JEFFERSON MATH PROJECT REGENTS AT RANDOM

The NY Geometry Regents Exams
Fall 2008-August 2010
(Answer Key)

www.jmap.org
$\boldsymbol{D}_{\text {ear }}$ ºd $_{\text {ir }}$
I have to acknofege the reciept of your favor of May 14. in which you mention that you have finished the 6. first books of Eucfid, phane trigonometry, surveying \& afgebra and ask whether \mathscr{I} think a further pursuit of that branch of science would be useful to you. there are some propositions in the fatter books of Eucfid, \& some of $\mathcal{O}_{\mathscr{Z}}$ rchimedes, which are useful, \& IGave no doubt you have Feen made acquainted with them. trigonometry, so far as this, is most valuable to every man, there is scarcely a day in which he wiff not resort to it for some of the purposes of common fife. the science of cafculation afso is indisppensibfe as far as
 are often of vafue in ordinary cases: but aff beyond these is but a fuxury; a deficious fuxury indeed; but not to be indufged in by one who is to have a profession to foffow for his subsistence. in this fight \mathscr{I} view the conic sections, curves of the higher orders, perhaps even spherical trigonometry, ©ZtIgebraical operations beyond the ad dimension, and fluxions.
Letter from Thomas Jefferson to William G. Munford, Monticello, June 18, 1799.

Geometry Regents at Random

Answer Section

1 ANS: 3 PTS: 2 REF: fall0816ge TOP: Planes
2 ANS: 1

$$
(x, y) \rightarrow(x+3, y+1)
$$

PTS: 2
REF: fall0803ge TOP: Translations
3 ANS: 1
$\angle D C B$ and $\angle A D C$ are supplementary adjacent angles of a parallelogram. $180-120=60 . \angle 2=60-45=15$.
PTS: 2 REF: 080907ge TOP: Parallelograms
4 ANS:
6. The centroid divides each median into segments whose lengths are in the ratio $2: 1 . \overline{T D}=6$ and $\overline{D B}=3$

PTS: 2 REF: 011034ge TOP: Centroid
5 ANS: 1

$$
\begin{aligned}
V & =\pi r^{2} h \\
1000 & =\pi r^{2} \cdot 8 \\
r^{2} & =\frac{1000}{8 \pi} \\
r & \approx 6.3
\end{aligned}
$$

PTS: 2 REF: 080926ge TOP: Volume
ANS: 3 PTS: 2 REF: 011028ge TOP: Conditional Statements
ANS: 4 PTS: 2 REF: fall0818ge
TOP: Analytical Representations of Transformations
8 ANS: 2
The slope of $2 x+3 y=12$ is $-\frac{A}{B}=-\frac{2}{3}$. The slope of a perpendicular line is $\frac{3}{2}$. Rewritten in slope intercept form,
(2) becomes $y=\frac{3}{2} x+3$.

PTS: 2
REF: 060926ge
TOP: Parallel and Perpendicular Lines
9 ANS: 3
PTS: 2
REF: fall0804ge TOP: Constructions

10 ANS:

$$
A^{\prime \prime}(8,2), B^{\prime \prime}(2,0), C^{\prime \prime}(6,-8)
$$

PTS: 4
REF: 081036 ge TOP: Compositions of Transformations
11 ANS: 1 $A^{\prime}(2,4)$

PTS: 2 REF: 011023ge TOP: Compositions of Transformations
KEY: basic
12 ANS: 2
$\frac{3}{7}=\frac{6}{x}$
$3 x=42$
$x=14$
PTS: 2 REF: 081027ge TOP: Side Splitter Theorem
13 ANS: 4 PTS: 2
REF: 061008ge TOP: Trapezoids
14 ANS:
4. $l_{1} w_{1} h_{1}=l_{2} w_{2} h_{2}$

$$
\begin{aligned}
10 \times 2 \times h & =5 \times w_{2} \times h \\
20 & =5 w_{2} \\
w_{2} & =4
\end{aligned}
$$

PTS: 2 REF: 011030ge TOP: Volume
15 ANS: 1
$M_{x}=\frac{-2+6}{2}=2 . M_{y}=\frac{3+3}{2}=3$. The center is $(2,3) . d=\sqrt{(-2-6)^{2}+(3-3)^{2}}=\sqrt{64+0}=8$. If the diameter is 8 , the radius is 4 and $r^{2}=16$.

PTS: 2 REF: fall0820ge TOP: Equations of Circles
16 ANS: 4
$d=\sqrt{(146-(-4))^{2}+(52-2)^{2}}=\sqrt{25,000} \approx 158.1$
PTS: 2
REF: 061021ge TOP: Distance

17 ANS:

PTS: 4
REF: fall0837ge TOP: Locus
18 ANS:
True. The first statement is true and the second statement is false. In a disjunction, if either statement is true, the disjunction is true.

PTS: 2 REF: 060933ge TOP: Compound Statements
KEY: disjunction
19 ANS: 2
$M_{x}=\frac{3 x+5+x-1}{2}=\frac{4 x+4}{2}=2 x+2 . M_{Y}=\frac{3 y+(-y)}{2}=\frac{2 y}{2}=y$.
PTS: 2
REF: 081019ge TOP: Midpoint
20 ANS: 4
Corresponding angles of similar triangles are congruent.
PTS: 2 REF: fall0826ge TOP: Similarity KEY: perimeter and area
21 ANS: 2
The slope of a line in standard form is $-\frac{A}{B}$ so the slope of this line is $-\frac{5}{3}$ Perpendicular lines have slope that are the opposite and reciprocal of each other.

PTS: 2 REF: fall0828ge TOP: Parallel and Perpendicular Lines
22 ANS: 1
Parallel lines intercept congruent arcs.
PTS: 2 REF: 061001ge TOP: Chords
23 ANS:
25. $d=\sqrt{(-3-4)^{2}+(1-25)^{2}}=\sqrt{49+576}=\sqrt{625}=25$.

