JEFFERSON MATH PROJECT REGENTS BY TYPE

The NY Algebra 2/Trigonometry Regents Exams Fall 2009-August 2010
 (Answer Key)

www.jmap.org

Dear $^{\text {ofor }}$

I Fiave to acknolege the reciept of your favor of May 14. in which you mention that you have finishied the 6. first fooks of \mathcal{E} ucfid, pfane trigonometry, surveying \& afgefra and ask whether \mathscr{I} think a further pursuit of that branch of science would be usefuf to you. there are some propositions in the fatter books of Eucfid, \& some of ${ }^{\circ}{ }^{\circ}$ trchimedes, which are usefuf, \& \mathscr{I} have no doubt you have been made acquainted with them. trigonometry, so far as this, is most valuable to every man, there is scarcely a day in which he wiff not resort to it for some of the purposes of common fife. the science of cafculation also is indispensible as far as
 are often of vafue in ordinary cases: but aff beyond these is but a fuxury; a deficious fuxury indeed; but not to be indufged in by one who is to have a profession to foffow for his subsistence. in this fight $\mathscr{I}_{\text {view the }}$ conic sections, curves of the higher orders, perhaps even spherical trigonometry, व̈tIgebraicaf operations beyond the ad dimension, and ffuxions.
Letter from Thomas Jefferson to William G. Munford, Monticello, June 18, 1799.

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions

Answer Section

1 ANS: 2
PTS: 2
REF: fall0926a2
TOP: Transformations with Functions and Relations
2 ANS: 1
$2 i^{2}+3 i^{3}=2(-1)+3(-i)=-2-3 i$
PTS: 2 REF: 081004a2 TOP: Imaginary Numbers
3 ANS: 1
PTS: 2
REF: 081022a2
TOP: Transformations with Functions and Relations
4 ANS: 3
$S=\frac{-b}{a}=\frac{-(-3)}{4}=\frac{3}{4} . \quad P=\frac{c}{a}=\frac{-8}{4}=-2$
PTS: 2 REF: fall0912a2 TOP: Roots of Quadratics
KEY: basic
5 ANS: 4
$s=\theta r=2 \cdot 4=8$
PTS: 2 REF: fall0922a2 TOP: Arc Length KEY: arc length
6 ANS: 1
PTS: 2
REF: 061025a2
TOP: Sigma Notation
ANS: 2
PTS: 2 REF: 081024a2
TOP: Conjugates of Complex Numbers
8 ANS: 1
$-420\left(\frac{\pi}{180}\right)=-\frac{7 \pi}{3}$
PTS: 2
REF: 081002a2 TOP: Radian Measure
KEY: radians
9 ANS: 2 PTS: 2 REF: 081010a2 TOP: Trigonometric Ratios
10 ANS: 2
$(3-7 i)(3-7 i)=9-21 i-21 i+49 i^{2}=9-42 i-49=-40-42 i$
PTS: 2 REF: fall0901a2 TOP: Multiplication and Division of Complex Numbers
11 PTS: 2 REF: 061018a2 TOP: Solving Radicals
KEY: extraneous solutions
12 ANS: 3

n	0	1	2	Σ
$n^{2}+2^{n}$	$0^{2}+2^{0}=1$	$1^{2}+2^{2}=3$	$2^{2}+2^{2}=8$	12

PTS: 2
REF: fall0911a2 TOP: Sigma Notation
KEY: basic

13 ANS: 3

PTS: 2 REF: fall0924a2 TOP: Dispersion KEY: variance
14 ANS: 1 PTS: 2 REF: 061013a2 TOP: Defining Functions
15 ANS: 4
$y-2 \sin \theta=3$

$$
\begin{aligned}
y & =2 \sin \theta+3 \\
\mathrm{f}(\theta) & =2 \sin \theta+3
\end{aligned}
$$

PTS: 2 REF: fall0927a2 TOP: Functional Notation
16 ANS: 4
PTS: 2
REF: 061026a2 TOP: Sequences
17 ANS: 3

$$
\begin{array}{rlrl}
4^{x^{2}+4 x} & =2^{-6} . & 2 x^{2}+8 x & =-6 \\
\left(2^{2}\right)^{x^{2}+4 x} & =2^{-6} & 2 x^{2}+8 x+6 & =0 \\
2^{2 x^{2}+8 x} & =2^{-6} & x^{2}+4 x+3 & =0 \\
(x+3)(x+1) & =0 \\
x & =-3 x=-1
\end{array}
$$

