JEFFERSON MATH PROJECT REGENTS BY PERFORMANCE INDICATOR: TOPIC

NY Geometry Regents Exam Questions from Fall 2008 to August 2010 Sorted by PI: Topic

 (Answer Key)www.jmap.org

$\mathscr{D}_{\text {ear }}{ }^{\text {Stir }}$

Ihave to ackno fege the reciept of your favor of $\mathscr{M}_{\text {May }}$ 14. in which you mention that you have finisthed the 6. first focks, of Eucfid, pfane trigonometry, surveying \& afgebra and ask whether It think a further poursuit of thät branch of science would be usefuf to you. there are some ppropositions in the fatter Fooks of
 them. trigonometry, so far as thi's, is most vafuable to every man, there is scarcely a day in which he wiff not resort to it for some of the purposes of common fife. the science of cafculation afso is indispensitfle as far as the extraction of the square \& cube roots; ©̈t Igebra as far as the quadratic equation \& the use of fogarithims are often of vafue in ordinary cases: But aff beyond theses is but a fuxury; a deficious fuxury indeed; but not to be indufged in by one who is to have aprofession to foflow for fits subsistence. in thits fight \mathcal{I} view the conic sections, curves of the higher orders, perháaps even spherical trigonometry, ©Ct'Igebraical operations beyond thé addimension, andffuxions.
Letter from Thomas Jefferson to William G. Munford, Monticello, June 18, 1799.

Geometry Regents Exam Questions by Performance Indicator: Topic Answer Section

1 ANS: 2
The slope of a line in standard form is $-\frac{A}{B}$ so the slope of this line is $-\frac{5}{3}$ Perpendicular lines have slope that are the opposite and reciprocal of each other.

PTS: 2 REF: fall0828ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
2 ANS: 4
The slope of $y=-\frac{2}{3} x-5$ is $-\frac{2}{3}$. Perpendicular lines have slope that are opposite reciprocals.
PTS: 2 REF: 080917ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
3 ANS: 3
$m=\frac{-A}{B}=-\frac{3}{4}$
PTS: 2 REF: 011025ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
4 ANS: 2 PTS: 2 REF: 061022ge STA: G.G. 62
TOP: Parallel and Perpendicular Lines
5 ANS: 3
$2 y=-6 x+8$ Perpendicular lines have slope the opposite and reciprocal of each other.

$$
\begin{aligned}
y & =-3 x+4 \\
m & =-3 \\
m_{\perp} & =\frac{1}{3}
\end{aligned}
$$

PTS: 2 REF: 081024ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
6 ANS: 4
$3 y+1=6 x+4.2 y+1=x-9$

$$
\begin{array}{rlrl}
3 y & =6 x+3 & 2 y & =x-10 \\
y & =2 x+1 & y & =\frac{1}{2} x-5
\end{array}
$$

PTS: 2 REF: fall0822ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
ANS: 2
The slope of $2 x+3 y=12$ is $-\frac{A}{B}=-\frac{2}{3}$. The slope of a perpendicular line is $\frac{3}{2}$. Rewritten in slope intercept form,
(2) becomes $y=\frac{3}{2} x+3$.

PTS: 2
REF: 060926ge
STA: G.G. 63 TOP: Parallel and Perpendicular Lines

8 ANS: 3
The slope of $y=x+2$ is 1 . The slope of $y-x=-1$ is $\frac{-A}{B}=\frac{-(-1)}{1}=1$.
PTS: 2 REF: 080909ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
9 ANS: 3
$m=\frac{-A}{B}=\frac{5}{2} . m=\frac{-A}{B}=\frac{10}{4}=\frac{5}{2}$
PTS: 2 REF: 011014ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
10 ANS: 1
$-2\left(-\frac{1}{2} y=6 x+10\right)$

$$
y=-12 x-20
$$

PTS: 2 REF: 061027ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
11 ANS: 2
$y+\frac{1}{2} x=4 \quad 3 x+6 y=12$
$y=-\frac{1}{2} x+4 \quad 6 y=-3 x+12$
$y=-\frac{1}{2} x+4 \quad y=-\frac{3}{6} x+2$
$m=-\frac{1}{2} \quad y=-\frac{1}{2} x+2$
PTS: 2 REF: 081014ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
12 ANS: 2
The slope of $y=\frac{1}{2} x+5$ is $\frac{1}{2}$. The slope of a perpendicular line is $-2 . y=m x+b$

$$
\begin{aligned}
& 5=(-2)(-2)+b \\
& b=1
\end{aligned}
$$

PTS: 2 REF: 060907ge STA: G.G. 64 TOP: Parallel and Perpendicular Lines
13 ANS: 4
The slope of $y=-3 x+2$ is -3 . The perpendicular slope is $\frac{1}{3} \cdot-1=\frac{1}{3}(3)+b$

$$
\begin{aligned}
-1 & =1+b \\
b & =-2
\end{aligned}
$$

PTS: 2
REF: 011018ge
STA: G.G. 64
TOP: Parallel and Perpendicular Lines

14 ANS:

$$
\begin{aligned}
& y=\frac{2}{3} x+1.2 y+3 x=6 \quad . y=m x+b \\
& 2 y=-3 x+6 \quad 5=\frac{2}{3}(6)+b \\
& y=-\frac{3}{2} x+3 \quad 5=4+b \\
& m=-\frac{3}{2} \quad 1=b \\
& m_{\perp}=\frac{2}{3} \quad y=\frac{2}{3} x+1
\end{aligned}
$$

