JEFFERSON MATH PROJECT REGENTS BY DATE

The NY Geometry Regents Exams Fall, 2008-January, 2010

(Answer Key)
www.jmap.org
$\mathcal{D}_{\text {ear }}{ }^{\text {coir }}$
Ihave to acknolege the reciept of your favor of May 14. in whicthyou mention that you have finished the 6. first Gooks of \mathcal{E} ucfid, phane trigonometry, surveying \& afgebra and ask whether \mathscr{I} think a further pursuit of that branch of science would be useful to you. there are some propositions in the fatter books of $\mathcal{E} u c f i d, \&$ some of ${ }^{\circ} \mathscr{A}_{\text {trchimedes, }}$ which are useful, \& \mathcal{I} have no doubt you have Feen made acquainted with them. trigonometry, so far as this, is most valuable to every man, there is scarcely a day in which he wiff not resort to it for some of the purposes of common fife. the science of cafcufation afso is indisppensible as far as the extraction of the square \& cube roots; ÖtIgefra as far as the quadratic equation \& the use of fogarithims are often of value in ordinary cases: but aff beyond these is but a fuxury; a deficious fuxury indeed; but not to be indulged in by one who is to have a profession to foffow for hits subsistence. in this fight $\mathscr{I}_{\text {view }}$ the conic sections, curves of the higher orders, perhaps even spherical trigonometry, व̈tlgebraicaf operations beyond the ad dimension, andffuxions.
Letter from Thomas Jefferson to William G. Munford, Monticello, June 18, 1799.

fall08ge
 Answer Section

1 ANS: 3
The diagonals of an isosceles trapezoid are congruent. $5 x+3=11 x-5$.

$$
\begin{aligned}
6 x & =18 \\
x & =3
\end{aligned}
$$

	PTS: 2	REF: fall0801ge	STA: G.G. 40	TOP: Trapezoids	
2	ANS: 4	PTS: 2	REF: fall0802ge	STA: G.G. 24	
TOP: Negations					
3	ANS: 1				
	$(x, y) \rightarrow(x+3, y+1)$				

PTS: 2 REF: fall0803ge STA: G.G. 54 TOP: Translations
4 ANS: 3
PTS: 2
REF: fall0804ge
STA: G.G. 18
TOP: Constructions
5 ANS: 3

PTS: 2	REF: fall0805ge	STA: G.G. 70	TOP: Quadratic-Linear Systems	
6	ANS: 2	PTS: 2	REF: fall0806ge	STA: G.G. 9
TOP: Planes				
7	ANS: 1	PTS: 2	REF: fall0807ge	STA: G.G. 19
	TOP: Constructions			

8 ANS: 3
The lateral edges of a prism are parallel.
PTS: 2 REF: fall0808ge STA: G.G. 10 TOP: Solids
9 ANS: 1
Since $\overline{A C} \cong \overline{B C}, \mathrm{~m} \angle A=\mathrm{m} \angle B$ under the Isosceles Triangle Theorem.
PTS: 2 REF: fall0809ge STA: G.G. 69 TOP: Triangles in the Coordinate Plane
10 ANS: 4
Median $\overline{B F}$ bisects $\overline{A C}$ so that $\overline{C F} \cong \overline{F A}$.
PTS: 2 REF: fall0810ge STA: G.G. 24 TOP: Statements
11 ANS: 3
Because $\overline{O C}$ is a radius, its length is 5. Since $C E=2 O E=3 . \triangle E D O$ is a 3-4-5 triangle. If $E D=4, B D=8$.
PTS: 2 REF: fall0811ge STA: G.G. 49 TOP: Chords

12 ANS: 2
The slope of a line in standard form is $-\frac{A}{B}$, so the slope of this line is 2 . A parallel line would also have a slope of
2. Since the answers are in slope intercept form, find the y-intercept: $\quad y=m x+b$

$$
\begin{aligned}
-11 & =2(-3)+b \\
-5 & =b
\end{aligned}
$$

PTS: 2 REF: fall0812ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
13 ANS: 2
$M_{X}=\frac{2+(-4)}{2}=-1 . M_{Y}=\frac{-3+6}{2}=\frac{3}{2}$.
PTS: 2 REF: fall0813ge STA: G.G. 66 TOP: Midpoint
14 ANS: 3 PTS: 2 REF: fall0814ge STA: G.G. 73
TOP: Equations of Circles
15 ANS: 1
$3 x^{2}+18 x+24$
$3\left(x^{2}+6 x+8\right)$
$3(x+4)(x+2)$
PTS: 2 REF: fall0815ge STA: G.G. 12 TOP: Volume
16 ANS: 3 PTS: 2 REF: fall0816ge STA: G.G. 1
TOP: Planes
17 ANS: 2

$$
\begin{aligned}
x^{2} & =3(x+18) \\
x^{2}-3 x-54 & =0 \\
(x-9)(x+6) & =0 \\
x & =9
\end{aligned}
$$

