JEFFERSON MATH PROJECT REGENTS BY TYPE

The NY Geometry Regents Exams
Fall 2007-August 2010
(Answer Key)

www.jmap.org

Dear $^{\text {ofir }}$

I Fiave to acknolege the reciept of your favor of May 14. in which you mention that you have finishied the 6. first Gooks of \mathcal{E} ucfid, po ane trigonometry, surveying \& afgebra and ask whether \mathscr{I} think a further pursuit of that branch of science would be usefuf to you. there are some propositions in the fatter books of Eucfid, \& some of ${ }^{\circ}{ }^{\circ}$ trchimedes, which are usefuf, \& \mathscr{I} have no doubt you have been made acquainted with them. trigonometry, so far as this, is most valuable to every man, there is scarcely a day in which he wiff not resort to it for some of the purposes of common fife. the science of cafculation afso is indispensible asfar as
 are often of vafue in ordinary cases: but aff beyond these is but a fuxury; a deficious fuxury indeed; but not to be indulged in by one who is to have a profession to foffow for his subsistence. in thits fight $\mathscr{I}_{\text {view }}$ the
 beyond the ad dimension, andffuxions.
Letter from Thomas Jefferson to William G. Munford, Monticello, June 18, 1799.

Geometry Multiple Choice Regents Exam Questions

Answer Section

1 ANS: 2
A dilation affects distance, not angle measure.

PTS: 2	REF: 080906 ge	TOP: Identifying Transformations	
ANS: 4	PTS: 2	REF: 081023ge	TOP: Similarity
KEY: perimeter and area			
ANS: 4	PTS: 2	REF: 061003ge	TOP: Solids
ANS: 3			
$2 y=-6 x+8$	Perpendicular lines have slope the opposite and reciprocal of each other.		
$y=-3 x+4$			
$m=-3$			
$m_{\perp}=\frac{1}{3}$			

PTS: 2 REF: 081024ge TOP: Parallel and Perpendicular Lines
5 ANS: 2
The length of the midsegment of a trapezoid is the average of the lengths of its bases. $\frac{x+30}{2}=44$.

$$
\begin{aligned}
x+30 & =88 \\
x & =58
\end{aligned}
$$

PTS: 2 REF: 011001ge TOP: Trapezoids
6 ANS: 1
PTS: 2
REF: 081009ge TOP: Equations of Circles
7 ANS: 1

$$
\begin{aligned}
a^{2}+(5 \sqrt{2})^{2} & =(2 \sqrt{15})^{2} \\
a^{2}+(25 \times 2) & =4 \times 15 \\
a^{2}+50 & =60 \\
a^{2} & =10 \\
a & =\sqrt{10}
\end{aligned}
$$

PTS: 2 REF: 011016ge TOP: Pythagorean Theorem
8 ANS: 1 PTS: $2 \quad$ REF: 081008ge TOP: Planes
9 ANS: 1 PTS: 2 REF: 061005ge TOP: Properties of Transformations
10 ANS: 2
$M_{x}=\frac{3 x+5+x-1}{2}=\frac{4 x+4}{2}=2 x+2 . M_{Y}=\frac{3 y+(-y)}{2}=\frac{2 y}{2}=y$.

PTS: 2 REF: 081019ge TOP: Midpoint
11 ANS: 3 PTS: 2 REF: 081021ge TOP: Properties of Transformations

12 ANS: 4

PTS: 2 REF: 081001ge TOP: Triangle Congruency
13 ANS: 2
The slope of a line in standard form is $-\frac{A}{B}$, so the slope of this line is $\frac{-2}{-1}=2$. A parallel line would also have a slope of 2. Since the answers are in slope intercept form, find the y-intercept: $\quad y=m x+b$

$$
\begin{aligned}
-11 & =2(-3)+b \\
-5 & =b
\end{aligned}
$$

PTS: 2 REF: fall0812ge TOP: Parallel and Perpendicular Lines
14 ANS: 2
$6+17>22$
PTS: 2 REF: 080916ge TOP: Triangle Inequality Theorem
15 ANS: 4
The slope of a line in standard form is $-\frac{A}{B}$, so the slope of this line is $\frac{-4}{2}=-2$. A parallel line would also have a slope of -2 . Since the answers are in slope intercept form, find the y-intercept: $y=m x+b$

$$
\begin{aligned}
3 & =-2(7)+b \\
17 & =b
\end{aligned}
$$

PTS: 2 REF: 081010ge TOP: Parallel and Perpendicular Lines
16 ANS: 3

PTS: 2
REF: 060902ge
TOP: Triangle Congruency
ANS: 3
PTS: 2
REF: fall0816ge TOP: Planes
ANS: 4

$$
\mathrm{SA}=4 \pi r^{2} \quad V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot 6^{3}=288 \pi
$$

$$
144 \pi=4 \pi r^{2}
$$

$$
36=r^{2}
$$

$$
6=r
$$

PTS: 2 REF: 081020ge TOP: Volume and Surface Area

| 19 | ANS: 3 | PTS: 2 | REF: 060908ge | TOP: Identifying Transformations |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 20 | ANS: 3 | PTS: 2 | REF: 081026ge | TOP: Contrapositive |

21 ANS: 1
$\triangle P R T$ and $\triangle S R Q$ share $\angle R$ and it is given that $\angle R P T \cong \angle R S Q$.
PTS: 2 REF: fall0821ge TOP: Similarity Proofs
22 ANS: 2

$$
\begin{aligned}
x^{2}+x^{2}+7 x+7 x+49 & =169 \\
2 x^{2}+14 x-120 & =0 \\
x^{2}+7 x-60 & =0 \\
(x+12)(x-5) & =0 \\
x & =5 \\
2 x & =10
\end{aligned}
$$

PTS: 2 REF: 061024ge TOP: Pythagorean Theorem
23 ANS: 1 PTS: 2 REF: 061010ge TOP: Angle Side Relationship

