JEFFERSON MATH PROJECT REGENTS BY TOPIC

NY Geometry Regents Exam Questions from Fall 2008 to August 2009 Sorted by Topic

www.jmap.org

$\mathcal{D}_{\text {ear }}{ }^{\text {©̌ir }}$

Ihave to acknolege the reciept of your favor of May 14. in which you mention that you have finished the 6. first Gooks of $\mathcal{F} u c f i d$, po ane trigonometry, surveying \& afgebra and ask whether \mathcal{I} think a further pursuit of that branch of science would be usefuf to you. there are some propositions in the fatter books of Eucfid, \& some of $\mathscr{O}^{\mathscr{G}}$ rchimedes, which are usefuf, $\& \mathscr{I}$ have no doubt you have been made acquainted with them. trigonometry, so far as thi's, is most valuable to every man, there is scarcely a day in which he wiff not resort to it for some of the purposes of common fife. the science of cafculation also is indispensible as far as
 are often of vafue in ordinary cases: but aff beyond these is but a fuxury; a deficious fuxury indeed; but not to be indufged in by one who is to have a profession to foffow for his subsistence. in thits fight $\mathscr{F}_{\text {view }}$ the conic sections, curves of the higher orders, perfapss even spherical trigonometry, ötlgebraical operations beyond the ad dimension, andffuxions.
Letter from Thomas Jefferson to William G. Munford, Monticello, June 18, 1799.

TABLE OF CONTENTS

TOPIC	SUBTOPIC QUESTION NUMBER
LINEAR EQUATIONS	Parallel and Perpendicular Lines-GE 1-10
SYSTEMS	Quadratic-Linear Systems-GE . 11-13
TOOLS OF GEOMETRY	
ANGLES	Angles Involving Parallel Lines . 34
TRIANGLES	
OTHER POLYGONS	Interior and Exterior Angles of Other Polygons .
CONICS	
MEASURING IN THE PLANE AND SPACE	Perimeter .
TRANSFORMATIONS	
LOGIC	

Geometry Regents Exam Question by Topic

PARALLEL AND PERPENDICULAR LINES-GE

1. 080909 ge, G.G. 63

What is the equation of a line that is parallel to the line whose equation is $y=x+2$?
a. $x+y=5$
b. $2 x+y=-2$
c. $y-x=-1$
d. $y-2 x=3$
2. fall0828ge, G.G. 62

What is the slope of a line perpendicular to the line whose equation is $5 x+3 y=8$?
a. $\frac{5}{3}$
b. $\frac{3}{5}$
c. $-\frac{3}{5}$
d. $-\frac{5}{3}$
3. 080917 ge , G.G. 62

What is the slope of a line perpendicular to the line whose equation is $y=-\frac{2}{3} x-5$?
a. $-\frac{3}{2}$
b. $-\frac{2}{3}$
c. $\frac{2}{3}$
d. $\frac{3}{2}$
4. 060926 ge , G.G. 63

Which equation represents a line perpendicular to the line whose equation is $2 x+3 y=12$?
a. $\quad 6 y=-4 x+12$
b. $2 y=3 x+6$
c. $2 y=-3 x+6$
d. $3 y=-2 x+12$
5. fall0812ge, G.G. 65

What is the equation of a line that passes through the point $(-3,-11)$ and is parallel to the line whose equation is $2 x-y=4$?
a. $y=2 x+5$
b. $y=2 x-5$
c. $y=\frac{1}{2} x+\frac{25}{2}$
d. $y=-\frac{1}{2} x-\frac{25}{2}$
6. 080931ge, G.G. 65

Write an equation of the line that passes through the point $(6,-5)$ and is parallel to the line whose equation is $2 x-3 y=11$.
7. 06093lge, G.G. 65

Find an equation of the line passing through the point $(5,4)$ and parallel to the line whose equation is $2 x+y=3$.
8. 060907ge, G.G. 64

What is an equation of the line that passes through the point $(-2,5)$ and is perpendicular to the line whose equation is $y=\frac{1}{2} x+5$?
a. $y=2 x+1$
b. $y=-2 x+1$
c. $y=2 x+9$
d. $y=-2 x-9$
9. fall0822ge, G.G. 63

The lines $3 y+1=6 x+4$ and $2 y+1=x-9$ are
a. parallel
b. perpendicular
c. the same line
d. neither parallel nor perpendicular
10. 080935ge, G.G. 68

Write an equation of the perpendicular bisector of the line segment whose endpoints are $(-1,1)$ and $(7,-5)$. [The use of the grid below is optional]

QUADRATIC-LINEAR SYSTEMS-GE

11. fall0805ge, G.G. 70

Which graph could be used to find the solution to the following system of equations?

$$
y=x^{2}
$$

a.

$$
y=-x+2
$$

b.

