JEFFERSON MATH PROJECT REGENTS BY PERFORMANCE INDICATOR: TOPIC

NY Integrated Algebra Regents Exam Questions from Fall 2007 to August 2010 Sorted by PI: Topic (Answer Key)

www.jmap.org

Dear $^{\text {Soir }}$

Ihave to acknofege the reciept of your favor of May 14. in which you mention that you have finished the 6. first books of $\mathcal{F} u c f i d$, po ane trigonometry, surveying \& afgebra and ask whether \mathcal{I} think a further pursuit of that branch of science would be useful to you. there are some propositions in the fatter books of
 them. trigonometry, so far as this, is most valuable to every man, there is scarcely a day in which he wiff not resort to it for some of the purposes of common fife. the science of cafculation afso is indispensible as far as the extraction of the square \& cube roots; 规Igebra as far as the quadratic equation \& the use of fogarithims are often of value in ordinary cases: but aff beyond these is but a fuxury; a deficious fuxury indeed; but not to be indulged in by one who is to have a profession to foffow for hits subsistence. in this fight $\mathscr{I}_{\text {view }}$ the conic sections, curves of the higher orders, perfiaps even spherical trigonometry, ötlgebraical operations beyond the ad dimension, and ffuxions.
Letter from Thomas Jefferson to William G. Munford, Monticello, June 18, 1799.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic Answer Section

1 ANS: 3
$|-5(5)+12|=|-13|=13$
PTS: 2
REF: 080923ia
2 ANS: 1
$-|a-b|=-|7-(-3)|=-|-10|=-10$
PTS: 2
3 ANS: 3
REF: 011010ia
TOP: 1 PTS. 2
4 ANS: 2 PTS: 2
TOP: Identifying Properties
5 ANS: $3 \quad$ PTS: 2
TOP: Properties of Reals
6 ANS:
$-6 a+42$. distributive

	PTS: 2	REF:	061032ia	STA:	A.N. 1	TOP:	Properties of Reals
7	ANS: 4	PTS:	2	REF:	fall0704ia	STA:	A.A. 29
	TOP: Set Theory						
8	ANS: 1 TOP: Set Theory	PTS:	2	REF:	061021ia	STA:	A.A. 29
9	ANS: 3 TOP: Set Theory	PTS:	2	REF:	010917ia	STA:	A.A. 29
0	ANS: 4 TOP: Set Theory	PTS:	2	REF:	060930ia	STA:	A.A. 29
1	ANS: 4 TOP: Set Theory	PTS:	2	REF:	081022ia	STA:	A.A. 29
2	ANS: 4 TOP: Set Theory	PTS:	2	REF:	061001ia	STA:	A.A. 30
3	ANS: 3 TOP: Set Theory	PTS:	2	REF:	081009ia	STA:	A.A. 30
4	ANS: 4 $A=\{2,4,6,8,10,12,$	$4,16,18$					

PTS: 2
REF: 080912ia
STA: A.A. 30
TOP: Set Theory
15 ANS: 2
The set of integers greater than -2 and less than 6 is $\{-1,0,1,2,3,4,5\}$. The subset of this set that is the positive factors of 5 is $\{1,5\}$. The complement of this subset is $\{-1,0,2,3,4\}$.

PTS: 2 REF: 060818ia STA: A.A. 30 TOP: Set Theory

16 ANS:
\{1,2,4,5,9,10,12\}
PTS: 2
17 ANS: 1
TOP: Set Theory
18 ANS: 3
080833ia
PTS: 2
STA: A.A. 30
REF: 011004ia
TOP: Set Theory
STA: A.A. 31

TOP: Set Theory
19 ANS: 2
PTS: 2
REF: fall0710ia
STA: A.A. 31

TOP: Set Theory
20 ANS:
$0 \leq t \leq 40$
PTS: 2
REF: 060833ia
STA: A.A. 31
TOP: Set Theory
21 ANS:

Interval	Tally	Frequency	
$40-44$	III	4	
$45-49$	$\\|$ UI	5	
$50-54$	$11 \\|$	4	
$55-59$	$\\|$ II $\mid 7$	8	
$60-64$	HI II	7	
$65-69$	II	2	

PTS: 4
REF: 060938ia
STA: A.S. 5
TOP: Frequency Histograms, Bar Graphs and Tables
22 ANS:

PTS: 4
REF: 080838ia
STA: A.S. 5
TOP: Frequency Histograms, Bar Graphs and Tables
23 ANS: 3
$25-18=7$
PTS: 2
REF: 060822ia STA: A.S. 9
TOP: Frequency Histograms, Bar Graphs and Tables

24 ANS:
30, 20, 71-80, 81-90 and 91-100
PTS: 4 REF: 061038ia STA: A.S. 9
TOP: Frequency Histograms, Bar Graphs and Tables
25 ANS: 2
The median score, 10 , is the vertical line in the center of the box.
PTS: 2 REF: fall0709ia STA: A.S. 5 TOP: Box-and-Whisker Plots
26 ANS:

PTS: 4 REF: 080939ia STA: A.S. 5 TOP: Box-and-Whisker Plots
27 ANS:
minimum is 120 , 1 st quartile is 145 , median is 292 , 3 rd quartile is 407 , and maximum is 452

PTS: 3 REF: 081034ia STA: A.S. 5 TOP: Box-and-Whisker Plots
28 ANS: 3
The value of the third quartile is the last vertical line of the box.
PTS: 2 REF: 080818ia STA: A.S. 6 TOP: Box-and-Whisker Plots
29 ANS: 3
The value of the upper quartile is the last vertical line of the box.
PTS: 2 REF: 060915ia STA: A.S. 6 TOP: Box-and-Whisker Plots
30 ANS: 1
PTS: 2
REF: 011001ia
TOP: Box-and-Whisker Plots
31 ANS: $4 \quad$ PTS: 2
REF: 010929ia
STA: A.S. 6

TOP: Box-and-Whisker Plots
32 ANS: $3 \quad$ PTS: 2
REF: 061017ia
STA: A.S. 6

TOP: Quartiles and Percentiles
33 ANS: 2 PTS: 2
TOP: Scatter Plots
34 ANS: 3 PTS: 2 REF: 081001ia STA: A.S. 7
TOP: Scatter Plots

35 ANS: 4

PTS: 2
REF: 080822ia
STA: A.S. 8
TOP: Scatter Plots
36
ANS:

PTS: 3
37 ANS: 4 TOP: Scatter Plots
38 ANS: 2
TOP: Scatter Plots
39 ANS: 2
TOP: Scatter Plots
40 ANS:

PTS: 3
41 ANS: 3 mean $=6$, median $=6$ and mode $=7$

PTS: 2
REF: 080804ia
STA: A.S. 4

STA: A.S. 8
REF: 060805ia

REF: 011019ia
REF: 080930ia

REF: 060936ia
PTS: 2

PTS: 2

PTS: 2

TOP: Scatter Plots
STA: A.S. 12

STA: A.S. 12
STA: A.S. 17

42 ANS: 4
The mean is $80 . \overline{6}$, the median is 84.5 and the mode is 87 .
PTS: 2 REF: 010907ia STA: A.S. 4 TOP: Central Tendency
43 ANS:
225000,175000 , the median better represents the value since it is closer to more values than the mean.
PTS: 4 REF: fall0737ia STA: A.S. 4
TOP: Frequency Histograms, Bar Graphs and Tables
44 ANS:
$315,000,180,000$, the median better represents value since it is closer to more prices than the mean.
PTS: 4 REF: 060839ia STA: A.S. 4
TOP: Frequency Histograms, Bar Graphs and Tables
45 ANS:
81.3, 80, both increase

