice Regents Exam Questions www.jmap.org

236 In the diagram below of right triangle $A B C$, altitude $\overline{B D}$ is drawn to hypotenuse $\overline{A C}$.

If $B D=4, A D=x-6$, and $C D=x$, what is the length of $\overline{C D}$?

1) 5
2) 2
3) 8
4) 11

237 In the diagram below of $\triangle A B C, D, E$, and F are the midpoints of $\overline{A B}, \overline{B C}$, and $\overline{C A}$, respectively.

What is the ratio of the area of $\triangle C F E$ to the area of $\triangle C A B$?

1) $1: 1$
2) $1: 2$
3) $1: 3$
4) $1: 4$

238 Which figure always has exactly four lines of reflection that map the figure onto itself?

1) square
2) rectangle
3) regular octagon
4) equilateral triangle

239 In the diagram below, $\overline{A D}$ intersects $\overline{B E}$ at C, and $\overline{A B} \| \overline{D E}$.

If $C D=6.6 \mathrm{~cm}, D E=3.4 \mathrm{~cm}, C E=4.2 \mathrm{~cm}$, and $B C=5.25 \mathrm{~cm}$, what is the length of $\overline{A C}$, to the nearest hundredth of a centimeter?

1) 2.70
2) 3.34
3) 5.28
4) 8.25

240 Rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is the image of rectangle $A B C D$ after a dilation centered at point A by a scale factor of $\frac{2}{3}$. Which statement is correct?

1) Rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ has a perimeter that is $\frac{2}{3}$ the perimeter of rectangle $A B C D$.
2) Rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ has a perimeter that is $\frac{3}{2}$ the perimeter of rectangle $A B C D$.
3) Rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ has an area that is $\frac{2}{3}$ the area of rectangle $A B C D$.
4) Rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ has an area that is $\frac{3}{2}$ the area of rectangle $A B C D$.

241 Given $\triangle A B C \cong \triangle D E F$, which statement is not always true?

1) $\overline{B C} \cong \overline{D F}$
2) $\mathrm{m} \angle A=\mathrm{m} \angle D$
3) area of $\triangle A B C=$ area of $\triangle D E F$
4) perimeter of $\triangle A B C=$ perimeter of $\triangle D E F$

242 On the graph below, point $A(3,4)$ and $\overline{B C}$ with coordinates $B(4,3)$ and $C(2,1)$ are graphed.

What are the coordinates of B ' and C ' after $\overline{B C}$ undergoes a dilation centered at point A with a scale factor of 2 ?

1) $B^{\prime}(5,2)$ and $C^{\prime}(1,-2)$
2) $B^{\prime}(6,1)$ and $C^{\prime}(0,-1)$
3) $B^{\prime}(5,0)$ and $C^{\prime}(1,-2)$
4) $B^{\prime}(5,2)$ and $C^{\prime}(3,0)$

243 In the diagram below, $\overline{A E F B} \| \overline{C G D}$, and $\overline{G E}$ and $\overline{G F}$ are drawn.

If $\mathrm{m} \angle E F G=32^{\circ}$ and $\mathrm{m} \angle A E G=137^{\circ}$, what is $\mathrm{m} \angle E G F$?

1) 11°
2) 43°
3) 75°
4) 105°

244 What is an equation of a line that is perpendicular to the line whose equation is $2 y=3 x-10$ and passes through $(-6,1)$?

1) $y=-\frac{2}{3} x-5$
2) $y=-\frac{2}{3} x-3$
3) $y=\frac{2}{3} x+1$
4) $y=\frac{2}{3} x+10$

245 In the diagram below of circle O, chord $\overline{C D}$ is parallel to diameter $\overline{A O B}$ and $\mathrm{m} \overparen{C D}=130$.

What is $\mathrm{m} \overparen{A C}$?

1) 25
2) 50
3) 65
4) 115

246 An isosceles right triangle whose legs measure 6 is continuously rotated about one of its legs to form a three-dimensional object. The three-dimensional object is a

1) cylinder with a diameter of 6
2) cylinder with a diameter of 12
3) cone with a diameter of 6
4) cone with a diameter of 12

Geometry Multiple Choice Regents Exam Questions www.jmap.org

247 The diagram below shows two similar triangles.

If $\tan \theta=\frac{3}{7}$, what is the value of x, to the nearest tenth?

1) 1.2
2) 5.6
3) 7.6
4) 8.8

248 A circle whose center is the origin passes through the point $(-5,12)$. Which point also lies on this circle?

1) $(10,3)$
2) $(-12,13)$
3) $(11,2 \sqrt{12})$
4) $(-8,5 \sqrt{21})$

249 In the diagram below, $\angle G R S \cong \angle A R T, G R=36$, $S R=45, A R=15$, and $R T=18$.

Which triangle similarity statement is correct?

1) $\triangle G R S \sim \triangle A R T$ by AA.
2) $\triangle G R S \sim \triangle A R T$ by SAS.
3) $\triangle G R S \sim \triangle A R T$ by SSS.
4) $\triangle G R S$ is not similar to $\triangle A R T$.

250 The diagram below shows parallelogram $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}$ intersecting at E.

What additional information is sufficient to prove that parallelogram $A B C D$ is also a rhombus?

1) $\overline{B D}$ bisects $\overline{A C}$.
2) $\overline{A B}$ is parallel to $\overline{C D}$.
3) $\overline{A C}$ is congruent to $\overline{B D}$.
4) $\overline{A C}$ is perpendicular to $\overline{B D}$.

251 Which equation represents the line that passes through the point $(-2,2)$ and is parallel to
$y=\frac{1}{2} x+8$?

1) $y=\frac{1}{2} x$
2) $y=-2 x-3$
3) $y=\frac{1}{2} x+3$
4) $y=-2 x+3$

252 The coordinates of the endpoints of $\overline{A B}$ are $A(-8,-2)$ and $B(16,6)$. Point P is on $\overline{A B}$. What are the coordinates of point P, such that $A P: P B$ is $3: 5$?

1) $(1,1)$
2) $(7,3)$
3) $(9.6,3.6)$
4) $(6.4,2.8)$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

253 The vertices of $\triangle P Q R$ have coordinates $P(2,3)$, $Q(3,8)$, and $R(7,3)$. Under which transformation of $\triangle P Q R$ are distance and angle measure preserved?

1) $(x, y) \rightarrow(2 x, 3 y)$
2) $(x, y) \rightarrow(x+2,3 y)$
3) $(x, y) \rightarrow(2 x, y+3)$
4) $(x, y) \rightarrow(x+2, y+3)$

254 In the diagram below, right triangle $A B C$ has legs whose lengths are 4 and 6.

What is the volume of the three-dimensional object formed by continuously rotating the right triangle around $\overline{A B}$?

1) 32π
2) 48π
3) 96π
4) 144π

255 In the diagram below of circle O, chord $\overline{D F}$ bisects chord $\overline{B C}$ at E.

If $B C=12$ and $F E$ is 5 more than $D E$, then $F E$ is

1) 13
2) 9
3) 6
4) 4

256 In the diagram below of $\triangle A B C, \angle A B C$ is a right angle, $A C=12, A D=8$, and altitude $\overline{B D}$ is drawn.

What is the length of $\overline{B C}$?

1) $4 \sqrt{2}$
2) $4 \sqrt{3}$
3) $4 \sqrt{5}$
4) $4 \sqrt{6}$

257 A right cylinder is cut perpendicular to its base. The shape of the cross section is a

1) circle
2) cylinder
3) rectangle
4) triangular prism

258 Triangle RJM has an area of 6 and a perimeter of 12. If the triangle is dilated by a scale factor of 3 centered at the origin, what are the area and perimeter of its image, triangle $R^{\prime} J^{\prime} M^{\prime}$?

1) area of 9 and perimeter of 15
2) area of 18 and perimeter of 36
3) area of 54 and perimeter of 36
4) area of 54 and perimeter of 108

259 In the diagram of right triangle $A D E$ below, $\overline{B C} \| \overline{D E}$.

Which ratio is always equivalent to the sine of $\angle A$?

1) $\frac{A D}{D E}$
2) $\frac{A E}{A D}$
3) $\frac{B C}{A B}$
4) $\frac{A B}{A C}$

In the diagram of $\triangle A B C$ below, points D and E are on sides $\overline{A B}$ and $\overline{C B}$ respectively, such that $\overline{D E} \| \overline{A C}$.

If $E B$ is 3 more than $D B, A B=14$, and $C B=21$, what is the length of $A D$?

1) 6
2) 8
3) 9
4) 12

261 A fabricator is hired to make a 27 -foot-long solid metal railing for the stairs at the local library. The railing is modeled by the diagram below. The railing is 2.5 inches high and 2.5 inches wide and is comprised of a rectangular prism and a half-cylinder.

How much metal, to the nearest cubic inch, will the railing contain?

1) 151
2) 795
3) 1808
4) 2025

262 What is an equation of the line that passes through the point $(6,8)$ and is perpendicular to a line with equation $y=\frac{3}{2} x+5$?

1) $y-8=\frac{3}{2}(x-6)$
2) $y-8=-\frac{2}{3}(x-6)$
3) $y+8=\frac{3}{2}(x+6)$
4) $y+8=-\frac{2}{3}(x+6)$

263 The equation of a circle is $x^{2}+y^{2}-12 y+20=0$. What are the coordinates of the center and the length of the radius of the circle?

1) center $(0,6)$ and radius 4
2) center ($0,-6$) and radius 4
3) center $(0,6)$ and radius 16
4) center $(0,-6)$ and radius 16

Geometry Multiple Choice Regents Exam Questions www.jmap.org

264 Triangle $A B C$, with vertices at $A(0,0), B(3,5)$, and $C(0,5)$, is graphed on the set of axes shown below.

Which figure is formed when $\triangle A B C$ is rotated continuously about $\overline{B C}$?
1)

3)

4)

265 The greenhouse pictured below can be modeled as a rectangular prism with a half-cylinder on top. The rectangular prism is 20 feet wide, 12 feet high, and 45 feet long. The half-cylinder has a diameter of 20 feet.

To the nearest cubic foot, what is the volume of the greenhouse?

1) 17,869
2) 24,937
3) 39,074
4) 67,349

266 In the diagram below, $A C=7.2$ and $C E=2.4$.

Which statement is not sufficient to prove $\triangle A B C \sim \triangle E D C$?

1) $\overline{A B} \| \overline{E D}$
2) $D E=2.7$ and $A B=8.1$
3) $C D=3.6$ and $B C=10.8$
4) $D E=3.0, A B=9.0, C D=2.9$, and $B C=8.7$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

In the diagram below, line m is parallel to line n.
Figure 2 is the image of Figure 1 after a reflection over line m. Figure 3 is the image of Figure 2 after a reflection over line n.

Which single transformation would carry Figure 1 onto Figure 3?

1) a dilation
2) a rotation
3) a reflection
4) a translation

268 In the diagram of $\triangle A B C$ below, $\overline{D E}$ is parallel to $A B, C D=15, A D=9$, and $A B=40$.

The length of $\overline{D E}$ is

1) 15
2) 24
3) 25
4) 30

269 A farmer has 64 feet of fence to enclose a rectangular vegetable garden. Which dimensions would result in the biggest area for this garden?

1) the length and the width are equal
2) the length is 2 more than the width
3) the length is 4 more than the width
4) the length is 6 more than the width

270 Quadrilateral $A B C D$ is inscribed in circle O, as shown below.

If $\mathrm{m} \angle A=80^{\circ}, \mathrm{m} \angle B=75^{\circ}, \mathrm{m} \angle C=(y+30)^{\circ}$, and $\mathrm{m} \angle D=(x-10)^{\circ}$, which statement is true?

1) $x=85$ and $y=50$
2) $x=90$ and $y=45$
3) $x=110$ and $y=75$
4) $x=115$ and $y=70$

271 The equation of a circle is $x^{2}+y^{2}-6 y+1=0$. What are the coordinates of the center and the length of the radius of this circle?

1) center $(0,3)$ and radius $=2 \sqrt{2}$
2) center $(0,-3)$ and radius $=2 \sqrt{2}$
3) center $(0,6)$ and radius $=\sqrt{35}$
4) center $(0,-6)$ and radius $=\sqrt{35}$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

272 Yolanda is making a springboard to use for gymnastics. She has 8 -inch-tall springs and wants to form a 16.5° angle with the base, as modeled in the diagram below.
8 in

To the nearest tenth of an inch, what will be the length of the springboard, x ?

1) 2.3
2) 8.3
3) 27.0
4) 28.2

273 In the diagram below, $\overline{A K S}, \overline{N K C}, \overline{A N}$, and $\overline{S C}$ are drawn such that $\overline{A N} \cong \overline{S C}$.

Which additional statement is sufficient to prove $\triangle K A N \cong \triangle K S C$ by AAS?

1) $\overline{A S}$ and $\overline{N C}$ bisect each other.
2) K is the midpoint of $\overline{N C}$.
3) $\overline{A S} \perp \overline{C N}$
4) $\overline{A N} \| \overline{S C}$

274 In the diagram below of $\triangle H A R$ and $\triangle N T Y$, angles H and N are right angles, and $\triangle H A R \sim \triangle N T Y$.

If $A R=13$ and $H R=12$, what is the measure of angle Y, to the nearest degree?

1) 23°
2) 25°
3) 65°
4) 67°

275 In right triangle $A B C$, hypotenuse $\overline{A B}$ has a length of 26 cm , and side $\overline{B C}$ has a length of 17.6 cm . What is the measure of angle B, to the nearest degree?

1) 48°
2) 47°
3) 43°
4) 34°

276 If $\triangle A B C$ is mapped onto $\triangle D E F$ after a line reflection and $\triangle D E F$ is mapped onto $\triangle X Y Z$ after a translation, the relationship between $\triangle A B C$ and $\triangle X Y Z$ is that they are always

1) congruent and similar
2) congruent but not similar
3) similar but not congruent
4) neither similar nor congruent

Geometry Multiple Choice Regents Exam Questions www.jmap.org

277 The image of $\triangle D E F$ is $\triangle D^{\prime} E^{\prime} F^{\prime}$. Under which transformation will he triangles not be congruent?

1) a reflection through the origin
2) a reflection over the line $y=x$
3) a dilation with a scale factor of 1 centered at $(2,3)$
4) a dilation with a scale factor of $\frac{3}{2}$ centered at the origin

278 Parallelogram $A B C D$ has coordinates $A(0,7)$ and $C(2,1)$. Which statement would prove that $A B C D$ is a rhombus?

1) The midpoint of $\overline{A C}$ is $(1,4)$.
2) The length of $\overline{B D}$ is $\sqrt{40}$.
3) The slope of $\overline{B D}$ is $\frac{1}{3}$.
4) The slope of $\overline{A B}$ is $\frac{1}{3}$.

279 The vertices of square RSTV have coordinates $R(-1,5), S(-3,1), T(-7,3)$, and $V(-5,7)$. What is the perimeter of RSTV?

1) $\sqrt{20}$
2) $\sqrt{40}$
3) $4 \sqrt{20}$
4) $4 \sqrt{40}$

280 The line whose equation is $3 x-5 y=4$ is dilated by a scale factor of $\frac{5}{3}$ centered at the origin. Which statement is correct?

1) The image of the line has the same slope as the pre-image but a different y-intercept.
2) The image of the line has the same y-intercept as the pre-image but a different slope.
3) The image of the line has the same slope and the same y-intercept as the pre-image.
4) The image of the line has a different slope and a different y-intercept from the pre-image.

281 The equation of a circle is $x^{2}+y^{2}-6 x+2 y=6$. What are the coordinates of the center and the length of the radius of the circle?

1) center $(-3,1)$ and radius 4
2) center $(3,-1)$ and radius 4
3) center $(-3,1)$ and radius 16
4) center ($3,-1$) and radius 16

282 In the diagram below, $\overline{A B} \| \overrightarrow{D E F}, \overline{A E}$ and $\overline{B D}$ intersect at $C, \mathrm{~m} \angle B=43^{\circ}$, and $\mathrm{m} \angle C E F=152^{\circ}$.

Which statement is true?

1) $\mathrm{m} \angle D=28^{\circ}$
2) $m \angle A=43^{\circ}$
3) $\mathrm{m} \angle A C D=71^{\circ}$
4) $\mathrm{m} \angle B C E=109^{\circ}$

283 In the diagram below, if $\triangle A B E \cong \triangle C D F$ and $\overline{A E F C}$ is drawn, then it could be proven that quadrilateral $A B C D$ is a

1) square
2) rhombus
3) rectangle
4) parallelogram

Geometry Multiple Choice Regents Exam Questions www.jmap.org

284 On the set of axes below, the vertices of $\triangle P Q R$ have coordinates $P(-6,7), Q(2,1)$, and $R(-1,-3)$.

What is the area of $\triangle P Q R$?

1) 10
2) 20
3) 25
4) 50

285 The regular polygon below is rotated about its center.

Which angle of rotation will carry the figure onto itself?

1) 60°
2) 108°
3) 216°
4) 540°

286 In the figure shown below, quadrilateral TAEO is circumscribed around circle D. The midpoint of $\overline{T A}$ is R, and $\overline{H O} \cong \overline{P E}$.

If $A P=10$ and $E O=12$, what is the perimeter of quadrilateral TAEO?

1) 56
2) 64
3) 72
4) 76

287 In triangle $A B C$, points D and E are on sides $\overline{A B}$ and $\overline{B C}$, respectively, such that $\overline{D E} \| \overline{A C}$, and $A D: D B=3: 5$.

If $D B=6.3$ and $A C=9.4$, what is the length of $D E$, to the nearest tenth?

1) 3.8
2) 5.6
3) 5.9
4) 15.7

Geometry Multiple Choice Regents Exam Questions
www.jmap.org
288 In the diagram shown below, $\overline{P A}$ is tangent to circle T at A, and secant $\overline{P B C}$ is drawn where point B is on circle T.

If $P B=3$ and $B C=15$, what is the length of $\overline{P A}$?

1) $3 \sqrt{5}$
2) $3 \sqrt{6}$
3) 3
4) 9

289 The base of a pyramid is a rectangle with a width of 4.6 cm and a length of 9 cm . What is the height, in centimeters, of the pyramid if its volume is 82.8 cm^{3} ?

1) 6
2) 2
3) 9
4) 18

290 Directed line segment $A J$ has endpoints whose coordinates are $A(5,7)$ and $J(-10,-8)$. Point E is on $\overline{A J}$ such that $A E: E J$ is $2: 3$. What are the coordinates of point E ?

1) $(1,-1)$
2) $(-5,-3)$
3) $(-4,-2)$
4) $(-1,1)$

291 A regular decagon is rotated n degrees about its center, carrying the decagon onto itself. The value of n could be

1) 10°
2) 150°
3) 225°
4) 252°

292 Given $\triangle M R O$ shown below, with trapezoid PTRO, $M R=9, M P=2$, and $P O=4$.

What is the length of $\overline{T R}$?

1) 4.5
2) 5
3) 3
4) 6

293 The pyramid shown below has a square base, a height of 7 , and a volume of 84 .

What is the length of the side of the base?

1) 6
2) 12
3) 18
4) 36

Geometry Multiple Choice Regents Exam Questions www.jmap.org

294 The graph below shows two congruent triangles, $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$.

Which rigid motion would map $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}$?

1) a rotation of 90 degrees counterclockwise about the origin
2) a translation of three units to the left and three units up
3) a rotation of 180 degrees about the origin
4) a reflection over the line $y=x$

295 In the diagram of $\triangle R S T$ below, $\mathrm{m} \angle T=90^{\circ}$, $R S=65$, and $S T=60$.

What is the measure of $\angle \mathrm{S}$, to the nearest degree?

1) 23°
2) 43°
3) 47°
4) 67°

296 In the accompanying diagram of right triangle $A B C$, altitude $\overline{B D}$ is drawn to hypotenuse $\overline{A C}$.

Which statement must always be true?

1) $\frac{A D}{A B}=\frac{B C}{A C}$
2) $\frac{A D}{A B}=\frac{A B}{A C}$
3) $\frac{B D}{B C}=\frac{A B}{A D}$
4) $\frac{A B}{B C}=\frac{B D}{A C}$

297 A ladder 20 feet long leans against a building, forming an angle of 71° with the level ground. To the nearest foot, how high up the wall of the building does the ladder touch the building?

1) 15
2) 16
3) 18
4) 19

298 Quadrilateral MATH has both pairs of opposite sides congruent and parallel. Which statement about quadrilateral MATH is always true?

1) $\overline{M T} \cong \overline{A H}$
2) $\overline{M T} \perp \overline{A H}$
3) $\angle M H T \cong \angle A T H$
4) $\angle M A T \cong \angle M H T$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

299 What is an equation of a line which passes through $(6,9)$ and is perpendicular to the line whose equation is $4 x-6 y=15$?

1) $y-9=-\frac{3}{2}(x-6)$
2) $y-9=\frac{2}{3}(x-6)$
3) $y+9=-\frac{3}{2}(x+6)$
4) $y+9=\frac{2}{3}(x+6)$

300 A man was parasailing above a lake at an angle of elevation of 32° from a boat, as modeled in the diagram below.

If 129.5 meters of cable connected the boat to the parasail, approximately how many meters above the lake was the man?

1) 68.6
2) 80.9
3) 109.8
4) 244.4

301 The coordinates of the endpoints of directed line segment $A B C$ are $A(-8,7)$ and $C(7,-13)$. If $A B: B C=3: 2$, the coordinates of B are

1) $(1,-5)$
2) $(-2,-1)$
3) $(-3,0)$
4) $(3,-6)$

302 In the diagram below, triangle $A C D$ has points B and E on sides $\overline{A C}$ and $\overline{A D}$, respectively, such that $\overline{B E} \| \overline{C D}, A B=1, B C=3.5$, and $A D=18$.

What is the length of $\overline{A E}$, to the nearest tenth?

1) 14.0
2) 5.1
3) 3.3
4) 4.0

303 In the diagram below, a sequence of rigid motions maps $A B C D$ onto JKLM.

If $\mathrm{m} \angle A=82^{\circ}, \mathrm{m} \angle B=104^{\circ}$, and $\mathrm{m} \angle L=121^{\circ}$, the measure of $\angle M$ is

1) 53°
2) 82°
3) 104°
4) 121°

Geometry Multiple Choice Regents Exam Questions www.jmap.org

304 In the diagram below of circle $O, G O=8$ and $\mathrm{m} \angle G O J=60^{\circ}$.

What is the area, in terms of π, of the shaded region?

1) $\frac{4 \pi}{3}$
2) $\frac{20 \pi}{3}$
3) $\frac{32 \pi}{3}$
4) $\frac{160 \pi}{3}$

305 In quadrilateral $B L U E$ shown below, $\overline{B E} \cong \overline{U L}$.

Which information would be sufficient to prove quadrilateral $B L U E$ is a parallelogram?

1) $\overline{B L} \| \overline{E U}$
2) $\overline{L U} \| \overline{B E}$
3) $\overline{B E} \cong \overline{B L}$
4) $\overline{L U} \cong \overline{E U}$

306 A tipping platform is a ramp used to unload trucks, as shown in the diagram below.

The truck is on a 75 -foot-long ramp. The ramp is tipped at an angle of 30°. What is the height of the upper end of the ramp, x, to the nearest tenth of a foot?

1) 68.7
2) 65.0
3) 43.3
4) 37.5

307 In $\triangle A B C, \overline{B D}$ is the perpendicular bisector of $\overline{A D C}$. Based upon this information, which statements below can be proven?
I. $\overline{B D}$ is a median.
II. $\overline{B D}$ bisects $\angle A B C$.
III. $\triangle A B C$ is isosceles.

1) I and II, only
2) I and III, only
3) II and III, only
4) I, II, and III

308 Line segment $R W$ has endpoints $R(-4,5)$ and $W(6,20)$. Point P is on $\overline{R W}$ such that $R P \cdot P W$ is
2:3. What are the coordinates of point P ?

1) $(2,9)$
2) $(0,11)$
3) $(2,14)$
4) $(10,2)$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

309 In the diagram below of circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E.

If $\mathrm{m} \overparen{A C}=72^{\circ}$ and $\mathrm{m} \angle A E C=58^{\circ}$, how many degrees are in $\mathrm{m} \overparen{D B}$?

1) 108°
2) 65°
3) 44°
4) 14°

310 The diagram below shows circle O with radii $\overline{O A}$ and $\overline{O B}$. The measure of angle $A O B$ is 120°, and the length of a radius is 6 inches.

Which expression represents the length of arc $A B$, in inches?

1) $\frac{120}{360}(6 \pi)$
2) $120(6)$
3) $\frac{1}{3}(36 \pi)$
4) $\frac{1}{3}(12 \pi)$

311 Point Q is on $\overline{M N}$ such that $M Q: Q N=2: 3$. If M has coordinates $(3,5)$ and N has coordinates $(8,-5)$, the coordinates of Q are

1) $(5,1)$
2) $(5,0)$
3) $(6,-1)$
4) $(6,0)$

312 On the set of axes below, $\overleftrightarrow{A B}$ is drawn and passes through $A(-2,6)$ and $B(4,0)$.

If $\overleftrightarrow{C D}$ is the image of $\overleftrightarrow{A B}$ after a dilation with a scale factor of $\frac{1}{2}$ centered at the origin, which equation represents $\overleftrightarrow{C D}$?

1) $y=-x+4$
2) $y=-x+2$
3) $y=-\frac{1}{2} x+4$
4) $y=-\frac{1}{2} x+2$

313 A parallelogram must be a rhombus if its diagonals

1) are congruent
2) bisect each other
3) do not bisect its angles
4) are perpendicular to each other

Geometry Multiple Choice Regents Exam Questions www.jmap.org

314 Given $\triangle A B C$ with $\mathrm{m} \angle B=62^{\circ}$ and side $\overline{A C}$ extended to D, as shown below.

Which value of x makes $\overline{A B} \cong \overline{C B}$?

1) 59°
2) 62°
3) 118°
4) 121°

315 In a circle with a diameter of 32 , the area of a sector is $\frac{512 \pi}{3}$. The measure of the angle of the sector, in radians, is

1) $\frac{\pi}{3}$
2) $\frac{4 \pi}{3}$
3) $\frac{16 \pi}{3}$
4) $\frac{64 \pi}{3}$

316 The line represented by the equation $4 y=3 x+7$ is transformed by a dilation centered at the origin. Which linear equation could represent its image?

1) $3 x-4 y=9$
2) $3 x+4 y=9$
3) $4 x-3 y=9$
4) $4 x+3 y=9$

317 Parallelogram HAND is drawn below with diagonals $\overline{H N}$ and $\overline{A D}$ intersecting at S.

Which statement is always true?

1) $A N=\frac{1}{2} A D$
2) $A S=\frac{1}{2} A D$
3) $\angle A H S \cong \angle A N S$
4) $\angle H D S \cong \angle N D S$

318 As shown in the diagram below, $\overleftrightarrow{A B C} \| \overleftrightarrow{E F G}$ and $\overline{B F} \cong \overline{E F}$.

If $\mathrm{m} \angle C B F=42.5^{\circ}$, then $\mathrm{m} \angle E B F$ is

1) 42.5°
2) 68.75°
3) 95°
4) 137.5°

Geometry Multiple Choice Regents Exam Questions
www.jmap.org
319 The 2010 U.S. Census populations and population densities are shown in the table below.

State	Population Density $\left(\frac{\text { people }}{\mathrm{mi}^{2}}\right)$	Population in $\mathbf{2 0 1 0}$
Florida	350.6	$18,801,310$
Illinois	231.1	$12,830,632$
New York	411.2	$19,378,102$
Pennsylvania	283.9	$12,702,379$

Based on the table above, which list has the states' areas, in square miles, in order from largest to smallest?

1) Illinois, Florida, New York, Pennsylvania
2) New York, Florida, Illinois, Pennsylvania
3) New York, Florida, Pennsylvania, Illinois
4) Pennsylvania, New York, Florida, Illinois

320 In the diagram below of $\triangle P Q R, \overline{S T}$ is drawn parallel to $\overline{P R}, P S=2, S Q=5$, and $T R=5$.

What is the length of $\overline{Q R}$?

1) 7
2) 2
3) $12 \frac{1}{2}$
4) $17 \frac{1}{2}$

321 In circle O, secants $\overline{A D B}$ and $\overline{A E C}$ are drawn from external point A such that points D, B, E, and C are on circle O. If $A D=8, A E=6$, and $E C$ is 12 more than $B D$, the length of $\overline{B D}$ is

1) 6
2) 22
3) 36
4) 48

322 In the diagram below, two concentric circles with center O, and radii $\overline{O C}, \overline{O D}, \overline{O G E}$, and $\overline{O D F}$ are drawn.

If $O C=4$ and $O E=6$, which relationship between the length of arc $E F$ and the length of arc $C D$ is always true?

1) The length of arc $E F$ is 2 units longer than the length of arc $C D$.
2) The length of arc $E F$ is 4 units longer than the length of arc $C D$.
3) The length of arc $E F$ is 1.5 times the length of arc $C D$.
4) The length of arc $E F$ is 2.0 times the length of arc $C D$.

Geometry Multiple Choice Regents Exam Questions
www.jmap.org
323 In $\triangle A B C$ shown below, side $\overline{A C}$ is extended to point D with $\mathrm{m} \angle D A B=(180-3 x)^{\circ}$, $\mathrm{m} \angle B=(6 x-40)^{\circ}$, and $\mathrm{m} \angle C=(x+20)^{\circ}$.

What is $\mathrm{m} \angle B A C$?

1) 20°
2) 40°
3) 60°
4) 80°

324 Given square $R S T V$, where $R S=9 \mathrm{~cm}$. If square $R S T V$ is dilated by a scale factor of 3 about a given center, what is the perimeter, in centimeters, of the image of RSTV after the dilation?

1) 12
2) 27
3) 36
4) 108

325 In the diagram below of circle O, secants $\overline{C F D}$ and $\overline{C H E}$ are drawn from external point C.

If $\mathrm{m} \overparen{D E}=136^{\circ}$ and $\mathrm{m} \angle C=44^{\circ}$, then $\mathrm{m} \widehat{F H}$ is

1) 46°
2) 48°
3) 68°
4) 88°

326 In regular hexagon $A B C D E F$ shown below, $\overline{A D}$, $\overline{B E}$, and $\overline{C F}$ all intersect at G.

When $\triangle A B G$ is reflected over $\overline{B G}$ and then rotated 180° about point $G, \triangle A B G$ is mapped onto

1) $\triangle F E G$
2) $\triangle A F G$
3) $\triangle C B G$
4) $\triangle D E G$

327 In the diagram below, $\overline{D E}, \overline{D F}$, and $\overline{E F}$ are midsegments of $\triangle A B C$.

The perimeter of quadrilateral $A D E F$ is equivalent to

1) $A B+B C+A C$
2) $\frac{1}{2} A B+\frac{1}{2} A C$
3) $2 A B+2 A C$
4) $A B+A C$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

328 In the diagram below, $\overline{A F}$, and $\overline{D B}$ intersect at C, and $\overline{A D}$ and $\overline{F B E}$ are drawn such that $\mathrm{m} \angle D=65^{\circ}$, $\mathrm{m} \angle C B E=115^{\circ}, D C=7.2, A C=9.6$, and $F C=21.6$.

What is the length of $\overline{C B}$?

1) 3.2
2) 4.8
3) 16.2
4) 19.2

329 Identify which sequence of transformations could map pentagon $A B C D E$ onto pentagon $A " B " C " D$ " ", as shown below.

1) dilation followed by a rotation
2) translation followed by a rotation
3) line reflection followed by a translation
4) line reflection followed by a line reflection

330 A right hexagonal prism is shown below. A two-dimensional cross section that is perpendicular to the base is taken from the prism.

Which figure describes the two-dimensional cross section?

1) triangle
2) rectangle
3) pentagon
4) hexagon

331 A rectangle whose length and width are 10 and 6 , respectively, is shown below. The rectangle is continuously rotated around a straight line to form an object whose volume is 150π.

Which line could the rectangle be rotated around?

1) a long side
2) a short side
3) the vertical line of symmetry
4) the horizontal line of symmetry

Geometry Multiple Choice Regents Exam Questions www.jmap.org

332 An ice cream waffle cone can be modeled by a right circular cone with a base diameter of 6.6 centimeters and a volume of 54.45π cubic centimeters. What is the number of centimeters in the height of the waffle cone?

1) $3 \frac{3}{4}$
2) 5
3) 15
4) $24 \frac{3}{4}$

333 In the diagram below of right triangle $A E D$, $\overline{B C} \| \overline{D E}$.

Which statement is always true?

1) $\frac{A C}{B C}=\frac{D E}{A E}$
2) $\frac{A B}{A D}=\frac{B C}{D E}$
3) $\frac{A C}{C E}=\frac{B C}{D E}$
4) $\frac{D E}{B C}=\frac{D B}{A B}$

334 A water cup in the shape of a cone has a height of 4 inches and a maximum diameter of 3 inches. What is the volume of the water in the cup, to the nearest tenth of a cubic inch, when the cup is filled to half its height?

1) 1.2
2) 3.5
3) 4.7
4) 14.1

335 As shown in the graph below, the quadrilateral is a rectangle.

Which transformation would not map the rectangle onto itself?

1) a reflection over the x-axis
2) a reflection over the line $x=4$
3) a rotation of 180° about the origin
4) a rotation of 180° about the point $(4,0)$

336 In right triangle $A B C, \mathrm{~m} \angle A=32^{\circ}, \mathrm{m} \angle B=90^{\circ}$, and $A C=6.2 \mathrm{~cm}$. What is the length of $\overline{B C}$, to the nearest tenth of a centimeter?

1) 3.3
2) 3.9
3) 5.3
4) 11.7

337 Line $M N$ is dilated by a scale factor of 2 centered at the point $(0,6)$. If $\overleftrightarrow{M N}$ is represented by $y=-3 x+6$, which equation can represent $\overleftrightarrow{M^{\prime} N^{\prime}}$, the image of $\overleftrightarrow{M N}$?

1) $y=-3 x+12$
2) $y=-3 x+6$
3) $y=-6 x+12$
4) $y=-6 x+6$

338 In the diagram below of parallelogram ROCK, $\mathrm{m} \angle C$ is 70° and $\mathrm{m} \angle R O S$ is 65°.

What is $\mathrm{m} \angle K S O$?

1) 45°
2) 110°
3) 115°
4) 135°

339 Circle O is centered at the origin. In the diagram below, a quarter of circle O is graphed.

Which three-dimensional figure is generated when the quarter circle is continuously rotated about the y-axis?

1) cone
2) sphere
3) cylinder
4) hemisphere

340 Directed line segment $D E$ has endpoints $D(-4,-2)$ and $E(1,8)$. Point F divides $\overline{D E}$ such that $D F: F E$ is $2: 3$. What are the coordinates of F ?

1) (-3.0)
2) $(-2,2)$
3) $(-1,4)$
4) $(2,4)$

341 What is an equation of the perpendicular bisector of the line segment shown in the diagram below?

1) $y+2 x=0$
2) $y-2 x=0$
3) $2 y+x=0$
4) $2 y-x=0$

342 Which transformation would not carry a square onto itself?

1) a reflection over one of its diagonals
2) a 90° rotation clockwise about its center
3) a 180° rotation about one of its vertices
4) a reflection over the perpendicular bisector of one side

Geometry Multiple Choice Regents Exam Questions www.jmap.org

343 Kelly is completing a proof based on the figure below.

She was given that $\angle A \cong \angle E D F$, and has already proven $\overline{A B} \cong \overline{D E}$. Which pair of corresponding parts and triangle congruency method would not prove $\triangle A B C \cong \triangle D E F$?

1) $\overline{A C} \cong \overline{D F}$ and SAS
2) $\overline{B C} \cong \overline{E F}$ and SAS
3) $\angle C \cong \angle F$ and AAS
4) $\angle C B A \cong \angle F E D$ and ASA

344 A circle with a diameter of 10 cm and a central angle of 30° is drawn below.

What is the area, to the nearest tenth of a square centimeter, of the sector formed by the 30° angle?

1) 5.2
2) 6.5
3) 13.1
4) 26.2

345 An equation of circle O is $x^{2}+y^{2}+4 x-8 y=-16$. The statement that best describes circle O is the $1)$ center is $(2,-4)$ and is tangent to the x-axis
$2)$ center is $(2,-4)$ and is tangent to the y-axis
$3)$ center is $(-2,4)$ and is tangent to the x-axis
4) center is $(-2,4)$ and is tangent to the y-axis

346 Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a dilation followed by a translation. Which statement(s) would always be true with respect to this sequence of transformations?
I. $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$
II. $\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime}$
III. $\overline{A B} \| \overline{A^{\prime} B^{\prime}}$
IV. $A A^{\prime}=B B^{\prime}$

1) II, only
2) I and II
3) II and III
4) II, III, and IV

347 In the diagram below of square CASH, diagonals $\overline{A H}$ and $\overline{C S}$ intersect at Z.

Which statement is true?

1) $\mathrm{m} \angle A C Z>\mathrm{m} \angle Z C H$
2) $\mathrm{m} \angle A C Z<\mathrm{m} \angle A S Z$
3) $\mathrm{m} \angle A Z C=\mathrm{m} \angle S H C$
4) $\mathrm{m} \angle \mathrm{AZC}=\mathrm{m} \angle \mathrm{ZCH}$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

348 Given the right triangle in the diagram below, what is the value of x, to the nearest foot?

1) 11
2) 17
3) 18
4) 22

349 In the diagram below, $\overline{A C}$ has endpoints with coordinates $A(-5,2)$ and $C(4,-10)$.

If B is a point on $\overline{A C}$ and $A B: B C=1: 2$, what are the coordinates of B ?

1) $(-2,-2)$
2) $\left(-\frac{1}{2},-4\right)$
3) $\left(0,-\frac{14}{3}\right)$
4) $(1,-6)$

350 A solid metal prism has a rectangular base with sides of 4 inches and 6 inches, and a height of 4 inches. A hole in the shape of a cylinder, with a radius of 1 inch, is drilled through the entire length of the rectangular prism.

What is the approximate volume of the remaining solid, in cubic inches?

1) 19
2) 77
3) 93
4) 96

351 In the two distinct acute triangles $A B C$ and $D E F$, $\angle B \cong \angle E$. Triangles $A B C$ and $D E F$ are congruent when there is a sequence of rigid motions that maps

1) $\angle A$ onto $\angle D$, and $\angle C$ onto $\angle F$
2) $\overline{A C}$ onto $\overline{D F}$, and $\overline{B C}$ onto $\overline{E F}$
3) $\angle C$ onto $\angle F$, and $\overline{B C}$ onto $\overline{E F}$
4) point A onto point D, and $\overline{A B}$ onto $\overline{D E}$

352 A two-dimensional cross section is taken of a three-dimensional object. If this cross section is a triangle, what can not be the three-dimensional object?

1) cone
2) cylinder
3) pyramid
4) rectangular prism

Geometry Multiple Choice Regents Exam Questions www.jmap.org

353 In the diagram below, $\overline{A B}\|\overline{D F C}, \overline{E D A}\| \overline{C B G}$, and $\overline{E F B}$ and $\overline{A G}$ are drawn.

Which statement is always true?

1) $\triangle D E F \cong \triangle C B F$
2) $\triangle B A G \cong \triangle B A E$
3) $\triangle B A G \sim \triangle A E B$
4) $\triangle D E F \sim \triangle A E B$

354 After a counterclockwise rotation about point X, scalene triangle $A B C$ maps onto $\triangle R S T$, as shown in the diagram below.

Which statement must be true?

1) $\angle A \cong \angle R$
2) $\angle A \cong \angle S$
3) $\overline{C B} \cong \overline{T R}$
4) $\overline{C A} \cong \overline{T S}$

355 To build a handicapped-access ramp, the building code states that for every 1 inch of vertical rise in height, the ramp must extend out 12 inches horizontally, as shown in the diagram below.

What is the angle of inclination, x, of this ramp, to the nearest hundredth of a degree?

1) 4.76
2) 4.78
3) 85.22
4) 85.24

356 A right circular cylinder has a diameter of 8 inches and a height of 12 inches. Which two-dimensional figure shows a cross section that is perpendicular to the base and passes through the center of the base?

Geometry Multiple Choice Regents Exam Questions
www.jmap.org
357 In the diagram below, $\overline{X S}$ and $\overline{Y R}$ intersect at Z. Segments $X Y$ and $R S$ are drawn perpendicular to $\overline{Y R}$ to form triangles $X Y Z$ and $S R Z$.

Which statement is always true?

1) $(X Y)(S R)=(X Z)(R Z)$
2) $\triangle X Y Z \cong \triangle S R Z$
3) $\overline{X S} \cong \overline{Y R}$
4) $\frac{X Y}{S R}=\frac{Y Z}{R Z}$

358 A plane intersects a hexagonal prism. The plane is perpendicular to the base of the prism. Which two-dimensional figure is the cross section of the plane intersecting the prism?

1) triangle
2) trapezoid
3) hexagon
4) rectangle

359 A child's tent can be modeled as a pyramid with a square base whose sides measure 60 inches and whose height measures 84 inches. What is the volume of the tent, to the nearest cubic foot?

1) 35
2) 58
3) 82
4) 175

360 In triangle $S R K$ below, medians $\overline{S C}, \overline{K E}$, and $\overline{R L}$ intersect at M.

Which statement must always be true?

1) $3(M C)=S C$
2) $M C=\frac{1}{3}(S M)$
3) $R M=2 M C$
4) $S M=K M$

361 If $A B C D$ is a parallelogram, which statement would prove that $A B C D$ is a rhombus?

1) $\angle A B C \cong \angle C D A$
2) $\overline{A C} \cong \overline{B D}$
3) $\overline{A C} \perp \overline{B D}$
4) $\overline{A B} \perp \overline{C D}$

362 Which set of statements would describe a parallelogram that can always be classified as a rhombus?
I. Diagonals are perpendicular bisectors of each other.
II. Diagonals bisect the angles from which they are drawn.
III. Diagonals form four congruent isosceles right triangles.

1) I and II
2) I and III
3) II and III
4) I, II, and III

Geometry Multiple Choice Regents Exam Questions www.jmap.org

363 In right triangle $A B C, \mathrm{~m} \angle C=90^{\circ}$. If $\cos B=\frac{5}{13}$, which function also equals $\frac{5}{13}$?

1) $\tan A$
2) $\tan B$
3) $\sin A$
4) $\sin B$

364 In the diagram below, $\triangle A D E$ is the image of $\triangle A B C$ after a reflection over the line $A C$ followed by a dilation of scale factor $\frac{A E}{A C}$ centered at point A.

Which statement must be true?