24 ANS: 2
$\frac{140-\overline{R S}}{2}=40$

$$
\begin{aligned}
140-\overline{R S} & =80 \\
\overline{R S} & =60
\end{aligned}
$$

PTS: 2
REF: 081025ge TOP: Arcs Determined by Angles
KEY: outside circle
REF: 011012ge TOP: Planes
ANS: 1
PTS: 2
REF: 081028ge
TOP: Centroid, Orthocenter, Incenter and Circumcenter
27 ANS: 4
$x^{2}=(4+5) \times 4$
$x^{2}=36$
$x=6$

PTS: 2 REF: 011008ge TOP: Segments Intercepted by Circle
KEY: tangent and secant
ANS: 4 PTS: 2 REF: 060922ge TOP: Equations of Circles

29 ANS: 3

$$
\begin{aligned}
4(x+4) & =8^{2} \\
4 x+16 & =64 \\
x & =12
\end{aligned}
$$

PTS: 2 REF: 060916ge TOP: Segments Intercepted by Circle
KEY: tangent and secant
30
ANS: 4 PTS:
31 ANS: 3

| PTS: 2 | REF: 080920 ge | TOP: Midsegments | |
| :--- | :--- | :--- | :--- | :--- |
| ANS: 2 | PTS: 2 | REF: 061020 ge | TOP: Constructions |
| ANS: 2 | PTS: 2 | REF: 081015 ge | TOP: Properties of Transformations |
| ANS: 4 | PTS: 2 | REF: 061015 ge | TOP: Identifying Transformations |
| ANS: 1 | PTS: 2 | REF: 060903 ge | TOP: Identifying Transformations |
| ANS: 3 | | | |
| The diagonals of an isosceles trapezoid are congruent. $5 x+3=11 x-5$. | | | |
| | $6 x=18$ | | |
| | $x=3$ | | |

PTS: 2 REF: fall0801ge TOP: Trapezoids
ANS: 3 PTS: 2 REF: 061004ge TOP: Isosceles Triangle Theorem
ANS: 4
$\triangle A B C \sim \triangle D B E . \frac{\overline{A B}}{\overline{D B}}=\frac{\overline{A C}}{\overline{D E}}$

$$
\begin{aligned}
\frac{9}{2} & =\frac{x}{3} \\
x & =13.5
\end{aligned}
$$

PTS: 2 REF: 060927ge TOP: Side Splitter Theorem
39 ANS: 1
$\angle D C B$ and $\angle A D C$ are supplementary adjacent angles of a parallelogram. $180-120=60 . \angle 2=60-45=15$.
PTS: 2
REF: 080907ge TOP: Parallelograms

40 ANS: 1
The closer a chord is to the center of a circle, the longer the chord.
PTS: 2 REF: 011005ge TOP: Chords
41 PTS: 2 REF: fall0804ge TOP: Constructions
42 ANS: 2 PTS: 2 REF: 011003ge TOP: Properties of Transformations
43 ANS: 2 PTS: 2 REF: 011006ge TOP: Isometries
44 PNS: 3 PTS: 2 REF: 011010ge TOP: Equations of Circles
45 ANS: 2
The slope of $y=\frac{1}{2} x+5$ is $\frac{1}{2}$. The slope of a perpendicular line is $-2 . y=m x+b \quad$.

$$
\begin{aligned}
& 5=(-2)(-2)+b \\
& b=1
\end{aligned}
$$

PTS: 2 REF: 060907ge TOP: Parallel and Perpendicular Lines
46 ANS: 2
Because the triangles are similar, $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle D}=1$

PTS: 2 REF: 011022ge TOP: Similarity KEY: perimeter and area
47 ANS: 2
$\angle A C B$ and $\angle E C D$ are congruent vertical angles and $\angle C A B \cong \angle C E D$.

PTS: 2
48 ANS: 1
KEY: two tangents
49 ANS: 2
ANS: 3

PTS: 2 REF: fall0805ge TOP: Quadratic-Linear Systems
51 ANS: 3
PTS: 2
REF: 060928ge TOP: Planes
52 ANS: 2
$7+18>6+12$
PTS: 2 REF: fall0819ge TOP: Triangle Inequality Theorem
53 ANS: 4
Median $\overline{B F}$ bisects $\overline{A C}$ so that $\overline{C F} \cong \overline{F A}$.
PTS: 2 REF: fall0810ge TOP: Statements

54	ANS: 3	PTS: 2	REF: 080924ge	TOP: Negations
55	ANS: 2	PTS: 2	REF: 061007ge	TOP: Parallel Lines and Transversals
56	ANS: 3	PTS: 2	REF: fall0814ge	TOP: Equations of Circles
57	ANS: 2	PTS: 2	REF: fall0806ge	TOP: Planes
58	ANS: 2	PTS: 2	REF: 061022ge	TOP: Parallel and Perpendicular Lines
59	ANS: 3			

PTS: 2 REF: 011025ge TOP: Parallel and Perpendicular Lines
60 ANS: 1
Translations and reflections do not affect distance.
PTS: 2 REF: 080908ge TOP: Properties of Transformations
61 ANS: 1
After the translation, the coordinates are $A^{\prime}(-1,5)$ and $B^{\prime}(3,4)$. After the dilation, the coordinates are $A^{\prime \prime}(-2,10)$ and $B^{\prime \prime}(6,8)$.

PTS: 2 REF: fall0823ge TOP: Compositions of Transformations
62 ANS: 2 PTS: 2 REF: 080921ge TOP: Equations of Circles
63 ANS: 2 PTS: 2 REF: 060910ge TOP: Equations of Circles
64 ANS: 2
The slope of a line in standard form is $-\frac{A}{B}$ so the slope of this line is $-\frac{5}{3}$ Perpendicular lines have slope that are the opposite and reciprocal of each other.