PTS: 2 REF: fall0831ge TOP: Distance
24
ANS: 2
Parallel chords intercept congruent arcs. $\mathrm{m} \overparen{A C}=\mathrm{m} \overparen{B D}=30.180-30-30=120$.
PTS: 2
REF: 080904ge TOP: Chords

25 ANS: 1

$$
\begin{aligned}
x+2 x+2+3 x+4 & =180 \\
6 x+6 & =180 \\
x & =29
\end{aligned}
$$

PTS: 2
26 ANS: 1
REF: 011002ge
TOP: Interior and Exterior Angles of Triangles
ANS:

$$
D^{\prime}(-1,1), E^{\prime}(-1,5), G^{\prime}(-4,5)
$$

PTS: 4 REF: 080937ge TOP: Properties of Transformations
28 ANS: 2 PTS: 2 REF: 011011ge TOP: Locus
29 ANS: 1
$\triangle P R T$ and $\triangle S R Q$ share $\angle R$ and it is given that $\angle R P T \cong \angle R S Q$.
PTS: 2 REF: fall0821ge TOP: Similarity Proofs
30 ANS: 4 PTS: 2 REF: 060913ge TOP: Conditional Statements
31 ANS: 4
Let $\overline{A D}=x .36 x=12^{2}$

$$
x=4
$$

PTS: 2 REF: 080922ge TOP: Similarity KEY: leg
32 ANS: 1

PTS: 2
REF: 011021ge TOP: Exterior Angle Theorem

33 ANS:

PTS: 4 REF: 060937ge TOP: Compositions of Transformations
KEY: grids
34 ANS: 4
PTS: 2
REF: 080925ge
TOP: Centroid, Orthocenter, Incenter and Circumcenter
35 ANS:
$\overline{A C} \cdot \mathrm{~m} \angle B C A=63$ and $\mathrm{m} \angle A B C=80 . \overline{A C}$ is the longest side as it is opposite the largest angle.
PTS: 2 REF: 080934ge TOP: Angle Side Relationship
36 ANS: 2
PTS: 2
REF: 061002ge TOP: Negations
37 ANS: 4
$L=2 \pi r h=2 \pi \cdot 5 \cdot 11 \approx 345.6$
PTS: 2 REF: 061006ge TOP: Volume
38 ANS: 1
$y=x^{2}-4 x=(4)^{2}-4(4)=0 .(4,0)$ is the only intersection.

PTS: 2 REF: 060923ge TOP: Quadratic-Linear Systems
39 ANS: 1
$V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi \cdot 4^{2} \cdot 12 \approx 201$
PTS: 2
REF: 060921ge
TOP: Volume and Lateral Area
40 ANS:
452. $S A=4 \pi r^{2}=4 \pi \cdot 6^{2}=144 \pi \approx 452$

PTS: 2
REF: 061029ge
TOP: Volume and Surface Area
41 ANS: 3
PTS: 2
REF: fall0814ge TOP: Equations of Circles

42 ANS: 4

$$
\mathrm{SA}=4 \pi r^{2} \quad V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot 6^{3}=288 \pi
$$

$144 \pi=4 \pi r^{2}$
$36=r^{2}$
$6=r$
PTS: 2 REF: 081020ge TOP: Volume and Surface Area
43 ANS: 3
PTS: 2
REF: 060905ge TOP: Reflections
KEY: basic
44 ANS: 3
$m=\frac{-A}{B}=\frac{5}{2} . m=\frac{-A}{B}=\frac{10}{4}=\frac{5}{2}$
PTS: 2 REF: 011014ge TOP: Parallel and Perpendicular Lines
45 ANS: 1
PTS: 2
REF: 080911ge TOP: Equations of Circles
ANS: 2
PTS: 2 REF: 080927ge TOP: Planes
47 ANS: 4
Median $\overline{B F}$ bisects $\overline{A C}$ so that $\overline{C F} \cong \overline{F A}$.
PTS: 2 REF: fall0810ge TOP: Statements
48 ANS:
20. $5 x+10=4 x+30$

$$
x=20
$$

PTS: 2 REF: 060934ge TOP: Similarity KEY: basic
49 ANS: 3 PTS: 2 REF: 081002ge TOP: Planes
50 ANS:
26. $x+3 x+5 x-54=180$

$$
\begin{aligned}
9 x & =234 \\
x & =26
\end{aligned}
$$

PTS: 2
REF: 080933ge
TOP: Interior and Exterior Angles of Triangles
51 ANS: 3

PTS: 2
52 ANS: 2

REF: 060902ge
PTS: 2

TOP: Triangle Congruency
REF: 081015ge TOP: Properties of Transformations

53 ANS:
34. $2 x-12+x+90=180$

$$
\begin{aligned}
3 x+78 & =90 \\
3 x & =102 \\
x & =34
\end{aligned}
$$

PTS: 2

REF: 061031ge
TOP: Interior and Exterior Angles of Triangles
PTS: 2
REF: fall0802ge TOP: Negations
PTS: 2
REF: 060903ge TOP: Identifying Transformations
ANS:
$y=\frac{2}{3} x-9$. The slope of $2 x-3 y=11$ is $-\frac{A}{B}=\frac{-2}{-3}=\frac{2}{3} .-5=\left(\frac{2}{3}\right)(6)+b$
$-5=4+b$
$b=-9$
PTS: 2
REF: 080931ge
TOP: Parallel and Perpendicular Lines
ANS: 4
PTS: 2
REF: 011009 ge TOP: Constructions
ANS: 4
The slope of $y=-\frac{2}{3} x-5$ is $-\frac{2}{3}$. Perpendicular lines have slope that are opposite reciprocals.
PTS: 2 REF: 080917ge TOP: Parallel and Perpendicular Lines
ANS: 4 PTS: 2 REF: 011019ge TOP: Similarity Proofs
61 ANS: 3 PTS: 2 REF: 060928ge TOP: Planes
62 ANS: 3
The diagonals of an isosceles trapezoid are congruent. $5 x+3=11 x-5$.