PTS: 2 REF: fall0817ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: tangent and secant
18 ANS: $4 \quad$ PTS: 2
REF: fall0818ge STA: G.G. 61
TOP: Analytical Representations of Transformations
19 ANS: 2
$7+18>6+12$
PTS: 2 REF: fall0819ge STA: G.G. 33 TOP: Triangle Inequality Theorem
20 ANS: 1
$M_{x}=\frac{-2+6}{2}=2 . M_{y}=\frac{3+3}{2}=3$. The center is (2,3). $d=\sqrt{(-2-6)^{2}+(3-3)^{2}}=\sqrt{64+0}=8$. If the diameter is 8 , the radius is 4 and $r^{2}=16$.

PTS: 2 REF: fall0820ge STA: G.G. 71 TOP: Equations of Circles

21 ANS: 1
$\triangle P R T$ and $\triangle S R Q$ share $\angle R$ and it is given that $\angle R P T \cong \angle R S Q$.
PTS: 2 REF: fall0821ge STA: G.G. 44 TOP: Similarity Proofs
22 ANS: 4
$3 y+1=6 x+4.2 y+1=x-9$

$$
\begin{array}{rlrl}
3 y & =6 x+3 & 2 y & =x-10 \\
y & =2 x+1 & y & =\frac{1}{2} x-5
\end{array}
$$

PTS: 2 REF: fall0822ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
23 ANS: 1
After the translation, the coordinates are $A^{\prime}(-1,5)$ and $B^{\prime}(3,4)$. After the dilation, the coordinates are $A^{\prime \prime}(-2,10)$ and $B^{\prime \prime}(6,8)$.

PTS: 2 REF: fall0823ge STA: G.G. 58 TOP: Compositions of Transformations
24 ANS: 4
TOP: Tangents KEY: common tangency
25 ANS: 3
PTS: 2 REF: fall0825ge
STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
26 ANS: 4
Corresponding angles of similar triangles are congruent.
PTS: 2 REF: fall0826ge STA: G.G. 45 TOP: Similarity
KEY: perimeter and area
27 ANS: 4
$(n-2) 180=(8-2) 180=1080 \cdot \frac{1080}{8}=135$.
PTS: 2 REF: fall0827ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons
28 ANS: 2
The slope of a line in standard form is $-\frac{A}{B}$ so the slope of this line is $-\frac{5}{3}$ Perpendicular lines have slope that are the opposite and reciprocal of each other.

PTS: 2 REF: fall0828ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
29 ANS:
$2 \sqrt{3} . x^{2}=3 \cdot 4$
$x=\sqrt{12}=2 \sqrt{3}$
PTS: 2
REF: fall0829ge STA: G.G. 47 TOP: Similarity
KEY: altitude

30 ANS:

PTS: 2 REF: fall0830ge STA: G.G. 55 TOP: Properties of Transformations
31 ANS:
25. $d=\sqrt{(-3-4)^{2}+(1-25)^{2}}=\sqrt{49+576}=\sqrt{625}=25$.

PTS: 2
REF: fall0831ge
STA: G.G. 67
TOP: Distance
32 ANS:

PTS: 2
REF: fall0832ge
STA: G.G. 17
TOP: Constructions
33 ANS:
22.4. $\quad V=\pi r^{2} h$

$$
\begin{aligned}
12566.4 & =\pi r^{2} \cdot 8 \\
r^{2} & =\frac{12566.4}{8 \pi}
\end{aligned}
$$

$$
r \approx 22.4
$$

PTS: 2
REF: fall0833ge
STA: G.G. 14
TOP: Volume
34 ANS:
Contrapositive-If two angles of a triangle are not congruent, the sides opposite those angles are not congruent.
PTS: 2
REF: fall0834ge
STA: G.G. 26
TOP: Conditional Statements