PTS: 2 REF: fall0828ge TOP: Parallel and Perpendicular Lines
65 ANS: 1
$(x, y) \rightarrow(x+3, y+1)$
PTS: 2 REF: fall0803ge TOP: Translations
66 ANS: 4
$d=\sqrt{(-3-1)^{2}+(2-0)^{2}}=\sqrt{16+4}=\sqrt{20}=\sqrt{4} \cdot \sqrt{5}=2 \sqrt{5}$

PTS: 2
67 ANS: 3
68 ANS: 3
69 ANS: 2

PTS: 2

REF: 011017ge TOP: Distance
PTS: 2 REF: 081002ge
PTS: 2 REF: 080913ge TOP: Triangle Congruency

REF: 081007ge
TOP: Triangle Congruency

70 ANS: 4
$180-(40+40)=100$
PTS: 2 REF: 080903ge TOP: Isosceles Triangle Theorem
71 ANS: 4
The marked 60° angle and the angle above it are on the same straight line and supplementary. This unmarked supplementary angle is 120°. Because the unmarked 120° angle and the marked 120° angle are alternate exterior angles and congruent, $d \| e$.

PTS: 2 REF: 080901ge TOP: Parallel Lines and Transversals
72 ANS: 3
$m=\frac{-A}{B}=\frac{5}{2} . m=\frac{-A}{B}=\frac{10}{4}=\frac{5}{2}$
PTS: 2 REF: 011014ge TOP: Parallel and Perpendicular Lines
73 ANS: 1
$y=x^{2}-4 x=(4)^{2}-4(4)=0 .(4,0)$ is the only intersection.

PTS: 2 REF: 060923ge TOP: Quadratic-Linear Systems
74 ANS: 2
Adjacent sides of a rectangle are perpendicular and have opposite and reciprocal slopes.
PTS: 2 REF: 061028ge TOP: Quadrilaterals in the Coordinate Plane
75 ANS: 2
PTS: 2
REF: 061002ge TOP: Negations
76 ANS: 2
$y+\frac{1}{2} x=4 \quad 3 x+6 y=12$
$\begin{array}{rlrl}y=-\frac{1}{2} x+4 & 6 y & =-3 x+12 \\ y & =-\frac{3}{6} x+2\end{array}$
$m=-\frac{1}{2}$

$$
y=-\frac{1}{2} x+2
$$

PTS: 2 REF: 081014ge
TOP: Parallel and Perpendicular Lines
REF: 061018ge TOP: Identifying Transformations
ANS: 4
PTS: 2
ANS: 4
$M_{x}=\frac{-6+1}{2}=-\frac{5}{2} . M_{y}=\frac{1+8}{2}=\frac{9}{2}$.
PTS: 2 REF: 060919ge TOP: Midpoint

79 ANS: 3 PTS: 2 REF: fall0825ge
TOP: Centroid, Orthocenter, Incenter and Circumcenter
80 ANS: 2 PTS: 2 REF: 080927ge TOP: Planes
81 ANS: 1
$3 x^{2}+18 x+24$
$3\left(x^{2}+6 x+8\right)$
$3(x+4)(x+2)$
PTS: 2 REF: fall0815ge TOP: Volume
82 ANS: 1
Since $\overline{A C} \cong \overline{B C}, \mathrm{~m} \angle A=\mathrm{m} \angle B$ under the Isosceles Triangle Theorem.
PTS: 2 REF: fall0809ge TOP: Triangles in the Coordinate Plane
83 ANS: 4 PTS: 2 REF: 080915ge TOP: Identifying Transformations
84 ANS: 4
sum of interior $\angle \mathrm{s}=$ sum of exterior $\angle \mathrm{s}$

$$
\begin{aligned}
(n-2) 180 & =n\left(180-\frac{(n-2) 180}{n}\right) \\
180 n-360 & =180 n-180 n+360 \\
180 n & =720 \\
n & =4
\end{aligned}
$$

PTS: 2 REF: 081016ge TOP: Interior and Exterior Angles of Polygons
85 ANS: 1 PTS: 2 REF: 061013ge TOP: Tangents
KEY: point of tangency
86 ANS: 1
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.

$$
\overline{G C}=2 \overline{F G}
$$

$$
\begin{aligned}
\overline{G C}+\overline{F G} & =24 \\
2 \overline{F G}+\overline{F G} & =24 \\
3 \overline{F G} & =24 \\
\overline{F G} & =8
\end{aligned}
$$

PTS: 2	REF: 081018ge	TOP: Centroid	
ANS: 1	PTS: 2	REF: 060920ge	TOP: Graphing Circles
ANS: 1			
If $\angle A$ is at minimum $\left(50^{\circ}\right)$ and $\angle B$ is at minimum $\left(90^{\circ}\right), \angle C$ is at maximum of $40^{\circ}\left(180^{\circ}-\left(50^{\circ}+90^{\circ}\right)\right.$). If $\angle A$ is at maximum $\left(60^{\circ}\right)$ and $\angle B$ is at maximum $\left(100^{\circ}\right), \angle C$ is at minimum of $20^{\circ}\left(180^{\circ}-\left(60^{\circ}+100^{\circ}\right)\right.$).			
PTS: 2	REF: 060901ge	TOP: Interior a	xterior Angles of Triangles