PTS: 2 REF: 061015a2 TOP: Exponential Equations
KEY: common base shown
18 ANS: 3
PTS: 2
REF: fall0910a2 TOP: Angle Sum and Difference Identities
KEY: simplifying
19 ANS: 4 PTS: 2
REF: 061005a2 TOP: Solving Polynomial Equations
ANS: 2 PTS: 2 REF: 061021a2 TOP: Correlation Coefficient
21 ANS: 3
PTS: 2
REF: 061007a2
TOP: Differentiating Permutations and Combinations
22 ANS: 4
$6 x-x^{3}-x^{2}=-x\left(x^{2}+x-6\right)=-x(x+3)(x-2)$
PTS: 2 REF: fall0917a2 TOP: Factoring Polynomials
KEY: single variable
23 ANS: 4
$(3+\sqrt{5})(3-\sqrt{5})=9-\sqrt{25}=4$
PTS: 2 REF: 081001a2 TOP: Operations with Radicals

24 ANS: 1
${ }_{5} C_{3}(3 x)^{2}(-2)^{3}=10 \cdot 9 x^{2} \cdot-8=-720 x^{2}$
PTS: 2 REF: fall0919a2 TOP: Binomial Expansions
25 ANS: 2 PTS: 2 REF: 061011a2 TOP: Fractional Exponents as Radicals
26 ANS: 3 PTS: 2 REF: 061001a2 TOP: Sequences
27 ANS: 3
(1) and (4) fail the horizontal line test and are not one-to-one. Not every element of the range corresponds to only one element of the domain. (2) fails the vertical line test and is not a function. Not every element of the domain corresponds to only one element of the range.

PTS: 2 REF: 081020a2 TOP: Defining Functions
28 ANS: 2
${ }_{15} C_{8}=6,435$
PTS: 2 REF: 081012a2 TOP: Combinations
29 ANS: 1
$\tan \theta-\sqrt{3}=0$

$\tan \theta=\sqrt{3}$

$$
\theta=\tan ^{-1} \sqrt{3}
$$

$$
\theta=60,240
$$

PTS: 2 REF: fall0903a2 TOP: Trigonometric Equations
KEY: basic
30 ANS: 3
period $=\frac{2 \pi}{b}=\frac{2 \pi}{3 \pi}=\frac{2}{3}$
PTS: 2
REF: 081026a2
TOP: Graphing Trigonometric Functions
KEY: recognize

31 ANS: 1
$\cos K=\frac{5}{6}$

$$
\begin{aligned}
& K=\cos ^{-1} \frac{5}{6} \\
& K \approx 33^{\circ} 33^{\prime}
\end{aligned}
$$

PTS: 2 REF: 061023a2 TOP: Trigonometric Ratios
32 ANS: 3
$\frac{3^{-2}}{(-2)^{-3}}=\frac{\frac{1}{9}}{-\frac{1}{8}}=-\frac{8}{9}$
PTS: 2 REF: 061003a2 TOP: Negative and Fractional Exponents
33 ANS: 2
$x^{2}-x-6=3 x-6$

$$
\begin{aligned}
x^{2}-4 x & =0 \\
x(x-4) & =0 \\
x & =0,4
\end{aligned}
$$

PTS: 2
REF: 081015a2 TOP: Quadratic-Linear Systems
KEY: equations
34 ANS: 4
PTS: 2
REF: fall0908a2 TOP: Defining Functions
KEY: graphs
35 ANS: 2
$\frac{11 \pi}{12} \cdot \frac{180}{\pi}=165$
PTS: 2
REF: 061002a2 TOP: Radian Measure
KEY: degrees
36 ANS: 3
$68 \% \times 50=34$
PTS: 2 REF: 081013a2 TOP: Normal Distributions
KEY: predict
37
ANS: 3
$\sqrt{-300}=\sqrt{100} \sqrt{-1} \sqrt{3}$
PTS: 2 REF: 061006a2 TOP: Square Roots of Negative Numbers