$$
\begin{aligned}
6 x & =18 \\
x & =3
\end{aligned}
$$

PTS: 2 REF: fall0801ge TOP: Trapezoids
63 ANS: 1 PTS: 2 REF: 061009ge TOP: Converse
64

$$
\begin{aligned}
4(4 x-3) & =3(2 x+8) \\
16 x-12 & =6 x+24 \\
10 x & =36 \\
x & =3.6
\end{aligned}
$$

PTS: 2
REF: 080923ge TOP: Segments Intercepted by Circle
KEY: two chords

65 ANS: 2
Parallel chords intercept congruent arcs. $\mathrm{m} \overparen{A D}=\mathrm{m} \overparen{B C}=60 . \mathrm{m} \angle C D B=\frac{1}{2} \mathrm{~m} \overparen{B C}=30$.
PTS: 2 REF: 060906ge TOP: Chords
66 ANS: 1
The centroid divides each median into segments whose lengths are in the ratio $2: 1 . \quad \overline{G C}=2 \overline{F G}$

$$
\begin{aligned}
\overline{G C}+\overline{F G} & =24 \\
2 \overline{F G}+\overline{F G} & =24 \\
3 \overline{F G} & =24 \\
\overline{F G} & =8
\end{aligned}
$$

PTS: 2 REF: 081018ge TOP: Centroid
67 ANS: 1
If $\angle A$ is at minimum $\left(50^{\circ}\right)$ and $\angle B$ is at minimum $\left(90^{\circ}\right), \angle C$ is at maximum of $40^{\circ}\left(180^{\circ}-\left(50^{\circ}+90^{\circ}\right)\right.$). If $\angle A$ is at maximum $\left(60^{\circ}\right)$ and $\angle B$ is at maximum $\left(100^{\circ}\right), \angle C$ is at minimum of $20^{\circ}\left(180^{\circ}-\left(60^{\circ}+100^{\circ}\right)\right.$).

PTS: 2 REF: 060901ge TOP: Interior and Exterior Angles of Triangles
68 ANS:
$375 \pi L=\pi r l=\pi(15)(25)=375 \pi$
PTS: 2
REF: 081030ge
TOP: Volume and Lateral Area
69 ANS: 3
The lateral edges of a prism are parallel.
PTS: 2 REF: fall0808ge TOP: Solids
70 ANS: 4
$180-(40+40)=100$
PTS: 2 REF: 080903ge TOP: Isosceles Triangle Theorem
71 ANS: 3
PTS: 2
REF: 011007 ge TOP: Isosceles Triangle Theorem
72 ANS: 2

PTS: 2
REF: 061026GE TOP: Arcs Determined by Angles
KEY: inscribed

ANS:

PTS: 2
REF: 011032ge
TOP: Constructions
74 ANS:

PTS: 4 REF: 011037ge TOP: Locus
75 ANS:
Yes, $\mathrm{m} \angle A B D=\mathrm{m} \angle B D C=44180-(93+43)=44 x+19+2 x+6+3 x+5=180$. Because alternate interior

$$
\begin{aligned}
6 x+30 & =180 \\
6 x & =150 \\
x & =25 \\
x+19 & =44
\end{aligned}
$$

angles $\angle A B D$ and $\angle C D B$ are congruent, $\overline{A B}$ is parallel to $\overline{D C}$.
PTS: 4 REF: 081035ge TOP: Parallel Lines and Transversals
76 ANS:
$\overline{J K} \cong \overline{L M}$ because opposite sides of a parallelogram are congruent. $\overline{L M} \cong \overline{L N}$ because of the Isosceles Triangle Theorem. $\overline{L M} \cong \overline{J M}$ because of the transitive property. $J K L M$ is a rhombus because all sides are congruent.

PTS: 4
REF: 011036ge TOP: Special Quadrilaterals

77 ANS:

PTS: 2 REF: 061032ge TOP: Reflections KEY: grids
78 ANS: 1
$d=\sqrt{(-4-2)^{2}+(5-(-5))^{2}}=\sqrt{36+100}=\sqrt{136}=\sqrt{4} \cdot \sqrt{34}=2 \sqrt{34}$.
PTS: 2 REF: 080919ge TOP: Distance
79 ANS: 4
$3 y+1=6 x+4.2 y+1=x-9$

$$
\begin{array}{rlrl}
3 y & =6 x+3 & 2 y & =x-10 \\
y & =2 x+1 & y & =\frac{1}{2} x-5
\end{array}
$$

PTS: 2 REF: fall0822ge TOP: Parallel and Perpendicular Lines
80 ANS: 4
Longest side of a triangle is opposite the largest angle. Shortest side is opposite the smallest angle.
PTS: 2 REF: 081011ge TOP: Angle Side Relationship
81 ANS: 2

$$
\begin{aligned}
x^{2} & =3(x+18) \\
x^{2}-3 x-54 & =0 \\
(x-9)(x+6) & =0 \\
x & =9
\end{aligned}
$$

PTS: 2
REF: fall0817ge TOP: Segments Intercepted by Circle
KEY: tangent and secant
82 ANS: 1
PTS: 2 REF: 061013ge TOP: Tangents
KEY: point of tangency
83 ANS: 2
$M_{x}=\frac{2+(-4)}{2}=-1 . M_{Y}=\frac{-3+6}{2}=\frac{3}{2}$.
PTS: 2
REF: fall0813ge
TOP: Midpoint
84 ANS: 4
PTS: 2
REF: 061015 ge TOP: Identifying Transformations