PTS: 4 REF: 061036ge STA: G.G. 64 TOP: Parallel and Perpendicular Lines
15 ANS: 2
The slope of a line in standard form is $-\frac{A}{B}$, so the slope of this line is $\frac{-2}{-1}=2$. A parallel line would also have a slope of 2. Since the answers are in slope intercept form, find the y-intercept: $\quad y=m x+b$

$$
\begin{aligned}
-11 & =2(-3)+b \\
-5 & =b
\end{aligned}
$$

PTS: 2 REF: fall0812ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
16 ANS: 4
The slope of a line in standard form is $-\frac{A}{B}$, so the slope of this line is $\frac{-4}{2}=-2$. A parallel line would also have a slope of -2 . Since the answers are in slope intercept form, find the y-intercept: $y=m x+b$

$$
\begin{aligned}
3 & =-2(7)+b \\
17 & =b
\end{aligned}
$$

PTS: 2 REF: 081010ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
17 ANS:
$y=-2 x+14$. The slope of $2 x+y=3$ is $\frac{-A}{B}=\frac{-2}{1}=-2 . y=m x+b$

$$
\begin{aligned}
& 4=(-2)(5)+b \\
& b=14
\end{aligned}
$$

PTS: 2 REF: 060931ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
18 ANS:
$y=\frac{2}{3} x-9$. The slope of $2 x-3 y=11$ is $-\frac{A}{B}=\frac{-2}{-3}=\frac{2}{3} .-5=\left(\frac{2}{3}\right)(6)+b$

$$
\begin{aligned}
-5 & =4+b \\
b & =-9
\end{aligned}
$$

PTS: 2
REF: 080931ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines

19 ANS:
$y=\frac{4}{3} x-6 . \quad M_{x}=\frac{-1+7}{2}=3 \quad$ The perpendicular bisector goes through $(3,-2)$ and has a slope of $\frac{4}{3}$.

$$
\begin{aligned}
& M_{y}=\frac{1+(-5)}{2}=-2 \\
& m=\frac{1-(-5)}{-1-7}=-\frac{3}{4}
\end{aligned}
$$

$y-y_{M}=m\left(x-x_{M}\right)$.

$$
y-1=\frac{4}{3}(x-2)
$$

PTS: 4
REF: 080935ge
STA: G.G. 68
TOP: Perpendicular Bisector
20 ANS: 3

PTS: 2
21 ANS: 1
$y=x^{2}-4 x=(4)^{2}-4(4)=0 .(4,0)$ is the only intersection.

PTS: 2 REF: 060923ge STA: G.G. 70 TOP: Quadratic-Linear Systems
22
ANS: 3

PTS: 2
REF: 061011ge
STA: G.G. 70
TOP: Quadratic-Linear Systems

23 ANS: 4

$$
\begin{aligned}
& y+x=4 . \begin{array}{lll}
x^{2}-6 x+10=-x+4 . & y+x=4 . & y+2=4 \\
y=-x+4 & & y+3=4 \quad y=2 \\
x^{2}-5 x+6=0 & y=1 \\
(x-3)(x-2)=0 & y=3
\end{array} \\
& x=3 \text { or } 2
\end{aligned}
$$

PTS: 2 REF: 080912ge STA: G.G. 70 TOP: Quadratic-Linear Systems
24 ANS: 3

$$
\begin{aligned}
(x+3)^{2}-4 & =2 x+5 \\
x^{2}+6 x+9-4 & =2 x+5 \\
x^{2}+4 x & =0 \\
x(x+4) & =0 \\
x & =0,-4
\end{aligned}
$$

PTS: 2
REF: 081004ge STA: G.G. 70
TOP: Quadratic-Linear Systems

PTS: 6
REF: 011038ge
STA: G.G. 70
TOP: Quadratic-Linear Systems
26
ANS: 2
$M_{x}=\frac{2+(-4)}{2}=-1 . M_{Y}=\frac{-3+6}{2}=\frac{3}{2}$.

PTS: 2
REF: fall0813ge
STA: G.G. 66
TOP: Midpoint

27 ANS: 4
$M_{x}=\frac{-6+1}{2}=-\frac{5}{2} . M_{y}=\frac{1+8}{2}=\frac{9}{2}$.
PTS: 2 REF: 060919ge STA: G.G. 66 TOP: Midpoint
28 ANS: 2
$M_{x}=\frac{-2+6}{2}=2 . M_{y}=\frac{-4+2}{2}=-1$

PTS: 2 REF: 080910ge STA: G.G. 66 TOP: Midpoint
29 ANS:
$(6,-4) . \quad C_{x}=\frac{Q_{x}+R_{x}}{2} . C_{y}=\frac{Q_{y}+R_{y}}{2}$.

$$
\begin{array}{rlrl}
3.5 & =\frac{1+R_{x}}{2} & 2 & =\frac{8+R_{y}}{2} \\
7 & =1+R_{x} & 4 & =8+R_{y} \\
6 & =R_{x} & -4 & =R_{y}
\end{array}
$$

PTS: 2 REF: 011031ge STA: G.G. 66 TOP: Midpoint
30 ANS: 2
$M_{x}=\frac{3 x+5+x-1}{2}=\frac{4 x+4}{2}=2 x+2 . M_{Y}=\frac{3 y+(-y)}{2}=\frac{2 y}{2}=y$.

PTS: 2 REF: 081019ge STA: G.G. 66 TOP: Midpoint
31 ANS:
25. $d=\sqrt{(-3-4)^{2}+(1-25)^{2}}=\sqrt{49+576}=\sqrt{625}=25$.

PTS: 2 REF: fall0831ge STA: G.G. 67 TOP: Distance
32 ANS: 1
$d=\sqrt{(-4-2)^{2}+(5-(-5))^{2}}=\sqrt{36+100}=\sqrt{136}=\sqrt{4} \cdot \sqrt{34}=2 \sqrt{34}$.
PTS: 2 REF: 080919ge STA: G.G. 67 TOP: Distance
33 ANS: 4
$d=\sqrt{(-3-1)^{2}+(2-0)^{2}}=\sqrt{16+4}=\sqrt{20}=\sqrt{4} \cdot \sqrt{5}=2 \sqrt{5}$
PTS: 2 REF: 011017ge STA: G.G. 67 TOP: Distance
34 ANS: 4
$d=\sqrt{(146-(-4))^{2}+(52-2)^{2}}=\sqrt{25,000} \approx 158.1$
PTS: 2 REF: 061021ge STA: G.G. 67 TOP: Distance