d.
12. 060923ge, G.G. 70

Given the system of equations:

$$
\begin{aligned}
& y=x^{2}-4 x \\
& x=4
\end{aligned}
$$

The number of points of intersection is
a. 1
b. 2
c. 3
d. 0
13. 080912 ge , G.G. 70

Given the equations: $y=x^{2}-6 x+10$

$$
y+x=4
$$

What is the solution to the given system of equations?
a. $(2,3)$
b. $(3,2)$
c. $(2,2)$ and $(1,3)$
d. $(2,2)$ and $(3,1)$

MIDPOINT

14. 080910ge, G.G. 66

The endpoints of $\overline{C D}$ are $C(-2,-4)$ and $D(6,2)$.
What are the coordinates of the midpoint of $\overline{C D}$?
a. $(2,3)$
b. $(2,-1)$
c. $(4,-2)$
d. $(4,3)$
15. fall0813ge, G.G. 66

Line segment $A B$ has endpoints $A(2,-3)$ and $B(-4,6)$. What are the coordinates of the midpoint of $\overline{A B}$?
a. $(-2,3)$
b. $\left(-1,1 \frac{1}{2}\right)$
c. $(-1,3)$
d. $\left(3,4 \frac{1}{2}\right)$
16. 060919ge, G.G. 66

Square $L M N O$ is shown in the diagram below.

What are the coordinates of the midpoint of diagonal $\overline{L N}$?
a. $\left(4 \frac{1}{2},-2 \frac{1}{2}\right)$
b. $\left(-3 \frac{1}{2}, 3 \frac{1}{2}\right)$
c. $\left(-2 \frac{1}{2}, 3 \frac{1}{2}\right)$
d. $\left(-2 \frac{1}{2}, 4 \frac{1}{2}\right)$

DISTANCE
17. fall0831ge, G.G. 67

The endpoints of $P Q$ are $P(-3,1)$ and $Q(4,25)$.
Find the length of $\overline{P Q}$.
18. 080919ge, G.G. 67

If the endpoints of $\overline{A B}$ are $A(-4,5)$ and $B(2,-5)$, what is the length of $\overline{A B}$?
a. $2 \sqrt{34}$
b. 2
c. $\sqrt{61}$
d. 8

PLANES

19. fall0816ge, G.G.I

Lines k_{1} and k_{2} intersect at point E. Line m is perpendicular to lines k_{1} and k_{2} at point E.

Which statement is always true?
a. Lines k_{1} and k_{2} are perpendicular.
b. Line m is parallel to the plane determined by lines k_{1} and k_{2}.
c. Line m is perpendicular to the plane determined by lines k_{1} and k_{2}.
d. Line m is coplanar with lines k_{1} and k_{2}.
20. 060918ge, G.G. 2

Point P is on line m. What is the total number of planes that are perpendicular to line m and pass through point P ?
a. 1
b. 2
c. 0
d. infinite
21. 080927ge, G.G. 4

If two different lines are perpendicular to the same plane, they are
a. collinear
b. coplanar
c. congruent
d. consecutive
22. 080914 ge , G.G. 7

In the diagram below, line k is perpendicular to plane P at point T.

Which statement is true?
a. Any point in plane \mathscr{P} also will be on line k.
b. Only one line in plane \mathscr{P} will intersect line k.
c. All planes that intersect plane \mathscr{P} will pass through T.
d. Any plane containing line k is perpendicular to plane \mathscr{P}.
23. 060928ge, G.G. 8

In three-dimensional space, two planes are parallel and a third plane intersects both of the parallel planes. The intersection of the planes is a
a. plane
b. point
c. pair of parallel lines
d. pair of intersecting lines
24. fall0806ge, G.G. 9

Line k is drawn so that it is perpendicular to two distinct planes, P and R. What must be true about planes P and R ?
a. Planes P and R are skew.
b. Planes P and R are parallel.
c. Planes P and R are perpendicular.
d. Plane P intersects plane R but is not perpendicular to plane R.

CLASSIFYING SOLIDS

25. fall0808ge, G.G. 10

The figure in the diagram below is a triangular prism.

Which statement must be true?
a. $\overline{D E} \cong \overline{A B}$
b. $\overline{A D} \cong \overline{B C}$
c. $\overline{A D} \| \overline{C E}$
d. $\overline{D E} \| \overline{B C}$
26. 060904ge, G.G. 13

The lateral faces of a regular pyramid are composed of
a. squares
b. rectangles
c. congruent right triangles
d. congruent isosceles triangles

CONSTRUCTIONS

27. 060925ge, G.G. 17

Which illustration shows the correct construction of an angle bisector?
a.

c.

28. fall0832ge, G.G. 17

Using a compass and straightedge, construct the bisector of the angle shown below. [Leave all construction marks.]