89 ANS: 2
$\frac{3}{7}=\frac{6}{x}$
$3 x=42$
$x=14$

PTS: 2 REF: 081027ge TOP: Side Splitter Theorem
90 ANS: 4
$d=\sqrt{(-6-2)^{2}+(4-(-5))^{2}}=\sqrt{64+81}=\sqrt{145}$
PTS: 2 REF: 081013ge TOP: Distance
91 ANS: 2
$(d+4) 4=12(6)$
$4 d+16=72$
$d=14$
$r=7$
PTS: 2 REF: 061023ge TOP: Segments Intercepted by Circle
KEY: two secants
92 ANS: 4
$180-(50+30)=100$
PTS: 2
REF: 081006ge
TOP: Similarity
KEY: basic
ANS: 3
PTS: 2
ANS: 4
PTS: 2
REF: 011028ge
TOP: Conditional Statements
REF: 060913ge TOP: Conditional Statements
95 ANS: 2

$$
x^{2}=3(x+18)
$$

$x^{2}-3 x-54=0$
$(x-9)(x+6)=0$

$$
x=9
$$

PTS: 2 REF: fall0817ge TOP: Segments Intercepted by Circle
KEY: tangent and secant
96 ANS: 3
The slope of $y=x+2$ is 1 . The slope of $y-x=-1$ is $\frac{-A}{B}=\frac{-(-1)}{1}=1$.

PTS: 2
REF: 080909ge
TOP: Parallel and Perpendicular Lines

97 ANS: 2
$\frac{87+35}{2}=\frac{122}{2}=61$
PTS: 2 REF: 011015ge TOP: Arcs Determined by Angles
KEY: inside circle
98
ANS: 1
$-2\left(-\frac{1}{2} y=6 x+10\right)$

$$
y=-12 x-20
$$

PTS: 2 REF: 061027ge TOP: Parallel and Perpendicular Lines
99 ANS: 3
PTS: 2
REF: 080928ge TOP: Tangents
KEY: common tangency
ANS: 1
$\overline{A B}=10$ since $\triangle A B C$ is a 6-8-10 triangle. $6^{2}=10 x$
$3.6=x$

PTS: 2 REF: 060915ge TOP: Similarity KEY: leg
101 ANS: 1

PTS: 2 REF: 081003ge TOP: Midsegments
102 ANS: 3

$$
\begin{aligned}
(x+3)^{2}-4 & =2 x+5 \\
x^{2}+6 x+9-4 & =2 x+5 \\
x^{2}+4 x & =0 \\
x(x+4) & =0 \\
x & =0,-4
\end{aligned}
$$

PTS: 2
ANS: 1

REF: 081004ge
PTS: 2

TOP: Quadratic-Linear Systems
REF: 011024ge TOP: Planes

104 ANS: 2
$M_{x}=\frac{-2+6}{2}=2 . M_{y}=\frac{-4+2}{2}=-1$
PTS: 2 REF: 080910ge TOP: Midpoint
105 ANS: 3

PTS: 2 REF: 061016ge TOP: Trapezoids
106 ANS: 1
$x+2 x+2+3 x+4=180$

$$
\begin{aligned}
6 x+6 & =180 \\
x & =29
\end{aligned}
$$

PTS: 2 REF: 011002ge TOP: Interior and Exterior Angles of Triangles
107 ANS: 4
PTS: 2
REF: fall0824ge TOP: Tangents
KEY: common tangency
108 ANS: 1

$$
V=\pi r^{2} h
$$

$1000=\pi r^{2} \cdot 8$

$$
\begin{aligned}
r^{2} & =\frac{1000}{8 \pi} \\
r & \approx 6.3
\end{aligned}
$$

PTS: 2 REF: 080926ge TOP: Volume
109 ANS: 4 PTS: 2 REF: fall0818ge
TOP: Analytical Representations of Transformations
110 ANS: 1 PTS: 2 REF: 060918ge TOP: Planes
111 ANS: 1
Opposite sides of a parallelogram are congruent. $4 x-3=x+3 . S V=(2)+3=5$.

$$
\begin{aligned}
3 x & =6 \\
x & =2
\end{aligned}
$$

PTS: 2
112 ANS: 2
REF: 011013ge
TOP: Parallelograms
PTS: 2
REF: 011011ge TOP: Locus

113 ANS: 1
Parallel lines intercept congruent arcs.
PTS: 2 REF: 061001ge TOP: Chords
114 ANS: 1

PTS: 2 REF: 081017ge TOP: Segments Intercepted by Circle
KEY: two chords
115 ANS: 4
The slope of $y=-3 x+2$ is -3 . The perpendicular slope is $\frac{1}{3} \cdot-1=\frac{1}{3}(3)+b$

$$
\begin{aligned}
-1 & =1+b \\
b & =-2
\end{aligned}
$$

PTS: 2
REF: 011018ge
TOP: Parallel and Perpendicular Lines
116 ANS: 3

PTS: 2
ANS: 1
ANS: 4
The radius is 4. $r^{2}=16$.
PTS: 2 REF: 061014ge TOP: Equations of Circles
119 ANS: 4
Longest side of a triangle is opposite the largest angle. Shortest side is opposite the smallest angle.
PTS: 2
REF: 081011ge TOP: Angle Side Relationship

120 ANS: 4
$3 y+1=6 x+4.2 y+1=x-9$

$$
\begin{array}{rlrl}
3 y & =6 x+3 & 2 y & =x-10 \\
y & =2 x+1 & y & =\frac{1}{2} x-5
\end{array}
$$

PTS: 2 REF: fall0822ge TOP: Parallel and Perpendicular Lines
121 ANS: 1
$M_{x}=\frac{-2+6}{2}=2 . M_{y}=\frac{3+3}{2}=3$. The center is (2,3). $d=\sqrt{(-2-6)^{2}+(3-3)^{2}}=\sqrt{64+0}=8$. If the diameter is 8 , the radius is 4 and $r^{2}=16$.

PTS: 2 REF: fall0820ge TOP: Equations of Circles
122 ANS: 3 PTS: 2 REF: 060925ge TOP: Constructions
123 ANS: 1
$\angle A=\frac{(n-2) 180}{n}=\frac{(5-2) 180}{5}=108 \angle A E B=\frac{180-108}{2}=36$
PTS: 2 REF: 081022ge TOP: Interior and Exterior Angles of Polygons
124 ANS: 1
In an equilateral triangle, each interior angle is 60° and each exterior angle is $120^{\circ}\left(180^{\circ}-120^{\circ}\right)$. The sum of the three interior angles is 180° and the sum of the three exterior angles is 360°.

