JEFFERSON MATH PROJECT REGENTS BY PERFORMANCE INDICATOR: TOPIC

NY Algebra 2/Trigonometry Regents Exam Questions from Fall 2009 to August 2010 Sorted by PI: Topic

 (Answer Key)www.jmap.org

$\mathscr{D}_{\text {ear }}{ }^{\text {Stir }}$

Ihave to ackno fege the reciept of your favor of $\mathscr{M}_{\text {May }}$ 14. in which you mention that you have finisthed the 6. first focks of Eucfid, pfane trigonometry, surveying \& afgebra and ask whiethier It think a further poursuit of thät branch of science would be usefuf to you. there are some ppropositions in the fatter Fooks of
 them. trigonometry, so far as thi's, is most vafuable to every man, there is scarcely a day in which he wiff not resort to it for some of the purposes of common fife. the science of cafculation afso is indispensitfle as far as the extraction of the square \& cube roots; ©̈t Igebra as far as the quadratic equation \& the use of fogarithims are often of vafue in ordinary cases: But aff beyond theses is but a fuxury; a deficious fuxury indeed; but not to Fe indu $f_{\text {ged }}$ in by one whic is to Fave a profession to folfow for fits subsistence. in thits fight $\mathscr{I}_{\text {view the }}$ conic sections, curves of the higher orders, perfiaps even spherical trigonometry, ©ٌtIgebraical operations beyond thé addimension, andffuxions.
Letter from Thomas Jefferson to William G. Munford, Monticello, June 18, 1799.

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic Answer Section

1 ANS:
Controlled experiment because Howard is comparing the results obtained from an experimental sample against a control sample.

PTS: 2 REF: 081030a2 STA: A2.S. 1 TOP: Analysis of Data
2 ANS: 4
Students entering the library are more likely to spend more time studying, creating bias.
PTS: 2 REF: fall0904a2 STA: A2.S. 2 TOP: Analysis of Data
3 ANS:
7.4

PTS: 2 REF: 061029a2 STA: A2.S. 4 TOP: Dispersion
KEY: basic, group frequency distributions
4 ANS: 3

PTS: 2 REF: fall0924a2 STA: A2.S. 4 TOP: Dispersion
KEY: variance
5 ANS:
$y=10.596(1.586)^{x}$
PTS: 2 REF: 081031a2 STA: A2.S. 7 TOP: Exponential Regression
6 ANS:
$y=2.001 x^{2.298}, 1,009 . y=2.001(15)^{2.298} \approx 1009$
PTS: 4 REF: fall0938a2 STA: A2.S. 7 TOP: Power Regression
7 ANS: 2 PTS: $2 \quad$ REF: 061021a2 STA: A2.S. 8
TOP: Correlation Coefficient
8 ANS: 3
$68 \% \times 50=34$
PTS: 2 REF: 081013a2 STA: A2.S. 5 TOP: Normal Distributions
KEY: predict

9 ANS: 1

PTS: 2
REF: fall0915a2 STA: A2.S. 5
TOP: Normal Distributions
KEY: interval
10 ANS: 4
PTS: 2
REF: fall0925a2 STA: A2.S. 10
TOP: Permutations
11 ANS:
$39,916,800 \cdot \frac{{ }_{12} P_{12}}{3!\cdot 2!}=\frac{479,001,600}{12}=39,916,800$
PTS: 2 REF: 081035a2 STA: A2.S. 10 TOP: Permutations
12 ANS:
No. TENNESSEE: $\frac{{ }_{9} P_{9}}{4!\cdot 2!\cdot 2!}=\frac{362,880}{96}=3,780$. VERMONT: ${ }_{7} P_{7}=5,040$
PTS: 4 REF: 061038a2 STA: A2.S. 10 TOP: Permutations
13 ANS: 2
${ }_{15} C_{8}=6,435$
PTS: 2 REF: 081012a2 STA: A2.S. 11 TOP: Combinations
14 ANS: 3 PTS: 2 REF: 061007a2 STA: A2.S. 9
TOP: Differentiating Permutations and Combinations
15 ANS:

41,040.