29. 080932ge, G.G. 17

Using a compass and straightedge, construct the angle bisector of $\angle A B C$ shown below. [Leave all construction marks.]

30. 080902ge, G.G. 17

The diagram below shows the construction of the bisector of $\angle A B C$.

Which statement is not true?
a. $\mathrm{m} \angle E B F=\frac{1}{2} \mathrm{~m} \angle A B C$
b. $\mathrm{m} \angle D B F=\frac{1}{2} \mathrm{~m} \angle A B C$
c. $\mathrm{m} \angle E B F=\mathrm{m} \angle A B C$
d. $\mathrm{m} \angle D B F=\mathrm{m} \angle E B F$
31. fall0804ge, G.G. 18

The diagram below shows the construction of the perpendicular bisector of $\overline{A B}$.

Which statement is not true?
a. $\quad A C=C B$
b. $\quad C B=\frac{1}{2} A B$
c. $A C=2 A B$
d. $A C+C B=A B$
32. 060930ge, G.G. 19

Using a compass and straightedge, construct a line that passes through point P and is perpendicular to line m. [Leave all construction marks.]
. ${ }^{\text {P }}$
33. fall0807ge, G.G. 19

The diagram below illustrates the construction of $\overleftrightarrow{P S}$ parallel to $\overleftrightarrow{R Q}$ through point P.

Which statement justifies this construction?
a. $\mathrm{m} \angle 1=\mathrm{m} \angle 2$
b. $\quad \mathrm{m} \angle 1=\mathrm{m} \angle 3$
c. $\overline{P R} \cong \overline{R Q}$
d. $\overline{P S} \cong \overline{R Q}$

ANGLES INVOLVING PARALLEL LINES

34. 080901ge, G.G. 35

Based on the diagram below, which statement is true?

a. $\quad a \| b$
b. $\quad a \| c$
c. $\quad b \| c$
d. $d \| e$

INTERIOR AND EXTERIOR ANGLES OF TRIANGLES

35. 060901ge, G.G. 30

Juliann plans on drawing $\triangle A B C$, where the measure of $\angle A$ can range from 50° to 60° and the measure of $\angle B$ can range from 90° to 100°. Given these conditions, what is the correct range of measures possible for $\angle C$?
a. 20° to 40°
b. 30° to 50°
c. 80° to 90°
d. 120° to 130°
36. 060909ge, G.G. 30

In an equilateral triangle, what is the difference between the sum of the exterior angles and the sum of the interior angles?
a. 180°
b. 120°
c. 90°
d. 60°
37. 080933ge, G.G. 30

The degree measures of the angles of $\triangle A B C$ are represented by $x, 3 x$, and $5 x-54$. Find the value of x.
38. 060911 le, G.G. 34

In $\triangle A B C, \mathrm{~m} \angle A=95, \mathrm{~m} \angle B=50$, and $\mathrm{m} \angle C=35$. Which expression correctly relates the lengths of the sides of this triangle?
a. $\quad A B<B C<C A$
b. $A B<A C<B C$
c. $A C<B C<A B$
d. $B C<A C<A B$
39. 080934ge, G.G. 34

In the diagram below of $\triangle A B C$ with side $\overline{A C}$ extended through $D, \mathrm{~m} \angle A=37$ and $\mathrm{m} \angle B C D=117$. Which side of $\triangle A B C$ is the longest side? Justify your answer.

(Not drawn to scale)

CLASSIFYING TRIANGLES

40. fall0809ge, G.G. 31

The vertices of $\triangle A B C$ are $A(-1,-2), B(-1,2)$ and $C(6,0)$. Which conclusion can be made about the angles of $\triangle A B C$?
a. $\mathrm{m} \angle A=\mathrm{m} \angle B$
b. $\mathrm{m} \angle A=\mathrm{m} \angle C$
c. $\mathrm{m} \angle A C B=90$
d. $\mathrm{m} \angle A B C=60$

ISOSCELES TRIANGLES

41. 080903ge, G.G. 31

In the diagram of $\triangle A B C$ below, $\overline{A B} \cong \overline{A C}$. The measure of $\angle B$ is 40°.

What is the measure of $\angle A$?
a. 40°
b. 50°
c. 70°
d. 100°

TRIANGLE INEQUALITIES

42. 080916ge, G.G. 33

Which set of numbers represents the lengths of the sides of a triangle?
a. $\{5,18,13\}$
b. $\{6,17,22\}$
c. $\{16,24,7\}$
d. $\{26,8,15\}$
43. fall0819ge, G.G. 33

In the diagram below of $\triangle A B C, D$ is a point on $\overline{A B}, A C=7, A D=6$, and $B C=18$.

