JEFFERSON MATH PROJECT REGENTS BY DATE

The NY Integrated Algebra Regents Exams Fall, 2008-August, 2009
(Answer Key)

www.jmap.org

$\mathcal{D}_{\text {ear }}{ }^{\text {© }}{ }_{\text {ir }}$

Thave to acknofege the reciept of your favor of May 14. in which you mention that you have finished the 6. first Gooks of \mathcal{E} ucfid, po ane trigonometry, surveying \& afgebra and ask whether \mathscr{I} think a further pursuit of that branch of science would be useful to you. there are some propositions in the fatter books of Eucfid, \& some of ${ }^{\circ}{ }^{\circ}$ trchimedes, which are usefuf, \& \mathscr{I} have no doubt you have been made acquainted with them. trigonometry, so far as thi's, is most valuable to every man, there is scarcely a day in which he wiff not resort to it for some of the purposes of common fife. the science of cafculation also is indispensible as far as the extraction of the square \& cube roots; ©̈tlgebra as far as the quadratic equation \& the use of fogarithms are often of vafue in ordinary cases: but aff beyond these is but a fuxury; a deficious fuxury indeed; but not to be indufged in by one who is to have a profession to foffow for his subsistence. in thits fight $I_{\text {view the }}$ conic sections, curves of the higher orders, perfapps even spherical trigonometry, ©̈tIgebraical operations beyond the ad dimension, andffuxions.
Letter from Thomas Jefferson to William G. Munford, Monticello, June 18, 1799.

fall08ge
 Answer Section

ANS: 3	PTS:		TOP:	Special Quadrilaterals
ANS: 4	PTS:		TOP:	Logical Reasoning
ANS: 1	PTS:	2	TOP:	Translations
ANS: 3	PTS:	2	TOP:	Constructions
ANS: 3	PTS:	2	TOP:	Quadratic-Linear Systems-GE
ANS: 2	PTS:		TOP:	Planes
ANS: 1	PTS:		TOP:	Constructions
ANS: 3	PTS:	2	TOP:	Classifying Solids
ANS: 1	PTS:	2	TOP:	Classifying Triangles
ANS: 4	PTS:	2	TOP:	Medians, Altitudes, Bisectors and Midsegments
ANS: 3	PTS:		TOP:	Chords
ANS: 2	PTS:		TOP:	Parallel and Perpendicular Lines-GE
ANS: 2	PTS:		TOP:	Midpoint
ANS: 3	PTS:	2	TOP:	Equations of Circles
ANS: 1	PTS:	2	TOP:	Volume-GE
ANS: 3	PTS:		TOP:	Planes
ANS: 2	PTS:		TOP:	Chords, Secants and Tangents
ANS: 4	PTS:		TOP	Translations
ANS: 2	PTS:		TOP	Triangle Inequalities
ANS: 1	PTS:	2	TOP	Equations of Circles
ANS: 1	PTS:	2	TOP	Similarity Proofs
ANS: 4	PTS:		TOP	Parallel and Perpendicular Lines-GE
ANS: 1	PTS:		TOP	Compositions of Transformations
ANS: 4	PTS:		TOP	Tangents
ANS: 3	PTS:		TOP	Medians, Altitudes, Bisectors and Midsegments
ANS: 4	PTS:		TOP	Perimeter, Area and Volume of Similar Figures
ANS: 4	PTS:		TOP	Interior and Exterior Angles of Other Polygons
ANS: 2	PTS:		TOP	Parallel and Perpendicular Lines-GE
$\begin{aligned} & \text { ANS: } \\ & 2 \sqrt{3} \end{aligned}$				
PTS: 2	TOP:	Sin		

30 ANS:

PTS: 2 TOP: Identifying Transformations
31 ANS:
25
PTS: 2
TOP: Distance
32
ANS:

PTS: 2
TOP: Constructions
33 ANS:
22.4

PTS: 2
TOP: Volume-GE
34 ANS:
Contrapositive-If two angles of a triangle are not congruent, the sides opposite those angles are not congruent.
PTS: 2
TOP: Contrapositive