ANS:

PTS: 4 REF: fall0835ge STA: G.G. 42 TOP: Midsegments
36 ANS:
$\angle D, \angle G$ and 24° or $\angle E, \angle F$ and $84^{\circ} . \mathrm{m} \overparen{F E}=\frac{2}{15} \times 360=48$. Since the chords forming $\angle D$ and $\angle G$ are intercepted by $\overparen{F E}$, their measure is $24^{\circ} . \mathrm{m} \overparen{G D}=\frac{7}{15} \times 360=168$. Since the chords forming $\angle E$ and $\angle F$ are intercepted by $\overparen{G D}$, their measure is 84°.

PTS: 4 REF: fall0836ge STA: G.G. 51 TOP: Arcs Determined by Angles
KEY: inscribed
37 ANS:

PTS: 4 REF: fall0837ge STA: G.G. 23 TOP: Locus
38 ANS:
Because $\overline{A B} \| \overline{D C}, \overparen{A D} \cong \overparen{B C}$ since parallel chords intersect congruent arcs. $\angle B D C \cong \angle A C D$ because inscribed angles that intercept congruent arcs are congruent. $\overline{A D} \cong \overline{B C}$ since congruent chords intersect congruent arcs. $\overline{D C} \cong \overline{C D}$ because of the reflexive property. Therefore, $\triangle A C D \cong \triangle B D C$ because of SAS.

PTS: 6
REF: fall0838ge
STA: G.G. 27
TOP: Circle Proofs

0609ge

Answer Section

1 ANS: 1
If $\angle A$ is at minimum $\left(50^{\circ}\right)$ and $\angle B$ is at minimum $\left(90^{\circ}\right), \angle C$ is at maximum of $40^{\circ}\left(180^{\circ}-\left(50^{\circ}+90^{\circ}\right)\right.$). If $\angle A$ is at maximum $\left(60^{\circ}\right)$ and $\angle B$ is at maximum $\left(100^{\circ}\right), \angle C$ is at minimum of $20^{\circ}\left(180^{\circ}-\left(60^{\circ}+100^{\circ}\right)\right)$.

PTS: 2 REF: 060901ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
2 ANS: 3

	PTS: 2	REF: 060902ge	STA: G.G. 28	TOP: Triangle Congruency	
3	ANS: 1	PTS: 2	REF: 060903ge	STA: G.G. 56	
	TOP: Identifying Transformations				
4	ANS: 4	PTS: 2	REF: 060904ge	STA: G.G. 13	
TOP: Solids					
5	ANS: 3	PTS: 2	REF: 060905ge	STA: G.G. 54	
TOP: Reflections	KEY: basic				
6	ANS: 2				

Parallel chords intercept congruent arcs. $\mathrm{m} \overparen{A D}=\mathrm{m} \overparen{B C}=60 . \mathrm{m} \angle C D B=\frac{1}{2} \mathrm{~m} \overparen{B C}=30$.

PTS: 2
REF: 060906ge
STA: G.G. 52
TOP: Chords
7 ANS: 2
The slope of $y=\frac{1}{2} x+5$ is $\frac{1}{2}$. The slope of a perpendicular line is $-2 . y=m x+b$

$$
\begin{aligned}
& 5=(-2)(-2)+b \\
& b=1
\end{aligned}
$$

PTS: 2
8 ANS: 3
REF: 060907ge
STA: G.G. 64
TOP: Identifying Transformations
9 ANS: 1
In an equilateral triangle, each interior angle is 60° and each exterior angle is $120^{\circ}\left(180^{\circ}-120^{\circ}\right)$. The sum of the three interior angles is 180° and the sum of the three exterior angles is 360°.