PTS: 2 REF: fall0935a2 STA: A2.S. 12 TOP: Sample Space
16 ANS:
0.167. ${ }_{10} C_{8} \cdot 0.6^{8} \cdot 0.4^{2}+{ }_{10} C_{9} \cdot 0.6^{9} \cdot 0.4^{1}+{ }_{10} C_{10} \cdot 0.6^{10} \cdot 0.4^{0} \approx 0.167$

PTS: 4
REF: 061036a2 STA: A2.S. 15 TOP: Binomial Probability
KEY: at least or at most

17 ANS:
$26.2 \% .{ }_{10} C_{8} \cdot 0.65^{8} \cdot 0.35^{2}+{ }_{10} C_{9} \cdot 0.65^{9} \cdot 0.35^{1}+{ }_{10} C_{10} \cdot 0.65^{10} \cdot 0.35^{0} \approx 0.262$
PTS: 4
REF: 081038a2
STA: A2.S. 15
TOP: Binomial Probability
KEY: at least or at most
18 ANS: 1
$6 x-7 \leq 5 \quad 6 x-7 \geq-5$
$6 x \leq 12 \quad 6 x \geq 2$
$x \leq 2 \quad x \geq \frac{1}{3}$
PTS: 2 REF: fall0905a2 STA: A2.A. 1 TOP: Absolute Value Inequalities
KEY: graph
19 ANS:
Sum $\frac{-b}{a}=-\frac{11}{5}$. Product $\frac{c}{a}=-\frac{3}{5}$
PTS: 2 REF: 061030a2 STA: A2.A. 20 TOP: Roots of Quadratics
20 ANS: 3
$S=\frac{-b}{a}=\frac{-(-3)}{4}=\frac{3}{4} . \quad P=\frac{c}{a}=\frac{-8}{4}=-2$
PTS: 2
REF: fall0912a2 STA: A2.A. 21
TOP: Roots of Quadratics
KEY: basic
21 ANS: 4
$12 x^{4}+10 x^{3}-12 x^{2}=2 x^{2}\left(6 x^{2}+5 x-6\right)=2 x^{2}(2 x+3)(3 x-2)$
PTS: 2
REF: 061008a2 STA: A2.A. 7
TOP: Factoring Polynomials
KEY: single variable
22 ANS: 4
$6 x-x^{3}-x^{2}=-x\left(x^{2}+x-6\right)=-x(x+3)(x-2)$
PTS: 2
REF: fall0917a2 STA: A2.A. 7
TOP: Factoring Polynomials
KEY: single variable
23 ANS:
$10 a x^{2}-23 a x-5 a=a\left(10 x^{2}-23 x-5\right)=a(5 x+1)(2 x-5)$
PTS: 2 REF: 081028a2 STA: A2.A. 7 TOP: Factoring Polynomials
KEY: multiple variables
24
ANS: 3
$\frac{-7 \pm \sqrt{7^{2}-4(2)(-3)}}{2(2)}=\frac{-7 \pm \sqrt{73}}{4}$
PTS: 2
REF: 081009a2 STA: A2.A. 25
TOP: Quadratic Formula

25 ANS: 4
$\frac{3 \pm \sqrt{(-3)^{2}-4(1)(-9)}}{2(1)}=\frac{3 \pm \sqrt{45}}{2}=\frac{3 \pm 3 \sqrt{5}}{2}$
PTS: 2 REF: 061009a2 STA: A2.A. 25 TOP: Quadratic Formula
26 ANS: 4
$b^{2}-4 a c=3^{2}-4(9)(-4)=9+144=153$
PTS: 2 REF: 081016a2 STA: A2.A. 2 TOP: Using the Discriminant KEY: determine nature of roots given equation
27 ANS:

$$
\begin{aligned}
b^{2}-4 a c & =0 \\
k^{2}-4(1)(4) & =0 \\
k^{2}-16 & =0 \\
(k+4)(k-4) & =0 \\
k & = \pm 4
\end{aligned}
$$