1) $\mathrm{m} \angle B A C \cong \mathrm{~m} \angle A E D$
2) $\mathrm{m} \angle A B C \cong \mathrm{~m} \angle A D E$
3) $\mathrm{m} \angle D A E \cong \frac{1}{2} \mathrm{~m} \angle B A C$
4) $\mathrm{m} \angle A C B \cong \frac{1}{2} \mathrm{~m} \angle D A B$

365 If $\sin (2 x+7)^{\circ}=\cos (4 x-7)^{\circ}$, what is the value of x ?

1) 7
2) 15
3) 21
4) 30

366 Triangle $D A N$ is graphed on the set of axes below. The vertices of $\triangle D A N$ have coordinates $D(-6,-1)$, $A(6,3)$, and $N(-3,10)$.

What is the area of $\triangle D A N$?

1) 60
2) 120
3) $20 \sqrt{13}$
4) $40 \sqrt{13}$

367 Under which transformation would $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$, not be congruent to $\triangle A B C$?

1) reflection over the y-axis
2) rotation of 90° clockwise about the origin
3) translation of 3 units right and 2 units down
4) dilation with a scale factor of 2 centered at the origin

368 In a right triangle, $\sin (40-x)^{\circ}=\cos (3 x)^{\circ}$. What is the value of x ?

1) 10
2) 15
3) 20
4) 25

Geometry Multiple Choice Regents Exam Questions www.jmap.org

369 What is an equation of circle O shown in the graph below?

1) $x^{2}+10 x+y^{2}+4 y=-13$
2) $x^{2}-10 x+y^{2}-4 y=-13$
3) $x^{2}+10 x+y^{2}+4 y=-25$
4) $x^{2}-10 x+y^{2}-4 y=-25$

370 Kirstie is testing values that would make triangle $K L M$ a right triangle when $\overline{L N}$ is an altitude, and $K M=16$, as shown below.

Which lengths would make triangle KLM a right triangle?

1) $L M=13$ and $K N=6$
2) $L M=12$ and $N M=9$
3) $K L=11$ and $K N=7$
4) $L N=8$ and $N M=10$

371 In the diagram below of triangle $M N O, \angle M$ and $\angle O$ are bisected by $\overline{M S}$ and $\overline{O R}$, respectively. Segments MS and OR intersect at T, and $\mathrm{m} \angle N=40^{\circ}$.

If $m \angle T M R=28^{\circ}$, the measure of angle $O T S$ is

1) 40°
2) 50°
3) 60°
4) 70°

372 Parallelogram $A B C D$ with diagonal $\overline{D B}$ is drawn below. Line segment $E F$ is drawn such that it bisects $\overline{D B}$ at M.

Which triangle congruence method would prove that $\triangle E M B \sim \triangle F M D$?

1) ASA, only
2) AAS, only
3) both ASA and AAS
4) neither ASA nor AAS

Geometry Multiple Choice Regents Exam Questions

373 Quadrilateral $A B C D$ is graphed on the set of axes below.

When $A B C D$ is rotated 90° in a counterclockwise direction about the origin, its image is quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. Is distance preserved under this rotation, and which coordinates are correct for the given vertex?

1) no and $C^{\prime}(1,2)$
2) no and $D^{\prime}(2,4)$
3) yes and $A^{\prime}(6,2)$
4) yes and $B^{\prime}(-3,4)$

374 Two right triangles must be congruent if

1) an acute angle in each triangle is congruent
2) the lengths of the hypotenuses are equal
3) the corresponding legs are congruent
4) the areas are equal

375 Which regular polygon has a minimum rotation of 45° to carry the polygon onto itself?

1) octagon
2) decagon
3) hexagon
4) pentagon

376 In the diagram below of circle $\underline{O,} \overline{O B}$ and $\overline{O C}$ are radii, and chords $\overline{A B}, \overline{B C}$, and $\overline{A C}$ are drawn.

Which statement must always be true?

1) $\angle B A C \cong \angle B O C$
2) $\mathrm{m} \angle B A C=\frac{1}{2} \mathrm{~m} \angle B O C$
3) $\triangle B A C$ and $\triangle B O C$ are isosceles.
4) The area of $\triangle B A C$ is twice the area of $\triangle B O C$.

377 In the diagram of $\triangle C A T$ below, $\mathrm{m} \angle A=90^{\circ}$ and altitude $\overline{A E}$ is drawn from vertex A.

Which statement is always true?

1) $\frac{C E}{A E}=\frac{A E}{E T}$
2) $\frac{A E}{C E}=\frac{A E}{E T}$
3) $\frac{A C}{C E}=\frac{A T}{E T}$
4) $\frac{C E}{A C}=\frac{A C}{E T}$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

378 In the diagram below of circle O, the area of the shaded sector $L O M$ is $2 \pi \mathrm{~cm}^{2}$.

If the length of $\overline{N L}$ is 6 cm , what is $\mathrm{m} \angle N$?

1) 10°
2) 20°
3) 40°
4) 80°

379 The coordinates of the vertices of $\triangle R S T$ are $R(-2,-3), S(8,2)$, and $T(4,5)$. Which type of triangle is $\triangle R S T$?

1) right
2) acute
3) obtuse
4) equiangular

380 The cross section of a regular pyramid contains the altitude of the pyramid. The shape of this cross section is a

1) circle
2) square
3) triangle
4) rectangle

381 Segment $C D$ is the perpendicular bisector of $\overline{A B}$ at E. Which pair of segments does not have to be congruent?

1) $\overline{A D}, \overline{B D}$
2) $A C, B C$
3) $\overline{A E}, \overline{B E}$
4) $\overline{D E}, \overline{C E}$

382 In the diagram below, a square is graphed in the coordinate plane.

A reflection over which line does not carry the square onto itself?

1) $x=5$
2) $y=2$
3) $y=x$
4) $x+y=4$

383 Given: $\triangle A B E$ and $\triangle C B D$ shown in the diagram below with $\overline{D B} \cong \overline{B E}$

Which statement is needed to prove
$\triangle A B E \cong \triangle C B D$ using only SAS \cong SAS?

1) $\angle C D B \cong \angle A E B$
2) $\angle A F D \cong \angle E F C$
3) $\overline{A D} \cong \overline{C E}$
4) $\overline{A E} \cong \overline{C D}$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

384 If an equilateral triangle is continuously rotated around one of its medians, which 3-dimensional object is generated?

1) cone
2) pyramid
3) prism
4) sphere

385 In the diagram below, $\overleftrightarrow{A B C D} \| \overleftrightarrow{E H K}$, and $\overleftrightarrow{M B H P}$ and $\overleftrightarrow{N C H L}$ are drawn such that $\overline{B C} \cong \overline{B H}$.

If $\mathrm{m} \angle N C D=62^{\circ}$, what is $\mathrm{m} \angle P H K$?

1) 118°
2) 68°
3) 62°
4) 56°

386 A fish tank in the shape of a rectangular prism has dimensions of 14 inches, 16 inches, and 10 inches. The tank contains 1680 cubic inches of water. What percent of the fish tank is empty?

1) 10
2) 25
3) 50
4) 75

387 In the diagram below, $\triangle A B C$ has vertices $A(4,5)$, $B(2,1)$, and $C(7,3)$.

What is the slope of the altitude drawn from A to $\overline{B C}$?

1) $\frac{2}{5}$
2) $\frac{3}{2}$
3) $-\frac{1}{2}$
4) $-\frac{5}{2}$

388 A company is creating an object from a wooden cube with an edge length of 8.5 cm . A right circular cone with a diameter of 8 cm and an altitude of 8 cm will be cut out of the cube. Which expression represents the volume of the remaining wood?

1) $(8.5)^{3}-\pi(8)^{2}(8)$
2) $(8.5)^{3}-\pi(4)^{2}(8)$
3) $(8.5)^{3}-\frac{1}{3} \pi(8)^{2}(8)$
4) $(8.5)^{3}-\frac{1}{3} \pi(4)^{2}(8)$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

389 In the diagram of $\triangle A B C$, points D and E are on $\overline{A B}$ and $\overline{C B}$, respectively, such that $\overline{A C} \| \overline{D E}$.

If $A D=24, D B=12$, and $D E=4$, what is the length of $\overline{A C}$?

1) 8
2) 12
3) 16
4) 72

390 In the diagram below, $\overline{D C}, \overline{A C}, \overline{D O B}, \overline{C B}$, and $\overline{A B}$ are chords of circle $O, \overleftrightarrow{F D E}$ is tangent at point D, and radius $\overline{A O}$ is drawn. Sam decides to apply this theorem to the diagram: "An angle inscribed in a semi-circle is a right angle."

Which angle is Sam referring to?

1) $\angle A O B$
2) $\angle B A C$
3) $\angle D C B$
4) $\angle F D B$

391 A three-inch line segment is dilated by a scale factor of 6 and centered at its midpoint. What is the length of its image?

1) 9 inches
2) 2 inches
3) 15 inches
4) 18 inches

392 Which point shown in the graph below is the image of point P after a counterclockwise rotation of 90° about the origin?

1) A
2) B
3) C
4) D

393 Parallelogram EATK has diagonals $\overline{E T}$ and $\overline{A K}$. Which information is always sufficient to prove EATK is a rhombus?

1) $\overline{E A} \perp \overline{A T}$
2) $\overline{E A} \cong \overline{A T}$
3) $\overline{E T} \cong \overline{A K}$
4) $\overline{E T} \cong \overline{A T}$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

394 In scalene triangle $A B C$ shown in the diagram below, $\mathrm{m} \angle C=90^{\circ}$.

Which equation is always true?

1) $\sin A=\sin B$
2) $\cos A=\cos B$
3) $\cos A=\sin C$
4) $\sin A=\cos B$

395 In $\triangle R S T$ shown below, altitude $\overline{S U}$ is drawn to $\overline{R T}$ at U.

If $S U=h, U T=12$, and $R T=42$, which value of h will make $\triangle R S T$ a right triangle with $\angle R S T$ as a right angle?

1) $6 \sqrt{3}$
2) $6 \sqrt{10}$
3) $6 \sqrt{14}$
4) $6 \sqrt{35}$

396 A line that passes through the points whose coordinates are $(1,1)$ and $(5,7)$ is dilated by a scale factor of 3 and centered at the origin. The image of the line

1) is perpendicular to the original line
2) is parallel to the original line
3) passes through the origin
4) is the original line

397 Which expression is always equivalent to $\sin x$ when $0^{\circ}<x<90^{\circ}$?

1) $\cos \left(90^{\circ}-x\right)$
2) $\cos \left(45^{\circ}-x\right)$
3) $\cos (2 x)$
4) $\cos x$

398 In the diagram below, $\overline{B C}$ is the diameter of circle A.

Point D, which is unique from points B and C, is plotted on circle A. Which statement must always be true?

1) $\triangle B C D$ is a right triangle.
2) $\triangle B C D$ is an isosceles triangle.
3) $\triangle B A D$ and $\triangle C B D$ are similar triangles.
4) $\triangle B A D$ and $\triangle C A D$ are congruent triangles.

399 In $\triangle A B C$, where $\angle C$ is a right angle, $\cos A=\frac{\sqrt{21}}{5}$. What is $\sin B$?

1) $\frac{\sqrt{21}}{5}$
2) $\frac{\sqrt{21}}{2}$
3) $\frac{2}{5}$
4) $\frac{5}{\sqrt{21}}$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

400 In the diagram of right triangle $A B C$ shown below, $A B=14$ and $A C=9$.

What is the measure of $\angle A$, to the nearest degree?

1) 33
2) 40
3) 50
4) 57

401 Given $\overline{M N}$ shown below, with $M(-6,1)$ and $N(3,-5)$, what is an equation of the line that passes through point $P(6,1)$ and is parallel to $\overline{M N}$?

1) $y=-\frac{2}{3} x+5$
2) $y=-\frac{2}{3} x-3$
3) $y=\frac{3}{2} x+7$
4) $y=\frac{3}{2} x-8$

402 Triangles YEG and POM are two distinct non-right triangles such that $\angle G \cong \angle M$. Which statement is sufficient to prove $\triangle Y E G$ is always congruent to $\triangle P O M$?

1) $\angle E \cong \angle O$ and $\angle Y \cong \angle P$
2) $\overline{Y G} \cong \overline{P M}$ and $\overline{Y E} \cong \overline{P O}$
3) There is a sequence of rigid motions that maps $\angle E$ onto $\angle O$ and $\overline{Y E}$ onto $\overline{P O}$.
4) There is a sequence of rigid motions that maps point Y onto point P and $\overline{Y G}$ onto $\overline{P M}$.

403 In the diagram shown below, $\overline{A C}$ is tangent to circle O at A and to circle P at $C, \overline{O P}$ intersects $\overline{A C}$ at $B, O A=4, A B=5$, and $P C=10$.

What is the length of $\overline{B C}$?

1) 6.4
2) 8
3) 12.5
4) 16

404 A hemispherical tank is filled with water and has a diameter of 10 feet. If water weighs 62.4 pounds per cubic foot, what is the total weight of the water in a full tank, to the nearest pound?

1) 16,336
2) 32,673
3) 130,690
4) 261,381

Geometry Multiple Choice Regents Exam Questions www.jmap.org

405 What is the area of a sector of a circle with a radius of 8 inches and formed by a central angle that measures 60° ?

1) $\frac{8 \pi}{3}$
2) $\frac{16 \pi}{3}$
3) $\frac{32 \pi}{3}$
4) $\frac{64 \pi}{3}$

406 Using the information given below, which set of triangles can not be proven similar?
1)

2)

3)

4)

407 In the diagram below, $\overline{E F} \| \overline{H G}, E F=5, H G=12$, $F I=1.4 x+3$, and $H I=6.1 x-6.5$.

What is the length of $\overline{H I}$?

1) 1
2) 5
3) 10
4) 24

408 Steve drew line segments $A B C D, E F G, B F$, and $C F$ as shown in the diagram below. Scalene $\triangle B F C$ is formed.

Which statement will allow Steve to prove $\overline{A B C D} \| \overline{E F G}$?

1) $\angle C F G \cong \angle F C B$
2) $\angle A B F \cong \angle B F C$
3) $\angle E F B \cong \angle C F B$
4) $\angle C B F \cong \angle G F C$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

409 An equilateral triangle has sides of length 20. To the nearest tenth, what is the height of the equilateral triangle?

1) 10.0
2) 11.5
3) 17.3
4) 23.1

410 A parallelogram must be a rectangle when its

1) diagonals are perpendicular
2) diagonals are congruent
3) opposite sides are parallel
4) opposite sides are congruent

411 In the diagram below, quadrilateral $A B C D$ is inscribed in circle P.

What is $\mathrm{m} \angle A D C$?

1) 70°
2) 72°
3) 108°
4) 110°

412 Molly wishes to make a lawn ornament in the form of a solid sphere. The clay being used to make the sphere weighs .075 pound per cubic inch. If the sphere's radius is 4 inches, what is the weight of the sphere, to the nearest pound?

1) 34
2) 20
3) 15
4) 4

413 As shown in the diagram below, $\overline{A B}$ and $\overline{C D}$ intersect at E, and $\overline{A C} \| \overline{B D}$.

Given $\triangle A E C \sim \triangle B E D$, which equation is true?

1) $\frac{C E}{D E}=\frac{E B}{E A}$
2) $\frac{A E}{B E}=\frac{A C}{B D}$
3) $\frac{E C}{A E}=\frac{B E}{E D}$
4) $\frac{E D}{E C}=\frac{A C}{B D}$

414 As shown in the diagram below, a regular pyramid has a square base whose side measures 6 inches.

If the altitude of the pyramid measures 12 inches, its volume, in cubic inches, is

1) 72
2) 144
3) 288
4) 432

Geometry Multiple Choice Regents Exam Questions www.jmap.org

415 In the diagram below, which single transformation was used to map triangle A onto triangle B ?

1) line reflection
2) rotation
3) dilation
4) translation

416 Which transformation would result in the perimeter of a triangle being different from the perimeter of its image?

1) $(x, y) \rightarrow(y, x)$
2) $(x, y) \rightarrow(x,-y)$
3) $(x, y) \rightarrow(4 x, 4 y)$
4) $(x, y) \rightarrow(x+2, y-5)$

417 If $\triangle A B C$ is dilated by a scale factor of 3 , which statement is true of the image $\triangle A^{\prime} B^{\prime} C^{\prime}$?

1) $3 A^{\prime} B^{\prime}=A B$
2) $B^{\prime} C^{\prime}=3 B C$
3) $\mathrm{m} \angle A^{\prime}=3(\mathrm{~m} \angle A)$
4) $3\left(\mathrm{~m} \angle C^{\prime}\right)=\mathrm{m} \angle C$

418 In parallelogram $A B C D$ with $\overline{A C} \perp \overline{B D}, A C=12$ and $B D=16$. What is the perimeter of $A B C D$?

1) 10
2) 24
3) 40
4) 56

419 The Great Pyramid of Giza was constructed as a regular pyramid with a square base. It was built with an approximate volume of 2,592,276 cubic meters and a height of 146.5 meters. What was the length of one side of its base, to the nearest meter?

1) 73
2) 77
3) 133
4) 230

420 In the diagram below, $\mathrm{m} \angle B D C=100^{\circ}$, $\mathrm{m} \angle A=50^{\circ}$, and $\mathrm{m} \angle D B C=30^{\circ}$.

Which statement is true?

1) $\triangle A B D$ is obtuse.
2) $\triangle A B C$ is isosceles.
3) $\mathrm{m} \angle A B D=80^{\circ}$
4) $\triangle A B D$ is scalene.

Geometry Multiple Choice Regents Exam Questions www.jmap.org

421 Tennis balls are sold in cylindrical cans with the balls stacked one on top of the other. A tennis ball has a diameter of 6.7 cm . To the nearest cubic centimeter, what is the minimum volume of the can that holds a stack of 4 tennis balls?

1) 236
2) 282
3) 564
4) 945

422 In the diagram below, $\overline{C D}$ is the altitude drawn to the hypotenuse $\overline{A B}$ of right triangle $A B C$.

Which lengths would not produce an altitude that measures $6 \sqrt{2}$?

1) $A D=2$ and $D B=36$
2) $A D=3$ and $A B=24$
3) $A D=6$ and $D B=12$
4) $A D=8$ and $A B=17$

423 If the rectangle below is continuously rotated about side w, which solid figure is formed?

1) pyramid
2) rectangular prism
3) cone
4) cylinder

424 In the diagram of parallelogram $F R E D$ shown below, $\overline{E D}$ is extended to A, and $\overline{A F}$ is drawn such that $\overline{A F} \cong \overline{D F}$.

If $\mathrm{m} \angle R=124^{\circ}$, what is $\mathrm{m} \angle A F D$?

1) 124°
2) 112°
3) 68°
4) 56°

425 In the diagram of right triangle $A B C, \overline{C D}$ intersects hypotenuse $\overline{A B}$ at D.

If $A D=4$ and $D B=6$, which length of $\overline{A C}$ makes $\overline{C D} \perp \overline{A B}$?

1) $2 \sqrt{6}$
2) $2 \sqrt{10}$
3) $2 \sqrt{15}$
4) $4 \sqrt{2}$

426 Which transformation would not always produce an image that would be congruent to the original figure?

1) translation
2) dilation
3) rotation
4) reflection

Geometry Multiple Choice Regents Exam Questions www.jmap.org

427 The density of the American white oak tree is 752 kilograms per cubic meter. If the trunk of an American white oak tree has a circumference of 4.5 meters and the height of the trunk is 8 meters, what is the approximate number of kilograms of the trunk?

1) 13
2) 9694
3) 13,536
4) 30,456

428 A circle with a radius of 5 was divided into 24 congruent sectors. The sectors were then rearranged, as shown in the diagram below.

To the nearest integer, the value of x is

1) 31
2) 16
3) 12
4) 10

429 If $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$, under which transformation will the triangles not be congruent?

1) reflection over the x-axis
2) translation to the left 5 and down 4
3) dilation centered at the origin with scale factor 2
4) rotation of 270° counterclockwise about the origin

430 A designer needs to create perfectly circular necklaces. The necklaces each need to have a radius of 10 cm . What is the largest number of necklaces that can be made from 1000 cm of wire?

1) 15
2) 16
3) 31
4) 32

431 The graph below shows $\overline{A B}$, which is a chord of circle O. The coordinates of the endpoints of $\overline{A B}$ are $A(3,3)$ and $B(3,-7)$. The distance from the midpoint of $\overline{A B}$ to the center of circle O is 2 units.

What could be a correct equation for circle O ?

1) $(x-1)^{2}+(y+2)^{2}=29$
2) $(x+5)^{2}+(y-2)^{2}=29$
3) $(x-1)^{2}+(y-2)^{2}=25$
4) $(x-5)^{2}+(y+2)^{2}=25$

432 In the diagram below, lines ℓ, m, n, and p intersect line r.

Which statement is true?

1) $\ell \| n$
2) $\ell \| p$
3) $m \| p$
4) $m \| n$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

433 In the diagram below, $\triangle A B C \sim \triangle D E F$.

If $A B=6$ and $A C=8$, which statement will justify similarity by SAS?

1) $D E=9, D F=12$, and $\angle A \cong \angle D$
2) $D E=8, D F=10$, and $\angle A \cong \angle D$
3) $D E=36, D F=64$, and $\angle C \cong \angle F$
4) $D E=15, D F=20$, and $\angle C \cong \angle F$

434 Given: $\triangle A E C, \triangle D E F$, and $\overline{F E} \perp \overline{C E}$

What is a correct sequence of similarity transformations that shows $\triangle A E C \sim \triangle D E F$?

1) a rotation of 180 degrees about point E followed by a horizontal translation
2) a counterclockwise rotation of 90 degrees about point E followed by a horizontal translation
3) a rotation of 180 degrees about point E followed by a dilation with a scale factor of 2 centered at point E
4) a counterclockwise rotation of 90 degrees about point E followed by a dilation with a scale factor of 2 centered at point E

435 In the diagram below, $\triangle D E F$ is the image of $\triangle A B C$ after a clockwise rotation of 180° and a dilation where $A B=3, B C=5.5, A C=4.5$, $D E=6, F D=9$, and $E F=11$.

Which relationship must always be true?

1) $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle D}=\frac{1}{2}$
2) $\frac{\mathrm{m} \angle C}{\mathrm{~m} \angle F}=\frac{2}{1}$
3) $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle C}=\frac{\mathrm{m} \angle F}{\mathrm{~m} \angle D}$
4) $\frac{\mathrm{m} \angle B}{\mathrm{~m} \angle E}=\frac{\mathrm{m} \angle C}{\mathrm{~m} \angle F}$

436 An equation of a line perpendicular to the line represented by the equation $y=-\frac{1}{2} x-5$ and passing through $(6,-4)$ is

1) $y=-\frac{1}{2} x+4$
2) $y=-\frac{1}{2} x-1$
3) $y=2 x+14$
4) $y=2 x-16$

437 A gallon of paint will cover approximately 450 square feet. An artist wants to paint all the outside surfaces of a cube measuring 12 feet on each edge. What is the least number of gallons of paint he must buy to paint the cube?

1) 1
2) 2
3) 3
4) 4

Geometry Multiple Choice Regents Exam Questions www.jmap.org

438 In $\triangle A B C$, the complement of $\angle B$ is $\angle A$. Which statement is always true?

1) $\tan \angle A=\tan \angle B$
2) $\sin \angle A=\sin \angle B$
3) $\cos \angle A=\tan \angle B$
4) $\sin \angle A=\cos \angle B$

439 A sandbox in the shape of a rectangular prism has a length of 43 inches and a width of 30 inches. Jack uses bags of sand to fill the sandbox to a depth of 9 inches. Each bag of sand has a volume of 0.5 cubic foot. What is the minimum number of bags of sand that must be purchased to fill the sandbox?

1) 14
2) 13
3) 7
4) 4

440 In the diagram below, $\overline{D B}$ and $\overline{A F}$ intersect at point C, and $\overline{A D}$ and $\overline{F B E}$ are drawn.

If $A C=6, D C=4, F C=15, \mathrm{~m} \angle D=65^{\circ}$, and $\mathrm{m} \angle C B E=115^{\circ}$, what is the length of $\overline{C B}$?

1) 10
2) 12
3) 17
4) 22.5

441 Triangle $F G H$ is inscribed in circle O, the length of radius $\overline{O H}$ is 6 , and $\overline{F H} \cong \overline{O G}$.

What is the area of the sector formed by angle FOH?

1) 2π
2) $\frac{3}{2} \pi$
3) 6π
4) 24π

442 The ratio of similarity of $\triangle B O Y$ to $\triangle G R L$ is $1: 2$. If $B O=x+3$ and $G R=3 x-1$, then the length of $\overline{G R}$ is

1) 5
2) 7
3) 10
4) 20

443 The diameter of a basketball is approximately 9.5 inches and the diameter of a tennis ball is approximately 2.5 inches. The volume of the basketball is about how many times greater than the volume of the tennis ball?

1) 3591
2) 65
3) 55
4) 4

Geometry Multiple Choice Regents Exam Questions www.jmap.org

444 Which statement is sufficient evidence that $\triangle D E F$ is congruent to $\triangle A B C$?

1) $A B=D E$ and $B C=E F$
2) $\angle D \cong \angle A, \angle B \cong \angle E, \angle C \cong \angle F$
3) There is a sequence of rigid motions that maps $\overline{A B}$ onto $\overline{D E}, \overline{B C}$ onto $\overline{E F}$, and $\overline{A C}$ onto $\overline{D F}$.
4) There is a sequence of rigid motions that maps point A onto point $D, \overline{A B}$ onto $\overline{D E}$, and $\angle B$ onto $\angle E$.

445 In $\triangle S C U$ shown below, points T and O are on $\overline{S U}$ and $\overline{C U}$, respectively. Segment $O T$ is drawn so that $\angle C \cong \angle O T U$.

If $\underline{T U}=4, O U=5$, and $O C=7$, what is the length of $\overline{S T}$?

1) 5.6
2) 8.75
3) 11
4) 15

446 The equation of a circle is $x^{2}+y^{2}+6 y=7$. What are the coordinates of the center and the length of the radius of the circle?

1) center $(0,3)$ and radius 4
2) center $(0,-3)$ and radius 4
3) center $(0,3)$ and radius 16
4) center $(0,-3)$ and radius 16

447 What are the coordinates of the center and length of the radius of the circle whose equation is
$x^{2}+6 x+y^{2}-4 y=23 ?$

1) $(3,-2)$ and 36
2) $(3,-2)$ and 6
3) $(-3,2)$ and 36
4) $(-3,2)$ and 6

448 What are the coordinates of the point on the directed line segment from $K(-5,-4)$ to $L(5,1)$ that partitions the segment into a ratio of 3 to 2 ?

1) $(-3,-3)$
2) $(-1,-2)$
3) $\left(0,-\frac{3}{2}\right)$
4) $(1,-1)$

449 In the diagram below, $A B C D$ is a parallelogram, $\overline{A B}$ is extended through B to E, and $\overline{C E}$ is drawn.

If $\overline{C E} \cong \overline{B E}$ and $\mathrm{m} \angle D=112^{\circ}$, what is $\mathrm{m} \angle E$?

1) 44°
2) 56°
3) 68°
4) 112°

Geometry Multiple Choice Regents Exam Questions www.jmap.org

450 What are the coordinates of the center and the length of the radius of the circle represented by the equation $x^{2}+y^{2}-4 x+8 y+11=0$?

1) center $(2,-4)$ and radius 3
2) center $(-2,4)$ and radius 3
3) center $(2,-4)$ and radius 9
4) center $(-2,4)$ and radius 9

451 In parallelogram $Q R S T$ shown below, diagonal $\overline{T R}$ is drawn, U and V are points on $\overline{T S}$ and $\overline{Q R}$, respectively, and $\overline{U V}$ intersects $\overline{T R}$ at W.

If $\mathrm{m} \angle S=60^{\circ}, \mathrm{m} \angle S R T=83^{\circ}$, and $\mathrm{m} \angle T W U=35^{\circ}$, what is $\mathrm{m} \angle W V Q$?

1) 37°
2) 60°
3) 72°
4) 83°

453 Which object is formed when right triangle RST shown below is rotated around leg $\overline{R S}$?

1) a pyramid with a square base
2) an isosceles triangle
3) a right triangle
4) a cone

454 Quadrilateral $A B C D$ has diagonals $\overline{A C}$ and $\overline{B D}$. Which information is not sufficient to prove $A B C D$ is a parallelogram?

1) $\overline{A C}$ and $\overline{B D}$ bisect each other.
2) $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \cong \overline{A D}$
3) $\overline{A B} \cong \overline{C D}$ and $\overline{A B} \| \overline{C D}$
4) $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \| \overline{A D}$

455 As shown in the diagram below, the angle of elevation from a point on the ground to the top of the tree is 34°.

If the point is 20 feet from the base of the tree, what is the height of the tree, to the nearest tenth of a foot?

1) 29.7
2) 16.6
3) 13.5
4) 11.2

Geometry Multiple Choice Regents Exam Questions www.jmap.org

456 A student has a rectangular postcard that he folds in half lengthwise. Next, he rotates it continuously about the folded edge. Which three-dimensional object below is generated by this rotation?
1)

2)

4)

457 The line $3 y=-2 x+8$ is transformed by a dilation centered at the origin. Which linear equation could be its image?

1) $2 x+3 y=5$
2) $2 x-3 y=5$
3) $3 x+2 y=5$
4) $3 x-2 y=5$

458 The image of $\triangle A B C$ after a dilation of scale factor k centered at point A is $\triangle A D E$, as shown in the diagram below.

Which statement is always true?

1) $2 A B=A D$
2) $A C=C E$
3) $\overline{B C} \| \overline{D E}$

459 Point P is on the directed line segment from point $X(-6,-2)$ to point $Y(6,7)$ and divides the segment in the ratio 1:5. What are the coordinates of point P ?

1) $\left(4,5 \frac{1}{2}\right)$
2) $\left(-\frac{1}{2},-4\right)$
3) $\left(-4 \frac{1}{2}, 0\right)$
4) $\left(-4,-\frac{1}{2}\right)$

460 The coordinates of vertices A and B of $\triangle A B C$ are $A(3,4)$ and $B(3,12)$. If the area of $\triangle A B C$ is 24 square units, what could be the coordinates of point C ?

1) $(3,6)$
2) $(8,-3)$
3) $(-3,8)$
4) $(6,3)$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

461 In the diagram below, $\triangle E R M \sim \triangle J T M$.

Which statement is always true?

1) $\cos J=\frac{R M}{R E}$
2) $\cos R=\frac{J M}{J T}$
3) $\tan T=\frac{R M}{E M}$
4) $\tan E=\frac{T M}{J M}$

462 In the diagram below, congruent figures 1,2 , and 3 are drawn.

Which sequence of transformations maps figure 1 onto figure 2 and then figure 2 onto figure 3?

1) a reflection followed by a translation
2) a rotation followed by a translation
3) a translation followed by a reflection
4) a translation followed by a rotation

463 A regular pentagon is shown in the diagram below.

If the pentagon is rotated clockwise around its center, the minimum number of degrees it must be rotated to carry the pentagon onto itself is

1) 54°
2) 72°
3) 108°
4) 360°

464 In circle O, diameter $\overline{A B}$, chord $\overline{B C}$, and radius $\overline{O C}$ are drawn, and the measure of arc $B C$ is 108°.

Some students wrote these formulas to find the area of sector COB:

$$
\begin{array}{ll}
\text { Amy } & \frac{3}{10} \cdot \pi \cdot(B C)^{2} \\
\text { Beth } & \frac{108}{360} \cdot \pi \cdot(O C)^{2} \\
\text { Carl } & \frac{3}{10} \cdot \pi \cdot\left(\frac{1}{2} A B\right)^{2} \\
\text { Dex } & \frac{108}{360} \cdot \pi \cdot \frac{1}{2}(A B)^{2}
\end{array}
$$

Which students wrote correct formulas?

1) Amy and Dex
2) Beth and Carl
3) Carl and Amy
4) Dex and Beth

Geometry Multiple Choice Regents Exam Questions www.jmap.org

465 In the diagram below, $\triangle A B E$ is the image of $\triangle A C D$ after a dilation centered at the origin. The coordinates of the vertices are $A(0,0), B(3,0)$, $C(4.5,0), D(0,6)$, and $E(0,4)$.

The ratio of the lengths of $\overline{B E}$ to $\overline{C D}$ is

1) $\frac{2}{3}$
2) $\frac{3}{2}$
3) $\frac{3}{4}$
4) $\frac{4}{3}$

466 A shipping container is in the shape of a right rectangular prism with a length of 12 feet, a width of 8.5 feet, and a height of 4 feet. The container is completely filled with contents that weigh, on average, 0.25 pound per cubic foot. What is the weight, in pounds, of the contents in the container?

1) 1,632
2) 408
3) 102
4) 92

467 In parallelogram $A B C D$, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E. Which statement does not prove parallelogram $A B C D$ is a rhombus?

1) $\overline{A C} \cong \overline{D B}$
2) $\overline{A B} \cong \overline{B C}$
3) $\overline{A C} \perp \overline{D B}$
4) $\overline{A C}$ bisects $\angle D C B$

468 Line $y=3 x-1$ is transformed by a dilation with a scale factor of 2 and centered at $(3,8)$. The line's image is

1) $y=3 x-8$
2) $y=3 x-4$
3) $y=3 x-2$
4) $y=3 x-1$

469 In the diagram of circle A shown below, chords $\overline{C D}$ and $\overline{E F}$ intersect at G, and chords $\overline{C E}$ and $\overline{F D}$ are drawn.

Which statement is not always true?

1) $\overline{C G} \cong \overline{F G}$
2) $\angle C E G \cong \angle F D G$
3) $\frac{C E}{E G}=\frac{F D}{D G}$
4) $\triangle C E G \sim \triangle F D G$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

470 Line segment $E A$ is the perpendicular bisector of $\overline{Z T}$, and $\overline{Z E}$ and $\overline{T E}$ are drawn.

Which conclusion can not be proven?

1) $\overline{E A}$ bisects angle $Z E T$.
2) Triangle $E Z T$ is equilateral.
3) $\overline{E A}$ is a median of triangle $E Z T$.
4) Angle Z is congruent to angle T.

471 On the set of axes below, rectangle $A B C D$ can be proven congruent to rectangle KLMN using which transformation?

1) rotation
2) translation
3) reflection over the x-axis
4) reflection over the y-axis

472 In the diagram below, $\triangle A B C \sim \triangle D E C$.

If $A C=12, D C=7, D E=5$, and the perimeter of $\triangle A B C$ is 30 , what is the perimeter of $\triangle D E C$?

1) 12.5
2) 14.0
3) 14.8
4) 17.5

473 A small town is installing a water storage tank in the shape of a cylinder. The tank must be able to hold at least 100,000 gallons of water. The tank must have a height of exactly 30 feet. [1 cubic foot holds 7.48 gallons of water] What should the minimum diameter of the tank be, to the nearest foot?

1) 12
2) 24
3) 65
4) 75

474 The line $y=2 x-4$ is dilated by a scale factor of $\frac{3}{2}$ and centered at the origin. Which equation represents the image of the line after the dilation?

1) $y=2 x-4$
2) $y=2 x-6$
3) $y=3 x-4$
4) $y=3 x-6$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

475 If $x^{2}+4 x+y^{2}-6 y-12=0$ is the equation of a circle, the length of the radius is

1) 25
2) 16
3) 5
4) 4

476 In the diagram of $\triangle A D C$ below, $\overline{E B} \| \overline{D C}, A E=9$, $E D=5$, and $A B=9.2$.

What is the length of $\overline{A C}$, to the nearest tenth?

1) 5.1
2) 5.2
3) 14.3
4) 14.4

477 The vertices of $\triangle J K L$ have coordinates $J(5,1)$, $K(-2,-3)$, and $L(-4,1)$. Under which transformation is the image $\triangle J^{\prime} K^{\prime} L^{\prime}$ not congruent to $\triangle J K L$?

1) a translation of two units to the right and two units down
2) a counterclockwise rotation of 180 degrees around the origin
3) a reflection over the x-axis
4) a dilation with a scale factor of 2 and centered at the origin

478 In the diagram below, $\overleftrightarrow{F E}$ bisects $\overline{A C}$ at B, and $\overleftrightarrow{G E}$ bisects $\overline{B D}$ at C.

Which statement is always true?

1) $\overline{A B} \cong \overline{D C}$
2) $\overline{F B} \cong \overline{E B}$
3) $\overleftrightarrow{B D}$ bisects $\overline{G E}$ at C.
4) $\overleftrightarrow{A C}$ bisects $\overline{F E}$ at B.

479 The image of $\triangle A B C$ after a rotation of 90° clockwise about the origin is $\triangle D E F$, as shown below.

Which statement is true?

1) $\overline{B C} \cong \overline{D E}$
2) $\overline{A B} \cong \overline{D F}$
3) $\angle C \cong \angle E$
4) $\angle A \cong \angle D$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

480 Line segment $A^{\prime} B^{\prime}$, whose endpoints are $(4,-2)$ and $(16,14)$, is the image of $\overline{A B}$ after a dilation of $\frac{1}{2}$ centered at the origin. What is the length of $\overline{A B}$?

1) 5
2) 10
3) 20
4) 40

481 Quadrilateral $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}$ is shown in the diagram below.

Which information is not enough to prove $A B C D$ is a parallelogram?

1) $\overline{A B} \cong \overline{C D}$ and $\overline{A B} \| \overline{D C}$
2) $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \cong \overline{D A}$
3) $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \| \overline{A D}$
4) $\overline{A B} \| \overline{D C}$ and $\overline{B C} \| \overline{A D}$

482 Line segment $N Y$ has endpoints $N(-11,5)$ and $Y(5,-7)$. What is the equation of the perpendicular bisector of $\overline{N Y}$?

1) $y+1=\frac{4}{3}(x+3)$
2) $y+1=-\frac{3}{4}(x+3)$
3) $y-6=\frac{4}{3}(x-8)$
4) $y-6=-\frac{3}{4}(x-8)$

483 A hemispherical water tank has an inside diameter of 10 feet. If water has a density of 62.4 pounds per cubic foot, what is the weight of the water in a full tank, to the nearest pound?

1) 16,336
2) 32,673
3) 130,690
4) 261,381

484 In the diagram below, $\overline{C D}$ is the image of $\overline{A B}$ after a dilation of scale factor k with center E.

Which ratio is equal to the scale factor k of the dilation?

1) $\frac{E C}{E A}$
2) $\frac{B A}{E A}$
3) $\frac{E A}{B A}$
4) $\frac{E A}{E C}$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

485 The center of circle Q has coordinates (3,-2). If circle Q passes through $R(7,1)$, what is the length of its diameter?

1) 50
2) 25
3) 10
4) 5

486 William is drawing pictures of cross sections of the right circular cone below.

Which drawing can not be a cross section of a cone?

1) \square
2)

2)
3)

4)

487 The diagram shows rectangle $A B C D$, with diagonal $\overline{B D}$.

What is the perimeter of rectangle $A B C D$, to the nearest tenth?

1) 28.4
2) 32.8
3) 48.0
4) 62.4

488 Seawater contains approximately 1.2 ounces of salt per liter on average. How many gallons of seawater, to the nearest tenth of a gallon, would contain 1 pound of salt?

1) 3.3
2) 3.5
3) 4.7
4) 13.3

489 Which equation represents a line that is perpendicular to the line represented by $2 x-y=7$?

1) $y=-\frac{1}{2} x+6$
2) $y=\frac{1}{2} x+6$
3) $y=-2 x+6$
4) $y=2 x+6$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

490 Triangle RST is graphed on the set of axes below.

How many square units are in the area of $\triangle R S T$?

1) $9 \sqrt{3}+15$
2) $9 \sqrt{5}+15$
3) 45
4) 90

491 In circle M below, diameter $\overline{A C}$, chords $\overline{A B}$ and $\overline{B C}$, and radius $\overline{M B}$ are drawn.

Which statement is not true?

1) $\triangle A B C$ is a right triangle.
2) $\triangle A B M$ is isosceles.
3) $\mathrm{m} \overparen{B C}=\mathrm{m} \angle B M C$
4) $\mathrm{m} \overparen{A B}=\frac{1}{2} \mathrm{~m} \angle A C B$

492 Triangle $A B C$ and triangle $D E F$ are graphed on the set of axes below.

Which sequence of transformations maps triangle $A B C$ onto triangle $D E F$?

1) a reflection over the x-axis followed by a reflection over the y-axis
2) a 180° rotation about the origin followed by a reflection over the line $y=x$
3) a 90° clockwise rotation about the origin followed by a reflection over the y-axis
4) a translation 8 units to the right and 1 unit up followed by a 90° counterclockwise rotation about the origin

493 Which equation represents a line parallel to the line whose equation is $-2 x+3 y=-4$ and passes through the point $(1,3)$?

1) $y-3=-\frac{3}{2}(x-1)$
2) $y-3=\frac{2}{3}(x-1)$
3) $y+3=-\frac{3}{2}(x+1)$
4) $y+3=\frac{2}{3}(x+1)$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

494 Which sequence of transformations will map $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}$?

1) reflection and translation
2) rotation and reflection
3) translation and dilation
4) dilation and rotation

495 In the diagram below, the circle shown has radius 10. Angle B intercepts an arc with a length of 2π.

What is the measure of angle B, in radians?

1) $10+2 \pi$
2) 20π
3) $\frac{\pi}{5}$
4) $\frac{5}{\pi}$

496 The equation of line h is $2 x+y=1$. Line m is the image of line h after a dilation of scale factor 4 with respect to the origin. What is the equation of the line m ?

1) $y=-2 x+1$
2) $y=-2 x+4$
3) $y=2 x+4$
4) $y=2 x+1$

497 In the diagram of triangles $A B D$ and $C B E$ below, sides $\overline{A D}$ and $\overline{C E}$ intersect at F, and $\angle A D B \cong \angle C E B$.

Which statement can not be proven?

1) $\triangle A D B \cong \triangle C E B$
2) $\angle E A F \cong \angle D C F$
3) $\triangle A D B \sim \triangle C E B$
4) $\triangle E A F \sim \triangle D C F$

498 A man who is 5 feet 9 inches tall casts a shadow of 8 feet 6 inches. Assuming that the man is standing perpendicular to the ground, what is the angle of elevation from the end of the shadow to the top of the man's head, to the nearest tenth of a degree?

1) 34.1
2) 34.5
3) 42.6
4) 55.9

Geometry Multiple Choice Regents Exam Questions www.jmap.org

499 In triangle $C H R, O$ is on $\overline{H R}$, and D is on $\overline{C R}$ so that $\angle H \cong \angle R D O$.

If $R D=4, R O=6$, and $O H=4$, what is the length of $\overline{C D}$?