PTS: 2 REF: 060909ge TOP: Interior and Exterior Angles of Triangles
125 ANS: 2
Parallel chords intercept congruent arcs. $\widehat{\mathrm{m}} \overparen{A C}=\mathrm{m} \overparen{B D}=30.180-30-30=120$.
PTS: 2 REF: 080904ge TOP: Chords
126 ANS: 4
$L=2 \pi r h=2 \pi \cdot 5 \cdot 11 \approx 345.6$
PTS: 2 REF: 061006ge TOP: Volume
127
ANS: 4
$(n-2) 180=(8-2) 180=1080 \cdot \frac{1080}{8}=135$.
PTS: 2 REF: fall0827ge TOP: Interior and Exterior Angles of Polygons
ANS: 4 PTS: 2 REF: fall0802ge TOP: Negations
ANS: 1 PTS: 2 REF: 061009ge TOP: Converse
ANS: 2
$M_{x}=\frac{2+(-4)}{2}=-1 . M_{Y}=\frac{-3+6}{2}=\frac{3}{2}$.
PTS: 2 REF: fall0813ge TOP: Midpoint

131 ANS: 3
$\frac{36+20}{2}=28$
PTS: 2 REF: 061019ge TOP: Arcs Determined by Angles
KEY: inside circle
132 ANS: 2
$4(4 x-3)=3(2 x+8)$
$16 x-12=6 x+24$

$$
\begin{aligned}
10 x & =36 \\
x & =3.6
\end{aligned}
$$

PTS: 2 REF: 080923ge TOP: Segments Intercepted by Circle
KEY: two chords
133
ANS: 4
ANS: 3
PTS: 2
KEY: basic
135 ANS: 2
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.

	PTS: 2	REF: 060914ge	TOP: Centroid		
136	ANS: 4	PTS: 2	REF: 080905 ge	TOP: Triangle Congruency	
137	ANS: 4	PTS: 2	REF: 080914 ge	TOP: Planes	
138	ANS: 4	PTS: 2	REF: 011019 ge	TOP: Similarity Proofs	
139	ANS: 4				

The slope of $y=-\frac{2}{3} x-5$ is $-\frac{2}{3}$. Perpendicular lines have slope that are opposite reciprocals.
PTS: 2 REF: 080917ge TOP: Parallel and Perpendicular Lines
140 ANS: 4
Corresponding angles of similar triangles are congruent.
PTS: 2 REF: fall0826ge TOP: Similarity KEY: perimeter and area
141 ANS: 3
PTS: 2 REF: 011007ge
TOP: Isosceles Triangle Theorem
142 ANS: 4
(4) is not true if $\angle P Q R$ is obtuse.

PTS: 2 REF: 060924ge TOP: Exterior Angle Theorem
143 ANS: 3
The lateral edges of a prism are parallel.
PTS: 2
REF: fall0808ge TOP: Solids

144
ANS: 1
$V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi \cdot 4^{2} \cdot 12 \approx 201$
PTS: 2 REF: 060921ge TOP: Volume and Lateral Area
ANS: 2
The slope of $2 x+3 y=12$ is $-\frac{A}{B}=-\frac{2}{3}$. The slope of a perpendicular line is $\frac{3}{2}$. Rewritten in slope intercept form, (2) becomes $y=\frac{3}{2} x+3$.

PTS: 2 REF: 060926ge TOP: Parallel and Perpendicular Lines
ANS: 4
Let $\overline{A D}=x . \quad 36 x=12^{2}$

$$
x=4
$$

PTS: 2
ANS: 4
REF: 080922ge TOP: Similarity KEY: leg
$y+x=4 . x^{2}-6 x+10=-x+4 . y+x=4 . y+2=4$

$y=-x+4 \quad x^{2}-5 x+6=0 \quad y+3=4 \quad y=2$

$$
(x-3)(x-2)=0 \quad y=1
$$

$$
x=3 \text { or } 2
$$

PTS: 2 REF: 080912ge TOP: Quadratic-Linear Systems
ANS: 4
PTS: 2
REF: 081005 ge TOP: Constructions
ANS: 3
$V=\pi r^{2} h=\pi \cdot 6^{2} \cdot 27=972 \pi$
PTS: 2
ANS: 1
REF: 011027ge
PTS: 2
TOP: Volume
REF: 061012ge TOP: Constructions

151
ANS: 1

PTS: 2 REF: 011021ge TOP: Exterior Angle Theorem
152 ANS: 2
Parallel chords intercept congruent arcs. $\mathrm{m} \overparen{A D}=\mathrm{m} \overparen{B C}=60 . \mathrm{m} \angle C D B=\frac{1}{2} \mathrm{~m} \overparen{B C}=30$.
PTS: 2
REF: 060906ge TOP: Chords
ANS: 1
$A^{\prime}(2,4)$
PTS: 2
REF: 011023ge TOP: Compositions of Transformations
KEY: basic
154
ANS. 2
ANS: 4
$\overline{B G}$ is also an angle bisector since it intersects the concurrence of $\overline{C D}$ and $\overline{A E}$
PTS: 2 REF: 061025ge KEY: Centroid, Orthocenter, Incenter and Circumcenter
157 ANS: 3
Because $\overline{O C}$ is a radius, its length is 5. Since $C E=2 O E=3 . \triangle E D O$ is a 3-4-5 triangle. If $E D=4, B D=8$.
$\begin{array}{rllll}\text { PTS: } 2 & \text { REF: fall0811ge } & \text { TOP: Chords } \\ 158 & \text { ANS: } 4 & \text { PTS: } 2 & \text { REF: } 080925 \mathrm{ge}\end{array}$
TOP: Centroid, Orthocenter, Incenter and Circumcenter
159 ANS: 1
$d=\sqrt{(-4-2)^{2}+(5-(-5))^{2}}=\sqrt{36+100}=\sqrt{136}=\sqrt{4} \cdot \sqrt{34}=2 \sqrt{34}$.
PTS: 2 REF: 080919ge TOP: Distance
160 ANS: 1
PTS: 2 REF: 080911ge
TOP: Equations of Circles