85 ANS: 2
Because the triangles are similar, $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle D}=1$
PTS: 2 REF: 011022ge TOP: Similarity KEY: perimeter and area
86 ANS:
Contrapositive-If two angles of a triangle are not congruent, the sides opposite those angles are not congruent.
PTS: 2 REF: fall0834ge TOP: Conditional Statements
87 ANS: 2
$M_{x}=\frac{-2+6}{2}=2 . M_{y}=\frac{-4+2}{2}=-1$
$\begin{array}{llll}\text { PTS: } 2 & \text { REF: 080910ge } & \text { TOP: Midpoint } & \\ \text { ANS: } 3 & \text { PTS: } 2 & \text { REF: 081026ge } & \text { TOP: Contrapositive }\end{array}$
89 ANS: 1
$\angle A=\frac{(n-2) 180}{n}=\frac{(5-2) 180}{5}=108 \angle A E B=\frac{180-108}{2}=36$
PTS: 2 REF: 081022ge TOP: Interior and Exterior Angles of Polygons
90 ANS:

PTS: 2 REF: 081033ge TOP: Locus
91

PTS: 2
REF: fall0805ge
TOP: Quadratic-Linear Systems

92 ANS: 2

$$
\begin{aligned}
x^{2}+(x+7)^{2} & =13^{2} \\
x^{2}+x^{2}+7 x+7 x+49 & =169 \\
2 x^{2}+14 x-120 & =0 \\
x^{2}+7 x-60 & =0 \\
(x+12)(x-5) & =0 \\
x & =5 \\
2 x & =10
\end{aligned}
$$

PTS: 2 REF: 061024ge TOP: Pythagorean Theorem
93 ANS: 2
Longest side of a triangle is opposite the largest angle. Shortest side is opposite the smallest angle.
PTS: 2 REF: 060911ge TOP: Angle Side Relationship
94 ANS: 1
After the translation, the coordinates are $A^{\prime}(-1,5)$ and $B^{\prime}(3,4)$. After the dilation, the coordinates are $A^{\prime \prime}(-2,10)$ and $B^{\prime \prime}(6,8)$.

PTS: 2 REF: fall0823ge TOP: Compositions of Transformations
95 ANS: 4
The marked 60° angle and the angle above it are on the same straight line and supplementary. This unmarked supplementary angle is 120°. Because the unmarked 120° angle and the marked 120° angle are alternate exterior angles and congruent, $d \| e$.

PTS: 2 REF: 080901ge TOP: Parallel Lines and Transversals
96 ANS:
$\overline{A C} \cong \overline{E C}$ and $\overline{D C} \cong \overline{B C}$ because of the definition of midpoint. $\angle A C B \cong \angle E C D$ because of vertical angles.
$\triangle A B C \cong \triangle E D C$ because of SAS. $\angle C D E \cong \angle C B A$ because of CPCTC. $\overline{B D}$ is a transversal intersecting $\overline{A B}$ and
$\overline{E D}$. Therefore $\overline{A B} \| \overline{D E}$ because $\angle C D E$ and $\angle C B A$ are congruent alternate interior angles.

PTS: 6
REF: 060938ge
TOP: Triangle Proofs
97 ANS: 1
PTS: 2
REF: 060920ge TOP: Graphing Circles

98 ANS: 4
$\triangle A B C \sim \triangle D B E . \frac{\overline{A B}}{\overline{D B}}=\frac{\overline{A C}}{\overline{D E}}$

$$
\begin{aligned}
\frac{9}{2} & =\frac{x}{3} \\
x & =13.5
\end{aligned}
$$

PTS: 2
REF: 060927ge TOP: Side Splitter Theorem
99 ANS: 2
The slope of a line in standard form is $-\frac{A}{B}$, so the slope of this line is $\frac{-2}{-1}=2$. A parallel line would also have a slope of 2. Since the answers are in slope intercept form, find the y-intercept: $\quad y=m x+b$

$$
\begin{aligned}
-11 & =2(-3)+b \\
-5 & =b
\end{aligned}
$$

PTS: 2 REF: fall0812ge TOP: Parallel and Perpendicular Lines
100 ANS: 1
Translations and reflections do not affect distance.
101

PTS: 2
REF: 080908ge TOP: Properties of Transformations
ANS: 1
PTS: 2
REF: 061012ge
TOP: Constructions
PTS: 2
REF: 081028ge
TOP: Centroid, Orthocenter, Incenter and Circumcenter
103
ANS: 4
ANS:

PTS: 2
REF: fall0830ge
TOP: Properties of Transformations

105 ANS: 4

PTS: 2 REF: 081001ge TOP: Triangle Congruency
106 ANS: 3
$\frac{36+20}{2}=28$
PTS: 2
REF: 061019 ge TOP: Arcs Determined by Angles
KEY: inside circle
ANS:

PTS: 2
REF: 081032ge
TOP: Constructions
108
109
ANS: 3
PTS: 2
REF: 011010ge TOP: Equations of Circles
ANS:

PTS: 2
REF: 061033ge
TOP: Locus
110 ANS: 4
The slope of a line in standard form is $-\frac{A}{B}$, so the slope of this line is $\frac{-4}{2}=-2$. A parallel line would also have a slope of -2 . Since the answers are in slope intercept form, find the y-intercept: $y=m x+b$

$$
3=-2(7)+b
$$

$$
17=b
$$

PTS: 2
REF: 081010ge
TOP: Parallel and Perpendicular Lines

111 ANS:

PTS: 2 REF: 080932ge TOP: Constructions
112 ANS: 1
$3 x^{2}+18 x+24$
$3\left(x^{2}+6 x+8\right)$
$3(x+4)(x+2)$
PTS: 2 REF: fall0815ge TOP: Volume
113 ANS:
$2 \sqrt{3} \cdot x^{2}=3 \cdot 4$

$$
x=\sqrt{12}=2 \sqrt{3}
$$

PTS: 2 REF: fall0829ge TOP: Similarity KEY: altitude
114 ANS: 1

$$
\begin{aligned}
-2\left(-\frac{1}{2} y\right. & =6 x+10) \\
y & =-12 x-20
\end{aligned}
$$