1) $2 \frac{2}{3}$
2) $6 \frac{2}{3}$
3) 11
4) 15

500 Which figure can have the same cross section as a sphere?
1)

2)
3)

4)

501 Which transformation of $\overline{O A}$ would result in an image parallel to $\overline{O A}$?

1) a translation of two units down
2) a reflection over the x-axis
3) a reflection over the y-axis
4) a clockwise rotation of 90° about the origin

502 Triangles $A B C$ and $D E F$ are drawn below.

If $A B=9, B C=15, D E=6, E F=10$, and $\angle B \cong \angle E$, which statement is true?

1) $\angle C A B \cong \angle D E F$
2) $\frac{A B}{C B}=\frac{F E}{D E}$
3) $\triangle A B C \sim \triangle D E F$
4) $\frac{A B}{D E}=\frac{F E}{C B}$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

503 In circle O shown below, diameter $\overline{A C}$ is perpendicular to $\overline{C D}$ at point C, and chords $\overline{A B}$, $\overline{B C}, \overline{A E}$, and $\overline{C E}$ are drawn.

Which statement is not always true?

1) $\angle A C B \cong \angle B C D$
2) $\angle A B C \cong \angle A C D$
3) $\angle B A C \cong \angle D C B$
4) $\angle C B A \cong \angle A E C$

504 A sequence of transformations maps rectangle $A B C D$ onto rectangle $A " B " C=D$ ", as shown in the diagram below.

Which sequence of transformations maps $A B C D$ onto $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ and then maps $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ onto A"B"C"D"?

1) a reflection followed by a rotation
2) a reflection followed by a translation
3) a translation followed by a rotation
4) a translation followed by a reflection

505 Linda is designing a circular piece of stained glass with a diameter of 7 inches. She is going to sketch a square inside the circular region. To the nearest tenth of an inch, the largest possible length of a side of the square is

1) 3.5
2) 4.9
3) 5.0
4) 6.9

506 A quadrilateral has vertices with coordinates $(-3,1),(0,3),(5,2)$, and $(-1,-2)$. Which type of quadrilateral is this?

1) rhombus
2) rectangle
3) square
4) trapezoid

507 A 20-foot support post leans against a wall, making a 70° angle with the ground. To the nearest tenth of a foot, how far up the wall will the support post reach?

1) 6.8
2) 6.9
3) 18.7
4) 18.8

508 Kevin's work for deriving the equation of a circle is shown below.

$$
\begin{array}{ll}
x^{2}+4 x=-\left(y^{2}-20\right) \\
\text { STEP } 1 & x^{2}+4 x=-y^{2}+20 \\
\text { STEP 2 } & x^{2}+4 x+4=-y^{2}+20-4 \\
\text { STEP 3 } & (x+2)^{2}=-y^{2}+20-4 \\
\text { STEP 4 } & (x+2)^{2}+y^{2}=16
\end{array}
$$

In which step did he make an error in his work?

1) Step 1
2) Step 2
3) $\operatorname{Step} 3$
4) $\operatorname{Step} 4$

509 The diagonals of rhombus TEAM intersect at $P(2,1)$. If the equation of the line that contains diagonal $\overline{T A}$ is $y=-x+3$, what is the equation of a line that contains diagonal $E M$?

1) $y=x-1$
2) $y=x-3$
3) $y=-x-1$
4) $y=-x-3$

510 The endpoints of one side of a regular pentagon are $(-1,4)$ and $(2,3)$. What is the perimeter of the pentagon?

1) $\sqrt{10}$
2) $5 \sqrt{10}$
3) $5 \sqrt{2}$
4) $25 \sqrt{2}$

511 A triangle is dilated by a scale factor of 3 with the center of dilation at the origin. Which statement is true?

1) The area of the image is nine times the area of the original triangle.
2) The perimeter of the image is nine times the perimeter of the original triangle.
3) The slope of any side of the image is three times the slope of the corresponding side of the original triangle.
4) The measure of each angle in the image is three times the measure of the corresponding angle of the original triangle.

Geometry 2 Point Regents Exam Questions www.jmap.org

Geometry 2 Point Regents Exam Questions

512 Sue believes that the two cylinders shown in the diagram below have equal volumes.

Is Sue correct? Explain why.

513 In right triangle $A B C$ shown below, altitude $\overline{C D}$ is drawn to hypotenuse $\overline{A B}$. Explain why $\triangle A B C \sim \triangle A C D$.

514 The diagram below shows a ramp connecting the ground to a loading platform 4.5 feet above the ground. The ramp measures 11.75 feet from the ground to the top of the loading platform.

Determine and state, to the nearest degree, the angle of elevation formed by the ramp and the ground.

515 On the set of axes below, congruent quadrilaterals $R O C K$ and $R^{\prime} O^{\prime} C^{\prime} K^{\prime}$ are graphed.

Describe a sequence of transformations that would map quadrilateral ROCK onto quadrilateral $R^{\prime} O^{\prime} C^{\prime} K^{\prime}$.

516 Segment CA is drawn below. Using a compass and straightedge, construct isosceles right triangle CAT where $\overline{C A} \perp \overline{C T}$ and $\overline{C A} \cong \overline{C T}$. [Leave all construction marks.]

517 Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of triangle $A B C$ after a dilation with a scale factor of $\frac{1}{2}$ and centered at point A. Is triangle $A B C$ congruent to triangle $A^{\prime} B^{\prime} C^{\prime}$? Explain your answer.

518 Given $\overline{M T}$ below, use a compass and straightedge to construct a 45° angle whose vertex is at point M. [Leave all construction marks.]

519 Using a compass and straightedge, construct a regular hexagon inscribed in circle O. [Leave all construction marks.]

520 Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of triangle $A B C$ after a translation of 2 units to the right and 3 units up. Is triangle $A B C$ congruent to triangle $A^{\prime} B^{\prime} C^{\prime}$? Explain why.

521 In the diagram below of right triangle $A C B$, altitude $\overline{C D}$ is drawn to hypotenuse $\overline{A B}, A D=2$ and $A C=6$.

Determine and state the length of $\overline{A B}$.

522 Skye says that the two triangles below are congruent. Margaret says that the two triangles are similar.

Are Skye and Margaret both correct? Explain why.

523 When volleyballs are purchased, they are not fully inflated. A partially inflated volleyball can be modeled by a sphere whose volume is approximately $180 \mathrm{in}^{3}$. After being fully inflated, its volume is approximately $294 \mathrm{in}^{3}$. To the nearest tenth of an inch, how much does the radius increase when the volleyball is fully inflated?

524 In the diagram below, circle O has a radius of 10 .

If $\mathrm{m} \overparen{A B}=72^{\circ}$, find the area of shaded sector $A O B$, in terms of π.

525 On the set of axes below, $\triangle A B C$ is graphed with coordinates $A(-2,-1), B(3,-1)$, and $C(-2,-4)$. Triangle $Q R S$, the image of $\triangle A B C$, is graphed with coordinates $Q(-5,2), R(-5,7)$, and $S(-8,2)$.

Describe a sequence of transformations that would map $\triangle A B C$ onto $\triangle Q R S$.

526 After a reflection over a line, $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$. Explain why triangle $A B C$ is congruent to triangle $\triangle A^{\prime} B^{\prime} C^{\prime}$.

527 Triangle $A B C$ and triangle $D E F$ are drawn below.

If $\overline{A B} \cong \overline{D E}, \overline{A C} \cong \overline{D F}$, and $\angle A \cong \angle D$, write a sequence of transformations that maps triangle $A B C$ onto triangle $D E F$.

528 In the diagram below, triangles $X Y Z$ and $U V Z$ are drawn such that $\angle X \cong \angle U$ and $\angle X Z Y \cong \angle U Z V$.

Describe a sequence of similarity transformations that shows $\triangle X Y Z$ is similar to $\triangle U V Z$.

529 Line ℓ is mapped onto line m by a dilation centered at the origin with a scale factor of 2 . The equation of line ℓ is $3 x-y=4$. Determine and state an equation for line m.

530 Triangle $A B C$ is graphed on the set of axes below. Graph and label $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a reflection over the line $x=1$.

531 On the set of axes below, $\triangle D E F$ has vertices at the coordinates $D(1,-1), E(3,4)$, and $F(4,2)$, and point G has coordinates $(3,1)$. Owen claims the median from point E must pass through point G. Is Owen correct? Explain why.

532 Using a compass and straightedge, dilate triangle $A B C$ by a scale factor of 2 centered at C. [Leave all construction marks.]

533 Lines $A E$ and $B D$ are tangent to circles O and P at A, E, B, and D, as shown in the diagram below. If $A C: C E=5: 3$, and $B D=56$, determine and state the length of $\overline{C D}$.

534 A man is spray-painting the tops of 10 patio tables. Five tables have round tops, with diameters of 4 feet, and five tables have rectangular tops, with dimensions of 4 feet by 6 feet. A can of spray paint covers 25 square feet. How many cans of spray paint must be purchased to paint all of the tabletops?

535 In the diagram below, a right circular cone has a diameter of 10 and a slant height of 13 .

Determine and state the volume of the cone, in terms of π.

536 Triangle MNP is the image of triangle $J K L$ after a 120° counterclockwise rotation about point Q. If the measure of angle L is 47° and the measure of angle N is 57°, determine the measure of angle M. Explain how you arrived at your answer.

A large water basin is in the shape of a right cylinder. The inside of the basin has a diameter of $8 \frac{1}{4}$ feet and a height of 3 feet. Determine and state, to the nearest cubic foot, the number of cubic feet of water that it will take to fill the basin to a level of $\frac{1}{2}$ foot from the top.

538 As shown in the diagram below, a symmetrical roof frame rises 4 feet above a house and has a width of 24 feet.

Determine and state, to the nearest degree, the angle of elevation of the roof frame.

539 Randy's basketball is in the shape of a sphere with a maximum circumference of 29.5 inches.
Determine and state the volume of the basketball, to the nearest cubic inch.

540 The volume of a triangular prism is $70 \mathrm{in}^{3}$. The base of the prism is a right triangle with one leg whose measure is 5 inches. If the height of the prism is 4 inches, determine and state the length, in inches, of the other leg of the triangle.

541 In the diagram below of right triangle $B A L$, altitude $\overline{A D}$ is drawn to hypotenuse $\overline{B D L}$. The length of $\overline{A D}$ is 6 .

If the length of $\overline{D L}$ is four times the length of $\overline{B D}$, determine and state the length of $\overline{B D}$.

542 Triangle $R S T$ has vertices with coordinates $R(-3,-2), S(3,2)$ and $T(4,-4)$. Determine and state an equation of the line parallel to $\overline{R T}$ that passes through point S. [The use of the set of axes below is optional.]

543 When instructed to find the length of $\overline{H J}$ in right triangle $H J G$, Alex wrote the equation $\sin 28^{\circ}=\frac{H J}{20}$ while Marlene wrote $\cos 62^{\circ}=\frac{H J}{20}$. Are both students’ equations correct? Explain why.

544 The endpoints of $\overline{D E F}$ are $D(1,4)$ and $F(16,14)$. Determine and state the coordinates of point E, if $D E: E F=2: 3$.

545 A carpenter leans an extension ladder against a house to reach the bottom of a window 30 feet above the ground. As shown in the diagram below, the ladder makes a 70° angle with the ground. To the nearest foot, determine and state the length of the ladder.

546 In $\triangle C E D$ as shown below, points A and B are located on sides $\overline{C E}$ and $\overline{E D}$, respectively. Line segment $A B$ is drawn such that $A E=3.75, A C=5$, $E B=4.5$, and $B D=6$.

Explain why $\overline{A B}$ is parallel to $\overline{C D}$.

547 A regular hexagon is rotated in a counterclockwise direction about its center. Determine and state the minimum number of degrees in the rotation such that the hexagon will coincide with itself.

Geometry 2 Point Regents Exam Questions

www.jmap.org
548 A wooden cube has an edge length of 6 centimeters and a mass of 137.8 grams. Determine the density of the cube, to the nearest thousandth. State which type of wood the cube is made of, using the density table below.

Type of Wood	Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
Pine	0.373
Hemlock	0.431
Elm	0.554
Birch	0.601
Ash	0.638
Maple	0.676
Oak	0.711

549 Quadrilateral MATH and its image M "A"T"H" are graphed on the set of axes below.

Describe a sequence of transformations that maps quadrilateral MATH onto quadrilateral M "A" $T^{\prime \prime} H$ ".

550
Point P is on segment $A B$ such that $A P: P B$ is $4: 5$. If A has coordinates $(4,2)$, and B has coordinates $(22,2)$, determine and state the coordinates of P.

551 As graphed on the set of axes below, $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a sequence of transformations.

Is $\triangle A^{\prime} B^{\prime} C^{\prime}$ congruent to $\triangle A B C$? Use the properties of rigid motion to explain your answer.

552 A flagpole casts a shadow 16.60 meters long. Tim stands at a distance of 12.45 meters from the base of the flagpole, such that the end of Tim's shadow meets the end of the flagpole's shadow. If Tim is 1.65 meters tall, determine and state the height of the flagpole to the nearest tenth of a meter.

553 Right triangle $S T R$ is shown below, with $\mathrm{m} \angle T=90^{\circ}$. Altitude $\overline{T Q}$ is drawn to $\overline{S Q R}$, and $T Q=8$.

If the ratio $S Q: Q R$ is $1: 4$, determine and state the length of $\overline{S R}$.

554 Given: Parallelogram $A B C D$ with diagonal $\overline{A C}$ drawn

Prove: $\triangle A B C \cong \triangle C D A$

555 A support wire reaches from the top of a pole to a clamp on the ground. The pole is perpendicular to the level ground and the clamp is 10 feet from the base of the pole. The support wire makes a 68° angle with the ground. Find the length of the support wire to the nearest foot.

556 Explain why $\cos (x)=\sin (90-x)$ for x such that $0<x<90$.

557 Given right triangles $A B C$ and $D E F$ where $\angle C$ and $\angle F$ are right angles, $\overline{A C} \cong \overline{D F}$ and $\overline{C B} \cong \overline{F E}$. Describe a precise sequence of rigid motions which would show $\triangle A B C \cong \triangle D E F$.

558 In the model below, a support wire for a telephone pole is attached to the pole and anchored to a stake in the ground 15 feet from the base of the telephone pole. Jamal places a 6 -foot wooden pole under the support wire parallel to the telephone pole, such that one end of the pole is on the ground and the top of the pole is touching the support wire. He measures the distance between the bottom of the pole and the stake in the ground.

Jamal says he can approximate how high the support wire attaches to the telephone pole by using similar triangles. Explain why the triangles are similar.

Geometry 2 Point Regents Exam Questions
www.jmap.org

559
In parallelogram $A B C D$ shown below, the bisectors of $\angle A B C$ and $\angle D C B$ meet at E, a point on $\overline{A D}$.

If $\mathrm{m} \angle A=68^{\circ}$, determine and state $\mathrm{m} \angle B E C$.

560 Line n is represented by the equation $3 x+4 y=20$. Determine and state the equation of line p, the image of line n, after a dilation of scale factor $\frac{1}{3}$ centered at the point $(4,2)$. [The use of the set of axes below is optional.] Explain your answer.

561 Ian needs to replace two concrete sections in his sidewalk, as modeled below. Each section is 36 inches by 36 inches and 4 inches deep. He can mix his own concrete for $\$ 3.25$ per cubic foot.

How much money will it cost Ian to replace the two concrete sections?

562 In the diagram of rhombus $P Q R S$ below, the diagonals $\overline{P R}$ and $\overline{Q S}$ intersect at point $T, P R=16$, and $Q S=30$. Determine and state the perimeter of PQRS.

563 A machinist creates a solid steel part for a wind turbine engine. The part has a volume of 1015 cubic centimeters. Steel can be purchased for $\$ 0.29$ per kilogram, and has a density of 7.95 $\mathrm{g} / \mathrm{cm}^{3}$. If the machinist makes 500 of these parts, what is the cost of the steel, to the nearest dollar?

564 Determine and state an equation of the line perpendicular to the line $5 x-4 y=10$ and passing through the point $(5,12)$.

565
Directed line segment $P T$ has endpoints whose coordinates are $P(-2,1)$ and $T(4,7)$. Determine the coordinates of point J that divides the segment in the ratio 2 to 1 . [The use of the set of axes below is optional.]

In $\triangle A B C$ below, use a compass and straightedge to construct the altitude from C to $\overline{A B}$. [Leave all construction marks.]

567 In the diagram below of isosceles triangle $A B C$, $\overline{A B} \cong \overline{C B}$ and angle bisectors $\overline{A D}, \overline{B F}$, and $\overline{C E}$ are drawn and intersect at X.

If $\mathrm{m} \angle B A C=50^{\circ}$, find $\mathrm{m} \angle A X C$.

568 In the diagram below, radius $\overline{O A}$ is drawn in circle O. Using a compass and a straightedge, construct a line tangent to circle O at point A. [Leave all construction marks.]

A flagpole casts a shadow on the ground 91 feet long, with a 53° angle of elevation from the end of the shadow to the top of the flagpole. Determine and state, to the nearest tenth of a foot, the height of the flagpole.

570
Determine and state the area of triangle $P Q R$, whose vertices have coordinates $P(-2,-5), Q(3,5)$, and $R(6,1)$. [The use of the set of axes below is optional.]

571 In right triangle $P R T, \mathrm{~m} \angle P=90^{\circ}$, altitude $\overline{P Q}$ is drawn to hypotenuse $\overline{R T}, R T=17$, and $P R=15$.

Determine and state, to the nearest tenth, the length of $\overline{R Q}$.

572 In the diagram below, tangent $\overline{D A}$ and secant $\overline{D B C}$ are drawn to circle O from external point D, such that $\overparen{A C} \cong \overparen{B C}$.

If $\mathrm{m} \overparen{B C}=152^{\circ}$, determine and state $\mathrm{m} \angle D$.

573 The diagram below shows two figures. Figure A is a right triangular prism and figure B is an oblique triangular prism. The base of figure A has a height of 5 and a length of 8 and the height of prism A is 14. The base of figure B has a height of 8 and a length of 5 and the height of prism B is 14 .

Figure A

Use Cavalieri's Principle to explain why the volumes of these two triangular prisms are equal.

574 Directed line segment $A B$ has endpoints whose coordinates are $A(-2,5)$ and $B(8,-1)$. Determine and state the coordinates of P, the point which divides the segment in the ratio $3: 2$. [The use of the set of axes below is optional.]

575 Parallelogram $A B C D$ is adjacent to rhombus $D E F G$, as shown below, and $\overline{F C}$ intersects $\overline{A G D}$ at H.

If $\mathrm{m} \angle B=118^{\circ}$ and $\mathrm{m} \angle A H C=138^{\circ}$, determine and state $\mathrm{m} \angle G F H$.

576 On the set of axes below, $\triangle D O G \cong \triangle C A T$.

Describe a sequence of transformations that maps $\triangle D O G$ onto $\triangle C A T$.

577 Using a compass and straightedge, construct an altitude of triangle $A B C$ below. [Leave all construction marks.]

578 The coordinates of the endpoints of $\overline{A B}$ are $A(2,3)$ and $B(5,-1)$. Determine the length of $\overline{A^{\prime} B^{\prime}}$, the image of $\overline{A B}$, after a dilation of $\frac{1}{2}$ centered at the origin. [The use of the set of axes below is optional.]

579 In circle A below, chord $\overline{B C}$ and diameter $\overline{D A E}$ intersect at F.

If $\mathrm{m} \overparen{C D}=46^{\circ}$ and $\mathrm{m} \overparen{D B}=102^{\circ}$, what is $\mathrm{m} \angle C F E$?

Geometry 2 Point Regents Exam Questions
www.jmap.org
582 A walking path at a local park is modeled on the grid below, where the length of each grid square is 10 feet. The town needs to submit paperwork to pave the walking path. Determine and state, to the nearest square foot, the area of the walking path.

In square $G E O M$, the coordinates of G are $(2,-2)$ and the coordinates of O are $(-4,2)$. Determine and state the coordinates of vertices E and M. [The use of the set of axes below is optional.]

584 In the diagram below, quadrilateral $A B C D$ is
inscribed in circle O, and
$\mathrm{m} \overparen{C D}: \mathrm{m} \overparen{D A}: \mathrm{m} \overparen{A B}: \mathrm{m} \overparen{B C}=2: 3: 5: 5$.

Determine and state $\mathrm{m} \angle B$.

585 Determine and state the coordinates of the center and the length of the radius of the circle whose equation is $x^{2}+y^{2}+6 x=6 y+63$.

586 Triangle $A B C$ with coordinates $A(-2,5), B(4,2)$, and $C(-8,-1)$ is graphed on the set of axes below.

Determine and state the area of $\triangle A B C$.

587 Two stacks of 23 quarters each are shown below. One stack forms a cylinder but the other stack does not form a cylinder.

Use Cavelieri's principle to explain why the volumes of these two stacks of quarters are equal.

Bob places an 18 -foot ladder 6 feet from the base of his house and leans it up against the side of his house. Find, to the nearest degree, the measure of the angle the bottom of the ladder makes with the ground.

589 On the set of axes below, congruent triangles $A B C$ and $D E F$ are graphed.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle D E F$.

590 In the diagram below, $\triangle A B C$ has coordinates $A(1,1), B(4,1)$, and $C(4,5)$. Graph and label $\triangle A " B " C$ ", the image of $\triangle A B C$ after the translation five units to the right and two units up followed by the reflection over the line $y=0$.

591 Triangle $A B C$ and point $D(1,2)$ are graphed on the set of axes below.

Graph and label $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$, after a dilation of scale factor 2 centered at point D.

592 In the diagram below of $\triangle A B C$ and $\triangle X Y Z$, a sequence of rigid motions maps $\angle A$ onto $\angle X$, $\angle C$ onto $\angle Z$, and $\overline{A C}$ onto $\overline{X Z}$.

Determine and state whether $\overline{B C} \cong \overline{Y Z}$. Explain why.

593 In triangle $C E M, C E=3 x+10, M E=5 x-14$, and $C M=2 x-6$. Determine and state the value of x that would make CEM an isosceles triangle with the vertex angle at E.

594 During an experiment, the same type of bacteria is grown in two petri dishes. Petri dish A has a diameter of 51 mm and has approximately 40,000 bacteria after 1 hour. Petri dish B has a diameter of 75 mm and has approximately 72,000 bacteria after 1 hour.

Determine and state which petri dish has the greater population density of bacteria at the end of the first hour.

595 In the diagram below, a window of a house is 15 feet above the ground. A ladder is placed against the house with its base at an angle of 75° with the ground. Determine and state the length of the ladder to the nearest tenth of a foot.

596 Determine and state the coordinates of the center and the length of the radius of the circle represented by the equation
$x^{2}+16 x+y^{2}+12 y-44=0$.

597 In isosceles triangle $A B C$ shown below, $\overline{A B} \cong \overline{A C}$, and altitude $\overline{A D}$ is drawn.

The length of $\overline{A D}$ is 12 cm and the length of $\overline{B C}$ is 10 cm . Determine and state, to the nearest cubic centimeter, the volume of the solid formed by continuously rotating $\triangle A B C$ about $\overline{A D}$.

598 In the diagram below, the circle has a radius of 25 inches. The area of the unshaded sector is 500π in 2.

Determine and state the degree measure of angle Q, the central angle of the shaded sector.

599 Given: Trapezoid JKLM with $\overline{J K} \| \overline{M L}$ Using a compass and straightedge, construct the altitude from vertex J to $\overline{M L}$. [Leave all construction marks.]

600 An airplane took off at a constant angle of elevation. After the plane traveled for 25 miles, it reached an altitude of 5 miles, as modeled below.

To the nearest tenth of a degree, what was the angle of elevation?

601 Using a compass and straightedge, construct a midsegment of $\triangle A H L$ below. [Leave all construction marks.]

602 Using a compass and straightedge, construct the median to side $\overline{A C}$ in $\triangle A B C$ below. [Leave all construction marks.]

603 Given points A, B, and C, use a compass and straightedge to construct point D so that $A B C D$ is a parallelogram. [Leave all construction marks.]

$$
{ }^{\circ} \mathrm{C}
$$

${ }^{\circ} \mathrm{A}$
${ }^{\bullet}$ B

604 In the diagram below, $\overline{G I}$ is parallel to $\overline{N T}$, and $\overline{I N}$ intersects $\overline{G T}$ at A.

Prove: $\triangle G I A \sim \triangle T N A$

605 A contractor needs to purchase 500 bricks. The dimensions of each brick are 5.1 cm by 10.2 cm by 20.3 cm , and the density of each brick is $1920 \mathrm{~kg} / \mathrm{m}^{3}$. The maximum capacity of the contractor's trailer is 900 kg . Can the trailer hold the weight of 500 bricks? Justify your answer.

606 In the diagram below of circle K, secant $\overline{P L K E}$ and tangent $\overline{P Z}$ are drawn from external point P.

If $m \overparen{L Z}=56^{\circ}$, determine and state the degree measure of angle P.

607 In the diagram below, secants $\overline{R S T}$ and $\overline{R Q P}$, drawn from point R, intersect circle O at S, T, Q, and P.

If $\underline{R S}=6, S T=4$, and $R P=15$, what is the length of $\overline{R Q}$?

608 Quadrilaterals BIKE and GOLF are graphed on the set of axes below.

Describe a sequence of transformations that maps quadrilateral BIKE onto quadrilateral GOLF.

609 In the diagram below, $\triangle A B C$ and $\triangle X Y Z$ are graphed.

Use the properties of rigid motions to explain why $\triangle A B C \cong \triangle X Y Z$.

610 Find the value of R that will make the equation $\sin 73^{\circ}=\cos R$ true when $0^{\circ}<R<90^{\circ}$. Explain your answer.

611 A rock-climbing wall at a local park has a right triangular section that slants toward the climber, as shown in the picture below. The height of the wall is 5 meters and the slanted section begins 1.2 meters up the wall at an angle of 14 degrees.

Determine and state, to the nearest hundredth, the number of meters in the length of the section of the wall that is slanted (hypotenuse).

612 A circle has a radius of 6.4 inches. Determine and state, to the nearest square inch, the area of a sector whose arc measures 80°.

Geometry 2 Point Regents Exam Questions

www.jmap.org

613 Diego needs to install a support beam to hold up his new birdhouse, as modeled below. The base of the birdhouse is $24 \frac{1}{2}$ inches long. The support beam will form an angle of 38° with the vertical post. Determine and state the approximate length of the support beam, x, to the nearest inch.

614 Triangles RST and $X Y Z$ are drawn below. If $R S=6, S T=14, X Y=9, Y Z=21$, and $\angle S \cong \angle Y$, is $\triangle R S T$ similar to $\triangle X Y Z$? Justify your answer.

615 A circle has a center at $(1,-2)$ and radius of 4. Does the point $(3.4,1.2)$ lie on the circle? Justify your answer.

616 Write an equation of the line that is parallel to the line whose equation is $3 y+7=2 x$ and passes through the point $(2,6)$.

617 The graph below shows $\triangle A B C$ and its image, $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.

Describe a sequence of rigid motions which would map $\triangle A B C$ onto $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.

618 In parallelogram $A B C D$ shown below, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E.

Prove: $\angle A C D \cong \angle C A B$

619 Use a compass and straightedge to construct a line parallel to $\overleftrightarrow{A B}$ through point C, shown below. [Leave all construction marks.]

620 In right triangle $M T H$ shown below, $\mathrm{m} \angle H=90^{\circ}$, $H T=8$, and $H M=5$.

Determine and state, to the nearest tenth, the volume of the three-dimensional solid formed by rotating $\triangle M T H$ continuously around $\overline{M H}$.

621 Determine and state the coordinates of the center and the length of the radius of a circle whose equation is $x^{2}+y^{2}-6 x=56-8 y$.

622 The diagram below shows parallelogram LMNO with diagonal $\overline{L N}, \mathrm{~m} \angle M=118^{\circ}$, and $\mathrm{m} \angle L N O=22^{\circ}$.

Explain why $\mathrm{m} \angle N L O$ is 40 degrees.

623 In $\triangle A B C, A B=5, A C=12$, and $\mathrm{m} \angle A=90^{\circ}$. In $\triangle D E F, \mathrm{~m} \angle D=90^{\circ}, D F=12$, and $E F=13$. Brett claims $\triangle A B C \cong \triangle D E F$ and $\triangle A B C \sim \triangle D E F$. Is Brett correct? Explain why.

Geometry 2 Point Regents Exam Questions www.jmap.org

624 As shown in the diagram below, secants $\overrightarrow{P W R}$ and $\overrightarrow{P T S}$ are drawn to circle O from external point P.

If $\mathrm{m} \angle R P S=35^{\circ}$ and $\mathrm{m} \overparen{R S}=121^{\circ}$, determine and state mWT .

625 Describe a sequence of transformations that will map $\triangle A B C$ onto $\triangle D E F$ as shown below.

626 Construct an equilateral triangle inscribed in circle T shown below. [Leave all construction marks.]

627 In the diagram below of circle O, secant $\overline{A B C}$ and tangent $\overline{A D}$ are drawn.

If $C A=12.5$ and $C B=4.5$, determine and state the length of $\overline{D A}$.

628 Using a compass and straightedge, construct the angle bisector of $\angle A B C$. [Leave all construction marks.]

Geometry 2 Point Regents Exam Questions www.jmap.org

629 On the set of axes below, $\triangle A B C \cong \triangle D E F$.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle D E F$.

630 Given circle O with radius $\overline{O A}$, use a compass and straightedge to construct an equilateral triangle inscribed in circle O. [Leave all construction marks.]

631 Given: Right triangle $A B C$ with right angle at C. If $\sin A$ increases, does $\cos B$ increase or decrease? Explain why.

632 Trapezoids $A B C D$ and A " B " C " D " are graphed on the set of axes below.

Describe a sequence of transformations that maps trapezoid $A B C D$ onto trapezoid $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$.

633 The diagram below models the projection of light from a lighthouse, L. The sector has a radius of 38 miles and spans 102°.

Determine and state the area of the sector, to the nearest square mile.

634 In the diagram below, right triangle $P Q R$ is transformed by a sequence of rigid motions that maps it onto right triangle NML.

Write a set of three congruency statements that would show ASA congruency for these triangles.

635 The vertices of $\triangle A B C$ have coordinates $A(-2,-1)$, $B(10,-1)$, and $C(4,4)$. Determine and state the area of $\triangle A B C$. [The use of the set of axes below is optional.]

636
Determine and state, in terms of π, the area of a sector that intercepts a 40° arc of a circle with a radius of 4.5.

637 In right triangle $A B C$ with the right angle at C, $\sin A=2 x+0.1$ and $\cos B=4 x-0.7$. Determine and state the value of x. Explain your answer.

638 To find the distance across a pond from point B to point C, a surveyor drew the diagram below. The measurements he made are indicated on his diagram.

Use the surveyor's information to determine and state the distance from point B to point C, to the nearest yard.

639 Using a compass and straightedge, construct the line of reflection over which triangle $R S T$ reflects onto triangle $R^{\prime} S^{\prime} T^{\prime}$. [Leave all construction marks.]

640 Line $A B$ is dilated by a scale factor of 2 centered at point A.

Evan thinks that the dilation of $\overline{A B}$ will result in a line parallel to $\overline{A B}$, not passing through points A or B. Nathan thinks that the dilation of $\overline{A B}$ will result in the same line, $\overline{A B}$. Who is correct? Explain why.

641 Izzy is making homemade clay pendants in the shape of a solid hemisphere, as modeled below. Each pendant has a radius of 2.8 cm .

How much clay, to the nearest cubic centimeter, does Izzy need to make 100 pendants?

642 In parallelogram $A B C D$ shown below, $\mathrm{m} \angle D A C=98^{\circ}$ and $\mathrm{m} \angle A C D=36^{\circ}$.

What is the measure of angle B ? Explain why.

643 In the diagram below, Circle 1 has radius 4, while Circle 2 has radius 6.5. Angle A intercepts an arc of length π, and angle B intercepts an arc of length $\frac{13 \pi}{8}$.

Dominic thinks that angles A and B have the same radian measure. State whether Dominic is correct or not. Explain why.

644 Trapezoid $A B C D$, where $\overline{A B} \| \overline{C D}$, is shown below. Diagonals $\overline{A C}$ and $\overline{D B}$ intersect $\overline{M N}$ at E, and $\overline{A D} \cong \overline{A E}$.

If $\mathrm{m} \angle D A E=35^{\circ}, \mathrm{m} \angle D C E=25^{\circ}$, and $\mathrm{m} \angle N E C=30^{\circ}$, determine and state $\mathrm{m} \angle A B D$.

645 The Leaning Tower of Pisa in Italy is known for its slant, which occurred after its construction began. The angle of the slant is 86.03° from the ground. The low side of the tower reaches a height of 183.27 feet from the ground.

Determine and state the slant height, x, of the low side of the tower, to the nearest hundredth of a foot.

646 On the set of axes below, $\triangle A B C \cong \triangle S T U$.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle S T U$.

647 In the diagram below, parallelogram EFGH is mapped onto parallelogram IJKH after a reflection over line ℓ.

Use the properties of rigid motions to explain why parallelogram $E F G H$ is congruent to parallelogram IJKH.

648 Triangles $A B C$ and $D E F$ are graphed on the set of axes below.

Describe a sequence of transformations that maps $\triangle A B C$ onto $\triangle D E F$.

649 The coordinates of the endpoints of $\overline{A B}$ are $A(-6,-5)$ and $B(4,0)$. Point P is on $\overline{A B}$. Determine and state the coordinates of point P, such that $A P: P B$ is $2: 3$. [The use of the set of axes below is optional.]

In the diagram of $\triangle A B C$ shown below, use a compass and straightedge to construct the median to $\overline{A B}$. [Leave all construction marks.]

651 Using the construction below, state the degree measure of $\angle C A D$. Explain why.

652 In the diagram below of circle O, the area of the shaded sector $A O C$ is 12π in 2 and the length of $\overline{O A}$ is 6 inches. Determine and state $\mathrm{m} \angle A O C$.

653 A ladder leans against a building. The top of the ladder touches the building 10 feet above the ground. The foot of the ladder is 4 feet from the building. Find, to the nearest degree, the angle that the ladder makes with the level ground.

654 In isosceles $\triangle M N P$, line segment $N O$ bisects vertex $\angle M N P$, as shown below. If $M P=16$, find the length of $\overline{M O}$ and explain your answer.

655 In $\triangle X Y Z$, shown below, medians $\overline{X E}, \overline{Y F}$, and $\overline{Z D}$ intersect at C.

If $C E=5, Y F=21$, and $X Z=15$, determine and state the perimeter of triangle CFX.

656
In the diagram below, $\triangle S B C \sim \triangle C M J$ and $\cos J=\frac{3}{5}$.

Determine and state $\mathrm{m} \angle S$, to the nearest degree.

657 In the diagram below of circle O, the measure of inscribed angle $A B C$ is 36° and the length of $\overline{O A}$ is 4 inches.

Determine and state, to the nearest tenth of a square inch, the area of the shaded sector.

658 In the circle below, $\overline{A B}$ is a chord. Using a compass and straightedge, construct a diameter of the circle. [Leave all construction marks.]

659 A rectangular tabletop will be made of maple wood that weighs 43 pounds per cubic foot. The tabletop will have a length of eight feet, a width of three feet, and a thickness of one inch. Determine and state the weight of the tabletop, in pounds.

660 As shown in the diagram below, circle A has a radius of 3 and circle B has a radius of 5 .

Use transformations to explain why circles A and B are similar.

661 The diagram below shows circle O with diameter $\overline{A B}$. Using a compass and straightedge, construct a square that is inscribed in circle O. [Leave all construction marks.]

662 In the diagram below of circle O with diameter $\overline{B C}$ and radius $\overline{O A}$, chord $\overline{D C}$ is parallel to chord $\overline{B A}$.

If $\mathrm{m} \angle B C D=30^{\circ}$, determine and state $\mathrm{m} \angle A O B$.

663 In the graph below, $\triangle A B C$ has coordinates $A(-9,2), B(-6,-6)$, and $C(-3,-2)$, and $\triangle R S T$ has coordinates $R(-2,9), S(5,6)$, and $T(2,3)$.

Is $\triangle A B C$ congruent to $\triangle R S T$? Use the properties of rigid motions to explain your reasoning.

664 Line segment $P Q$ has endpoints $P(-5,1)$ and $Q(5,6)$, and point R is on $\overline{P Q}$. Determine and state the coordinates of R, such that $P R: R Q=2: 3$. [The use of the set of axes below is optional.]

665 In $\triangle A D C$ below, $\overline{E B}$ is drawn such that $A B=4.1$, $A E=5.6, B C=8.22$, and $E D=3.42$.

Is $\triangle A B E$ similar to $\triangle A D C$? Explain why.

666 On the set of axes below, $\triangle A B C$ and $\triangle D E F$ are graphed.

Describe a sequence of rigid motions that would map $\triangle A B C$ onto $\triangle D E F$.

667 A large snowman is made of three spherical snowballs with radii of 1 foot, 2 feet, and 3 feet, respectively. Determine and state the amount of snow, in cubic feet, that is used to make the snowman. [Leave your answer in terms of π.]

Geometry 4 Point Regents Exam Questions

668 A triangle has vertices $A(-2,4), B(6,2)$, and $C(1,-1)$. Prove that $\triangle A B C$ is an isosceles right triangle. [The use of the set of axes below is optional.]

669 In the diagram below, $\overline{A C} \cong \overline{D F}$ and points A, C, D, and F are collinear on line ℓ.

Let $\triangle D^{\prime} E^{\prime} F^{\prime}$ be the image of $\triangle D E F$ after a translation along ℓ, such that point D is mapped onto point A. Determine and state the location of F^{\prime}. Explain your answer. Let $\triangle D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}$ be the image of $\triangle D^{\prime} E^{\prime} F^{\prime}$ after a reflection across line ℓ. Suppose that $E^{\prime \prime}$ is located at B. Is $\triangle D E F$ congruent to $\triangle A B C$? Explain your answer.

670 A packing box for baseballs is the shape of a rectangular prism with dimensions of $2 \mathrm{ft} \times 1 \mathrm{ft} \times 18 \mathrm{in}$. Each baseball has a diameter of 2.94 inches.

Determine and state the maximum number of baseballs that can be packed in the box if they are stacked in layers and each layer contains an equal number of baseballs. The weight of a baseball is approximately 0.025 pound per cubic inch.
Determine and state, to the nearest pound, the total weight of all the baseballs in the fully packed box.

671 As shown in the diagram below, a ship is heading directly toward a lighthouse whose beacon is 125 feet above sea level. At the first sighting, point A, the angle of elevation from the ship to the light was 7°. A short time later, at point D, the angle of elevation was 16°.

To the nearest foot, determine and state how far the ship traveled from point A to point D.
www.jmap.org
672 A concrete footing is a cylinder that is placed in the ground to support a building structure. The cylinder is 4 feet tall and 12 inches in diameter. A contractor is installing 10 footings.

If a bag of concrete mix makes $\frac{2}{3}$ of a cubic foot of concrete, determine and state the minimum number of bags of concrete mix needed to make all 10 footings.

673 Triangle $A B C$ has vertices with coordinates $A(-1,-1), B(4,0)$, and $C(0,4)$. Prove that $\triangle A B C$ is an isosceles triangle but not an equilateral triangle. [The use of the set of axes below is optional.]

674 Trees that are cut down and stripped of their branches for timber are approximately cylindrical. A timber company specializes in a certain type of tree that has a typical diameter of 50 cm and a typical height of about 10 meters. The density of the wood is 380 kilograms per cubic meter, and the wood can be sold by mass at a rate of $\$ 4.75$ per kilogram. Determine and state the minimum number of whole trees that must be sold to raise at least $\$ 50,000$.

675 A barrel of fuel oil is a right circular cylinder where the inside measurements of the barrel are a diameter of 22.5 inches and a height of 33.5 inches. There are 231 cubic inches in a liquid gallon. Determine and state, to the nearest tenth, the gallons of fuel that are in a barrel of fuel oil.

676 Given: $\triangle A E B$ and $\triangle D F C, \overline{A B C D}, \overline{A E} \| \overline{D F}$, $\overline{E B} \| \overline{F C}, \overline{A C} \cong \overline{D B}$

Prove: $\triangle E A B \cong \triangle F D C$

677 Barry wants to find the height of a tree that is modeled in the diagram below, where $\angle C$ is a right angle. The angle of elevation from point A on the ground to the top of the tree, H, is 40°. The angle of elevation from point B on the ground to the top of the tree, H, is 80°. The distance between points A and B is 85 feet.

Barry claims that $\triangle A B H$ is isosceles. Explain why Barry is correct. Determine and state, to the nearest foot, the height of the tree.

678 Josh is making a square-based fire pit out of concrete for his backyard, as modeled by the right prism below. He plans to make the outside walls of the fire pit 3.5 feet on each side with a height of 1.5 feet. The concrete walls of the fire pit are going to be 9 inches thick.

If a bag of concrete mix will fill $0.6 \mathrm{ft}^{3}$, determine and state the minimum number of bags needed to build the fire pit.

679 Using a compass and straightedge, construct a regular hexagon inscribed in circle O below. Label it $A B C D E F$. [Leave all construction marks.]

If chords $\overline{F B}$ and $\overline{F C}$ are drawn, which type of triangle, according to its angles, would $\triangle F B C$ be? Explain your answer.

680 As shown in the diagram below, an island (I) is due north of a marina (M). A boat house (H) is 4.5 miles due west of the marina. From the boat house, the island is located at an angle of 54° from the marina.

Determine and state, to the nearest tenth of a mile, the distance from the boat house (H) to the island (I). Determine and state, to the nearest tenth of a mile, the distance from the island (I) to the marina (M).

681 A storage tank is in the shape of a cylinder with a hemisphere on the top. The highest point on the inside of the storage tank is 13 meters above the floor of the storage tank, and the diameter inside the cylinder is 8 meters. Determine and state, to the nearest cubic meter, the total volume inside the storage tank.

682 Cape Canaveral, Florida is where NASA launches rockets into space. As modeled in the diagram below, a person views the launch of a rocket from observation area $A, 3280$ feet away from launch pad B. After launch, the rocket was sighted at C with an angle of elevation of 15°. The rocket was later sighted at D with an angle of elevation of 31°.

Determine and state, to the nearest foot, the distance the rocket traveled between the two sightings, C and D.

683 Keira has a square poster that she is framing and placing on her wall. The poster has a diagonal 58 cm long and fits exactly inside the frame. The width of the frame around the picture is 4 cm .

Determine and state the total area of the poster and frame to the nearest tenth of a square centimeter.

