JEFFERSON MATH PROJECT REGENTS BY PERFORMANCE INDICATOR: TOPIC

NY Algebra 2/Trigonometry Regents Exam Questions from Fall 2009 to August 2010 Sorted by PI: Topic

www.jmap.org

$\boldsymbol{D}_{\text {ear }}{ }^{\text {ºjir }}$

Ihave to acknofege the reciept of your favor of May 14. in which you mention that you have finished the 6. first books of Eucfid, phane trigonometry, surveying \& aIgefra and ask whether \mathscr{I} think a further pursuit of that brancho of science would be usefuf to you. there are some propositions in the fatter books of Eucfid, \& some of Ötrchimedes, which are useful, \& Ihave no doubt you have been made acquainted with them. trigonometry, so far as this, is most valuable to every man, there is scarcely a day in which he wiff not resort to it for some of the pourposes of common fife. the science of calculation afso is indispensible as far as
 are often of vafue in ordinary cases: but aff beyond these is but a fuxury; a deficious fuxury indeed; but not to be indulged in by one who is to have a profession to foffow for hits subsistence. in this fight $\mathscr{I}_{\text {view }}$ the conic sections, curves of the figher orders, perfapps even spherical trigonometry, 㻤Igebraicaf operations beyond the ad dimension, and fruxions.
Letter from Thomas Jefferson to William G. Munford, Monticello, June 18, 1799.

TABLE OF CONTENTS

TOPIC	PI: SUBTOPIC QUESTION NUMBER
GRAPHS AND STATISTICS	
PROBABILITY	
ABSOLUTE VALUE	A2.A.1: Absolute Value Inequalities . 18
QUADRATICS	
SYSTEMS	A2.A.3: Quadratic-Linear Systems . 30
POWERS	
RADICALS	A2.N.2, A.14: Operations with Radicals 49-51 A2.N.5, A.15: Rationalizing Denominators 52-54 A2.A.22: Solving Radicals . 55 A2.A.10: Exponents as Radicals . 56 A2.N.6: Square Roots of Negative Numbers 57 A2.N.7: Imaginary Numbers . 58-59 A2.N.8: Conjugates of Complex Numbers . 60 A2.N.9: Multiplication and division of Complex Numbers 61
RATIONALS	A2.A.23: Solving Rationals . A2-63 A2.A.17: Complex Fractions . 64-65

FUNCTIONS	A2.A.40: Functional Notation . 66 A2.A.52: Identifying the Equation of a Graph 67 A2.A.38, 43: Defining Functions . 68-71 A2.A.39, 51: Domain and Range . 72-73 A2.A.42: Compositions of Functions . 74 A2.A.44: Inverse of Functions . 75 A2.A.46: Transformations with Functions and Relations 76-77
SEQUENCES AND SERIES	A2.A.29-31: Sequences . 82 A2.A.33: Recursive Sequences . 83-85
TRIGONOMETRY	
CIRCLES	A2.A.47, 49: Equations of Circles 115-117

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic

GRAPHS AND STATISTICS

A2.S.1: ANALYSIS OF DATA
1 Howard collected fish eggs from a pond behind his house so he could determine whether sunlight had an effect on how many of the eggs hatched. After he collected the eggs, he divided them into two tanks. He put both tanks outside near the pond, and he covered one of the tanks with a box to block out all sunlight. State whether Howard's investigation was an example of a controlled experiment, an observation, or a survey. Justify your response.

A2.S.2: ANALYSIS OF DATA

2 A survey completed at a large university asked 2,000 students to estimate the average number of hours they spend studying each week. Every tenth student entering the library was surveyed. The data showed that the mean number of hours that students spend studying was 15.7 per week. Which characteristic of the survey could create a bias in the results?
1 the size of the sample
2 the size of the population
3 the method of analyzing the data
4 the method of choosing the students who were surveyed

A2.S.3: DISPERSION

3 The scores of one class on the Unit 2 mathematics test are shown in the table below.
Unit 2 Mathematics Test

Test Score	Frequency
96	1
92	2
84	5
80	3
76	6
72	3
68	2

Find the population standard deviation of these scores, to the nearest tenth.

