JEFFERSON MATH PROJECT REGENTS AT RANDOM

The NY Geometry Regents Exams
Fall 2008-January 2010
(Answer Key)

www.jmap.org
$\boldsymbol{D}_{\text {ear }}$ ºd $_{\text {ir }}$
Ihave to acknolege the reciept of your favor of May 14. in which you mention that you have finished the 6. first books of Eucfid, phane trigonometry, surveying \& afgebra and ask whether \mathscr{I} think a further pursuit of that branch of science would be useful to you. there are some propositions in the fatter books of Eucfid, \& some of $\mathcal{O}_{\mathscr{Z}}$ rchimedes, which are useful, \& IGave no doubt you have Feen made acquainted with them. trigonometry, so far as this, is most valuable to every man, there is scarcely a day in which he wiff not resort to it for some of the purposes of common fife. the science of cafculation also is indisppensible as far as
 are often of vafue in ordinary cases: but aff beyond these is but a fuxury; a deficious fuxury indeed; but not to be indulged in by one who is to have a profession to foffow for hits subsistence. in this fight \mathscr{I} view the conic sections, curves of the higher orders, perfaps even spherical trigonometry, Öt Igefraical operations beyond the ad dimension, and fluxions.
Letter from Thomas Jefferson to William G. Munford, Monticello, June 18, 1799.

Geometry Regents at Random

Answer Section
1 ANS: 3
PTS: 2
REF: 060928ge
STA: G.G. 8
TOP: Planes
2 ANS:
$15+5 \sqrt{5}$

PTS: 4
REF: 060936ge
STA: G.G. 69
TOP: Triangles in the Coordinate Plane
3 ANS:
67. $\frac{180-46}{2}=67$

PTS: 2 REF: 011029ge STA: G.G. 31 TOP: Isosceles Triangle Theorem
4 ANS: 2
The slope of $y=\frac{1}{2} x+5$ is $\frac{1}{2}$. The slope of a perpendicular line is $-2 . y=m x+b$

$$
\begin{aligned}
& 5=(-2)(-2)+b \\
& b=1
\end{aligned}
$$

PTS: 2 REF: 060907ge STA: G.G. 64 TOP: Parallel and Perpendicular Lines
5 ANS:
20. The sides of the triangle formed by connecting the midpoints are half the sides of the original triangle.
$5+7+8=20$.

PTS: 2
REF: 060929ge
STA: G.G. 42
TOP: Midsegments
6 ANS: 3
PTS: 2
REF: fall0814ge
STA: G.G. 73
TOP: Equations of Circles
7 ANS: 1
The closer a chord is to the center of a circle, the longer the chord.
PTS: 2 REF: 011005ge STA: G.G. 49 TOP: Chords

8 ANS: 2
Parallel chords intercept congruent arcs. $\widehat{m A C}=\mathrm{m} \overparen{B D}=30.180-30-30=120$.
PTS: 2 REF: 080904ge STA: G.G. 52 TOP: Chords
9 ANS: 2
The slope of $2 x+3 y=12$ is $-\frac{A}{B}=-\frac{2}{3}$. The slope of a perpendicular line is $\frac{3}{2}$. Rewritten in slope intercept form,
(2) becomes $y=\frac{3}{2} x+3$.

PTS: 2
10 ANS: 3
TOP: Reflections
11 ANS: 4
$M_{x}=\frac{-6+1}{2}=-\frac{5}{2} . M_{y}=\frac{1+8}{2}=\frac{9}{2}$.
PTS: 2
REF: 060919ge
STA: G.G. 66
TOP: Midpoint
12 ANS: 3
$m=\frac{-A}{B}=\frac{5}{2} . m=\frac{-A}{B}=\frac{10}{4}=\frac{5}{2}$
PTS: 2
13 ANS: 3
REF: 011014ge
STA: G.G. 63
REF: fall0825ge
TOP: Centroid, Orthocenter, Incenter and Circumcenter
14 ANS: 1

$$
\begin{aligned}
V & =\pi r^{2} h \\
1000 & =\pi r^{2} \cdot 8 \\
r^{2} & =\frac{1000}{8 \pi} \\
r & \approx 6.3
\end{aligned}
$$