684 The grid below shows $\triangle A B C$ and $\triangle D E F$.

Let $\triangle A^{\prime} B^{\prime} C^{\prime}$ be the image of $\triangle A B C$ after a rotation about point A. Determine and state the location of B^{\prime} if the location of point C^{\prime} is $(8,-3)$. Explain your answer. Is $\triangle D E F$ congruent to $\triangle A^{\prime} B^{\prime} C^{\prime}$? Explain your answer.

685 A candle in the shape of a right pyramid is modeled below. Each side of the square base measures 12 centimeters. The slant height of the pyramid measures 16 centimeters.

Determine and state the volume of the candle, to the nearest cubic centimeter. The wax used to make the candle weighs 0.032 ounce per cubic centimeter. Determine and state the weight of the candle, to the nearest ounce.

686 As modeled below, a movie is projected onto a large outdoor screen. The bottom of the 60 -foot-tall screen is 12 feet off the ground. The projector sits on the ground at a horizontal distance of 75 feet from the screen.

Determine and state, to the nearest tenth of a degree, the measure of θ, the projection angle.

687 Triangle $A B C$ has vertices with $A(x, 3), B(-3,-1)$, and $C(-1,-4)$. Determine and state a value of x that would make triangle $A B C$ a right triangle. Justify why $\triangle A B C$ is a right triangle. [The use of the set of axes below is optional.]

688 A homeowner is building three steps leading to a deck, as modeled by the diagram below. All three step rises, $\overline{H A}, \overline{F G}$, and $\overline{D E}$, are congruent, and all three step runs, $\overline{H G}, \overline{F E}$, and $\overline{D C}$, are congruent. Each step rise is perpendicular to the step run it joins. The measure of $\angle C A B=36^{\circ}$ and $\angle C B A=90^{\circ}$.

If each step run is parallel to $\overline{A B}$ and has a length of 10 inches, determine and state the length of each step rise, to the nearest tenth of an inch. Determine and state the length of $\overline{A C}$, to the nearest inch.

689 Given: Parallelogram $A B C D, \overline{E F G}$, and diagonal $\overline{D F B}$

Prove: $\triangle D E F \sim \triangle B G F$

690 A manufacturer is designing a new container for their chocolate-covered almonds. Their original container was a cylinder with a height of 18 cm and a diameter of 14 cm . The new container can be modeled by a rectangular prism with a square base and will contain the same amount of chocolate-covered almonds.

If the new container's height is 16 cm , determine and state, to the nearest tenth of a centimeter, the side length of the new container if both containers contain the same amount of almonds. A store owner who sells the chocolate-covered almonds displays them on a shelf whose dimensions are 80 cm long and 60 cm wide. The shelf can only hold one layer of new containers when each new container sits on its square base. Determine and state the maximum number of new containers the store owner can fit on the shelf.

691 Theresa has a rectangular pool 30 ft long, 15 ft wide, and 4 ft deep. Theresa fills her pool using city water at a rate of $\$ 3.95$ per 100 gallons of water. Nancy has a circular pool with a diameter of 24 ft and a depth of 4 ft . Nancy fills her pool with a water delivery service at a rate of $\$ 200$ per 6000 gallons. If Theresa and Nancy both fill their pools 6 inches from the top of the pool, determine and state who paid more to fill her pool.
[$1 \mathrm{ft}^{3}$ water $=7.48$ gallons]

692 A telephone pole 11 meters tall needs to be stabilized with a support beam, as modeled below.

Two conditions for proper support are:

- The beam reaches the telephone pole at 70% of the telephone pole's height above the ground.
- The beam forms a 65° angle with the ground.
Determine and state, to the nearest tenth of a meter, the length of the support beam that meets these conditions for this telephone pole. Determine and state, to the nearest tenth of a meter, how far the support beam must be placed from the base of the pole to meet the conditions.

693 Given: Quadrilateral $A B C D$ is a parallelogram with diagonals $\overline{A C}$ and $\overline{B D}$ intersecting at E

Prove: $\triangle A E D \cong \triangle C E B$
Describe a single rigid motion that maps $\triangle A E D$ onto $\triangle C E B$.

694 Quadrilateral NATS has coordinates $N(-4,-3)$, $A(1,2), T(8,1)$, and $S(3,-4)$. Prove quadrilateral NATS is a rhombus. [The use of the set of axes below is optional.]

695 A gas station has a cylindrical fueling tank that holds the gasoline for its pumps, as modeled below. The tank holds a maximum of 20,000 gallons of gasoline and has a length of 34.5 feet.

A metal pole is used to measure how much gas is in the tank. To the nearest tenth of a foot, how long does the pole need to be in order to reach the bottom of the tank and still extend one foot outside the tank? Justify your answer. [$1 \mathrm{ft}^{3}=7.48$ gallons]

Geometry 4 Point Regents Exam Questions www.jmap.org

696 In rhombus MATH, the coordinates of the endpoints of the diagonal $\overline{M T}$ are $M(0,-1)$ and $T(4,6)$. Write an equation of the line that contains diagonal $\overline{A H}$. [Use of the set of axes below is optional.] Using the given information, explain how you know that your line contains diagonal $\overline{A H}$.

697 In the diagram of $\triangle L A C$ and $\triangle D N C$ below, $\overline{L A} \cong \overline{D N}, \overline{C A} \cong \overline{C N}$, and $\overline{D A C} \perp \overline{L C N}$.

a) Prove that $\triangle L A C \cong \triangle D N C$.
b) Describe a sequence of rigid motions that will map $\triangle L A C$ onto $\triangle D N C$.

698 The coordinates of the vertices of quadrilateral HYPE are $H(-3,6), Y(2,9), P(8,-1)$, and $E(3,-4)$. Prove HYPE is a rectangle. [The use of the set of axes below is optional.]

699 In the diagram of quadrilateral $A B C D$ below, $\overline{A B} \cong \overline{C D}$, and $\overline{A B} \| \overline{C D}$. Segments $C E$ and $A F$ are drawn to diagonal $\overline{B D}$ such that $\overline{B E} \cong \overline{D F}$.

Prove: $\overline{C E} \cong \overline{A F}$

700 Sally and Mary both get ice cream from an ice cream truck. Sally's ice cream is served as a cylinder with a diameter of 4 cm and a total height of 8 cm . Mary's ice cream is served as a cone with a diameter of 7 cm and a total height of 12.5 cm . Assume that ice cream fills Sally's cylinder and Mary's cone.

Who was served more ice cream, Sally or Mary? Justify your answer. Determine and state how much more is served in the larger ice cream than the smaller ice cream, to the nearest cubic centimeter.

In the diagram below, $\triangle A B E \cong \triangle C B D$.

Prove: $\triangle A F D \cong \triangle C F E$

702 The map of a campground is shown below. Campsite C, first aid station F, and supply station S lie along a straight path. The path from the supply station to the tower, T, is perpendicular to the path from the supply station to the campsite. The length of path $\overline{F S}$ is 400 feet. The angle formed by path $\overline{T F}$ and path $\overline{F S}$ is 72°. The angle formed by path $\overline{T C}$ and path $\overline{C S}$ is 55°.

Determine and state, to the nearest foot, the distance from the campsite to the tower.

703 Given: $\triangle X Y Z, \overline{X Y} \cong \overline{Z Y}$, and $\overline{Y W}$ bisects $\angle X Y Z$ Prove that $\angle Y W Z$ is a right angle.

Geometry 4 Point Regents Exam Questions

www.jmap.org
704 As modeled in the diagram below, an access ramp starts on flat ground and ends at the beginning of the top step. Each step is 6 inches tall and 8 inches deep.

If the angle of elevation of the ramp is 4.76°, determine and state the length of the ramp, to the nearest tenth of a foot. Determine and state, to the nearest tenth of a foot, the horizontal distance, d, from the bottom of the stairs to the bottom of the ramp.

705 Triangle $X Y Z$ is shown below. Using a compass and straightedge, on the line below, construct and label $\triangle A B C$, such that $\triangle A B C \cong \triangle X Y Z$. [Leave all construction marks.] Based on your construction, state the theorem that justifies why $\triangle A B C$ is congruent to $\triangle X Y Z$.

706 Riley plotted $A(-1,6), B(3,8), C(6,-1)$, and $D(1,0)$ to form a quadrilateral. Prove that Riley's quadrilateral $A B C D$ is a trapezoid. [The use of the set of axes below is optional.] Riley defines an isosceles trapezoid as a trapezoid with congruent diagonals. Use Riley's definition to prove that $A B C D$ is not an isosceles trapezoid.

Geometry 4 Point Regents Exam Questions
www.jmap.org
707 Given the theorem, "The sum of the measures of the interior angles of a triangle is 180°," complete the proof for this theorem.

Given: $\triangle A B C$
Prove: $\mathrm{m} \angle 1+\mathrm{m} \angle 2+\mathrm{m} \angle 3=180^{\circ}$
Fill in the missing reasons below.

708 Parallelogram MATH has vertices $M(-7,-2)$, $A(0,4), T(9,2)$, and $H(2,-4)$. Prove that parallelogram MATH is a rhombus. [The use of the set of axes below is optional.] Determine and state the area of MATH.

709 In the diagram below of circle O, tangent $\overleftrightarrow{E C}$ is drawn to diameter $\overline{A C}$. Chord $\overline{B C}$ is parallel to secant $\overline{A D E}$, and chord $\overline{A B}$ is drawn.

Prove: $\frac{B C}{C A}=\frac{A B}{E C}$

710 Nick wanted to determine the length of one blade of the windmill pictured below. He stood at a point on the ground 440 feet from the windmill's base. Using surveyor's tools, Nick measured the angle between the ground and the highest point reached by the top blade and found it was 38.8°. He also measured the angle between the ground and the lowest point of the top blade, and found it was 30°.

Determine and state a blade's length, x, to the nearest foot.

711 As modeled below, a projector mounted on a ceiling is 3.74 m from a wall, where a whiteboard is displayed. The vertical distance from the ceiling to the top of the whiteboard is 0.41 m , and the height of the whiteboard is 1.17 m .

Determine and state the projection angle, θ, to the nearest tenth of a degree.

Geometry 4 Point Regents Exam Questions

www.jmap.org
712 David has just finished building his treehouse and still needs to buy a ladder to be attached to the ledge of the treehouse and anchored at a point on the ground, as modeled below. David is standing 1.3 meters from the stilt supporting the treehouse. This is the point on the ground where he has decided to anchor the ladder. The angle of elevation from his eye level to the bottom of the treehouse is 56 degrees. David's eye level is 1.5 meters above the ground.

Determine and state the minimum length of a ladder, to the nearest tenth of a meter, that David will need to buy for his treehouse.

713 In the diagram below, $\overline{E F}$ intersects $\overline{A B}$ and $\overline{C D}$ at \underline{G} and $\underline{H,}$, respectively, and $\overline{G I}$ is drawn such that $\overline{G H} \cong \overline{I H}$.

If $\mathrm{m} \angle E G B=50^{\circ}$ and $\mathrm{m} \angle D I G=115^{\circ}$, explain why $\overline{A B} \| \overline{C D}$.

714 In the diagram below, $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a transformation.

Describe the transformation that was performed. Explain why $\triangle A^{\prime} B^{\prime} C^{\prime} \sim \triangle A B C$.

715 Given: $\triangle A B C, \overline{A E C}, \overline{B D E}$ with $\angle A B E \cong \angle C B E$, and $\angle A D E \cong \angle C D E$
Prove: $\overline{B D E}$ is the perpendicular bisector of $\overline{A C}$

Fill in the missing statement and reasons below.

Statements	Reasons
$1 \triangle A B C, \overline{A E C}, \overline{B D E}$ with $\angle A B E \cong \angle C B E$, and $\angle A D E \cong \angle C D E$	1 Given
$2 \overline{B D} \cong \overline{B D}$	2
$3 \angle B D A$ and $\angle A D E$ are supplementary. $\angle B D C$ and $\angle C D E$ are supplementary.	3 Linear pairs of angles are supplementary.
4	4 Supplements of congruent angles are congruent.
$5 \triangle A B D \cong \triangle C B D$	5 ASA
$6 \overline{A D} \cong \overline{C D}, \overline{A B} \cong \overline{C B}$	6
$7 \overline{B D E}$ is the perpendicular bisector of $\overline{A C}$.	7

716 Using a compass and straightedge, construct and label $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a dilation with a scale factor of 2 and centered at B. [Leave all construction marks.] Describe the relationship between the lengths of $\overline{A C}$ and $\overline{A^{\prime} C^{\prime}}$.

717 A candle maker uses a mold to make candles like the one shown below.

The height of the candle is 13 cm and the circumference of the candle at its widest measure is 31.416 cm . Use modeling to approximate how much wax, to the nearest cubic centimeter, is needed to make this candle. Justify your answer.

718 Triangle QRS is graphed on the set of axes below.

On the same set of axes, graph and label $\triangle Q^{\prime} R^{\prime} S^{\prime}$, the image of $\triangle Q R S$ after a dilation with a scale factor of $\frac{3}{2}$ centered at the origin. Use slopes to explain why $Q^{\prime} R^{\prime} \| Q R$.

719 Given: Parallelogram $P Q R S, \overline{Q T} \perp \overline{P S}, \overline{S U} \perp \overline{Q R}$

Prove: $\overline{P T} \cong \overline{R U}$

720 The coordinates of the vertices of quadrilateral $A B C D$ are $A(0,4), B(3,8), C(8,3)$, and $D(5,-1)$. Prove that $A B C D$ is a parallelogram, but not a rectangle. [The use of the set of axes below is optional.]

721 Prove the sum of the exterior angles of a triangle is 360°.

722 Triangle $A B C$ has vertices at $A(-5,2), B(-4,7)$, and $C(-2,7)$, and triangle $D E F$ has vertices at $D(3,2)$, $E(2,7)$, and $F(0,7)$. Graph and label $\triangle A B C$ and $\triangle D E F$ on the set of axes below. Determine and state the single transformation where $\triangle D E F$ is the image of $\triangle A B C$. Use your transformation to explain why $\triangle A B C \cong \triangle D E F$.

723 A child-sized swimming pool can be modeled by a cylinder. The pool has a diameter of $6 \frac{1}{2}$ feet and a height of 12 inches. The pool is filled with water to $\frac{2}{3}$ of its height. Determine and state the volume of the water in the pool, to the nearest cubic foot. One cubic foot equals 7.48 gallons of water. Determine and state, to the nearest gallon, the number of gallons of water in the pool.

724 Using a straightedge and compass, construct a square inscribed in circle O below. [Leave all construction marks.]

Determine the measure of the arc intercepted by two adjacent sides of the constructed square. Explain your reasoning.

725 A bakery sells hollow chocolate spheres. The larger diameter of each sphere is 4 cm . The thickness of the chocolate of each sphere is 0.5 cm . Determine and state, to the nearest tenth of a cubic centimeter, the amount of chocolate in each hollow sphere. The bakery packages 8 of them into a box. If the density of the chocolate is $1.308 \mathrm{~g} / \mathrm{cm}^{3}$, determine and state, to the nearest gram, the total mass of the chocolate in the box.

726 A cargo trailer, pictured below, can be modeled by a rectangular prism and a triangular prism. Inside the trailer, the rectangular prism measures 6 feet wide and 10 feet long. The walls that form the triangular prism each measure 4 feet wide inside the trailer. The diagram below is of the floor, showing the inside measurements of the trailer.

If the inside height of the trailer is 6.5 feet, what is the total volume of the inside of the trailer, to the nearest cubic foot?

727 The aspect ratio (the ratio of screen width to height) of a rectangular flat-screen television is 16:9. The length of the diagonal of the screen is the television's screen size. Determine and state, to the nearest inch, the screen size (diagonal) of this flat-screen television with a screen height of 20.6 inches.

728 Triangle $P Q R$ has vertices $P(-3,-1), Q(-1,7)$, and $R(3,3)$, and points A and B are midpoints of $\overline{P Q}$ and $\overline{R Q}$, respectively. Use coordinate geometry to prove that $\overline{A B}$ is parallel to $\overline{P R}$ and is half the length of $\overline{P R}$. [The use of the set of axes below is optional.]

729 In the diagram below of circle O, diameter $\overline{A B}$ and radii $\overline{O C}$ and $\overline{O D}$ are drawn. The length of $\overline{A B}$ is 12 and the measure of $\angle C O D$ is 20 degrees.

If $\overparen{A C} \cong \overparen{B D}$, find the area of sector $B O D$ in terms of π.

730 In the diagram below, the line of sight from the park ranger station, P, to the lifeguard chair, L, on the beach of a lake is perpendicular to the path joining the campground, C, and the first aid station, F. The campground is 0.25 mile from the lifeguard chair. The straight paths from both the campground and first aid station to the park ranger station are perpendicular.

If the path from the park ranger station to the campground is 0.55 mile, determine and state, to the nearest hundredth of a mile, the distance between the park ranger station and the lifeguard chair. Gerald believes the distance from the first aid station to the campground is at least 1.5 miles. Is Gerald correct? Justify your answer.

731 A small can of soup is a right circular cylinder with a base diameter of 7 cm and a height 9 cm . A large container is also a right circular cylinder with a base diameter of 9 cm and a height of 13 cm . Determine and state the volume of the small can and the volume of the large container to the nearest cubic centimeter. What is the minimum number of small cans that must be opened to fill the large container? Justify your answer.

732 Shae has recently begun kickboxing and purchased training equipment as modeled in the diagram below. The total weight of the bag, pole, and unfilled base is 270 pounds. The cylindrical base is 18 inches tall with a diameter of 20 inches. The dry sand used to fill the base weighs 95.46 lbs per cubic foot.

To the nearest pound, determine and state the total weight of the training equipment if the base is filled to 85% of its capacity.

733 Given: $\overline{R S}$ and $\overline{T V}$ bisect each other at point X $\overline{T R}$ and $\overline{S V}$ are drawn

Prove: $\overline{T R} \| \overline{S V}$

Geometry 4 Point Regents Exam Questions

www.jmap.org
734 As modeled in the diagram below, a building has a height of 50 meters. The angle of depression from the top of the building to the top of the tree, T, is 13.3°. The angle of depression from the top of the building to the bottom of the tree, B, is 22.2°.

Determine and state, to the nearest meter, the height of the tree.

Triangle $A B C$ is shown below. Using a compass and straightedge, construct the dilation of $\triangle A B C$ centered at B with a scale factor of 2 . [Leave all construction marks.]

Is the image of $\triangle A B C$ similar to the original triangle? Explain why.

736 Triangle $A B C$ and triangle $A D E$ are graphed on the set of axes below.

Describe a transformation that maps triangle $A B C$ onto triangle $A D E$. Explain why this transformation makes triangle $A D E$ similar to triangle $A B C$.

Geometry 4 Point Regents Exam Questions

www.jmap.org
737 Trish is a surveyor who was asked to estimate the distance across a pond. She stands at point $C, 85$ meters from point D, and locates points A and B on either side of the pond such that A, D, and B are collinear.

Trish approximates the measure of angle $D C B$ to be 35° and the measure of angle $A C D$ to be 75°. Determine and state the distance across the pond, $\overline{A B}$, to the nearest meter.

738 As shown below, a canoe is approaching a lighthouse on the coastline of a lake. The front of the canoe is 1.5 feet above the water and an observer in the lighthouse is 112 feet above the water.

At 5:00, the observer in the lighthouse measured the angle of depression to the front of the canoe to be 6°. Five minutes later, the observer measured and saw the angle of depression to the front of the canoe had increased by 49°. Determine and state, to the nearest foot per minute, the average speed at which the canoe traveled toward the lighthouse.

Geometry 6 Point Regents Exam Questions www.jmap.org

Geometry 6 Point Regents Exam Questions

739 In quadrilateral $A B C D, \overline{A B} \cong \overline{C D}, \overline{A B} \| \overline{C D}$, and $\overline{B F}$ and $\overline{D E}$ are perpendicular to diagonal $\overline{A C}$ at points F and E.

Prove: $\overline{A E} \cong \overline{C F}$

740 Given: Quadrilateral MATH, $\overline{H M} \cong \overline{A T}$, $\overline{H T} \cong \overline{A M}, \overline{H E} \perp \overline{M E A}$, and $\overline{H A} \perp \overline{A T}$

Prove: $T A \bullet H A=H E \bullet T H$

741 In the diagram of quadrilateral $A B C D$ with diagonal $\overline{A C}$ shown below, segments $G H$ and $E F$ are drawn, $\overline{A E} \cong \overline{C G}, \overline{B E} \cong \overline{D G}, \overline{A H} \cong \overline{C F}$, and $\overline{A D} \cong \overline{C B}$.

Prove: $\overline{E F} \cong \overline{G H}$

742 The coordinates of the vertices of $\triangle A B C$ are $A(1,2), B(-5,3)$, and $C(-6,-3)$. Prove that $\triangle A B C$ is isosceles. State the coordinates of point D such that quadrilateral $A B C D$ is a square. Prove that your quadrilateral $A B C D$ is a square. [The use of the set of axes below is optional.]

743 Isosceles trapezoid $A B C D$ has bases $\overline{D C}$ and $\overline{A B}$ with nonparallel legs $\overline{A D}$ and $\overline{B C}$. Segments $A E$, $B E, C E$, and $D E$ are drawn in trapezoid $A B C D$ such that $\angle C D E \cong \angle D C E, \overline{A E} \perp \overline{D E}$, and $\overline{B E} \perp \overline{C E}$.

Prove $\triangle A D E \cong \triangle B C E$ and prove $\triangle A E B$ is an isosceles triangle.

Geometry 6 Point Regents Exam Questions
www.jmap.org

744 In the coordinate plane, the vertices of triangle PAT are $P(-1,-6), A(-4,5)$, and $T(5,-2)$. Prove that $\triangle P A T$ is an isosceles triangle. State the coordinates of R so that quadrilateral $P A R T$ is a parallelogram. Prove that quadrilateral $P A R T$ is a parallelogram. [The use of the set of axes below is optional.]

745
In the diagram below of quadrilateral $F A C T, \overline{B R}$ intersects diagonal $\overline{A T}$ at $E, \overline{A F} \| \overline{C T}$, and $\overline{A F} \cong \overline{C T}$.

Prove: $(A B)(T E)=(A E)(T R)$

746 In the diagram below, secant $\overline{A C D}$ and tangent $\overline{A B}$ are drawn from external point A to circle O.

Prove the theorem: If a secant and a tangent are drawn to a circle from an external point, the product of the lengths of the secant segment and its external segment equals the length of the tangent segment squared. ($A C \cdot A D=A B^{2}$)

747 New streetlights will be installed along a section of the highway. The posts for the streetlights will be 7.5 m tall and made of aluminum. The city can choose to buy the posts shaped like cylinders or the posts shaped like rectangular prisms. The cylindrical posts have a hollow core, with aluminum 2.5 cm thick, and an outer diameter of 53.4 cm . The rectangular-prism posts have a hollow core, with aluminum 2.5 cm thick, and a square base that measures 40 cm on each side. The density of aluminum is $2.7 \mathrm{~g} / \mathrm{cm} 3$, and the cost of aluminum is $\$ 0.38$ per kilogram. If all posts must be the same shape, which post design will cost the town less? How much money will be saved per streetlight post with the less expensive design?

748 Given: Quadrilateral $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}$ that bisect each other, and $\angle 1 \cong \angle 2$

Prove: $\triangle A C D$ is an isosceles triangle and $\triangle A E B$ is a right triangle

749 The water tower in the picture below is modeled by the two-dimensional figure beside it. The water tower is composed of a hemisphere, a cylinder, and a cone. Let C be the center of the hemisphere and let D be the center of the base of the cone.

If $A C=8.5$ feet, $B F=25$ feet, and $\mathrm{m} \angle E F D=47^{\circ}$, determine and state, to the nearest cubic foot, the volume of the water tower. The water tower was constructed to hold a maximum of 400,000 pounds of water. If water weighs 62.4 pounds per cubic foot, can the water tower be filled to 85% of its volume and not exceed the weight limit? Justify your answer.

750 Given: Quadrilateral $A B C D, \overline{A C}$ and $\overline{E F}$ intersect at $H, \overline{E F}\|\overline{A D}, \overline{E F}\| \overline{B C}$, and $\overline{A D} \cong \overline{B C}$.

Prove: $(E H)(C H)=(F H)(A H)$

751 In the coordinate plane, the vertices of $\triangle R S T$ are $R(6,-1), S(1,-4)$, and $T(-5,6)$. Prove that $\triangle R S T$ is a right triangle. State the coordinates of point P such that quadrilateral $R S T P$ is a rectangle. Prove that your quadrilateral RSTP is a rectangle. [The use of the set of axes below is optional.]

752 Given: D is the image of A after a reflection over $\overleftrightarrow{C H}$
$\overleftrightarrow{C H}$ is the perpendicular bisector of $\overrightarrow{B C E}$ $\triangle A B C$ and $\triangle D E C$ are drawn
Prove: $\triangle A B C \cong \triangle D E C$

753 Cathy wants to determine the height of the flagpole shown in the diagram below. She uses a survey instrument to measure the angle of elevation to the top of the flagpole, and determines it to be 34.9°. She walks 8 meters closer and determines the new measure of the angle of elevation to be 52.8°. At each measurement, the survey instrument is 1.7 meters above the ground.

Determine and state, to the nearest tenth of a meter, the height of the flagpole.

754 A water glass can be modeled by a truncated right cone (a cone which is cut parallel to its base) as shown below.

The diameter of the top of the glass is 3 inches, the diameter at the bottom of the glass is 2 inches, and the height of the glass is 5 inches. The base with a diameter of 2 inches must be parallel to the base with a diameter of 3 inches in order to find the height of the cone. Explain why. Determine and state, in inches, the height of the larger cone. Determine and state, to the nearest tenth of a cubic inch, the volume of the water glass.

755 Given: Parallelogram $A N D R$ with $\overline{A W}$ and $\overline{D E}$ bisecting $\overline{N W D}$ and $\overline{R E A}$ at points W and E, respectively

Prove that $\triangle A N W \cong \triangle D R E$. Prove that quadrilateral $A W D E$ is a parallelogram.

756 The vertices of quadrilateral MATH have coordinates $M(-4,2), A(-1,-3), T(9,3)$, and $H(6,8)$. Prove that quadrilateral MATH is a parallelogram. Prove that quadrilateral MATH is a rectangle. [The use of the set of axes below is optional.]

757 Freda, who is training to use a radar system, detects an airplane flying at a constant speed and heading in a straight line to pass directly over her location. She sees the airplane at an angle of elevation of 15° and notes that it is maintaining a constant altitude of 6250 feet. One minute later, she sees the airplane at an angle of elevation of 52°. How far has the airplane traveled, to the nearest foot? Determine and state the speed of the airplane, to the nearest mile per hour.

758 The map below shows the three tallest mountain peaks in New York State: Mount Marcy, Algonquin Peak, and Mount Haystack. Mount Haystack, the shortest peak, is 4960 feet tall. Surveyors have determined the horizontal distance between Mount Haystack and Mount Marcy is 6336 feet and the horizontal distance between Mount Marcy and Algonquin Peak is 20,493 feet.

The angle of depression from the peak of Mount Marcy to the peak of Mount Haystack is 3.47 degrees. The angle of elevation from the peak of Algonquin Peak to the peak of Mount Marcy is 0.64 degrees. What are the heights, to the nearest foot, of Mount Marcy and Algonquin Peak? Justify your answer.

Geometry 6 Point Regents Exam Questions

www.jmap.org

759
A rectangular in-ground pool is modeled by the prism below. The inside of the pool is 16 feet wide and 35 feet long. The pool has a shallow end and a deep end, with a sloped floor connecting the two ends. Without water, the shallow end is 9 feet long and 4.5 feet deep, and the deep end of the pool is 12.5 feet long.

If the sloped floor has an angle of depression of 16.5 degrees, what is the depth of the pool at the deep end, to the nearest tenth of a foot? Find the volume of the inside of the pool to the nearest cubic foot. A garden hose is used to fill the pool. Water comes out of the hose at a rate of 10.5 gallons per minute. How much time, to the nearest hour, will it take to fill the pool 6 inches from the top? [$1 \mathrm{ft}^{3}=7.48$ gallons]

760 Quadrilateral $P Q R S$ has vertices $P(-2,3), Q(3,8)$, $R(4,1)$, and $S(-1,-4)$. Prove that $P Q R S$ is a rhombus. Prove that $P Q R S$ is not a square. [The use of the set of axes below is optional.]

761 A snow cone consists of a paper cone completely filled with shaved ice and topped with a hemisphere of shaved ice, as shown in the diagram below. The inside diameter of both the cone and the hemisphere is 8.3 centimeters. The height of the cone is 10.2 centimeters.

The desired density of the shaved ice is $0.697 \mathrm{~g} / \mathrm{cm}^{3}$, and the cost, per kilogram, of ice is $\$ 3.83$. Determine and state the cost of the ice needed to make 50 snow cones.

762 Walter wants to make 100 candles in the shape of a cone for his new candle business. The mold shown below will be used to make the candles. Each mold will have a height of 8 inches and a diameter of 3 inches. To the nearest cubic inch, what will be the total volume of 100 candles?

Walter goes to a hobby store to buy the wax for his candles. The wax costs $\$ 0.10$ per ounce. If the weight of the wax is 0.52 ounce per cubic inch, how much will it cost Walter to buy the wax for 100 candles? If Walter spent a total of $\$ 37.83$ for the molds and charges $\$ 1.95$ for each candle, what is Walter's profit after selling 100 candles?

763 In quadrilateral $A B C D, E$ and F are points on $\overline{B C}$ and $\overline{A D}$, respectively, and $\overline{B G D}$ and $\overline{E G F}$ are drawn such that $\angle A B G \cong \angle C D G, \overline{A B} \cong \overline{C D}$, and $\overline{C E} \cong \overline{A F}$.

Prove: $\overline{F G} \cong \overline{E G}$

764 Given: Quadrilateral $A B C D, \overline{A B} \cong \overline{C D}, \overline{A B} \| \overline{C D}$, diagonal $\overline{A C}$ intersects $\overline{E F}$ at G, and $\overline{D E} \cong \overline{B F}$

Prove: G is the midpoint of $\overline{E F}$

765 The coordinates of the vertices of $\triangle A B C$ are $A(-2,4), B(-7,-1)$, and $C(-3,-3)$. Prove that $\triangle A B C$ is isosceles. State the coordinates of $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$, after a translation 5 units to the right and 5 units down. Prove that quadrilateral $A A^{\prime} C^{\prime} C$ is a rhombus. [The use of the set of axes below is optional.]

Geometry 6 Point Regents Exam Questions

www.jmap.org

766 Given: Triangle $D U C$ with coordinates $D(-3,-1)$, $U(-1,8)$, and $C(8,6)$
Prove: $\triangle D U C$ is a right triangle
Point U is reflected over $\overline{D C}$ to locate its image point, U^{\prime}, forming quadrilateral $D U C U^{\prime}$.
Prove quadrilateral $D U C U^{\prime}$ is a square.
[The use of the set of axes below is optional.]

767 Given: Circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E

Theorem: If two chords intersect in a circle, the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments of the other chord. Prove this theorem by proving $A E \cdot E B=C E \cdot E D$.

768 Given: Parallelogram $A B C D, \overline{B F} \perp \overline{A F D}$, and $\overline{D E} \perp \overline{B E C}$

Prove: $B E D F$ is a rectangle

769 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$. Prove that quadrilateral MATH is a trapezoid. State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$. Prove that quadrilateral MYTH is a rectangle. [The use of the set of axes below is optional.]

Geometry 6 Point Regents Exam Questions
www.jmap.org
770 In the diagram of parallelogram $A B C D$ below, $\overline{B E} \perp \overline{C E D}, \overline{D F} \perp \overline{B F C}, \overline{C E} \cong \overline{C F}$.

Prove $A B C D$ is a rhombus.

Geometry Multiple Choice Regents Exam Questions

Answer Section

1 ANS: 1

$$
(x-1)^{2}+(y-4)^{2}=\left(\frac{10}{2}\right)^{2}
$$

$$
\begin{aligned}
x^{2}-2 x+1+y^{2}-8 y+16 & =25 \\
x^{2}-2 x+y^{2}-8 y & =8
\end{aligned}
$$

PTS: 2 REF: 011920geo TOP: Equations of Circles
KEY: write equation, given center and radius
2 ANS: 3 PTS: 2 REF: 061912geo TOP: Parallelograms
3 ANS: 2
$V=\frac{1}{3} \cdot 197^{2} \cdot 107=1,384,188$

PTS: 2 REF: 082208geo TOP: Volume KEY: pyramids
4 ANS: 3
PTS: 2 REF: 011911geo
TOP: Rotations of Two-Dimensional Objects
5 ANS: 2
PTS: 2
REF: 081909geo
TOP: Compositions of Transformations
KEY: identify
6 ANS: 2

PTS: 2
KEY: inscribed
7 ANS: 3
$\frac{150}{360} \cdot 9^{2} \pi=33.75 \pi$
PTS: 2
8 ANS: 4
REF: 012013geo
TOP: Sectors
9 ANS: 4
$\frac{140}{360} \cdot 9^{2} \pi=31.5 \pi$
PTS: 2
REF: 012317geo TOP: Sectors

10 ANS: 3
Broome: $\frac{200536}{706.82} \approx 284$ Dutchess: $\frac{280150}{801.59} \approx 349$ Niagara: $\frac{219846}{522.95} \approx 420$ Saratoga: $\frac{200635}{811.84} \approx 247$
PTS: 2
11 ANS: 2
REF: 061902geo TOP: Density
ANS: 2 PTS: 2 REF: 081901geo TOP: Line Dilations
12 ANS: 4

PTS: 2 REF: 082218geo TOP: Chords, Secants and Tangents
KEY: inscribed
13 ANS: 3
$90-30=60$
PTS: 2 REF: 012401geo TOP: Cofunctions
14 ANS: 4

1) SAS; 2) AAS; 3) SSS

PTS: 2 REF: 062216geo TOP: Triangle Congruency
15 ANS: 1

PTS: 2 REF: 061918geo TOP: Chords, Secants and Tangents
KEY: secants drawn from common point, angle
16
ANS: 1
$\cos 65=\frac{x}{15}$

$$
x \approx 6.3
$$

PTS: 2
REF: 081924geo TOP: Using Trigonometry to Find a Side

17 ANS: 4
$\left(\frac{360-120}{360}\right)(\pi)\left(9^{2}\right)=54 \pi$
PTS: 2 REF: 081912geo TOP: Sectors
18 ANS: 1
$m=\frac{-A}{B}=\frac{-3}{2} m_{\perp}=\frac{2}{3}$
PTS: 2 REF: 081908geo TOP: Parallel and Perpendicular Lines
KEY: identify perpendicular lines
19 ANS: 3
A dilation does not preserve distance.
PTS: 2 REF: 062210geo TOP: Analytical Representations of Transformations
KEY: basic
20 ANS: 4
21 ANS: 2
PTS: 2
REF: 062318geo TOP: Lines and Angles
KEY: basic
22 ANS: 2
$x^{2}+2 x+1+y^{2}-16 y+64=-49+1+64$

$$
(x+1)^{2}+(y-8)^{2}=16
$$

PTS: 2
REF: 012314geo TOP: Equations of Circles
KEY: completing the square
23 ANS: 1
$V=\pi r^{2} h=\pi \cdot 5^{2} \cdot 8 \approx 200 \pi$
PTS: 2
REF: 082304geo
TOP: Volume
KEY: cylinders
24 ANS: 1
PTS: 2
REF: 062208geo
TOP: Rotations of Two-Dimensional Objects
25 ANS: 3
$V=\pi(8)^{2}(4-0.5)(7.48) \approx 5264$
PTS: 2 REF: 012320geo TOP: Volume KEY: cylinders
26 ANS: 3
$2(2 x+8)=7 x-2 \quad A B=7(6)-2=40$. Since $\overline{E F}$ is a midsegment, $E F=\frac{40}{2}=20$. Since $\triangle A B C$ is equilateral,
$4 x+16=7 x-2$
$18=3 x$
$6=x$
$A E=B F=\frac{40}{2}=20.40+20+20+20=100$
PTS: 2
REF: 061923geo TOP: Midsegments

27 ANS: 1
$\frac{\frac{1}{3} \pi(2)^{2}\left(\frac{1}{2}\right)}{\frac{1}{3} \pi(1)^{2}(1)}=2$
PTS: 2
28 ANS: 1
REF: 012010geo
TOP: Volume
KEY: cones
29 ANS: 2
$\frac{7.5}{3.5}=\frac{9.5}{x}$
$x \approx 4.4$
PTS: 2
REF: 011922geo TOP: Cofunctions

$$
\frac{7.5}{3.5}=\frac{9.5}{x}
$$

$$
x \approx 4.4
$$

PTS: 2 REF: 012303geo TOP: Side Splitter Theorem
30 ANS: 1
$V=\frac{1}{2} \times \frac{4}{3} \pi r^{3}=\frac{1}{2} \times \frac{4}{3} \pi \cdot\left(\frac{12.6}{2}\right)^{3} \approx 523.7$
PTS: 2
REF: 061910geo
TOP: Volume
KEY: spheres
31 ANS: 2
PTS: 1
REF: 012017geo TOP: Compositions of Transformations
KEY: identify
32 ANS: 2
$-4+\frac{2}{5}(6--4)=-4+\frac{2}{5}(10)=-4+4=0-1+\frac{2}{5}(4--1)=-1+\frac{2}{5}(5)=-1+2=1$
PTS: 2 REF: 062222geo TOP: Directed Line Segments
33 ANS: 3
PTS: 2
PTS: 2
REF: 081817geo TOP: Mapping a Polygon onto Itself
34 ANS: 1
PTS: 2
REF: 081919geo TOP: Cofunctions
35 ANS: 1
REF: 081904geo
TOP: Centroid, Orthocenter, Incenter and Circumcenter
36
$44\left(\left(10 \times 3 \times \frac{1}{4}\right)+\left(9 \times 3 \times \frac{1}{4}\right)\right)=627$
PTS: 2
REF: 082221geo TOP: Volume
KEY: compositions
ANS: 4

PTS: 2
KEY: statements
38
ANS: 2
REF: 061908geo TOP: Triangle Proofs
PTS: 2
REF: 082322geo TOP: Identifying Transformations

39 ANS: 1

PTS: 2 REF: 062221geo TOP: Interior and Exterior Angles of Polygons
40 ANS: 1
A dilation by a scale factor of 4 centered at the origin preserves parallelism and $(0,-2) \rightarrow(0,-8)$.
PTS: 2
REF: 081910geo TOP: Line Dilations
41 ANS: 2
The slope of $-3 x+4 y=8$ is $\frac{3}{4}$.
PTS: 2 REF: 061907geo TOP: Line Dilations
42 ANS: 1
$h=\sqrt{6.5^{2}-2.5^{2}}=6, V=\frac{1}{3} \pi(2.5)^{2} 6=12.5 \pi$
PTS: 2 REF: 011923geo TOP: Volume KEY: cones
43 ANS: 1 PTS: 2 REF: 012403geo TOP: Mapping a Polygon onto Itself
44 ANS: 2
$3 y=-6 x+3$
$y=-2 x+1$
PTS: 2 REF: 062319geo TOP: Line Dilations
45 ANS: 2 PTS: 2 REF: 082311geo TOP: Cofunctions
46 ANS: 2
$7 \times 4-\frac{1}{2}((7)(1)+(3)(4)+(4)(3))=28-\frac{7}{2}-6-6=12.5$
PTS: 2
47 ANS: 4
48 ANS: 3
REF: 012407geo
TOP: Polygons in the Coordinate Plane
ANS: 4
PTS: 2
REF: 011916geo TOP: Exterior Angle Theorem
ANS: 3
$12^{2}=9 \cdot G M \quad I M^{2}=16 \cdot 25$
$G M=16 \quad I M=20$

PTS: 2 REF: 011910geo TOP: Similarity KEY: leg
50 ANS: 1
PTS: 2
REF: 062312geo TOP: Cofunctions

51 ANS: 1
PTS: 2
REF: 082209geo TOP: Mapping a Polygon onto Itself
52 ANS: 4

AA from diagram; SSS as the three corresponding sides are proportional; SAS as two corresponding sides are proportional and an angle is equal.

PTS: 2
REF: 012324geo TOP: Similarity Proofs
53 ANS: 3
$\frac{360^{\circ}}{6}=60^{\circ} 120^{\circ}$ is a multiple of 60°
PTS: 2 REF: 012011geo TOP: Mapping a Polygon onto Itself
54 ANS: 3
$\frac{10}{x}=\frac{15}{12}$
$x=8$
PTS: 2
REF: 081918geo TOP: Side Splitter Theorem
55 ANS: 4
$-7+\frac{1}{4}(5--7)=-7+\frac{1}{4}(12)=-7+3=-4-5+\frac{1}{4}(3--5)=-5+\frac{1}{4}(8)=-5+2=-3$
PTS: 2 REF: 012005geo TOP: Directed Line Segments
56 ANS: 4
$x^{2}=3 \times 24$
$x=\sqrt{72}$
PTS: 2
57 ANS: 1
REF: 012315geo
TOP: Similarity
KEY: altitude
58 ANS: 2

PTS: 2
REF: 081907geo TOP: Interior and Exterior Angles of Polygons

59 ANS: 4
$\cos 47=\frac{50}{x}$

$$
x \approx 73
$$

PTS: 2 REF: 012406geo TOP: Using Trigonometry to Find a Side
60 ANS: 3
$2 \times \frac{40 \times 16}{33 \frac{1}{3}}=38.4$

PTS: 2 REF: 012404geo TOP: Area of Polygons
61 ANS: 1
PTS: 2
REF: 011918geo TOP: Compositions of Polygons and Circles
KEY: area
62 ANS: 2

PTS: 2
63 ANS: 3
64 ANS: 4
TOP: Interior and Exterior Angles of Polygons

65 ANS: 3
PTS: 2
REF: 012309geo TOP: Special Quadrilaterals
PTS: 2 REF: 081923geo TOP: Mapping a Polygon onto Itself
KEY: graphics
66 ANS: 3
Therefore $\angle 2 \cong \angle 7$. Since opposite angles are congruent, $A B C D$ is a parallelogram.
PTS: 2 REF: 062209geo TOP: Parallelograms
67 ANS: 2
$E R=\sqrt{17^{2}-8^{2}}=15$
PTS: 2 REF: 061917geo TOP: Special Quadrilaterals
68 ANS: 1
$8 \times 3.5 \times 2.25 \times 1.055=66.465$
PTS: 2 REF: 012014geo TOP: Density
69 ANS: 3

PTS: 2
REF: 081905geo TOP: Exterior Angle Theorem

70 ANS: 3
$\angle N$ is the smallest angle in $\triangle N Y A$, so side $\overline{A Y}$ is the shortest side of $\triangle N Y A$. $\angle V Y A$ is the smallest angle in $\triangle V Y A$, so side $\overline{V A}$ is the shortest side of both triangles.