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

4 The table below shows the first-quarter averages for Mr. Harper's statistics class.

Statistics Class Averages

Quarter Averages	Frequency
99	1
97	5
95	4
92	4
90	7
87	2
84	6
81	2
75	1
70	2
65	1

What is the population variance for this set of data?
18.2
28.3
$3 \quad 67.3$
$4 \quad 69.3$

A2.S.7: REGRESSION

5 The table below shows the number of new stores in a coffee shop chain that opened during the years 1986 through 1994.

Year	Number of New Stores
1986	14
1987	27
1988	48
1989	80
1990	110
1991	153
1992	261
1993	403
1994	681

Using $x=1$ to represent the year 1986 and y to represent the number of new stores, write the exponential regression equation for these data. Round all values to the nearest thousandth.

6 The table below shows the results of an experiment involving the growth of bacteria.

Time (x) (in minutes)	1	3	5	7	9	11
Number of Bacteria (y)	2	25	81	175	310	497

Write a power regression equation for this set of data, rounding all values to three decimal places. Using this equation, predict the bacteria's growth, to the nearest integer, after 15 minutes.

A2.S.8: CORRELATION COEFFICIENT

7 Which value of r represents data with a strong negative linear correlation between two variables?
1 -1.07
$2-0.89$
$3-0.14$
$4 \quad 0.92$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A2.S.5: NORMAL DISTRIBUTIONS

8 An amateur bowler calculated his bowling average for the season. If the data are normally distributed, about how many of his 50 games were within one standard deviation of the mean?
$1 \quad 14$
$2 \quad 17$
$3 \quad 34$
448
9 The lengths of 100 pipes have a normal distribution with a mean of 102.4 inches and a standard deviation of 0.2 inch . If one of the pipes measures exactly 102.1 inches, its length lies
1 below the $16^{\text {th }}$ percentile
2 between the $50^{\text {th }}$ and $84^{\text {th }}$ percentiles
3 between the $16^{\text {th }}$ and $50^{\text {th }}$ percentiles
4 above the $84^{\text {th }}$ percentile

PROBABILITY

A2.S.10: PERMUTATIONS
10 Which formula can be used to determine the total number of different eight-letter arrangements that can be formed using the letters in the word DEADLINE?
18 !
$2 \frac{8!}{4!}$
$3 \quad \frac{8!}{2!+2!}$
$4 \quad \frac{8!}{2!\cdot 2!}$
11 Find the total number of different twelve-letter arrangements that can be formed using the letters in the word PENNSYLVANIA.

12 The letters of any word can be rearranged. Carol believes that the number of different 9 -letter arrangements of the word "TENNESSEE" is greater than the number of different 7-letter arrangements of the word "VERMONT." Is she correct? Justify your answer.

A2.S.11: COMBINATIONS

13 The principal would like to assemble a committee of 8 students from the 15 -member student council. How many different committees can be chosen?
$1 \quad 120$
2 6,435
3 32,432,400
4 259,459,200

A2.S.9: DIFFERENTIATING PERMUATIONS AND COMBINATIONS

14 Twenty different cameras will be assigned to several boxes. Three cameras will be randomly selected and assigned to box A. Which expression can be used to calculate the number of ways that three cameras can be assigned to box A?
120 !
$2 \frac{20!}{3!}$
$3{ }_{20} C_{3}$
$4{ }_{20} P_{3}$

A2.S.12: SAMPLE SPACE

15 A committee of 5 members is to be randomly selected from a group of 9 teachers and 20 students. Determine how many different committees can be formed if 2 members must be teachers and 3 members must be students.

A2.S.15: BINOMIAL PROBABILITY

16 The members of a men's club have a choice of wearing black or red vests to their club meetings. A study done over a period of many years determined that the percentage of black vests worn is 60%. If there are 10 men at a club meeting on a given night, what is the probability, to the nearest thousandth, that at least 8 of the vests worn will be black?

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

17 A study shows that 35% of the fish caught in a local lake had high levels of mercury. Suppose that 10 fish were caught from this lake. Find, to the nearest tenth of a percent, the probability that at least 8 of the 10 fish caught did not contain high levels of mercury.

ABSOLUTE VALUE
 A2.A.1: ABSOLUTE VALUE INEQUALITIES

18 Which graph represents the solution set of $|6 x-7| \leq 5$?

1

QUADRATICS

A2.A.20: ROOTS OF QUADRATICS
19 Find the sum and product of the roots of the equation $5 x^{2}+11 x-3=0$.