35 ANS: 4
$d=\sqrt{(-6-2)^{2}+(4-(-5))^{2}}=\sqrt{64+81}=\sqrt{145}$
PTS: 2 REF: 081013ge STA: G.G. 67 TOP: Distance
36 ANS: 3
TOP: Planes
37 ANS: 4
PTS: 2
REF: fall0816ge
STA: G.G. 1
PTS: 2 REF: 011012ge STA: G.G. 1
TOP: Planes
38 ANS: 3
PTS: 2
REF: 061017ge STA: G.G. 1
TOP: Planes
39 ANS: 1
TOP: Planes
40 ANS: 1
TOP: Planes
41 ANS: 1
TOP: Planes
42 ANS: 2
PTS: 2
REF: 080927ge
STA: G.G. 4
TOP: Planes
43 ANS: 4
PTS: 2
REF: 080914ge STA: G.G. 7
TOP: Planes
44 ANS: 3
PTS: 2
REF: 060928ge
STA: G.G. 8
TOP: Planes
45 ANS: 2
PTS: 2
REF: fall0806ge STA: G.G. 9
TOP: Planes
46 ANS: 3
PTS: 2
REF: 081002ge STA: G.G. 9
TOP: Planes
47 ANS: 3
The lateral edges of a prism are parallel.

PTS: 2	REF: fall0808ge	STA: G.G. 10	TOP: Solids	
ANS: 4	PTS: 2	REF: 061003 ge	STA:	G.G. 10
TOP: Solids				
ANS: 4	PTS: 2	REF: 060904 ge	STA:	G.G. 13

50 ANS:

PTS: 2
REF: fall0832ge
STA: G.G. 17 TOP: Constructions

51	ANS: 3	PTS: 2	REF: 060925ge	STA: G.G. 17
TOP: Constructions				
52	ANS: 3	PTS: 2	REF: 080902ge	STA: G.G. 17
TOP: Constructions				
53	ANS:			

PTS: 2
54 ANS: 2
TOP: Constructions
55 ANS: 3
TOP: Constructions
56 ANS: 4 PTS: 2
TOP: Constructions
57 ANS: 1
TOP: Constructions
58 ANS:
PTS: 2
PTS: 2

PTS: 2
.

PTS: 2
59 ANS: 4
TOP: Constructions
60 ANS: 2
TOP: Constructions

REF: 080932ge

	PTS: 2	REF: 060930ge	STA:	G.G. 19	TOP: Constructions
59	ANS: 4	PTS: 2	REF: 011009ge	STA:	G.G. 19
	TOP: Constructions				
60	ANS: 2	PTS: 2	REF: 061020 ge	STA: G.G. 19	
	TOP: Constructions				

61 ANS:

PTS: 2
62 ANS: 1
TOP: Constructions
63 ANS:

PTS: 2
REF: 081032ge
STA: G.G. 20
TOP: Constructions
64 ANS:

PTS: 2
65 ANS: 2 TOP: Locus

REF: 011032ge
PTS: 2
STA: G.G. 20
REF: 061012ge
TOP: Constructions
STA: G.G. 20

REF: 060932ge
PTS: 2
STA: G.G. 22
REF: 011011ge
TOP: Locus
STA: G.G. 22

66 ANS:

PTS: 2
REF: 061033ge
STA: G.G. 22
TOP: Locus
67 ANS:

PTS: 2
REF: 081033ge
STA: G.G. 22
TOP: Locus
68 ANS:

PTS: 4
69 ANS: 4
TOP: Locus
REF: fall0837ge STA: G.G. 23
PTS: 2
REF: 060912ge
TOP: Locus
STA: G.G. 23

ANS:

PTS: 4 REF: 080936ge STA: G.G. 23 TOP: Locus
71 ANS:

PTS: 4
REF: 011037ge
STA: G.G. 23
TOP: Locus
72 ANS: 4
The marked 60° angle and the angle above it are on the same straight line and supplementary. This unmarked supplementary angle is 120°. Because the unmarked 120° angle and the marked 120° angle are alternate exterior angles and congruent, $d \| e$.

PTS: 2
73
ANS: 2
REF: 080901ge
STA: G.G. 35
TOP: Parallel Lines and Transversals
74 ANS:
Yes, $\mathrm{m} \angle A B D=\mathrm{m} \angle B D C=44180-(93+43)=44 x+19+2 x+6+3 x+5=180$. Because alternate interior

$$
\begin{aligned}
6 x+30 & =180 \\
6 x & =150 \\
x & =25 \\
x+19 & =44
\end{aligned}
$$

angles $\angle A B D$ and $\angle C D B$ are congruent, $\overline{A B}$ is parallel to $\overline{D C}$.
PTS: 4 REF: 081035ge STA: G.G. 35 TOP: Parallel Lines and Transversals

75 ANS: 1

$$
\begin{aligned}
a^{2}+(5 \sqrt{2})^{2} & =(2 \sqrt{15})^{2} \\
a^{2}+(25 \times 2) & =4 \times 15 \\
a^{2}+50 & =60 \\
a^{2} & =10 \\
a & =\sqrt{10}
\end{aligned}
$$

PTS: 2 REF: 011016ge STA: G.G. 48 TOP: Pythagorean Theorem
76 ANS: 2

$$
\begin{aligned}
x^{2}+x^{2}+7 x+7 x+49 & =169 \\
2 x^{2}+14 x-120 & =0 \\
x^{2}+7 x-60 & =0 \\
(x+12)(x-5) & =0 \\
x & =5 \\
2 x & =10
\end{aligned}
$$

PTS: 2 REF: 061024ge STA: G.G. 48 TOP: Pythagorean Theorem
77 ANS: 1
If $\angle A$ is at minimum $\left(50^{\circ}\right)$ and $\angle B$ is at minimum $\left(90^{\circ}\right), \angle C$ is at maximum of $40^{\circ}\left(180^{\circ}-\left(50^{\circ}+90^{\circ}\right)\right.$). If $\angle A$ is at maximum $\left(60^{\circ}\right)$ and $\angle B$ is at maximum $\left(100^{\circ}\right), \angle C$ is at minimum of $20^{\circ}\left(180^{\circ}-\left(60^{\circ}+100^{\circ}\right)\right.$).