PTS: 2
REF: 061028a2 STA: A2.A. 2
TOP: Using the Discriminant KEY: determine equation given nature of roots
ANS:
$3 \pm \sqrt{7} \cdot 2 x^{2}-12 x+4=0$

$$
x^{2}-6 x+2=0
$$

$$
x^{2}-6 x=-2
$$

$$
x^{2}-6 x+9=-2+9
$$

$$
(x-3)^{2}=7
$$

$$
x-3= \pm \sqrt{7}
$$

$$
x=3 \pm \sqrt{7}
$$

PTS: 4
REF: fall0936a2 STA: A2.A. 24
TOP: Completing the Square
29 ANS: 1
$y \geq x^{2}-x-6$
$y \geq(x-3)(x+2)$
PTS: 2
REF: 061017a2 STA: A2.A. 4
TOP: Quadratic Inequalities
KEY: two variables

30 ANS: 2
$x^{2}-x-6=3 x-6$

$$
\begin{aligned}
x^{2}-4 x & =0 \\
x(x-4) & =0 \\
x & =0,4
\end{aligned}
$$

PTS: 2 REF: 081015a2 STA: A2.A. 3 TOP: Quadratic-Linear Systems
KEY: equations
31 ANS:
$\frac{4}{9} x^{2}-\frac{4}{3} x+1 .\left(\frac{2}{3} x-1\right)^{2}=\left(\frac{2}{3} x-1\right)\left(\frac{2}{3} x-1\right)=\frac{4}{9} x^{2}-\frac{2}{3} x-\frac{2}{3} x+1=\frac{4}{9} x^{2}-\frac{4}{3} x+1$
PTS: 2 REF: 081034a2 STA: A2.N. 3 TOP: Operations with Polynomials
32 ANS: 1
PTS: 2
REF: fall0914a2
STA: A2.A. 8
TOP: Negative and Fractional Exponents
33 ANS: 3
$\frac{3^{-2}}{(-2)^{-3}}=\frac{\frac{1}{9}}{-\frac{1}{8}}=-\frac{8}{9}$
PTS: 2
REF: 061003a2
STA: A2.A. 8
TOP: Negative and Fractional Exponents
34 ANS: 2
$\left(\frac{w^{-5}}{w^{-9}}\right)^{\frac{1}{2}}=\left(w^{4}\right)^{\frac{1}{2}}=w^{2}$
PTS: 2 REF: 081011a2 STA: A2.A. 8 TOP: Negative and Fractional Exponents
35 ANS: 2
$\frac{x^{-1}-1}{x-1}=\frac{\frac{1}{x}-1}{x-1}=\frac{\frac{1-x}{x}}{x-1}=\frac{\frac{-(x-1)}{x}}{x-1}=-\frac{1}{x}$
PTS: 2
REF: 081018a2
STA: A2.A. 9
TOP: Negative Exponents
36 ANS:

2,298.65.

PTS: 2
REF: fall0932a2
STA: A2.A. 12
TOP: Evaluating Exponential Expressions

37
ANS: 2
$8^{2}=64$
PTS: 2 REF: fall0909a2 STA: A2.A. 18 TOP: Evaluating Logarithmic Expressions
38 ANS:

$$
y=0
$$

PTS: 2
REF: 061031a2
STA: A2.A. 53
TOP: Graphing Exponential Functions
39 ANS: 2
$\mathrm{f}^{-1}(x)=\log _{4} x$
PTS: 2
REF: fall0916a2 STA: A2.A. 54
TOP: Graphing Logarithmic Functions
40
ANS: 1
$2 \log x-(3 \log y+\log z)=\log x^{2}-\log y^{3}-\log z=\log \frac{x^{2}}{y^{3} z}$
PTS: 2
REF: 061010a2 STA: A2.A. 19
TOP: Properties of Logarithms
41 ANS: 4
$2 \log _{4}(5 x)=3$

$$
\log _{4}(5 x)=\frac{3}{2}
$$

$$
\begin{aligned}
5 x & =4^{\frac{3}{2}} \\
5 x & =8 \\
x & =\frac{8}{5}
\end{aligned}
$$

PTS: 2
REF: fall0921a2 STA: A2.A. 28 TOP: Logarithmic Equations

42 ANS:
$x=-\frac{1}{3},-1 \log _{x+3} \frac{x^{3}+x-2}{x}=2$

$$
\begin{aligned}
\frac{x^{3}+x-2}{x} & =(x+3)^{2} \\
\frac{x^{3}+x-2}{x} & =x^{2}+6 x+9 \\
x^{3}+x-2 & =x^{3}+6 x^{2}+9 x \\
0 & =6 x^{2}+8 x+2 \\
0 & =3 x^{2}+4 x+1 \\
0 & =(3 x+1)(x+1) \\
x & =-\frac{1}{3},-1
\end{aligned}
$$