A2.A.21: ROOTS OF QUADRATICS

20 For which equation does the sum of the roots equal $\frac{3}{4}$ and the product of the roots equal -2 ?
$1 \quad 4 x^{2}-8 x+3=0$
$2 \quad 4 x^{2}+8 x+3=0$
$3 \quad 4 x^{2}-3 x-8=0$
$4 \quad 4 x^{2}+3 x-2=0$

A2.A.7: FACTORING POLYNOMIALS

21 Factored completely, the expression
$12 x^{4}+10 x^{3}-12 x^{2}$ is equivalent to
$1 \quad x^{2}(4 x+6)(3 x-2)$
$22\left(2 x^{2}+3 x\right)\left(3 x^{2}-2 x\right)$
$32 x^{2}(2 x-3)(3 x+2)$
$4 \quad 2 x^{2}(2 x+3)(3 x-2)$
22 Factored completely, the expression $6 x-x^{3}-x^{2}$ is equivalent to
$1 x(x+3)(x-2)$
$2 x(x-3)(x+2)$
$3-x(x-3)(x+2)$
$4-x(x+3)(x-2)$
23 Factor completely: $10 a x^{2}-23 a x-5 a$

A2.A.25: QUADRATIC FORMULA

24 The roots of the equation $2 x^{2}+7 x-3=0$ are
$1 \quad-\frac{1}{2}$ and -3
$2 \quad \frac{1}{2}$ and 3
$3 \frac{-7 \pm \sqrt{73}}{4}$
$4 \quad \frac{7 \pm \sqrt{73}}{4}$
25 The solutions of the equation $y^{2}-3 y=9$ are
$1 \frac{3 \pm 3 i \sqrt{3}}{2}$
$2 \frac{3 \pm 3 i \sqrt{5}}{2}$
$3 \frac{-3 \pm 3 \sqrt{5}}{2}$
$4 \frac{3 \pm 3 \sqrt{5}}{2}$

A2.A.2: USING THE DISCRIMINANT

26 The roots of the equation $9 x^{2}+3 x-4=0$ are 1 imaginary
2 real, rational, and equal
3 real, rational, and unequal
4 real, irrational, and unequal
27 Use the discriminant to determine all value of k that would result in the equation $x^{2}-k x+4=0$ having equal roots.

A2.A.24: COMPLETING THE SQUARE

28 Solve $2 x^{2}-12 x+4=0$ by completing the square, expressing the result in simplest radical form.

A2.A.4: QUADRATIC INEQUALITIES

29 Which graph best represents the inequality $y+6 \geq x^{2}-x ?$

1

2

3

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

SYSTEMS
A2.A.3: QUADRATIC-LINEAR SYSTEMS
30 Which values of x are in the solution set of the following system of equations?

$$
\begin{aligned}
& y=3 x-6 \\
& y=x^{2}-x-6
\end{aligned}
$$

$10,-4$
20,4
$36,-2$
$4-6,2$

POWERS

A2.N.3: OPERATIONS WITH POLYNOMIALS
31 Express $\left(\frac{2}{3} x-1\right)^{2}$ as a trinomial.

A2.A.8: NEGATIVE AND FRACTIONAL EXPONENTS

32 The expression $\frac{a^{2} b^{-3}}{a^{-4} b^{2}}$ is equivalent to
$1 \frac{a^{6}}{b^{5}}$
$2 \frac{b^{5}}{a^{6}}$
$3 \frac{a^{2}}{b}$
$4 \quad a^{-2} b^{-1}$
33 If $a=3$ and $b=-2$, what is the value of the expression $\frac{a^{-2}}{b^{-3}}$?
$1-\frac{9}{8}$
$2-1$
$3-\frac{8}{9}$
$4 \quad \frac{8}{9}$

34 When simplified, the expression $\left(\frac{w^{-5}}{w^{-9}}\right)^{\frac{1}{2}}$ is equivalent to

1	w^{-7}
2	w^{2}
3	w^{7}
4	w^{14}

A2.A.9: NEGATIVE AND FRACTIONAL EXPONENTS

35 When $x^{-1}-1$ is divided by $x-1$, the quotient is $1-1$
$2-\frac{1}{x}$
$3 \frac{1}{x^{2}}$
$4 \frac{1}{(x-1)^{2}}$

A2.A.12: EVALUATING EXPONENTIAL EXPRESSIONS

36 Matt places \$1,200 in an investment account earning an annual rate of 6.5%, compounded continuously. Using the formula $V=P e^{r t}$, where V is the value of the account in t years, P is the principal initially invested, e is the base of a natural logarithm, and r is the rate of interest, determine the amount of money, to the nearest cent, that Matt will have in the account after 10 years.