38 ANS: 3 PTS: 2 REF: fall0923a2 TOP: Domain and Range
KEY: real domain
39 ANS: 3
PTS: 2
REF: 061022a2 TOP: Domain and Range
40 ANS: 4
$\frac{3 \pm \sqrt{(-3)^{2}-4(1)(-9)}}{2(1)}=\frac{3 \pm \sqrt{45}}{2}=\frac{3 \pm 3 \sqrt{5}}{2}$
PTS: 2 REF: 061009a2 TOP: Quadratic Formula
41 ANS: 4
$7^{2}=3^{2}+5^{2}-2(3)(5) \cos A$
$49=34-30 \cos A$
$15=-30 \cos A$
$-\frac{1}{2}=\cos A$
$120=\cos A$
PTS: 2 REF: 081017a2 TOP: Law of Sines
KEY: angle, without calculator
42

PTS: 2
REF: 061020a2 TOP: Graphing Trigonometric Functions
43 ANS: 4

$$
9^{3 x+1}=27^{x+2} .
$$

$\left(3^{2}\right)^{3 x+1}=\left(3^{3}\right)^{x+2}$

$$
\begin{aligned}
3^{6 x+2} & =3^{3 x+6} \\
6 x+2 & =3 x+6 \\
3 x & =4 \\
x & =\frac{4}{3}
\end{aligned}
$$

PTS: 2
REF: 081008a2
TOP: Exponential Equations
KEY: common base not shown
44 ANS: 3
PTS: 2
REF: 081007a2 TOP: Using Inverse Trigonometric Functions
KEY: basic

45 ANS: 2
$\mathrm{f}^{-1}(x)=\log _{4} x$
PTS: 2 REF: fall0916a2 TOP: Graphing Logarithmic Functions
46 ANS: 1
$\cos ^{2} \theta-\cos 2 \theta=\cos ^{2} \theta-\left(\cos ^{2} \theta-\sin ^{2} \theta\right)=\sin ^{2} \theta$
PTS: 2
REF: 061024a2 TOP: Double Angle Identities
KEY: simplifying
47 ANS: 3
$\frac{59.2}{\sin 74}=\frac{60.3}{\sin C} \quad 180-78.3=101.7$

$$
C \approx 78.3
$$

PTS: 2 REF: 081006a2 TOP: Law of Sines - The Ambiguous Case
48 ANS: 4
$12 x^{4}+10 x^{3}-12 x^{2}=2 x^{2}\left(6 x^{2}+5 x-6\right)=2 x^{2}(2 x+3)(3 x-2)$
PTS: 2 REF: 061008a2 TOP: Factoring Polynomials
KEY: single variable
49 PTS: 2 REF: 081003a2 TOP: Domain and Range
50 ANS: 3
$K=(10)(18) \sin 46 \approx 129$
PTS: 2 REF: 081021a2 TOP: Using Trigonometry to Find Area
KEY: parallelograms
51 ANS: 1
$\frac{\sqrt{3}+5}{\sqrt{3}-5} \cdot \frac{\sqrt{3}+5}{\sqrt{3}+5}=\frac{3+5 \sqrt{3}+5 \sqrt{3}+25}{3-25}=\frac{28+10 \sqrt{3}}{-22}=-\frac{14+5 \sqrt{3}}{11}$
PTS: 2 REF: 061012a2 TOP: Rationalizing Denominators
52 ANS: 2
$8^{2}=64$
PTS: 2 REF: fall0909a2 TOP: Evaluating Logarithmic Expressions
53 ANS: 1
$2 \log x-(3 \log y+\log z)=\log x^{2}-\log y^{3}-\log z=\log \frac{x^{2}}{y^{3} z}$
PTS: 2
REF: 061010a2 TOP: Properties of Logarithms

54 ANS: 2
$K=\frac{1}{2}(10)(18) \sin 120=45 \sqrt{3} \approx 78$
PTS: 2 REF: fall0907a2 TOP: Using Trigonometry to Find Area
KEY: basic
55 ANS: 3
$\frac{-7 \pm \sqrt{7^{2}-4(2)(-3)}}{2(2)}=\frac{-7 \pm \sqrt{73}}{4}$

PTS: 2 REF: 081009a2 TOP: Quadratic Formula
56 ANS: 3
$\mathrm{f}(4)=\frac{1}{2}(4)-3=-1 . g(-1)=2(-1)+5=3$

PTS: 2
REF: fall0902a2 TOP: Compositions of Functions
KEY: numbers
57 ANS: 3
$27 r^{4-1}=64$

$$
\begin{aligned}
r^{3} & =\frac{64}{27} \\
r & =\frac{4}{3}
\end{aligned}
$$

PTS: 2
58 ANS: 3
KEY: equations
59
60 ANS: 2
$x^{2}-2 x+y^{2}+6 y=-3$
$x^{2}-2 x+1+y^{2}+6 y+9=-3+1+9$
$(x-1)^{2}+(y+3)^{2}=7$
PTS: 2 REF: 061016a2 TOP: Equations of Circles