35 ANS:

PTS: 4 TOP: Medians, Altitudes, Bisectors and Midsegments
36 ANS:
$\angle D, \angle G$ and 24° or $\angle E, \angle F$ and 84°
PTS: 4 TOP: Chords
37 ANS:

PTS: 4

> TOP: Locus

38 ANS:
Because $\overline{A B} \| \overline{D C}, \overparen{A D} \cong \overparen{B C}$ since parallel chords intersect congruent arcs. $\angle B D C \cong \angle A C D$ because inscribed angles that intercept congruent arcs are congruent. $\overline{A D} \cong \overline{B C}$ since congruent chords intersect congruent arcs. $\overline{D C} \cong \overline{C D}$ because of the reflexive property. Therefore, $\triangle A C D \cong \triangle B D C$ because of SAS.

PTS: 6
TOP: Circle Proofs

0609ge

Answer Section

1	ANS: 1	PTS: 2	TOP: Interior and Exterior Angles of Triangles
2	ANS: 3	PTS: 2	TOP: Congruency Proofs
3	ANS: 1	PTS: 2	TOP: Identifying Transformations
4	ANS: 4	PTS: 2	TOP: Classifying Solids
5	ANS: 3	PTS: 2	TOP: Reflections
6	ANS: 2	PTS: 2	TOP: Chords
7	ANS: 2	PTS: 2	TOP: Parallel and Perpendicular Lines-GE
8	ANS: 3	PTS: 2	TOP: Compositions of Transformations
9	ANS: 1	PTS: 2	TOP: Interior and Exterior Angles of Triangles
10	ANS: 2	PTS: 2	TOP: Equations of Circles
11	ANS: 2	PTS: 2	TOP: Interior and Exterior Angles of Triangles
12	ANS: 4	PTS: 2	TOP: Locus
13	ANS: 4	PTS: 2	TOP: Contrapositive
14	ANS: 2	PTS: 2	TOP: Medians, Altitudes, Bisectors and Midsegments
15	ANS: 1	PTS: 2	TOP: Similarity
16	ANS: 3	PTS: 2	TOP: Chords, Secants and Tangents
17	ANS: 2	PTS: 2	TOP: Similarity
18	ANS: 1	PTS: 2	TOP: Planes
19	ANS: 4	PTS: 2	TOP: Midpoint
20	ANS: 1	PTS: 2	TOP: Equations of Circles
21	ANS: 1	PTS: 2	TOP: Volume-GE
22	ANS: 4	PTS: 2	TOP: Equations of Circles
23	ANS: 1	PTS: 2	TOP: Quadratic-Linear Systems-GE
24	ANS: 4	PTS: 2	TOP: Constructions
25	ANS: 3	PTS: 2	TOP: Constructions
26	ANS: 2	PTS: 2	TOP: Parallel and Perpendicular Lines-GE
27	ANS: 4	PTS: 2	TOP: Similarity
28	ANS: 3	PTS: 2	TOP: Planes
29	$\begin{aligned} & \text { ANS: } \\ & 20 \end{aligned}$		
	PTS: 2	TOP: Medians, Altitudes, Bisectors and Midsegments	

ANS:

\times
PTS: 2
TOP: Constructions
31 ANS:
$y=-2 x+14$
PTS: 2 TOP: Parallel and Perpendicular Lines-GE
32 ANS:

PTS: 2
TOP: Locus
33 ANS:
True. The first statement is true and the second statement is false. In a disjunction, if either statement is true, the disjunction is true.

PTS: 2
TOP: Logical Reasoning
34 ANS:
20
PTS: 2
35 ANS:
18
PTS: 4
TOP: Tangents

36 ANS:
$15+5 \sqrt{5}$
PTS: 4
TOP: Perimeter
37 ANS:

PTS: 4
TOP: Compositions of Transformations
38 ANS:
$\overline{A C} \cong \overline{E C}$ and $\overline{D C} \cong \overline{B C}$ because of the definition of midpoint. $\angle A C B \cong \angle E C D$ because of vertical angles. $\triangle A B C \cong \triangle E D C$ because of SAS. $\angle C D E \cong \angle C B A$ because of CPCTC. $\overline{B D}$ is a transversal intersecting $\overline{A B}$ and $\overline{E D}$. Therefore $\overline{A B} \| \overline{D E}$ because $\angle C D E$ and $\angle C B A$ are congruent alternate interior angles.