PTS: 3 REF: 011035ia STA: A.S. 16 TOP: Central Tendency
46 ANS: 4
$\frac{2+3+0+1+3+2+4+0+2+3}{10}=\frac{20}{10}=2 \frac{x}{10}=2+0.5$

$$
x=25
$$

PTS: 2 REF: 081020ia STA: A.S. 16 TOP: Average Known with Missing Data
47 ANS: 3
The other situations are quantitative.
PTS: 2 REF: 060819ia STA: A.S. 1 TOP: Analysis of Data
48 ANS: 3
The other situations are quantitative.
PTS: 2 REF: 060905ia STA: A.S. 1 TOP: Analysis of Data
49 ANS: 2
The two values are shoe size and height.
PTS: 2 REF: fall0714ia STA: A.S. 2 TOP: Analysis of Data
50 ANS: 3
Frequency is not a variable.
PTS: 2 REF: 011014ia STA: A.S. 2 TOP: Analysis of Data
51 ANS: 3 PTS: 2 REF: 061011ia STA: A.S. 2
TOP: Analysis of Data
52 ANS: 1
To determine student interest, survey the widest range of students.
PTS: 2 REF: 060803ia STA: A.S. 3 TOP: Analysis of Data

53 ANS: 1
Everyone eats, can shop in malls and wear clothes. People who work in a sporting goods store probably watch more sports television than most.

PTS: 2 REF: 010923ia STA: A.S. 3 TOP: Analysis of Data
54 ANS: 4
Surveying persons leaving a football game about a sports budget contains the most bias.
PTS: 2 REF: 080910ia STA: A.S. 3 TOP: Analysis of Data
55 ANS: 4
PTS: 2
REF: 061022ia
STA: A.S. 3
TOP: Analysis of Data
56 ANS: 3
The number of correct answers on a test causes the test score.
PTS: 2 REF: 080908ia STA: A.S. 13 TOP: Analysis of Data
57 ANS: 1
A rooster crows before sunrise, not because of the sun.
PTS: 2 REF: fall0707ia STA: A.S. 14 TOP: Analysis of Data
58 ANS: 3
The age of a child does not cause the number of siblings he has, or vice versa.
PTS: 2 REF: 011030ia STA: A.S. 14 TOP: Analysis of Data
59 ANS: 3
PTS: 2
REF: 081017a STA: A.S. 14
TOP: Analysis of Data
60 ANS: 1 PTS. 2
REF: fall0723ia STA: A.M. 3
TOP: Error
61 ANS: 2
$\left|\frac{149.6-174.2}{149.6}\right| \approx 0.1644$
PTS: 2
REF: 080926ia
STA: A.M. 3 TOP: Error
62 ANS: 2
$\left|\frac{55.42-50.27}{55.42}\right| \approx 0.093$
PTS: 2 REF: 081023ia STA: A.M. 3 TOP: Error
63 ANS: 1
$\left|\frac{289-282}{289}\right| \approx 0.024$
PTS: 2 REF: 080828ia STA: A.M. 3 TOP: Error

64 ANS: 2
The volume of the cube using Ezra's measurements is $8\left(2^{3}\right)$. The actual volume is $9.261\left(2.1^{3}\right)$. The relative error is $\left|\frac{9.261-8}{9.261}\right| \approx 0.14$.

PTS: 2 REF: 060928ia STA: A.M. 3 TOP: Error
65 ANS:
$618.45,613.44,0.008 .21 .7 \times 28.5=618.45 .21 .6 \times 28.4=613.44 .\left|\frac{618.45-613.44}{613.44}\right| \approx 0.008$. An error of less than 1% would seem to be insignificant.

PTS: 4 REF: 060838ia STA: A.M. 3 TOP: Error
66 ANS:
$1,512,1,551.25,0.025 .36 \times 42=1512.36 .5 \times 42.5=1551.25 . R E=\left|\frac{1512-1551.25}{1551.25}\right| \approx 0.025$.
PTS: 3 REF: 010934ia STA: A.M. 3 TOP: Error
67 ANS:
$0.102 . \frac{(5.3 \times 8.2 \times 4.1)-(5 \times 8 \times 4)}{5.3 \times 8.2 \times 4.1}=\frac{178.16-160}{178.16}=0.102$
PTS: 3 REF: 011036ia STA: A.M. 3 TOP: Error
68 ANS:
$\frac{600-592}{592} \approx 0.014$
PTS: 2 REF: 061031ia STA: A.M. 3 TOP: Relative Error
69 ANS:
$\frac{3}{8} .(H, H, H),(H, H, T),(H, T, H),(H, T, T),(T, H, H),(T, H, T),(T, T, H),(T, T, T)$
PTS: 2 REF: 080933ia STA: A.S. 19 TOP: Sample Space
70 ANS:
(S,S), (S,K), (S,D), (K,S), (K,K), (K,D), (D,S), (D,K), (D,D), $\frac{4}{9}$
PTS: 3 REF: fall0736ia STA: A.S. 19 TOP: Sample Space
71 ANS:
(H,F,M), (H,F,J), (H,F,S), (H,A,M), (H,A,J), (H,A,S), (C,F,M), (C,F,J), (C,F,S), (C,A,M), (C,A,J), (C,A,S), (T,F,M), (T,F,J), (T,F,S), (T,A,M), (T,A,J), (T,A,S). There are 18 different kids' meals, 12 do not include juice and 6 include chicken nuggets.

PTS: 4 REF: 010939ia STA: A.S. 19 TOP: Sample Space
72 ANS: 2 PTS:
TOP: Empirical Probability
REF: 060908ia STA: A.S. 21
TOP: Empirical Probability

73 ANS: 3
$\frac{15}{15+13+12}=\frac{15}{40}=\frac{3}{8}$
PTS: 2 REF: 061006ia STA: A.S. 21 TOP: Experimental Probability
74 ANS: 3
PTS: 2 REF: 080907ia
TOP: Theoretical Probability
75 ANS: $2 \quad$ PTS: 2
TOP: Theoretical Probability
76 ANS: 4
$P(G$ or $W)=\frac{4}{8}, P(G$ or $B)=\frac{3}{8}, P(Y$ or $B)=\frac{4}{8}, P(Y$ or $G)=\frac{5}{8}$
PTS: 2 REF: 060802ia STA: A.S. 22 TOP: Theoretical Probability
77 ANS: 4
$P(O)=\frac{3}{6}, P(E)=\frac{3}{6}, P(<6)=\frac{5}{6}, P(>4)=\frac{2}{6}$
PTS: 2
REF: 010903ia
STA: A.S. 22 TOP: Theoretical Probability
78 ANS:
orchestra: $\frac{3}{26}>\frac{4}{36}$
PTS: 2
REF: 011033ia
STA: A.S. 22
TOP: Theoretical Probability
79 ANS:
Hat A, add 1 not green to Hat A, add 11 green to Hat B, and add none to Hat C.
PTS: 4 REF: 081038ia STA: A.S. 22 TOP: Theoretical Probability
80 ANS: 3
PTS: 2
REF: fall0702ia STA: A.S. 23
TOP: Theoretical Probability
KEY: mutually exclusive events
81 ANS: 2
The events are not mutually exclusive: $\mathrm{P}($ prime $)=\frac{3}{6}, \mathrm{P}($ even $)=\frac{3}{6}, \mathrm{P}($ prime AND even $)=\frac{1}{6}$
$P($ prime OR even $)=\frac{3}{6}+\frac{3}{6}-\frac{1}{6}=\frac{5}{6}$
PTS: 2 REF: 080830ia STA: A.S. 23 TOP: Theoretical Probability
KEY: not mutually exclusive events
82 ANS: 3
$P(S) \cdot P(M)=P(S$ and $M)$
$\frac{3}{5} \cdot P(M)=\frac{3}{10}$

$$
P(M)=\frac{1}{2}
$$

PTS: 2
REF: 081024ia
STA: A.S. 23
TOP: Theoretical Probability KEY: independent events