The length of $\overline{D B}$ could be
a. 5
b. 12
c. 19
d. 25
44. 060924ge, G.G. 33

Side $\overline{P Q}$ of $\triangle P Q R$ is extended through Q to point T. Which statement is not always true?
a. $\mathrm{m} \angle R Q T>\mathrm{m} \angle R$
b. $\mathrm{m} \angle R Q T>\mathrm{m} \angle P$
c. $\mathrm{m} \angle R Q T=\mathrm{m} \angle P+\mathrm{m} \angle R$
d. $\mathrm{m} \angle R Q T>\mathrm{m} \angle P Q R$

MEDIANS, ALTITUDES, BISECTORS AND MIDSEGMENTS

45. fall0810ge, G.G. 24

Given $\triangle A B C$ with base $\overline{A F E D C}$, median $\overline{B F}$, altitude $\overline{B D}$, and $\overline{B E}$ bisects $\angle A B C$, which conclusion is valid?

a. $\angle F A B \cong \angle A B F$
b. $\angle A B F \cong \angle C B D$
c. $\overline{C E} \cong \overline{E A}$
d. $\overline{C F} \cong \overline{F A}$
46. 080920ge, G.G. 42

In the diagram below of $\triangle A C T, D$ is the midpoint of $\overline{A C}, O$ is the midpoint of $\overline{A T}$, and G is the midpoint of $\overline{C T}$.

If $A C=10, A T=18$, and $C T=22$, what is the perimeter of parallelogram $C D O G$?
a. 21
b. 25
c. 32
d. 40
47. 060929ge, G.G. 42

In the diagram of $\triangle A B C$ below, $A B=10, B C=14$, and $A C=16$. Find the perimeter of the triangle formed by connecting the midpoints of the sides of $\triangle A B C$.

48. fall0835ge, G.G. 42

On the set of axes below, graph and label $\triangle D E F$ with vertices at $D(-4,-4), E(-2,2)$, and $F(8,-2)$. If G is the midpoint of $\overline{E F}$ and H is the midpoint of $\overline{D F}$, state the coordinates of G and H and label each point on your graph. Explain why $\overline{G H} \| \overline{D E}$.

49. fall0825ge, G.G. 21

In which triangle do the three altitudes intersect outside the triangle?
a. a right triangle
b. an acute triangle
c. an obtuse triangle
d. an equilateral triangle
50. 080925ge, G.G. 21

The diagram below shows the construction of the center of the circle circumscribed about $\triangle A B C$.

This construction represents how to find the intersection of
a. the angle bisectors of $\triangle A B C$
b. the medians to the sides of $\triangle A B C$
c. the altitudes to the sides of $\triangle A B C$
d. the perpendicular bisectors of the sides of $\triangle A B C$
51. 060914ge, G.G. 43

In the diagram of $\triangle A B C$ below, Jose found centroid P by constructing the three medians. He measured $\overline{C F}$ and found it to be 6 inches.

If $P F=x$, which equation can be used to find x ?
a. $\quad x+x=6$
b. $2 x+x=6$
c. $3 x+2 x=6$
d. $x+\frac{2}{3} x=6$

INTERIOR AND EXTERIOR ANGLES OF

 OTHER POLYGONS52. fall0827ge, G.G. 37

What is the measure of an interior angle of a regular octagon?
a. 45°
b. 60°
c. 120°
d. 135°

PARALLELOGRAMS AND RHOMBUSES

53. 080907ge, G.G. 38

In the diagram below of parallelogram $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}, \mathrm{~m} \angle 1=45$ and $\mathrm{m} \angle D C B=120$.

What is the measure of $\angle 2$?
a. 15°
b. 30°
c. 45°
d. 60°

TRAPEZOIDS

54. 080929ge, G.G. 40

In the diagram below of isosceles trapezoid $D E F G$, $\overline{D E} \| \overline{G F}, D E=4 x-2, E F=3 x+2, F G=5 x-3$, and $G D=2 x+5$. Find the value of x.

55. fall0801ge, G.G. 40

Isosceles trapezoid $A B C D$ has diagonals $\overline{A C}$ and $\overline{B D}$. If $A C=5 x+13$ and $B D=11 x-5$, what is the value of x ?
a. 28
b. $10 \frac{3}{4}$
c. 3
d. $\frac{1}{2}$
56. 080905ge, G.G. 29

In the diagram of trapezoid $A B C D$ below, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E and $\triangle A B C \cong \triangle D C B$.