PTS: 2
REF: 060901ge STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles
78
ANS: 1
In an equilateral triangle, each interior angle is 60° and each exterior angle is $120^{\circ}\left(180^{\circ}-120^{\circ}\right)$. The sum of the three interior angles is 180° and the sum of the three exterior angles is 360°.

PTS: 2 REF: 060909ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
79 ANS:
26. $x+3 x+5 x-54=180$

$$
\begin{aligned}
9 x & =234 \\
x & =26
\end{aligned}
$$

PTS: 2
REF: 080933ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles

80 ANS: 1

$$
\begin{aligned}
x+2 x+2+3 x+4 & =180 \\
6 x+6 & =180 \\
x & =29
\end{aligned}
$$

PTS: 2 REF: 011002ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
81 ANS:
34. $2 x-12+x+90=180$

$$
\begin{aligned}
3 x+78 & =90 \\
3 x & =102 \\
x & =34
\end{aligned}
$$

PTS: 2
REF: 061031ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles
82 ANS: 4
$180-(40+40)=100$
PTS: 2
REF: 080903ge
STA: G.G. 31
83 ANS: 3
PTS: 2
REF: 011007 ge
TOP: Isosceles Triangle Theorem
TOP: Isosceles Triangle Theorem
84 ANS:
67. $\frac{180-46}{2}=67$

PTS: 2
REF: 011029ge
85 ANS: 3
PTS: 2
TOP: Isosceles Triangle Theorem
86 ANS: 4
(4) is not true if $\angle P Q R$ is obtuse.

PTS: 2
REF: 060924ge
STA: G.G. 32
TOP: Exterior Angle Theorem
87 ANS: 1

PTS: 2
REF: 011021ge
STA: G.G. 32
TOP: Exterior Angle Theorem

88 ANS:
110. $6 x+20=x+40+4 x-5$

$$
\begin{aligned}
6 x+20 & =5 x+35 \\
x & =15 \\
6((15)+20 & =110
\end{aligned}
$$

PTS: 2
REF: 081031ge
STA: G.G. 32
TOP: Exterior Angle Theorem
89 ANS: 2
$7+18>6+12$
PTS: 2 REF: fall0819ge STA: G.G. 33 TOP: Triangle Inequality Theorem
90 ANS: 2
$6+17>22$
PTS: 2 REF: 080916ge STA: G.G. 33 TOP: Triangle Inequality Theorem
91 ANS: 2
Longest side of a triangle is opposite the largest angle. Shortest side is opposite the smallest angle.
PTS: 2 REF: 060911ge STA: G.G. 34 TOP: Angle Side Relationship
92 ANS:
$\overline{A C} \cdot \mathrm{~m} \angle B C A=63$ and $\mathrm{m} \angle A B C=80 . \overline{A C}$ is the longest side as it is opposite the largest angle.
PTS: 2 REF: 080934ge STA: G.G. 34 TOP: Angle Side Relationship
93 ANS: $1 \quad$ PTS: 2
REF: 061010ge STA: G.G. 34
TOP: Angle Side Relationship
94 ANS: 4
Longest side of a triangle is opposite the largest angle. Shortest side is opposite the smallest angle.
PTS: 2 REF: 081011ge STA: G.G. 34 TOP: Angle Side Relationship
95 ANS: 4
$\triangle A B C \sim \triangle D B E . \frac{\overline{A B}}{\overline{D B}}=\frac{\overline{A C}}{\overline{D E}}$

$$
\begin{aligned}
\frac{9}{2} & =\frac{x}{3} \\
x & =13.5
\end{aligned}
$$

PTS: 2
96 ANS:
5. $\frac{3}{x}=\frac{6+3}{15}$
$9 x=45$
$x=5$
PTS: 2
REF: 011033ge
STA: G.G. 46
TOP: Side Splitter Theorem

97 ANS: 2
$\frac{3}{7}=\frac{6}{x}$
$3 x=42$
$x=14$
PTS: 2 REF: 081027ge STA: G.G. 46 TOP: Side Splitter Theorem
98 ANS:

PTS: 4
REF: fall0835ge
STA: G.G. 42
TOP: Midsegments
99 ANS:
20. The sides of the triangle formed by connecting the midpoints are half the sides of the original triangle.
$5+7+8=20$.

PTS: 2
REF: 060929ge
STA: G.G. 42
TOP: Midsegments
100 ANS: 3

PTS: 2 REF: 080920ge STA: G.G. 42 TOP: Midsegments
101 ANS:
37. Since $\overline{D E}$ is a midsegment, $A C=14.10+13+14=37$

PTS: 2
REF: 061030ge STA: G.G. 42
TOP: Midsegments

102 ANS: 1

PTS: 2
REF: 081003ge
STA: G.G. 42
ANS: 3
PTS: 2
REF: fall0825ge
TOP: Midsegments
TOP: Centroid, Orthocenter, Incenter and Circumcenter
104 ANS: 4
PTS: 2
REF: 080925ge
STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
105 ANS: 4
$\overline{B G}$ is also an angle bisector since it intersects the concurrence of $\overline{C D}$ and $\overline{A E}$
PTS: 2
REF: 061025ge STA: G.G. 21
KEY: Centroid, Orthocenter, Incenter and Circumcenter
PTS: 2
REF: 081028ge
STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
107 ANS: 2
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.
PTS: 2
REF: 060914ge
STA: G.G. 43
TOP: Centroid
ANS:
6. The centroid divides each median into segments whose lengths are in the ratio $2: 1 . \overline{T D}=6$ and $\overline{D B}=3$

PTS: 2
REF: 011034ge STA: G.G. 43
TOP: Centroid
109 ANS: 1
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.

$$
\overline{G C}=2 \overline{F G}
$$

$$
\begin{aligned}
\overline{G C}+\overline{F G} & =24 \\
2 \overline{F G}+\overline{F G} & =24 \\
3 \overline{F G} & =24 \\
\overline{F G} & =8
\end{aligned}
$$

PTS: 2
REF: 081018ge
STA: G.G. 43
TOP: Centroid

110 ANS: 1
Since $\overline{A C} \cong \overline{B C}, \mathrm{~m} \angle A=\mathrm{m} \angle B$ under the Isosceles Triangle Theorem.
PTS: 2 REF: fall0809ge STA: G.G. 69 TOP: Triangles in the Coordinate Plane
111 ANS:

PTS: 4
REF: 060936ge
STA: G.G. 69
TOP: Triangles in the Coordinate Plane
112 ANS: 3

.The sum of the interior angles of a pentagon is $(5-2) 180=540$.
PTS: 2
REF: 011023ge
STA: G.G. 36
TOP: Interior and Exterior Angles of Polygons
113 ANS: 4
sum of interior $\angle \mathrm{s}=$ sum of exterior $\angle \mathrm{s}$

$$
\begin{aligned}
(n-2) 180 & =n\left(180-\frac{(n-2) 180}{n}\right) \\
180 n-360 & =180 n-180 n+360 \\
180 n & =720 \\
n & =4
\end{aligned}
$$

PTS: 2
REF: 081016ge
STA: G.G. 36
TOP: Interior and Exterior Angles of Polygons
114 ANS: 4
$(n-2) 180=(8-2) 180=1080 . \frac{1080}{8}=135$.
PTS: 2 REF: fall0827ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons
115 ANS: 1
$\angle A=\frac{(n-2) 180}{n}=\frac{(5-2) 180}{5}=108 \angle A E B=\frac{180-108}{2}=36$
PTS: 2 REF: 081022ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons

116 ANS: 1
$\angle D C B$ and $\angle A D C$ are supplementary adjacent angles of a parallelogram. $180-120=60 . \angle 2=60-45=15$.
PTS: 2 REF: 080907ge STA: G.G. 38 TOP: Parallelograms
117 ANS: 1
Opposite sides of a parallelogram are congruent. $4 x-3=x+3 . S V=(2)+3=5$.

$$
\begin{aligned}
3 x & =6 \\
x & =2
\end{aligned}
$$

PTS: 2
REF: 011013ge
STA: G.G. 38
TOP: Parallelograms
118 ANS:
$8 x-5=3 x+30.4 z-8=3 z .9 y+8+5 y-2=90$.

$$
\begin{aligned}
& 5 x=35 \quad z=8 \quad 14 y+6=90 \\
& x=7 \\
& 14 y=84 \\
& y=6
\end{aligned}
$$

PTS: 6 REF: 061038ge STA: G.G. 39 TOP: Special Parallelograms
119 ANS: 3
The diagonals of an isosceles trapezoid are congruent. $5 x+3=11 x-5$.

$$
\begin{aligned}
6 x & =18 \\
x & =3
\end{aligned}
$$

PTS: 2 REF: fall0801ge STA: G.G. 40 TOP: Trapezoids
120 ANS:
3. The non-parallel sides of an isosceles trapezoid are congruent. $2 x+5=3 x+2$

$$
x=3
$$

PTS: 2 REF: 080929ge STA: G.G. 40 TOP: Trapezoids
121 ANS: 2
The length of the midsegment of a trapezoid is the average of the lengths of its bases. $\frac{x+30}{2}=44$.

$$
\begin{aligned}
x+30 & =88 \\
x & =58
\end{aligned}
$$

PTS: 2 REF: 011001ge STA: G.G. 40 TOP: Trapezoids

122 ANS: 4 PTS: 2 REF: 061008ge STA: G.G. 40
TOP: Trapezoids
123 ANS: 3

PTS: 2 REF: 061016ge STA: G.G. 40 TOP: Trapezoids
124 ANS:
70. $3 x+5+3 x+5+2 x+2 x=180$

$$
\begin{aligned}
10 x+10 & =360 \\
10 x & =350 \\
x & =35 \\
2 x & =70
\end{aligned}
$$

$\begin{array}{lllll}\text { PTS: } 2 & \text { REF: } 081029 \mathrm{ge} & \text { STA: G.G. } 40 & \text { TOP: Trapezoids } \\ \text { ANS: } 1 & \text { PTS: } 2 & \text { REF: } 080918 \mathrm{ge} & \text { STA: } & \text { G.G. } 41\end{array}$
TOP: Special Quadrilaterals
126 ANS:

$\overline{F E} \cong \overline{F E}$ (Reflexive Property); $\overline{A E}-\overline{F E} \cong \overline{F C}-\overline{E F}$ (Line Segment Subtraction Theorem); $\overline{A F} \cong \overline{C E}$ (Substitution); $\angle B F A \cong \angle D E C$ (All right angles are congruent); $\triangle B F A \cong \triangle D E C$ (AAS); $\overline{A B} \cong \overline{C D}$ and $\overline{B F} \cong \overline{D E}$ (CPCTC); $\angle B F C \cong \angle D E A$ (All right angles are congruent); $\triangle B F C \cong \triangle D E A$ (SAS); $\overline{A D} \cong \overline{C B}$ (CPCTC); $A B C D$ is a parallelogram (opposite sides of quadrilateral $A B C D$ are congruent)

PTS: 6 REF: 080938ge STA: G.G. 41 TOP: Special Quadrilaterals
127 ANS:
$\overline{J K} \cong \overline{L M}$ because opposite sides of a parallelogram are congruent. $\overline{L M} \cong \overline{L N}$ because of the Isosceles Triangle Theorem. $\overline{L M} \cong \overline{J M}$ because of the transitive property. $J K L M$ is a rhombus because all sides are congruent.

PTS: 4 REF: 011036ge STA: G.G. 41 TOP: Special Quadrilaterals
128 ANS: 2
Adjacent sides of a rectangle are perpendicular and have opposite and reciprocal slopes.
PTS: 2 REF: 061028ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane

129 ANS:

$\overline{A B} \| \overline{C D}$ and $\overline{A D} \| \overline{C B}$ because their slopes are equal. $A B C D$ is a parallelogram because opposite side are parallel. $\overline{A B} \neq \overline{B C} . A B C D$ is not a rhombus because all sides are not equal.
$\overline{A B} \sim \perp \overline{B C}$ because their slopes are not opposite reciprocals. $A B C D$ is not a rectangle because $\angle A B C$ is not a right angle.