PTS: 6
REF: 081039a2
STA: A2.A. 28
TOP: Logarithmic Equations KEY: basic
43 ANS: 3

$$
\begin{array}{rlrl}
4^{x^{2}+4 x} & =2^{-6} . & 2 x^{2}+8 x & =-6 \\
\left(2^{2}\right)^{x^{2}+4 x} & =2^{-6} & 2 x^{2}+8 x+6 & =0 \\
2^{2 x^{2}+8 x} & =2^{-6} & x^{2}+4 x+3 & =0 \\
& & (x+3)(x+1) & =0 \\
x & =-3 x=-1
\end{array}
$$

PTS: 2
REF: 061015a2 STA: A2.A. 27
TOP: Exponential Equations
KEY: common base shown
44
ANS: 4

$$
9^{3 x+1}=27^{x+2} .
$$

$\left(3^{2}\right)^{3 x+1}=\left(3^{3}\right)^{x+2}$

$$
3^{6 x+2}=3^{3 x+6}
$$

$$
6 x+2=3 x+6
$$

$$
3 x=4
$$

$$
x=\frac{4}{3}
$$

PTS: 2
REF: 081008a2 STA: A2.A. 27
TOP: Exponential Equations
KEY: common base not shown

45 ANS: 1
${ }_{5} C_{3}(3 x)^{2}(-2)^{3}=10 \cdot 9 x^{2} \cdot-8=-720 x^{2}$
PTS: 2 REF: fall0919a2 STA: A2.A. 36 TOP: Binomial Expansions
46 ANS:
$\pm \frac{3}{2},-\frac{1}{2} . \quad 8 x^{3}+4 x^{2}-18 x-9=0$

$$
4 x^{2}(2 x+1)-9(2 x+1)=0
$$

$$
\left(4 x^{2}-9\right)(2 x+1)=0
$$

$$
4 x^{2}-9=0 \text { or } 2 x+1=0
$$

$$
(2 x+3)(2 x-3)=0 \quad x=-\frac{1}{2}
$$

$$
x= \pm \frac{3}{2}
$$

PTS: 4 REF: fall0937a2 STA: A2.A. 26 TOP: Solving Polynomial Equations
47 ANS: 4
PTS: 2
REF: 061005a2
STA: A2.A. 50
TOP: Solving Polynomial Equations
48 ANS: 2
The roots are $-1,2,3$.
PTS: 2 REF: 081023a2 STA: A2.A. 50 TOP: Solving Polynomial Equations
49 ANS: 4
$(3+\sqrt{5})(3-\sqrt{5})=9-\sqrt{25}=4$
PTS: 2 REF: 081001a2 STA: A2.N. 2 TOP: Operations with Radicals
50 ANS:
$5 \sqrt{3 x^{3}}-2 \sqrt{27 x^{3}}=5 \sqrt{x^{2}} \sqrt{3 x}-2 \sqrt{9 x^{2}} \sqrt{3 x}=5 x \sqrt{3 x}-6 x \sqrt{3 x}=-x \sqrt{3 x}$
PTS: 2 REF: 061032a2 STA: A2.N. 2 TOP: Operations with Radicals
51 ANS: 4
$4 a b \sqrt{2 b}-3 a \sqrt{9 b^{2}} \sqrt{2 b}+7 a b \sqrt{6 b}=4 a b \sqrt{2 b}-9 a b \sqrt{2 b}+7 a b \sqrt{6 b}=-5 a b \sqrt{2 b}+7 a b \sqrt{6 b}$
PTS: 2 REF: fall0918a2 STA: A2.A. 14 TOP: Operations with Radicals
KEY: with variables \mid index $=2$
52 ANS: 1
$\frac{\sqrt{3}+5}{\sqrt{3}-5} \cdot \frac{\sqrt{3}+5}{\sqrt{3}+5}=\frac{3+5 \sqrt{3}+5 \sqrt{3}+25}{3-25}=\frac{28+10 \sqrt{3}}{-22}=-\frac{14+5 \sqrt{3}}{11}$
PTS: 2 REF: 061012a2 STA: A2.N. 5 TOP: Rationalizing Denominators