Which statement is true based on the given information?
a. $\overline{A C} \cong \overline{B C}$
b. $\overline{C D} \cong \overline{A D}$
c. $\angle C D E \cong \angle B A D$
d. $\angle C D B \cong \angle B A C$

SPECIAL QUADRILATERALS

57. 080918ge, G.G. 41

A quadrilateral whose diagonals bisect each other and are perpendicular is a
a. rhombus
b. rectangle
c. trapezoid
d. parallelogram

FINDING THE CENTER AND RADIUS OF CIRCLES

58. fall0814ge, G.G. 73

What are the center and radius of a circle whose equation is $(x-A)^{2}+(y-B)^{2}=C$?
a. \quad center $=(A, B)$; radius $=C$
b. \quad center $=(-A,-B)$; radius $=C$
c. \quad center $=(A, B) ;$ radius $=\sqrt{C}$
d. \quad center $=(-A,-B) ;$ radius $=\sqrt{C}$
59. 080911 ge, G.G. 73

What are the center and the radius of the circle whose equation is $(x-3)^{2}+(y+3)^{2}=36$
a. \quad center $=(3,-3) ;$ radius $=6$
b. \quad center $=(-3,3)$; radius $=6$
c. \quad center $=(3,-3) ;$ radius $=36$
d. \quad center $=(-3,3) ;$ radius $=36$
60. 060922ge, G.G. 73

A circle is represented by the equation
$x^{2}+(y+3)^{2}=13$. What are the coordinates of the center of the circle and the length of the radius?
a. $(0,3)$ and 13
b. $(0,3)$ and $\sqrt{13}$
c. $(0,-3)$ and 13
d. $(0,-3)$ and $\sqrt{13}$

WRITING EQUATIONS OF CIRCLES

61. 060910ge, G.G. 71

What is an equation of a circle with its center at $(-3,5)$ and a radius of 4 ?
a. $(x-3)^{2}+(y+5)^{2}=16$
b. $(x+3)^{2}+(y-5)^{2}=16$
c. $(x-3)^{2}+(y+5)^{2}=4$
d. $(x+3)^{2}+(y-5)^{2}=4$
62. fall0820ge, G.G. 71

The diameter of a circle has endpoints at $(-2,3)$ and $(6,3)$. What is an equation of the circle?
a. $(x-2)^{2}+(y-3)^{2}=16$
b. $(x-2)^{2}+(y-3)^{2}=4$
c. $(x+2)^{2}+(y+3)^{2}=16$
d. $(x+2)^{2}+(y+3)^{2}=4$
63. 08092Ige, G.G. 72

Which equation represents circle K shown in the graph below?

a. $(x+5)^{2}+(y-1)^{2}=3$
b. $(x+5)^{2}+(y-1)^{2}=9$
c. $(x-5)^{2}+(y+1)^{2}=3$
d. $(x-5)^{2}+(y+1)^{2}=9$

GRAPHING CIRCLES

64. O60920ge, G.G. 74

Which graph represents a circle with the equation $(x-5)^{2}+(y+1)^{2}=9$?
a.

b.

c.

CHORDS

65. fall0811ge, G.G. 49

In the diagram below, circle O has a radius of 5, and $C E=2$. Diameter $\overline{A C}$ is perpendicular to chord $\overline{B D}$ at E.

What is the length of $\overline{B D}$?
a. 12
b. 10
c. 8
d. 4

Geometry Regents Exam Questions by Topic www.jmap.org
66. 080923ge, G.G. 53

In the diagram of circle O below, chord $\overline{A B}$ intersects chord $\overline{C D}$ at $E, D E=2 x+8, E C=3$, $A E=4 x-3$, and $E B=4$.

What is the value of x ?
a. 1
b. 3.6
c. 5
d. 10.25
67. fall0836ge, G.G.51

In the diagram below of circle O, chords $\overline{D F}, \overline{D E}$, $\overline{F G}$, and $\overline{E G}$ are drawn such that $\mathrm{m} \overparen{D F}: \mathrm{m} \overparen{F E}: \widehat{\mathrm{m} G}: \widehat{\mathrm{m} D}=5: 2: 1: 7$. Identify one pair of inscribed angles that are congruent to each other and give their measure.

68. 080904ge, G.G. 52

In the diagram of circle O below, chord $\overline{C D}$ is parallel to diameter $\overline{A O B}$ and $\mathrm{m} \overparen{A C}=30$.

What is $\mathrm{m} \overparen{C D}$?
a. $\quad 150$
b. 120
c. 100
d. 60

Geometry Regents Exam Questions by Topic www.jmap.org
69. 060906ge, G.G. 52

In the diagram of circle O below, chords $\overline{A B}$ and $\overline{C D}$ are parallel, and $\overline{B D}$ is a diameter of the circle.

If $\mathrm{m} \overparen{A D}=60$, what is $\mathrm{m} \angle C D B$?
a. 20
b. 30
c. 60
d. 120

TANGENTS

70. fall0824ge, G.G. 50

In the diagram below, circle A and circle B are shown.