PTS: 2 REF: 080926ge STA: G.G. 14 TOP: Volume
15 ANS:
18. If the ratio of $T A$ to $A C$ is $1: 3$, the ratio of $T E$ to $E S$ is also 1:3. $x+3 x=24.3(6)=18$.

$$
x=6
$$

PTS: 4
REF: 060935ge
STA: G.G. 50
TOP: Tangents
KEY: common tangency

16 ANS:

$$
D^{\prime}(-1,1), E^{\prime}(-1,5), G^{\prime}(-4,5)
$$

PTS: 4
17 ANS: 4
REF: 080937ge
STA: G.G. 55
TOP: Triangle Congruency
18 ANS: 3
PTS: 2
REF: 080928ge STA: G.G. 50
TOP: Tangents KEY: common tangency
19 ANS: 4
$y+x=4 . x^{2}-6 x+10=-x+4 . y+x=4 . y+2=4$

$y=-x+4 \quad x^{2}-5 x+6=0 \quad y+3=4 \quad y=2$

$$
(x-3)(x-2)=0 \quad y=1
$$

$$
x=3 \text { or } 2
$$

PTS: 2
20 ANS: 1
REF: 080912ge
STA: G.G. 70
TOP: Special Quadrilaterals
21 ANS: 3
The lateral edges of a prism are parallel.
PTS: 2 REF: fall0808ge STA: G.G. 10 TOP: Solids
22 ANS: 1
$\overline{A B}=10$ since $\triangle A B C$ is a 6-8-10 triangle. $6^{2}=10 x$

$$
3.6=x
$$

PTS: 2
REF: 060915ge
STA: G.G. 47
TOP: Similarity
KEY: leg

23 ANS:
$(6,-4) . C_{x}=\frac{Q_{x}+R_{x}}{2} . C_{y}=\frac{Q_{y}+R_{y}}{2}$.

$$
\begin{array}{rlrl}
3.5 & =\frac{1+R_{x}}{2} & 2 & =\frac{8+R_{y}}{2} \\
7 & =1+R_{x} & 4 & =8+R_{y} \\
6 & =R_{x} & -4 & =R_{y}
\end{array}
$$

PTS: 2 REF: 011031ge STA: G.G. 66 TOP: Midpoint
24 ANS: 4
The marked 60° angle and the angle above it are on the same straight line and supplementary. This unmarked supplementary angle is 120°. Because the unmarked 120° angle and the marked 120° angle are alternate exterior angles and congruent, $d \| e$.

PTS: 2 REF: 080901ge STA: G.G. 35 TOP: Parallel Lines and Transversals
25 ANS:

PTS: 2 REF: 060932ge STA: G.G. 22 TOP: Locus
26 ANS: 1
$M_{x}=\frac{-2+6}{2}=2 . M_{y}=\frac{3+3}{2}=3$. The center is (2,3). $d=\sqrt{(-2-6)^{2}+(3-3)^{2}}=\sqrt{64+0}=8$. If the diameter is 8 , the radius is 4 and $r^{2}=16$.

PTS: 2 REF: fall0820ge STA: G.G. 71 TOP: Equations of Circles
27 ANS: 1
$(x, y) \rightarrow(x+3, y+1)$
PTS: 2 REF: fall0803ge STA: G.G. 54 TOP: Translations

28 ANS: 3

PTS: 2 REF: 080920ge STA: G.G. 42 TOP: Midsegments
29 ANS: 4 PTS: 2 REF: 011009ge STA: G.G. 19
TOP: Constructions
30 ANS:

PTS: 2
31 ANS: 1
TOP: Graphing Circles
32 ANS: 2

REF: fall0832ge
PTS: 2

STA: G.G. 17
REF: 060920ge STA: G.G. 74

TOP: Constructions

PTS: 2
REF: 060917ge
STA: G.G. 44
TOP: Similarity Proofs
33 ANS: 4
$x^{2}=(4+5) \times 4$
$x^{2}=36$
$x=6$