53 ANS:
$\frac{5(3+\sqrt{2})}{7} \cdot \frac{5}{3-\sqrt{2}} \times \frac{3+\sqrt{2}}{3+\sqrt{2}}=\frac{5(3+\sqrt{2})}{9-2}=\frac{5(3+\sqrt{2})}{7}$
PTS: 2 REF: fall0928a2 STA: A2.N. 5 TOP: Rationalizing Denominators
54 ANS: 3
$\frac{3}{\sqrt{3 a^{2} b}}=\frac{3}{a \sqrt{3 b}} \cdot \frac{\sqrt{3 b}}{\sqrt{3 b}}=\frac{3 \sqrt{3 b}}{3 a b}=\frac{\sqrt{3 b}}{a b}$
PTS: 2 REF: 081019a2 STA: A2.A. 15 TOP: Rationalizing Denominators
KEY: index $=2$
55 ANS: $1 \quad$ PTS: 2
TOP: Solving Radicals KEY: extraneous solutions
56 ANS: 2 PTS: 2 REF: 061011a2 STA: A2.A. 10
TOP: Fractional Exponents as Radicals
57 ANS: 3
$\sqrt{-300}=\sqrt{100} \sqrt{-1} \sqrt{3}$
PTS: 2 REF: 061006a2 STA: A2.N. 6 TOP: Square Roots of Negative Numbers
58 ANS: $1 \quad$ PTS: 2
REF: 061019a2
STA: A2.N. 7
TOP: Imaginary Numbers
59 ANS: 1
$2 i^{2}+3 i^{3}=2(-1)+3(-i)=-2-3 i$
PTS: 2 REF: 081004a2

STA: A2.N. 7
REF: 081024a2 STA: A2.N.8

60 ANS: 2
PTS: 2
TOP: Conjugates of Complex Numbers
61 ANS: 2
$(3-7 i)(3-7 i)=9-21 i-21 i+49 i^{2}=9-42 i-49=-40-42 i$
PTS: 2
REF: fall0901a2 STA: A2.N. 9
TOP: Multiplication and Division of Complex Numbers
62 ANS:
no solution. $\quad \frac{4 x}{x-3}=2+\frac{12}{x-3}$

$$
\begin{aligned}
& \frac{4 x-12}{x-3}=2 \\
& \frac{4(x-3)}{x-3}=2
\end{aligned}
$$

$$
4 \neq 2
$$

PTS: 2 REF: fall0930a2 STA: A2.A. 23 TOP: Solving Rationals
KEY: rational solutions

63 ANS:

$$
\begin{aligned}
\frac{1}{3} \quad \frac{1}{x+3}-\frac{2}{3-x} & =\frac{4}{x^{2}-9} \\
\frac{1}{x+3}+\frac{2}{x-3} & =\frac{4}{x^{2}-9} \\
\frac{x-3+2(x+3)}{(x+3)(x-3)} & =\frac{4}{(x+3)(x-3)} \\
x-3+2 x+6 & =4 \\
3 x & =1 \\
x & =\frac{1}{3}
\end{aligned}
$$

PTS: 4
REF: 081036a2 STA: A2.A. 23
TOP: Solving Rationals
KEY: rational solutions
64
ANS: 2
$\frac{\frac{x}{4}-\frac{1}{x}}{\frac{1}{2 x}+\frac{1}{4}}=\frac{\frac{x^{2}-4}{4 x}}{\frac{2 x+4}{8 x}}=\frac{(x+2)(x-2)}{4 x} \times \frac{8 x}{2(x+2)}=x-2$
PTS: 2 REF: fall0920a2 STA: A2.A. 17 TOP: Complex Fractions
65 ANS:
$\frac{\frac{1}{2}-\frac{4}{d}}{\frac{1}{d}+\frac{3}{2 d}}=\frac{\frac{d-8}{2 d}}{\frac{2 d+3 d}{2 d^{2}}}=\frac{d-8}{2 d} \times \frac{2 d^{2}}{5 d}=\frac{d-8}{5}$
PTS: 2 REF: 061035a2 STA: A2.A. 17 TOP: Complex Fractions
66 ANS: 4
$y-2 \sin \theta=3$

$$
\begin{aligned}
y & =2 \sin \theta+3 \\
\mathrm{f}(\theta) & =2 \sin \theta+3
\end{aligned}
$$