83 ANS: 1
$\frac{1}{8} \times \frac{1}{8}=\frac{1}{64}$
PTS: 2 REF: 010928ia STA: A.S. 23 TOP: Theoretical Probability
KEY: independent events
84 ANS:
$\frac{3}{8} . P\left(s_{1}<4\right) \times P\left(s_{2}=\right.$ back $)=\frac{3}{4} \times \frac{1}{2}=\frac{3}{8}$
PTS: 2 REF: 080832ia STA: A.S. 23 TOP: Theoretical Probability
KEY: independent events
85 ANS:
$\frac{1}{8}$. After the English and social studies books are taken, 8 books are left and 1 is an English book.
PTS: 2 REF: 060933ia STA: A.S. 18 TOP: Conditional Probability
86 ANS: 3
$(3-1) \times 2 \times 3=12$
PTS: 2
REF: 080905ia
STA: A.N. 7 TOP: Conditional Probability
87 ANS: 4
$5 \times 2 \times 3=30$
$\begin{array}{lllll}\text { PTS: } 2 & \text { REF: 061002ia } & \text { STA: A.N. } 7 & \text { TOP: Multiplication Counting Principle } \\ \text { ANS: } 3 & \text { PTS: } 2 & \text { REF: 060808ia } & \text { STA: A.N. } 8\end{array}$
88 ANS: 3
TOP: Permutations
89 ANS: 1
${ }_{4} P_{4}=4 \times 3 \times 2 \times 1=24$
PTS: 2
REF: 080816ia
STA: A.N. 8
TOP: Permutations
90 ANS: 4
${ }_{8} P_{3}=336$
PTS: 2
REF: 061026ia
STA: A.N. 8
TOP: Permutations
91 ANS: 3
${ }_{6} P_{4}=360$
PTS: 2
REF: 081028ia
STA: A.N. 8
TOP: Permutations
92 ANS:
60. ${ }_{5} P_{3}=60$

PTS: 2
REF: 060931ia
STA: A.N. 8
TOP: Permutations

93 ANS:
$15,600,000,4,368,000 . \quad 10 \times 10 \times 10 \times 26 \times 25 \times 24=15,600,000 . \quad 10 \times 9 \times 8 \times 26 \times 25 \times 24=11,232,000$.
$15,600,000-11,232,000=4,368,000$.
PTS: 4 REF: 011037ia STA: A.N. 8 TOP: Permutations
94 ANS: 4
$25(x-3)=25 x-75$
$\begin{array}{llll}\text { PTS: } 2 & \text { REF: 060823ia } & \text { STA: A.A. } 1 & \text { TOP: Expressions } \\ \text { ANS: } 2 & \text { PTS: } 2 & \text { REF: 060904ia } & \text { STA: A.A. } 1\end{array}$
95 ANS: 2
TOP: Expressions
96 ANS: 4
$5(x+4)=5 x+20$
PTS: 2
REF: 081013ia
STA: A.A. 1
TOP: Expressions
97 ANS: 4
$A=l w=(3 w-7)(w)=3 w^{2}-7 w$
PTS: 2
98 ANS: 4
TOP: Expressions
99 ANS: 4
TOP: Expressions
100 ANS: 2
TOP: Expressions
101 ANS: 1
PTS: 2
TOP: Expressions
102 ANS:
Not all of the homework problems are equations. The first problem is an expression.
PTS: 2
103 ANS: 4

PTS: 2
REF: 080801ia
STA: A.A. 22
TOP: Solving Equations
104 ANS: 2
Debbie failed to distribute the 3 properly.
PTS: 2
REF: 011009ia
STA: A.A. 22
TOP: Solving Equations

105 ANS:
4. $3+2 g=5 g-9$

$$
\begin{aligned}
12 & =3 g \\
g & =4
\end{aligned}
$$

PTS: 2
REF: fall0732ia
STA: A.A. 22
TOP: Solving Equations
106 ANS: 2
$\frac{3}{5}(x+2)=x-4$
$3(x+2)=5(x-4)$

$$
3 x+6=5 x-20
$$

$$
26=2 x
$$

$$
x=13
$$

PTS: 2
REF: 080909ia STA: A.A. 25
TOP: Solving Equations with Fractional Expressions
107 ANS: 1

$$
\begin{aligned}
\frac{12 x+3 x}{18} & =5 \\
15 x & =90 \\
x & =6
\end{aligned}
$$

PTS: 2
REF: 060907ia STA: A.A. 25
TOP: Solving Equations with Fractional Expressions

108 ANS: 4

$\frac{(2 x \times 3)+(5 \times 1)}{5 \times 3}=\frac{7 x-2}{15}$

$$
\begin{aligned}
\frac{6 x+5}{15} & =\frac{7 x-2}{15} \\
6 x+5 & =7 x-2 \\
x & =7
\end{aligned}
$$

PTS: 2 REF: 080820ia STA: A.A. 25
TOP: Solving Equations with Fractional Expressions
109 ANS: 3

$$
\begin{aligned}
\frac{x}{3}+\frac{x+1}{2} & =x \\
\frac{2 x+3(x+1)}{6} & =x \\
5 x+3 & =6 x \\
3 & =x
\end{aligned}
$$

PTS: 2 REF: 061019ia STA: A.A. 25
TOP: Solving Equations with Fractional Expressions
110 ANS: 2
PTS: 2
REF: 080901ia
STA: A.A. 4
TOP: Modeling Equations
111 ANS: 2 PTS: 2
REF: 010915ia STA: A.A. 5
TOP: Modeling Equations
112 ANS: 4 PTS: 2
REF: 081011ia STA: A.A. 5
TOP: Modeling Equations
113 ANS: 4
$w(w+5)=36$
$w^{2}+5 w-36=0$
PTS: 2
REF: fall0726ia
STA: A.A. 5
TOP: Modeling Equations

114 ANS: 4
Let $x=$ youngest brother and $x+4=$ oldest brother. $3 x-(x+4)=48$.

$$
\begin{aligned}
2 x-4 & =48 \\
x & =26
\end{aligned}
$$

PTS: 2
115 ANS: 4
TOP: Transforming Formulas
116 ANS: 3
$3 a x+b=c$
$3 a x=c-b$
$x=\frac{c-b}{3 a}$
PTS: 2
REF: 080808ia
STA: A.A. 23
TOP: Transforming Formulas
117 ANS: 2
$P=2 l+2 w$
$P-2 l=2 w$
$\frac{P-2 l}{2}=w$

