JEFFERSON MATH PROJECT REGENTS BY TOPIC

NY Geometry Regents Exam Questions from Fall 2008 to August 2009 Sorted by Topic (Answer Key)

www.jmap.org

$\mathscr{D}_{\text {ear }}{ }^{\text {ödr }}$
Shave to ackno ege the reciept of your favor of $\mathscr{M}_{\text {Aay }}$ 14. in which you mention that you have finished the 6. first Focks of E ucfid, pfane trigonometry, surveying \& afgebra and ask whiether $\mathscr{I}^{\text {t }}$ fink \mathbb{K} a further pursuit of that Granch of science would be usefu to you. there are some propositions in the fatter books of Eucfid, \& some of $\mathcal{C H}_{\text {Irchimedes, which are useful, \& \& have no doubt you have been made acquainted with }}$ them. trigonometry, so far as thi's, is most vafuable to every man, there is scarcely a day in which he wiff not resort to it for some of the jurposes of common fife. the science of cafcufation afso is indispensible as far as the extraction of the square \& cube roots; © © If gebra as far as the quadratic equation \& the use of fogaritims are often of vafue in crdinary cases: But aff beyond theses is Fut a fuxury; a deficious fuxury indeed; but not to be indulged in by one who is to Fave a prof ession to foflow for fits subsistence. in thits fight $\mathscr{I}_{\text {view the }}$ conic sections, curves of the hígher orders, perháps even spherical trigonometry, ©ٌtIgebraical operations beyond the ad dimension, andffuxions.
Letter from Thomas Jefferson to William G. Munford, Monticello, June 18, 1799.

Geometry Regents Exam Question by Topic

 Answer Section1. ANS: C
2. ANS: B
3. ANS: D
4. ANS: B
5. ANS: B
6. ANS:

$$
y=\frac{2}{3} x-9
$$

PTS: 2
7. ANS:
$y=-2 x+14$
PTS: 2
8. ANS: B
9. ANS: D
10. ANS:
$y=\frac{4}{3} x-6$
PTS: 4
11. ANS: C
12. ANS: A
13. ANS: D
14. ANS: B
15. ANS: B
16. ANS: D
17. ANS:

25
PTS: 2
18. ANS: A
19. ANS: C
20. ANS: A
21. ANS: B
22. ANS: D
23. ANS: C
24. ANS: B
25. ANS: C
26. ANS: D
27. ANS: C

PTS: 2
PTS: 2
PTS: 2
PTS: 2
PTS: 2

PTS: 2
PTS: 2

PTS: 2
PTS: 2
PTS: 2
PTS: 2
PTS: 2
PTS: 2

PTS: 2
PTS: 2
PTS: 2
PTS: 2
PTS: 2
PTS: 2
PTS: 2
PTS: 2
PTS: 2
PTS: 2
28. ANS:

PTS: 2
29. ANS:

PTS: 2
30. ANS: C
31. ANS: C

PTS: 2
32. ANS:

Х

PTS: 2
33. ANS: A
34. ANS: D
35. ANS: A
36. ANS: A
37. ANS:

26
PTS: 2
38. ANS: B
39. $\frac{\text { ANS: }}{A C}$

PTS: 2
40. ANS: A
41. ANS: D
42. ANS: B
43. ANS: B
44. ANS: D
45. ANS: D
46. ANS: C
47. ANS:

20
PTS: 2
48. ANS:

PTS: 4

PTS: 2
PTS: 2
PTS: 2
PTS: 2

PTS: 2

PTS: 2
PTS: 2
PTS: 2
PTS: 2
PTS: 2
PTS: 2
PTS: 2
49. ANS: C
50. ANS: D
51. ANS: B
49. ANS:

PTS: 2
PTS: 2
PTS: 2
52. ANS: D
53. ANS: A
54. ANS:

3

PTS: 2
55. ANS: C
56. ANS: D
57. ANS: A
58. ANS: C
59. ANS: A
60. ANS: D
61. ANS: B
62. ANS: A
63. ANS: B
64. ANS: A
65. ANS: C
66. ANS: B
67. ANS:
$\angle D, \angle G$ and 24° or $\angle E, \angle F$ and 84°

PTS: 4
68. ANS: B
69. ANS: B
70. ANS: D
71. ANS: C
72. ANS:

18

PTS: 4
73. ANS: B
74. ANS: C
75. ANS:
$15+5 \sqrt{5}$
PTS: 4
76. ANS: A
77. ANS: A
78. ANS: A
79. ANS:
22.4

PTS: 2

PTS: 2
PTS: 2
80. ANS:

2016
PTS: 2
81. ANS: D

PTS: 2
82. ANS: 20

PTS: 2
83. ANS:
$2 \sqrt{3}$
PTS: 2
84. ANS: A

PTS: 2
85. ANS: D

PTS: 2
86. ANS: D

PTS: 2
87. ANS: D
88. ANS: B

PTS: 2
89. ANS: A

PTS: 2
90. ANS:

PTS: 2
91. ANS: D

PTS: 2
92. ANS: A
93. ANS: C

PTS: 2
PTS: 2
94. ANS:

$D^{\prime}(-1,1), E^{\prime}(-1,5), G^{\prime}(-4,5)$
PTS: 4
95. ANS: A PTS: 2
96. ANS:

PTS: 4
97. ANS: C
98. ANS: A
99. ANS: D
100. ANS: C
101. ANS:

True. The first statement is true and the second statement is false. In a disjunction, if either statement is true, the disjunction is true.

PTS: 2
102. ANS: D

PTS: 2
103. ANS:

Contrapositive-If two angles of a triangle are not congruent, the sides opposite those angles are not congruent.
PTS: 2
104. ANS:

PTS: 4
105. ANS:

PTS: 4
106. ANS:

PTS: 2
107. ANS: D
108. ANS: A
109. ANS: B
110. ANS: C
111. ANS: C
112. ANS:

Because $\overline{A B} \| \overline{D C}, \overparen{A D} \cong \overparen{B C}$ since parallel chords intersect congruent arcs. $\angle B D C \cong \angle A C D$ because inscribed angles that intercept congruent arcs are congruent. $\overline{A D} \cong \overline{B C}$ since congruent chords intersect congruent arcs. $\overline{D C} \cong \overline{C D}$ because of the reflexive property. Therefore, $\triangle A C D \cong \triangle B D C$ because of SAS.

PTS: 6
113. ANS:
$\overline{A C} \cong \overline{E C}$ and $\overline{D C} \cong \overline{B C}$ because of the definition of midpoint. $\angle A C B \cong \angle E C D$ because of vertical angles. $\triangle A B C \cong \triangle E D C$ because of SAS. $\angle C D E \cong \angle C B A$ because of CPCTC. $\overline{B D}$ is a transversal intersecting $\overline{A B}$ and $\overline{E D}$. Therefore $\overline{A B} \| \overline{D E}$ because $\angle C D E$ and $\angle C B A$ are congruent alternate interior angles.

PTS: 6
114. ANS:

$\overline{F E} \cong \overline{F E}$ (Reflexive Property); $\overline{A E}-\overline{F E} \cong \overline{F C}-\overline{E F}$
(Angle Subtraction Theorem); $\overline{A F} \cong \overline{C E}$ (Substitution); $\angle B F A \cong \angle D E C$ (All right angles are congruent); $\triangle B F A \cong \triangle D E C$ (AAS); $\overline{A B} \cong \overline{C D}$ and $\overline{B F} \cong \overline{D E}$ (СРСТС); $\angle B F C \cong \angle D E A$ (All right angles are congruent); $\triangle B F C \cong \triangle D E A(\mathrm{SAS}) ; \overline{A D} \cong \overline{C B}(\mathrm{CPCTC}) ; A B C D$ is a parallelogram (opposite sides of quadrilateral $A B C D$ are congruent)

PTS: 6