69

PTS: 2
67 ANS: 1
ANS: 1 PTS: 2
TOP: Identifying the Equation of a Graph
68 ANS: 4
PTS: 2
TOP: Defining Functions
REF: fall0927a2

PTS: 2
TOP: Defining Functions

STA: A2 A 40
REF: 061004a2 STA: A2.A. 52
REF: fall0908a2 STA: A2.A. 38
KEY: graphs
REF: 061013a2 STA: A2.A.38

70 ANS: 3
(1) and (4) fail the horizontal line test and are not one-to-one. Not every element of the range corresponds to only one element of the domain. (2) fails the vertical line test and is not a function. Not every element of the domain corresponds to only one element of the range.

PTS: 2 REF: 081020a2 STA: A2.A. 43 TOP: Defining Functions
71 ANS: 4
(4) fails the horizontal line test. Not every element of the range corresponds to only one element of the domain.

| | PTS: 2 | REF: fall0906a2 | STA: A2.A.43 | TOP: Defining Functions |
| :--- | :--- | ---: | :--- | :--- | :--- |
| 72 | ANS: 3 | PTS: 2 | REF: fall0923a2 | STA: A2.A.39 |
| TOP: Domain and Range | PTS: 2 | KEY: real domain | | |
| 73 | ANS: 2 | REF: 081003a2 | STA: A2.A.51 | |
| TOP: Domain and Range | | | | |
| 74 | ANS: 3 | | | |
| | $\mathrm{f}(4)=\frac{1}{2}(4)-3=-1$. | | | |

PTS: 2 REF: fall0902a2 STA: A2.A. 42 TOP: Compositions of Functions
KEY: numbers
75 ANS: 3 PTS: 2 REF: 081027a2
STA: A2.A. 44
TOP: Inverse of Functions
KEY: equations
76 ANS: 2 PTS: 2 REF: fall0926a2
STA: A2.A. 46
TOP: Transformations with Functions and Relations
77 ANS: 1 PTS: 2 REF: 081022a2 STA: A2.A. 46
TOP: Transformations with Functions and Relations
78 ANS: 1
common difference is $2 . b_{n}=x+2 n$

$$
\begin{aligned}
10 & =x+2(1) \\
8 & =x
\end{aligned}
$$

7 PTS: 2
ANS: 4
TOP: Sequences
80 ANS: 3
TOP: Sequences
81 ANS: 3

$$
27 r^{4-1}=64
$$

$$
\begin{aligned}
r^{3} & =\frac{64}{27} \\
r & =\frac{4}{3}
\end{aligned}
$$

PTS: 2
REF: 081025a2
STA: A2.A. 31
TOP: Conjugates of Complex Numbers

82 ANS:
$-3,-5,-8,-12$
PTS: 2 REF: fall0934a2 STA: A2.A. 33 TOP: Recursive Sequences
83 ANS: 3

n	0	1	2	Σ
$n^{2}+2^{n}$	$0^{2}+2^{0}=1$	$1^{2}+2^{2}=3$	$2^{2}+2^{2}=8$	12

PTS: 2
REF: fall0911a2 STA: A2.N.10
TOP: Sigma Notation
KEY: basic
84 ANS: 1
PTS: 2
REF: 061025a2 STA: A2.A. 34
TOP: Sigma Notation
85 ANS:
$\sum_{n=1}^{15} 7 n$
PTS: 2
REF: 081029a2
PTS: 2
TOP: Trigonometric Ratios
87 ANS: 1

$\cos K=\frac{5}{6}$

$$
\begin{aligned}
& K=\cos ^{-1} \frac{5}{6} \\
& K \approx 33^{\circ} 33^{\prime}
\end{aligned}
$$

PTS: 2
REF: 061023a2
STA: A2.A. 55
TOP: Trigonometric Ratios
88 ANS: 2
$\frac{11 \pi}{12} \cdot \frac{180}{\pi}=165$
PTS: 2
REF: 061002a2
STA: A2.M. 2
TOP: Radian Measure