PTS: 2
REF: 011008ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: tangent and secant
34 ANS: 4
PTS: 2
REF: 060922ge
STA: G.G. 73
TOP: Equations of Circles
35 ANS: 4
Median $\overline{B F}$ bisects $\overline{A C}$ so that $\overline{C F} \cong \overline{F A}$.
PTS: 2
REF: fall0810ge
STA: G.G. 24
TOP: Statements

36 ANS: 4
$d=\sqrt{(-3-1)^{2}+(2-0)^{2}}=\sqrt{16+4}=\sqrt{20}=\sqrt{4} \cdot \sqrt{5}=2 \sqrt{5}$
PTS: 2 REF: 011017ge STA: G.G. 67 TOP: Distance
37 ANS:
20. $5 x+10=4 x+30$

$$
x=20
$$

PTS: 2 REF: 060934ge STA: G.G. 45 TOP: Similarity
KEY: basic
38 ANS: 1
If $\angle A$ is at minimum $\left(50^{\circ}\right)$ and $\angle B$ is at minimum $\left(90^{\circ}\right), \angle C$ is at maximum of $40^{\circ}\left(180^{\circ}-\left(50^{\circ}+90^{\circ}\right)\right.$). If $\angle A$ is at maximum $\left(60^{\circ}\right)$ and $\angle B$ is at maximum $\left(100^{\circ}\right), \angle C$ is at minimum of $20^{\circ}\left(180^{\circ}-\left(60^{\circ}+100^{\circ}\right)\right)$.

PTS: 2 REF: 060901ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
39 ANS: 2
PTS: 2
REF: fall0806ge
STA: G.G. 9
TOP: Planes
40 ANS:
$\overline{A C} \cong \overline{E C}$ and $\overline{D C} \cong \overline{B C}$ because of the definition of midpoint. $\angle A C B \cong \angle E C D$ because of vertical angles.
$\triangle A B C \cong \triangle E D C$ because of SAS. $\angle C D E \cong \angle C B A$ because of СРСТС. $\overline{B D}$ is a transversal intersecting $\overline{A B}$ and
$\overline{E D}$. Therefore $\overline{A B} \| \overline{D E}$ because $\angle C D E$ and $\angle C B A$ are congruent alternate interior angles.

PTS: 6 REF: 060938ge STA: G.G. 27 TOP: Triangle Proofs
41 ANS: 3
PTS: 2 REF: 011010ge
STA: G.G. 71
TOP: Equations of Circles
42 ANS: 2
The length of the midsegment of a trapezoid is the average of the lengths of its bases. $\frac{x+30}{2}=44$.

$$
\begin{array}{r}
x+30=88 \\
x=58
\end{array}
$$

PTS: 2 REF: 011001ge STA: G.G. 40 TOP: Trapezoids
43 ANS: 3

$$
\begin{aligned}
4(x+4) & =8^{2} \\
4 x+16 & =64 \\
x & =12
\end{aligned}
$$

PTS: 2 REF: 060916ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: tangent and secant

44 ANS:
$y=\frac{2}{3} x-9$. The slope of $2 x-3 y=11$ is $-\frac{A}{B}=\frac{-2}{-3}=\frac{2}{3} .-5=\left(\frac{2}{3}\right)(6)+b$
$-5=4+b$

$$
b=-9
$$

PTS: 2 REF: 080931ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
45 ANS: 1
$3 x^{2}+18 x+24$
$3\left(x^{2}+6 x+8\right)$
$3(x+4)(x+2)$
PTS: 2 REF: fall0815ge STA: G.G. 12 TOP: Volume
46 ANS: 2
Because the triangles are similar, $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle D}=1$
PTS: 2 REF: 011022ge STA: G.G. 45 TOP: Similarity
KEY: perimeter and area
47 PTS: 2 REF: fall0824ge STA: G.G. 50
TOP: Tangents KEY: common tangency
48 ANS: 4
The slope of $y=-\frac{2}{3} x-5$ is $-\frac{2}{3}$. Perpendicular lines have slope that are opposite reciprocals.
PTS: 2 REF: 080917ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
49 ANS: 4
TOP: Solids
50 ANS:
Because $\overline{A B} \| \overline{D C}, \overparen{A D} \cong \overparen{B C}$ since parallel chords intersect congruent arcs. $\angle B D C \cong \angle A C D$ because inscribed angles that intercept congruent arcs are congruent. $\overline{A D} \cong \overline{B C}$ since congruent chords intersect congruent arcs. $\overline{D C} \cong \overline{C D}$ because of the reflexive property. Therefore, $\triangle A C D \cong \triangle B D C$ because of SAS.