PTS: 2
118 ANS: 2
REF: 010911ia
PTS: 2
TOP: Transforming Formulas
119 ANS: 3

$$
\begin{aligned}
a+a r & =b+r \\
a(1+r) & =b+r \\
a & =\frac{b+r}{1+r}
\end{aligned}
$$

PTS: 2
REF: 060913ia
STA: A.A. 23
TOP: Transforming Formulas
ANS: 3
0.75 hours $=45$ minutes. $\frac{120}{1}=\frac{x}{45}$

$$
x=5400
$$

PTS: 2
REF: 080814ia
STA: A.M. 1
TOP: Using Rate

121 ANS:
$2,160 \frac{1,200}{25}=\frac{x}{45}$

$$
\begin{aligned}
25 x & =54,000 \\
x & =2,160
\end{aligned}
$$

PTS: 2
REF: 081032ia
STA: A.M. 1
TOP: Using Rate
122 ANS:
Ann's. $\frac{225}{15}=15 \mathrm{mpg}$ is greater than $\frac{290}{23.2}=12.5 \mathrm{mpg}$
PTS: 2 REF: 060831ia STA: A.M. 1 TOP: Using Rate
123 ANS: 4
$\frac{\text { distance }}{\text { time }}=\frac{24}{6}=4$
PTS: 2
REF: 010902ia
STA: A.M. 1
TOP: Speed
124 ANS: 4
$s=\frac{d}{t}=\frac{150 \mathrm{~m}}{1.5 \mathrm{~min}} \cdot \frac{60 \mathrm{~min}}{1 \mathrm{hr}}=6,000 \frac{\mathrm{~m}}{\mathrm{hr}}$
PTS: 2
REF: 061025ia
STA: A.M. 1
TOP: Speed
125 ANS: 4
$\frac{5}{45}=\frac{8}{x}$
$5 x=360$

$$
x=72
$$

PTS: 2 REF: 060901ia STA: A.M. 1 TOP: Speed
126 ANS:
111.25. $\frac{\text { distance }}{\text { time }}=\frac{89}{0.8}=111.25$

PTS: 2 REF: 080831ia STA: A.M. 1 TOP: Speed
127 ANS:
Greg's rate of 5.5 is faster than Dave's rate of 5.3. $\frac{\text { distance }}{\text { time }}=\frac{11}{2}=5.5 . \frac{16}{3}=5 . \overline{3}$
PTS: 3
REF: 080936ia
STA: A.M. 1 TOP: Speed
128 ANS:
$50,1.5,10 . \frac{\text { distance }}{\text { time }}=\frac{60}{1.2}=50 . \frac{\text { distance }}{\text { time }}=\frac{60}{40}=1.5$. speed \times time $=55 \times 2=110 . \quad 120-110=10$
PTS: 3
REF: fall0734ia
STA: A.M. 1
TOP: Speed

129 ANS: 3
$F=\frac{9}{5} C+32=\frac{9}{5}(15)+32=59$
PTS: 2 REF: 010901ia STA: A.M. 2 TOP: Conversions
130 ANS: 4
$\frac{344 \mathrm{~m}}{\mathrm{sec}} \times \frac{60 \mathrm{sec}}{1 \mathrm{~min}} \times \frac{60 \mathrm{~min}}{1 \mathrm{hr}}=1,238,400 \frac{\mathrm{~m}}{\mathrm{hr}}$
PTS: 2 REF: 060911ia STA: A.M. 2 TOP: Conversions
131 ANS:
16. 12 feet equals 4 yards. $4 \times 4=16$.

PTS: 2 REF: 011031ia STA: A.M. 2 TOP: Conversions
132 ANS: 2
Candidate B received $45 \% .45 \% \times 1860=837$
PTS: 2 REF: 081007ia STA: A.N. 5 TOP: Percents
133 ANS:
$\frac{1}{6}, 16.67 \%, \$ 13.50 . \frac{18-15}{18}=\frac{1}{6} . \quad 18 \times 0.75=13.5$

PTS: 3 REF: 060835ia STA: A.N. 5 TOP: Percents
134 ANS:
$30.4 \% ;$ no, $23.3 \% . \frac{7.50-5.75}{5.75}=30.4 \% . \frac{7.50-5.75}{7.50}=23.3 \%$

PTS: 3 REF: 080935ia STA: A.N. 5 TOP: Percents
135 ANS:
$d=6.25 h, 250 . d=6.25(40)=250$
PTS: 2 REF: 010933ia
ANS: 2
PTS: 2
STA: A.N. 5
REF: 080823ia
TOP: Direct Variation

TOP: Slope
137
ANS: 3
$m=\frac{4-10}{3-(-6)}=-\frac{2}{3}$

PTS: 2
REF: fall0716ia
STA: A.A. 33
TOP: Slope
138 ANS: 3
$m=\frac{1-(-4)}{-6-4}=-\frac{1}{2}$

PTS: 2
REF: 060820ia
STA: A.A. 33
TOP: Slope

139 ANS: 2
$m=\frac{5-3}{2-7}=-\frac{2}{5}$
PTS: 2 REF: 010913ia STA: A.A. 33 TOP: Slope
140 ANS: 2
$m=\frac{5-2}{3-(-2)}=\frac{3}{5}$
PTS: 2 REF: 061004ia STA: A.A. 33 TOP: Slope
141 ANS: 1
$m=\frac{4-(-4)}{-5-15}=-\frac{2}{5}$
PTS: 2 REF: 080915ia STA: A.A. 33 TOP: Slope
ANS: 4
$A(-3,4)$ and $B(5,8) . m=\frac{4-8}{-3-5}=\frac{-4}{-8}=\frac{1}{2}$
PTS: 2
REF: 011007ia STA: A.A 33
TOP: Slope
143 ANS: 2
$A(-3,8)$ and $B(3,6) . m=\frac{8-6}{-3-3}=\frac{2}{-6}=-\frac{1}{3}$
PTS: 2
REF: 081005ia
STA: A.A. 33
TOP: Slope
144 ANS: 2
If the car can travel 75 miles on 4 gallons, it can travel 300 miles on 16 gallons. $\frac{75}{4}=\frac{x}{16}$.

$$
x=300
$$

PTS: 2
REF: 080807ia
STA: A.G. 4
TOP: Graphing Linear Functions
145 ANS: 4
$y=m x+b$
$-1=(2)(3)+b$
$b=-7$
PTS: 2
REF: 080927ia
STA: A.A. 34
TOP: Writing Linear Equations
146 ANS: 1
$y=m x+b$
$-6=(-3)(4)+b$
$b=6$
PTS: 2
REF: 060922ia
STA: A.A. 34
REF: 010910ia
TOP: Writing Linear Equations
STA: A.A. 35
TOP: Writing Linear Equations

148 ANS: 3
$m=\frac{7-3}{-3-3}=\frac{4}{-6}=-\frac{2}{3} \quad y=m x+b$

$$
3=-\frac{2}{3}(3)+b
$$

$$
3=-2+b
$$

$$
5=b
$$

PTS: 2 REF: 011013ia STA: A.A. 35 TOP: Writing Linear Equations
149 ANS: 2
$m=\frac{5-3}{8-1}=\frac{2}{7} \quad y-y_{1}=m\left(x-x_{i}\right)$

$$
y-5=\frac{2}{7}(x-8)
$$

PTS: 2 REF: 081029ia STA: A.A. 35 TOP: Writing Linear Equations
150 ANS: 1
$m=\frac{3-0}{0-2}=-\frac{3}{2}$. Using the given y-intercept $(0,3)$ to write the equation of the line $y=-\frac{3}{2} x+3$.
PTS: 2 REF: fall0713ia STA: A.A. 35 TOP: Writing Linear Equations
151 ANS:
$y=\frac{2}{5} x+2 . m=\frac{4-0}{5-(-5)}=\frac{2}{5} . y=m x+b$.