What is the total number of lines of tangency that are common to circle A and circle B ?
a. 1
b. 2
c. 3
d. 4
71. 080928ge, G.G. 50

How many common tangent lines can be drawn to the two externally tangent circles shown below?

a. 1
b. 2
c. 3
d. 4
72. 060935ge, G.G. 50

In the diagram below, circles X and Y have two tangents drawn to them from external point T. The points of tangency are C, A, S, and E. The ratio of $T A$ to $A C$ is $1: 3$. If $T S=24$, find the length of $\overline{S E}$.

(Not drawn to scale)

CHORDS, SECANTS AND TANGENTS
73. fall0817ge, G.G. 53

In the diagram below, $\overline{P S}$ is a tangent to circle O at point $S, \overline{P Q R}$ is a secant, $P S=x, P Q=3$, and $P R=x+18$.

(Not drawn to scale)
What is the length of $\overline{P S}$?
a. 6
b. 9
c. 3
d. 27
74. 060916ge, G.G. 53

In the diagram below, tangent $\overline{A B}$ and secant $\overline{A C D}$ are drawn to circle O from an external point A, $A B=8$, and $A C=4$.

What is the length of $\overline{C D}$?
a. 16
b. 13
c. 12
d. 10

PERIMETER

75. O60936ge, G.G. 69

Triangle $A B C$ has coordinates $A(-6,2), B(-3,6)$, and $C(5,0)$. Find the perimeter of the triangle. Express your answer in simplest radical form. [The use of the grid below is optional.]

VOLUME-GE

76. fall0815ge, G.G. 12

A rectangular prism has a volume of $3 x^{2}+18 x+24$. Its base has a length of $x+2$ and a width of 3 . Which expression represents the height of the prism?
a. $x+4$
b. $x+2$
c. 3
d. $x^{2}+6 x+8$
77. 06092lge, G.G. 15

In the diagram below, a right circular cone has a diameter of 8 inches and a height of 12 inches.

What is the volume of the cone to the nearest cubic inch?
a. 201
b. 481
c. 603
d. 804
78. 080926ge, G.G. 14

A right circular cylinder has a volume of 1,000 cubic inches and a height of 8 inches. What is the radius of the cylinder to the nearest tenth of an inch?
a. 6.3
b. $\quad 11.2$
c. $\quad 19.8$
d. $\quad 39.8$
79. fall0833ge, G.G. 14

The volume of a cylinder is $12,566.4 \mathrm{~cm}^{3}$. The height of the cylinder is 8 cm . Find the radius of the cylinder to the nearest tenth of a centimeter.
80. 080930ge, G.G. 13

A regular pyramid with a square base is shown in the diagram below.

A side, s, of the base of the pyramid is 12 meters, and the height, h, is 42 meters. What is the volume of the pyramid in cubic meters?

SIMILARITY

81. 060927ge, G.G. 45

In $\triangle A B C$, point D is on $\overline{A B}$, and point E is on $\overline{B C}$ such that $\overline{D E} \| \overline{A C}$. If $D B=2, D A=7$, and $D E=3$, what is the length of $\overline{A C}$?
a. 8
b. 9
c. 10.5
d. 13.5
82. 060934ge, G.G. 45

In the diagram below, $\triangle A B C \sim \triangle E F G$, $\mathrm{m} \angle C=4 x+30$, and $\mathrm{m} \angle G=5 x+10$. Determine the value of x.

83. fall0829ge, G.G. 47

In the diagram below of right triangle $A C B$, altitude $\overline{C D}$ intersects $\overline{A B}$ at D. If $A D=3$ and $D B=4$, find the length of $\overline{C D}$ in simplest radical form.

84. O60915ge, G.G. 47

In the diagram below, the length of the legs $\overline{A C}$ and $\overline{B C}$ of right triangle $A B C$ are 6 cm and 8 cm , respectively. Altitude $\overline{C D}$ is drawn to the hypotenuse of $\triangle A B C$.

What is the length of $\overline{A D}$ to the nearest tenth of a centimeter?
a. $\quad 3.6$
b. 6.0
c. 6.4
d. 4.0
85. 080922ge, G.G. 47

In the diagram below of right triangle $A C B$, altitude $\overline{C D}$ is drawn to hypotenuse $\overline{A B}$.

If $A B=36$ and $A C=12$, what is the length of $\overline{A D}$?
a. 32
b. 6
c. 3
d. 4

PERIMETER, AREA AND VOLUME OF SIMILAR FIGURES
86. fall0826ge, G.G. 45

Two triangles are similar, and the ratio of each pair of corresponding sides is $2: 1$. Which statement regarding the two triangles is not true?
a. Their areas have a ratio of $4: 1$.
b. Their altitudes have a ratio of $2: 1$.
c. Their perimeters have a ratio of $2: 1$.
d. Their corresponding angles have a ratio of 2 : 1.