PTS: 2 REF: 011919geo TOP: Angle Side Relationship
71 ANS: 4
Another equation of line t is $y=3 x-6$. $-6 \bullet \frac{1}{2}=-3$

PTS: 2 REF: 012319geo TOP: Line Dilations
72 ANS: 1
$\frac{36}{4}=9$
PTS: 2
REF: 012321geo TOP: Midsegments
73 ANS: 4
$(8 \times 2)+(3 \times 2)-\left(\frac{18}{12} \times \frac{21}{12}\right) \approx 19$
PTS: 2 REF: 081917geo TOP: Compositions of Polygons and Circles
KEY: area
74 ANS: 3
$x^{2}+12 x+36+y^{2}=-27+36$
$(x+6)^{2}+y^{2}=9$
PTS: 2
REF: 082313geo
TOP: Equations of Circles
KEY: completing the square
75 ANS: 4 PTS: 2
REF: 081911geo TOP: Rotations of Two-Dimensional Objects
76 ANS: 4

PTS: 2
REF: 082324geo TOP: Similarity KEY: basic

77 ANS: 4

PTS: 2 REF: 082224geo TOP: Inscribed Quadrilaterals
78 ANS: 2
$\frac{x}{360}(15)^{2} \pi=75 \pi$

$$
x=120
$$

PTS: 2 REF: 011914geo TOP: Sectors
79 ANS: 2
$\frac{4}{3} \pi \times\left(\frac{1.68}{2}\right)^{3} \times 0.6523 \approx 1.62$
PTS: 2 REF: 081914geo TOP: Density
80 ANS: 4

$$
\begin{aligned}
2(x+13) & =5 x-1 \quad M N=9+13=22 \\
2 x+26 & =5 x-1 \\
27 & =3 x \\
x & =9
\end{aligned}
$$

PTS: 2 REF: 062322geo TOP: Midsegments
81 ANS: 4
$x^{2}+8 x+16+y^{2}-12 y+36=144+16+36$

$$
(x+4)^{2}+(y-6)^{2}=196
$$

PTS: 2
REF: 061920geo TOP: Equations of Circles
KEY: completing the square
82 ANS: 3
$\frac{1}{2} \times 24=12$
PTS: 2 REF: 012009geo TOP: Midsegments

83 ANS: 3
$5 x-10=4 x-44(6)-4=20$

$$
x=6
$$

PTS: 2
KEY: graphics
84 ANS: 1
85 ANS: 1
REF: 012408geo
TOP: Properties of Transformations
PTS: 2
REF: 012004geo TOP: Special Quadrilaterals
PTS: 2 REF: 012022geo TOP: Compositions of Transformations
KEY: grids
86 ANS: 2
If (2) is true, $\angle A C B \cong \angle X Y B$ and $\angle C A B \cong \angle Y X B$.
PTS: 2 REF: 082202geo TOP: Side Splitter Theorem
87 ANS: 3
PTS: 2
REF: 011904geo TOP: Mapping a Polygon onto Itself
88 ANS: 2
$8 \times 8 \times 9+\frac{1}{3}(8 \times 8 \times 3)=640$
PTS: 2 REF: 011909geo TOP: Volume KEY: compositions
89 ANS: 2
$m=\frac{-4}{-5}=\frac{4}{5}$
$m_{\perp}=-\frac{5}{4}$
PTS: 2 REF: 082308geo TOP: Parallel and Perpendicular Lines
KEY: write equation of perpendicular line
90 ANS: 1
$\frac{360^{\circ}}{5}=72^{\circ}$
PTS: 2 REF: 062204geo TOP: Mapping a Polygon onto Itself
91 ANS: 3
$3 \times 10 \times \frac{3}{12}=7.5 \mathrm{ft}^{3} \frac{7.5}{2}=3.754 \times 3.66=14.64$

PTS: 2 REF: 062311geo TOP: Volume KEY: prisms
92 ANS: 3
(1) and (2) are false as dilations preserve angle measure. (4) would be true if the scale factor was 2.

PTS: 2 REF: 082323geo TOP: Dilations
93 ANS: 4
$\frac{54}{360} \cdot 10^{2} \pi=15 \pi$
PTS: 2
REF: 062224geo TOP: Sectors

94 ANS: 2 PTS: 2 REF: 062202geo
TOP: Cross-Sections of Three-Dimensional Objects
95 ANS: 2
$\frac{(-4,2)}{(-2,1)}=2$
PTS: 2 REF: 062201geo TOP: Dilations
96 ANS: 4

$$
\begin{aligned}
x^{2}-8 x+y^{2}+6 y & =39 \\
x^{2}-8 x+16+y^{2}+6 y+9 & =39+16+9 \\
(x-4)^{2}+(y+3)^{2} & =64
\end{aligned}
$$

PTS: 2 REF: 081906geo TOP: Equations of Circles
KEY: completing the square
97 ANS: 1
$-1+\frac{1}{3}(8--1)=-1+\frac{1}{3}(9)=-1+3=2-3+\frac{1}{3}(9--3)=-3+\frac{1}{3}(12)=-3+4=1$
PTS: 2 REF: 011915geo TOP: Directed Line Segments
98 ANS: 1
$\frac{100-80}{2}=10$

PTS: 2 REF: 062219geo TOP: Chords, Secants and Tangents
KEY: secant and tangent drawn from common point, angle
99 ANS: 2
180-(180-42-42)
PTS: 2 REF: 062317geo TOP: Exterior Angle Theorem
100 ANS: 1
$y=\frac{1}{2} x+4 \frac{2}{4}=\frac{1}{2}$
$y=\frac{1}{2} x+2$
$\begin{array}{lll}\text { PTS: } 2 & \text { REF: 012008geo } & \text { TOP: Line Dilations } \\ \text { ANS: } 1 & \text { PTS: } 2 & \text { REF: 012304geo TOP: Cofunctions }\end{array}$
101 ANS: 1
ANS: 4

$$
x^{2}+6 x+y^{2}-2 y=-1
$$

$x^{2}+6 x+9+y^{2}-2 y+1=-1+9+1$

$$
(x+3)^{2}+(y-1)^{2}=9
$$

PTS: 2 REF: 062309geo TOP: Equations of Circles
KEY: completing the square

103
104
ANS: 3
PTS: 2
REF: 082307geo TOP: Rotations of Two-Dimensional Objects
ANS: 2
$\angle A D E \cong \angle A B C$ and $\angle A E D \cong \angle A C B$
PTS: 2 REF: 062214geo TOP: Side Splitter Theorem
105 ANS: 4

$$
\begin{array}{ll}
\frac{4}{5}=\frac{6}{x} & \frac{4}{9}=\frac{y}{18} \quad 5+18+7.5+8=38.5 \\
x=7.5 & y=8
\end{array}
$$

PTS: 2
REF: 082222geo TOP: Side Splitter Theorem
106 ANS: 3

$$
\begin{aligned}
12 x & =9^{2} \quad 6.75+12=18.75 \\
12 x & =81 \\
x & =\frac{82}{12}=\frac{27}{4}
\end{aligned}
$$

PTS: 2
107 ANS: 2

$$
108 \pi=\frac{6^{2} \pi h}{3}
$$

$$
\frac{324 \pi}{36 \pi}=h
$$

$$
9=h
$$

PTS: 2 REF: 012002geo TOP: Volume KEY: cones
108 ANS: 3
3) Could be an isosceles trapezoid.

PTS: 2 REF: 012318geo TOP: Parallelograms
109 ANS: 3
PTS: 2
REF: 012302geo TOP: Rotations of Two-Dimensional Objects
110 ANS: 2
$x_{0}=\frac{k x_{1}-x_{2}}{k-1}=\frac{\frac{1}{3}(-4)-0}{\frac{1}{3}-1}=\frac{\frac{-4}{3}}{\frac{-2}{3}}=2 \quad y_{0}=\frac{k y_{1}-y_{2}}{k-1}=\frac{\frac{1}{3}(0)--2}{\frac{1}{3}-1}=\frac{2}{\frac{-2}{3}}=-3$
PTS: 2
REF: 062313geo TOP: Dilations

111 ANS: 4
The line $y=\frac{3}{2} x-4$ does not pass through the center of dilation, so the dilated line will be distinct from $y=\frac{3}{2} x-4$. Since a dilation preserves parallelism, the line $y=\frac{3}{2} x-4$ and its image will be parallel, with slopes of $\frac{3}{2}$. To obtain the y-intercept of the dilated line, the scale factor of the dilation, $\frac{3}{4}$, can be applied to the y-intercept, (0,-4). Therefore, $\left(0 \cdot \frac{3}{4},-4 \cdot \frac{3}{4}\right) \rightarrow(0,-3)$. So the equation of the dilated line is $y=\frac{3}{2} x-3$.

PTS: 2 REF: 011924geo TOP: Line Dilations
112 ANS: 1
$r=8$, forming an 8-15-17 triple. $V=\frac{1}{3} \pi(8)^{2} 15=320 \pi$
PTS: 2 REF: 082318geo TOP: Volume KEY: cones
113 ANS: 4
$m_{\overline{A D}}=\frac{3-1}{-2-2}=\frac{2}{-4}=-\frac{1}{2} \quad$ A pair of opposite sides is parallel.
$m_{B C}=\frac{8-4}{-3-5}=\frac{4}{-8}=-\frac{1}{2}$
PTS: 2 REF: 082321geo TOP: Quadrilaterals in the Coordinate Plane
114 ANS: 2 PTS: 2 REF: 082220geo TOP: Compositions of Transformations
KEY: identify
115 ANS: 2
$\frac{x}{15}=\frac{5}{12}$
$x=6.25$
PTS: 2 REF: 011906geo TOP: Side Splitter Theorem
116 ANS: 3 PTS: 2 REF: 011903geo TOP: Compositions of Transformations
KEY: identify
117 ANS: 4
$\left(\frac{-5+7}{2}, \frac{1-9}{2}\right)=(1,-4) m=\frac{1--9}{-5-7}=\frac{10}{-12}=-\frac{5}{6} m_{\perp}=\frac{6}{5}$
PTS: 2 REF: 062220geo TOP: Parallel and Perpendicular Lines
KEY: perpendicular bisector
118 ANS: 2
$\triangle A C B \sim \triangle A E D$
PTS: 2 REF: 012308geo TOP: Side Splitter Theorem

119 ANS: 1
$-7+\frac{1}{3}(2--7)=-7+\frac{1}{3}(9)=-7+3=-43+\frac{1}{3}(-6-3)=3+\frac{1}{3}(-9)=3-3=0$
PTS: 2 REF: 082213geo TOP: Directed Line Segments
120 ANS: 3
$M_{x}=\frac{-5+-1}{2}=-\frac{6}{2}=-3 M_{y}=\frac{5+-1}{2}=\frac{4}{2}=2$.
PTS: 2 REF: 081902geo TOP: Quadrilaterals in the Coordinate Plane
KEY: general
121 ANS: 1
$\triangle A B C \sim \triangle R S T$
PTS: 2 REF: 011908geo TOP: Similarity KEY: basic
122 ANS: 2
$\left(\frac{1}{4}\right)^{2}=\frac{1}{16}$
PTS: 2 REF: 082216geo TOP: Similarity KEY: perimeter and area
123 ANS: 1
$x^{2}+y^{2}-12 y+36=20.25+36 \sqrt{56.25}=7.5$
$x^{2}+(y-6)^{2}=56.25$
PTS: 2 REF: 082219geo TOP: Equations of Circles
KEY: completing the square
ANS: 4 PTS: 2 REF: 062321geo TOP: Side Splitter Theorem ANS: 1
$\cos C=\frac{15}{17}$
$C \approx 28$
PTS: 2 REF: 012007geo TOP: Using Trigonometry to Find an Angle
ANS: 3

PTS: 2
REF: 062306geo TOP: Interior and Exterior Angles of Polygons

127 ANS: 2
slope of $\overline{O A}=\frac{4-0}{-3-0}=-\frac{4}{3} m_{\perp}=\frac{3}{4}$
PTS: 2 REF: 082223geo TOP: Chords, Secants and Tangents
KEY: radius drawn to tangent
128 ANS: $1 \quad$ PTS: 2
KEY: leg
129 ANS: 3 PTS: 2 REF: 062215geo TOP: Exterior Angle Theorem
130 ANS: 2
$24 \mathrm{ht}\left(\frac{0.75 \mathrm{in}^{3}}{\mathrm{ht}}\right)\left(\frac{0.323 \mathrm{lb}}{1 \mathrm{in}^{3}}\right)\left(\frac{\$ 3.68}{\mathrm{lb}}\right) \approx \$ 21.40$
PTS: 2 REF: 012306geo TOP: Density
131 ANS: 3 PTS: 2 REF: 062310geo TOP: Special Quadrilaterals
132 ANS: 2 PTS: 2 REF: 082204geo TOP: Special Quadrilaterals
133 ANS: 1
$\frac{9}{6}=\frac{3}{2}$
PTS: 2 REF: 061905geo TOP: Line Dilations
134 ANS: 2
$\tan 36=\frac{x}{8} \quad 5.8+1.5 \approx 7$

$$
x \approx 5.8
$$

PTS: 2 REF: 081915geo TOP: Using Trigonometry to Find a Side
135 ANS: 2
Create two congruent triangles by drawing $\overline{B D}$, which has a length of 8 . Each triangle has an area of $\frac{1}{2}(8)(3)=12$.

PTS: 2 REF: 012018geo TOP: Polygons in the Coordinate Plane
136 ANS: 3
$3-1=2$
$1-2=-1$
PTS: 2
137 ANS: 2
REF: 082317geo
TOP: Reflections
ANS: 2
$\frac{4}{x}=\frac{6}{9}$
$x=6$
PTS: 2 REF: 061915geo TOP: Similarity KEY: basic

ANS: 2
PTS: 2
REF: 061903geo TOP: Rotations of Two-Dimensional Objects
140
ANS: 3
$\sqrt{40^{2}-\left(\frac{64}{2}\right)^{2}}=24 \quad V=\frac{1}{3}(64)^{2} \cdot 24=32768$
PTS: 2 REF: 081921geo TOP: Volume KEY: pyramids
ANS: 4

$$
\sqrt{8^{2}+2^{2}} \times \sqrt{4^{2}+1^{2}}=\sqrt{68} \times \sqrt{17}=\sqrt{4} \sqrt{17} \times \sqrt{17}=2 \cdot 17=34
$$

PTS: 2
REF: 082214geo TOP: Polygons in the Coordinate Plane
ANS: 3
PTS: 2
REF: 062323geo TOP: Trapezoids
ANS: 2
PTS: 2
REF: 062301geo
TOP: Cross-Sections of Three-Dimensional Objects
144 ANS: 4
A: $(-3-3,4-5) \rightarrow(-6,-1) \rightarrow(-12,-2) \rightarrow(-12+3,-2+5)$
B: $(5-3,2-5) \rightarrow(2,-3) \rightarrow(4,-6) \rightarrow(4+3,-6+5)$
PTS: 2 REF: 012322geo TOP: Line Dilations
145 ANS: 3
Sine and cosine are cofunctions.
PTS: 2
REF: 062206geo TOP: Cofunctions
146 ANS: 4
$\sin x=\frac{10}{12}$

$$
x \approx 56
$$

PTS: 2
REF: 061922geo TOP: Using Trigonometry to Find an Angle
147 ANS: 2
$\frac{10}{x}=\frac{8}{6}$
$8 x=60$
$x=7.5$
PTS: 2 REF: 012402geo TOP: Side Splitter Theorem

148 ANS: 3
$\cos x=\frac{8}{25}$

$$
x \approx 71
$$

PTS: 2
ANS: 2
REF: 082303geo
TOP: Using Trigonometry to Find an Angle
ANS: 1 PTS: 2 REF: 082320geo TOP: Chords, Secants and Tangents
KEY: secants drawn from common point, length
151
ANS: 4
PTS: 2
REF: 082210geo TOP: Cofunctions
ANS: 4
PTS: 2
REF: 011905geo TOP: Chords, Secants and Tangents
KEY: inscribed
153 ANS: 3

PTS: 2
REF: 082315geo
TOP: Interior and Exterior Angles of Polygons
154 ANS: 4
PTS: 2
REF: 061901geo TOP: Compositions of Transformations
KEY: identify
155 ANS: 2
$\frac{1}{3}(36)(10)(2.7)=324$

PTS: 2 REF: 082312geo TOP: Density
156 ANS: 3
Since orientation is preserved, a reflection has not occurred.
PTS: 2 REF: 062205geo TOP: Identifying Transformations
KEY: graphics
157 ANS: 4
$-8+\frac{2}{3}(10--8)=-8+\frac{2}{3}(18)=-8+12=44+\frac{2}{3}(-2-4)=4+\frac{2}{3}(-6)=4-4=0$
PTS: 2
REF: 061919geo TOP: Directed Line Segments

158 ANS: 1
The slope of $3 x+2 y=12$ is $-\frac{3}{2}$, which is the opposite reciprocal of $\frac{2}{3}$.
PTS: 2 REF: 081811geo TOP: Parallel and Perpendicular Lines
KEY: identify perpendicular lines
159
ANS: 1
$\cos S=\frac{12.3}{13.6}$

$$
S \approx 25^{\circ}
$$

PTS: 2 REF: 062304geo TOP: Using Trigonometry to Find an Angle
160 ANS: 1
$5 x=12 \cdot 7 \quad 16.8+7=23.8$
$5 x=84$
$x=16.8$
PTS: 2 REF: 061911geo TOP: Side Splitter Theorem
161 ANS: 2
$\tan 11.87=\frac{x}{0.5(5280)}$

$$
x \approx 555
$$

PTS: 2 REF: 011913geo TOP: Using Trigonometry to Find a Side
162 ANS: 4 PTS: 2
KEY: intersecting chords, length
163
ANS: 3
PTS: 2
REF: 081922geo TOP: Chords, Secants and Tangents

KEY: basic
PTS: 2
REF: 082203geo TOP: Properties of Transformations

ANS: 2
Since $\overline{A D} \| \overline{B C}, \overparen{A B} \cong \overparen{C D} . \mathrm{m} \angle A C B=\frac{1}{2} \mathrm{~m} \overparen{A B}$
$\mathrm{m} \angle C D F=\frac{1}{2} \mathrm{~m} \overparen{C D}$
PTS: 2 REF: 012323geo TOP: Chords, Secants and Tangents
KEY: chords and tangents
166 ANS: 1
$\sin N=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{12}{20}$
PTS: 2 REF: 012307geo TOP: Trigonometric Ratios

167 ANS: 4
$\sin A=\frac{13}{16}$

$$
A \approx 54^{\circ}
$$

PTS: 2 REF: 082207geo TOP: Using Trigonometry to Find an Angle
168 ANS: 3
1) and 2) are wrong because the orientation of $\triangle L E T$ has changed, implying one reflection has occurred. The sequence in 4) moves $\triangle L E T$ back to Quadrant II.

PTS: 2 REF: 062218geo TOP: Compositions of Transformations
KEY: identify
169 ANS: 1

PTS: 2 REF: 082310geo TOP: Angle Side Relationship
170 ANS: 4
The slope of a line in standard form is $-\frac{A}{B}$ so the slope of this line is $\frac{3}{5}$ Perpendicular lines have slope that are the opposite and reciprocal of each other.

PTS: 2 REF: 012313geo TOP: Parallel and Perpendicular Lines
KEY: find slope of perpendicular line
171 ANS: 4 PTS: 2 REF: 062223geo TOP: Line Dilations
172 ANS: 2
$\frac{70}{360} \cdot 6^{2} \pi=7 \pi$

PTS: 2 REF: 082309geo TOP: Sectors
173 ANS: 1
A dilation preserves angle measure, so $\angle A \cong \angle C D E$.
PTS: 2
REF: 062203geo TOP: Trigonometric Ratios
174 ANS: 2
$90-57=33$
PTS: 2 REF: 061909geo TOP: Cofunctions
175 ANS: 2
$\sqrt{8^{2}+6^{2}}=10$ for one side
PTS: 2 REF: 011907geo TOP: Special Quadrilaterals

176 ANS: 3

1) $\frac{360}{3}=120$; 2) $\frac{360}{6}=60$; 3) $\frac{360}{8}=45$; 4) $\frac{360}{9}=40.120$ is not a multiple of 45 .

PTS: 2 REF: 062320geo TOP: Mapping a Polygon onto Itself
177 ANS: 4
Isosceles triangle theorem.
PTS: 2 REF: 062207geo TOP: Isosceles Triangle Theorem
178 ANS: 2
The line $x=-2$ will be tangent to the circle at $(-2,-4)$. A segment connecting this point and $(2,-4)$ is a radius of the circle with length 4.

PTS: 2 REF: 012020geo TOP: Equations of Circles
KEY: other
179 ANS: 3 PTS: 2 REF: 082212geo TOP: Line Dilations
180 ANS: 2
$\triangle A B C \sim \triangle B D C$
$\cos A=\frac{A B}{A C}=\frac{B D}{B C}$
PTS: 2 REF: 012023geo TOP: Trigonometric Ratios
181 ANS: 4
$\angle 6$ and $\angle 9$ are alternate interior angles; since congruent, $\ell \| m . \angle 9$ and $\angle 11$ are corresponding angles; since congruent, $n \| p$. Both pairs of opposite sides are parallel.

PTS: 2 REF: 082319geo TOP: Parallelograms
182 ANS: 1
$m_{A B}^{-}=\frac{-3-5}{-1-6}=\frac{-8}{-7}=\frac{8}{7}$
PTS: 2 REF: 062315geo TOP: Polygons in the Coordinate Plane
183 ANS: 1 PTS: 2 REF: 082211geo
TOP: Cross-Sections of Three-Dimensional Objects
184 ANS: 4

$$
\begin{aligned}
\left(\frac{-4+0}{2}, \frac{6+4}{2}\right) \rightarrow(-2,5) ; \frac{6-4}{-4-0}=\frac{2}{-4}=-\frac{1}{2} ; m_{\perp}=2 ; y-5 & =2(x+2) \\
y & =2 x+4+5 \\
y & =2 x+9
\end{aligned}
$$

PTS: 2 REF: 062324geo TOP: Parallel and Perpendicular Lines
KEY: perpendicular bisector

185 ANS: 3

PTS: 2 REF: 082215geo TOP: Interior and Exterior Angles of Polygons
186 ANS: 1
PTS: 2
REF: 062308geo TOP: Compositions of Transformations
ANS: 4
$\sin 18=\frac{8}{x}$

$$
x \approx 25.9
$$

PTS: 2
REF: 062316geo TOP: Using Trigonometry to Find a Side
188 ANS: 3
$4 x+3 x+13=90 \quad 4(11)<3(11)+13$

$$
\begin{array}{rlr}
7 x & =77 & 44<46 \\
x & =11
\end{array}
$$

PTS: 2 REF: 012021geo TOP: Cofunctions
189 ANS: 1
$\frac{1}{3}, \frac{3}{9}, \frac{\sqrt{10}}{\sqrt{90}}$
PTS: 2 REF: 082206geo TOP: Dilations
190 ANS: 2
$V=\frac{1}{3} \pi \cdot(2.5)^{2} \cdot 7.2 \cong 47.1$
PTS: 2 REF: 062303geo TOP: Volume KEY: cones
191 ANS: 4 PTS: 2 REF: 082301geo
TOP: Cross-Sections of Three-Dimensional Objects
192 ANS: 4

$$
\begin{aligned}
\frac{x}{10} & =\frac{12}{8} \quad 15+10=25 \\
x & =15
\end{aligned}
$$

PTS: 2 REF: 082314geo TOP: Side Splitter Theorem

193 ANS: 1
$\sin 10=\frac{x}{140}$

$$
x \approx 24
$$

PTS: 2 REF: 062217geo TOP: Using Trigonometry to Find a Side
194 ANS: 4
d) is SSA

PTS: 2 REF: 061914geo TOP: Triangle Congruency
195 ANS: 4
$\frac{18}{4.5}=4$

PTS: 2 REF: 011901geo TOP: Line Dilations
196 ANS: 1
2) 90°; 3) 360°; 4) 72°

PTS: 2
REF: 012311geo TOP: Mapping a Polygon onto Itself
197 ANS: 4
$\frac{360^{\circ}}{n}=36$

$$
n=10
$$

PTS: 2 REF: 082205geo TOP: Mapping a Polygon onto Itself
198 ANS: 2
$19.9=\pi d \quad \frac{4}{3} \pi\left(\frac{19.9}{2 \pi}\right)^{3} \approx 133$
$\frac{19.9}{\pi}=d$
PTS: 2 REF: 012310geo TOP: Volume KEY: spheres
199 ANS: 2

PTS: 2 REF: 062314geo TOP: Similarity KEY: basic
200 ANS: 3
$8 \cdot 15=16 \cdot 7.5$
PTS: 2 REF: 061913geo TOP: Chords, Secants and Tangents KEY: intersecting chords, length

201 ANS: 4
$2 x-1=16$

$$
x=8.5
$$

PTS: 2 REF: 011902geo TOP: Properties of Transformations
KEY: graphics
ANS: 4

$$
\frac{2}{4}=\frac{8}{x+2} 14+2=16
$$

$2 x+4=32$

$$
x=14
$$

PTS: 2 REF: 012024geo TOP: Side Splitter Theorem
ANS: 2 PTS: 2 REF: 012012geo TOP: Medians, Altitudes and Bisectors
204
ANS: 2
$V=\frac{1}{3}(8)^{2} \cdot 6=128$
PTS: 2 REF: 061906geo TOP: Volume KEY: pyramids
ANS: 4
$90-35=5555 \times 2=110$
PTS: 2 REF: 012015geo TOP: Properties of Transformations
KEY: graphics
206
ANS: 1

$\triangle A D C \cong \triangle B D C$ by SAS

PTS: 2
ANS: 4
ANS: 4
$x^{2}=10.2 \times 14.3$
$x \approx 12.1$
PTS: 2

REF: 082316geo
PTS: 2

TOP: Triangle Congruency
REF: 011921geo TOP: Triangles in the Coordinate Plane

REF: 012016geo
TOP: Similarity
KEY: leg

209 ANS: 4

PTS: 2 REF: 012305geo TOP: Interior and Exterior Angles of Triangles
210 ANS: 1
$\frac{1}{3}(4.5)^{2}(10)(0.676) \approx 45.6$
PTS: 2 REF: 062212geo TOP: Density
211 ANS: 2
$24^{2}=4 x \cdot 9 x 5 \cdot 4=20$
$576=36 x^{2}$
$16=x^{2}$
$4=x$

PTS: 2 REF: 012312geo TOP: Chords, Secants and Tangents
KEY: secant and tangent drawn from common point, length
212 ANS: 1
$y=3 x+4, m=3, m_{\perp}=-\frac{1}{3}$
PTS: 2 REF: 012405geo TOP: Parallel and Perpendicular Lines
KEY: identify perpendicular lines
213 ANS: 1
The lengths of the sides of a triangle remain the same after all rotations and reflections because rotations and reflections are rigid motions which preserve distance.

PTS: 2 REF: 012301geo TOP: Properties of Transformations
KEY: graphics
214 ANS: 4
PTS: 2
REF: 012019geo
TOP: Cross-Sections of Three-Dimensional Objects
215 ANS: 3
$180-(48+66)=180-114=66$
PTS: 2
REF: 012001geo TOP: Lines and Angles

216 ANS: 2

$$
\begin{aligned}
18^{2} & =12(x+12) \\
324 & =12(x+12) \\
27 & =x+12 \\
x & =15
\end{aligned}
$$

PTS: 2 REF: 081920geo TOP: Similarity KEY: leg
217 ANS: 1
$\frac{6.5}{10.5}=\frac{5.2}{x}$

$$
x=8.4
$$

PTS: 2 REF: 012006geo TOP: Trapezoids
218 ANS: 2
$180-40-95=45$
PTS: 2 REF: 082201geo TOP: Properties of Transformations
KEY: graphics
219 ANS: 3
$-9+\frac{1}{3}(9--9)=-9+\frac{1}{3}(18)=-9+6=-38+\frac{1}{3}(-4-8)=8+\frac{1}{3}(-12)=8-4=4$
PTS: 2 REF: 081903geo TOP: Directed Line Segments
220 ANS: 3 PTS: 2 REF: 061924geo TOP: Special Quadrilaterals
221 ANS: 4
$\frac{360}{6}=60$ and 300 is a multiple of 60.
PTS: 2 REF: 082306geo TOP: Mapping a Polygon onto Itself
222 ANS: 4
$-5+\frac{3}{4}(7--5)=-5+\frac{3}{4}(12)=-5+9=43+\frac{3}{4}(-5-3)=3+\frac{3}{4}(-8)=3-6=-3$
PTS: 2 REF: 082302geo TOP: Directed Line Segments
223 ANS: 4
$\tan A=\frac{\text { opposite }}{\text { adjacent }}=\frac{15}{8}$
PTS: 2
REF: 011917geo TOP: Trigonometric Ratios

Geometry Multiple Choice Regents Exam Questions
 Answer Section

224 ANS: 1
$24 x=10^{2}$
$24 x=100$
$x \approx 4.2$
PTS: 2 REF: 061823geo TOP: Similarity KEY: leg
225 ANS: 1
PTS: 2
REF: 011716geo TOP: Special Quadrilaterals
226 ANS: 2
$V=\frac{1}{3}\left(\frac{36}{4}\right)^{2} \cdot 15=405$
PTS: 2
REF: 011822geo TOP: Volume
KEY: pyramids
227 ANS: 1
$2 x+4+46=90$

$$
\begin{aligned}
2 x & =40 \\
x & =20
\end{aligned}
$$

PTS: 2 REF: 061808geo TOP: Cofunctions
228 ANS: 4
$\frac{360^{\circ}}{10}=36^{\circ} 252^{\circ}$ is a multiple of 36°
PTS: 2 REF: 011717geo TOP: Mapping a Polygon onto Itself
229 ANS: 2
$\angle B=180-(82+26)=72 ; \angle D E C=180-26=154 ; \angle E D B=360-(154+26+72)=108 ; \angle B D F=\frac{108}{2}=54 ;$
$\angle D F B=180-(54+72)=54$
PTS: 2
ANS: 2
ANS: 1
$6^{2}=4 x$
$x=9$

PTS: 2
232 ANS: 2
REF: 012412geo
TOP: Similarity
KEY: altitude
KEY: identify

REF: 061710geo
PTS: 2
TOP: Interior and Exterior Angles of Triangles
REF: 012409geo TOP: Dilations

REF: 061701geo TOP: Compositions of Transformations

233 ANS: 4
$4 \sqrt{(-1-2)^{2}+(2-3)^{2}}=4 \sqrt{10}$
PTS: 2 REF: 081808geo TOP: Polygons in the Coordinate Plane
234 ANS: 4
$\frac{1}{2}(360-268)=46$
PTS: 2
REF: 061704geo
TOP: Chords, Secants and Tangents
KEY: inscribed
235 ANS: 3
PTS: 2
REF: 061706geo TOP: Line Dilations
236 ANS: 3

$$
\begin{aligned}
x(x-6) & =4^{2} \\
x^{2}-6 x-16 & =0 \\
(x-8)(x+2) & =0 \\
x & =8
\end{aligned}
$$

PTS: 2
237 ANS: 4
238 ANS: 1
239 ANS: 4
$\frac{6.6}{x}=\frac{4.2}{5.25}$
$4.2 x=34.65$

$$
x=8.25
$$

PTS: 2
240 ANS: 1
241 ANS: 1

B: $(4-3,3-4) \rightarrow(1,-1) \rightarrow(2,-2) \rightarrow(2+3,-2+4)$
C: $(2-3,1-4) \rightarrow(-1,-3) \rightarrow(-2,-6) \rightarrow(-2+3,-6+4)$
PTS: 2
243 ANS: 4

REF: 011713geo
PTS: 2

REF: 081807geo
TOP: Similarity
KEY: altitude
PTS: 2
PTS: 2

REF: 081716geo TOP: Midsegments
REF: 061707geo TOP: Mapping a Polygon onto Itself

TOP: Line Dilations
REF: 081801geo TOP: Lines and Angles

244 ANS: 2
$m=\frac{3}{2} \quad . \quad 1=-\frac{2}{3}(-6)+b$
$m_{\perp}=-\frac{2}{3} \quad \begin{aligned} 1 & =4+b \\ -3 & =b\end{aligned}$
PTS: 2 REF: 061719geo TOP: Parallel and Perpendicular Lines
KEY: write equation of perpendicular line
245 ANS: 1
Parallel chords intercept congruent arcs. $\frac{180-130}{2}=25$
PTS: 2 REF: 081704geo TOP: Chords, Secants and Tangents
KEY: parallel lines
246
ANS: 4 PTS: 2 REF: 081803geo TOP: Rotations of Two-Dimensional Objects
ANS: 2
$\tan \theta=\frac{2.4}{x}$

$$
\begin{gathered}
\frac{3}{7}=\frac{2.4}{x} \\
x=5.6
\end{gathered}
$$

PTS: 2 REF: 011707geo TOP: Using Trigonometry to Find a Side
248 ANS: 3
$\sqrt{(-5)^{2}+12^{2}}=\sqrt{169} \sqrt{11^{2}+(2 \sqrt{12})^{2}}=\sqrt{121+48}=\sqrt{169}$
PTS: 2 REF: 011722geo TOP: Circles in the Coordinate Plane
249 ANS: 4
$\frac{36}{45} \neq \frac{15}{18}$
$\frac{4}{5} \neq \frac{5}{6}$
PTS: 2 REF: 081709geo STA: G.G. 44 TOP: Similarity Proofs
250 ANS: 4
PTS: 2
REF: 061813geo
TOP: Special Quadrilaterals
251
ANS: 3
$y=m x+b$
$2=\frac{1}{2}(-2)+b$
$3=b$
PTS: 2 REF: 011701geo TOP: Parallel and Perpendicular Lines
KEY: write equation of parallel line

252 ANS: 1
$-8+\frac{3}{8}(16--8)=-8+\frac{3}{8}(24)=-8+9=1-2+\frac{3}{8}(6--2)=-2+\frac{3}{8}(8)=-2+3=1$
PTS: 2 REF: 081717geo TOP: Directed Line Segments
253 ANS: 4
PTS: 2
REF: 011808geo
TOP: Analytical Representations of Transformations KEY: basic
254
ANS: 1
$V=\frac{1}{3} \pi(4)^{2}(6)=32 \pi$
PTS: 2
REF: 061718geo TOP: Rotations of Two-Dimensional Objects
255 ANS: 2
$6 \cdot 6=x(x-5)$

$$
\begin{aligned}
36 & =x^{2}-5 x \\
0 & =x^{2}-5 x-36 \\
0 & =(x-9)(x+4) \\
x & =9
\end{aligned}
$$

PTS: 2 REF: 061708geo TOP: Chords, Secants and Tangents
KEY: intersecting chords, length
256 ANS: 2
$x^{2}=12(12-8)$
$x^{2}=48$
$x=4 \sqrt{3}$

	PTS: 2	REF: 011823geo	TOP: Similarity	KEY: leg
257	ANS: 3	PTS: 2	REF: 081805geo	
	TOP: Cross-Sections of Three-Dimensional Objects			
258	ANS: 3			
	$6 \cdot 3^{2}=54-12 \cdot 3=36$			

PTS: 2 REF: 081823geo TOP: Dilations
259 ANS: 3 PTS: 2 REF: 011714geo TOP: Trigonometric Ratios
260 ANS: 2
$\frac{x}{x+3}=\frac{14}{21} \quad 14-6=8$

$$
\begin{aligned}
21 x & =14 x+42 \\
7 x & =42 \\
x & =6
\end{aligned}
$$

PTS: 2
REF: 081812geo TOP: Side Splitter Theorem

261 ANS: 3
$2.5 \times 1.25 \times(27 \times 12)+\frac{1}{2} \pi(1.25)^{2}(27 \times 12) \approx 1808$
PTS: 2 REF: 061723geo TOP: Volume KEY: compositions
262 ANS: 2
$m=\frac{3}{2}$
$m_{\perp}=-\frac{2}{3}$
PTS: 2 REF: 061812geo TOP: Parallel and Perpendicular Lines
KEY: write equation of perpendicular line
263 ANS: 1
$x^{2}+y^{2}-12 y+36=-20+36$

$$
x^{2}+(y-6)^{2}=16
$$

PTS: 2 REF: 061712geo TOP: Equations of Circles
KEY: completing the square
264 ANS: 3 PTS: 2 REF: 061816geo TOP: Rotations of Two-Dimensional Objects
265 ANS: 1
$20 \cdot 12 \cdot 45+\frac{1}{2} \pi(10)^{2}(45) \approx 17869$
PTS: 2 REF: 061807geo TOP: Volume KEY: compositions
266 ANS: 2
(1) AA; (3) SAS; (4) SSS. NYSED has stated that all students should be awarded credit regardless of their answer to this question.