PTS: 2 REF: 060909ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
10 ANS: 2
PTS: 2
REF: 060910ge
STA: G.G. 71
TOP: Equations of Circles
11 ANS: 2
Longest side of a triangle is opposite the largest angle. Shortest side is opposite the smallest angle.
PTS: 2 REF: 060911ge STA: G.G. 34 TOP: Angle Side Relationship

12 ANS: 4 PTS: 2 REF: 060912ge STA: G.G. 23
TOP: Locus
13 ANS: 4 PTS: 2 REF: 060913ge STA: G.G. 26
TOP: Contrapositive
14 ANS: 2
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.
PTS: 2 REF: 060914ge STA: G.G. 43 TOP: Centroid
15 ANS: 1
$\overline{A B}=10$ since $\triangle A B C$ is a 6-8-10 triangle. $6^{2}=10 x$

$$
3.6=x
$$

PTS: 2 REF: 060915ge STA: G.G. 47 TOP: Similarity
KEY: leg
16 ANS: 3
$4(x+4)=8^{2}$
$4 x+16=64$
$x=12$
PTS: 2 REF: 060916ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: tangent and secant
17 ANS: 2
$\angle A C B$ and $\angle E C D$ are congruent vertical angles and $\angle C A B \cong \angle C E D$.

PTS: 2
18 ANS: 1
TOP: Planes
19 ANS: 4
$M_{x}=\frac{-6+1}{2}=-\frac{5}{2} . M_{y}=\frac{1+8}{2}=\frac{9}{2}$.
PTS: 2
20 ANS: 1
TOP: Graphing Circles
21 ANS: 1
$V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi \cdot 4^{2} \cdot 12 \approx 201$
PTS: 2
REF: 060921ge
PTS: 2
TOP: Equations of Circles

STA: G.G. 66 TOP: Midpoint
REF: 060920ge STA: G.G. 74

TOP: Similarity Proofs
STA: G.G. 2
REF: 060918ge

23 ANS: 1
$y=x^{2}-4 x=(4)^{2}-4(4)=0 .(4,0)$ is the only intersection.
PTS: 2 REF: 060923ge STA: G.G. 70 TOP: Quadratic-Linear Systems
24 ANS: 4
(4) is not true if $\angle P Q R$ is obtuse.

PTS: 2 REF: 060924ge STA: G.G. 32 TOP: External Angle Theorem
25 ANS: 3 PTS: 2 REF: 060925ge STA: G.G. 17
TOP: Constructions
26 ANS: 2
The slope of $2 x+3 y=12$ is $-\frac{A}{B}=-\frac{2}{3}$. The slope of a perpendicular line is $\frac{3}{2}$. Rewritten in slope intercept form,
(2) becomes $y=\frac{3}{2} x+3$.

PTS: 2 REF: 060926ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
27 ANS: 4
$\triangle A B C \sim \triangle D B E . \frac{\overline{A B}}{\overline{D B}}=\frac{\overline{A C}}{\overline{D E}}$

$$
\begin{aligned}
& \frac{9}{2}=\frac{x}{3} \\
& x=13.5
\end{aligned}
$$

PTS: 2
28 ANS: 3
REF: 060927ge
STA: G.G. 46
TOP: Side Splitter Theorem
TOP: Planes
PTS: 2
REF: 060928ge
STA: G.G. 8
29 ANS:
20. The sides of the triangle formed by connecting the midpoints are half the sides of the original triangle.
$5+7+8=20$.
PTS: 2

REF: 060929ge

STA: G.G. 42
TOP: Midsegments

30 ANS:

PTS: 2
REF: 060930ge
STA: G.G. 19 TOP: Constructions
31
ANS:
$y=-2 x+14$. The slope of $2 x+y=3$ is $\frac{-A}{B}=\frac{-2}{1}=-2 . y=m x+b$

$$
\begin{aligned}
& 4=(-2)(5)+b \\
& b=14
\end{aligned}
$$

PTS: 2
REF: 060931ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines
ANS:

PTS: 2 REF: 060932ge STA: G.G. 22 TOP: Locus
33 ANS:
True. The first statement is true and the second statement is false. In a disjunction, if either statement is true, the disjunction is true.

PTS: 2
REF: 060933ge
STA: G.G. 25
TOP: Compound Statements
KEY: disjunction

34 ANS:
20. $5 x+10=4 x+30$

$$
x=20
$$

PTS: 2
REF: 060934ge
STA: G.G. 45
TOP: Similarity
KEY: basic
35 ANS:
18. If the ratio of $T A$ to $A C$ is $1: 3$, the ratio of $T E$ to $E S$ is also $1: 3 . x+3 x=24.3(6)=18$.

$$
x=6
$$

PTS: 4
REF: 060935ge
STA: G.G. 50
TOP: Tangents
KEY: common tangency
36
ANS:
$15+5 \sqrt{5}$.