PTS: 2 REF: 061027ge TOP: Parallel and Perpendicular Lines
115 ANS: 4
The slope of $y=-3 x+2$ is -3 . The perpendicular slope is $\frac{1}{3} \cdot-1=\frac{1}{3}(3)+b$

$$
\begin{aligned}
-1 & =1+b \\
b & =-2
\end{aligned}
$$

PTS: 2 REF: 011018ge TOP: Parallel and Perpendicular Lines
116 ANS: 1
PTS: 2
REF: 060918ge TOP: Planes
117 ANS:
$y=-2 x+14$. The slope of $2 x+y=3$ is $\frac{-A}{B}=\frac{-2}{1}=-2 . y=m x+b$

$$
\begin{aligned}
& 4=(-2)(5)+b \\
& b=14
\end{aligned}
$$

PTS: 2
REF: 060931ge TOP: Parallel and Perpendicular Lines

118 ANS: 3

$$
\begin{aligned}
(x+3)^{2}-4 & =2 x+5 \\
x^{2}+6 x+9-4 & =2 x+5 \\
x^{2}+4 x & =0 \\
x(x+4) & =0 \\
x & =0,-4
\end{aligned}
$$

PTS: 2
REF: 081004ge
TOP: Quadratic-Linear Systems
119 ANS: 3

$$
\begin{aligned}
4(x+4) & =8^{2} \\
4 x+16 & =64 \\
x & =12
\end{aligned}
$$

PTS: 2 REF: 060916ge TOP: Segments Intercepted by Circle KEY: tangent and secant
120 ANS:
70. $3 x+5+3 x+5+2 x+2 x=180$

$$
\begin{aligned}
10 x+10 & =360 \\
10 x & =350 \\
x & =35 \\
2 x & =70
\end{aligned}
$$

PTS: 2
REF: 081029ge TOP: Trapezoids
121 ANS: 4
$M_{x}=\frac{-6+1}{2}=-\frac{5}{2} . M_{y}=\frac{1+8}{2}=\frac{9}{2}$.
PTS: 2
REF: 060919ge
TOP: Midpoint
122
ANS:

PTS: 2
REF: fall0832ge
TOP: Constructions

123 ANS:
110. $6 x+20=x+40+4 x-5$ $6 x+20=5 x+35$
$x=15$
$6((15)+20=110$

PTS: 2
REF: 081031ge TOP: Isosceles Triangle Theorem
124 ANS:
$\overline{B D} \cong \overline{D B}$ (Reflexive Property); $\triangle A B D \cong \triangle C D B$ (SSS); $\angle B D C \cong \angle A B D$ (СРСТС).

PTS: 4
REF: 061035ge TOP: Quadrilateral Proofs
ANS: 1
Since $\overline{A C} \cong \overline{B C}, \mathrm{~m} \angle A=\mathrm{m} \angle B$ under the Isosceles Triangle Theorem.
PTS: 2
REF: fall0809ge TOP: Triangles in the Coordinate Plane
126
ANS: 3
$m=\frac{-A}{B}=-\frac{3}{4}$
PTS: 2
REF: 011025ge TOP: Parallel and Perpendicular Lines
127 ANS: 4
$\overline{B G}$ is also an angle bisector since it intersects the concurrence of $\overline{C D}$ and $\overline{A E}$
PTS: 2 REF: 061025ge KEY: Centroid, Orthocenter, Incenter and Circumcenter

128 ANS:

PTS: 2
REF: 060932ge TOP: Locus
129 ANS:
37. Since $\overline{D E}$ is a midsegment, $A C=14.10+13+14=37$

PTS: 2 REF: 061030ge TOP: Midsegments
130 ANS:
18. $V=\frac{1}{3} B h=\frac{1}{3} l w h$

$$
\begin{aligned}
288 & =\frac{1}{3} \cdot 8 \cdot 6 \cdot h \\
288 & =16 h \\
18 & =h
\end{aligned}
$$

PTS: 2 REF: 061034ge TOP: Volume
131 ANS:
20. The sides of the triangle formed by connecting the midpoints are half the sides of the original triangle.

PTS: 2
132
ANS: 4

REF: 060929ge
PTS: 2

TOP: Midsegments
REF: 061003ge TOP: Solids

133 ANS:

PTS: 4
REF: fall0835ge TOP: Midsegments
134 ANS: 1
The closer a chord is to the center of a circle, the longer the chord.
PTS: 2 REF: 011005ge TOP: Chords
135 ANS: 3

The sum of the interior angles of a pentagon is $(5-2) 180=540$.
PTS: 2 REF: 011023ge TOP: Interior and Exterior Angles of Polygons
ANS: 3

PTS: 2 REF: 061011ge TOP: Quadratic-Linear Systems
137
ANS: 1
Opposite sides of a parallelogram are congruent. $4 x-3=x+3 . S V=(2)+3=5$.

$$
\begin{aligned}
3 x & =6 \\
x & =2
\end{aligned}
$$

PTS: 2

REF: 011013ge
PTS: 2

TOP: Parallelograms
REF: 011006ge TOP: Isometries

139 ANS:

PTS: 4
ANS: 1
REF: 080936ge
TOP: Locus

ANS: 3

PTS: 2 REF: 080920ge TOP: Midsegments
142
ANS:
$y=\frac{2}{3} x+1.2 y+3 x=6 \quad . y=m x+b$

$$
\begin{array}{rlrl}
2 y & =-3 x+6 & & 5=\frac{2}{3}(6)+b \\
y & =-\frac{3}{2} x+3 & 5 & =4+b \\
m & =-\frac{3}{2} & 1 & =b \\
m_{\perp} & =\frac{2}{3} & y & =\frac{2}{3} x+1
\end{array}
$$