PTS: 4 REF: 081038ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane
130 ANS: 3
Because $\overline{O C}$ is a radius, its length is 5. Since $C E=2 O E=3 . \triangle E D O$ is a 3-4-5 triangle. If $E D=4, B D=8$.
PTS: 2 REF: fall0811ge STA: G.G. 49 TOP: Chords
131 ANS: 1
The closer a chord is to the center of a circle, the longer the chord.
PTS: 2 REF: 011005ge STA: G.G. 49 TOP: Chords
132 ANS: 2
Parallel chords intercept congruent arcs. $\mathrm{m} \overparen{A D}=\mathrm{m} \overparen{B C}=60 . \mathrm{m} \angle C D B=\frac{1}{2} \mathrm{~m} \overparen{B C}=30$.
PTS: 2
REF: 060906ge STA: G.G. 52 TOP: Chords
133 ANS: 2
Parallel chords intercept congruent arcs. $\mathrm{m} \overparen{A C}=\mathrm{m} \overparen{B D}=30.180-30-30=120$.
PTS: 2
REF: 080904ge
STA: G.G. 52 TOP: Chords
134 ANS: 1
Parallel lines intercept congruent arcs.
PTS: 2 REF: 061001ge STA: G.G. 52 TOP: Chords
135 ANS: 4
TOP: Tangents

```
PTS: 2 REF: fall0824ge STA: G.G. 50
```

KEY: common tangency
136 ANS:
18. If the ratio of $T A$ to $A C$ is $1: 3$, the ratio of $T E$ to $E S$ is also $1: 3 . x+3 x=24.3(6)=18$.

$$
x=6
$$

PTS: 4
REF: 060935ge
STA: G.G. 50
TOP: Tangents
KEY: common tangency
137
ANS: 3
TOP: Tangents
PTS: 2
REF: 080928ge
STA: G.G. 50
KEY: common tangency

138 ANS: 1
TOP: Tangents
139 ANS: 1
TOP: Tangents
140 ANS:
$\angle D, \angle G$ and 24° or $\angle E, \angle F$ and $84^{\circ} . \mathrm{m} \overparen{F E}=\frac{2}{15} \times 360=48$. Since the chords forming $\angle D$ and $\angle G$ are intercepted by $\overparen{F E}$, their measure is $24^{\circ} . \mathrm{m} \overparen{G D}=\frac{7}{15} \times 360=168$. Since the chords forming $\angle E$ and $\angle F$ are intercepted by $\overparen{G D}$, their measure is 84°.

PTS: 4 REF: fall0836ge STA: G.G. 51 TOP: Arcs Determined by Angles
KEY: inscribed
141 ANS: 2
$\frac{87+35}{2}=\frac{122}{2}=61$
PTS: 2
REF: 011015ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inside circle
142 ANS: 3
$\frac{36+20}{2}=28$
PTS: 2
REF: 061019ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inside circle
143 ANS: 2

PTS: 2
REF: 061026GE STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inscribed
144
ANS: 2
$\frac{140-\overline{R S}}{2}=40$
$140-\overline{R S}=80$

$$
\overline{R S}=60
$$

PTS: 2
REF: 081025 ge STA: G.G. 51
KEY: outside circle

145 ANS: 2

$$
\begin{aligned}
x^{2} & =3(x+18) \\
x^{2}-3 x-54 & =0 \\
(x-9)(x+6) & =0 \\
x & =9
\end{aligned}
$$

PTS: 2 REF: fall0817ge STA: G.G. 53 TOP: Segments Intercepted by Circle KEY: tangent and secant
146 ANS: 3

$$
4(x+4)=8^{2}
$$

$$
4 x+16=64
$$

$$
x=12
$$

PTS: 2
REF: 060916ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: tangent and secant
147 ANS: 2

$$
4(4 x-3)=3(2 x+8)
$$

$$
16 x-12=6 x+24
$$

$$
10 x=36
$$

$$
x=3.6
$$

PTS: 2
REF: 080923ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: two chords
148 ANS: 4
$x^{2}=(4+5) \times 4$
$x^{2}=36$
$x=6$
PTS: 2
REF: 011008ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
149 ANS: 2

$$
(d+4) 4=12(6)
$$

$$
4 d+16=72
$$

$d=14$
$r=7$
PTS: 2
REF: 061023ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: two secants

150 ANS: 1
$4 x=6 \cdot 10$

$x=15$
PTS: 2
REF: 081017ge STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: two chords
151 ANS: 1
$M_{x}=\frac{-2+6}{2}=2 . M_{y}=\frac{3+3}{2}=3$. The center is $(2,3) . d=\sqrt{(-2-6)^{2}+(3-3)^{2}}=\sqrt{64+0}=8$. If the diameter is 8 , the radius is 4 and $r^{2}=16$.

152

PTS: 2
REF: fall0820ge
STA: G.G. 71
ANS: 2
PTS: 2
REF: 060910ge
TOP: Equations of Circles
TOP: Equations of Circles
153
ANS: 3 PTS: 2
REF: 011010ge
STA: G.G. 71
TOP: Equations of Circles
Midpoint: $\left(\frac{-4+4}{2}, \frac{2+(-4)}{2}\right)=(0,-1)$. Distance: $d=\sqrt{(-4-4)^{2}+(2-(-4))^{2}}=\sqrt{100}=10$
$r=5$

$$
r^{2}=25
$$

$x^{2}+(y+1)^{2}=25$
PTS: 2
REF: 061037ge
STA: G.G. 71
REF: 080921ge
TOP: Equations of Circles
ANS: 2
PTS: 2
TOP: Equations of Circles
ANS: 4
The radius is 4. $r^{2}=16$.
PTS: 2
REF: 061014ge
STA: G.G. 72 TOP: Equations of Circles
ANS:
$(x+1)^{2}+(y-2)^{2}=36$
PTS: 2 REF: 081034ge
STA: G.G. 72
REF: fall0814ge STA: G.G. 73
TOP: Equations of Circles
159
158
159