PTS: 4
REF: 060936ge
STA: G.G. 69
TOP: Triangles in the Coordinate Plane
37 ANS:

PTS: 4
REF: 060937ge STA: G.G. 54
TOP: Compositions of Transformations KEY: grids

38 ANS:
$\overline{A C} \cong \overline{E C}$ and $\overline{D C} \cong \overline{B C}$ because of the definition of midpoint. $\angle A C B \cong \angle E C D$ because of vertical angles. $\triangle A B C \cong \triangle E D C$ because of SAS. $\angle C D E \cong \angle C B A$ because of CPCTC. $\overline{B D}$ is a transversal intersecting $\overline{A B}$ and
$\overline{E D}$. Therefore $\overline{A B} \| \overline{D E}$ because $\angle C D E$ and $\angle C B A$ are congruent alternate interior angles.

PTS: 6 REF: 060938ge STA: G.G. 27 TOP: Triangle Proofs

0809ge

Answer Section

1 ANS: 4
The marked 60° angle and the angle above it are on the same straight line and supplementary. This unmarked supplementary angle is 120°. Because the unmarked 120° angle and the marked 120° angle are alternate exterior angles and congruent, $d \| e$.
$\begin{array}{lllll}\text { PTS: } 2 & \text { REF: 080901ge } & \text { STA: G.G. } 35 & \text { TOP: Parallel Lines and Transversals } \\ \text { ANS: } 3 & \text { PTS: } 2 & \text { REF: 080902ge } & \text { STA: } \mathrm{G} . \mathrm{G} .17\end{array}$
TOP: Constructions
3 ANS: 4
$180-(40+40)=100$
PTS: 2 REF: 080903ge STA: G.G. 31 TOP: Isosceles Triangle Theorem
4 ANS: 2
Parallel chords intercept congruent arcs. $\mathrm{m} \overparen{A C}=\mathrm{m} \overparen{B D}=30.180-30-30=120$.
PTS: 2 REF: 080904ge STA: G.G. 52 TOP: Chords
5 ANS: 4 PTS: 2 REF: 080905ge STA: G.G. 29
TOP: Triangle Congruency
6 ANS: 2
A dilation affects distance, not angle measure.
PTS: 2 REF: 080906ge STA: G.G. 60 TOP: Identifying Transformations
7 ANS: 1
$\angle D C B$ and $\angle A D C$ are supplementary adjacent angles of a parallelogram. $180-120=60 . \angle 2=60-45=15$.
PTS: 2 REF: 080907ge STA: G.G. 38 TOP: Parallelograms
8 ANS: 1
Translations and reflections do not afffect distance.
PTS: 2 REF: 080908ge STA: G.G. 59 TOP: Properties of Transformations
9 ANS: 3
The slope of $y=x+2$ is 1 . The slope of $y-x=-1$ is $\frac{-A}{B}=\frac{-(-1)}{1}=1$.
PTS: 2 REF: 080909ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
10 ANS: 2
$M_{x}=\frac{-2+6}{2}=2 . M_{y}=\frac{-4+2}{2}=-1$
$\begin{array}{lllll}\text { PTS: } 2 & \text { REF: 080910ge } & \text { STA: G.G.66 } & \text { TOP: Midpoint } \\ \text { ANS: } 1 & \text { PTS: } 2 & \text { REF: 080911ge } & \text { STA: } & \text { G.G. } 73\end{array}$
TOP: Equations of Circles

12 ANS: 4
$y+x=4 . x^{2}-6 x+10=-x+4 . y+x=4 . y+2=4$

$y=-x+4 \quad x^{2}-5 x+6=0 \quad y+3=4 \quad y=2$

$$
(x-3)(x-2)=0 \quad y=1
$$

$$
x=3 \text { or } 2
$$

PTS: 2 REF: 080912ge STA: G.G.70
13 ANS: 3
PTS: 2 REF: 080913ge
TOP: Triangle Congruency
14 ANS: 4 PTS: 2
TOP: Planes
15 ANS: $4 \quad$ PTS: 2
REF: 080914ge
TOP: Quadratic-Linear Systems
STA: G.G. 28