PTS: 6
TOP: Congruency Proofs

0809ge
 Answer Section

1	ANS: 4	PTS:	2	TOP: Angles Involving Parallel Lines
2	ANS: 3	PTS:	2	TOP: Constructions
3	ANS: 4	PTS:	2	TOP: Isosceles Triangles
4	ANS: 2	PTS:	2	TOP: Chords
5	ANS: 4	PTS:	2	TOP: Special Quadrilaterals
6	ANS: 2	PTS:	2	TOP: Identifying Transformations
7	ANS: 1	PTS:	2	TOP: Special Quadrilaterals
8	ANS: 1	PTS:	2	TOP: Compositions of Transformations
9	ANS: 3	PTS:	2	TOP: Parallel and Perpendicular Lines-GE
10	ANS: 2	PTS:	2	TOP: Midpoint
11	ANS: 1	PTS:	2	TOP: Finding the Center and Radius of Circles
12	ANS: 4	PTS:	2	TOP: Quadratic-Linear Systems-GE
13	ANS: 3	PTS:	2	TOP: Congruency Proofs
14	ANS: 4	PTS:	2	TOP: Planes
15	ANS: 4	PTS:	2	TOP: Identifying Transformations
16	ANS: 2	PTS:	2	TOP: Pythagoras-GE
17	ANS: 4	PTS:	2	TOP: Triangle Inequalities
18	ANS: 1	PTS:	2	TOP: Special Quadrilaterals
19	ANS: 1	PTS:	2	TOP: Distance
20	ANS: 3	PTS:	2	TOP: Medians, Altitudes, Bisectors and Midsegments
21	ANS: 2	PTS:	2	TOP: Writing Equations of Circles
22	ANS: 4	PTS:	2	TOP: Similarity
23	ANS: 2	PTS:	2	TOP: Chords
24	ANS: 3	PTS:	2	TOP: Logical Reasoning
25	ANS: 4	PTS:	2	TOP: Medians, Altitudes, Bisectors and Midsegments
26	ANS: 1	PTS:	2	TOP: Volume-GE
27	ANS: 2	PTS:	2	TOP: Planes
28	ANS: 3	PTS:	2	TOP: Tangents
29	ANS: 3			
	PTS: 2	TOP: Special Quadrilaterals		
30	$\begin{aligned} & \text { ANS: } \\ & 2016 \end{aligned}$			
	PTS: 2	TOP: Volume-GE		
31	ANS: $y=\frac{2}{3} x-9$			
	PTS: 2	TOP: Parallel and Perpendicular Lines-GE		

32 ANS:

PTS: 2
TOP: Constructions
33 ANS:
26
PTS: 2 TOP: Interior and Exterior Angles of Triangles
34 ANS:

PTS: 2 TOP: Interior and Exterior Angles of Triangles
35 ANS:
$y=\frac{4}{3} x-6$
PTS: 4
TOP: Slope Intercept Form of a Line
36 ANS:

PTS: 4
TOP: Locus-2

37
ANS:

$$
D^{\prime}(-1,1), E^{\prime}(-1,5), G^{\prime}(-4,5)
$$

PTS: 4
TOP: Rotations
38 ANS:

$$
\overline{F E} \cong \overline{F E} \text { (Reflexive Property); } \overline{A E}-\overline{F E} \cong \overline{F C}-\overline{E F}
$$

(Angle Subtraction Theorem); $\overline{A F} \cong \overline{C E}$ (Substitution); $\angle B F A \cong \angle D E C$ (All right angles are congruent);
$\triangle B F A \cong \triangle D E C$ (AAS); $\overline{A B} \cong \overline{C D}$ and $\overline{B F} \cong \overline{D E}$ (СРСТС); $\angle B F C \cong \angle D E A$ (All right angles are congruent);
$\triangle B F C \cong \triangle D E A(\mathrm{SAS}) ; \overline{A D} \cong \overline{C B}(\mathrm{CPCTC}) ; A B C D$ is a parallelogram (opposite sides of quadrilateral $A B C D$ are congruent)

PTS: 6
TOP: Quadrilateral Proofs