TOP: Equations of Circles

160 ANS: $1 \quad$ PTS: 2
TOP: Equations of Circles
161 ANS: 1
PTS: 2
TOP: Equations of Circles
162 ANS: 1
PTS: 2
TOP: Graphing Circles
163 ANS: 2 PTS: 2
TOP: Graphing Circles
164 ANS:
4. $l_{1} w_{1} h_{1}=l_{2} w_{2} h_{2}$
$10 \times 2 \times h=5 \times w_{2} \times h$
$20=5 w_{2}$
$w_{2}=4$
PTS: 2
REF: 011030ge
STA: G.G. 11
TOP: Volume
165 ANS: 1
$3 x^{2}+18 x+24$
$3\left(x^{2}+6 x+8\right)$
$3(x+4)(x+2)$
PTS: 2
REF: fall0815ge
STA: G.G. 12
TOP: Volume 166 ANS:
2016. $V=\frac{1}{3} B h=\frac{1}{3} s^{2} h=\frac{1}{3} 12^{2} \cdot 42=2016$

PTS: 2
REF: 080930ge
STA: G.G. 13
TOP: Volume ANS:
18. $V=\frac{1}{3} B h=\frac{1}{3} l w h$

$$
\begin{aligned}
288 & =\frac{1}{3} \cdot 8 \cdot 6 \cdot h \\
288 & =16 h \\
18 & =h
\end{aligned}
$$

PTS: 2
REF: 061034ge
STA: G.G. 13

REF: 080911ge STA: G.G. 73
REF: 081009ge STA: G.G. 73
REF: 060920ge STA: G.G. 74
REF: 011020ge STA: G.G. 74

168 ANS:
22.4. $\quad V=\pi r^{2} h$
$12566.4=\pi r^{2} \cdot 8$

$$
\begin{aligned}
r^{2} & =\frac{12566.4}{8 \pi} \\
r & \approx 22.4
\end{aligned}
$$

PTS: 2
REF: fall0833ge STA: G.G. 14
TOP: Volume
169 ANS: 1

$$
\begin{aligned}
V & =\pi r^{2} h \\
1000 & =\pi r^{2} \cdot 8 \\
r^{2} & =\frac{1000}{8 \pi} \\
r & \approx 6.3
\end{aligned}
$$

PTS: 2
REF: 080926ge
STA: G.G. 14
TOP: Volume
170 ANS: 3
$V=\pi r^{2} h=\pi \cdot 6^{2} \cdot 27=972 \pi$
PTS: 2
REF: 011027ge
STA: G.G. 14
TOP: Volume
171 ANS: 4
$L=2 \pi r h=2 \pi \cdot 5 \cdot 11 \approx 345.6$
PTS: 2
REF: 061006ge STA: G.G. 14
TOP: Volume
172 ANS: 1
$V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi \cdot 4^{2} \cdot 12 \approx 201$
PTS: 2
REF: 060921ge
STA: G.G. 15
TOP: Volume and Lateral Area
173 ANS:
$375 \pi L=\pi r l=\pi(15)(25)=375 \pi$
PTS: 2
REF: 081030ge
STA: G.G. 15
TOP: Volume and Lateral Area
174 ANS:
452. $S A=4 \pi r^{2}=4 \pi \cdot 6^{2}=144 \pi \approx 452$

PTS: 2
REF: 061029ge
STA: G.G. 16
TOP: Volume and Surface Area

175 ANS: 4

$$
\mathrm{SA}=4 \pi r^{2} \quad V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot 6^{3}=288 \pi
$$

$144 \pi=4 \pi r^{2}$
$36=r^{2}$
$6=r$
PTS: 2
REF: 081020ge STA: G.G. 16
TOP: Volume and Surface Area
176 ANS: 4
Corresponding angles of similar triangles are congruent.
PTS: 2 REF: fall0826ge STA: G.G. 45 TOP: Similarity
KEY: perimeter and area
177 ANS:
20. $5 x+10=4 x+30$

$$
x=20
$$

PTS: 2
REF: 060934ge
STA: G.G. 45
TOP: Similarity
KEY: basic
178 ANS: 2
Because the triangles are similar, $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle D}=1$

PTS: 2 REF: 011022ge STA: G.G. 45 TOP: Similarity
KEY: perimeter and area
179 ANS: 4
$180-(50+30)=100$
PTS: 2
REF: 081006g
STA: G.G. 45
TOP: Similarity
KEY: basic
180 ANS: 4
TOP: Similarity
PTS: 2
REF: 081023ge
STA: G.G. 45
181 ANS:
$2 \sqrt{3} \cdot x^{2}=3 \cdot 4$

$$
x=\sqrt{12}=2 \sqrt{3}
$$

PTS: 2
REF: fall0829ge
STA: G.G. 47
TOP: Similarity
KEY: altitude
182 ANS: 1
$\overline{A B}=10$ since $\triangle A B C$ is a 6-8-10 triangle. $6^{2}=10 x$

$$
3.6=x
$$

PTS: 2
REF: 060915ge STA: G.G. 47
TOP: Similarity
KEY: leg

183 ANS: 4
Let $\overline{A D}=x . \quad 36 x=12^{2}$

$$
x=4
$$

PTS: 2
REF: 080922ge
STA: G.G. 47
TOP: Similarity
KEY: leg
184 ANS:
2.4. $5 a=4^{2} \quad 5 b=3^{2} \quad h^{2}=a b$

$$
\begin{array}{lll}
a=3.2 \quad b=1.8 & h^{2}=3.2 \cdot 1.8 \\
& h=\sqrt{5.76}=2.4
\end{array}
$$

PTS: 4
REF: 081037ge
STA: G.G. 47
TOP: Similarity
KEY: altitude
185 ANS: 3
PTS: 2 KEY: basic
186 ANS:

PTS: 2
REF: 061032ge
STA: G.G. 54
TOP: Reflections
KEY: grids
187 ANS: 1
$(x, y) \rightarrow(x+3, y+1)$
PTS: 2
REF: fall0803ge
STA: G.G. 54
TOP: Translations

188 ANS:

PTS: 4
REF: 060937ge
STA: G.G. 54
TOP: Compositions of Transformations
KEY: grids
189 ANS: 1
$A^{\prime}(2,4)$
PTS: 2
REF: 011023ge
STA: G.G. 54
TOP: Compositions of Transformations
KEY: basic
190 ANS: 1
After the translation, the coordinates are $A^{\prime}(-1,5)$ and $B^{\prime}(3,4)$. After the dilation, the coordinates are $A^{\prime \prime}(-2,10)$ and $B^{\prime \prime}(6,8)$.