IDENTIFYING TRANSFORMATIONS

87. 080915ge, G.G. 56

In the diagram below, which transformation was used to map $\triangle A B C$ to $\triangle A^{\prime} B^{\prime} C^{\prime}$?

a. dilation
b. rotation
c. reflection
d. glide reflection
88. 080906ge, G.G. 59

Which transformation produces a figure similar but not congruent to the original figure?
a. $\quad T_{1,3}$
b. $D_{\frac{1}{2}}$
c. $\quad R_{90}$
d. $\quad r_{y=x}$
89. 060903ge, G.G. 56

In the diagram below, under which transformation will $\triangle A^{\prime} B^{\prime} C^{\prime}$ be the image of $\triangle A B C$?

a. rotation
b. dilation
c. translation
d. glide reflection
90. fall0830ge, G.G. 55

The vertices of $\triangle A B C$ are $A(3,2), B(6,1)$, and $C(4,6)$. Identify and graph a transformation of $\triangle A B C$ such that its image, $\triangle A^{\prime} B^{\prime} C^{\prime}$, results in $\overline{A B} \| \overline{A^{\prime} B^{\prime}}$.

TRANSLATIONS

91. fall0818ge, G.G. 61

A polygon is transformed according to the rule: $(x, y) \rightarrow(x+2, y)$. Every point of the polygon moves two units in which direction?
a. up
b. down
c. left
d. right
92. fall0803ge, G.G. 54

Triangle $A B C$ has vertices $A(1,3), B(0,1)$, and $C(4,0)$. Under a translation, A^{\prime}, the image point of A, is located at $(4,4)$. Under this same translation, point C^{\prime} is located at
a. $(7,1)$
b. $(5,3)$
c. $(3,2)$
d. $(1,-1)$

REFLECTIONS

93. O60905ge, G.G. 54

Point A is located at $(4,-7)$. The point is reflected in the x-axis. Its image is located at
a. $(-4,7)$
b. $(-4,-7)$
c. $(4,7)$
d. $(7,-4)$

ROTATIONS

94. 080937ge, G.G. 55

Triangle $D E G$ has the coordinates $D(1,1), E(5,1)$, and $G(5,4)$. Triangle $D E G$ is rotated 90° about the origin to form $\triangle D^{\prime} E^{\prime} G^{\prime}$. On the grid below, graph and label $\triangle D E G$ and $\triangle D^{\prime} E^{\prime} G^{\prime}$. State the coordinates of the vertices D^{\prime}, E^{\prime}, and G^{\prime}. Justify that this transformation preserves distance.

COMPOSITIONS OF TRANSFORMATIONS

95. 080908ge, G.G. 57

On the set of axes below, Geoff drew rectangle $A B C D$. He will transform the rectangle by using the translation $(x, y) \rightarrow(x+2, y+1)$ and then will reflect the translated rectangle over the x-axis.

What will be the area of the rectangle after these transformations?
a. exactly 28 square units
b. less than 28 square units
c. greater than 28 square units
d. It cannot be determined from the information given.
96. 060937ge, G.G. 58

The coordinates of the vertices of parallelogram $A B C D$ are $A(-2,2), B(3,5), C(4,2)$, and $D(-1,-1)$. State the coordinates of the vertices of parallelogram $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ that result from the transformation $r_{y-\text { axis }}{ }^{\circ} T_{2,-3}$. [The use of the set of axes below is optional.]

97. 060908ge, G.G. 60

After a composition of transformations, the coordinates $A(4,2), B(4,6)$, and $C(2,6)$ become $A^{\prime \prime}(-2,-1), B^{\prime \prime}(-2,-3)$, and $C^{\prime \prime}(-1,-3)$, as shown on the set of axes below.

Which composition of transformations was used?
a. $\quad R_{180^{\circ}}{ }^{\circ} D_{2}$
b. $R_{90^{\circ}} \circ D_{2}$
c. $D_{\frac{1}{2}}^{\circ} R_{180^{\circ}}$
d. $D \frac{1}{2} \circ R_{90^{\circ}}$
98. fall0823ge, G.G. 58

The endpoints of $\overline{A B}$ are $A(3,2)$ and $B(7,1)$. If $\overline{A^{\prime \prime} B^{\prime \prime}}$ is the result of the transformation of $\overline{A B}$ under $D_{2} \circ T_{-4,3}$ what are the coordinates of $A^{\prime \prime}$ and $B^{\prime \prime}$?
a. $\quad A^{\prime \prime}(-2,10)$ and $B^{\prime \prime}(6,8)$
b. $A^{\prime \prime}(-1,5)$ and $B^{\prime \prime}(3,4)$
c. $A^{\prime \prime}(2,7)$ and $B^{\prime \prime}(10,5)$
d. $A^{\prime \prime}(14,-2)$ and $B^{\prime \prime}(22,-4)$

LOGICAL REASONING

99. fall0802ge, G.G. 24

What is the negation of the statement "The Sun is shining"?
a. It is cloudy.
b. It is daytime.
c. It is not raining.
d. The Sun is not shining.
100. 080924ge, G.G. 24

What is the negation of the statement "Squares are parallelograms"?
a. Parallelograms are squares.
b. Parallelograms are not squares.
c. It is not the case that squares are parallelograms.
d. It is not the case that parallelograms are squares.
101. 060933ge, G.G. 25

Given: Two is an even integer or three is an even integer.
Determine the truth value of this disjunction.
Justify your answer.