TOP: Identifying Transformations
16 ANS: 2
$6+17>22$
PTS: 2
REF: 080916ge
STA: G.G. 33
TOP: Triangle Inequality Theorem
17 ANS: 4
The slope of $y=-\frac{2}{3} x-5$ is $-\frac{2}{3}$. Perpendicular lines have slope that are opposite reciprocals.
PTS: 2 REF: 080917ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
18 ANS: 1
PTS: 2
REF: 080918ge
STA: G.G. 41
TOP: Special Quadrilaterals
19 ANS: 1
$d=\sqrt{(-4-2)^{2}+(5-(-5))^{2}}=\sqrt{36+100}=\sqrt{136}=\sqrt{4} \cdot \sqrt{34}=2 \sqrt{34}$.
PTS: 2
REF: 080919ge
STA: G.G. 67
TOP: Distance
20 ANS: 3

$\begin{array}{llll}\text { PTS: } 2 & \text { REF: 080920ge } & \text { STA: G.G. } 42 & \text { TOP: Midsegments } \\ \text { ANS: } 2 & \text { PTS: } 2 & \text { REF: 080921ge } & \text { STA: G.G. } 72 \\ \text { TOP: Equations of Circles } & & & \end{array}$

22 ANS: 4
Let $\overline{A D}=x . \quad 36 x=12^{2}$

$$
x=4
$$

PTS: 2
REF: 080922ge
STA: G.G. 47
TOP: Similarity
KEY: leg
23 ANS: 2
$4(4 x-3)=3(2 x+8)$
$16 x-12=6 x+24$
$10 x=36$
$x=3.6$
PTS: 2 REF: 080923ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: two chords
24 ANS: 3 PTS: 2 REF: 080924ge STA: G.G. 24
TOP: Negations
25 ANS: $4 \quad$ PTS: 2
REF: 080925ge STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
26 ANS: 1

$$
\begin{aligned}
V & =\pi r^{2} h \\
1000 & =\pi r^{2} \cdot 8 \\
r^{2} & =\frac{1000}{8 \pi} \\
r & \approx 6.3
\end{aligned}
$$

PTS: 2
27 ANS: 2
TOP: Planes
28 ANS: 3
TOP: Tangents

REF: 080926ge
PTS: 2
PTS: 2 KEY: common tangency

29 ANS:
3. The non-parallel sides of an isosceles trapezoid are congruent. $2 x+5=3 x+2$.

$$
x=3
$$

PTS: 2
REF: 080929ge STA: G.G. 40
TOP: Trapezoids
30 ANS:
2016. $V=\frac{1}{3} B h=\frac{1}{3} s^{2} h=\frac{1}{3} 12^{2} \cdot 42=2016$

PTS: 2
REF: 080930ge
STA: G.G. 13
TOP: Volume

31 ANS:
$y=\frac{2}{3} x-9$. The slope of $2 x-3 y=11$ is $-\frac{A}{B}=\frac{-2}{-3}=\frac{2}{3} .-5=\left(\frac{2}{3}\right)(6)+b$
$-5=4+b$
$b=-9$
PTS: 2 REF: 080931ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
32 ANS:

PTS: 2
REF: 080932ge
STA: G.G. 17
TOP: Constructions
33 ANS:
26. $x+3 x+5 x-54=180$

$$
\begin{aligned}
9 x & =234 \\
x & =26
\end{aligned}
$$

PTS: 2
REF: 080933ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles
34 ANS:
$\overline{A C} . \mathrm{m} \angle B C A=63$ and $\mathrm{m} \angle A B C=80 . \overline{A C}$ is the longest side as it is opposite the largest angle.
PTS: 2
REF: 080934ge
STA: G.G. 34
TOP: Angle Side Relationship

35 ANS:
$y=\frac{4}{3} x-6 . \quad M_{x}=\frac{-1+7}{2}=3 \quad$ The perpendicular bisector goes through $(3,-2)$ and has a slope of $\frac{4}{3}$.

$$
\begin{aligned}
& M_{y}=\frac{1+(-5)}{2}=-2 \\
& m=\frac{1-(-5)}{-1-7}=-\frac{3}{4}
\end{aligned}
$$

$$
y-y_{M}=m\left(x-x_{M}\right) .
$$

$$
y-1=\frac{4}{3}(x-2)
$$

PTS: 4
REF: 080935ge
STA: G.G. 68
TOP: Perpendicular Bisector
36 ANS:

PTS: 4
REF: 080936ge
STA: G.G. 23
TOP: Locus
37 ANS:

PTS: 4
REF: 080937ge STA: G.G. 55
TOP: Properties of Transformations

ANS:

$$
\overline{F E} \cong \overline{F E} \text { (Reflexive Property); } \overline{A E}-\overline{F E} \cong \overline{F C}-\overline{E F} \text { (Line Segment Subtraction }
$$

Theorem); $\overline{A F} \cong \overline{C E}$ (Substitution); $\angle B F A \cong \angle D E C$ (All right angles are congruent); $\triangle B F A \cong \triangle D E C$ (AAS); $\overline{A B} \cong \overline{C D}$ and $\overline{B F} \cong \overline{D E}$ (CPCTC); $\angle B F C \cong \angle D E A$ (All right angles are congruent); $\triangle B F C \cong \triangle D E A$ (SAS);
$\overline{A D} \cong \overline{C B}$ (СРСТС); $A B C D$ is a parallelogram (opposite sides of quadrilateral $A B C D$ are congruent)
PTS: 6
REF: 080938ge
STA: G.G. 41
TOP: Special Quadrilaterals

0110ge

Answer Section

1 ANS: 2
The length of the midsegment of a trapezoid is the average of the lengths of its bases. $\frac{x+30}{2}=44$.

$$
\begin{array}{r}
x+30=88 \\
x=58
\end{array}
$$

PTS: 2 REF: 011001ge STA: G.G. 40 TOP: Trapezoids
2 ANS: 1
$x+2 x+2+3 x+4=180$

$$
\begin{aligned}
6 x+6 & =180 \\
x & =29
\end{aligned}
$$

PTS: 2
3 ANS: 2
REF: 011002ge
STA: G.G. 30
REF: 011003ge
TOP: Interior and Exterior Angles of Triangles
TOP: Properties of Transformations
4 ANS: 2
PTS: 2
REF: 011004ge
STA: G.G. 55

TOP: Constructions
5 ANS: 1
The closer a chord is to the center of a circle, the longer the chord.

	PTS: 2	REF: 011005ge	STA: G.G. 49	TOP: Chords
6	ANS: 2	PTS: 2	REF: 011006ge	STA: G.G. 56
TOP: Isometries				
7	ANS: 3	PTS: 2	REF: 011007ge	STA: G.G. 31
	TOP: Isosceles Triangle Theorem			
8	ANS: 4			
	$x^{2}=(4+5) \times 4$			
	$x^{2}=36$			

PTS: 2
REF: 011008ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: tangent and secant
9 ANS: 4 PTS: 2
TOP: Constructions
10 ANS: $3 \quad$ PTS: 2
TOP: Equations of Circles
11 ANS: 2
PTS: 2
TOP: Locus
12 ANS: 4
PTS: 2
REF: 011009ge
STA: G.G. 19
REF: 011010ge
STA: G.G. 71

TOP: Planes
REF: 011011ge
STA: G.G. 22
REF: 011012ge
STA: G.G. 1

13 ANS: 1
Opposite sides of a parallelogram are congruent. $4 x-3=x+3 . S V=(2)+3=5$.

$$
\begin{array}{r}
3 x=6 \\
x=2
\end{array}
$$

PTS: 2 REF: 011013ge STA: G.G. 38 TOP: Parallelograms
14 ANS: 3
$m=\frac{-A}{B}=\frac{5}{2} . m=\frac{-A}{B}=\frac{10}{4}=\frac{5}{2}$
PTS: 2 REF: 011014ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
15 ANS: 2
$\frac{87+35}{2}=\frac{122}{2}=61$
PTS: 2 REF: 011015ge STA: G.G. 51 TOP: Arcs Determined by Angles
KEY: inside circle
16 ANS: 1

$$
\begin{aligned}
a^{2}+(5 \sqrt{2})^{2} & =(2 \sqrt{15})^{2} \\
a^{2}+(25 \times 2) & =4 \times 15 \\
a^{2}+50 & =60 \\
a^{2} & =10 \\
a & =\sqrt{10}
\end{aligned}
$$