161 ANS: 2

PTS: 2
KEY: inscribed
ANS: 4
ANS: 3
ANS: 2
Longest side of a triangle is opposite the largest angle. Shortest side is opposite the smallest angle.
PTS: 2 REF: 060911ge TOP: Angle Side Relationship
165 ANS: 3
PTS: 2
ANS: 3

PTS: 2 REF: 011023ge TOP: Interior and Exterior Angles of Polygons
167 ANS: 4
$d=\sqrt{(146-(-4))^{2}+(52-2)^{2}}=\sqrt{25,000} \approx 158.1$
PTS: 2
168 ANS: 4
REF: 061021ge
TOP: Distance
PTS: 2 REF: 060904ge
REF: 060904ge TOP: Solids

Geometry 2 Point Regents Exam Questions

Answer Section

1 ANS:
$y=\frac{2}{3} x-9$. The slope of $2 x-3 y=11$ is $-\frac{A}{B}=\frac{-2}{-3}=\frac{2}{3} .-5=\left(\frac{2}{3}\right)(6)+b$

$$
\begin{aligned}
-5 & =4+b \\
b & =-9
\end{aligned}
$$

PTS: 2 REF: 080931ge TOP: Parallel and Perpendicular Lines
2 ANS:
20. $5 x+10=4 x+30$

$$
x=20
$$

PTS: 2 REF: 060934ge TOP: Similarity KEY: basic
3 ANS:
18. $V=\frac{1}{3} B h=\frac{1}{3} l w h$

$$
\begin{aligned}
288 & =\frac{1}{3} \cdot 8 \cdot 6 \cdot h \\
288 & =16 h \\
18 & =h
\end{aligned}
$$

PTS: 2 REF: 061034ge TOP: Volume
4 ANS:
$(x+1)^{2}+(y-2)^{2}=36$
PTS: 2 REF: 081034ge TOP: Equations of Circles

5 ANS:
20. The sides of the triangle formed by connecting the midpoints are half the sides of the original triangle.
$5+7+8=20$.

PTS: 2 REF: 060929ge TOP: Midsegments
6 ANS:
True. The first statement is true and the second statement is false. In a disjunction, if either statement is true, the disjunction is true.

PTS: 2 REF: 060933ge TOP: Compound Statements
KEY: disjunction
7 ANS:
67. $\frac{180-46}{2}=67$

PTS: 2 REF: 011029ge TOP: Isosceles Triangle Theorem
8 ANS:
6. The centroid divides each median into segments whose lengths are in the ratio $2: 1 . \overline{T D}=6$ and $\overline{D B}=3$

PTS: 2 REF: 011034ge TOP: Centroid
9 ANS:

PTS: 2
REF: 081032ge
TOP: Constructions
10 ANS:
452. $S A=4 \pi r^{2}=4 \pi \cdot 6^{2}=144 \pi \approx 452$

PTS: 2 REF: 061029ge TOP: Volume and Surface Area

11 ANS:

PTS: 2 REF: 011032ge TOP: Constructions
12 ANS:

PTS: 2 REF: fall0832ge TOP: Constructions
13 ANS:
4. $l_{1} w_{1} h_{1}=l_{2} w_{2} h_{2}$

$$
\begin{aligned}
10 \times 2 \times h & =5 \times w_{2} \times h \\
20 & =5 w_{2} \\
w_{2} & =4
\end{aligned}
$$

PTS: 2 REF: 011030ge TOP: Volume
14 ANS:

PTS: 2
REF: 080932ge
TOP: Constructions
15

> AND.
$y=-2 x+14$. The slope of $2 x+y=3$ is $\frac{-A}{B}=\frac{-2}{1}=-2 . y=m x+b$

$$
\begin{aligned}
& 4=(-2)(5)+b \\
& b=14
\end{aligned}
$$

PTS: 2
REF: 060931ge TOP: Parallel and Perpendicular Lines

16 ANS:
$\overline{A C} . \mathrm{m} \angle B C A=63$ and $\mathrm{m} \angle A B C=80 . \overline{A C}$ is the longest side as it is opposite the largest angle.
PTS: 2 REF: 080934ge TOP: Angle Side Relationship
17 ANS:
$375 \pi L=\pi r l=\pi(15)(25)=375 \pi$
PTS: 2 REF: 081030ge TOP: Volume and Lateral Area
18 ANS:

PTS: 2 REF: 061033ge TOP: Locus
19 ANS:

$$
\text { 34. } \begin{aligned}
2 x-12+x+90 & =180 \\
3 x+78 & =90 \\
3 x & =102 \\
x & =34
\end{aligned}
$$

PTS: 2 REF: 061031ge TOP: Interior and Exterior Angles of Triangles
20 ANS:

PTS: 2
REF: 060930ge TOP: Constructions
21 ANS:
Contrapositive-If two angles of a triangle are not congruent, the sides opposite those angles are not congruent.
PTS: 2
REF: fall0834ge TOP: Conditional Statements

22 ANS:
3. The non-parallel sides of an isosceles trapezoid are congruent. $2 x+5=3 x+2$

$$
x=3
$$

PTS: 2 REF: 080929ge TOP: Trapezoids
23 ANS:
110. $6 x+20=x+40+4 x-5$

$$
\begin{aligned}
6 x+20 & =5 x+35 \\
x & =15 \\
6((15)+20 & =110
\end{aligned}
$$