61 ANS: 1

PTS: 2
REF: fall0915a2 TOP: Normal Distributions
KEY: interval
62 ANS: 1
PTS: 2
REF: 061004a2 TOP: Identifying the Equation of a Graph
63 ANS: 1
$y \geq x^{2}-x-6$
$y \geq(x-3)(x+2)$
PTS: 2 REF: 061017a2 TOP: Quadratic Inequalities
KEY: two variables
64
65 ANS: 3
$\frac{3}{\sqrt{3 a^{2} b}}=\frac{3}{a \sqrt{3 b}} \cdot \frac{\sqrt{3 b}}{\sqrt{3 b}}=\frac{3 \sqrt{3 b}}{3 a b}=\frac{\sqrt{3 b}}{a b}$
PTS: 2 REF: 081019a2 TOP: Rationalizing Denominators
KEY: index $=2$
66 ANS: 4
(4) fails the horizontal line test. Not every element of the range corresponds to only one element of the domain.

PTS: 2 REF: fall0906a2 TOP: Defining Functions
67 ANS: 1
$6 x-7 \leq 5 \quad 6 x-7 \geq-5$

$$
\begin{aligned}
& 6 x \leq 12 \quad 6 x \geq 2 \\
& x \leq 2 \quad x \geq \frac{1}{3}
\end{aligned}
$$

PTS: 2 REF: fall0905a2 TOP: Absolute Value Inequalities
KEY: graph
68
ANS: 4
$4 a b \sqrt{2 b}-3 a \sqrt{9 b^{2}} \sqrt{2 b}+7 a b \sqrt{6 b}=4 a b \sqrt{2 b}-9 a b \sqrt{2 b}+7 a b \sqrt{6 b}=-5 a b \sqrt{2 b}+7 a b \sqrt{6 b}$
PTS: 2
REF: fall0918a2 TOP: Operations with Radicals
KEY: with variables \mid index $=2$
69 ANS: 4
PTS: 2
REF: fall0925a2 TOP: Permutations

70 ANS: 2
$\frac{x^{-1}-1}{x-1}=\frac{\frac{1}{x}-1}{x-1}=\frac{\frac{1-x}{x}}{x-1}=\frac{\frac{-(x-1)}{x}}{x-1}=-\frac{1}{x}$
PTS: 2 REF: 081018a2 TOP: Negative Exponents
71 ANS: 1 PTS: 2 REF: 061019a2 TOP: Imaginary Numbers
72 ANS: 2
$\left(\frac{w^{-5}}{w^{-9}}\right)^{\frac{1}{2}}=\left(w^{4}\right)^{\frac{1}{2}}=w^{2}$
PTS: 2 REF: 081011a2 TOP: Negative and Fractional Exponents
73 ANS: 2
The roots are $-1,2,3$.
PTS: 2 REF: 081023a2 TOP: Solving Polynomial Equations
74 ANS: 1
common difference is 2 . $b_{n}=x+2 n$

$$
\begin{aligned}
10 & =x+2(1) \\
8 & =x
\end{aligned}
$$

PTS: 2 REF: 081014a2 TOP: Sequences
75 ANS: 4
$b^{2}-4 a c=3^{2}-4(9)(-4)=9+144=153$
PTS: 2 REF: 081016a2 TOP: Using the Discriminant KEY: determine nature of roots given equation
76
ANS: 2
$\frac{\frac{x}{4}-\frac{1}{x}}{\frac{1}{2 x}+\frac{1}{4}}=\frac{\frac{x^{2}-4}{4 x}}{\frac{2 x+4}{8 x}}=\frac{(x+2)(x-2)}{4 x} \times \frac{8 x}{2(x+2)}=x-2$
PTS: 2
REF: fall0920a2 TOP: Complex Fractions

77 ANS: 4
$2 \log _{4}(5 x)=3$

$$
\log _{4}(5 x)=\frac{3}{2}
$$

$$
5 x=4^{\frac{3}{2}}
$$

$$
5 x=8
$$

$$
x=\frac{8}{5}
$$

PTS: 2
REF: fall0921a2 TOP: Logarithmic Equations
KEY: advanced
$\frac{2 \pi}{b}=\frac{2 \pi}{\frac{1}{3}}=6 \pi$