PTS: 2 REF: 011016ge STA: G.G. 48 TOP: Pythagorean Theorem
17 ANS: 4
$d=\sqrt{(-3-1)^{2}+(2-0)^{2}}=\sqrt{16+4}=\sqrt{20}=\sqrt{4} \cdot \sqrt{5}=2 \sqrt{5}$
PTS: 2 REF: 011017ge STA: G.G. 67 TOP: Distance
18 ANS: 4
The slope of $y=-3 x+2$ is -3 . The perpendicular slope is $\frac{1}{3} .-1=\frac{1}{3}(3)+b$

$$
\begin{aligned}
-1 & =1+b \\
b & =-2
\end{aligned}
$$

PTS: 2
19 ANS: 4
REF: 011018ge
STA: G.G. 64
REF: 011019ge
TOP: Parallel and Perpendicular Lines
TOP: Similarity Proofs
20 ANS: 2
PTS: 2
REF: 011020ge STA: G.G. 74
TOP: Graphing Circles

21 ANS: 1

PTS: 2 REF: 011021ge STA: G.G. 32 TOP: External Angle Theorem
22 ANS: 2
Because the triangles are similar, $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle D}=1$
PTS: 2 REF: 011022ge STA: G.G. 45 TOP: Similarity
KEY: perimeter and area
23 ANS: 3

. The sum of the interior angles of a pentagon is $(5-2) 180=540$.

PTS: 2
24 ANS: 1
TOP: Planes
25 ANS: 3
$m=\frac{-A}{B}=-\frac{3}{4}$
PTS: 2
26 ANS: 1
$A^{\prime}(2,4)$
PTS: 2 REF: 011023ge STA: G.G. 54 TOP: Compositions of Transformations
KEY: basic
27 ANS: 3
$V=\pi r^{2} h=\pi \cdot 6^{2} \cdot 27=972 \pi$
PTS: 2
28 ANS: 3
TOP: Inverse

REF: 011023ge STA: G.G. 36
PTS: 2 REF: 011024ge
TOP: Interior and Exterior Angles of Polygons STA: G.G. 3

TOP: Parallel and Perpendicular Lines

REF: 011027ge
PTS: 2

STA: G.G. 14
REF: 011028ge

TOP: Volume
STA: G.G. 26

29 ANS:
67. $\frac{180-46}{2}=67$

PTS: 2 REF: 011029ge STA: G.G. 31 TOP: Isosceles Triangle Theorem
30 ANS:
4. $l_{1} w_{1} h_{1}=l_{2} w_{2} h_{2}$
$10 \times 2 \times h=5 \times w_{2} \times h$

$$
20=5 w_{2}
$$

$$
w_{2}=4
$$

PTS: 2
REF: 011030ge
STA: G.G. 11
TOP: Volume
31
ANS:
$(6,-4) . C_{x}=\frac{Q_{x}+R_{x}}{2} . C_{y}=\frac{Q_{y}+R_{y}}{2}$.

$$
\begin{array}{rlrl}
3.5 & =\frac{1+R_{x}}{2} & 2 & =\frac{8+R_{y}}{2} \\
7 & =1+R_{x} & 4 & =8+R_{y} \\
6 & =R_{x} & -4 & =R_{y}
\end{array}
$$

PTS: 2 REF: 011031ge STA: G.G. 66 TOP: Midpoint
32 ANS:

PTS: 2
REF: 011032ge
STA: G.G. 20
TOP: Constructions
33 ANS:
5. $\frac{3}{x}=\frac{6+3}{15}$

$$
\begin{aligned}
9 x & =45 \\
x & =5
\end{aligned}
$$

PTS: 2
REF: 011033ge
STA: G.G. 46
TOP: Side Splitter Theorem
34 ANS:
6. The centroid divides each median into segments whose lengths are in the ratio $2: 1 . \overline{T D}=6$ and $\overline{D B}=3$

PTS: 2
REF: 011034ge
STA: G.G. 43
TOP: Centroid

35 ANS:
36, because a dilation does not affect angle measure. 10 , because a dilation does affect distance.
PTS: 4 REF: 011035ge STA: G.G. 59 TOP: Properties of Transformations
36 ANS:
$\overline{J K} \cong \overline{L M}$ because opposite sides of a parallelogram are congruent. $\overline{L M} \cong \overline{L N}$ because of the Isosceles Triangle Theorem. $\overline{L M} \cong \overline{J M}$ because of the transitive property. JKLM is a rhombus because all sides are congruent.

PTS: 4 REF: 011036ge STA: G.G. 41 TOP: Special Quadrilaterals
37 ANS:

PTS: 4
REF: 011037ge
STA: G.G. 23
TOP: Locus
38

PTS: 6
REF: 011038ge
STA: G.G. 70
TOP: Quadratic-Linear Systems