$$
4=\frac{2}{5}(5)+b
$$

$$
b=2
$$

PTS: 3
REF: 080836ia
STA: A.A. 35
TOP: Writing Linear Equations
152 ANS: 1

$$
\begin{array}{r}
4 y-2 x=0 \\
4(-1)-2(-2)=0 \\
-4+4=0
\end{array}
$$

PTS: 2
REF: 011021ia
STA: A.A. 39
TOP: Identifying Points on a Line
153 ANS: 4

$$
\begin{aligned}
2 x-3 y & =9 \\
2(0)-3(-3) & =9 \\
0+9 & =9
\end{aligned}
$$

PTS: 2
REF: 081016ia
STA: A.A. 39
TOP: Identifying Points on a Line

154 ANS: 3

$2(1)+3=5$
PTS: 2 REF: 061007ia STA: A.A. 39 TOP: Linear Equations
155 ANS: 2
PTS: 2
REF: 080810ia
STA: A.A. 36
TOP: Parallel and Perpendicular Lines
156 ANS: 1
PTS: 2
REF: 080911ia
STA: A.A. 36
TOP: Parallel and Perpendicular Lines
157 ANS: 2
PTS: 2
REF: 081014ia
STA: A.A. 36
TOP: Parallel and Perpendicular Lines
158 ANS: 1
The slope of both is -4 .
PTS: 2 REF: 060814ia STA: A.A. 38 TOP: Parallel and Perpendicular Lines
159 ANS: 1
The slope of $y=3-2 x$ is -2 . Using $m=-\frac{A}{B}$, the slope of $4 x+2 y=5$ is $-\frac{4}{2}=-2$.
PTS: 2 REF: 010926ia STA: A.A. 38 TOP: Parallel and Perpendicular Lines
160 ANS: 1
The slope of $2 x-4 y=16$ is $\frac{-A}{B}=\frac{-2}{-4}=\frac{1}{2}$
PTS: 2
REF: 011026ia
STA: A.A. 38
TOP: Parallel and Perpendicular Lines
161 ANS: 2
$y-k x=7$ may be rewritten as $y=k x+7$
PTS: 2
REF: 061015ia
STA: A.A. 38
TOP: Parallel and Perpendicular Lines
162 ANS: 1

$$
\begin{aligned}
3(2 m-1) & \leq 4 m+7 \\
6 m-3 & \leq 4 m+7 \\
2 m & \leq 10 \\
m & \leq 5
\end{aligned}
$$

PTS: 2
REF: 081002ia
STA: A.A. 24
TOP: Solving Inequalities
163 ANS: 1
$-2 x+5>17$
$-2 x>12$

$$
x<-6
$$

PTS: 2 REF: fall0724ia STA: A.A. 21 TOP: Interpreting Solutions

164 ANS: 4

$$
\begin{aligned}
-4 x+2 & >10 \\
-4 x & >8 \\
x & <-2
\end{aligned}
$$

PTS: 2
REF: 080805ia
STA: A.A. 21
TOP: Interpreting Solutions
165 ANS: 1
$\frac{4}{3} x+5<17$

$$
\begin{aligned}
\frac{4}{3} x & <12 \\
4 x & <36 \\
x & <9
\end{aligned}
$$

PTS: 2
REF: 060914ia
STA: A.A. 21
TOP: Interpreting Solutions
166 ANS: 4

$$
-2(x-5)<4
$$

$$
-2 x+10<4
$$

$$
\begin{aligned}
-2 x & <-6 \\
x & >3
\end{aligned}
$$

PTS: 2
REF: 080913ia
STA: A.A. 21
TOP: Interpreting Solutions
167 ANS:
-12. $3\left(\frac{2}{3} x+3<-2 x-7\right)$

$$
\begin{aligned}
x+9 & <-6 x-21 \\
7 x & <-30 \\
x & <\frac{-30}{7}
\end{aligned}
$$

PTS: 3
REF: 061034ia
PTS: 2
STA: A.A. 21
REF: 060906ia

REF: 080803ia
REF: 011005ia
REF: 060821ia
REF: fall0715ia

STA: A.A. 5
TOP: Interpreting Solutions
STA: A.A. 4
STA: A.A. 4

STA: A.A. 5

STA: A.A. 5

173 ANS: 1

$$
\begin{aligned}
13.95+0.49 s & \leq 50.00 \\
0.49 s & \leq 36.05 \\
s & \leq 73.57
\end{aligned}
$$

PTS: 2
REF: 080904ia
STA: A.A. 6
TOP: Modeling Inequalities
174 ANS: 1
$0.07 m+19 \leq 29.50$
$0.07 m \leq 10.50$
$m \leq 150$
PTS: 2
REF: 010904ia
STA: A.A. 6
TOP: Modeling Inequalities
175 ANS:
$10+2 d \geq 75,33.10+2 d \geq 75$
$d \geq 32.5$
PTS: 3
REF: 060834ia
STA: A.A. 6
TOP: Modeling Inequalities
176 ANS:
7. $15 x+22 \geq 120$

$$
x \geq 6.5 \overline{3}
$$

PTS: 3
REF: fall0735ia
ANS: 4
PTS: 2
STA: A.A. 6
REF: 061028ia
REF: 060920ia
STA: A.G. 6
TOP: Linear Inequalities
179
ANS: 2
The slope of the inequality is $-\frac{1}{2}$.
PTS: 2
REF: fall0720ia
STA: A.G. 6
TOP: Linear Inequalities

180 ANS:

$(1,-3)$ is in the solution set. $4(1)-3(-3)>9$ $4+9>9$

PTS: 4
REF: 011038ia
STA: A.G. 6
TOP: Linear Inequalities

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic Answer Section

181 ANS: 4
The transformation is a reflection in the x-axis.
PTS: 2
182 ANS: 3
REF: fall0722ia
PTS: 2
TOP: Graphing Absolute Value Functions
183 ANS:

. Graph becomes wider as the coefficient approaches 0 .
PTS: 3 REF: 061035ia STA: A.G. 5 TOP: Graphing Absolute Value Functions
184 ANS: 2
$2 x^{2}+10 x-12=2\left(x^{2}+5 x-6\right)=2(x+6)(x-1)$

PTS: 2
ANS: 2
TOP: Factoring Polynomials
ANS: 3 PTS: 2
TOP: Factoring the Difference of Perfect Squares
187 ANS: 1
PTS: 2
REF: 080902ia
TOP: Factoring the Difference of Perfect Squares
PTS: 2
REF: 010909ia
TOP: Factoring the Difference of Perfect Squares
PTS: 2
REF: 060804ia
TOP: Factoring the Difference of Perfect Squares
190
TOP. Fa
PTS: 2
REF: 011022ia
TOF. Factoring the Difference of Perfect Squares
191
ANS: 3
PTS: 2
REF: 081008ia