PTS: 2 REF: 061027a2 TOP: Properties of Graphs of Trigonometric Functions
KEY: period
80 ANS: 4
Students entering the library are more likely to spend more time studying, creating bias.
PTS: 2
REF: fall0904a2 TOP: Analysis of Data
81 ANS: 3
Cofunctions tangent and cotangent are complementary
PTS: 2 REF: 061014a2 TOP: Cofunction Trigonometric Relationships

Algebra 2/Trigonometry 2 Point Regents Exam Questions

Answer Section

1 ANS:

$$
\begin{aligned}
b^{2}-4 a c & =0 \\
k^{2}-4(1)(4) & =0 \\
k^{2}-16 & =0 \\
(k+4)(k-4) & =0 \\
k & = \pm 4
\end{aligned}
$$

PTS: 2 REF: 061028a2 TOP: Using the Discriminant
KEY: determine equation given nature of roots
2 ANS:
$y=10.596(1.586)^{x}$
PTS: 2 REF: 081031a2 TOP: Exponential Regression
3 ANS:
$5 \sqrt{3 x^{3}}-2 \sqrt{27 x^{3}}=5 \sqrt{x^{2}} \sqrt{3 x}-2 \sqrt{9 x^{2}} \sqrt{3 x}=5 x \sqrt{3 x}-6 x \sqrt{3 x}=-x \sqrt{3 x}$
PTS: 2
REF: 061032a2 TOP: Operations with Radicals
4 ANS:
$\frac{4}{9} x^{2}-\frac{4}{3} x+1 .\left(\frac{2}{3} x-1\right)^{2}=\left(\frac{2}{3} x-1\right)\left(\frac{2}{3} x-1\right)=\frac{4}{9} x^{2}-\frac{2}{3} x-\frac{2}{3} x+1=\frac{4}{9} x^{2}-\frac{4}{3} x+1$
PTS: 2 REF: 081034a2 TOP: Operations with Polynomials
5 ANS:

41,040.

PTS: 2
REF: fall0935a2 TOP: Combinations
6 ANS:
$\frac{\frac{1}{2}-\frac{4}{d}}{\frac{1}{d}+\frac{3}{2 d}}=\frac{\frac{d-8}{2 d}}{\frac{2 d+3 d}{2 d^{2}}}=\frac{d-8}{2 d} \times \frac{2 d^{2}}{5 d}=\frac{d-8}{5}$

PTS: 2
REF: 061035a2 TOP: Complex Fractions

7 ANS:

$$
\frac{5(3+\sqrt{2})}{7} \cdot \frac{5}{3-\sqrt{2}} \times \frac{3+\sqrt{2}}{3+\sqrt{2}}=\frac{5(3+\sqrt{2})}{9-2}=\frac{5(3+\sqrt{2})}{7}
$$

PTS: 2
REF: fall0928a2 TOP: Rationalizing Denominators
8 ANS:

$197^{\circ} 40^{\prime} .3 .45 \times \frac{180}{\pi} \approx 197^{\circ} 40^{\prime}$.

PTS: 2
REF: fall0931a2 TOP: Radian Measure
KEY: degrees
9 ANS:

PTS: 2
REF: 061031a2 TOP: Graphing Exponential Functions
10 ANS:
$10 a x^{2}-23 a x-5 a=a\left(10 x^{2}-23 x-5\right)=a(5 x+1)(2 x-5)$
PTS: 2
REF: 081028a
TOP: Factoring Polynomials
KEY: multiple variables
11 ANS:
$\sum_{n=1}^{15} 7 n$
PTS: 2
REF: 081029a2 TOP: Sigma Notation

12 ANS:
no solution. $\quad \frac{4 x}{x-3}=2+\frac{12}{x-3}$

$$
\begin{aligned}
\frac{4 x-12}{x-3} & =2 \\
\frac{4(x-3)}{x-3} & =2 \\
4 & \neq 2
\end{aligned}
$$

PTS: 2 REF: fall0930a2 TOP: Solving Rationals
KEY: rational solutions
13 ANS:
7.4