A2.A.18: EVALUATING LOGARITHMIC EXPRESSIONS

37 The expression $\log _{8} 64$ is equivalent to
18
22
$3 \quad \frac{1}{2}$
$4 \frac{1}{8}$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A2.A.53: GRAPHING EXPONENTIAL FUNCTIONS

38 The graph of the equation $y=\left(\frac{1}{2}\right)^{x}$ has an asymptote. On the grid below, sketch the graph of $y=\left(\frac{1}{2}\right)^{x}$ and write the equation of this asymptote.

A2.A.54: GRAPHING LOGARITHMIC FUNCTIONS

39 If a function is defined by the equation $\mathrm{f}(x)=4^{x}$, which graph represents the inverse of this function?

1

2

3

4

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A2.A.19: PROPERTIES OF LOGARITHMS

40 The expression $2 \log x-(3 \log y+\log z)$ is equivalent to
$1 \log \frac{x^{2}}{y^{3} z}$
$2 \log \frac{x^{2} z}{y^{3}}$
$3 \log \frac{2 x}{3 y z}$
$4 \quad \log \frac{2 x z}{3 y}$

A2.A.28: LOGARITHMIC EQUATIONS

41 What is the solution of the equation $2 \log _{4}(5 x)=3$?
16.4
$2 \quad 2.56$
$3 \frac{9}{5}$
$4 \quad \frac{8}{5}$
42 Solve algebraically for $x: \log _{x+3} \frac{x^{3}+x-2}{x}=2$

A2.A.27: EXPONENTIAL EQUATIONS

43 The solution set of $4^{x^{2}+4 x}=2^{-6}$ is
$1\{1,3\}$
$2\{-1,3\}$
$3\{-1,-3\}$
$4\{1,-3\}$
44 What is the value of x in the equation $9^{3 x+1}=27^{x+2}$?
11
$2 \quad \frac{1}{3}$
$3 \quad \frac{1}{2}$
$4 \quad \frac{4}{3}$

A2.A.36: BINOMIAL EXPANSIONS

45 What is the fourth term in the expansion of $(3 x-2)^{5}$?
$1-720 x^{2}$
$2-240 x$
$3720 x^{2}$
$41,080 x^{3}$

A2.A.26: SOLVING POLYNOMIAL EQUATIONS

46 Solve the equation $8 x^{3}+4 x^{2}-18 x-9=0$ algebraically for all values of x.

A2.A.50: SOLVING POLYNOMIAL EQUATIONS

47 The graph of $y=\mathrm{f}(x)$ is shown below.

Which set lists all the real solutions of $\mathrm{f}(x)=0$?
$1\{-3,2\}$
$2\{-2,3\}$
3 \{-3,0,2\}
$4\{-2,0,3\}$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

48 The graph of $y=x^{3}-4 x^{2}+x+6$ is shown below.

What is the product of the roots of the equation $x^{3}-4 x^{2}+x+6=0$?
$1-36$
$2-6$
36
$4 \quad 4$

RADICALS

A2.N.2: OPERATIONS WITH RADICALS
49 The product of $(3+\sqrt{5})$ and $(3-\sqrt{5})$ is
$14-6 \sqrt{5}$
$214-6 \sqrt{5}$
314
44
50 Express $5 \sqrt{3 x^{3}}-2 \sqrt{27 x^{3}}$ in simplest radical form.

A2.A.14: OPERATIONS WITH RADICALS

51 The expression $4 a b \sqrt{2 b}-3 a \sqrt{18 b^{3}}+7 a b \sqrt{6 b}$ is equivalent to
$12 a b \sqrt{6 b}$
$216 a b \sqrt{2 b}$
$3-5 a b+7 a b \sqrt{6 b}$
$4-5 a b \sqrt{2 b}+7 a b \sqrt{6 b}$
A2.N.5: RATIONALIZING DENOMINATORS
52 Which expression is equivalent to $\frac{\sqrt{3}+5}{\sqrt{3}-5}$?
$1-\frac{14+5 \sqrt{3}}{11}$
$2-\frac{17+5 \sqrt{3}}{11}$
$3 \frac{14+5 \sqrt{3}}{14}$
$4 \frac{17+5 \sqrt{3}}{14}$
53 Express $\frac{5}{3-\sqrt{2}}$ with a rational denominator, in simplest radical form.