PTS: 4

REF: 061036ge
PTS: 2

TOP: Parallel and Perpendicular Lines
REF: 061022ge TOP: Parallel and Perpendicular Lines

144
ANS:

$$
\begin{array}{rlrlrl}
8 x-5 & =3 x+30 . & 4 z-8 & =3 z . & 9 y+8+5 y-2 & =90 . \\
5 x & =35 & z=8 & 14 y+6 & =90 \\
x & =7 & & 14 y & =84 \\
y & =6
\end{array}
$$

PTS: 6
REF: 061038ge TOP: Special Parallelograms
145 ANS: 1
$4 x=6 \cdot 10$

$x=15$

PTS: 2 REF: 081017ge TOP: Segments Intercepted by Circle
KEY: two chords
ANS: 4 PTS: 2 REF: 060922ge TOP: Equations of Circles ANS: 2 PTS: 2 REF: fall0806ge TOP: Planes
ANS: 3
The slope of $y=x+2$ is 1 . The slope of $y-x=-1$ is $\frac{-A}{B}=\frac{-(-1)}{1}=1$.
PTS: 2 REF: 080909ge TOP: Parallel and Perpendicular Lines
149 ANS:
22.4. $\quad V=\pi r^{2} h$

$$
\begin{aligned}
12566.4 & =\pi r^{2} \cdot 8 \\
r^{2} & =\frac{12566.4}{8 \pi} \\
r & \approx 22.4
\end{aligned}
$$

PTS: 2 REF: fall0833ge TOP: Volume
150 ANS: 3
PTS: 2
REF: 061004 ge TOP: Isosceles Triangle Theorem

151
ANS:
$(6,-4) . C_{x}=\frac{Q_{x}+R_{x}}{2} . C_{y}=\frac{Q_{y}+R_{y}}{2}$.

$$
\begin{array}{rlrl}
3.5 & =\frac{1+R_{x}}{2} & 2 & =\frac{8+R_{y}}{2} \\
7 & =1+R_{x} & 4 & =8+R_{y} \\
6 & =R_{x} & -4 & =R_{y}
\end{array}
$$

PTS: 2 REF: 011031ge TOP: Midpoint
152 ANS: 2
The slope of $y=\frac{1}{2} x+5$ is $\frac{1}{2}$. The slope of a perpendicular line is $-2 . y=m x+b \quad$.

$$
\begin{aligned}
& 5=(-2)(-2)+b \\
& b=1
\end{aligned}
$$

PTS: 2 REF: 060907ge TOP: Parallel and Perpendicular Lines
153 ANS: 3
$V=\pi r^{2} h=\pi \cdot 6^{2} \cdot 27=972 \pi$
PTS: 2 REF: 011027ge TOP: Volume
154 ANS:
5. $\frac{3}{x}=\frac{6+3}{15}$
$9 x=45$

$$
x=5
$$

PTS: 2 REF: 011033ge TOP: Side Splitter Theorem
155 ANS: 3
PTS: 2
REF: 060925ge TOP: Constructions
ANS:
3. The non-parallel sides of an isosceles trapezoid are congruent. $2 x+5=3 x+2$

$$
x=3
$$

PTS: 2 REF: 080929ge TOP: Trapezoids
ANS:
$\angle D, \angle G$ and 24° or $\angle E, \angle F$ and 84°. $\mathrm{m} \overparen{F E}=\frac{2}{15} \times 360=48$. Since the chords forming $\angle D$ and $\angle G$ are intercepted by $\overparen{F E}$, their measure is $24^{\circ} . \mathrm{m} \overparen{G D}=\frac{7}{15} \times 360=168$. Since the chords forming $\angle E$ and $\angle F$ are intercepted by $\overparen{G D}$, their measure is 84°.

PTS: 4
REF: fall0836ge TOP: Arcs Determined by Angles
KEY: inscribed

158 ANS: 1

$$
\begin{aligned}
a^{2}+(5 \sqrt{2})^{2} & =(2 \sqrt{15})^{2} \\
a^{2}+(25 \times 2) & =4 \times 15 \\
a^{2}+50 & =60 \\
a^{2} & =10 \\
a & =\sqrt{10}
\end{aligned}
$$

PTS: 2
159 ANS: 1
160 ANS: 4
ANS: 1
ANS: 3

REF: 011016ge
TOP: Pythagorean Theorem
$2 y=-6 x+8$ Perpendicular lines have slope the opposite and reciprocal of each other.
$y=-3 x+4$
$m=-3$
$m_{\perp}=\frac{1}{3}$

PTS: 2
163 ANS: 2
REF: 081024ge
TOP: Parallel and Perpendicular Lines
PTS: 2
REF: 061020ge TOP: Constructions
164 ANS:
$15+5 \sqrt{5}$.

PTS: 4
165 ANS: 2
REF: 060936ge
TOP: Triangles in the Coordinate Plane
PTS: 2
REF: 011003ge
TOP: Properties of Transformations
166 ANS: 4
$(n-2) 180=(8-2) 180=1080 \cdot \frac{1080}{8}=135$.