PTS: 2
REF: 081031ge TOP: Isosceles Triangle Theorem
24 ANS:
37. Since $\overline{D E}$ is a midsegment, $A C=14.10+13+14=37$

PTS: 2 REF: 061030ge TOP: Midsegments
25 ANS:
70. $3 x+5+3 x+5+2 x+2 x=180$

$$
\begin{aligned}
10 x+10 & =360 \\
10 x & =350 \\
x & =35 \\
2 x & =70
\end{aligned}
$$

PTS: 2
REF: 081029ge
TOP: Trapezoids
26 ANS:
5. $\frac{3}{x}=\frac{6+3}{15}$

$$
\begin{aligned}
9 x & =45 \\
x & =5
\end{aligned}
$$

PTS: 2 REF: 011033ge TOP: Side Splitter Theorem
27 ANS:
$(6,-4) . C_{x}=\frac{Q_{x}+R_{x}}{2} . C_{y}=\frac{Q_{y}+R_{y}}{2}$.

$$
\begin{array}{rlrl}
3.5 & =\frac{1+R_{x}}{2} & 2 & =\frac{8+R_{y}}{2} \\
7 & =1+R_{x} & 4 & =8+R_{y} \\
6 & =R_{x} & -4 & =R_{y}
\end{array}
$$

PTS: 2
REF: 011031ge TOP: Midpoint

28 ANS:

PTS: 2 REF: 081033ge TOP: Locus
29 ANS:
26. $x+3 x+5 x-54=180$

$$
\begin{aligned}
9 x & =234 \\
x & =26
\end{aligned}
$$

PTS: 2 REF: 080933ge TOP: Interior and Exterior Angles of Triangles
30 ANS:
$2 \sqrt{3} \cdot x^{2}=3 \cdot 4$

$$
x=\sqrt{12}=2 \sqrt{3}
$$

PTS: 2 REF: fall0829ge TOP: Similarity KEY: altitude
31 ANS:

PTS: 2 REF: fall0830ge TOP: Properties of Transformations
32 ANS:
25. $d=\sqrt{(-3-4)^{2}+(1-25)^{2}}=\sqrt{49+576}=\sqrt{625}=25$.

PTS: 2
REF: fall0831ge TOP: Distance

33 ANS:
22.4. $\quad V=\pi r^{2} h$
$12566.4=\pi r^{2} \cdot 8$

$$
\begin{aligned}
r^{2} & =\frac{12566.4}{8 \pi} \\
r & \approx 22.4
\end{aligned}
$$

PTS: 2
REF: fall0833ge TOP: Volume
34 ANS:
2016. $V=\frac{1}{3} B h=\frac{1}{3} s^{2} h=\frac{1}{3} 12^{2} \cdot 42=2016$

PTS: 2 REF: 080930ge TOP: Volume
35 ANS:

PTS: 2 REF: 061032ge TOP: Reflections KEY: grids
36 ANS:

PTS: 2
REF: 060932ge TOP: Locus

Geometry 4 Point Regents Exam Questions
 Answer Section

1 ANS:
Yes, $\mathrm{m} \angle A B D=\mathrm{m} \angle B D C=44180-(93+43)=44 x+19+2 x+6+3 x+5=180$. Because alternate interior

$$
\begin{aligned}
6 x+30 & =180 \\
6 x & =150 \\
x & =25 \\
x+19 & =44
\end{aligned}
$$

angles $\angle A B D$ and $\angle C D B$ are congruent, $\overline{A B}$ is parallel to $\overline{D C}$.
PTS: 4 REF: 081035ge TOP: Parallel Lines and Transversals
2 ANS:

$$
\text { 2.4. } \begin{array}{rll}
5 a=4^{2} & 5 b=3^{2} & h^{2}=a b \\
a=3.2 & b=1.8 & h^{2}=3.2 \cdot 1.8 \\
& & h=\sqrt{5.76}=2.4
\end{array}
$$

PTS: 4 REF: 081037ge TOP: Similarity KEY: altitude
36, because a dilation does not affect angle measure. 10 , because a dilation does affect distance.
PTS: 4 REF: 011035ge TOP: Properties of Transformations
4 ANS:
Midpoint: $\left(\frac{-4+4}{2}, \frac{2+(-4)}{2}\right)=(0,-1)$. Distance: $d=\sqrt{(-4-4)^{2}+(2-(-4))^{2}}=\sqrt{100}=10$
$r=5$

$$
r^{2}=25
$$

$x^{2}+(y+1)^{2}=25$
PTS: 2 REF: 061037ge TOP: Equations of Circles

5 ANS:
$y=\frac{4}{3} x-6 . M_{x}=\frac{-1+7}{2}=3 \quad$ The perpendicular bisector goes through $(3,-2)$ and has a slope of $\frac{4}{3}$.

$$
\begin{aligned}
& M_{y}=\frac{1+(-5)}{2}=-2 \\
& m=\frac{1-(-5)}{-1-7}=-\frac{3}{4}
\end{aligned}
$$

$$
y-y_{M}=m\left(x-x_{M}\right) .
$$

$$
y-1=\frac{4}{3}(x-2)
$$

PTS: 4 REF: 080935ge TOP: Perpendicular Bisector
6 ANS:

PTS: 4 REF: fall0835ge TOP: Midsegments
7 ANS:
$\angle D, \angle G$ and 24° or $\angle E, \angle F$ and $84^{\circ} . \mathrm{m} \overparen{F E}=\frac{2}{15} \times 360=48$. Since the chords forming $\angle D$ and $\angle G$ are intercepted by $\overparen{F E}$, their measure is $24^{\circ} . \mathrm{m} \overparen{G D}=\frac{7}{15} \times 360=168$. Since the chords forming $\angle E$ and $\angle F$ are intercepted by $\overparen{G D}$, their measure is 84°.