PTS: 2 REF: 061724geo TOP: Similarity KEY: basic
267 ANS: 4
PTS: 2
REF: 061803geo
TOP: Identifying Transformations
KEY: graphics
268 ANS: 3
$\frac{24}{40}=\frac{15}{x}$
$24 x=600$

$$
x=25
$$

PTS: 2 REF: 011813geo TOP: Side Splitter Theorem
269 ANS: 1
$\frac{64}{4}=1616^{2}=256 \quad 2 w+2(w+2)=6415 \times 17=255 \quad 2 w+2(w+4)=64 \quad 14 \times 18=252 \quad 2 w+2(w+6)=64$
$w=15 \quad w=14 \quad w=13$
$13 \times 19=247$
PTS: 2 REF: 011708geo TOP: Area of Polygons

270 ANS: 4
Opposite angles of an inscribed quadrilateral are supplementary.
PTS: 2 REF: 011821geo TOP: Inscribed Quadrilaterals
271 ANS: 1
$x^{2}+y^{2}-6 y+9=-1+9$
$x^{2}+(y-3)^{2}=8$
PTS: 2 REF: 011718geo TOP: Equations of Circles
KEY: completing the square
272 ANS: 4
$\sin 16.5=\frac{8}{x}$

$$
x \approx 28.2
$$

PTS: 2
REF: 081806ai
TOP: Using Trigonometry to Find a Side
273 ANS: 4
PTS: 2
REF: 081810geo TOP: Triangle Proofs
KEY: statements
274 ANS: 1
$\cos x=\frac{12}{13}$
$x \approx 23$
PTS: 2 REF: 081809ai TOP: Using Trigonometry to Find an Angle
275 ANS: 2
$\cos B=\frac{17.6}{26}$
$B \approx 47$
PTS: 2 REF: 061806geo TOP: Using Trigonometry to Find an Angle
276 ANS: 1
Distance and angle measure are preserved after a reflection and translation.
PTS: 2
REF: 081802geo TOP: Properties of Transformations
KEY: basic
277 ANS: 4
PTS: 2
REF: 081702geo TOP: Identifying Transformations
KEY: basic
278 ANS: 3
$\frac{7-1}{0-2}=\frac{6}{-2}=-3$ The diagonals of a rhombus are perpendicular.
PTS: 2 REF: 011719geo TOP: Quadrilaterals in the Coordinate Plane

279 ANS: 3
$4 \sqrt{(-1--3)^{2}+(5-1)^{2}}=4 \sqrt{20}$
PTS: 2 REF: 081703geo TOP: Polygons in the Coordinate Plane
ANS: 1 PTS: 2 REF: 011814geo TOP: Line Dilations
281 ANS: 2

$$
\begin{aligned}
x^{2}+y^{2}-6 x+2 y & =6 \\
x^{2}-6 x+9+y^{2}+2 y+1 & =6+9+1 \\
(x-3)^{2}+(y+1)^{2} & =16
\end{aligned}
$$

PTS: 2
REF: 011812geo
TOP: Equations of Circles
KEY: completing the square
ANS: 3 PTS: 2

ANS: 4 PTS: 2
ANS: $3 \quad$ PTS: 2
REF: 061802geo TOP: Lines and Angles

ANS: 3
$\frac{360^{\circ}}{5}=72^{\circ} 216^{\circ}$ is a multiple of 72°
PTS: 2 REF: 061819geo TOP: Mapping a Polygon onto Itself
286 ANS: 2

PTS: 2 REF: 081814geo TOP: Chords, Secants and Tangents
KEY: tangents drawn from common point, length
287 ANS: 3
$\frac{x}{6.3}=\frac{3}{5} \quad \frac{y}{9.4}=\frac{6.3}{6.3+3.78}$
$x=3.78 \quad y \approx 5.9$
PTS: 2 REF: 081816geo TOP: Side Splitter Theorem

288 ANS: 2
$x^{2}=3 \cdot 18$
$x=\sqrt{3 \cdot 3 \cdot 6}$
$x=3 \sqrt{6}$
PTS: 2 REF: 081712geo TOP: Chords, Secants and Tangents
KEY: secant and tangent drawn from common point, length
289 ANS: 1
$82.8=\frac{1}{3}(4.6)(9) h$

$$
h=6
$$

PTS: 2 REF: 061810geo TOP: Volume KEY: pyramids
290 ANS: 4
$5+\frac{2}{5}(-10-5)=5+\frac{2}{5}(-15)=5-6=-17+\frac{2}{5}(-8-7)=7+\frac{2}{5}(-15)=7-6=1$
PTS: 2 REF: 012410geo TOP: Directed Line Segments
291 ANS: 4
$\frac{360^{\circ}}{10}=36^{\circ} 252^{\circ}$ is a multiple of 36°
PTS: 2 REF: 081722geo TOP: Mapping a Polygon onto Itself
292 ANS: 4

$$
\begin{aligned}
\frac{2}{4} & =\frac{9-x}{x} \\
36-4 x & =2 x \\
x & =6
\end{aligned}
$$

PTS: 2
REF: 061705geo TOP: Side Splitter Theorem
293 ANS: 1
$84=\frac{1}{3} \cdot s^{2} \cdot 7$
$6=s$
PTS: 2
REF: 061716geo
TOP: Volume
KEY: pyramids
ANS: 4
PTS: 2
REF: 011803geo
TOP: Identifying Transformations
KEY: graphics
ANS: 1
$\cos S=\frac{60}{65}$
$S \approx 23$
PTS: 2 REF: 061713geo TOP: Using Trigonometry to Find an Angle

296 ANS: 2
$\overline{A B}=10$ since $\triangle A B C$ is a 6-8-10 triangle. $6^{2}=10 x$
$3.6=x$

PTS: 2 REF: 081820geo TOP: Similarity KEY: leg
297 ANS: 4
$\sin 71=\frac{x}{20}$ $x=20 \sin 71 \approx 19$

PTS: 2 REF: 061721geo TOP: Using Trigonometry to Find a Side
KEY: without graphics
298 ANS: 4 PTS: 2 REF: 081813geo TOP: Parallelograms
299 ANS: 1
$m=\frac{-4}{-6}=\frac{2}{3}$
$m_{\perp}=-\frac{3}{2}$

PTS: 2 REF: 011820geo TOP: Parallel and Perpendicular Lines
KEY: write equation of perpendicular line
300 ANS: 1
$\sin 32=\frac{O}{129.5}$
$O \approx 68.6$
PTS: 2 REF: 011804geo TOP: Using Trigonometry to Find a Side
301 ANS: 1
$-8+\frac{3}{5}(7--8)=-8+9=17+\frac{3}{5}(-13-7)=7-12=-5$

PTS: 2
REF: 081815geo TOP: Directed Line Segments
302
ANS: 4
$\frac{1}{3.5}=\frac{x}{18-x}$
$3.5 x=18-x$
$4.5 x=18$

$$
x=4
$$

PTS: 2 REF: 081707geo TOP: Side Splitter Theorem

303 ANS: 1
$360-(82+104+121)=53$
PTS: 2 REF: 011801geo TOP: Properties of Transformations
KEY: graph
304 ANS: 4
$\frac{300}{360} \cdot 8^{2} \pi=\frac{160 \pi}{3}$

PTS: 2 REF: 011721geo TOP: Sectors
305 ANS: 2
PTS: 2
REF: 061720geo TOP: Parallelograms
306
ANS: 4
$\sin 30=\frac{x}{75}$
$x=37.5$
PTS: 2
REF: 012411geo
TOP: Using Trigonometry to Find a Side
ANS: 4
PTS: 2
REF: 081822geo TOP: Medians, Altitudes and Bisectors
ANS: 2
$-4+\frac{2}{5}(6--4)=-4+\frac{2}{5}(10)=-4+4=05+\frac{2}{5}(20-5)=5+\frac{2}{5}(15)=5+6=11$
PTS: 2
REF: 061715geo TOP: Directed Line Segments
309 ANS: 3
$\frac{x+72}{2}=58$
$x+72=116$
$x=44$
PTS: 2 REF: 061817geo TOP: Chords, Secants and Tangents
KEY: intersecting chords, angle
310 ANS: 4
$C=12 \pi \frac{120}{360}(12 \pi)=\frac{1}{3}(12 \pi)$
PTS: 2 REF: 061822geo TOP: Arc Length KEY: arc length
311 ANS: 1
$3+\frac{2}{5}(8-3)=3+\frac{2}{5}(5)=3+2=55+\frac{2}{5}(-5-5)=5+\frac{2}{5}(-10)=5-4=1$

PTS: 2
REF: 011720geo TOP: Directed Line Segments
312 ANS: 2
PTS: 2
REF: 012416geo TOP: Line Dilations
ANS: 4
PTS: 2
REF: 011819geo TOP: Special Quadrilaterals

314 ANS: 4

PTS: 2 REF: 081711geo TOP: Exterior Angle Theorem
315 ANS: 2
$\frac{\frac{512 \pi}{3}}{\left(\frac{32}{2}\right)^{2} \pi} \cdot 2 \pi=\frac{4 \pi}{3}$

PTS: 2 REF: 081723geo TOP: Sectors
316 ANS: 1
Since a dilation preserves parallelism, the line $4 y=3 x+7$ and its image $3 x-4 y=9$ are parallel, with slopes of $\frac{3}{4}$.
PTS: 2 REF: 081710geo TOP: Line Dilations
317 ANS: 2 PTS: 2 REF: 011802geo TOP: Parallelograms
318 ANS: 2

PTS: 2 REF: 011818geo TOP: Lines and Angles
319 ANS: 1
Illinois: $\frac{12830632}{231.1} \approx 55520$ Florida: $\frac{18801310}{350.6} \approx 53626$ New York: $\frac{19378102}{411.2} \approx 47126$ Pennsylvania:
$\frac{12702379}{283.9} \approx 44742$
PTS: 2
REF: 081720geo TOP: Density

320 ANS: 4

$$
\begin{aligned}
\frac{5}{7} & =\frac{x}{x+5} 12 \frac{1}{2}+5=17 \frac{1}{2} \\
5 x+25 & =7 x \\
2 x & =25 \\
x & =12 \frac{1}{2}
\end{aligned}
$$

PTS: 2 REF: 061821geo TOP: Side Splitter Theorem
321 ANS: 2

$$
\begin{aligned}
8(x+8) & =6(x+18) \\
8 x+64 & =6 x+108 \\
2 x & =44 \\
x & =22
\end{aligned}
$$

PTS: 2 REF: 011715geo TOP: Chords, Secants and Tangents KEY: secants drawn from common point, length
322 ANS: 3
$\frac{s_{L}}{s_{S}}=\frac{6 \theta}{4 \theta}=1.5$
PTS: 2 REF: 011824geo TOP: Arc Length KEY: arc length
323 ANS: 3
$6 x-40+x+20=180-3 x \mathrm{~m} \angle B A C=180-(80+40)=60$

$$
\begin{aligned}
10 x & =200 \\
x & =20
\end{aligned}
$$

PTS: 2 REF: 011809geo TOP: Exterior Angle Theorem
324 ANS: 4
$9 \cdot 3=27,27 \cdot 4=108$
PTS: 2
REF: 061805geo TOP: Dilations
325 ANS: 2
$\frac{136-x}{2}=44$
$136-x=88$
$48=x$
PTS: 2
REF: 012414geo TOP: Chords, Secants and Tangents
KEY: secants drawn from common point, angle
326
ANS: 1
PTS: 2
REF: 081804geo TOP: Compositions of Transformations
KEY: grids

327
328
ANS: 4
PTS: 2
REF: 011704geo TOP: Midsegments
ANS: 3
$\triangle C F B \sim \triangle C A D \quad \frac{C B}{C F}=\frac{C D}{C A}$

$$
\begin{aligned}
\frac{x}{21.6} & =\frac{7.2}{9.6} \\
x & =16.2
\end{aligned}
$$

PTS: 2 REF: 061804geo TOP: Similarity KEY: basic
329 ANS: 3 PTS: 2 REF: 011710geo TOP: Compositions of Transformations
KEY: identify
330
ANS:
PTS: 2
REF: 011805geo
TOP: Cross-Sections of Three-Dimensional Objects
331 ANS: 3

$$
\begin{aligned}
v=\pi r^{2} h & \text { (1) } 6^{2} \cdot 10=360 \\
150 \pi=\pi r^{2} h & \text { (2) } 10^{2} \cdot 6=600 \\
150=r^{2} h & \text { (3) } 5^{2} \cdot 6=150 \\
& \text { (4) } 3^{2} \cdot 10=900
\end{aligned}
$$

PTS: 2 REF: 081713geo TOP: Rotations of Two-Dimensional Objects
332 ANS: 3

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
54.45 \pi & =\frac{1}{3} \pi(3.3)^{2} h \\
h & =15
\end{aligned}
$$

PTS: 2 REF: 011807geo TOP: Volume KEY: cones

333 ANS: 2

$\triangle A C B \sim \triangle A E D$
PTS: 2 REF: 061811geo TOP: Side Splitter Theorem
334 ANS: 1
$V=\frac{1}{3} \pi\left(\frac{1.5}{2}\right)^{2}\left(\frac{4}{2}\right) \approx 1.2$
PTS: 2 REF: 011724geo TOP: Volume KEY: cones
335 ANS: 3
The x-axis and line $x=4$ are lines of symmetry and $(4,0)$ is a point of symmetry.
PTS: 2
REF: 081706geo TOP: Mapping a Polygon onto Itself

336 ANS: 1
$\sin 32=\frac{x}{6.2}$

$$
x \approx 3.3
$$

PTS: 2 REF: 081719geo TOP: Using Trigonometry to Find a Side
337 ANS: 2
The line $y=-3 x+6$ passes through the center of dilation, so the dilated line is not distinct.
PTS: 2 REF: 061824geo TOP: Line Dilations
338 ANS: 4

PTS: 2 REF: 081708geo TOP: Interior and Exterior Angles of Polygons
ANS: 4 PTS: 2 REF: 011810geo TOP: Rotations of Two-Dimensional Objects
ANS: 2
$-4+\frac{2}{5}(1--4)=-4+\frac{2}{5}(5)=-4+2=-2-2+\frac{2}{5}(8--2)=-2+\frac{2}{5}(10)=-2+4=2$
PTS: 2 REF: 061814geo TOP: Directed Line Segments
341 ANS: 4
The segment's midpoint is the origin and slope is -2 . The slope of a perpendicular line is $\frac{1}{2}$. $\quad y=\frac{1}{2} x+0$

$$
\begin{array}{r}
2 y=x \\
2 y-x=0
\end{array}
$$

PTS: 2
REF: 081724geo TOP: Parallel and Perpendicular Lines
KEY: perpendicular bisector
342
ANS: 3
PTS: 2
ANS: 2
PTS: 2
REF: 011815geo TOP: Mapping a Polygon onto Itself
REF: 061709geo TOP: Triangle Proofs
KEY: statements
344 ANS: 2
$\frac{30}{360}(5)^{2}(\pi) \approx 6.5$
PTS: 2 REF: 081818geo TOP: Sectors

345 ANS: 4
$x^{2}+4 x+4+y^{2}-8 y+16=-16+4+16$

$$
(x+2)^{2}+(y-4)^{2}=4
$$

PTS: 2 REF: 081821geo TOP: Equations of Circles
KEY: completing the square
346 ANS: 1
NYSED accepts either (1) or (3) as a correct answer. Statement III is not true if A, B, A^{\prime} and B^{\prime} are collinear.
PTS: 2 REF: 061714geo TOP: Compositions of Transformations
KEY: basic
347 ANS: 3
PTS: 2 REF: 012413geo TOP: Special Quadrilaterals
348 ANS: 3
$\cos 40=\frac{14}{x}$
$x \approx 18$

PTS: 2 REF: 011712geo TOP: Using Trigonometry to Find a Side
349 ANS: 1
$x=-5+\frac{1}{3}(4--5)=-5+3=-2 \quad y=2+\frac{1}{3}(-10-2)=2-4=-2$
PTS: 2 REF: 011806geo TOP: Directed Line Segments
350 ANS: 2
$4 \times 4 \times 6-\pi(1)^{2}(6) \approx 77$
PTS: 2 REF: 011711geo TOP: Volume KEY: compositions
351 ANS: 3
NYSED has stated that all students should be awarded credit regardless of their answer to this question.

	PTS: 2	REF: 061722geo	TOP: Triangle Congruency
352	ANS: 2	PTS: 2	REF: 081701geo
TOP: Cross-Sections of Three-Dimensional Objects			
	TOS:		
ANS: 4			
	AA		

PTS: 2 REF: 061809geo TOP: Similarity Proofs
354 ANS: 1
PTS: 2
REF: 061801geo TOP: Properties of Transformations
KEY: graphics
355 ANS: 1

$$
\tan x=\frac{1}{12}
$$

$$
x \approx 4.76
$$

PTS: 2 REF: 081715geo TOP: Using Trigonometry to Find an Angle

356
ANS: 4
PTS: 2
REF: 012415geo
TOP: Cross-Sections of Three-Dimensional Objects
ANS: 4
PTS: 2
REF: 011817geo TOP: Similarity
KEY: basic
358 ANS: 4
PTS: 2
REF: 011723geo
TOP: Cross-Sections of Three-Dimensional Objects
359 ANS: 2
$V=\frac{1}{3}\left(\frac{60}{12}\right)^{2}\left(\frac{84}{12}\right) \approx 58$

PTS: 2 REF: 081819geo TOP: Volume KEY: pyramids 360 ANS: 1
M is a centroid, and cuts each median 2:1.
PTS: 2 REF: 061818geo TOP: Centroid, Orthocenter, Incenter and Circumcenter
361 ANS: 3
In (1) and (2), $A B C D$ could be a rectangle with non-congruent sides. (4) is not possible
PTS: 2
REF: 081714geo TOP: Special Quadrilaterals
362 ANS: 4
363 ANS: 3
PTS: 2
REF: 061711geo TOP: Special Quadrilaterals
PTS: 2 REF: 061703geo TOP: Cofunctions
364 ANS: 2
PTS: 2
REF: 011702geo TOP: Compositions of Transformations
KEY: grids
365 ANS: 2
$2 x+7+4 x-7=90$
$6 x=90$
$x=15$
PTS: 2
REF: 081824geo
TOP: Cofunctions
366 ANS: 1

$$
(12 \cdot 11)-\left(\frac{1}{2}(12 \cdot 4)+\frac{1}{2}(7 \cdot 9)+\frac{1}{2}(11 \cdot 3)\right)=60
$$

PTS: 2
REF: 061815geo
TOP: Polygons in the Coordinate Plane
REF: 011706geo TOP: Identifying Transformations

PTS: 2
KEY: basic

368 ANS: 4
$40-x+3 x=90$

$$
\begin{aligned}
2 x & =50 \\
x & =25
\end{aligned}
$$

PTS: 2 REF: 081721geo TOP: Cofunctions
369 ANS: 2
$(x-5)^{2}+(y-2)^{2}=16$
$x^{2}-10 x+25+y^{2}-4 y+4=16$

$$
x^{2}-10 x+y^{2}-4 y=-13
$$

PTS: 2
REF: 061820geo TOP: Equations of Circles
KEY: write equation, given graph
370 ANS: 2
$12^{2}=9 \cdot 16$
$144=144$
PTS: 2 REF: 081718geo TOP: Similarity KEY: leg
371 ANS: 4

PTS: 2 REF: 061717geo TOP: Interior and Exterior Angles of Triangles
372 ANS: 3

PTS: 2
REF: 082217geo TOP: Triangle Proofs
KEY: statements

Geometry Multiple Choice Regents Exam Questions

Answer Section

373 ANS: 4
PTS: 2
REF: 011611geo TOP: Properties of Transformations
KEY: graphics
374 ANS: 3

1) only proves AA; 2) need congruent legs for HL; 3) SAS; 4) only proves product of altitude and base is equal

PTS: 2
REF: 061607geo TOP: Triangle Proofs
KEY: statements
375 ANS: 1
$\frac{360^{\circ}}{45^{\circ}}=8$
PTS: 2
376 ANS: 2
REF: 061510geo
TOP: Mapping a Polygon onto Itself
KEY: inscribed
ANS: 1
PTS: 2
REF: 061610geo TOP: Chords, Secants and Tangents

KEY: altitude
378 ANS: 3
$\frac{x}{360} \cdot 3^{2} \pi=2 \pi \quad 180-80=100$

$$
x=80 \quad \frac{180-100}{2}=40
$$

PTS: 2 REF: 011612geo TOP: Sectors
379 ANS: 1
$m_{\overline{R T}}=\frac{5--3}{4--2}=\frac{8}{6}=\frac{4}{3} m_{\overline{S T}}=\frac{5-2}{4-8}=\frac{3}{-4}=-\frac{3}{4}$ Slopes are opposite reciprocals, so lines form a right angle.
PTS: 2 REF: 011618geo TOP: Triangles in the Coordinate Plane
380 ANS: 3 PTS: 2 REF: 081613geo
TOP: Cross-Sections of Three-Dimensional Objects
381 ANS: 4 PTS: 2 REF: 081611geo TOP: Lines and Angles
382
ANS:
PTS: 2
REF: 081505geo TOP: Mapping a Polygon onto Itself
PTS: 2 REF: 081622geo TOP: Triangle Proofs
KEY: statements
384 ANS: 1 PTS: 2 REF: 081603geo TOP: Rotations of Two-Dimensional Objects

385 ANS: 4

PTS: 2 REF: 012421geo TOP: Lines and Angles
386 ANS: 2
$14 \times 16 \times 10=2240 \frac{2240-1680}{2240}=0.25$
PTS: 2 REF: 011604geo TOP: Volume KEY: prisms
387 ANS: 4
The slope of $\overline{B C}$ is $\frac{2}{5}$. Altitude is perpendicular, so its slope is $-\frac{5}{2}$.
PTS: 2
388 ANS: 4
REF: 061614geo TOP: Triangles in the Coordinate Plane
KEY: compositions
389 ANS: 2
$\frac{12}{4}=\frac{36}{x}$
$12 x=144$

$$
x=12
$$

PTS: 2
390 ANS: 3
REF: 061621geo
TOP: Side Splitter Theorem
KEY: inscribed
391 ANS: 4
$3 \times 6=18$
PTS: 2
REF: 061602geo
TOP: Line Dilations
392
ANS: 1
KEY: grids
393 ANS: 2
PTS: 2
REF: 081605geo TOP: Rotations
PTS: 2
PTS: 2
REF: 012420geo TOP: Special Quadrilaterals
REF: 061512geo TOP: Cofunctions

395 ANS: 2
$h^{2}=30 \cdot 12$
$h^{2}=360$
$h=6 \sqrt{10}$
PTS: 2 REF: 061613geo TOP: Similarity KEY: altitude
396 ANS: 2
397 ANS: 1
PTS: 2 REF: 011610geo TOP: Line Dilations
PTS: 2 REF: 081504geo TOP: Cofunctions
398 ANS: 1
The other statements are true only if $\overline{A D} \perp \overline{B C}$.
PTS: 2 REF: 081623geo TOP: Chords, Secants and Tangents
KEY: inscribed
399
400
ANS: 3
$\cos A=\frac{9}{14}$

$$
A \approx 50^{\circ}
$$

PTS: 2 REF: 011616geo TOP: Using Trigonometry to Find an Angle
ANS: 1
$m=-\frac{2}{3} \quad 1=\left(-\frac{2}{3}\right) 6+b$
$1=-4+b$
$5=b$
PTS: 2 REF: 081510geo TOP: Parallel and Perpendicular Lines
KEY: write equation of parallel line
402 ANS: 3
(3) is AAS, which proves congruency. (1) is AAA, (2) is SSA and (4) is AS.

PTS: 2 REF: 012422geo TOP: Triangle Congruency
403 ANS: 3
$5 \cdot \frac{10}{4}=\frac{50}{4}=12.5$

PTS: 2 REF: 081512geo TOP: Chords, Secants and Tangents
KEY: common tangents

404 ANS: 1
$V=\frac{\frac{4}{3} \pi\left(\frac{10}{2}\right)^{3}}{2} \approx 261.8 \cdot 62.4=16,336$

PTS: 2 REF: 081516geo TOP: Density
405 ANS: 3
$\frac{60}{360} \cdot 8^{2} \pi=\frac{1}{6} \cdot 64 \pi=\frac{32 \pi}{3}$
PTS: 2 REF: 061624geo TOP: Sectors
406 ANS: 3

1) $\frac{12}{9}=\frac{4}{3}$ 2) AA 3) $\frac{32}{16} \neq \frac{8}{2}$ 4) SAS

PTS: 2 REF: 061605geo TOP: Similarity KEY: basic
407 ANS: 4
$\frac{12}{6.1 x-6.5}=\frac{5}{1.4 x+3} \quad 6.1(5)-6.5=24$
$16.8 x+36=30.5 x-32.5$

$$
\begin{aligned}
68.5 & =13.7 x \\
5 & =x
\end{aligned}
$$

PTS: 2 REF: 062211geo TOP: Similarity KEY: basic
408 ANS: 1
Alternate interior angles
PTS: 2 REF: 061517geo TOP: Lines and Angles
409 ANS: 3
$\sqrt{20^{2}-10^{2}} \approx 17.3$
PTS: 2
REF: 081608geo
TOP: 30-60-90 Triangles
410 ANS: 2
PTS: 2
REF: 081501geo TOP: Special Quadrilaterals
PTS: 2 REF: 081515geo TOP: Inscribed Quadrilaterals
411 ANS: 3
$\frac{4}{3} \pi \cdot 4^{3}+0.075 \approx 20$
PTS: 2
413 ANS: 2
REF: 011619geo
TOP: Density
REF: 081519geo TOP: Similarity
KEY: basic
PTS: 2

414 ANS: 2
$V=\frac{1}{3} \cdot 6^{2} \cdot 12=144$
PTS: 2 REF: 011607geo TOP: Volume KEY: pyramids
415 ANS: 2 PTS: 2 REF: 081513geo TOP: Identifying Transformations
KEY: graphics
416 ANS: 3 PTS: 2 REF: 011605geo
TOP: Analytical Representations of Transformations KEY: basic
417 ANS: 2 PTS: 2 REF: 061516geo TOP: Dilations
418 ANS: 3
The half diagonals have lengths of 6 and 8 , so each side of $A B C D$ is 10 .
PTS: 2 REF: 012417geo TOP: Parallelograms
419 ANS: 4
$2592276=\frac{1}{3} \cdot s^{2} \cdot 146.5$
$230 \approx s$
PTS: 2 REF: 081521geo TOP: Volume KEY: pyramids
420 ANS: 2

PTS: 2 REF: 081604geo TOP: Interior and Exterior Angles of Triangles
421 ANS: 4
$V=\pi\left(\frac{6.7}{2}\right)^{2}(4 \cdot 6.7) \approx 945$
PTS: 2 REF: 081620geo TOP: Volume KEY: cylinders
422 ANS: 2
$\sqrt{3 \cdot 21}=\sqrt{63}=3 \sqrt{7}$
PTS: 2 REF: 011622geo TOP: Similarity KEY: altitude
423 ANS: 4 PTS: 2 REF: 081503geo TOP: Rotations of Two-Dimensional Objects
424

PTS: 2 REF: 081508geo TOP: Interior and Exterior Angles of Polygons

425 ANS: 2
$x^{2}=4 \cdot 10$
$x=\sqrt{40}$
$x=2 \sqrt{10}$
PTS: 2 REF: 081610geo TOP: Similarity KEY: leg
426 ANS: 2 PTS: 2 REF: 081602geo TOP: Identifying Transformations
KEY: basic
427 ANS: 2
$C=\pi d \quad V=\pi\left(\frac{2.25}{\pi}\right)^{2} \cdot 8 \approx 12.8916 W=12.8916 \cdot 752 \approx 9694$
$4.5=\pi d$
$\frac{4.5}{\pi}=d$
$\frac{2.25}{\pi}=r$
PTS: 2 REF: 081617geo TOP: Density
428 ANS: 2
x is $\frac{1}{2}$ the circumference. $\frac{C}{2}=\frac{10 \pi}{2} \approx 16$
PTS: 2 REF: 061523geo TOP: Circumference
429 ANS: 3 PTS: 2 REF: 081502geo TOP: Identifying Transformations
KEY: basic
430 ANS: 1
$\frac{1000}{20 \pi} \approx 15.9$
PTS: 2
REF: 011623geo TOP: Circumference
431 ANS: 1

Since the midpoint of $\overline{A B}$ is $(3,-2)$, the center must be either $(5,-2)$ or $(1,-2)$.
$r=\sqrt{2^{2}+5^{2}}=\sqrt{29}$

PTS: 2
KEY: other
432

REF: 061623geo
PTS: 2

REF: 081601geo TOP: Lines and Angles

433 ANS: 1
$\frac{6}{8}=\frac{9}{12}$
PTS: 2 REF: 011613geo TOP: Similarity KEY: basic
434 ANS: 4
PTS: 2
REF: 081609geo TOP: Compositions of Transformations
KEY: grids
435 ANS: 4
PTS: 2
REF: 081514geo TOP: Compositions of Transformations
KEY: grids
436 ANS: 4
$m=-\frac{1}{2} \quad-4=2(6)+b$
$\begin{aligned} m_{\perp}=2 \quad-4 & =12+b \\ -16 & =b\end{aligned}$
PTS: 2 REF: 011602geo TOP: Parallel and Perpendicular Lines
KEY: write equation of perpendicular line
437 ANS: 2
$S A=6 \cdot 12^{2}=864$
$\frac{864}{450}=1.92$
PTS: 2
REF: 061519geo TOP: Surface Area
ANS: 4 PTS: 2 REF: 011609geo TOP: Cofunctions
439 ANS: 1
$.5 \mathrm{ft}^{3} \times \frac{1728 \text { in }^{3}}{1 \mathrm{ft}^{3}}=864 \mathrm{in}^{3} \frac{43 \text { in } \times 30 \mathrm{in} \times 9 \text { in }}{864 \mathrm{in}^{3}} \approx 13.4$
PTS: 2
REF: 012419geo TOP: Volume
KEY: prisms
440 ANS: 1
$\frac{f}{4}=\frac{15}{6}$

$$
f=10
$$

PTS: 2
REF: 061617geo TOP: Lines and Angles
441 ANS: 3
$\frac{60}{360} \cdot 6^{2} \pi=6 \pi$
PTS: 2
REF: 081518geo TOP: Sectors

442 ANS: 4

$$
\begin{aligned}
\frac{1}{2} & =\frac{x+3}{3 x-1} \quad G R=3(7)-1=20 \\
3 x-1 & =2 x+6 \\
x & =7
\end{aligned}
$$

PTS: 2
REF: 011620geo TOP: Similarity
KEY: basic
443 ANS: 3
$\frac{\frac{4}{3} \pi\left(\frac{9.5}{2}\right)^{3}}{\frac{4}{3} \pi\left(\frac{2.5}{2}\right)^{3}} \approx 55$

PTS: 2
444 ANS: 3
REF: 011614geo
TOP: Volume
KEY: spheres
445 ANS: 3
$\frac{12}{4}=\frac{x}{5} \quad 15-4=11$
$x=15$

PTS: 2 REF: 011624geo TOP: Similarity KEY: basic
446 ANS: 2
$x^{2}+y^{2}+6 y+9=7+9$
$x^{2}+(y+3)^{2}=16$
PTS: 2 REF: 061514geo TOP: Equations of Circles
KEY: completing the square
447 ANS: 4
$x^{2}+6 x+9+y^{2}-4 y+4=23+9+4$

$$
(x+3)^{2}+(y-2)^{2}=36
$$

PTS: 2 REF: 011617geo TOP: Equations of Circles
KEY: completing the square
448
ANS: 4
$-5+\frac{3}{5}(5--5)-4+\frac{3}{5}(1--4)$
$-5+\frac{3}{5}(10) \quad-4+\frac{3}{5}(5)$
$-5+6 \quad-4+3$
1
-1
PTS: 2 REF: spr1401geo TOP: Directed Line Segments

449 ANS: 1
180-(68•2)
PTS: 2 REF: 081624geo TOP: Interior and Exterior Angles of Polygons
450 ANS: 1
$x^{2}-4 x+4+y^{2}+8 y+16=-11+4+16$ $(x-2)^{2}+(y+4)^{2}=9$

PTS: 2
REF: 081616geo
TOP: Equations of Circles
KEY: completing the square
451 ANS: 3

PTS: 2 REF: 011603geo TOP: Interior and Exterior Angles of Polygons
452 ANS: 4 $\frac{2}{6}=\frac{5}{15}$

PTS: 2 REF: 081517geo TOP: Side Splitter Theorem
ANS: 4
PTS: 2
ANS: 4 PTS: 2 REF: 061513geo TOP: Parallelograms
REF: 061501geo TOP: Rotations of Two-Dimensional Objects
455
ANS: 3
$\tan 34=\frac{T}{20}$

$$
T \approx 13.5
$$

PTS: 2
REF: 061505geo
TOP: Using Trigonometry to Find a Side
KEY: graphics
456 ANS: 3
PTS: 2
REF: 061601geo TOP: Rotations of Two-Dimensional Objects
457 ANS: 1
The line $3 y=-2 x+8$ does not pass through the center of dilation, so the dilated line will be distinct from $3 y=-2 x+8$. Since a dilation preserves parallelism, the line $3 y=-2 x+8$ and its image $2 x+3 y=5$ are parallel, with slopes of $-\frac{2}{3}$.

PTS: 2
REF: 061522geo TOP: Line Dilations
ANS: 4
PTS: 2
REF: 081506geo TOP: Dilations
ANS: 4
$x=-6+\frac{1}{6}(6--6)=-6+2=-4 \quad y=-2+\frac{1}{6}(7--2)=-2+\frac{9}{6}=-\frac{1}{2}$
PTS: 2 REF: 081618geo TOP: Directed Line Segments

460 ANS: 3
$A=\frac{1}{2} a b \quad 3-6=-3=x$
$24=\frac{1}{2} a(8) \frac{4+12}{2}=8=y$
$a=6$
PTS: 2 REF: 081615geo TOP: Polygons in the Coordinate Plane
461 ANS: 4
462 ANS: 4
PTS: 2
KEY: identify
463 ANS: 2
Segments drawn from the center of the regular pentagon bisect each angle of the pentagon, and create five isosceles triangles as shown in the diagram below. Since each exterior angle equals the angles formed by the segments drawn from the center of the regular pentagon, the minimum degrees necessary to carry a regular polygon onto itself are equal to the measure of an exterior angle of the regular polygon.

PTS: 2 REF: spr1402geo TOP: Mapping a Polygon onto Itself
464 ANS: 2 PTS: 2 REF: 081619geo TOP: Sectors
465 ANS: 1
$\frac{4}{6}=\frac{3}{4.5}=\frac{2}{3}$
PTS: 2 REF: 081523geo TOP: Dilations
466 ANS: 3
$V=12 \cdot 8.5 \cdot 4=408$
$W=408 \cdot 0.25=102$
PTS: 2 REF: 061507geo TOP: Density
467 ANS: 1

1) opposite sides; 2) adjacent sides; 3) perpendicular diagonals; 4) diagonal bisects angle

PTS: 2 REF: 061609geo TOP: Special Quadrilaterals
468 ANS: 4
The line $y=3 x-1$ passes through the center of dilation, so the dilated line is not distinct.
PTS: 2 REF: 081524geo TOP: Line Dilations
469 ANS: 1 PTS: 2 REF: 061508geo TOP: Chords, Secants and Tangents
KEY: inscribed

470 ANS: 2

PTS: 2
REF: 061619geo
TOP: Triangle Proofs
471 ANS: 3
PTS: 2
REF: 061616geo TOP: Identifying Transformations
KEY: graphics
472 ANS: 4
$\frac{7}{12} \cdot 30=17.5$
PTS: 2 REF: 061521geo TOP: Similarity KEY: perimeter and area
473 ANS: 2
$\frac{100000 \mathrm{~g}}{7.48 \mathrm{~g} / \mathrm{ft}^{3}}=\pi\left(r^{2}\right)(30 \mathrm{ft})$
$11.92 \mathrm{ft} \approx r$
$23.8 \approx d$
PTS: 2 REF: 012424geo TOP: Volume KEY: cylinders
474 ANS: 2
The line $y=2 x-4$ does not pass through the center of dilation, so the dilated line will be distinct from $y=2 x-4$. Since a dilation preserves parallelism, the line $y=2 x-4$ and its image will be parallel, with slopes of 2 . To obtain the y-intercept of the dilated line, the scale factor of the dilation, $\frac{3}{2}$, can be applied to the y-intercept, $(0,-4)$. Therefore, $\left(0 \cdot \frac{3}{2},-4 \cdot \frac{3}{2}\right) \rightarrow(0,-6)$. So the equation of the dilated line is $y=2 x-6$.

PTS: 2 REF: fall1403geo TOP: Line Dilations
475 ANS: 3
$x^{2}+4 x+4+y^{2}-6 y+9=12+4+9$

$$
(x+2)^{2}+(y-3)^{2}=25
$$

PTS: 2 REF: 081509geo TOP: Equations of Circles
KEY: completing the square

476 ANS: 3
$\frac{9}{5}=\frac{9.2}{x} 5.1+9.2=14.3$
$9 x=46$
$x \approx 5.1$
PTS: 2 REF: 061511geo TOP: Side Splitter Theorem
477 ANS: 4
PTS: 2
KEY: basic
478 ANS: 1
PTS: 2
REF: 061502geo TOP: Identifying Transformations
REF: 011606geo TOP: Lines and Angles
479 ANS: 4
The measures of the angles of a triangle remain the same after all rotations because rotations are rigid motions which preserve angle measure.

PTS: 2
REF: fall1402geo TOP: Properties of Transformations
KEY: graphics
480 ANS: 4
$\sqrt{(32-8)^{2}+(28--4)^{2}}=\sqrt{576+1024}=\sqrt{1600}=40$
PTS: 2 REF: 081621geo TOP: Line Dilations
481 ANS: 3
(3) Could be a trapezoid.

PTS: 2 REF: 081607geo TOP: Parallelograms
482 ANS: 1
$m=\left(\frac{-11+5}{2}, \frac{5+-7}{2}\right)=(-3,-1) m=\frac{5--7}{-11-5}=\frac{12}{-16}=-\frac{3}{4} m_{\perp}=\frac{4}{3}$

PTS: 2 REF: 061612geo TOP: Parallel and Perpendicular Lines
KEY: perpendicular bisector
483 ANS: 1
$\frac{1}{2}\left(\frac{4}{3}\right) \pi \cdot 5^{3} \cdot 62.4 \approx 16,336$
PTS: 2 REF: 061620geo TOP: Density
484 ANS: 1 PTS: 2 REF: 061518geo TOP: Line Dilations
485 ANS: 3
$r=\sqrt{(7-3)^{2}+(1--2)^{2}}=\sqrt{16+9}=5$
PTS: 2 REF: 061503geo TOP: Circles in the Coordinate Plane
486 ANS: 1 PTS: 2 REF: 011601geo
TOP: Cross-Sections of Three-Dimensional Objects

487
ANS: 2
$6+6 \sqrt{3}+6+6 \sqrt{3} \approx 32.8$
PTS: 2 REF: 011709geo TOP: 30-60-90 Triangles
488 ANS: 2
$\frac{1 \mathrm{l}}{1.2 \mathrm{oz}}\left(\frac{16 \mathrm{oz}}{1 \mathrm{lb}}\right)=\frac{13 . \overline{3} \mathrm{l}}{\mathrm{lb}} \frac{13 . \overline{3} \mathrm{l}}{\mathrm{lb}}\left(\frac{1 \mathrm{~g}}{3.785 \mathrm{l}}\right) \approx \frac{3.5 \mathrm{~g}}{1 \mathrm{lb}}$
PTS: 2 REF: 061618geo TOP: Density
489 ANS: 1
$m=\frac{-A}{B}=\frac{-2}{-1}=2$
$m_{\perp}=-\frac{1}{2}$
PTS: 2 REF: 061509geo TOP: Parallel and Perpendicular Lines
KEY: identify perpendicular lines
490 ANS: 3

$$
\begin{aligned}
& \sqrt{45}=3 \sqrt{5} \quad a=\frac{1}{2}(3 \sqrt{5})(6 \sqrt{5})=\frac{1}{2}(18)(5)=45 \\
& \sqrt{180}=6 \sqrt{5}
\end{aligned}
$$

PTS: 2
REF: 061622geo
TOP: Polygons in the Coordinate Plane
ANS: 4
PTS: 2
KEY: inscribed
492
ANS: 1
PTS: 2
REF: 011608geo TOP: Compositions of Transformations
KEY: identify
493
ANS: 2
$m=\frac{-(-2)}{3}=\frac{2}{3}$
PTS: 2
REF: 061916geo
TOP: Parallel and Perpendicular Lines
KEY: write equation of parallel line
ANS: 4 PTS: 2
KEY: grids
495 ANS: 3
$\theta=\frac{s}{r}=\frac{2 \pi}{10}=\frac{\pi}{5}$
PTS: 2
REF: fall1404geo TOP: Arc Length
KEY: angle

ANS: 2
The given line $h, 2 x+y=1$, does not pass through the center of dilation, the origin, because the y-intercept is at $(0,1)$. The slope of the dilated line, m, will remain the same as the slope of line $h,-2$. All points on line h, such as $(0,1)$, the y-intercept, are dilated by a scale factor of 4 ; therefore, the y-intercept of the dilated line is $(0,4)$ because the center of dilation is the origin, resulting in the dilated line represented by the equation $y=-2 x+4$.

PTS: 2 REF: spr1403geo TOP: Line Dilations
497 ANS: 1

PTS: 2
REF: 012423geo TOP: Triangle Proofs
KEY: statements
498 ANS: 1
The man's height, 69 inches, is opposite to the angle of elevation, and the shadow length, 102 inches, is adjacent to the angle of elevation. Therefore, tangent must be used to find the angle of elevation. $\tan x=\frac{69}{102}$

$$
x \approx 34.1
$$

PTS: 2 REF: fall1401geo TOP: Using Trigonometry to Find an Angle
499 ANS: 3
$\frac{x}{10}=\frac{6}{4} \quad \overline{C D}=15-4=11$
$x=15$
PTS: 2 REF: 081612geo TOP: Similarity KEY: basic
500 ANS: 2
PTS: 2 REF: 061506geo
TOP: Cross-Sections of Three-Dimensional Objects
501 ANS: 1 PTS: 2 REF: 061604geo TOP: Identifying Transformations
KEY: graphics
502 ANS: 3
$\frac{A B}{B C}=\frac{D E}{E F}$
$\frac{9}{15}=\frac{6}{10}$
$90=90$
PTS: 2
503 ANS: 1
REF: 061515geo
TOP: Similarity KEY: basic
KEY: mixed

504 ANS: 1
PTS: 2
REF: 081507geo TOP: Compositions of Transformations
KEY: identify
505 ANS: 2
$s^{2}+s^{2}=7^{2}$
$2 s^{2}=49$

$$
\begin{aligned}
s^{2} & =24.5 \\
s & \approx 4.9
\end{aligned}
$$

PTS: 2 REF: 081511geo TOP: Inscribed Quadrilaterals
506 ANS: 4
$\frac{-2-1}{-1--3}=\frac{-3}{2} \quad \frac{3-2}{0-5}=\frac{1}{-5} \quad \frac{3-1}{0--3}=\frac{2}{3} \quad \frac{2--2}{5--1}=\frac{4}{6}=\frac{2}{3}$
PTS: 2 REF: 081522geo TOP: Quadrilaterals in the Coordinate Plane
KEY: general
507 ANS: 4
$\sin 70=\frac{x}{20}$
$x \approx 18.8$
PTS: 2 REF: 061611geo TOP: Using Trigonometry to Find a Side
KEY: without graphics
508 ANS: 2
PTS: 2
REF: 061603geo TOP: Equations of Circles
KEY: find center and radius | completing the square
509 ANS: 1
$m_{T A}=-1 \quad y=m x+b$
$m_{\overline{E M}}=1 \quad 1=1(2)+b$
$-1=b$
PTS: 2 REF: 081614geo TOP: Quadrilaterals in the Coordinate Plane
KEY: general
510 ANS: 2
$\sqrt{(-1-2)^{2}+(4-3)^{2}}=\sqrt{10}$
PTS: 2
REF: 011615geo TOP: Polygons in the Coordinate Plane
511 ANS: 1
$3^{2}=9$
PTS: 2 REF: 081520geo TOP: Dilations

Geometry 2 Point Regents Exam Questions
 Answer Section

512 ANS:
Yes. The bases of the cylinders have the same area and the cylinders have the same height.
PTS: 2 REF: 081725geo TOP: Volume
513 ANS:
If an altitude is drawn to the hypotenuse of a triangle, it divides the triangle into two right triangles similar to each other and the original triangle.

PTS: 2 REF: 061729geo TOP: Similarity KEY: altitude
514 ANS:
$\sin x=\frac{4.5}{11.75}$
$x \approx 23$
PTS: 2 REF: 061528geo TOP: Using Trigonometry to Find an Angle
515 ANS:

$$
\text { Rotate } 180^{\circ} \text { about }\left(-1, \frac{1}{2}\right) .
$$

PTS: 2
REF: 082325geo TOP: Compositions of Transformations
516 ANS:

PTS: 2
REF: 012427geo TOP: Constructions
KEY: polygons
517 ANS:
No, because dilations do not preserve distance.
PTS: 2
REF: 061925geo TOP: Dilations

518 ANS:

PTS: 2 REF: 012029geo TOP: Constructions
KEY: parallel and perpendicular lines
519 ANS:

PTS: 2 REF: 081728geo TOP: Constructions
520 ANS:
Yes, as translations do not change angle measurements.
PTS: 2 REF: 061825geo TOP: Properties of Transformations
KEY: basic
521
ANS:
$6^{2}=2(x+2) ; 16+2=18$
$36=2 x+4$
$32=2 x$
$16=x$
PTS: 2 REF: 062330geo TOP: Similarity KEY: altitude 522 ANS:

Yes. The triangles are congruent because of SSS $\left(5^{2}+12^{2}=13^{2}\right)$. All congruent triangles are similar.
PTS: 2
REF: 061830geo TOP: Triangle Congruency

523 ANS:
$\sqrt[3]{\frac{3 V_{f}}{4 \pi}}-\sqrt[3]{\frac{3 V_{p}}{4 \pi}}=\sqrt[3]{\frac{3(294)}{4 \pi}}-\sqrt[3]{\frac{3(180)}{4 \pi}} \approx 0.6$
PTS: 2 REF: 061728geo TOP: Volume KEY: spheres
524 ANS:
$\frac{72}{360}(\pi)\left(10^{2}\right)=20 \pi$
PTS: 2 REF: 061928geo TOP: Sectors
525 ANS:
$R_{(-5,2), 90^{\circ}} \circ T_{-3,1} \circ r_{\mathrm{x}-\mathrm{xxis}}$
PTS: 2 REF: 011928geo TOP: Compositions of Transformations
KEY: identify
526 ANS:
Reflections are rigid motions that preserve distance.
PTS: 2 REF: 061530geo TOP: Triangle Congruency
527 ANS:
Rotate $\triangle A B C$ clockwise about point C until $\overline{D F} \| \overline{A C}$. Translate $\triangle A B C$ along $\overline{C F}$ so that C maps onto F.
PTS: 2 REF: 061730geo TOP: Compositions of Transformations
KEY: identify
528 ANS:
Triangle $X^{\prime} Y^{\prime} Z^{\prime}$ is the image of $\triangle X Y Z$ after a rotation about point Z such that $\overline{Z X}$ coincides with $\overline{Z U}$. Since rotations preserve angle measure, $\overline{Z Y}$ coincides with $\overline{Z V}$, and corresponding angles X and Y, after the rotation, remain congruent, so $\overline{X Y} \| \overline{U V}$. Then, dilate $\Delta X^{\prime} Y^{\prime} Z^{\prime}$ by a scale factor of $\frac{Z U}{Z X}$ with its center at point Z. Since dilations preserve parallelism, $\overline{X Y}$ maps onto $\overline{U V}$. Therefore, $\triangle X Y Z \sim \triangle U V Z$.