A2.A.15: RATIONALIZING DENOMINATORS
54 The fraction $\frac{3}{\sqrt{3 a^{2} b}}$ is equivalent to
$1 \frac{1}{a \sqrt{b}}$
$2 \frac{\sqrt{b}}{a b}$
$3 \frac{\sqrt{3 b}}{a b}$
$4 \quad \frac{\sqrt{3}}{a}$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A2.A.22: SOLVING RADICALS

55 The solution set of the equation $\sqrt{x+3}=3-x$ is
$1 \quad\{1\}$
$2\{0\}$
$3\{1,6\}$
$4\{2,3\}$

A2.A.10: EXPONENTS AS RADICALS

56 The expression $\left(x^{2}-1\right)^{-\frac{2}{3}}$ is equivalent to
$1 \sqrt[3]{\left(x^{2}-1\right)^{2}}$
$2 \frac{1}{\sqrt[3]{\left(x^{2}-1\right)^{2}}}$
$3 \sqrt{\left(x^{2}-1\right)^{3}}$
$4 \frac{1}{\sqrt{\left(x^{2}-1\right)^{3}}}$

A2.N.6: SQUARE ROOTS OF NEGATIVE NUMBERS

57 In simplest form, $\sqrt{-300}$ is equivalent to
$1 \quad 3 i \sqrt{10}$
$25 i \sqrt{12}$
$310 i \sqrt{3}$
$4 \quad 12 i \sqrt{5}$

A2.N.7: IMAGINARY NUMBERS

58 The product of i^{7} and i^{5} is equivalent to
$1 \quad 1$
$2-1$
$3 i$
$4-i$
59 The expression $2 i^{2}+3 i^{3}$ is equivalent to
$1-2-3 i$
$2 \quad 2-3 i$
$3-2+3 i$
$42+3 i$

A2.N.8: CONJUGATES OF COMPLEX NUMBERS

60 What is the conjugate of $-2+3 i$?
$1-3+2 i$
$2-2-3 i$
3 2-3i
$43+2 i$

A2.N.9: MULTIPLICATION AND DIVISION OF COMPLEX NUMBERS

61 The expression $(3-7 i)^{2}$ is equivalent to
$1-40+0 i$
$2-40-42 i$
$358+0 i$
4 58-42i

RATIONALS

A2.A.23: SOLVING RATIONALS
62 Solve for $x: \frac{4 x}{x-3}=2+\frac{12}{x-3}$
63 Solve algebraically for x : $\frac{1}{x+3}-\frac{2}{3-x}=\frac{4}{x^{2}-9}$

A2.A.17: COMPLEX FRACTIONS

64 Written in simplest form, the expression $\frac{\frac{x}{4}-\frac{1}{x}}{\frac{1}{2 x}+\frac{1}{4}}$ is
equivalent to
$1 x-1$
$2 x-2$
$3 \frac{x-2}{2}$
$4 \frac{x^{2}-4}{x+2}$
65 Express in simplest form: $\frac{\frac{1}{2}-\frac{4}{d}}{\frac{1}{d}+\frac{3}{2 d}}$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

FUNCTIONS

A2.A.40: FUNCTIONAL NOTATION
66 The equation $y-2 \sin \theta=3$ may be rewritten as
$1 \quad \mathrm{f}(y)=2 \sin x+3$
$2 \mathrm{f}(y)=2 \sin \theta+3$
$3 \mathrm{f}(x)=2 \sin \theta+3$
$4 \mathrm{f}(\theta)=2 \sin \theta+3$

A2.A.52: IDENTIFYING THE EQUATION OF A

GRAPH

67 Four points on the graph of the function $\mathrm{f}(x)$ are shown below.
$\{(0,1),(1,2),(2,4),(3,8)\}$
Which equation represents $\mathrm{f}(x)$?
$1 \mathrm{f}(x)=2^{x}$
$2 \mathrm{f}(x)=2 x$
$3 \mathrm{f}(x)=x+1$
$4 \mathrm{f}(x)=\log _{2} x$