STA: A2.A. 34 TOP: Sigma Notation
REF: 081010a2 STA: A2.A. 55

KEY: degrees

89 ANS:

$197^{\circ} 40^{\prime} .3 .45 \times \frac{180}{\pi} \approx 197^{\circ} 40^{\prime}$	

PTS: 2 REF: fall0931a2 STA: A2.M. 2 TOP: Radian Measure
KEY: degrees
90 ANS: 1
$-420\left(\frac{\pi}{180}\right)=-\frac{7 \pi}{3}$
PTS: 2
REF: 081002a2
STA: A2.M. 2
TOP: Radian Measure
KEY: radians
91 ANS: 4
PTS: 2
REF: 081005a2 STA: A2.A. 60
TOP: Unit Circle
92 ANS:

$$
-\frac{\sqrt{3}}{2}
$$

PTS: 2
REF: 061033a2 STA: A2.A. 60
TOP: Unit Circle
93
$\frac{\sqrt{13}}{2} \cdot \sin \theta=\frac{y}{\sqrt{x^{2}+y^{2}}}=\frac{2}{\sqrt{(-3)^{2}+2^{2}}}=\frac{2}{\sqrt{13}} . \csc \theta=\frac{\sqrt{13}}{2}$.
PTS: 2
REF: fall0933a2 STA: A2.A. 62
REF: 081007a2
TOP: Using Inverse Trigonometric Functions

TOP: Determining Trigonometric Functions
STA: A2.A. 64
KEY: basic

95 ANS: 4
$s=\theta r=2 \cdot 4=8$
PTS: 2 REF: fall0922a2 STA: A2.A. 61 TOP: Arc Length
KEY: arc length
96 ANS: 3
Cofunctions tangent and cotangent are complementary
PTS: 2 REF: 061014a2 STA: A2.A. 58 TOP: Cofunction Trigonometric Relationships
97 ANS: 3
PTS: 2
REF: fall0910a2
STA: A2.A. 76
TOP: Angle Sum and Difference Identities KEY: simplifying
98 ANS:

$$
\begin{aligned}
\frac{23}{2} \cos ^{2} B+\sin ^{2} B & =1 \quad \tan B=\frac{\sin B}{\cos B}=\frac{\frac{5}{\sqrt{41}}}{\frac{4}{\sqrt{41}}}=\frac{5}{4} \tan (A+B)=\frac{\frac{2}{3}+\frac{5}{4}}{1-\left(\frac{2}{3}\right)\left(\frac{5}{4}\right)}=\frac{\frac{8+15}{12}}{\frac{12}{12}-\frac{10}{12}}=\frac{\frac{23}{12}}{\frac{2}{12}}=\frac{23}{2} \\
\cos ^{2} B+\left(\frac{5}{\sqrt{41}}\right)^{2} & =1 \\
\cos ^{2} B+\frac{25}{41} & =\frac{41}{41} \\
\cos ^{2} B & =\frac{16}{41} \\
\cos B & =\frac{4}{\sqrt{41}}
\end{aligned}
$$

PTS: 4 REF: 081037a2 STA: A2.A.76 TOP: Angle Sum and Difference Identities
KEY: evaluating
99 ANS: 1
$\cos ^{2} \theta-\cos 2 \theta=\cos ^{2} \theta-\left(\cos ^{2} \theta-\sin ^{2} \theta\right)=\sin ^{2} \theta$
PTS: 2 REF: 061024a2 STA: A2.A. 77 TOP: Double Angle Identities
KEY: simplifying
100 ANS: 1

$$
\begin{aligned}
\tan \theta-\sqrt{3} & =0 \\
\tan \theta & =\sqrt{3} \\
\theta & =\tan ^{-1} \sqrt{3} \\
\theta & =60,240
\end{aligned}
$$

PTS: 2
REF: fall0903a2 STA: A2.A. 68
TOP: Trigonometric Equations
KEY: basic

101
ANS:
45, $2252 \tan C-3=3 \tan C-4$

$$
\begin{aligned}
1 & =\tan C \\
\tan ^{-1} 1 & =C \\
C & =45,225
\end{aligned}
$$