PTS: 2
REF: fall0823ge STA: G.G. 58
TOP: Compositions of Transformations
191 ANS:

$$
A^{\prime \prime}(8,2), B^{\prime \prime}(2,0), C^{\prime \prime}(6,-8)
$$

PTS: 4
REF: 081036ge
STA: G.G. 58
TOP: Compositions of Transformations

192
ANS:

PTS: 2
REF: fall0830ge
STA: G.G. 55
TOP: Properties of Transformations
193 ANS:

$D^{\prime}(-1,1), E^{\prime}(-1,5), G^{\prime}(-4,5)$
PTS: 4
194 ANS: 2
REF: 080937ge
STA: G.G. 55
TOP: Properties of Transformations
195 ANS: 1
TOP: Properties of Transformations
196 ANS: 2
PTS: 2
REF: 011003ge
REF: 061005ge
REF: 081015ge
STA: G.G. 55
TOP: Properties of Transformations
PTS: 2
REF: 081021ge
STA: G.G. 57
TOP: Properties of Transformations
198 ANS: 1
Translations and reflections do not affect distance.
PTS: 2 REF: 080908ge STA: G.G. 59 TOP: Properties of Transformations 199 ANS:

36, because a dilation does not affect angle measure. 10 , because a dilation does affect distance.
PTS: 4 REF: 011035ge STA: G.G. 59 TOP: Properties of Transformations
ANS: 1
PTS: 2
TOP: Identifying Transformations
201

	PTS: 2	REF: 080906 ge	STA: G.G. 60	TOP: Identifying Tr
207	ANS: 4	PTS: 2	REF: fall0818ge	STA: G.G. 61
	TOP: Analytical	presentations of Tran	formations	
208	ANS: 4			
	Median $\overline{B F}$ bisects $\overline{A C}$ so that $\overline{C F} \cong \overline{F A}$.			
	PTS: 2	REF: fall0810ge	STA: G.G. 24	TOP: Statements
209	ANS: 4	PTS: 2	REF: fall0802ge	STA: G.G. 24
	TOP: Negations			
210	ANS: 3	PTS: 2	REF: 080924ge	STA: G.G. 24
	TOP: Negations			
211	ANS: 2	PTS: 2	REF: 061002ge	STA: G.G. 24
	TOP: Negations			

212 ANS:
True. The first statement is true and the second statement is false. In a disjunction, if either statement is true, the disjunction is true.

PTS: 2 REF: 060933ge STA: G.G. 25 TOP: Compound Statements
KEY: disjunction
213 ANS:
Contrapositive-If two angles of a triangle are not congruent, the sides opposite those angles are not congruent.
PTS: 2 REF: fall0834ge STA: G.G. 26 TOP: Conditional Statements
214 ANS: 4 PTS: 2 REF: 060913ge
TOP: Conditional Statements
215 ANS: 3 PTS: 2
REF: 011028ge
STA: G.G. 26

TOP: Conditional Statements
216 ANS 1 PTS:
REF: 061009ge STA: G.G. 26
TOP: Converse
217 ANS: 3 PTS: 2 REF: 081026ge STA: G.G. 26
TOP: Contrapositive
218 ANS: $3 \quad$ PTS: 2
TOP: Triangle Congruency

219 ANS: 3

PTS: 2
REF: 060902ge
STA: G.G. 28
TOP: Triangle Congruency
220 ANS: 2

PTS: 2
221 ANS: 4
REF: 081007 ge
PTS: 2
STA: G.G. 28
REF: 080905ge
TOP: Triangle Congruency
TOP: Triangle Congruency
ANS: 4

PTS: 2 REF: 081001ge STA: G.G. 29 TOP: Triangle Congruency
223 ANS:
$\overline{A C} \cong \overline{E C}$ and $\overline{D C} \cong \overline{B C}$ because of the definition of midpoint. $\angle A C B \cong \angle E C D$ because of vertical angles.
$\triangle A B C \cong \triangle E D C$ because of SAS. $\angle C D E \cong \angle C B A$ because of CPCTC. $\overline{B D}$ is a transversal intersecting $\overline{A B}$ and $\overline{E D}$. Therefore $\overline{A B} \| \overline{D E}$ because $\angle C D E$ and $\angle C B A$ are congruent alternate interior angles.

PTS: 6
REF: 060938ge
STA: G.G. 27
TOP: Triangle Proofs

ANS:
$\overline{B D} \cong \overline{D B}$ (Reflexive Property); $\triangle A B D \cong \triangle C D B$ (SSS); $\angle B D C \cong \angle A B D$ (CPCTC).

PTS: 4
REF: 061035ge STA: G.G. 27
TOP: Quadrilateral Proofs
ANS:
Because $\overline{A B} \| \overline{D C}, \overparen{A D} \cong \overparen{B C}$ since parallel chords intersect congruent arcs. $\angle B D C \cong \angle A C D$ because inscribed angles that intercept congruent arcs are congruent. $\overline{A D} \cong \overline{B C}$ since congruent chords intersect congruent arcs. $\overline{D C} \cong \overline{C D}$ because of the reflexive property. Therefore, $\triangle A C D \cong \triangle B D C$ because of SAS.

PTS: 6 REF: fall0838ge STA: G.G. 27 TOP: Circle Proofs
$\triangle P R T$ and $\triangle S R Q$ share $\angle R$ and it is given that $\angle R P T \cong \angle R S Q$.
PTS: 2
REF: fall0821ge STA: G.G. 4
TOP: Similarity Proofs
ANS: 2
$\angle A C B$ and $\angle E C D$ are congruent vertical angles and $\angle C A B \cong \angle C E D$.

PTS: 2
228 ANS: 4 PTS: 2
TOP: Similarity Proofs