A2.A.38: DEFINING FUNCTIONS

68 Which graph does not represent a function?

1

3

69 Which relation is not a function?
$1(x-2)^{2}+y^{2}=4$
$2 x^{2}+4 x+y=4$
$3 x+y=4$
$4 x y=4$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A2.A.43: DEFINING FUNCTIONS

70 Which graph represents a one-to-one function?

1

2

71 Which function is not one-to-one?
$1\{(0,1),(1,2),(2,3),(3,4)\}$
$2\{(0,0),(1,1),(2,2),(3,3)\}$
$3\{(0,1),(1,0),(2,3),(3,2)\}$
$4\{(0,1),(1,0),(2,0),(3,2)\}$

A2.A.39: DOMAIN AND RANGE

72 What is the domain of the function
$\mathrm{f}(x)=\sqrt{x-2}+3$?
$1(-\infty, \infty)$
$2(2, \infty)$
$3 \quad[2, \infty)$
$4[3, \infty)$

A2.A.51: DOMAIN AND RANGE

73 What are the domain and the range of the function shown in the graph below?

$1 \quad\{x \mid x>-4\} ;\{y \mid y>2\}$
$2\{x \mid x \geq-4\} ;\{y \mid y \geq 2\}$
$3\{x \mid x>2\} ;\{y \mid y>-4\}$
$4 \quad\{x \mid x \geq 2\} ;\{y \mid y \geq-4\}$

A2.A.42: COMPOSITIONS OF FUNCTIONS

74 If $\mathrm{f}(x)=\frac{1}{2} x-3$ and $\mathrm{g}(x)=2 x+5$, what is the value of $(g \circ f)(4)$?
$1-13$
23.5

33
46

A2.A.44: INVERSE OF FUNCTIONS

75 Which two functions are inverse functions of each other?
$1 \mathrm{f}(x)=\sin x$ and $\mathrm{g}(x)=\cos (x)$
$2 \mathrm{f}(x)=3+8 x$ and $\mathrm{g}(x)=3-8 x$
$3 \mathrm{f}(x)=e^{x}$ and $\mathrm{g}(x)=\ln x$
$4 \mathrm{f}(x)=2 x-4$ and $\mathrm{g}(x)=-\frac{1}{2} x+4$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A2.A.46: TRANSFORMATIONS WITH FUNCTIONS AND RELATIONS

76 The graph below shows the function $\mathrm{f}(x)$.

Which graph represents the function $\mathrm{f}(x+2)$?

1

2

3

77 The minimum point on the graph of the equation $y=\mathrm{f}(x)$ is $(-1,-3)$. What is the minimum point on the graph of the equation $y=\mathrm{f}(x)+5$?
$1(-1,2)$
$2(-1,-8)$
$3(4,-3)$
$4(-6,-3)$

SEQUENCES AND SERIES A2.A.29: SEQUENCES

78 What is a formula for the nth term of sequence B shown below?

$$
B=10,12,14,16, \ldots
$$

$1 b_{n}=8+2 n$
$2 b_{n}=10+2 n$
$3 b_{n}=10(2)^{n}$
$4 \quad b_{n}=10(2)^{n-1}$
79 What is the formula for the nth term of the sequence $54,18,6, \ldots$?
$1 \quad a_{n}=6\left(\frac{1}{3}\right)^{n}$
$2 a_{n}=6\left(\frac{1}{3}\right)^{n-1}$
$3 \quad a_{n}=54\left(\frac{1}{3}\right)^{n}$
$4 \quad a_{n}=54\left(\frac{1}{3}\right)^{n-1}$

A2.A.30: SEQUENCES

80 What is the common difference of the arithmetic sequence $5,8,11,14$?
$1 \frac{8}{5}$
2 -3
33
$4 \quad 9$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A2.A.31: SEQUENCES

81 What is the common ratio of the geometric sequence whose first term is 27 and fourth term is 64 ?
$1 \frac{3}{4}$
$2 \quad \frac{64}{81}$
$3 \quad \frac{4}{3}$
$4 \quad \frac{37}{3}$

A2.A.33: RECURSIVE SEQUENCES

82 Find the first four terms of the recursive sequence defined below.

$$
\begin{gathered}
a_{1}=-3 \\
a_{n}=a_{(n-1)}-n
\end{gathered}
$$

A2.N.10: SIGMA NOTATION

83 The value of the expression $2 \sum_{n=0}^{2}\left(n^{2}+2^{n}\right)$ is
$1 \quad 12$
$2 \quad 22$
$3 \quad 24$
$4 \quad 26$