PTS: 2
REF: 081032a2
STA: A2.A. 68
TOP: Trigonometric Equations
KEY: basic
102 ANS:
$0,60,180,300 . \quad \sin 2 \theta=\sin \theta$
$\sin 2 \theta-\sin \theta=0$
$2 \sin \theta \cos \theta-\sin \theta=0$
$\sin \theta(2 \cos \theta-1)=0$
$\sin \theta=0 \quad 2 \cos \theta-1=0$ $\theta=0,180 \cos \theta=\frac{1}{2}$

$$
\theta=60,300
$$

PTS: 4
REF: 061037a2
STA: A2.A. 68
TOP: Trigonometric Equations
KEY: double angle identities
103 ANS: 4
$\frac{2 \pi}{b}=\frac{2 \pi}{\frac{1}{3}}=6 \pi$
PTS: 2
REF: 061027a2 STA: A2.A. 69
TOP: Properties of Graphs of Trigonometric Functions
104 ANS: 3
period $=\frac{2 \pi}{b}=\frac{2 \pi}{3 \pi}=\frac{2}{3}$
PTS: 2
REF: 081026a2
STA: A2.A. 70
TOP: Graphing Trigonometric Functions
KEY: recognize
105
ANS: 3
PTS: 2
REF: fall0913a2
STA: A2.A. 65
TOP: Graphing Trigonometric Functions

106 ANS: 3

PTS: 2
REF: 061020a2
107 ANS: 3
PTS: 2
TOP: Domain and Range
ANS: 2
$K=\frac{1}{2}(10)(18) \sin 120=45 \sqrt{3} \approx 78$
PTS: 2
KEY: basic
109 ANS: 3
$K=(10)(18) \sin 46 \approx 129$
PTS: 2
REF: 081021a2
STA: A2.A. 74
TOP: Using Trigonometry to Find Area
110 ANS:
$K=a b \sin C=24 \cdot 30 \sin 57 \approx 604$
PTS: 2
REF: 061034a2
STA: A2.A. 74
TOP: Using Trigonometry to Find Area
KEY: parallelograms
111 ANS: 3

$$
\begin{aligned}
\frac{59.2}{\sin 74} & =\frac{60.3}{\sin C} \quad 180-78.3=101.7 \\
C & \approx 78.3
\end{aligned}
$$

PTS: 2 REF: 081006a2 STA: A2.A. 75 TOP: Law of Sines - The Ambiguous Case
112 ANS: 4

$$
\begin{aligned}
7^{2} & =3^{2}+5^{2}-2(3)(5) \cos A \\
49 & =34-30 \cos A \\
15 & =-30 \cos A \\
-\frac{1}{2} & =\cos A
\end{aligned}
$$

$$
120=\cos A
$$

PTS: 2 REF: 081017a2 STA: A2.A. 73 TOP: Law of Cosines
KEY: angle, without calculator

113 ANS:
33. $a=\sqrt{10^{2}+6^{2}-2(10)(6) \cos 80} \approx 10.7 . \angle C$ is opposite the shortest side. $\frac{6}{\sin C}=\frac{10.7}{\sin 80}$

$$
C \approx 33
$$

PTS: 6
REF: 061039a2 STA: A2.A. 73 TOP: Law of Cosines
KEY: advanced
114 ANS:

$r^{2}=25^{2}+85^{2}-2(25)(85) \cos 125$.

$$
\begin{aligned}
r^{2} & \approx 10287.7 \\
r & \approx 101.43
\end{aligned}
$$

$$
\begin{gathered}
\frac{2.5}{\sin x}=\frac{101.43}{\sin 125} \\
x \approx 12
\end{gathered}
$$

PTS: 6 REF: fall0939a2 STA: A2.A. 73 TOP: Vectors
115 ANS: 2
$x^{2}-2 x+y^{2}+6 y=-3$
$x^{2}-2 x+1+y^{2}+6 y+9=-3+1+9$
$(x-1)^{2}+(y+3)^{2}=7$
PTS: 2
REF: 061016a2
STA: A2.A. 47
TOP: Equations of Circles
116 ANS:
$(x+3)^{2}+(y-4)^{2}=25$
PTS: 2 REF: fall0929a2 STA: A2.A. 49 TOP: Writing Equations of Circles
117 ANS:
$(x+5)^{2}+(y-3)^{2}=32$
PTS: 2
REF: 081033a2
STA: A2.A. 49
TOP: Writing Equations of Circles