PTS: 2 REF: 061029a2 TOP: Dispersion KEY: basic, group frequency distributions
14 ANS:
$(x+5)^{2}+(y-3)^{2}=32$
PTS: 2 REF: 081033a2 TOP: Writing Equations of Circles
15 ANS:
$-3,-5,-8,-12$
PTS: 2 REF: fall0934a2 TOP: Recursive Sequences
16 ANS:
Sum $\frac{-b}{a}=-\frac{11}{5}$. Product $\frac{c}{a}=-\frac{3}{5}$
PTS: 2 REF: 061030a2 TOP: Roots of Quadratics
17 ANS:
45, $2252 \tan C-3=3 \tan C-4$

$$
\begin{aligned}
1 & =\tan C \\
\tan ^{-1} 1 & =C \\
C & =45,225
\end{aligned}
$$

PTS: 2
REF: 081032a2 TOP: Trigonometric Equations
KEY: basic

18 ANS:

$$
-\frac{\sqrt{3}}{2}
$$

PTS: 2 REF: 061033a2 TOP: Unit Circle
19 ANS:
$(x+3)^{2}+(y-4)^{2}=25$
PTS: 2 REF: fall0929a2 TOP: Writing Equations of Circles
20 ANS:
$K=a b \sin C=24 \cdot 30 \sin 57 \approx 604$
PTS: 2 REF: 061034a2 TOP: Using Trigonometry to Find Area
KEY: parallelograms
21 ANS:
$\frac{\sqrt{13}}{2} \cdot \sin \theta=\frac{y}{\sqrt{x^{2}+y^{2}}}=\frac{2}{\sqrt{(-3)^{2}+2^{2}}}=\frac{2}{\sqrt{13}} . \csc \theta=\frac{\sqrt{13}}{2}$.

PTS: 2 REF: fall0933a2 TOP: Determining Trigonometric Functions
22 ANS:
$39,916,800 \cdot \frac{{ }_{12} P_{12}}{3!\cdot 2!}=\frac{479,001,600}{12}=39,916,800$
PTS: 2 REF: 081035a2 TOP: Permutations
23 ANS:

2,298.65.

PTS: 2
REF: fall0932a2
TOP: Evaluating Exponential Expressions

24 ANS:

Controlled experiment because Howard is comparing the results obtained from an experimental sample against a control sample.

PTS: 2 REF: 081030a2 TOP: Analysis of Data

Algebra 2/Trigonometry 4 Point Regents Exam Questions

Answer Section

1 ANS:
No. TENNESSEE: $\frac{{ }_{9} P_{9}}{4!\cdot 2!\cdot 2!}=\frac{362,880}{96}=3,780$. VERMONT: ${ }_{7} P_{7}=5,040$
PTS: 4 REF: 061038a2 TOP: Permutations
2 ANS:
$26.2 \% .{ }_{10} C_{8} \cdot 0.65^{8} \cdot 0.35^{2}+{ }_{10} C_{9} \cdot 0.65^{9} \cdot 0.35^{1}+{ }_{10} C_{10} \cdot 0.65^{10} \cdot 0.35^{0} \approx 0.262$
PTS: 4 REF: 081038a2 TOP: Binomial Probability
KEY: at least or at most
3 ANS:

$$
\begin{aligned}
\frac{23}{2} \cos ^{2} B+\sin ^{2} B & =1 \quad \tan B=\frac{\sin B}{\cos B}=\frac{\frac{5}{\sqrt{41}}}{\frac{4}{\sqrt{41}}}=\frac{5}{4} \tan (A+B)=\frac{\frac{2}{3}+\frac{5}{4}}{1-\left(\frac{2}{3}\right)\left(\frac{5}{4}\right)}=\frac{\frac{8+15}{12}}{\frac{12}{12}-\frac{10}{12}}=\frac{\frac{23}{12}}{\frac{2}{12}}=\frac{23}{2} \\
\cos ^{2} B+\left(\frac{5}{\sqrt{41}}\right)^{2} & =1 \\
\cos ^{2} B+\frac{25}{41} & =\frac{41}{41} \\
\cos ^{2} B & =\frac{16}{41} \\
\cos B & =\frac{4}{\sqrt{41}}
\end{aligned}
$$

PTS: 4
REF: 081037a2 TOP: Angle Sum and Difference Identities
KEY: evaluating
4 ANS:
$0,60,180,300 . \quad \sin 2 \theta=\sin \theta$

$$
\begin{gathered}
\sin 2 \theta-\sin \theta=0 \\
2 \sin \theta \cos \theta-\sin \theta=0 \\
\sin \theta(2 \cos \theta-1)=0 \\
\sin \theta=0 \quad 2 \cos \theta-1=0 \\
\theta=0,180 \cos \theta=\frac{1}{2} \\
\theta=60,300
\end{gathered}
$$