A2.A.34: SIGMA NOTATION

84 Mrs. Hill asked her students to express the sum $1+3+5+7+9+\ldots+39$ using sigma notation. Four different student answers were given. Which student answer is correct?
$1 \quad \sum_{k=1}^{20}(2 k-1)$
$2 \sum_{k=2}^{40}(k-1)$
$3 \sum_{k=-1}^{37}(k+2)$
$4 \quad \sum_{k=1}^{39}(2 k-1)$
85 Express the sum $7+14+21+28+\ldots+105$ using sigma notation.

TRIGONOMETRY

A2.A.55: TRIGONOMETRIC RATIOS
86 Which ratio represents $\csc A$ in the diagram below?

$1 \quad \frac{25}{24}$
$2 \frac{25}{7}$
$3 \quad \frac{24}{7}$
$4 \quad \frac{7}{24}$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

87 In the diagram below of right triangle $K T W$, $K W=6, K T=5$, and $\mathrm{m} \angle K T W=90$.

What is the measure of $\angle K$, to the nearest minute?
1 33 ${ }^{\circ} 33^{\prime}$
$2 \quad 33^{\circ} 34^{\prime}$
$3 \quad 33^{\circ} 55^{\prime}$
$4 \quad 33^{\circ} 56^{\prime}$

A2.M.2: RADIAN MEASURE

88 What is the number of degrees in an angle whose radian measure is $\frac{11 \pi}{12}$?
$1 \quad 150$
2165
3330
4518
89 Find, to the nearest minute, the angle whose measure is 3.45 radians.

90 What is the radian measure of an angle whose measure is -420° ?
$1-\frac{7 \pi}{3}$
$2-\frac{7 \pi}{6}$
$3 \quad \frac{7 \pi}{6}$
$4 \quad \frac{7 \pi}{3}$

A2.A.60: UNIT CIRCLE

91 In which graph is θ coterminal with an angle of -70° ?

1

2

3

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

92 On the unit circle shown in the diagram below, sketch an angle, in standard position, whose degree measure is 240 and find the exact value of $\sin 240^{\circ}$.

A2.A.62: DETERMINING TRIGONOMETRIC

 FUNCTIONS93 If θ is an angle in standard position and its terminal side passes through the point $(-3,2)$, find the exact value of $\csc \theta$.

A2.A.64: USING INVERSE TRIGONOMETRIC

 FUNCTIONS94 What is the principal value of $\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$?
$1-30^{\circ}$
260°
3150°
4240°

A2.A.61: ARC LENGTH

95 A circle has a radius of 4 inches. In inches, what is the length of the arc intercepted by a central angle of 2 radians?
12π
22
38π
48

A2.A.58: COFUNCTION \& RECIPROCAL TRIGONOMETRIC RELATIONSHIPS

96 If $\angle A$ is acute and $\tan A=\frac{2}{3}$, then
$1 \cot A=\frac{2}{3}$
$2 \cot A=\frac{1}{3}$
$3 \cot \left(90^{\circ}-A\right)=\frac{2}{3}$
$4 \quad \cot \left(90^{\circ}-A\right)=\frac{1}{3}$

A2.A.76: ANGLE SUM AND DIFFERENCE IDENTITIES

97 The expression $\cos 4 x \cos 3 x+\sin 4 x \sin 3 x$ is equivalent to
$1 \sin x$
$2 \sin 7 x$
$3 \cos x$
$4 \cos 7 x$
98 If $\tan A=\frac{2}{3}$ and $\sin B=\frac{5}{\sqrt{41}}$ and angles A and B are in Quadrant I , find the value of $\tan (A+B)$.

A2.A.77: DOUBLE AND HALF ANGLE IDENTITIES

99 The expression $\cos ^{2} \theta-\cos 2 \theta$ is equivalent to
$1 \sin ^{2} \theta$
$2-\sin ^{2} \theta$
$3 \cos ^{2} \theta+1$
$4-\cos ^{2} \theta-1$

A2.A.68: TRIGONOMETRIC EQUATIONS

100 What are the values of θ in the interval $0^{\circ} \leq \theta<360^{\circ}$ that satisfy the equation $\tan \theta-\sqrt{3}=0$?
$160^{\circ}, 240^{\circ}$
$272^{\circ}, 252^{\circ}$
$372^{\circ}, 108^{\circ}, 252^{\circ}, 288^{\circ}$
$46^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

101 Solve the equation $2 \tan C-3=3 \tan C-4$ algebraically for all values of C in the interval $0^{\circ} \leq C<360^{\circ}$.