PTS: 6 REF: fall0838ge STA: G.G. 27 TOP: Circle Proofs
51 ANS: 4 PTS: 2 REF: 011012ge STA: G.G. 1
TOP: Planes
52 ANS: 1
$\angle D C B$ and $\angle A D C$ are supplementary adjacent angles of a parallelogram. $180-120=60 . \angle 2=60-45=15$.
PTS: 2 REF: 080907ge STA: G.G. 38 TOP: Parallelograms

53 ANS: 3
The diagonals of an isosceles trapezoid are congruent. $5 x+3=11 x-5$.

$$
\begin{aligned}
6 x & =18 \\
x & =3
\end{aligned}
$$

PTS: 2 REF: fall0801ge STA: G.G. 40 TOP: Trapezoids
54 ANS: 2
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.
PTS: 2 REF: 060914ge STA: G.G. 43 TOP: Centroid
55 ANS: 1
Opposite sides of a parallelogram are congruent. $4 x-3=x+3 . S V=(2)+3=5$.

$$
\begin{aligned}
3 x & =6 \\
x & =2
\end{aligned}
$$

PTS: 2 REF: 011013ge STA: G.G. 38 TOP: Parallelograms
56 ANS:
6. The centroid divides each median into segments whose lengths are in the ratio $2: 1$. $\overline{T D}=6$ and $\overline{D B}=3$

PTS: 2 REF: 011034ge STA: G.G. 43 TOP: Centroid
57 ANS: 3
Because $\overline{O C}$ is a radius, its length is 5 . Since $C E=2 O E=3 . \triangle E D O$ is a 3-4-5 triangle. If $E D=4, B D=8$.
PTS: 2 REF: fall0811ge STA: G.G. 49 TOP: Chords
58 ANS: 1 PTS: 2 REF: fall0807ge STA: G.G. 19
TOP: Constructions
59 ANS: 4
$\triangle A B C \sim \triangle D B E . \frac{\overline{A B}}{\overline{D B}}=\frac{\overline{A C}}{\overline{D E}}$

$$
\begin{aligned}
& \frac{9}{2}=\frac{x}{3} \\
& x=13.5
\end{aligned}
$$

PTS: 2
REF: 060927ge
STA: G.G. 46
TOP: Side Splitter Theorem
60 ANS: 3
PTS: 2
REF: 080913ge
STA: G.G. 28
TOP: Triangle Congruency
61 ANS:
$\overline{J K} \cong \overline{L M}$ because opposite sides of a parallelogram are congruent. $\overline{L M} \cong \overline{L N}$ because of the Isosceles Triangle
Theorem. $\overline{L M} \cong \overline{J M}$ because of the transitive property. JKLM is a rhombus because all sides are congruent.
PTS: 4 REF: 011036ge STA: G.G. 41 TOP: Special Quadrilaterals
62 ANS: 4
PTS: 2
TOP: Identifying Transformations

63 ANS: 4 PTS: 2 REF: 080914ge STA: G.G. 7
TOP: Planes
64 ANS: 3 PTS: 2 REF: 011028ge STA: G.G. 26
TOP: Inverse
65 ANS:
3. The non-parallel sides of an isosceles trapezoid are congruent. $2 x+5=3 x+2$

$$
x=3
$$

PTS: 2
66 ANS: 2
REF: 080929ge
STA: G.G. 40
REF: 080921ge
TOP: Trapezoids
STA: G.G. 72
TOP: Equations of Circles
67 ANS:

PTS: 2
REF: 080932ge
STA: G.G. 17
TOP: Constructions
68 ANS: 4
Let $\overline{A D}=x . \quad 36 x=12^{2}$

$$
x=4
$$

PTS: 2 REF: 080922ge STA: G.G. 47 TOP: Similarity
KEY: leg
69 ANS:
$2 \sqrt{3} \cdot x^{2}=3 \cdot 4$

$$
x=\sqrt{12}=2 \sqrt{3}
$$

PTS: 2
REF: fall0829ge
KEY: altitude
70 ANS: 1
$\triangle P R T$ and $\triangle S R Q$ share $\angle R$ and it is given that $\angle R P T \cong \angle R S Q$.
PTS: 2 REF: fall0821ge STA: G.G. 44 TOP: Similarity Proofs

71 ANS:
$y=\frac{4}{3} x-6 . \quad M_{x}=\frac{-1+7}{2}=3 \quad$ The perpendicular bisector goes through $(3,-2)$ and has a slope of $\frac{4}{3}$.

$$
\begin{aligned}
& M_{y}=\frac{1+(-5)}{2}=-2 \\
& m=\frac{1-(-5)}{-1-7}=-\frac{3}{4}
\end{aligned}
$$

$$
y-y_{M}=m\left(x-x_{M}\right) .
$$

$$
y-1=\frac{4}{3}(x-2)
$$

PTS: 4
REF: 080935ge
STA: G.G. 68
TOP: Perpendicular Bisector
72 ANS: 4
(4) is not true if $\angle P Q R$ is obtuse.

PTS: 2 REF: 060924ge STA: G.G. 32 TOP: External Angle Theorem
73 ANS:
True. The first statement is true and the second statement is false. In a disjunction, if either statement is true, the disjunction is true.

PTS: 2
REF: 060933ge
STA: G.G. 25 TOP: Compound Statements
KEY: disjunction
74 ANS:
Contrapositive-If two angles of a triangle are not congruent, the sides opposite those angles are not congruent.
PTS: 2 REF: fall0834ge STA: G.G. 26 TOP: Conditional Statements

75 ANS:

PTS: 6
REF: 011038ge
STA: G.G. 70
TOP: Quadratic-Linear Systems
76 ANS: 3
The slope of $y=x+2$ is 1 . The slope of $y-x=-1$ is $\frac{-A}{B}=\frac{-(-1)}{1}=1$.
PTS: 2 REF: 080909ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
77 ANS: 1
$y=x^{2}-4 x=(4)^{2}-4(4)=0 .(4,0)$ is the only intersection.

PTS: 2
REF: 060923ge
STA: G.G. 70
TOP: Quadratic-Linear Systems
78 ANS: 2
The slope of a line in standard form is $-\frac{A}{B}$, so the slope of this line is 2 . A parallel line would also have a slope of 2. Since the answers are in slope intercept form, find the y-intercept: $\quad y=m x+b$

$$
\begin{aligned}
-11 & =2(-3)+b \\
-5 & =b
\end{aligned}
$$

PTS: 2
79 ANS: 2
TOP: Locus
80 ANS: 3
TOP: Negations

REF: fall0812ge
PTS: 2
PTS: 2
REF: 080924ge

TOP: Parallel and Perpendicular Lines
STA: G.G. 22
STA: G.G. 24

81 ANS:
22.4. $\quad V=\pi r^{2} h$

$$
\begin{aligned}
12566.4 & =\pi r^{2} \cdot 8 \\
r^{2} & =\frac{12566.4}{8 \pi} \\
r & \approx 22.4
\end{aligned}
$$

PTS: 2 REF: fall0833ge STA: G.G. 14 TOP: Volume
82 ANS:
5. $\frac{3}{x}=\frac{6+3}{15}$

$$
\begin{aligned}
9 x & =45 \\
x & =5
\end{aligned}
$$

PTS: 2 REF: 011033ge STA: G.G. 46 TOP: Side Splitter Theorem
83 ANS: 1
$a^{2}+(5 \sqrt{2})^{2}=(2 \sqrt{15})^{2}$
$a^{2}+(25 \times 2)=4 \times 15$
$a^{2}+50=60$
$a^{2}=10$
$a=\sqrt{10}$
PTS: 2 REF: 011016ge STA: G.G. 48 TOP: Pythagorean Theorem
84 ANS: 1
After the translation, the coordinates are $A^{\prime}(-1,5)$ and $B^{\prime}(3,4)$. After the dilation, the coordinates are $A^{\prime \prime}(-2,10)$ and $B^{\prime \prime}(6,8)$.