STA: A.A. 19
TOP: Factoring the Difference of Perfect Squares

192 ANS:
$4 x(x+3)(x-3) .4 x^{3}-36 x=4 x\left(x^{2}-9\right)=4 x(x+3)(x-3)$
PTS: 2
REF: 060932ia STA: A.A. 19
TOP: Factoring the Difference of Perfect Squares
ANS: 3
$x^{2}-6 x=0$
$x(x-6)=0$
$x=0 x=6$
PTS: 2
REF: 080921ia
STA: A.A. 27
194 ANS: 3
$x^{2}-10 x+21=0$
$(x-7)(x-3)=0$

$$
x=7 \quad x=3
$$

PTS: 2
REF: 010914ia
STA: A.A. 28
TOP: Roots of Quadratics
195
ANS: 4

$$
\begin{gathered}
x^{2}-7 x+6=0 \\
(x-6)(x-1)=0 \\
x=6 \quad x=1
\end{gathered}
$$

PTS: 2
REF: 060902ia
STA: A.A. 28
TOP: Roots of Quadratics
196 ANS:

$$
-2,3 . \quad x^{2}-x=6
$$

$$
\begin{aligned}
x^{2}-x-6 & =0 \\
(x-3)(x+2) & =0 \\
x & =3 \text { or }-2
\end{aligned}
$$

PTS: 3
REF: 011034ia
STA: A.A. 28
ANS:

$$
\begin{aligned}
-15,2 \quad x^{2}+13 x-30 & =0 \\
(x+15)(x-2) & =0 \\
x & =-15,2
\end{aligned}
$$

PTS: 3
198 ANS: 4
REF: 081036ia
PTS: 2
STA: A.A. 28
REF: 060829ia

REF: 081015ia
STA: A.G. 5

ANS: 2 PTS: 2
TOP: Solving Quadratics by Graphing
PTS: 2
TOP: Solving Quadratics by Graphing 202 ANS:

PTS: 3
REF: 060836ia
STA: A.G. 8
TOP: Solving Quadratics by Graphing
203 ANS: 1

$$
x^{2}-36=5 x
$$

$x^{2}-5 x-36=0$
$(x-9)(x+4)=0$

$$
x=9
$$

PTS: 2
REF: 061020ia
STA: A.A. 8
TOP: Writing Quadratics
204 ANS:
$6,8,10$. Three consecutive even integers are $x, x+2$ and $x+4 .(x+2)(x+4)=10 x+20$

$$
\begin{aligned}
x^{2}+6 x+8 & =10 x+20 \\
x^{2}-4 x-12 & =0 \\
(x-6)(x+2) & =0 \\
x & =6
\end{aligned}
$$

PTS: 4
REF: 011039ia
STA: A.A. 8
TOP: Writing Quadratics
205 ANS: 2

$$
l(l-5)=24
$$

$$
l^{2}-5 l-24=0
$$

$(l-8)(l+3)=0$

$$
l=8
$$

PTS: 2
REF: 080817ia
STA: A.A. 8
TOP: Geometric Applications of Quadratics

ANS:

$$
\begin{aligned}
w(w+15)=54,3,18 . \quad w+15) & =54 \\
w^{2}+15 w-54 & =0 \\
(w+18)(w-3) & =0 \\
w & =3
\end{aligned}
$$

PTS: 4
207 ANS: 1
TOP: Identifying the Vertex of a Quadratic Given Graph
ANS: 1
PTS: 2
REF: 080813ia
TOP: Identifying the Vertex of a Quadratic Given Graph
209 ANS: 2
PTS: 2
REF: 010916ia
TOP: Identifying the Vertex of a Quadratic Given Graph
210 ANS: 2
PTS: 2
REF: 011015ia
TOP: Identifying the Vertex of a Quadratic Given Graph
211 ANS: 1 PTS: 2 REF: 061005ia
TOP: Identifying the Vertex of a Quadratic Given Graph
212 ANS: 1
$x=\frac{-b}{2 a}=\frac{-(-16)}{2(1)}=8 . y=(8)^{2}-16(8)+63=-1$
PTS: 2 REF: 060918ia STA: A.A. 41
TOP: Identifying the Vertex of a Quadratic Given Equation
213 ANS: 3
$x=\frac{-b}{2 a}=\frac{-10}{2(-1)}=5$.
PTS: 2
REF: 081018ia
STA: A.A. 41
TOP: Identifying the Vertex of a Quadratic Given Equation
214 ANS:
$(-2,11) . \quad x=\frac{-b}{2 a}=\frac{-(-8)}{2(-2)}=-2$

$$
y=-2(-2)^{2}-8(-2)+3=11
$$

PTS: 3 REF: 080934ia STA: A.A. 41
TOP: Identifying the Vertex of a Quadratic Given Equation
215
$x+2 y=9$
$x-y=3$
$3 y=6$

$$
y=2
$$

PTS: 2
REF: 060925ia
STA: A.A. 10

TOP: Geometric Applications of Quadratics
STA: A.G. 10

216 ANS: 1
$x-2 y=1$
$x+4 y=7$

$$
\begin{aligned}
-6 y & =-6 \\
y & =1
\end{aligned}
$$

PTS: 2
REF: 080920ia
STA: A.A. 10
TOP: Solving Linear Systems
217 ANS: 2

$$
\begin{aligned}
2(x-3 y & =-3) \\
2 x+y & =8 \\
2 x-6 y & =-6 \\
7 y & =14 \\
y & =2
\end{aligned}
$$

PTS: 2
REF: 081021ia
STA: A.A. 10
TOP: Solving Linear Systems
218 ANS: 3

$$
\begin{array}{rlrl}
c+3 d & =8 & & c=4 d-6 \\
4 d-6+3 d & =8 & & c=4(2)-6 \\
7 d & =14 & c & c=2 \\
d & =2 & &
\end{array}
$$

PTS: 2
REF: 061012ia
STA: A.A. 10
TOP: Solving Linear Systems
219 ANS: 3
$5 x+2 y=48$
$3 x+2 y=32$

$$
\begin{aligned}
2 x & =16 \\
x & =8
\end{aligned}
$$

PTS: 2
REF: fall0708ia
STA: A.A. 10
TOP: Solving Linear Systems
220 ANS:
$(-2,5) . \quad 3 x+2 y=4 \quad 12 x+8 y=16 . \quad 3 x+2 y=4$

$$
\begin{aligned}
& 4 x+3 y=7 \quad 12 x+9 y=21 \quad 3 x+2(5)=4 \\
& y=5 \quad 3 x=-6 \\
& x=-2
\end{aligned}
$$

PTS: 4
REF: 010937ia STA: A.A. 10
TOP: Solving Linear Systems

221 ANS: 2
$L+S=47$
$L-S=15$

$$
\begin{aligned}
2 L & =62 \\
L & =31
\end{aligned}
$$

PTS: 2
REF: 060912ia
STA: A.A. 7
TOP: Writing Linear Systems
222 ANS: 3
$b=42-r \quad r=2 b+3$
$r=2 b+3 \quad r=2(42-r)+3$
$r=84-2 r+3$
$3 r=87$
$r=29$