CONTRAPOSITIVE

102. $060913 g e, ~ G . G .26$

What is the contrapositive of the statement, "If I am tall, then I will bump my head"?
a. If I bump my head, then I am tall.
b. If I do not bump my head, then I am tall.
c. If I am tall, then I will not bump my head.
d. If I do not bump my head, then I am not tall.

CONDITIONAL STATEMENTS

103. fall0834ge, G.G. 26

Write a statement that is logically equivalent to the statement "If two sides of a triangle are congruent, the angles opposite those sides are congruent." Identify the new statement as the converse, inverse, or contrapositive of the original statement.

LOCUS-2
104. O80936ge, G.G. 23

On the set of axes below, sketch the points that are 5 units from the origin and sketch the points that are 2 units from the line $y=3$. Label with an \mathbf{X} all points that satisfy both conditions.

Geometry Regents Exam Questions by Topic www.jmap.org
105. fall0837ge, G.G. 23

A city is planning to build a new park. The park must be equidistant from school A at $(3,3)$ and school B at $(3,-5)$. The park also must be exactly 5 miles from the center of town, which is located at the origin on the coordinate graph. Each unit on the graph represents 1 mile. On the set of axes below, sketch the compound loci and label with an \mathbf{X} all possible locations for the new park.

Geometry Regents Exam Questions by Topic
www.jmap.org
106. 060932ge, G.G. 22

The length of $\overline{A B}$ is 3 inches. On the diagram below, sketch the points that are equidistant from A and B and sketch the points that are 2 inches from A. Label with an \mathbf{X} all points that satisfy both conditions.

107. 060912ge, G.G. 22

In a coordinate plane, how many points are both 5 units from the origin and 2 units from the x-axis?
a. 1
b. 2
c. 3
d. 4

SIMILARITY PROOFS

108. fall0821ge, G.G. 44

In the diagram below of $\triangle P R T, Q$ is a point on $\overline{P R}$, S is a point on $\overline{T R}, \overline{Q S}$ is drawn, and $\angle R P T \cong \angle R S Q$.

Which reason justifies the conclusion that $\triangle P R T \sim \triangle S R Q$?
a. AA
b. ASA
c. SAS
d. SSS
109. 060917ge, G.G. 44

In the diagram of $\triangle A B C$ and $\triangle E D C$ below, $\overline{A E}$ and $\overline{B D}$ intersect at C, and $\angle C A B \cong \angle C E D$.

Which method can be used to show that $\triangle A B C$ must be similar to $\triangle E D C$?
a. SAS
b. AA
c. SSS
d. HL

CONGRUENCY PROOFS

110. 060902ge, G.G. 28

In the diagram of $\triangle A B C$ and $\triangle D E F$ below, $\overline{A B} \cong \overline{D E}, \angle A \cong \angle D$, and $\angle B \cong \angle E$.

Which method can be used to prove
$\triangle A B C \cong \triangle D E F$?
a. SSS
b. SAS
c. ASA
d. HL
111. 080913ge, G.G. 28

The diagonal $\overline{A C}$ is drawn in parallelogram $A B C D$.
Which method can not be used to prove that $\triangle A B C \cong \triangle C D A$?
a. SSS
b. SAS
c. SSA
d. ASA

Geometry Regents Exam Questions by Topic www.jmap.org
112. fall0838ge, G.G. 28

In the diagram below, quadrilateral $A B C D$ is inscribed in circle $O, \overline{A B} \| \overline{D C}$, and diagonals $\overline{A C}$ and $\overline{B D}$ are drawn. Prove that $\triangle A C D \cong \triangle B D C$.

QUADRILATERAL PROOFS
114. O80938ge, G.G. 27

Given: Quadrilateral $A B C D$, diagonal $\overline{A F E C}$, $\overline{A E} \cong \overline{F C}, \overline{B F} \perp \overline{A C}, \overline{D E} \perp \overline{A C}, \angle 1 \cong \angle 2$ Prove: $A B C D$ is a parallelogram.

113. 060938ge, G.G. 27

Given: $\triangle A B C$ and $\triangle E D C, C$ is the midpoint of $\overline{B D}$ and $\overline{A E}$
Prove: $\overline{A B} \| \overline{D E}$