PTS: 2 REF: fall0823ge STA: G.G. 58 TOP: Compositions of Transformations
85 ANS: 1
$x+2 x+2+3 x+4=180$

$$
\begin{aligned}
6 x+6 & =180 \\
x & =29
\end{aligned}
$$

PTS: 2
REF: 011002ge
STA: G.G. 30
86 ANS: 2
PTS: 2
REF: 011003ge
TOP: Interior and Exterior Angles of Triangles
TOP: Properties of Transformations
87 ANS: 2
A dilation affects distance, not angle measure.
PTS: 2
REF: 080906ge STA: G.G. 60
TOP: Identifying Transformations

88	ANS: 3	PTS: 2	REF: 060908ge	STA: G.G. 60	
	TOP: Identifying Transformations				
89	ANS: 2	REF: 011006ge	STA: G.G. 56		
	TOP: Isometries				
90	ANS: 4				
	$180-(40+40)=100$				

PTS: 2 REF: 080903ge STA: G.G. 31 TOP: Isosceles Triangle Theorem
91 PTS: 2 REF: 060925ge STA: G.G. 17
TOP: Constructions
92 ANS: 2
The slope of a line in standard form is $-\frac{A}{B}$ so the slope of this line is $-\frac{5}{3}$ Perpendicular lines have slope that are the opposite and reciprocal of each other.

PTS: 2 REF: fall0828ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
93 ANS:
4. $l_{1} w_{1} h_{1}=l_{2} w_{2} h_{2}$

$$
10 \times 2 \times h=5 \times w_{2} \times h
$$

$$
20=5 w_{2}
$$

$$
w_{2}=4
$$

PTS: 2 REF: 011030ge STA: G.G. 11 TOP: Volume
94 ANS: 2
$4(4 x-3)=3(2 x+8)$
$16 x-12=6 x+24$

$$
10 x=36
$$

$$
x=3.6
$$

PTS: 2 REF: 080923ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: two chords
95 ANS: 1
Since $\overline{A C} \cong \overline{B C}, \mathrm{~m} \angle A=\mathrm{m} \angle B$ under the Isosceles Triangle Theorem.
PTS: 2 REF: fall0809ge STA: G.G. 69 TOP: Triangles in the Coordinate Plane
96
ANS: 2
Parallel chords intercept congruent arcs. $\mathrm{m} \overparen{A D}=\mathrm{m} \overparen{B C}=60 . \mathrm{m} \angle C D B=\frac{1}{2} \mathrm{~m} \overparen{B C}=30$.
PTS: 2 REF: 060906ge STA: G.G. 52 TOP: Chords

97 ANS: 3
$m=\frac{-A}{B}=-\frac{3}{4}$
PTS: 2
98 ANS: 1
TOP: Identifying Transformations
99 ANS: $2 \quad$ PTS: 2
TOP: Constructions
100 ANS:

PTS: 4
101 ANS: 2
REF: 080936ge
TOP: Equations of Circles
102 ANS:
25. $d=\sqrt{(-3-4)^{2}+(1-25)^{2}}=\sqrt{49+576}=\sqrt{625}=25$.