PTS: 2
REF: 060812ia
STA: A.A. 7
TOP: Writing Linear Systems
223 ANS: 2
$s+o=126 . s+2 s=126$

$$
o=2 s \quad s=42
$$

PTS: 2
REF: 080811ia
STA: A.A. 7
TOP: Writing Linear Systems
224 ANS: 2
$3 c+4 m=12.50$
$3 c+2 m=8.50$
$2 m=4.00$
$m=2.00$
PTS: 2
REF: 060806ia
STA: A.A. 7
TOP: Writing Linear Systems
225 ANS: 1
$1 P+2 C=5$
$1 P+4 C=6$

$$
\begin{aligned}
2 C & =1 \\
C & =0.5
\end{aligned}
$$

PTS: 2
REF: 011003ia
STA: A.A. 7
TOP: Writing Linear Systems

226 ANS:

$m=50 \phi, p=15 \phi .3 m+2 p=1.80 .9 m+6 p=5.40 .4(.50)+6 p=2.90$

$$
\begin{array}{rlrl}
4 m+6 p=2.90 & 4 m+6 p & =2.90 & 6 p
\end{array}=.901 \text { (} \begin{array}{rlrl}
5 m & =2.50 & p=\$ 0.15 \\
m & =\$ 0.50 & &
\end{array}
$$

PTS: 3 REF: 080837ia STA: A.A. 7 TOP: Writing Linear Systems ANS: 1
so $=f+60 j=2 f-50$ se $=3 f . f+(f+60)+(2 f-50)+3 f=1424$

$$
7 f+10=1424
$$

$$
f=202
$$

PTS: 2
228 ANS: 4
TOP: Systems of Linear Inequalities
229 ANS: 2
PTS: 2
TOP: Systems of Linear Inequalities
230
REF: 060917ia
PTS: 2

PTS: 2
TOP: Systems of Linear Inequalities ANS:

PTS: 4
REF: 010938ia
STA: A.G. 7
TOP: Systems of Linear Inequalities

232 ANS:

PTS: 4
REF: 080938ia
STA: A.G. 7
TOP: Solving Linear Systems
233
ANS:

PTS: 4
REF: 081037ia
STA: A.G. 7
TOP: Systems of Linear Inequalities
234 ANS: 4

$$
x^{2}-2=x \quad \text { Since } y=x \text {, the solutions are }(2,2) \text { and }(-1,-1)
$$

$$
\begin{gathered}
x^{2}-x-2=0 \\
(x-2)(x+1)=0 \\
x=2 \text { or }-1
\end{gathered}
$$

PTS: 2
REF: 060810ia
STA: A.A. 11
TOP: Quadratic-Linear Systems

235 ANS: 2

$$
\begin{array}{cl}
x^{2}+5 x+6=-x+1 . & y=-x+1 \\
x^{2}+6 x+5=0 & =-(-5)+1 \\
(x+5)(x+1)=0 & =6 \\
x=-5 \text { or }-1 &
\end{array}
$$

PTS: 2
REF: 080812ia
STA: A.A. 11
TOP: Quadratic-Linear Systems
236 ANS: 2
$x^{2}-x-20=3 x-15 . y=3 x-15$

$$
\begin{array}{ll}
x^{2}-4 x-6=0 & =3(-1)-15 \\
(x=5)(x+1)=0 & =-18 \\
x=5 \text { or }-1 &
\end{array}
$$

PTS: 2
REF: 010922ia
STA: A.A. 11
REF: 011012ia
TOP: Quadratic-Linear Systems
238 ANS:

PTS: 4
REF: 080839ia STA: A.G. 9

TOP: Quadratic-Linear Systems STA: A.G. 9

TOP: Quadratic-Linear Systems

239
ANS:

PTS: 4
REF: 061039ia
STA: A.G. 9
TOP: Quadratic-Linear Systems
240 ANS: 1
$2 y-2 x=10 \quad$ axis of symmetry: $x=\frac{-b}{2 a}=\frac{-2}{2(1)}=-1$

$$
\begin{aligned}
2 y & =2 x+10 \\
y & =x+5
\end{aligned}
$$

PTS: 2
REF: 081010ia
STA: A.G. 9
TOP: Quadratic-Linear Systems
241 ANS:

X	Y_{1}	Yz
	$\begin{array}{\|l} \hline 5 \\ 0 \\ 0 \\ -4 \\ 0 \\ 0 \\ 5 \end{array}$	[

PTS: 4
REF: fall0738ia
STA: A.G. 9
TOP: Quadratic-Linear Systems

242 ANS:

PTS: 4
REF: 060939ia
PTS: 2
TOP: Addition and Subtraction of Polynomials
PTS: 2
REF: 060923ia
TOP: Addition and Subtraction of Polynomials
PTS: 2
REF: 080819ia
TOP: Addition and Subtraction of Polynomials
246
ANS: $1 \quad$ PTS: 2
REF: 060807ia
TOP: Multiplication of Polynomials
247
ANS: 3
$\frac{12 x^{3}-6 x^{2}+2 x}{2 x}=\frac{2 x\left(6 x^{2}-3 x+1\right)}{2 x}=6 x^{2}-3 x+1$
PTS: 2
REF: 011011ia
STA: A.A. 14
248 ANS: 2
$\frac{9 x^{4}-27 x^{6}}{3 x^{3}}=\frac{9 x^{4}\left(1-3 x^{2}\right)}{3 x^{3}}=3 x\left(1-3 x^{2}\right)$
PTS: 2
REF: fall0718ia
STA: A.A. 14
249 ANS: 2
$\frac{2 x^{2}-12 x}{x-6}=\frac{2 x(x-6)}{x-6}=2 x$
PTS: 2
REF: 060824ia
STA: A.A. 14
ANS:
$3 a^{2} b^{2}-6 a \frac{45 a^{4} b^{3}-90 a^{3} b}{15 a^{2} b}=\frac{45 a^{4} b^{3}}{15 a^{2} b}-\frac{90 a^{3} b}{15 a^{2} b}=3 a^{2} b^{2}-6 a$
PTS: 2
REF: 081031ia
PTS: 2
TOP: Multiplication of Powers
252 ANS: 4 PTS: 2

STA: A.A. 14
REF: 011020ia
REF: 080903ia TOP: Multiplication of Powers

TOP: Quadratic-Linear Systems
STA: A.A. 13
KEY: addition
STA: A.A. 13
KEY: subtraction
STA: A.A. 13
KEY: subtraction
STA: A.A. 13

TOP: Rational Expressions

TOP: Rational Expressions

TOP: Rational Expressions

TOP: Rational Expressions
STA: A.A. 12
STA: A.A. 12

253 ANS: 4
$\frac{2^{6}}{2^{1}}=2^{5}$
PTS: 2 REF: 060813ia
254 ANS: 1
PTS: 2
STA: A.A. 12
REF: 060903ia
TOP: Division of Powers
255 ANS: $4 \quad$ PTS:
TOP: Division of Powers
256 ANS: 3
$\frac{\left(2 x^{3}\right)\left(8 x^{5}\right)}{4 x^{6}}=\frac{16 x^{8}}{4 x^{6}}=4 x^{2}$
PTS: 2
REF: fall0703ia
STA: A.A. 12 TOP: Division of Powers 257 ANS:
$\frac{3 k^{2} m^{6}}{4}$
PTS: 2
258 ANS: 4
REF: 010932ia
TOP: Powers of Powers
259
ANS: 4
PTS: 2
REF: 060927ia
STA: A.N. 4
TOP: Operations with Scientific Notation
260 ANS: 4
PTS: 2
REF: 010927ia
STA: A.N. 4
TOP: Operations with Scientific Notation
ANS: 2
PTS: 2
REF: fall0725ia
STA: A.N. 4
TOP: Operations with Scientific Notation
262 ANS: 4
$\frac{9.2 \times 10^{6}}{2.3 \times 10^{2}}=4 \times 10^{4}$
PTS: 2
REF: 081006ia
263 ANS: 2
PTS: 2
TOP: Exponential Functions
264 ANS: 4 PTS: 2
TOP: Exponential Functions
265 ANS: 2
$R=0.5^{d-1}$
PTS: 2
REF: 011006ia
STA: A.A. 9
TOP: Exponential Functions
266 ANS: 3
$35000(1-0.05)^{4} \approx 28507.72$
PTS: 2
REF: fall0719ia
STA: A.A. 9
TOP: Exponential Functions