PTS: 4
REF: 061037a2 TOP: Trigonometric Equations
KEY: double angle identities

5 ANS:
$0.167 .{ }_{10} C_{8} \cdot 0.6^{8} \cdot 0.4^{2}+{ }_{10} C_{9} \cdot 0.6^{9} \cdot 0.4^{1}+{ }_{10} C_{10} \cdot 0.6^{10} \cdot 0.4^{0} \approx 0.167$
PTS: 4 REF: 061036a2 TOP: Binomial Probability
KEY: at least or at most
6 ANS:

$$
\begin{aligned}
& \pm \frac{3}{2},-\frac{1}{2} \cdot \\
& 4 x^{3}+4 x^{2}-18 x-9=0 \\
& 4 x^{2}(2 x+1)-9(2 x+1)=0 \\
&\left(4 x^{2}-9\right)(2 x+1)=0 \\
& 4 x^{2}-9=0 \text { or } 2 x+1=0 \\
&(2 x+3)(2 x-3)=0 \quad x=-\frac{1}{2} \\
& x= \pm \frac{3}{2}
\end{aligned}
$$

PTS: 4 REF: fall0937a2 TOP: Solving Polynomial Equations
7 ANS:
$y=2.001 x^{2.298}, 1,009 . y=2.001(15)^{2.298} \approx 1009$
PTS: 4
REF: fall0938a2 TOP: Power Regression
8 ANS:

$$
\begin{aligned}
3 \pm \sqrt{7} \cdot 2 x^{2}-12 x+4 & =0 \\
x^{2}-6 x+2 & =0 \\
x^{2}-6 x & =-2 \\
x^{2}-6 x+9 & =-2+9 \\
(x-3)^{2} & =7 \\
x-3 & = \pm \sqrt{7} \\
x & =3 \pm \sqrt{7}
\end{aligned}
$$

PTS: 4
REF: fall0936a2 TOP: Completing the Square

9 ANS:

$$
\begin{aligned}
\frac{1}{3} \quad \frac{1}{x+3}-\frac{2}{3-x} & =\frac{4}{x^{2}-9} \\
\frac{1}{x+3}+\frac{2}{x-3} & =\frac{4}{x^{2}-9} \\
\frac{x-3+2(x+3)}{(x+3)(x-3)} & =\frac{4}{(x+3)(x-3)} \\
x-3+2 x+6 & =4 \\
3 x & =1 \\
x & =\frac{1}{3}
\end{aligned}
$$

PTS: 4
REF: 081036a2 TOP: Solving Rationals KEY: rational solutions

Algebra 2/Trigonometry 6 Point Regents Exam Questions

Answer Section

1 ANS:
33. $a=\sqrt{10^{2}+6^{2}-2(10)(6) \cos 80} \approx 10.7 . \angle C$ is opposite the shortest side. $\frac{6}{\sin C}=\frac{10.7}{\sin 80}$

$$
C \approx 33
$$

PTS: 6
REF: 061039a2 TOP: Law of Cosines
KEY: advanced
2 ANS:
$x=-\frac{1}{3},-1 \log _{x+3} \frac{x^{3}+x-2}{x}=2$

$$
\begin{aligned}
\frac{x^{3}+x-2}{x} & =(x+3)^{2} \\
\frac{x^{3}+x-2}{x} & =x^{2}+6 x+9 \\
x^{3}+x-2 & =x^{3}+6 x^{2}+9 x \\
0 & =6 x^{2}+8 x+2 \\
0 & =3 x^{2}+4 x+1 \\
0 & =(3 x+1)(x+1) \\
x & =-\frac{1}{3},-1
\end{aligned}
$$

PTS: 6
REF: 081039a2 TOP: Logarithmic Equations
KEY: basic
3
ANS:
101.43, 12.

$r^{2}=25^{2}+85^{2}-2(25)(85) \cos 125$.

$$
r^{2} \approx 10287.7
$$

$$
r \approx 101.43
$$

$$
\begin{aligned}
\frac{2.5}{\sin x} & =\frac{101.43}{\sin 125} \\
x & \approx 12
\end{aligned}
$$

PTS: 6
REF: fall0939a2 TOP: Vectors