PTS: 2 REF: fall0831ge STA: G.G. 67 TOP: Distance
103 ANS: 2
$M_{x}=\frac{2+(-4)}{2}=-1 . M_{Y}=\frac{-3+6}{2}=\frac{3}{2}$.
PTS: 2
REF: fall0813ge
STA: G.G. 66
TOP: Midpoint
104
ANS:

PTS: 2
105 ANS: 2
TOP: Planes
106
ANS:
36, because a dilation does not affect angle measure. 10, because a dilation does affect distance.
PTS: 4 REF: 011035ge STA: G.G. 59 TOP: Properties of Transformations

107 ANS: 1
$V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi \cdot 4^{2} \cdot 12 \approx 201$
PTS: 2 REF: 060921ge STA: G.G. 15 TOP: Volume
108 ANS: 2
$6+17>22$
PTS: 2 REF: 080916ge STA: G.G. 33 TOP: Triangle Inequality Theorem
109 ANS:

$\overline{F E} \cong \overline{F E}$ (Reflexive Property); $\overline{A E}-\overline{F E} \cong \overline{F C}-\overline{E F}$ (Line Segment Subtraction
Theorem); $\overline{A F} \cong \overline{C E}$ (Substitution); $\angle B F A \cong \angle D E C$ (All right angles are congruent); $\triangle B F A \cong \triangle D E C$ (AAS); $\overline{A B} \cong \overline{C D}$ and $\overline{B F} \cong \overline{D E}$ (СРСТС); $\angle B F C \cong \angle D E A$ (All right angles are congruent); $\triangle B F C \cong \triangle D E A$ (SAS);
$\overline{A D} \cong \overline{C B}$ (СРСТС); $A B C D$ is a parallelogram (opposite sides of quadrilateral $A B C D$ are congruent)

PTS: 6
110 ANS: 1
TOP: Planes
111 ANS: 2

$$
\begin{aligned}
x^{2} & =3(x+18) \\
x^{2}-3 x-54 & =0 \\
(x-9)(x+6) & =0 \\
x & =9
\end{aligned}
$$

PTS: 2
REF: fall0817ge
STA: G.G. 53
KEY: tangent and secant
112 ANS: 1

PTS: 2
113 ANS: 3
REF: 011021ge
PTS: 2
STA: G.G. 32
REF: 080902ge

TOP: External Angle Theorem STA: G.G. 17

TOP: Constructions

114 ANS: 4 PTS: 2 REF: 011019ge STA: G.G. 44
TOP: Similarity Proofs
115 ANS:
$\overline{A C} . \mathrm{m} \angle B C A=63$ and $\mathrm{m} \angle A B C=80 . \overline{A C}$ is the longest side as it is opposite the largest angle.
PTS: 2 REF: 080934ge STA: G.G. 34 TOP: Angle Side Relationship
116 ANS: 4
$3 y+1=6 x+4.2 y+1=x-9$

$$
\begin{array}{rlrl}
3 y & =6 x+3 & 2 y & =x-10 \\
y & =2 x+1 & y & =\frac{1}{2} x-5
\end{array}
$$

PTS: 2 REF: fall0822ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
117 ANS: 4
Corresponding angles of similar triangles are congruent.
PTS: 2 REF: fall0826ge STA: G.G. 45 TOP: Similarity
KEY: perimeter and area
118 ANS: 4 PTS: 2 REF: 080925ge STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
119 ANS:
2016. $V=\frac{1}{3} B h=\frac{1}{3} s^{2} h=\frac{1}{3} 12^{2} \cdot 42=2016$

PTS: 2
120 ANS: 4
TOP: Negations
121 ANS: 4
TOP: Contrapositive
122 ANS: 4
REF: fall0818ge
STA: G.G. 61
TOP: Analytical Representations of Transformations
123 ANS: 3
PTS: 2
REF: 011007ge
STA: G.G. 31
TOP: Isosceles Triangle Theorem
124 ANS: 3

PTS: 2
125 ANS: 3
$V=\pi r^{2} h=\pi \cdot 6^{2} \cdot 27=972 \pi$
PTS: 2
REF: 011027ge
STA: G.G. 14
TOP: Volume

126 ANS: 2
Longest side of a triangle is opposite the largest angle. Shortest side is opposite the smallest angle.
PTS: 2 REF: 060911ge STA: G.G. 34 TOP: Angle Side Relationship
127 ANS: 4
$(n-2) 180=(8-2) 180=1080 \cdot \frac{1080}{8}=135$.