102 Find all values of θ in the interval $0^{\circ} \leq \theta<360^{\circ}$ that satisfy the equation $\sin 2 \theta=\sin \theta$.

A2.A.69: PROPERTIES OF TRIGONOMETRIC

 FUNCTIONS103 What is the period of the function
$y=\frac{1}{2} \sin \left(\frac{x}{3}-\pi\right)$?
$1 \frac{1}{2}$
$2 \frac{1}{3}$
$3 \frac{2}{3} \pi$
46π

A2.A.70: GRAPHING TRIGONOMETRIC FUNCTIONS

104 Which graph represents one complete cycle of the equation $y=\sin 3 \pi x$?

1

2

3

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A2.A.65: GRAPHING TRIGONOMETRIC FUNCTIONS

105 Which graph represents the equation $y=\cos ^{-1} x$?

1

2
2

3

4

A2.A.71: GRAPHING TRIGONOMETRIC FUNCTIONS

106 Which equation is represented by the graph below?

A2.A.63: DOMAIN AND RANGE

107 The function $\mathrm{f}(x)=\tan x$ is defined in such a way that $\mathrm{f}^{-1}(x)$ is a function. What can be the domain of $\mathrm{f}(x)$?
$1 \quad\{x \mid 0 \leq x \leq \pi\}$
$2 \quad\{x \mid 0 \leq x \leq 2 \pi\}$
$3\left\{x \left\lvert\,-\frac{\pi}{2}<x<\frac{\pi}{2}\right.\right\}$
$4 \quad\left\{x \left\lvert\,-\frac{\pi}{2}<x<\frac{3 \pi}{2}\right.\right\}$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A2.A.74: USING TRIGONOMETRY TO FIND AREA

108 In $\triangle A B C, \mathrm{~m} \angle A=120, b=10$, and $c=18$. What is the area of $\triangle A B C$ to the nearest square inch?
152
278
390
4156
109 The sides of a parallelogram measure 10 cm and 18 cm . One angle of the parallelogram measures 46 degrees. What is the area of the parallelogram, to the nearest square centimeter?
165
2125
3129
4162
110 Two sides of a parallelogram are 24 feet and 30 feet. The measure of the angle between these sides is 57°. Find the area of the parallelogram, to the nearest square foot.

A2.A.75: LAW OF SINES - THE AMBIGUOUS CASE

111 In $\triangle A B C, \mathrm{~m} \angle A=74, a=59.2$, and $c=60.3$.
What are the two possible values for $\mathrm{m} \angle C$, to the nearest tenth?
$1 \quad 73.7$ and 106.3
$2 \quad 73.7$ and 163.7
$3 \quad 78.3$ and 101.7
$4 \quad 78.3$ and 168.3

A2.A.73: LAW OF COSINES

112 In $\triangle A B C, a=3, b=5$, and $c=7$. What is $\mathrm{m} \angle C$?
$1 \quad 22$
238
360
4120
113 In a triangle, two sides that measure 6 cm and 10 cm form an angle that measures 80°. Find, to the nearest degree, the measure of the smallest angle in the triangle.

A2.A.73: VECTORS

114 Two forces of 25 newtons and 85 newtons acting on a body form an angle of 55°. Find the magnitude of the resultant force, to the nearest hundredth of a newton. Find the measure, to the nearest degree, of the angle formed between the resultant and the larger force.

A2.A.47: EQUATIONS OF CIRCLES

115 The equation $x^{2}+y^{2}-2 x+6 y+3=0$ is equivalent to
$1(x-1)^{2}+(y+3)^{2}=-3$
$2 \quad(x-1)^{2}+(y+3)^{2}=7$
$3 \quad(x+1)^{2}+(y+3)^{2}=7$
$4(x+1)^{2}+(y+3)^{2}=10$

A2.A.49: EQUATIONS OF CIRCLES

116 Write an equation of the circle shown in the graph below.

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

117 A circle shown in the diagram below has a center of $(-5,3)$ and passes through point $(-1,7)$.

Write an equation that represents the circle.