PTS: 4
REF: fall0836ge TOP: Arcs Determined by Angles
KEY: inscribed

8 ANS:

PTS: 4
REF: 080937ge TOP: Properties of Transformations
9 ANS:
$15+5 \sqrt{5}$.

PTS: 4 REF: 060936ge TOP: Triangles in the Coordinate Plane
10 ANS:

PTS: 4 REF: 011037ge TOP: Locus

11 ANS:

$$
\begin{aligned}
& y=\frac{2}{3} x+1.2 y+3 x=6 \quad . y=m x+b \\
& 2 y=-3 x+6 \quad 5=\frac{2}{3}(6)+b \\
& y=-\frac{3}{2} x+3 \quad 5=4+b \\
& m=-\frac{3}{2} \quad 1=b \\
& m_{\perp}=\frac{2}{3} \quad y=\frac{2}{3} x+1
\end{aligned}
$$

PTS: 4
REF: 061036ge
TOP: Parallel and Perpendicular Lines
12 ANS:

PTS: 4
REF: 060937ge TOP: Compositions of Transformations
KEY: grids
13 ANS:
18. If the ratio of $T A$ to $A C$ is $1: 3$, the ratio of $T E$ to $E S$ is also 1:3. $x+3 x=24.3(6)=18$.

$$
x=6
$$

PTS: 4
REF: 060935ge TOP: Tangents
KEY: common tangency
14 ANS:

PTS: 4
REF: fall0837ge TOP: Locus

15 ANS:
$\overline{J K} \cong \overline{L M}$ because opposite sides of a parallelogram are congruent. $\overline{L M} \cong \overline{L N}$ because of the Isosceles Triangle Theorem. $\overline{L M} \cong \overline{J M}$ because of the transitive property. $J K L M$ is a rhombus because all sides are congruent.

PTS: 4
REF: 011036ge TOP: Special Quadrilaterals
16 ANS:
$\overline{B D} \cong \overline{D B}$ (Reflexive Property); $\triangle A B D \cong \triangle C D B(\mathrm{SSS}) ; \angle B D C \cong \angle A B D$ (CPCTC).

PTS: 4 REF: 061035ge TOP: Quadrilateral Proofs
17 ANS:

$A^{\prime \prime}(8,2), B^{\prime \prime}(2,0), C^{\prime \prime}(6,-8)$
PTS: 4
REF: 081036ge TOP: Compositions of Transformations
18 ANS:

PTS: 4
REF: 080936ge TOP: Locus

Geometry 6 Point Regents Exam Questions Answer Section

1 ANS:

$\overline{F E} \cong \overline{F E}$ (Reflexive Property); $\overline{A E}-\overline{F E} \cong \overline{F C}-\overline{E F}$ (Line Segment Subtraction
Theorem); $\overline{A F} \cong \overline{C E}$ (Substitution); $\angle B F A \cong \angle D E C$ (All right angles are congruent); $\triangle B F A \cong \triangle D E C$ (AAS); $\overline{A B} \cong \overline{C D}$ and $\overline{B F} \cong \overline{D E}(\mathrm{CPCTC}) ; \angle B F C \cong \angle D E A$ (All right angles are congruent); $\triangle B F C \cong \triangle D E A$ (SAS); $\overline{A D} \cong \overline{C B}$ (CPCTC); $A B C D$ is a parallelogram (opposite sides of quadrilateral $A B C D$ are congruent)

PTS: 6
REF: 080938ge
TOP: Special Quadrilaterals
2 ANS:
Because $\overline{A B} \| \overline{D C}, \overparen{A D} \cong \overparen{B C}$ since parallel chords intersect congruent arcs. $\angle B D C \cong \angle A C D$ because inscribed angles that intercept congruent arcs are congruent. $\overline{A D} \cong \overline{B C}$ since congruent chords intersect congruent arcs. $\overline{D C} \cong \overline{C D}$ because of the reflexive property. Therefore, $\triangle A C D \cong \triangle B D C$ because of SAS.

PTS: 6 REF: fall0838ge TOP: Circle Proofs
3 ANS:

PTS: 6 REF: 011038ge TOP: Quadratic-Linear Systems
4 ANS: $\overline{A C} \cong \overline{E C}$ and $\overline{D C} \cong \overline{B C}$ because of the definition of midpoint. $\angle A C B \cong \angle E C D$ because of vertical angles. $\triangle A B C \cong \triangle E D C$ because of SAS. $\angle C D E \cong \angle C B A$ because of CPCTC. $\overline{B D}$ is a transversal intersecting $\overline{A B}$ and $\overline{E D}$. Therefore $\overline{A B} \| \overline{D E}$ because $\angle C D E$ and $\angle C B A$ are congruent alternate interior angles.

PTS: 6 REF: 060938ge TOP: Triangle Proofs

5 ANS:

$\overline{A B} \| \overline{C D}$ and $\overline{A D} \| \overline{C B}$ because their slopes are equal. $A B C D$ is a parallelogram because opposite side are parallel. $\overline{A B} \neq \overline{B C} . A B C D$ is not a rhombus because all sides are not equal. $\overline{A B} \sim \perp \overline{B C}$ because their slopes are not opposite reciprocals. $A B C D$ is not a rectangle because $\angle A B C$ is not a right angle.

PTS: 4 REF: 081038ge TOP: Quadrilaterals in the Coordinate Plane
6 ANS:
$8 x-5=3 x+30.4 z-8=3 z .9 y+8+5 y-2=90$.

$$
\begin{aligned}
& 5 x=35 \\
& z=8 \\
& 14 y+6=90 \\
& x=7 \\
& 14 y=84 \\
& y=6
\end{aligned}
$$

PTS: 6
REF: 061038ge TOP: Special Parallelograms