PTS: 2 REF: fall0827ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons
128 ANS: 2
$\frac{87+35}{2}=\frac{122}{2}=61$
PTS: 2 REF: 011015ge STA: G.G. 51 TOP: Arcs Determined by Angles
KEY: inside circle
129 ANS: 2
$7+18>6+12$
PTS: 2 REF: fall0819ge STA: G.G. 33 TOP: Triangle Inequality Theorem
130 ANS:
$y=-2 x+14$. The slope of $2 x+y=3$ is $\frac{-A}{B}=\frac{-2}{1}=-2 . y=m x+b \quad$.

$$
\begin{aligned}
& 4=(-2)(5)+b \\
& b=14
\end{aligned}
$$

PTS: 2 REF: 060931ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
131 ANS: 1
Translations and reflections do not afffect distance.
PTS: 2 REF: 080908ge STA: G.G. 59 TOP: Properties of Transformations
132 ANS: 1
$A^{\prime}(2,4)$
PTS: 2 REF: 011023ge STA: G.G. 54 TOP: Compositions of Transformations
KEY: basic
133 ANS: 1
In an equilateral triangle, each interior angle is 60° and each exterior angle is $120^{\circ}\left(180^{\circ}-120^{\circ}\right)$. The sum of the three interior angles is 180° and the sum of the three exterior angles is 360°.

PTS: 2 REF: 060909ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
134 ANS: 3
PTS: 2 REF: fall0804ge
STA: G.G. 18
TOP: Constructions
135 ANS: 1
$d=\sqrt{(-4-2)^{2}+(5-(-5))^{2}}=\sqrt{36+100}=\sqrt{136}=\sqrt{4} \cdot \sqrt{34}=2 \sqrt{34}$.
PTS: 2 REF: 080919ge STA: G.G. 67 TOP: Distance

136 ANS: 4
The slope of $y=-3 x+2$ is -3 . The perpendicular slope is $\frac{1}{3}$. $-1=\frac{1}{3}(3)+b$

$$
\begin{aligned}
-1 & =1+b \\
b & =-2
\end{aligned}
$$

PTS: 2
REF: 011018ge
STA: G.G. 64
TOP: Parallel and Perpendicular Lines

PTS: 4
REF: fall0835ge
STA: G.G. 42
TOP: Midsegments
138 ANS:

PTS: 2

ANS: 3
TOP: Planes

REF: 060930ge
PTS: 2

STA: G.G. 19
REF: fall0816ge

TOP: Constructions
STA: G.G. 1

140 ANS:

PTS: 4 REF: 011037g
141
ANS: 1
PTS: 2
TOP: Equations of Circles
142 ANS: 2
$M_{x}=\frac{-2+6}{2}=2 . M_{y}=\frac{-4+2}{2}=-1$
PTS: 2
143 ANS: 2
REF: 080910ge
TOP: Graphing Circles
144 ANS: 3

PTS: 2
145 ANS: 1 TOP: Planes
146 ANS:

PTS: 4
REF: fall0837ge
STA: G.G. 23
TOP: Locus

147 ANS:
26. $x+3 x+5 x-54=180$

$$
\begin{aligned}
9 x & =234 \\
x & =26
\end{aligned}
$$

PTS: 2
REF: 080933ge
ANS:

PTS: 4 KEY: grids
149
ANS: 4
REF: 060937ge
PTS: 2
TOP: Locus
150 ANS:

PTS: 2
REF: fall0830ge
STA: G.G. 55

151 ANS:

$\angle D, \angle G$ and 24° or $\angle E, \angle F$ and $84^{\circ} . \mathrm{mFE}=\frac{2}{15} \times 360=48$. Since the chords forming $\angle D$ and $\angle G$ are intercepted by $\overparen{F E}$, their measure is 24°. m $\overparen{G D}=\frac{7}{15} \times 360=168$. Since the chords forming $\angle E$ and $\angle F$ are intercepted by $\overparen{G D}$, their measure is 84°.

PTS: 4 REF: fall0836ge STA: G.G. 51 TOP: Arcs Determined by Angles
KEY: inscribed
152 ANS: 3

The sum of the interior angles of a pentagon is $(5-2) 180=540$.
PTS: 2 REF: 011023ge STA: G.G. 36 TOP: Interior and Exterior Angles of Polygons