PTS: 2
REF: spr1406geo TOP: Compositions of Transformations
KEY: grids
529 ANS:
$\ell: y=3 x-4$
$m: y=3 x-8$
PTS: 2 REF: 011631geo TOP: Line Dilations

ANS:

PTS: 2
REF: 011625geo TOP: Reflections KEY: grids
531
ANS:
No. The midpoint of $\overline{D F}$ is $\left(\frac{1+4}{2}, \frac{-1+2}{2}\right)=(2.5,0.5)$. A median from point E must pass through the midpoint.
PTS: 2 REF: 011930geo TOP: Triangles in the Coordinate Plane
532 ANS:

PTS: 2 REF: 082227geo
TOP: Constructions
KEY: congruent and similar figures
533
ANS:
$\frac{3}{8} \cdot 56=21$
PTS: 2 REF: 081625geo TOP: Chords, Secants and Tangents
KEY: common tangents
534 ANS:
$\frac{5 \pi(2)^{2}+5(6)(4)}{25} \approx 7.38$ cans
PTS: 2 REF: 082328geo TOP: Compositions of Polygons and Circles
KEY: area

535 ANS:
If $d=10, r=5$ and $h=12 \quad V=\frac{1}{3} \pi\left(5^{2}\right)(12)=100 \pi$
PTS: 2 REF: 062227geo TOP: Volume KEY: cones
536 ANS:
$M=180-(47+57)=76$ Rotations do not change angle measurements.
PTS: 2 REF: 081629geo TOP: Properties of Transformations
537 ANS:
$\left(\frac{2.5}{3}\right)(\pi)\left(\frac{8.25}{2}\right)^{2}(3) \approx 134$
PTS: 2 REF: 081931geo TOP: Volume KEY: cylinders
538 ANS:
$\tan ^{-1}\left(\frac{4}{12}\right) \approx 18$
PTS: 2 REF: 012327geo TOP: Using Trigonometry to Find an Angle
539 ANS:
$29.5=2 \pi r \quad V=\frac{4}{3} \pi \cdot\left(\frac{29.5}{2 \pi}\right)^{3} \approx 434$
$r=\frac{29.5}{2 \pi}$
PTS: 2
REF: 061831geo TOP: Volume
KEY: spheres
540 ANS:
$\frac{1}{2}(5)(L)(4)=70$
$10 L=70$

$$
L=7
$$

PTS: 2
REF: 012330geo TOP: Volume
KEY: prisms
541 ANS:
$4 x \cdot x=6^{2}$

$$
\begin{aligned}
4 x^{2} & =36 \\
x^{2} & =9 \\
x & =3
\end{aligned}
$$

PTS: 2
REF: 082229geo TOP: Similarity
KEY: altitude

542 ANS:
$\frac{-2--4}{-3-4}=\frac{2}{-7} ; y-2=-\frac{2}{7}(x-3)$
PTS: 2 REF: 062331geo TOP: Triangles in the Coordinate Plane
543 ANS:
Yes, because 28° and 62° angles are complementary. The sine of an angle equals the cosine of its complement.
PTS: 2 REF: 011727geo TOP: Cofunctions
544 ANS:
$\frac{2}{5} \cdot(16-1)=6 \frac{2}{5} \cdot(14-4)=4 \quad(1+6,4+4)=(7,8)$
PTS: 2 REF: 081531geo TOP: Directed Line Segments
545 ANS:
$\sin 70=\frac{30}{L}$

$$
L \approx 32
$$

PTS: 2 REF: 011629geo TOP: Using Trigonometry to Find a Side
KEY: graphics
546 ANS:
$\frac{3.75}{5}=\frac{4.5}{6} \quad \overline{A B}$ is parallel to $\overline{C D}$ because $\overline{A B}$ divides the sides proportionately.
$39.375=39.375$
PTS: 2 REF: 061627geo TOP: Side Splitter Theorem
547 ANS:
$\frac{360}{6}=60$
PTS: 2 REF: 081627geo TOP: Mapping a Polygon onto Itself
548 ANS:
$\frac{137.8}{6^{3}} \approx 0.638$ Ash
PTS: 2 REF: 081525geo TOP: Density
549 ANS:
$R_{180^{\circ}}$ about $\left(-\frac{1}{2}, \frac{1}{2}\right)$
PTS: 2 REF: 081727geo TOP: Compositions of Transformations
KEY: identify

550 ANS:
$4+\frac{4}{9}(22-4) 2+\frac{4}{9}(2-2)(12,2)$

$$
4+\frac{4}{9}(18) \quad 2+\frac{4}{9}(0)
$$

$$
4+8 \quad 2+0
$$

$$
12 \quad 2
$$

PTS: 2 REF: 061626geo TOP: Directed Line Segments
551 ANS:
Yes. The sequence of transformations consists of a reflection and a translation, which are isometries which preserve distance and congruency.

PTS: 2 REF: 011628geo TOP: Triangle Congruency
552
ANS:

$$
\frac{1.65}{4.15}=\frac{x}{16.6}
$$

$$
4.15 x=27.39
$$

$$
x=6.6
$$

PTS: 2 REF: 061531geo TOP: Similarity KEY: basic
ANS:
$4 x \cdot x=8^{2} 4+4(4)=20$
$4 x^{2}=64$
$x^{2}=16$
$x=4$
PTS: 2 REF: 082330geo TOP: Similarity KEY: altitude
554 ANS:
Parallelogram $A B C D$ with diagonal $\overline{A C}$ drawn (given). $\overline{A C} \cong \overline{A C}$ (reflexive property). $\overline{A D} \cong \overline{C B}$ and $\overline{B A} \cong \overline{D C}$ (opposite sides of a parallelogram are congruent). $\triangle A B C \cong \triangle C D A$ (SSS).

PTS: 2
REF: 011825geo TOP: Quadrilateral Proofs

555
ANS:
$\cos 68=\frac{10}{x}$
$x \approx 27$
PTS: 2 REF: 061927geo TOP: Using Trigonometry to Find a Side
556
ANS:
The acute angles in a right triangle are always complementary. The sine of any acute angle is equal to the cosine of its complement.

PTS: 2 REF: spr1407geo TOP: Cofunctions
557 ANS:
Translate $\triangle A B C$ along $\overline{C F}$ such that point C maps onto point F, resulting in image $\triangle A^{\prime} B^{\prime} C^{\prime}$. Then reflect $\triangle A^{\prime} B^{\prime} C^{\prime}$ over $\overline{D F}$ such that $\triangle A^{\prime} B^{\prime} C^{\prime}$ maps onto $\triangle D E F$.
or
Reflect $\triangle A B C$ over the perpendicular bisector of $\overline{E B}$ such that $\triangle A B C$ maps onto $\triangle D E F$.
PTS: 2 REF: fall1408geo TOP: Triangle Congruency
558 ANS:

$\angle D E A \cong \angle C B A$ because they are both right \angle s.
PTS: 2 REF: 081829geo TOP: Similarity KEY: basic
559 ANS:

PTS: 2
REF: 081826geo
TOP: Interior and Exterior Angles of Polygons

560 ANS:

The line is on the center of dilation, so the line does not change. $p: 3 x+4 y=20$
PTS: 2
REF: 061731geo TOP: Line Dilations
561 ANS:
$2\left(\frac{36}{12} \times \frac{36}{12} \times \frac{4}{12}\right) \times 3.25=19.50$
PTS: 2 REF: 081831geo TOP: Volume KEY: prisms
562 ANS:
The four small triangles are 8-15-17 triangles. $4 \times 17=68$
PTS: 2 REF: 081726geo TOP: Special Quadrilaterals
563 ANS:
$500 \times 1015 \mathrm{cc} \times \frac{\$ 0.29}{\mathrm{~kg}} \times \frac{7.95 \mathrm{~g}}{\mathrm{cc}} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}=\$ 1170$
PTS: 2 REF: 011829geo TOP: Density
564 ANS:
$m=\frac{5}{4} ; m_{\perp}=-\frac{4}{5} y-12=-\frac{4}{5}(x-5)$
PTS: 2 REF: 012031geo TOP: Parallel and Perpendicular Lines
KEY: write equation of perpendicular line

565 ANS:

$$
\begin{array}{ll}
x=\frac{2}{3}(4--2)=4 & -2+4=2 \quad J(2,5) \\
y=\frac{2}{3}(7-1)=4 & 1+4=5
\end{array}
$$

PTS: 2 REF: 011627geo TOP: Directed Line Segments
566 ANS:

PTS: 2
REF: 062325geo
KEY: parallel and perpendicular lines
567 ANS:
$180-2(25)=130$
PTS: 2
REF: 011730geo TOP: Centroid, Orthocenter, Incenter and Circumcenter

568 ANS:

PTS: 2
REF: 061631geo TOP: Constructions
KEY: parallel and perpendicular lines
569 ANS:
$\tan 53=\frac{f}{91}$

$$
f \approx 120.8
$$

PTS: 2 REF: 082327geo TOP: Using Trigonometry to Find a Side 570 ANS:
 $\frac{1}{2}(5)(10)=25$

PTS: 2
REF: 061926geo TOP: Polygons in the Coordinate Plane
571 ANS:
$17 x=15^{2}$
$17 x=225$

$$
x \approx 13.2
$$

PTS: 2
REF: 061930geo TOP: Similarity
KEY: altitude
572 ANS:
$\frac{152-56}{2}=48$
PTS: 2 REF: 011728geo TOP: Chords, Secants and Tangents
KEY: secant and tangent drawn from common point, angle

573 ANS:
Each triangular prism has the same base area. Therefore, each corresponding cross-section of the prisms will have the same area. Since the two prisms have the same height of 14 , the two volumes must be the same.

PTS: 2 REF: 061727geo TOP: Volume
574 ANS:

$$
\begin{aligned}
& x=-2+\frac{3}{5}(8+2)=-2+6=4 \\
& y=5+\frac{3}{5}(-1-5)=\frac{25}{5}-\frac{18}{5}=\frac{7}{5}
\end{aligned}
$$

PTS: 2 REF: 012328geo TOP: Directed Line Segments
575 ANS:

PTS: 2
REF: 011926geo TOP: Interior and Exterior Angles of Polygons
576 ANS:
$T_{0,5}{ }^{\circ} r_{\text {y-axis }}$
PTS: 2
REF: 082225geo TOP: Compositions of Transformations
KEY: identify

577 ANS:

PTS: 2
REF: fall1409geo TOP: Constructions
KEY: parallel and perpendicular lines
578
ANS:

$$
\sqrt{(2.5-1)^{2}+(-.5-1.5)^{2}}=\sqrt{2.25+4}=2.5
$$

PTS: 2 REF: 081729geo TOP: Line Dilations
579 ANS:

PTS: 2
REF: 081827geo TOP: Chords, Secants and Tangents KEY: intersecting chords, angle

580 ANS:
No, The line $4 x+3 y=24$ passes through the center of dilation, so the dilated line is not distinct. $4 x+3 y=24$

$$
\begin{aligned}
3 y & =-4 x+24 \\
y & =-\frac{4}{3} x+8
\end{aligned}
$$

PTS: 2 REF: 081830geo TOP: Line Dilations
581 ANS:

PTS: 2
REF: 061525geo TOP: Constructions
582
ANS:
$2 \times(90 \times 10)+(\pi)\left(30^{2}\right)-(\pi)\left(20^{2}\right) \approx 3371$
PTS: 2
REF: 011931geo TOP: Compositions of Polygons and Circles
KEY: area
583 ANS:

PTS: 2 REF: 011731geo TOP: Quadrilaterals in the Coordinate Plane KEY: grids
584
ANS:
$\frac{2+3}{15} \cdot 360=120 \frac{120}{2}=60$
PTS: 2
REF: 062226geo
TOP: Inscribed Quadrilaterals

585 ANS:
$x^{2}+6 x+9+y^{2}-6 y+9=63+9+9(-3,3) ; r=9$

$$
(x+3)^{2}+(y-3)^{2}=81
$$

PTS: 2
REF: 062230geo TOP: Equations of Circles
KEY: completing the square
586 ANS:

$$
6 \times 12-\frac{1}{2}(12 \times 3)-\frac{1}{2}(6 \times 6)-\frac{1}{2}(6 \times 3)=27
$$

PTS: 2
REF: 012331geo TOP: Polygons in the Coordinate Plane
ANS:
Each quarter in both stacks has the same base area. Therefore, each corresponding cross-section of the stacks will have the same area. Since the two stacks of quarters have the same height of 23 quarters, the two volumes must be the same.

PTS: 2
REF: spr1405geo TOP: Volume
588 ANS:
$\cos W=\frac{6}{18}$

$$
W \approx 71
$$

PTS: 2 REF: 011831geo TOP: Using Trigonometry to Find an Angle
589 ANS:
Rotation of 90° counterclockwise about the origin.
PTS: 2
REF: 012428geo TOP: Identifying Transformations

ANS:

PTS: 2
REF: 081626geo TOP: Compositions of Transformations
KEY: grids
591 ANS:
$A(-2,1) \rightarrow(-3,-1) \rightarrow(-6,-2) \rightarrow(-5,0), B(0,5) \rightarrow(-1,3) \rightarrow(-2,6) \rightarrow(-1,8)$,
$C(4,-1) \rightarrow(3,-3) \rightarrow(6,-6) \rightarrow(7,-4)$
PTS: 2 REF: 061826geo TOP: Dilations
592 ANS:
Yes. $\angle A \cong \angle X, \angle C \cong \angle Z, \overline{A C} \cong \overline{X Z}$ after a sequence of rigid motions which preserve distance and angle measure, so $\triangle A B C \cong \triangle X Y Z$ by ASA. $\overline{B C} \cong \overline{Y Z}$ by СРСТС.

PTS: 2 REF: 081730geo TOP: Triangle Congruency
593 ANS:
$5 x-14=3 x+10$

$$
2 x=24
$$

$$
x=12
$$

PTS: 2 REF: 082326geo TOP: Isosceles Triangle Theorem
ANS:
$\frac{40000}{\pi\left(\frac{51}{2}\right)^{2}} \approx 19.6 \frac{72000}{\pi\left(\frac{75}{2}\right)^{2}} \approx 16.3 \operatorname{Dish} A$
PTS: 2 REF: 011630geo TOP: Density

595 ANS:
$\sin 75=\frac{15}{x}$
$x=\frac{15}{\sin 75}$
$x \approx 15.5$
PTS: 2 REF: 081631geo TOP: Using Trigonometry to Find a Side KEY: graphics
596 ANS:
$x^{2}+16 x++64+y^{2}+12 y+36=44+64+36(-8,-6) ; r=12$

$$
(x+8)^{2}+(y+6)^{2}=144
$$

PTS: 2
REF: 012430geo
TOP: Equations of Circles
KEY: completing the square
597
ANS:
$\frac{1}{3} \pi \times 5^{2} \times 12=100 \pi \approx 314$
PTS: 2 REF: 012425geo TOP: Rotations of Two-Dimensional Objects
598 ANS:
$\frac{Q}{360}(\pi)\left(25^{2}\right)=(\pi)\left(25^{2}\right)-500 \pi$
$Q=\frac{125 \pi(360)}{625 \pi}$
$Q=72$
PTS: 2 REF: 011828geo TOP: Sectors
599 ANS:

PTS: 2 REF: 061725geo
KEY: parallel and perpendicular lines
600
ANS:
$\sin ^{-1}\left(\frac{5}{25}\right) \approx 11.5$

PTS: 2
REF: 081926geo TOP: Using Trigonometry to Find an Angle

601 ANS:

PTS: 2
REF: 082329geo TOP: Constructions
KEY: line bisector
602 ANS:

PTS: 2
REF: 061829geo TOP: Constructions
KEY: line bisector
603
ANS:

PTS: 2 REF: 011929geo TOP: Constructions
KEY: polygons
604 ANS:
$\overline{G I}$ is parallel to $\overline{N T}$, and $\overline{I N}$ intersects at A (given); $\angle I \cong \angle N, \angle G \cong \angle T$ (paralleling lines cut by a transversal form congruent alternate interior angles); $\triangle G I A \sim \triangle T N A$ (AA).

PTS: 2 REF: 011729geo TOP: Similarity Proofs
605 ANS:
No, the weight of the bricks is greater than $900 \mathrm{~kg} .500 \times(5.1 \mathrm{~cm} \times 10.2 \mathrm{~cm} \times 20.3 \mathrm{~cm})=528,003 \mathrm{~cm}^{3}$.
$528,003 \mathrm{~cm}^{3} \times \frac{1 \mathrm{~m}^{3}}{1000000 \mathrm{~cm}^{3}}=0.528003 \mathrm{~m}^{3} . \frac{1920 \mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.528003 \mathrm{~m}^{3} \approx 1013 \mathrm{~kg}$.
PTS: 2
REF: fall1406geo TOP: Density

606 ANS:
$\frac{124-56}{2}=34$
PTS: 2 REF: 081930geo TOP: Chords, Secants and Tangents
KEY: secant and tangent drawn from common point, angle
607 ANS:
$10 \cdot 6=15 x$
$x=4$
PTS: 2 REF: 061828geo TOP: Chords, Secants and Tangents
KEY: secants drawn from common point, length
608 ANS:
Reflection across the y-axis, then translation up 5 .
PTS: 2 REF: 061827geo TOP: Compositions of Transformations
KEY: identify
609 ANS:
The transformation is a rotation, which is a rigid motion.
PTS: 2
REF: 081530geo TOP: Triangle Congruency
610 ANS:
$73+R=90$ Equal cofunctions are complementary.

$$
R=17
$$

PTS: 2 REF: 061628geo TOP: Cofunctions
611 ANS:
$\cos 14=\frac{5-1.2}{x}$

$$
x \approx 3.92
$$

PTS: 2
REF: 082228geo TOP: Using Trigonometry to Find a Side
612 ANS:
$\frac{80}{360} \cdot \pi(6.4)^{2} \approx 29$

PTS: 2
REF: 062328geo TOP: Sectors
613 ANS:
$\sin 38=\frac{24.5}{x}$
$x \approx 40$
PTS: 2 REF: 012026geo TOP: Using Trigonometry to Find a Side
KEY: graphics

614 ANS:
$\frac{6}{14}=\frac{9}{21}$ SAS
$126=126$
PTS: 2 REF: 081529geo TOP: Similarity KEY: basic
615 ANS:
Yes. $\quad(x-1)^{2}+(y+2)^{2}=4^{2}$

$$
\begin{aligned}
(3.4-1)^{2}+(1.2+2)^{2} & =16 \\
5.76+10.24 & =16 \\
16 & =16
\end{aligned}
$$

PTS: 2 REF: 081630geo TOP: Circles in the Coordinate Plane
616 ANS:
$3 y+7=2 x \quad y-6=\frac{2}{3}(x-2)$
$3 y=2 x-7$
$y=\frac{2}{3} x-\frac{7}{3}$
PTS: 2 REF: 011925geo TOP: Parallel and Perpendicular Lines
KEY: write equation of parallel line
617 ANS:
$T_{0,-2}{ }^{\circ} r_{y-\text {-xis }}$
PTS: 2 REF: 011726geo TOP: Compositions of Transformations
KEY: identify
618 ANS:
Parallelogram $A B C D$, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E (given). $\overline{D C}\|\overline{A B} ; \overline{D A}\| \overline{C B}$ (opposite sides of a parallelogram are parallel). $\angle A C D \cong \angle C A B$ (alternate interior angles formed by parallel lines and a transversal are congruent).

PTS: 2
REF: 081528geo TOP: Quadrilateral Proofs

619 ANS:

PTS: 2 REF: 062231geo TOP: Constructions
KEY: parallel and perpendicular lines
620 ANS:
$\frac{1}{3} \pi \times 8^{2} \times 5 \approx 335.1$
PTS: 2 REF: 082226geo TOP: Rotations of Two-Dimensional Objects
621 ANS:
$x^{2}-6 x+9+y^{2}+8 y+16=56+9+16(3,-4) ; r=9$

$$
(x-3)^{2}+(y+4)^{2}=81
$$

PTS: 2
REF: 081731geo TOP: Equations of Circles
KEY: completing the square
622 ANS:
Opposite angles in a parallelogram are congruent, so $\mathrm{m} \angle O=118^{\circ}$. The interior angles of a triangle equal 180°. $180-(118+22)=40$.

PTS: 2 REF: 061526geo TOP: Interior and Exterior Angles of Polygons
623 ANS:
Yes. $\triangle A B C$ and $\triangle D E F$ are both 5-12-13 triangles and therefore congruent by SSS. All congruent triangles are similar.

PTS: 2
REF: 012329geo TOP: Triangle Proofs
KEY: statements

624 ANS:

$$
\begin{aligned}
\frac{121-x}{2} & =35 \\
121-x & =70 \\
x & =51
\end{aligned}
$$

PTS: 2
REF: 011927geo TOP: Chords, Secants and Tangents
KEY: secants drawn from common point, angle
625 ANS:
$T_{6,0}{ }^{\circ} r_{x \text {-axis }}$
PTS: 2 REF: 061625geo TOP: Compositions of Transformations KEY: identify
626 ANS:

PTS: 2 REF: 081526geo TOP: Constructions
ANS:
$x^{2}=8 \times 12.5$
$x=10$
PTS: 2 REF: 012028geo TOP: Chords, Secants and Tangents
KEY: secant and tangent drawn from common point, length
628 ANS:

PTS: 2 REF: 012325geo TOP: Constructions
KEY: angle bisector
629
ANS:
$r_{y=2}{ }^{\circ} r_{y \text {-xis }}$
PTS: 2
REF: 081927geo TOP: Compositions of Transformations
KEY: identify

630 ANS:

PTS: 2
REF: 061931geo TOP: Constructions
631 ANS:
$\cos B$ increases because $\angle A$ and $\angle B$ are complementary and $\sin A=\cos B$.
PTS: 2 REF: 011827geo TOP: Cofunctions
632 ANS:
rotation 180° about the origin, translation 2 units down; rotation 180° about B, translation 6 units down and 6 units left; or reflection over x-axis, translation 2 units down, reflection over y-axis

PTS: 2 REF: 081828geo TOP: Compositions of Transformations KEY: identify
633 ANS:
$\frac{102}{360}(\pi)\left(38^{2}\right) \approx 1285$
PTS: 2 REF: 012426geo TOP: Sectors
634 ANS:
$\angle Q \cong \angle M \quad \angle P \cong \angle N \quad \overline{Q P} \cong \overline{M N}$
PTS: 2 REF: 012025geo TOP: Triangle Congruency
635 ANS:

PTS: 2
REF: 081928geo TOP: Polygons in the Coordinate Plane

636 ANS:
$\frac{40}{360} \cdot \pi(4.5)^{2}=2.25 \pi$
PTS: 2 REF: 061726geo TOP: Sectors
637 ANS:
$4 x-.07=2 x+.01 \operatorname{Sin} A$ is the ratio of the opposite side and the hypotenuse while $\cos B$ is the ratio of the adjacent

$$
\begin{aligned}
2 x & =0.8 \\
x & =0.4
\end{aligned}
$$

side and the hypotenuse. The side opposite angle A is the same side as the side adjacent to angle B. Therefore, $\sin A=\cos B$.

PTS: 2 REF: fall1407geo TOP: Cofunctions
638 ANS:
$\frac{120}{230}=\frac{x}{315}$

$$
x=164
$$

PTS: 2 REF: 081527geo TOP: Similarity KEY: basic
639 ANS: Coses)

PTS: 2
REF: 011725geo TOP: Constructions
KEY: line bisector
640 ANS:
Nathan, because a line dilated through a point on the line results in the same line.
PTS: 2 REF: 082331geo TOP: Line Dilations
641 ANS:
$100 \times \frac{1}{2} \times \frac{4}{3} \times \pi \times 2.8^{3} \approx 4598$

PTS: 2 REF: 062229geo TOP: Volume KEY: spheres
642 ANS:
$\angle D=46^{\circ}$ because the angles of a triangle equal $180^{\circ} . \angle B=46^{\circ}$ because opposite angles of a parallelogram are congruent.

PTS: 2 REF: 081925geo TOP: Interior and Exterior Angles of Polygons

643 ANS:
$s=\theta \cdot r \quad s=\theta \cdot r \quad$ Yes, both angles are equal.
$\pi=A \cdot 4 \frac{13 \pi}{8}=B \cdot 6.5$
$\frac{\pi}{4}=A$

$$
\frac{\pi}{4}=B
$$

PTS: 2
REF: 061629geo TOP: Arc Length
KEY: arc length
644 ANS:
47.5°

PTS: 2 REF: 082230geo TOP: Interior and Exterior Angles of Polygons
645 ANS:
$\sin 86.03=\frac{183.27}{x}$

$$
x \approx 183.71
$$

PTS: 2 REF: 062225geo TOP: Using Trigonometry to Find a Side
646 ANS:
$R_{90^{\circ}}$ or $T_{2,-6}{ }^{\circ} R_{(-4,2), 90^{\circ}}$ or $R_{270^{\circ}}{ }^{\circ} r_{\text {x-xxis }} \circ r_{y-\text {-xis }}$
PTS: 2 REF: 061929geo TOP: Compositions of Transformations
KEY: identify
647 ANS:
Reflections preserve distance and angle measure.
PTS: 2
REF: 062228geo TOP: Properties of Transformations
KEY: graphics
648
ANS:
$T_{4,-4}$, followed by a 90° clockwise rotation about point D.
PTS: 2
REF: 062326geo TOP: Compositions of Transformations

649 ANS:

$$
\begin{array}{cc}
-6+\frac{2}{5}(4--6) & -5+\frac{2}{5}(0--5) \\
-6+\frac{2}{5}(10) & -5+\frac{2}{5}(5) \\
-6+4 & -5+2 \\
-2 & -3
\end{array}
$$

PTS: 2 REF: 061527geo TOP: Directed Line Segments
650 ANS:

PTS: 2
REF: 081628geo TOP: Constructions
KEY: line bisector
651 ANS:
$30^{\circ} \triangle C A D$ is an equilateral triangle, so $\angle C A B=60^{\circ}$. Since $\overrightarrow{A D}$ is an angle bisector, $\angle C A D=30^{\circ}$.
PTS: 2 REF: 081929geo TOP: Constructions
KEY: polygons
652 ANS:

$$
\begin{aligned}
A=6^{2} \pi=36 \pi \quad 36 \pi \cdot \frac{x}{360} & =12 \pi \\
x & =360 \cdot \frac{12}{36} \\
x & =120
\end{aligned}
$$

PTS: 2
REF: 061529geo TOP: Sectors

653 ANS:

$$
\begin{aligned}
\tan x & =\frac{10}{4} \\
x & \approx 68
\end{aligned}
$$

PTS: 2 REF: 061630geo TOP: Using Trigonometry to Find an Angle
654 ANS:
$\triangle M N O$ is congruent to $\triangle P N O$ by SAS. Since $\triangle M N O \cong \triangle P N O$, then $\overline{M O} \cong \overline{P O}$ by CPCTC. So $\overline{N O}$ must divide $\overline{M P}$ in half, and $M O=8$.

PTS: 2 REF: fall1405geo TOP: Medians, Altitudes and Bisectors
655 ANS:

PTS: 2
REF: 012030geo STA: G.G. 43
TOP: Centroid, Orthocenter, Incenter and Circumcenter
656 ANS:
$\cos J=\frac{3}{5} \quad S \approx 90-53=37$

$$
J \approx 53
$$

PTS: 2 REF: 012431geo TOP: Using Trigonometry to Find an Angle
657 ANS:

PTS: 2
REF: 082231geo TOP: Sectors

658
ANS:

PTS: 2 REF: 081825geo TOP: Constructions
KEY: parallel and perpendicular lines
659
ANS:
$8 \times 3 \times \frac{1}{12} \times 43=86$
PTS: 2 REF: 012027geo TOP: Density
660 ANS:
Circle A can be mapped onto circle B by first translating circle A along vector $\overline{A B}$ such that A maps onto B, and then dilating circle A, centered at A, by a scale factor of $\frac{5}{3}$. Since there exists a sequence of transformations that maps circle A onto circle B, circle A is similar to circle B.

PTS: 2 REF: spr1404geo TOP: Similarity Proofs
661 ANS:

PTS: 2
REF: 011826geo TOP: Constructions

662 ANS:

$$
180-2(30)=120
$$

PTS: 2
REF: 011626geo TOP: Chords, Secants and Tangents
KEY: parallel lines
663 ANS:
No. Since $\overline{B C}=5$ and $\overline{S T}=\sqrt{18}$ are not congruent, the two triangles are not congruent. Since rigid motions preserve distance, there is no rigid motion that maps $\triangle A B C$ onto $\triangle R S T$.

PTS: 2
REF: 011830geo TOP: Triangle Congruency
664 ANS:

$$
\begin{array}{cc}
-5+\frac{2}{5}(5--5) & 1+\frac{2}{5}(6-1) \\
-5+\frac{2}{5}(10) & 1+\frac{2}{5}(5) \\
-5+4 & 1+2 \\
-1 & 3
\end{array}
$$

PTS: 2 REF: 062327geo TOP: Directed Line Segments
665 ANS:
Yes, because of SAS. $\quad \frac{A B}{A D}=\frac{A E}{A C}$

$$
\begin{aligned}
\frac{4.1}{3.42+5.6} & =\frac{5.6}{4.1+8.22} \\
50.512 & =50.512
\end{aligned}
$$

PTS: 2 REF: 012429geo TOP: Similarity KEY: basic
666 ANS:
Rotate 90° clockwise about B and translate down 4 and right 3.
PTS: 2
REF: 012326geo TOP: Compositions of Transformations
KEY: identify

667 ANS:
$\frac{4}{3} \pi \cdot(1)^{3}+\frac{4}{3} \pi \cdot(2)^{3} \frac{4}{3} \pi \cdot(3)^{3}=\frac{4}{3} \pi+\frac{32}{3} \pi+\frac{108}{3} \pi=48 \pi$
PTS: 2 REF: 062329geo TOP: Volume KEY: spheres

Geometry 4 Point Regents Exam Questions
 Answer Section

668 ANS:

Triangle with vertices $A(-2,4), B(6,2)$, and $C(1,-1)$ (given); $m_{\overline{A C}}=-\frac{5}{3}, m_{B C}=\frac{3}{5}$,
definition of slope; Because the slopes of the legs of the triangle are opposite reciprocals, the legs are perpendicular (definition of perpendicular); $\angle C$ is a right angle (definition of right angle); $\triangle A B C$ is a right triangle (if a triangle has a right angle, it is a right triangle); $\overline{A C} \cong \overline{B C}=\sqrt{34}$ (distance formula); $\triangle A B C$ is an isosceles triangle (an isosceles triangle has two congruent sides).

PTS: 4 REF: 011932geo TOP: Triangles in the Coordinate Plane
669 ANS:
Translations preserve distance. If point D is mapped onto point A, point F would map onto point C.
$\triangle D E F \cong \triangle A B C$ as $\overline{A C} \cong \overline{D F}$ and points are collinear on line ℓ and a reflection preserves distance.
PTS: 4 REF: 081534geo TOP: Triangle Congruency
670 ANS:
24 in $\times 12$ in $\times 18$ in $2.94 \approx 3 \frac{24}{3} \times \frac{12}{3} \times \frac{18}{3}=192192\left(\frac{4}{3} \pi\right)\left(\frac{2.94}{2}\right)^{3}(0.025) \approx 64$
PTS: 4 REF: 082234geo TOP: Density
671 ANS:
$\tan 7=\frac{125}{x} \quad \tan 16=\frac{125}{y} \quad 1018-436 \approx 582$
$x \approx 1018 \quad y \approx 436$
PTS: 4
REF: 081532geo TOP: Using Trigonometry to Find a Side
KEY: advanced
672 ANS:
$\frac{10 \pi(.5)^{2} 4}{\frac{2}{3}} \approx 47.148$ bags

PTS: 4 REF: 062234geo TOP: Volume KEY: cylinders

673 ANS:

Because $\overline{A B} \cong \overline{A C}, \triangle A B C$ has two congruent sides and is isosceles. Because $\overline{A B} \cong \overline{B C}$ is not true, $\triangle A B C$ has sides that are not congruent and $\triangle A B C$ is not equilateral.

PTS: 4
REF: 061832geo TOP: Triangles in the Coordinate Plane
674 ANS:
$r=25 \mathrm{~cm}\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)=0.25 \mathrm{~m} \quad V=\pi(0.25 \mathrm{~m})^{2}(10 \mathrm{~m})=0.625 \pi \mathrm{~m}^{3} \quad W=0.625 \pi \mathrm{~m}^{3}\left(\frac{380 \mathrm{~K}}{1 \mathrm{~m}^{3}}\right) \approx 746.1 \mathrm{~K}$
$n=\frac{\$ 50,000}{\left(\frac{\$ 4.75}{\mathrm{~K}}\right)(746.1 \mathrm{~K})}=14.1 \quad 15$ trees
PTS: 4 REF: spr1412geo TOP: Density
ANS:
$\frac{\pi \cdot 11.25^{2} \cdot 33.5}{231} \approx 57.7$
PTS: 4 REF: 061632geo TOP: Volume KEY: cylinders
676 ANS:
$\triangle A E B$ and $\triangle D F C, \overline{A B C D}, \overline{A E}\|\overline{D F}, \overline{E B}\| \overline{F C}, \overline{A C} \cong \overline{D B}$ (given); $\angle A \cong \angle D$ (Alternate interior angles formed by parallel lines and a transversal are congruent); $\angle E B A \cong \angle F C D$ (Alternate exterior angles formed by parallel lines and a transversal are congruent); $\overline{B C} \cong \overline{B C}$ (reflexive); $\overline{A B} \cong \overline{C D}$ (segment subtraction); $\triangle E A B \cong \triangle F D C$ (ASA)

PTS: 4 REF: 012333geo TOP: Triangle Proofs
KEY: proof
677 ANS:
Since $\angle A B H$ is $100^{\circ}, \angle A H B$ is 40°. An isosceles triangle has two congruent angles. $\cos 80=\frac{x}{85}$

$$
x \approx 14.8
$$

$$
\begin{aligned}
\tan 40 & =\frac{y}{85+14.8} \\
y & \approx 84
\end{aligned}
$$

PTS: 4
REF: 012334geo TOP: Using Trigonometry to Find a Side

678 ANS:
$\frac{(3.5)^{2}(1.5)-(2)^{2}(1.5)}{.6} \approx 20.6 .21$ bags
PTS: 4 REF: 082332geo TOP: Volume KEY: compositions 679 ANS:

Right triangle because $\angle C B F$ is inscribed in a semi-circle.
PTS: 4 REF: 011733geo TOP: Constructions
680 ANS:

$$
\begin{array}{rlrl}
\cos 54 & =\frac{4.5}{m} \tan 54 & =\frac{h}{4.5} \\
m & \approx 7.7 & h & \approx 6.2
\end{array}
$$

PTS: 4 REF: 011834geo TOP: Using Trigonometry to Find a Side
681 ANS:
$V=(\pi)\left(4^{2}\right)(9)+\left(\frac{1}{2}\right)\left(\frac{4}{3}\right)(\pi)\left(4^{3}\right) \approx 586$
PTS: 4 REF: 011833geo TOP: Volume KEY: compositions 682 ANS:

$$
\begin{aligned}
& \tan 15=\frac{x}{3280} ; \tan 31=\frac{y}{3280} ; 1970.8-878.9 \approx 1092 \\
& x \approx 878.9 \quad x \approx 1970.8
\end{aligned}
$$

PTS: 4 REF: 062332geo TOP: Using Trigonometry to Find a Side 683 ANS:
$x^{2}+x^{2}=58^{2} \quad A=(\sqrt{1682}+8)^{2} \approx 2402.2$

$$
\begin{aligned}
2 x^{2} & =3364 \\
x & =\sqrt{1682}
\end{aligned}
$$

PTS: 4
REF: 081734geo TOP: Area of Polygons

684 ANS:
$A B C$ - point of reflection $\rightarrow(-y, x)+$ point of reflection $\triangle D E F \cong \triangle A^{\prime} B^{\prime} C^{\prime}$ because $\triangle D E F$ is a reflection of $A(2,-3)-(2,-3)=(0,0) \rightarrow(0,0)+(2,-3)=A^{\prime}(2,-3)$
$B(6,-8)-(2,-3)=(4,-5) \rightarrow(5,4)+(2,-3)=B^{\prime}(7,1)$
$C(2,-9)-(2,-3)=(0,-6) \rightarrow(6,0)+(2,-3)=C^{\prime}(8,-3)$
$\triangle A^{\prime} B^{\prime} C^{\prime}$ and reflections preserve distance.
PTS: 4 REF: 081633geo TOP: Rotations KEY: grids
685 ANS:
$h=\sqrt{16^{2}-\left(\frac{12}{2}\right)^{2}}=\sqrt{220} \quad V=\frac{1}{3}(12)^{2} \sqrt{220} \approx 712 \quad 712 \times 0.32 \approx 23$
PTS: 4
REF: 012433geo TOP: Density
686 ANS:

$$
\left.\begin{array}{rl}
\tan x & =\frac{12}{75} \quad \tan y
\end{array}\right)=\frac{72}{75} \quad 43.83-9.09 \approx 34.7
$$

PTS: 4 REF: 081634geo TOP: Using Trigonometry to Find an Angle

687
ANS:
The slopes of perpendicular line are opposite reciprocals. Since the lines are perpendicular, they form right angles
and a right triangle. $m_{B C}=-\frac{3}{2}-1=\frac{2}{3}(-3)+b$ or $-4=\frac{2}{3}(-1)+b$

$$
\begin{aligned}
& m_{\perp}=\frac{2}{3} \quad-1=-2+b \quad \frac{-12}{3}=\frac{-2}{3}+b \\
& 3=\frac{2}{3} x+1 \quad-\frac{10}{3}=b \\
& 2=\frac{2}{3} x \quad 3=\frac{2}{3} x-\frac{10}{3} \\
& 3=x \\
& 9=2 x-10 \\
& 19=2 x \\
& 9.5=x
\end{aligned}
$$

PTS: 4 REF: 081533geo TOP: Triangles in the Coordinate Plane
ANS:
$\tan 36=\frac{x}{10} \quad \cos 36=\frac{10}{y} 12.3607 \times 3 \approx 37$

$$
x \approx 7.3 \quad y \approx 12.3607
$$

PTS: 4
REF: 081833geo TOP: Using Trigonometry to Find a Side
689 ANS:
Parallelogram $A B C D, \overline{E F G}$, and diagonal $\overline{D F B}$ (given); $\angle D F E \cong \angle B F G$ (vertical angles); $\overline{A D} \| \overline{C B}$ (opposite sides of a parallelogram are parallel); $\angle E D F \cong \angle G B F$ (alternate interior angles are congruent); $\triangle D E F \sim \triangle B G F$ (AA).

PTS: 4 REF: 061633geo TOP: Similarity Proofs
690 ANS:
$\left(7^{2}\right) 18 \pi=16 x^{2} \frac{80}{13.2} \approx 6.1 \frac{60}{13.2} \approx 4.56 \times 4=24$
$13.2 \approx x$
PTS: 4 REF: 012034geo TOP: Volume KEY: cylinders

691
ANS:
Theresa. $(30 \times 15 \times(4-0.5)) \mathrm{ft}^{3} \times \frac{7.48 \mathrm{~g}}{1 \mathrm{ft}^{3}} \times \frac{\$ 3.95}{100 \mathrm{~g}}=\$ 465.35,\left(\pi \times 12^{2} \times(4-0.5)\right) \mathrm{ft}^{3} \times \frac{7.48 \mathrm{~g}}{1 \mathrm{ft}^{3}} \times \frac{\$ 200}{6000 \mathrm{~g}}=\$ 394.79$
PTS: 4 REF: 011933geo TOP: Volume KEY: cylinders
692 ANS:

$$
\begin{aligned}
& \sin 65=\frac{7.7}{x} \cdot \tan 65=\frac{7.7}{y} \\
& x \approx 8.5 \quad y \approx 3.6
\end{aligned}
$$

PTS: 4 REF: 082333geo TOP: Using Trigonometry to Find a Side
693 ANS:
Quadrilateral $A B C D$ is a parallelogram with diagonals $\overline{A C}$ and $\overline{B D}$ intersecting at E (Given). $\overline{A D} \cong \overline{B C}$ (Opposite sides of a parallelogram are congruent). $\angle A E D \cong \angle C E B$ (Vertical angles are congruent). $\overline{B C} \| \overline{D A}$ (Definition of parallelogram). $\angle D B C \cong \angle B D A$ (Alternate interior angles are congruent). $\triangle A E D \cong \triangle C E B$ (AAS). 180° rotation of $\triangle A E D$ around point E.

PTS: 4
REF: 061533geo TOP: Quadrilateral Proofs
694 ANS:

$$
\begin{aligned}
\overline{A N} & \cong \overline{A T} \cong \overline{T S} \cong \overline{S N} \\
\sqrt{5^{2}+5^{2}} & =\sqrt{7^{2}+1^{2}}=\sqrt{5^{2}+5^{2}}=\sqrt{7^{2}+1^{2}} \\
\sqrt{50} & =\sqrt{50}=\sqrt{50}=\sqrt{50}
\end{aligned}
$$

because all four sides are congruent.
PTS: 4 REF: 012032geo TOP: Quadrilaterals in the Coordinate Plane KEY: grids
695 ANS:

$$
\begin{aligned}
20000 \mathrm{~g}\left(\frac{1 \mathrm{ft}^{3}}{7.48 \mathrm{~g}}\right)=2673.8 \mathrm{ft}^{3} \quad 2673.8 & =\pi r^{2}(34.5) 9.9+1=10.9 \\
r & \approx 4.967 \\
d & \approx 9.9
\end{aligned}
$$

PTS: 4
REF: 061734geo TOP: Volume
KEY: cylinders

696
ANS:
$M\left(\frac{4+0}{2}, \frac{6-1}{2}\right)=M\left(2, \frac{5}{2}\right) m=\frac{6--1}{4-0}=\frac{7}{4} m_{\perp}=-\frac{4}{7} y-2.5=-\frac{4}{7}(x-2)$ The diagonals, $\overline{M T}$ and $\overline{A H}$, of rhombus MATH are perpendicular bisectors of each other.

PTS: 4
REF: fall1411geo TOP: Quadrilaterals in the Coordinate Plane
KEY: grids
697
ANS:
$\overline{L A} \cong \overline{D N}, \overline{C A} \cong \overline{C N}$, and $\overline{D A C} \perp \overline{L C N}$ (Given). $\angle L C A$ and $\angle D C N$ are right angles (Definition of perpendicular lines). $\triangle L A C$ and $\triangle D N C$ are right triangles (Definition of a right triangle). $\triangle L A C \cong \triangle D N C$ (HL).
$\triangle L A C$ will map onto $\triangle D N C$ after rotating $\triangle L A C$ counterclockwise 90° about point C such that point L maps onto point D.