PTS: 2
REF: fall0827ge
TOP: Interior and Exterior Angles of Polygons

167
ANS: 2
The length of the midsegment of a trapezoid is the average of the lengths of its bases. $\frac{x+30}{2}=44$.

$$
\begin{aligned}
x+30 & =88 \\
x & =58
\end{aligned}
$$

PTS: 2 REF: 011001ge TOP: Trapezoids
168 ANS: 2
Adjacent sides of a rectangle are perpendicular and have opposite and reciprocal slopes.
PTS: 2 REF: 061028ge TOP: Quadrilaterals in the Coordinate Plane
169 ANS: 2
$(d+4) 4=12(6)$
$4 d+16=72$
$d=14$
$r=7$
PTS: 2 REF: 061023ge TOP: Segments Intercepted by Circle
KEY: two secants
170 ANS: 2 PTS: 2 REF: 011020ge TOP: Graphing Circles
171 ANS: 3

PTS: 2
REF: 061016ge TOP: Trapezoids
172 ANS: 2
A dilation affects distance, not angle measure.
PTS: 2 REF: 080906ge TOP: Identifying Transformations
173 ANS: 2 PTS: 2 REF: 061007ge TOP: Parallel Lines and Transversals
174 ANS: 3
Because $\overline{O C}$ is a radius, its length is 5. Since $C E=2 O E=3 . \triangle E D O$ is a 3-4-5 triangle. If $E D=4, B D=8$.
PTS: 2 REF: fall0811ge TOP: Chords
175 ANS:
67. $\frac{180-46}{2}=67$

PTS: 2 REF: 011029ge TOP: Isosceles Triangle Theorem

176 ANS: 4
PTS: 2
REF: 060912ge TOP: Locus
ANS: 3
PTS: 2
REF: 080913ge
TOP: Triangle Congruency
178 ANS: 3
PTS: 2
REF: fall0825ge
TOP: Centroid, Orthocenter, Incenter and Circumcenter
179 ANS: 4
The radius is 4. $r^{2}=16$.
PTS: 2
REF: 061014ge
TOP: Equations of Circles
ANS: 4
$x^{2}=(4+5) \times 4$
$x^{2}=36$
$x=6$

PTS: 2
REF: 011008ge TOP: Segments Intercepted by Circle
KEY: tangent and secant
181 ANS: 1

PTS: 2 REF: 081003ge TOP: Midsegments
182 ANS: 2
$y+\frac{1}{2} x=4 \quad 3 x+6 y=12$
$\begin{array}{rlrl}y=-\frac{1}{2} x+4 & 6 y & =-3 x+12 \\ 1 & y & =-\frac{3}{6} x+2\end{array}$
$m=-\frac{1}{2}$
$y=-\frac{1}{2} x+2$

PTS: 2 REF: 081014ge TOP: Parallel and Perpendicular Lines
183 ANS: 4
$180-(50+30)=100$

PTS: 2
184
ANS: 1

REF: 081006ge
PTS: 2
KEY: two tangents

185 ANS: 1
$\overline{A B}=10$ since $\triangle A B C$ is a 6-8-10 triangle. $6^{2}=10 x$
$3.6=x$

PTS: 2
REF: 060915ge TOP: Similarity
KEY: leg
186 ANS: 2

PTS: 2

REF: 081007ge TOP: Triangle Congruency
187 ANS:
2.4. $5 a=4^{2} \quad 5 b=3^{2} \quad h^{2}=a b$
$a=3.2 \quad b=1.8 \quad h^{2}=3.2 \cdot 1.8$

$$
h=\sqrt{5.76}=2.4
$$

PTS: 4 REF: 081037ge TOP: Similarity KEY: altitude
ANS:
Because $\overline{A B} \| \overline{D C}, \overparen{A D} \cong \overparen{B C}$ since parallel chords intersect congruent arcs. $\angle B D C \cong \angle A C D$ because inscribed angles that intercept congruent arcs are congruent. $\overline{A D} \cong \overline{B C}$ since congruent chords intersect congruent arcs. $\overline{D C} \cong \overline{C D}$ because of the reflexive property. Therefore, $\triangle A C D \cong \triangle B D C$ because of SAS.

PTS: 6
REF: fall0838ge TOP: Circle Proofs
189 ANS:

$$
>
$$

PTS: 2
REF: 060930ge
TOP: Constructions

190 ANS:
18. If the ratio of $T A$ to $A C$ is 1:3, the ratio of $T E$ to $E S$ is also 1:3. $x+3 x=24.3(6)=18$.

$$
x=6
$$

| PTS: 4 | REF: | 060935ge | TOP: Tangents | KEY: common tangency |
| :--- | ---: | :--- | :--- | :--- | :--- |
| ANS: 4 | PTS: 2 | REF: 081023ge | TOP: Similarity | |
| KEY: perimeter and area | | | | |
| ANS: 4 | PTS: 2 | REF: 060904ge | TOP: Solids | |
| ANS: 3 | PTS: 2 | REF: 080928ge | TOP: Tangents | |
| KEY: common tangency | | | | |
| ANS: 3 | PTS: 2 | REF: 061017ge | TOP: Planes | |
| ANS: | | | | |

2016. $V=\frac{1}{3} B h=\frac{1}{3} s^{2} h=\frac{1}{3} 12^{2} \cdot 42=2016$

| PTS: 2 | REF: 080930 ge | TOP: Volume | | |
| :--- | :---: | :--- | :--- | :--- | :--- |
| ANS: 2 | PTS: 2 | REF: 011004ge | TOP: Constructions | |
| ANS: 4 | PTS: 2 | REF: 061018ge | TOP: Identifying Transformations | |
| ANS: 4 | PTS: 2 | REF: fall0824ge | TOP: Tangents | |
| KEY: common tangency | | | | |
| ANS: 4 | PTS: 2 | REF: 080915ge | TOP: Identifying Transformations | |
| ANS: 2 | PTS: 2 | REF: 060910ge | TOP: Equations of Circles | |

ANS:

$\overline{F E} \cong \overline{F E}$ (Reflexive Property); $\overline{A E}-\overline{F E} \cong \overline{F C}-\overline{E F}$ (Line Segment Subtraction Theorem); $\overline{A F} \cong \overline{C E}$ (Substitution); $\angle B F A \cong \angle D E C$ (All right angles are congruent); $\triangle B F A \cong \triangle D E C$ (AAS); $\overline{A B} \cong \overline{C D}$ and $\overline{B F} \cong \overline{D E}$ (CPCTC); $\angle B F C \cong \angle D E A$ (All right angles are congruent); $\triangle B F C \cong \triangle D E A$ (SAS); $\overline{A D} \cong \overline{C B}$ (CPCTC); $A B C D$ is a parallelogram (opposite sides of quadrilateral $A B C D$ are congruent)
$\begin{array}{lllll}\text { PTS: } 6 & \text { REF: 080938ge } & \text { TOP: Special Quadrilaterals } \\ \text { ANS: } 3 & \text { PTS: } 2 & \text { REF: } 081021 \mathrm{ge} \quad \text { TOP: Properties of Transformations }\end{array}$
ANS:
36, because a dilation does not affect angle measure. 10 , because a dilation does affect distance.
PTS: 4 REF: 011035ge TOP: Properties of Transformations
204 ANS: 2
$6+17>22$
PTS: 2
205 ANS: 3
REF: 080916ge
TOP: Triangle Inequality Theorem
REF: 080902ge TOP: Constructions

ANS:

$\overline{A B} \| \overline{C D}$ and $\overline{A D} \| \overline{C B}$ because their slopes are equal. $A B C D$ is a parallelogram because opposite side are parallel. $\overline{A B} \neq \overline{B C} . A B C D$ is not a rhombus because all sides are not equal.
$\overline{A B} \sim \perp \overline{B C}$ because their slopes are not opposite reciprocals. $A B C D$ is not a rectangle because $\angle A B C$ is not a right angle.

PTS: 4 REF: 081038ge TOP: Quadrilaterals in the Coordinate Plane
207 ANS: 2
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.
PTS: 2 REF: 060914ge TOP: Centroid
208 ANS: 1
In an equilateral triangle, each interior angle is 60° and each exterior angle is $120^{\circ}\left(180^{\circ}-120^{\circ}\right)$. The sum of the three interior angles is 180° and the sum of the three exterior angles is 360°.

PTS: 2 REF: 060909ge TOP: Interior and Exterior Angles of Triangles
209 ANS: 2
$\frac{87+35}{2}=\frac{122}{2}=61$
PTS: 2 REF: 011015ge TOP: Arcs Determined by Angles
KEY: inside circle
210 ANS: 2
$\frac{140-\overline{R S}}{2}=40$
$140-\overline{R S}=80$

$$
\overline{R S}=60
$$

PTS: 2 REF: 081025ge TOP: Arcs Determined by Angles
KEY: outside circle
211 ANS: 4
$d=\sqrt{(-3-1)^{2}+(2-0)^{2}}=\sqrt{16+4}=\sqrt{20}=\sqrt{4} \cdot \sqrt{5}=2 \sqrt{5}$
PTS: 2
REF: 011017ge TOP: Distance
212 ANS: 4
(4) is not true if $\angle P Q R$ is obtuse.

PTS: 2 REF: 060924ge TOP: Exterior Angle Theorem

213 ANS: 2
$7+18>6+12$
PTS: 2 REF: fall0819ge TOP: Triangle Inequality Theorem
214 ANS: 3
215 ANS: 1
216 ANS: 1
217 ANS: 3
218 ANS: 2

PTS: 2 REF: 080924ge TOP: Negations
PTS: 2 REF: 081008ge TOP: Planes
PTS: 2 REF: 081009ge TOP: Equations of Circles
PTS: 2 REF: 060908ge TOP: Identifying Transformations
$\angle A C B$ and $\angle E C D$ are congruent vertical angles and $\angle C A B \cong \angle C E D$.

PTS: 2 REF: 060917ge TOP: Similarity Proofs
ANS: 1 PTS: 2 REF: 061010ge TOP: Angle Side Relationship
ANS:
Midpoint: $\left(\frac{-4+4}{2}, \frac{2+(-4)}{2}\right)=(0,-1)$. Distance: $d=\sqrt{(-4-4)^{2}+(2-(-4))^{2}}=\sqrt{100}=10$

$$
r=5
$$

$$
r^{2}=25
$$

$x^{2}+(y+1)^{2}=25$
PTS: 2 REF: 061037ge TOP: Equations of Circles
221 ANS: $y=\frac{4}{3} x-6 . M_{x}=\frac{-1+7}{2}=3 \quad$ The perpendicular bisector goes through $(3,-2)$ and has a slope of $\frac{4}{3}$.

$$
\begin{aligned}
& M_{y}=\frac{1+(-5)}{2}=-2 \\
& m=\frac{1-(-5)}{-1-7}=-\frac{3}{4}
\end{aligned}
$$

$y-y_{M}=m\left(x-x_{M}\right)$.

$$
y-1=\frac{4}{3}(x-2)
$$

PTS: 4
REF: 080935ge
TOP: Perpendicular Bisector

222 ANS:

$(x+1)^{2}+(y-2)^{2}=36$
PTS: 2 REF: 081034ge TOP: Equations of Circles
223 ANS:

PTS: 6
REF: 011038ge TOP: Quadratic-Linear Systems
224 ANS: 4
$d=\sqrt{(-6-2)^{2}+(4-(-5))^{2}}=\sqrt{64+81}=\sqrt{145}$
PTS: 2
REF: 081013ge
TOP: Distance
225 ANS: 4
sum of interior $\angle \mathrm{s}=$ sum of exterior $\angle \mathrm{s}$

$$
\begin{aligned}
(n-2) 180 & =n\left(180-\frac{(n-2) 180}{n}\right) \\
180 n-360 & =180 n-180 n+360 \\
180 n & =720 \\
n & =4
\end{aligned}
$$

PTS: 2
226 ANS: 4
227 ANS: 2
REF: 081016ge
TOP: Interior and Exterior Angles of Polygons
PTS: 2
PTS: 2
REF: 011012ge
TOP: Planes
REF: 080921ge TOP: Equations of Circles

228 ANS: 4

PTS: 2
REF: 080912ge TOP: Quadratic-Linear Systems