PTS: 4 REF: spr1408geo TOP: Triangle Congruency
698
ANS:

1) Quadrilateral $H Y P E$ with $H(-3,6), Y(2,9), P(8,-1)$, and $E(3,-4)$ (Given); 2) Slope of $\overline{H Y}$ and $\overline{P E}$ is $\frac{3}{5}$, slope of $\overline{Y P}$ and $\overline{E H}$ is $-\frac{5}{3}$ (Slope determined graphically); 3) $\overline{H Y} \perp \overline{Y P}, \overline{P E} \perp \overline{E H}$, $\overline{Y P} \perp \overline{P E}, \overline{E Y} \perp \overline{H Y}$ (The slopes of perpendicular lines are opposite reciprocals); 4) $\angle H, \angle Y, \angle P, \angle E$ are right angles (Perpendicular lines form right angles); 5) HYPE is a rectangle (A rectangle has four right angles).

PTS: 4
REF: 082233geo TOP: Quadrilaterals in the Coordinate Plane
KEY: grids
ANS:
In quadrilateral $A B C D, \overline{A B} \cong \overline{C D}$ and $\overline{A B} \| \overline{C D}$, segments $C E$ and $A F$ are drawn to diagonal $\overline{B D}$ such that $\overline{B E} \cong \overline{D F}$ (Given); $\angle A B F \cong \angle C D E$ (Parallel lines cut by a transversal form congruent interior angles); $\overline{E F} \cong \overline{F E}$ (Reflexive); $\overline{B E}+\overline{E F} \cong \overline{D F}+\overline{F E}$ (Addition); $\triangle A F B \cong \triangle C E D$ (SAS); $\overline{C E} \cong \overline{A F}$ (CPCTC).

$$
\overline{B F} \cong \overline{D E}
$$

PTS: 4 REF: 012434geo TOP: Quadrilateral Proofs
700 ANS:
Mary. Sally: $V=\pi \cdot 2^{2} \cdot 8 \approx 100.5$ Mary: $V=\frac{1}{3} \pi \cdot 3.5^{2} \cdot 12.5 \approx 160.4 \quad 160.4-100.5 \approx 60$
PTS: 4 REF: 012332geo TOP: Volume KEY: cones

701
ANS:
$\triangle A B E \cong \triangle C B D$ (given); $\angle A \cong \angle C$ (СРСТС); $\angle A F D \cong \angle C F E$ (vertical angles are congruent); $\overline{A B} \cong \overline{C B}$, $\overline{D B} \cong \overline{E B}$ (СРСТС); $\overline{A D} \cong \overline{C E}$ (segment subtraction); $\triangle A F D \cong \triangle C F E$ (AAS)

PTS: 4 REF: 081933geo TOP: Triangle Proofs
KEY: proof
702 ANS:

$$
\begin{aligned}
\tan 72 & =\frac{x}{400} \quad \sin 55
\end{aligned}=\frac{400 \tan 72}{y} \quad \begin{aligned}
x & =400 \tan 72 \quad y
\end{aligned}
$$

PTS: 4 REF: 061833geo TOP: Using Trigonometry to Find a Side
KEY: advanced
ANS:

$\triangle X Y Z, \overline{X Y} \cong \overline{Z Y}$, and $\overline{Y W}$ bisects $\angle X Y Z$ (Given). $\triangle X Y Z$ is isosceles
(Definition of isosceles triangle). $\overline{Y W}$ is an altitude of $\triangle X Y Z$ (The angle bisector of the vertex of an isosceles triangle is also the altitude of that triangle). $\overline{Y W} \perp \overline{X Z}$ (Definition of altitude). $\angle Y W Z$ is a right angle (Definition of perpendicular lines).

PTS: 4
REF: spr1411geo TOP: Triangle Proofs
ANS:
$\sin 4.76=\frac{1.5}{x} \quad \tan 4.76=\frac{1.5}{x} \quad 18-\frac{16}{12} \approx 16.7$
$x \approx 18.1 \quad x \approx 18$
PTS: 4
REF: 011934geo TOP: Using Trigonometry to Find a Side

ANS:

PTS: 4
REF: 011634geo TOP: Constructions
KEY: congruent and similar figures
ANS:

$$
\begin{aligned}
& m_{\overline{A D}}=\frac{0-6}{1--1}=-3 \overline{A D} \| \overline{B C} \text { because their slopes are equal. } A B C D \text { is a trapezoid } \\
& m_{\overline{B C}}=\frac{-1-8}{6-3}=-3
\end{aligned}
$$

because it has a pair of parallel sides. $A C=\sqrt{(-1-6)^{2}+(6--1)^{2}}=\sqrt{98} A B C D$ is not an isosceles trapezoid

$$
B D=\sqrt{(8-0)^{2}+(3-1)^{2}}=\sqrt{68}
$$

because its diagonals are not congruent.
PTS: 4 REF: 061932geo TOP: Quadrilaterals in the Coordinate Plane
KEY: grids
707
ANS:
(2) Euclid's Parallel Postulate; (3) Alternate interior angles formed by parallel lines and a transversal are congruent; (4) Angles forming a line are supplementary; (5) Substitution

PTS: 4
REF: 011633geo TOP: Triangle Proofs

708
ANS:
A rhombus has four congruent sides. Since each side measures $\sqrt{85}$, all four sides of MATH are congruent, and

MATH is a rhombus. $16 \times 8-(21+9+21+9)=68$
REF: 062334geo TOP: Quadrilaterals in the Coordinate Plane
709 ANS:
Circle O, tangent $\overline{E C}$ to diameter $\overline{A C}$, chord $\overline{B C} \|$ secant $\overline{A D E}$, and chord $\overline{A B}$ (given); $\angle B$ is a right angle (an angle inscribed in a semi-circle is a right angle); $\overleftrightarrow{E C} \perp \overline{O C}$ (a radius drawn to a point of tangency is perpendicular to the tangent); $\angle E C A$ is a right angle (perpendicular lines form right angles); $\angle B \cong \angle E C A$ (all right angles are congruent); $\angle B C A \cong \angle C A E$ (the transversal of parallel lines creates congruent alternate interior angles); $\triangle A B C \sim \triangle E C A(\mathrm{AA}) ; \frac{B C}{C A}=\frac{A B}{E C}$ (Corresponding sides of similar triangles are in proportion).

PTS: 4
REF: 081733geo TOP: Circle Proofs
710 ANS:
$\tan 30=\frac{y}{440} \tan 38.8=\frac{h}{440} \quad 353.8-254 \approx 100$
$y \approx 254 \quad h \approx 353.8$
PTS: 4 REF: 061934geo TOP: Using Trigonometry to Find a Side
KEY: advanced
711 ANS:

$$
\begin{aligned}
\tan y & =\frac{1.58}{3.74} \quad \tan x
\end{aligned}=\frac{.41}{3.74} 22.90-6.26=16.6
$$

PTS: 4 REF: 062232geo TOP: Using Trigonometry to Find an Angle
712 ANS:

$$
\begin{aligned}
\tan 56 & =\frac{x}{1.3} \quad \sqrt{(1.3 \tan 56)^{2}+1.5^{2}} \approx 3.7 \\
x & =1.3 \tan 56
\end{aligned}
$$

PTS: 4
REF: 012033geo TOP: Using Trigonometry to Find a Side
KEY: advanced

713 ANS:
Since linear angles are supplementary, $\mathrm{m} \angle G I H=65^{\circ}$. Since $\overline{G H} \cong \overline{I H}, \mathrm{~m} \angle G H I=50^{\circ}(180-(65+65))$. Since $\angle E G B \cong \angle G H I$, the corresponding angles formed by the transversal and lines are congruent and $\overline{A B} \| \overline{C D}$.

PTS: 4
REF: 061532geo TOP: Lines and Angles
714 ANS:
A dilation of $\frac{5}{2}$ about the origin. Dilations preserve angle measure, so the triangles are similar by AA.
PTS: 4 REF: 061634geo TOP: Similarity Proofs
715 ANS:
2 Reflexive; $4 \angle B D A \cong \angle B D C$; 6 CPCTC; 7 If points B and D are equidistant from the endpoints of $\overline{A C}$, then B and D are on the perpendicular bisector of $\overline{A C}$.

PTS: 4 REF: 081832geo TOP: Triangle Proofs
KEY: proof
716 ANS:

The length of $\overline{A^{\prime} C^{\prime}}$ is twice $\overline{A C}$.
PTS: 4 REF: 081632geo TOP: Constructions
KEY: congruent and similar figures
717 ANS:

$$
\begin{aligned}
C & =2 \pi r \quad V=\frac{1}{3} \pi \cdot 5^{2} \cdot 13 \approx 340 \\
31.416 & =2 \pi r \\
5 & \approx r
\end{aligned}
$$

PTS: 4
REF: 011734geo TOP: Volume
KEY: cones

718 ANS:

A dilation preserves slope, so the slopes of $\overline{Q R}$ and $\overline{Q^{\prime} R^{\prime}}$ are equal. Because the slopes are equal, $Q^{\prime} R^{\prime} \| Q R$.

PTS: 4 REF: 011732geo TOP: Dilations KEY: grids
719 ANS:
Parallelogram $P Q R S, \overline{Q T} \perp \overline{P S}, \overline{S U} \perp \overline{Q R}$ (given); $\overline{Q U R} \cong \overline{P T S}$ (opposite sides of a parallelogram are parallel; Quadrilateral QUST is a rectangle (quadrilateral with parallel opposite sides and opposite right angles is a rectangle); $\overline{S U} \cong \overline{Q T}$ (opposite sides of a rectangle are congruent); $\overline{R S} \cong \overline{P Q}$ (opposite sides of a parallelogram are congruent); $\angle R U S$ and $\angle P T Q$ are right angles (the supplement of a right angle is a right angle),
$\triangle R S U \cong \triangle P Q T$ (HL); $\overline{P T} \cong \overline{R U}$ (СРСТС)
PTS: 4 REF: 062233geo TOP: Quadrilateral Proofs
720 ANS:

$\overline{A D}$ and $\overline{B C}$ have equal slope, so are parallel. $\overline{A B}$ and $\overline{C D}$ have equal slope, so are parallel. Since both pairs of opposite sides are parallel, $A B C D$ is a parallelogram. The slope of $\overline{A B}$ and $\overline{B C}$ are not opposite reciprocals, so they are not perpendicular, and so $\angle B$ is not a right angle. $A B C D$ is not a rectangle since all four angles are not right angles.

PTS: 4 REF: 082334geo TOP: Quadrilaterals in the Coordinate Plane
721 ANS:
As the sum of the measures of the angles of a triangle is $180^{\circ}, \mathrm{m} \angle A B C+\mathrm{m} \angle B C A+\mathrm{m} \angle C A B=180^{\circ}$. Each interior angle of the triangle and its exterior angle form a linear pair. Linear pairs are supplementary, so $\mathrm{m} \angle A B C+\mathrm{m} \angle F B C=180^{\circ}, \mathrm{m} \angle B C A+\mathrm{m} \angle D C A=180^{\circ}$, and $\mathrm{m} \angle C A B+\mathrm{m} \angle E A B=180^{\circ}$. By addition, the sum of these linear pairs is 540°. When the angle measures of the triangle are subtracted from this sum, the result is 360°, the sum of the exterior angles of the triangle.

PTS: 4 REF: fall1410geo TOP: Triangle Proofs

722 ANS:

$$
r_{x=-1} \text { Reflections are rigid motions that preserve distance, so } \triangle A B C \cong \triangle D E F \text {. }
$$

PTS: 4
REF: 061732geo TOP: Identifying Transformations
KEY: graphics
723 ANS:
$V=\frac{2}{3} \pi\left(\frac{6.5}{2}\right)^{2}(1) \approx 2222 \cdot 7.48 \approx 165$
PTS: 4 REF: 061933geo TOP: Volume KEY: cylinders
724 ANS:

Since the square is inscribed, each vertex of the square is on the circle and the diagonals of the square are diameters of the circle. Therefore, each angle of the square is an inscribed angle in the circle that intercepts the circle at the endpoints of the diameters. Each angle of the square, which is an inscribed angle, measures 90 degrees. Therefore, the measure of the arc intercepted by two adjacent sides of the square is 180 degrees because it is twice the measure of its inscribed angle.

PTS: 4 REF: fall1412geo TOP: Constructions
725 ANS:
$\frac{4 \pi}{3}\left(2^{3}-1.5^{3}\right) \approx 19.419 .4 \cdot 1.308 \cdot 8 \approx 203$
PTS: 4 REF: 081834geo TOP: Density
726 ANS:
$((10 \times 6)+\sqrt{7(7-6)(7-4)(7-4)})(6.5) \approx 442$
PTS: 4
REF: 081934geo TOP: Volume
KEY: compositions

727 ANS:

$$
\begin{aligned}
\frac{16}{9} & =\frac{x}{20.6} \quad D=\sqrt{36.6^{2}+20.6^{2}} \approx 42 \\
x & \approx 36.6
\end{aligned}
$$

PTS: 4 REF: 011632geo TOP: Similarity KEY: basic
ANS:

PTS: 4 REF: 081732geo TOP: Triangles in the Coordinate Plane
$\frac{\left(\frac{180-20}{2}\right)}{360} \times \pi(6)^{2}=\frac{80}{360} \times 36 \pi=8 \pi$
PTS: 4 REF: spr1410geo TOP: Sectors
730 ANS:
$x=\sqrt{.55^{2}-.25^{2}} \cong 0.49$ No, $.49^{2}=.25 y .9604+.25<1.5$

$$
.9604=y
$$

PTS: 4 REF: 061534geo TOP: Similarity KEY: altitude
731 ANS:
$\pi(3.5)^{2}(9) \approx 346 ; \pi(4.5)^{2}(13) \approx 827 ; \frac{827}{346} \approx 2.4 ; 3$ cans
PTS: 4 REF: 062333geo TOP: Volume KEY: cylinders
732 ANS:
$V=\pi(10)^{2}(18)=1800 \pi \mathrm{in}^{3} 1800 \pi \mathrm{in}^{3}\left(\frac{1 \mathrm{ft}^{3}}{12^{3} \mathrm{in}^{3}}\right)=\frac{25}{24} \pi \mathrm{ft}^{3} \frac{25}{24} \pi(95.46)(0.85) \approx 266266+270=536$

PTS: 4
REF: 061834geo TOP: Density

733 ANS:
$\overline{R S}$ and $\overline{T V}$ bisect each other at point $X ; \overline{T R}$ and $\overline{S V}$ are drawn (given); $\overline{T X} \cong \overline{X V}$ and $\overline{R X} \cong \overline{X S}$ (segment bisectors create two congruent segments); $\angle T X R \cong \angle V X S$ (vertical angles are congruent); $\triangle T X R \cong \triangle V X S$ (SAS); $\angle T \cong \angle V$ (CPCTC); $\overline{T R} \| \overline{S V}$ (a transversal that creates congruent alternate interior angles cuts parallel lines).

PTS: 4 REF: 061733geo TOP: Triangle Proofs
KEY: proof
734 ANS:

$$
\begin{aligned}
\tan 22.2 & =\frac{50}{x} \quad \tan 13.3 & =\frac{y}{122.52} \\
x & \approx 122.52 \quad y & \approx 29
\end{aligned}
$$

$50-29=21$
PTS: 4
REF: 082232geo TOP: Using Trigonometry to Find a Side
KEY: advanced
ANS:

Yes, because a dilation preserves angle measure.
PTS: 4
REF: 081932geo TOP: Constructions
KEY: congruent and similar figures
ANS:
A dilation of 3 centered at A. A dilation preserves angle measure, so the triangles are similar.
PTS: 4 REF: 011832geo TOP: Dilations

737 ANS:

$$
\begin{aligned}
\tan 75 & =\frac{y}{85} \quad \tan 35
\end{aligned}=\frac{x}{85} \quad 317.2+59.5 \approx 377 \quad \begin{aligned}
y & \approx 317.2 \quad h
\end{aligned}
$$

PTS: 4 REF: 012432geo TOP: Using Trigonometry to Find a Side
738 ANS:
x represents the distance between the lighthouse and the canoe at 5:00; y represents the distance between the lighthouse and the canoe at $5: 05 . \tan 6=\frac{112-1.5}{x} \tan (49+6)=\frac{112-1.5}{y} \frac{1051.3-77.4}{5} \approx 195$

$$
x \approx 1051.3 \quad y \approx 77.4
$$

PTS: 4
REF: spr1409geo TOP: Using Trigonometry to Find a Side
KEY: advanced

Geometry 6 Point Regents Exam Questions

Answer Section

739
ANS:
Quadrilateral $A B C D, \overline{A B} \cong \overline{C D}, \overline{A B} \| \overline{C D}$, and $\overline{B F}$ and $\overline{D E}$ are perpendicular to diagonal $\overline{A C}$ at points F and E (given). $\angle A E D$ and $\angle C F B$ are right angles (perpendicular lines form right angles). $\angle A E D \cong \angle C F B$ (All right angles are congruent). $A B C D$ is a parallelogram (A quadrilateral with one pair of sides congruent and parallel is a parallelogram). $\overline{A D} \| \overline{B C}$ (Opposite sides of a parallelogram are parallel). $\angle D A E \cong \angle B C F$ (Parallel lines cut by a transversal form congruent alternate interior angles). $\overline{D A} \cong \overline{B C}$ (Opposite sides of a parallelogram are congruent). $\triangle A D E \cong \triangle C B F$ (AAS). $\overline{A E} \cong \overline{C F}$ (СРСТС).

PTS: 6 REF: 011735geo TOP: Quadrilateral Proofs
740 ANS:
Quadrilateral MATH, $\overline{H M} \cong \overline{A T}, \overline{H T} \cong \overline{A M}, \overline{H E} \perp \overline{M E A}$, and $\overline{H A} \perp \overline{A T}$ (given); $\angle H E A$ and $\angle T A H$ are right angles (perpendicular lines form right angles); $\angle H E A \cong \angle T A H$ (all right angles are congruent); MATH is a parallelogram (a quadrilateral with two pairs of congruent opposite sides is a parallelogram); $\overline{M A} \| \overline{T H}$ (opposite sides of a parallelogram are parallel); $\angle T H A \cong \angle E A H$ (alternate interior angles of parallel lines and a transversal are congruent); $\triangle H E A \sim \triangle T A H$ (AA); $\frac{H A}{T H}=\frac{H E}{T A}$ (corresponding sides of similar triangles are in proportion); $T A \bullet H A=H E \bullet T H$ (product of means equals product of extremes).

PTS: 6 REF: 061935geo TOP: Quadrilateral Proofs
741 ANS:
Quadrilateral $A B C D$ with diagonal $\overline{A C}$, segments $G H$ and $E F, \overline{A E} \cong \overline{C G}, \overline{B E} \cong \overline{D G}, \overline{A H} \cong \overline{C F}$, and $\overline{A D} \cong \overline{C B}$ (given); $\overline{H F} \cong \overline{H F}, \overline{A C} \cong \overline{A C}$ (reflexive property); $\overline{A H}+\overline{H F} \cong \overline{C F}+\overline{H F}, \overline{A E}+\overline{B E} \cong \overline{C G}+\overline{D G}$ (segment

$$
\overline{A F} \cong \overline{C H} \quad \overline{A B} \cong \overline{C D}
$$

addition); $\triangle A B C \cong \triangle C D A(S S S) ; \angle E A F \cong \angle G C H$ (СРСТС); $\triangle A E F \cong \triangle C G H$ (SAS); $\overline{E F} \cong \overline{G H}$ (СРСТС).
PTS: 6 REF: 011935geo TOP: Quadrilateral Proofs

742
ANS:
$A B=\sqrt{(-5-1)^{2}+(3-2)^{2}}=\sqrt{37}, B C=\sqrt{(-5--6)^{2}+(3--3)^{2}}=\sqrt{37}$ (because $A B=B C, \triangle A B C$ is isosceles). $(0,-4) . A D=\sqrt{(1-0)^{2}+(2--4)^{2}}=\sqrt{37}, C D=\sqrt{(-6-0)^{2}+(-3--4)^{2}}=\sqrt{37}$, $m_{\overline{A B}}=\frac{3-2}{-5-1}=-\frac{1}{6}, m_{C B}=\frac{3--3}{-5--6}=6(A B C D$ is a square because all four sides are congruent, consecutive sides
are perpendicular since slopes are opposite reciprocals and so $\angle B$ is a right angle).

PTS: 6 REF: 081935geo TOP: Quadrilaterals in the Coordinate Plane
KEY: grids
743
ANS:
Isosceles trapezoid $A B C D, \angle C D E \cong \angle D C E, \overline{A E} \perp \overline{D E}$, and $\overline{B E} \perp \overline{C E}$ (given); $\overline{A D} \cong \overline{B C}$ (congruent legs of isosceles trapezoid); $\angle D E A$ and $\angle C E B$ are right angles (perpendicular lines form right angles); $\angle D E A \cong \angle C E B$ (all right angles are congruent); $\angle C D A \cong \angle D C B$ (base angles of an isosceles trapezoid are congruent);
$\angle C D A-\angle C D E \cong \angle D C B-\angle D C E$ (subtraction postulate); $\triangle A D E \cong \triangle B C E$ (AAS); $\overline{E A} \cong \overline{E B}$ (СРСТС);

$$
\angle E D A \cong \angle E C B
$$

$\triangle A E B$ is an isosceles triangle (an isosceles triangle has two congruent sides).
PTS: 6
REF: 081735geo TOP: Quadrilateral Proofs
ANS:
$\triangle P A T$ is an isosceles triangle because sides $\overline{A P}$ and $\overline{A T}$ are congruent $\left(\sqrt{3^{2}+11^{2}}=\sqrt{7^{2}+9^{2}}=\sqrt{130}\right)$. $R(2,9)$. Quadrilateral $P A R T$ is a parallelogram because the opposite sides are parallel since they have equal slopes

$$
\left(m_{A R}=\frac{4}{6}=\frac{2}{3} ; m_{P T}=\frac{4}{6}=\frac{2}{3} ; m_{\overline{P A}}=-\frac{11}{3} ; m_{R T}=-\frac{11}{3}\right)
$$

PTS: 6 REF: 011835geo TOP: Quadrilaterals in the Coordinate Plane
KEY: grids

745
ANS:

Quadrilateral $F A C T, \overline{B R}$ intersects diagonal $\overline{A T}$ at $E, \overline{A F} \| \overline{C T}$, and $\overline{A F} \cong \overline{C T}$
(Given); $F A C T$ is a parallelogram (A quadrilateral with one pair of opposite sides parallel and congruent is a parallelogram); $\overline{A C} \cong \overline{F T}$ (Opposite sides of a parallelogram are parallel); $\angle B A E \cong \angle R T E, \angle A B E \cong \angle T R E$ (Parallel lines cut by a transversal form alternate interior angles that are congruent); $\triangle A B E \sim \triangle T R E$ (AA); $\frac{A B}{A E}=\frac{T R}{T E}$ (Corresponding sides of similar triangles are proportional); $(A B)(T E)=(A E)(T R)$ (Product of the means equals the product of the extremes).

PTS: 6 REF: 082335geo TOP: Similarity Proofs
746 ANS:
Circle O, secant $\overline{A C D}$, tangent $\overline{A B}$ (Given). Chords $\overline{B C}$ and $\overline{B D}$ are drawn (Auxiliary lines). $\angle A \cong \angle A$, $\overparen{B C} \cong \overparen{B C}$ (Reflexive property). $\mathrm{m} \angle B D C=\frac{1}{2} \widetilde{\mathrm{~m}} \overparen{B C}$ (The measure of an inscribed angle is half the measure of the intercepted arc). $\mathrm{m} \angle C B A=\frac{1}{2} \mathrm{~m} \overparen{B C}$ (The measure of an angle formed by a tangent and a chord is half the measure of the intercepted arc). $\angle B D C \cong \angle C B A$ (Angles equal to half of the same arc are congruent).
$\triangle A B C \sim \triangle A D B(\mathrm{AA}) . \frac{A B}{A C}=\frac{A D}{A B}$ (Corresponding sides of similar triangles are proportional). $A C \cdot A D=A B^{2}$ (In a proportion, the product of the means equals the product of the extremes).

PTS: 6 REF: spr1413geo TOP: Circle Proofs
747 ANS:
C: $V=\pi(26.7)^{2}(750)-\pi(24.2)^{2}(750)=95,437.5 \pi$

$$
95,437.5 \pi \mathrm{~cm}^{3}\left(\frac{2.7 \mathrm{~g}}{\mathrm{~cm}^{3}}\right)\left(\frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}\right)\left(\frac{\$ 0.38}{\mathrm{~kg}}\right)=\$ 307.62
$$

P: $V=40^{2}(750)-35^{2}(750)=281,250 \quad \$ 307.62-288.56=\$ 19.06$

$$
281,250 \mathrm{~cm}^{3}\left(\frac{2.7 \mathrm{~g}}{\mathrm{~cm}^{3}}\right)\left(\frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}\right)\left(\frac{\$ 0.38}{\mathrm{~kg}}\right)=\$ 288.56
$$

PTS: 6
REF: 011736geo TOP: Density

ANS:
Quadrilateral $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}$ that bisect each other, and $\angle 1 \cong \angle 2$ (given); quadrilateral $A B C D$ is a parallelogram (the diagonals of a parallelogram bisect each other); $\overline{A B} \| \overline{C D}$ (opposite sides of a parallelogram are parallel); $\angle 1 \cong \angle 3$ and $\angle 2 \cong \angle 4$ (alternate interior angles are congruent); $\angle 2 \cong \angle 3$ and $\angle 3 \cong \angle 4$
(substitution); $\triangle A C D$ is an isosceles triangle (the base angles of an isosceles triangle are congruent); $\overline{A D} \cong \overline{D C}$ (the sides of an isosceles triangle are congruent); quadrilateral $A B C D$ is a rhombus (a rhombus has consecutive congruent sides); $\overline{A E} \perp \overline{B E}$ (the diagonals of a rhombus are perpendicular); $\angle B E A$ is a right angle (perpendicular lines form a right angle); $\triangle A E B$ is a right triangle (a right triangle has a right angle).

PTS: 6 REF: 061635geo TOP: Quadrilateral Proofs
ANS:
$\tan 47=\frac{x}{8.5} \quad$ Cone: $V=\frac{1}{3} \pi(8.5)^{2}(9.115) \approx 689.6$ Cylinder: $V=\pi(8.5)^{2}(25) \approx 5674.5$ Hemisphere:
$x \approx 9.115$
$V=\frac{1}{2}\left(\frac{4}{3} \pi(8.5)^{3}\right) \approx 1286.3689 .6+5674.5+1286.3 \approx 7650$ No, because $7650 \cdot 62.4=477,360$
$477,360 \cdot 85=405,756$, which is greater than 400,000 .
PTS: 6 REF: 061535geo TOP: Density
ANS:

1) Quadrilateral $A B C D, \overline{A C}$ and $\overline{E F}$ intersect at $H, \overline{E F} \| \overline{A D}$, $\overline{E F} \| \overline{B C}$, and $\overline{A D} \cong \overline{B C}$ (Given); 2) $\angle E H A \cong \angle F H C$ (Vertical angles are congruent); 3) $\overline{A D} \| \overline{B C}$ (Transitive property of parallel lines); 4) $A B C D$ is a parallelogram (Quadrilateral with a pair of sides both parallel and congruent); 5) $\overline{A B} \| \overline{C D}$ (Opposite sides of a parallelogram); 6) $\angle A E H \cong \angle C F H$ (Alternate interior angles formed by parallel lines and a transversal); 7) $\triangle A E H \sim \triangle C F H$ (AA); 8) $\frac{E H}{F H}=\frac{A H}{C H}$ (Corresponding sides of similar triangles are proportional); 8) $(E H)(C H)=(F H)(A H)$ (Product of means equals product of extremes).

PTS: 6
REF: 082235geo TOP: Quadrilateral Proofs

751
ANS:
$m_{\overline{T S}}=\frac{-10}{6}=-\frac{5}{3} m_{S R}=\frac{3}{5}$ Since the slopes of $\overline{T S}$ and $\overline{S R}$ are opposite reciprocals, they are perpendicular and form a right angle. $\triangle R S T$ is a right triangle because $\angle S$ is a right angle. $P(0,9) \quad m_{\overline{R P}}=\frac{-10}{6}=-\frac{5}{3} m_{P T}=\frac{3}{5}$
Since the slopes of all four adjacent sides ($\overline{T S}$ and $\overline{S R}, \overline{S R}$ and $\overline{R P}, \overline{P T}$ and $\overline{T S}, \overline{R P}$ and $\overline{P T}$) are opposite reciprocals, they are perpendicular and form right angles. Quadrilateral $R S T P$ is a rectangle because it has four right angles.

PTS: 6 REF: 061536geo TOP: Quadrilaterals in the Coordinate Plane
KEY: grids
752
ANS:
It is given that point D is the image of point A after a reflection in line $C H$. It is given that $C H$ is the perpendicular bisector of $\overline{B C E}$ at point C. Since a bisector divides a segment into two congruent segments at its midpoint, $\overline{B C} \cong \overline{E C}$. Point E is the image of point B after a reflection over the line $C H$, since points B and E are equidistant from point C and it is given that $\overleftrightarrow{C H}$ is perpendicular to $\overline{B E}$. Point C is on $\overleftrightarrow{C H}$, and therefore, point C maps to itself after the reflection over $\overleftrightarrow{C H}$. Since all three vertices of triangle $A B C$ map to all three vertices of triangle $D E C$ under the same line reflection, then $\triangle A B C \cong \triangle D E C$ because a line reflection is a rigid motion and triangles are congruent when one can be mapped onto the other using a sequence of rigid motions.

PTS: 6 REF: spr1414geo TOP: Triangle Congruency
753 ANS:

$$
\begin{array}{rlrl}
\tan 52.8 & =\frac{h}{x} & x \tan 52.8 & =x \tan 34.9+8 \tan 34.9 \tan 52.8 \approx \frac{h}{9} \quad 11.86+1.7 \approx 13.6 \\
h & =x \tan 52.8 & x \tan 52.8-x \tan 34.9 & =8 \tan 34.9 \\
\tan 34.9 & =\frac{h}{x+8} & x(\tan 52.8-\tan 34.9) & =8 \tan 34.9 \\
h & =(x+8) \tan 34.9 & x & =\frac{8 \tan 34.9}{\tan 52.8-\tan 34.9} \\
x & \approx 9
\end{array}
$$

PTS: 6 REF: 011636geo TOP: Using Trigonometry to Find a Side
KEY: advanced

754
ANS:
Similar triangles are required to model and solve a proportion. $\frac{x+5}{1.5}=\frac{x}{1} \quad \frac{1}{3} \pi(1.5)^{2}(15)-\frac{1}{3} \pi(1)^{2}(10) \approx 24.9$

$$
\begin{aligned}
x+5 & =1.5 x \\
5 & =.5 x \\
10 & =x \\
10+5 & =15
\end{aligned}
$$

PTS: 6
REF: 061636geo
TOP: Volume
KEY: cones
ANS:
Parallelogram $A N D R$ with $\overline{A W}$ and $\overline{D E}$ bisecting $\overline{N W D}$ and $\overline{R E A}$ at points W and E (Given). $\overline{A N} \cong \overline{R D}$, $\overline{A R} \cong \overline{D N}$ (Opposite sides of a parallelogram are congruent). $A E=\frac{1}{2} A R$, $W D=\frac{1}{2} D N$, so $\overline{A E} \cong \overline{W D}$ (Definition of bisect and division property of equality). $\overline{A R} \| \overline{D N}$ (Opposite sides of a parallelogram are parallel). AWDE is a parallelogram (Definition of parallelogram). $R E=\frac{1}{2} A R, N W=\frac{1}{2} D N$, so $\overline{R E} \cong \overline{N W}$ (Definition of bisect and division property of equality). $\overline{E D} \cong \overline{A W}$ (Opposite sides of a parallelogram are congruent). $\triangle A N W \cong \triangle D R E$ (SSS).

PTS: 6 REF: 011635geo TOP: Quadrilateral Proofs
756 ANS:

$$
m_{\overline{M H}}=\frac{6}{10}=\frac{3}{5}, m_{\overline{A T}}=\frac{6}{10}=\frac{3}{5}, m_{\overline{M A}}=-\frac{5}{3}, m_{H T}=-\frac{5}{3} ; \overline{M H} \| \overline{A T} \text { and } \overline{M A} \| \overline{H T} .
$$

MATH is a parallelogram since both sides of opposite sides are parallel. $m_{\overline{M A}}=-\frac{5}{3}, m_{A T}=\frac{3}{5}$. Since the slopes are negative reciprocals, $\overline{M A} \perp \overline{A T}$ and $\angle A$ is a right angle. $M A T H$ is a rectangle because it is a parallelogram with a right angle.

PTS: 6 REF: 081835geo TOP: Quadrilaterals in the Coordinate Plane KEY: grids

757 ANS:
$\tan 15=\frac{6250}{x} \quad \tan 52=\frac{6250}{y} \quad 23325.3-4883=18442 \frac{18442 \mathrm{ft}}{1 \mathrm{~min}}\left(\frac{1 \mathrm{mi}}{5280 \mathrm{ft}}\right)\left(\frac{60 \mathrm{~min}}{1 \mathrm{~h}}\right) \approx 210$

$$
x \approx 23325.3 \quad y \approx 4883
$$

PTS: 6 REF: 061736geo TOP: Using Trigonometry to Find a Side KEY: advanced
758 ANS:

$M \approx 384$
$4960+384=5344$

$$
\begin{aligned}
A & \approx 229 \\
5344-229 & =5115
\end{aligned}
$$

PTS: 6 REF: fall1413geo TOP: Using Trigonometry to Find a Side KEY: advanced
ANS:

$$
\begin{array}{rlrl}
\tan 16.5 & =\frac{x}{13.5} & 9 \times 16 \times 4.5 & =648 \quad 3752-(35 \times 16 \times .5)=3472 \\
x & \approx 4 & 13.5 \times 16 \times 4.5 & =972 \quad 3472 \times 7.48 \approx 25971 \\
4+4.5 & =8.5 & \frac{1}{2} \times 13.5 \times 16 \times 4 & =432 \\
& & \frac{25971}{10.5} \approx 2473.4 \\
12.5 \times 16 \times 8.5 & =\underline{1700} \frac{2473.4}{60} \approx 41
\end{array}
$$

PTS: 6
REF: 081736geo TOP: Volume KEY: compositions

760 ANS:
$\overline{P Q} \sqrt{(8-3)^{2}+(3--2)^{2}}=\sqrt{50} \overline{Q R} \sqrt{(1-8)^{2}+(4-3)^{2}}=\sqrt{50} \overline{R S} \sqrt{(-4-1)^{2}+(-1-4)^{2}}=\sqrt{50}$
$\overline{P S} \sqrt{(-4-3)^{2}+(-1--2)^{2}}=\sqrt{50} P Q R S$ is a rhombus because all sides are congruent. $m_{P Q}=\frac{8-3}{3--2}=\frac{5}{5}=1$
$m_{\overline{Q R}}=\frac{1-8}{4-3}=-7$ Because the slopes of adjacent sides are not opposite reciprocals, they are not perpendicular

and do not form a right angle. Therefore $P Q R S$ is not a square.
PTS: 6 REF: 061735geo TOP: Quadrilaterals in the Coordinate Plane
KEY: grids
761 ANS:
$V=\frac{1}{3} \pi\left(\frac{8.3}{2}\right)^{2}(10.2)+\frac{1}{2} \cdot \frac{4}{3} \pi\left(\frac{8.3}{2}\right)^{3} \approx 183.961+149.693 \approx 333.65 \mathrm{~cm}^{3} \quad 333.65 \times 50=16682.7 \mathrm{~cm}^{3}$
$16682.7 \times 0.697=11627.8 \mathrm{~g} 11.6278 \times 3.83=\$ 44.53$
PTS: 6 REF: 081636geo TOP: Density
762 ANS:
$V=\frac{1}{3} \pi\left(\frac{3}{2}\right)^{2} \cdot 8 \approx 18.85 \cdot 100=18851885 \cdot 0.52 \cdot 0.10=98.021 .95(100)-(37.83+98.02)=59.15$

PTS: 6 REF: 081536geo TOP: Density
763 ANS:
Quadrilateral $A B C D, E$ and F are points on $\overline{B C}$ and $\overline{A D}$, respectively, and $\overline{B G D}$ and $\overline{E G F}$ are drawn such that $\angle A B G \cong \angle C D G, \overline{A B} \cong \overline{C D}$, and $\overline{C E} \cong \overline{A F}$ (given); $\overline{B D} \cong \overline{B D}$ (reflexive); $\triangle A B D \cong \triangle C D B$ (SAS); $\overline{B C} \cong \overline{D A}$ (CPCTC); $\overline{B E}+\overline{C E} \cong \overline{A F}+\overline{D F}$ (segment addition); $\overline{B E} \cong \overline{D F}$ (segment subtraction); $\angle B G E \cong \angle D G F$ (vertical angles are congruent); $\angle C B D \cong \angle A D B$ (СРСТС); $\triangle E B G \cong \triangle F D G$ (AAS); $\overline{F G} \cong \overline{E G}$ (СРСТС).

PTS: 6
REF: 012035geo TOP: Quadrilateral Proofs

ANS:
Quadrilateral $A B C D, \overline{A B} \cong \overline{C D}, \overline{A B} \| \overline{C D}$, diagonal $\overline{A C}$ intersects $\overline{E F}$ at G, and $\overline{D E} \cong \overline{B F}$ (given); $A B C D$ is a parallelogram (a quadrilateral with a pair of opposite sides \|is a parallelogram); $\overline{A D} \cong \overline{C B}$ (opposite side of a parallelogram are congruent); $\overline{A E} \cong \overline{C F}$ (subtraction postulate); $\overline{A D} \| \overline{C B}$ (opposite side of a parallelogram are parallel); $\angle E A G \cong \angle F C G$ (if parallel sides are cut by a transversal, the alternate interior angles are congruent); $\angle A G E \cong \angle C G F$ (vertical angles); $\triangle A E G \cong \triangle C F G$ (AAS); $\overline{E G} \cong \overline{F G}$ (CPCTC): G is the midpoint of $\overline{E F}$ (since G divides $\overline{E F}$ into two equal parts, G is the midpoint of $\overline{E F}$).

PTS: 6 REF: 062335geo TOP: Quadrilateral Proofs
ANS:
$\sqrt{(-2--7)^{2}+(4--1)^{2}}=\sqrt{(-2--3)^{2}+(4--3)^{2}}$ Since $\overline{A B}$ and $\overline{A C}$ are congruent, $\triangle A B C$ is isosceles.

$$
\sqrt{50}=\sqrt{50}
$$

$A^{\prime}(3,-1), B^{\prime}(-2,-6), C^{\prime}(2,-8) . A C=\sqrt{50} A A^{\prime}=\sqrt{(-2-3)^{2}+(4--1)^{2}}, A^{\prime} C^{\prime}=\sqrt{50}$ (translation preserves

$$
=\sqrt{50}
$$

distance), $C C^{\prime}=\sqrt{(-3-2)^{2}+(-3--8)^{2}}$ Since all four sides are congruent, $A A^{\prime} C^{\prime} C$ is a rhombus.

PTS: 6 REF: 062235geo TOP: Quadrilaterals in the Coordinate Plane KEY: grids

ANS:
$m_{\overline{D U}}=\frac{9}{2} m_{\overline{U C}}=-\frac{2}{9}$ Since the slopes of $\overline{D U}$ and $\overline{U C}$ are opposite reciprocals, they are perpendicular and form a right angle. $\triangle D U C$ is a right triangle because $\angle D U C$ is a right angle. Each side of quadrilateral $D U C U^{\prime}$ is $\sqrt{9^{2}+2^{2}}=\sqrt{85}$. Quadrilateral $D U C U^{\prime}$ is a square because all four side are congruent and it has a right angle.

PTS: 6 REF: 012335geo TOP: Quadrilaterals in the Coordinate Plane
767 ANS:
Circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E (Given); Chords $\overline{C B}$ and $\overline{A D}$ are drawn (auxiliary lines drawn); $\angle C E B \cong \angle A E D$ (vertical angles); $\angle C \cong \angle A$ (Inscribed angles that intercept the same arc are congruent); $\triangle B C E \sim \triangle D A E$ (AA); $\frac{A E}{C E}=\frac{E D}{E B}$ (Corresponding sides of similar triangles are proportional);
$A E \cdot E B=C E \cdot E D$ (The product of the means equals the product of the extremes).
PTS: 6 REF: 081635geo TOP: Circle Proofs
768
ANS:
Parallelogram $A B C D, \overline{B F} \perp \overline{A F D}$, and $\overline{D E} \perp \overline{B E C}$ (given); $\overline{B C} \| \overline{A D}$ (opposite sides of a \square are $\|$); $\overline{B E} \| \overline{F D}$ (parts of $\|$ lines are $\|$); $\overline{B F} \| \overline{D E}$ (two lines \perp to the same line are $\|$); BEDF is \square (a quadrilateral with both pairs of opposite sides $\|$ is a \square); $\angle D E B$ is a right $\angle(\perp$ lines form right $\angle \mathrm{s}$); BEDF is a rectangle (a \square with one right \angle is a rectangle).

PTS: 6
REF: 061835geo TOP: Quadrilateral Proofs

ANS:

The slope of $\overline{M A}$ and $\overline{T H}$ equals $-\frac{1}{2}$. Distinct lines with equal slope are parallel. MATH is a trapezoid because it has a pair of parallel lines. (7,3). The slope of $\overline{M Y}$ and $\overline{T H}$ equals $-\frac{1}{2}$. The slope of $\overline{Y T}$ and $\overline{H M}$ equals 2 . The slopes of each side are opposite reciprocals and therefore perpendicular. Perpendicular sides form right angles, so MYTH has four right angles and is a rectangle.

PTS: 6
REF: 012435geo TOP: Quadrilaterals in the Coordinate Plane
Parallelogram $A B C D, \overline{B E} \perp \overline{C E D}, \overline{D F} \perp \overline{B F C}, \overline{C E} \cong \overline{C F}$ (given). $\angle B E C \cong \angle D F C$ (perpendicular lines form right angles, which are congruent). $\angle F C D \cong \angle B C E$ (reflexive property). $\triangle B E C \cong \triangle D F C$ (ASA). $\overline{B C} \cong \overline{C D}$ (CPCTC). $A B C D$ is a rhombus (a parallelogram with consecutive congruent sides is a rhombus).

PTS: 6 REF: 081535geo TOP: Quadrilateral Proofs