267 ANS: 3
$500(1+0.06)^{3} \approx 596$
PTS: 2 REF: 080929ia STA: A.A. 9 TOP: Exponential Functions ANS: 1
$15000(1.2)^{\frac{6}{3}}=21,600.21,600-15,000=6,600$
PTS: 2 REF: 061030ia STA: A.A. 9 TOP: Exponential Functions ANS:
5,583.86. $A=P(1+R)^{t}=5000(1+0.0375)^{3} \approx 5583.86$
PTS: 3 REF: 060935ia STA: A.A. 9 TOP: Exponential Functions
270 ANS:

The graph will never intersect the x-axis as $2^{x}>0$ for all values of x.
PTS: 3
REF: 080835ia STA: A.G. 4
TOP: Graphing Exponential Functions
271 ANS: 2
$\sqrt{32}=\sqrt{16} \sqrt{2}=4 \sqrt{2}$
PTS: 2
REF: 060910ia
STA: A.N. 2
TOP: Simplifying Radicals
272 ANS: 3
$\sqrt{72}=\sqrt{36} \sqrt{2}=6 \sqrt{2}$
PTS: 2
REF: 010920ia
STA: A.N. 2
TOP: Simplifying Radicals
ANS:
$30 \sqrt{2} .5 \sqrt{72}=5 \sqrt{36} \sqrt{2}=30 \sqrt{2}$
PTS: 2
REF: fall0731ia
STA: A.N. 2
TOP: Simplifying Radicals
274 ANS: 2
$5 \sqrt{20}=5 \sqrt{4} \sqrt{5}=10 \sqrt{5}$
PTS: 2
REF: 080922ia
STA: A.N. 2
TOP: Simplifying Radicals
275 ANS: 1
$\frac{\sqrt{32}}{4}=\frac{\sqrt{16} \sqrt{2}}{4}=\sqrt{2}$
PTS: 2
REF: 060828ia
STA: A.N. 2
TOP: Simplifying Radicals

276 ANS:
$-3 \sqrt{48}=-3 \sqrt{16} \sqrt{3}=-12 \sqrt{3}$
PTS: 2 REF: 081033ia STA: A.N. 2 TOP: Simplifying Radicals
277 ANS: 4
$6 \sqrt{50}+6 \sqrt{2}=6 \sqrt{25} \sqrt{2}+6 \sqrt{2}=30 \sqrt{2}+6 \sqrt{2}=36 \sqrt{2}$
PTS: 2 REF: 011024ia STA: A.N. 3 TOP: Operations with Radicals
KEY: addition
278 ANS: 3
$\sqrt{72}-3 \sqrt{2}=\sqrt{36} \sqrt{2}-3 \sqrt{2}=6 \sqrt{2}-3 \sqrt{2}=3 \sqrt{2}$
PTS: 2 REF: 061008ia STA: A.N. 3 TOP: Operations with Radicals
KEY: subtraction
279 ANS:
$60-42 \sqrt{5} \cdot 3 \sqrt{20}(2 \sqrt{5}-7)=6 \sqrt{100}-21 \sqrt{20}=60-21 \sqrt{4} \sqrt{5}=60-42 \sqrt{5}$
PTS: 3 REF: 080834ia STA: A.N. 3 TOP: Operations with Radicals
KEY: multiplication
280
ANS: 2
$\frac{x^{2}-2 x-15}{x^{2}+3 x}=\frac{(x-5)(x+3)}{x(x+3)}=\frac{x-5}{x}$
PTS: 2 REF: 060921ia STA: A.A. 16 TOP: Rational Expressions
KEY: a > 0
281 ANS: 4
$\frac{25 x-125}{x^{2}-25}=\frac{25(x-5)}{(x+5)(x-5)}=\frac{25}{x+5}$
PTS: 2 REF: 08082
KEY: a >0
ANS: $3 \quad$ PTS: 2
STA: A.A. 16
TOP: Rational Expressions

TOP: Undefined Rationals
283 ANS: $4 \quad$ PTS: 2
REF: 060916ia STA: A.A. 15
TOP: Undefined Rationals
REF: fall0728ia
STA: A.A. 15
TOP: Undefined Rationals
ANS: 2
PTS: 2
REF: 010925ia
STA: A.A. 15
TOP: Undefined Rationals
286 ANS: 3

$$
\begin{aligned}
x^{2}-9 & =0 \\
(x+3)(x-3) & =0 \\
x & = \pm 3
\end{aligned}
$$

PTS: 2
REF: 061014ia
STA: A.A. 15
TOP: Undefined Rationals

287

$$
\begin{aligned}
& \text { ANS: } 1 \\
& x^{2}+7 x+10=0 \\
& (x+5)(x+2)=0 \\
& x=-5 \text { or }-2
\end{aligned}
$$

PTS: 2 REF: 080918ia STA: A.A. 15 TOP: Undefined Rationals
$\frac{x^{2}-1}{x+1} \cdot \frac{x+3}{3 x-3}=\frac{(x+1)(x-1)}{x+1} \cdot \frac{x+3}{3(x-1)}=\frac{x+3}{3}$
PTS: 2 REF: 060815ia STA: A.A. 18 TOP: Multiplication and Division of Rationals
ANS: 1
$\frac{4 x}{x-1} \cdot \frac{x^{2}-1}{3 x+3}=\frac{4 x}{x-1} \cdot \frac{(x+1)(x-1)}{3(x+1)}=\frac{4 x}{3}$
PTS: 2 REF: 080826ia STA: A.A. 18 TOP: Multiplication and Division of Rationals 290 ANS:
$\frac{3}{4 x-8} \cdot \frac{3 x+6}{4 x+12} \div \frac{x^{2}-4}{x+3}=\frac{3(x+2)}{4(x+3)} \cdot \frac{x+3}{(x+2)(x-2)}=\frac{3}{4(x-2)}$
PTS: 3 REF: 010935ia STA: A.A. 18 TOP: Multiplication and Division of Rationals
ANS:
$\frac{x-7}{3 x} \cdot \frac{2 x^{2}-8 x-42}{6 x^{2}} \div \frac{x^{2}-9}{x^{2}-3 x}=\frac{2\left(x^{2}-4 x-21\right)}{6 x^{2}} \cdot \frac{x(x-3)}{(x+3)(x-3)}=\frac{(x-7)(x+3)}{3 x} \cdot \frac{1}{x+3}=\frac{x-7}{3 x}$
PTS: 4 REF: 080937ia STA: A.A. 18 TOP: Multiplication and Division of Rationals ANS:
$\frac{x^{2}+9 x+14}{x^{2}-49} \div \frac{3 x+6}{x^{2}+x-56}=\frac{(x+7)(x+2)}{(x+7)(x-7)} \cdot \frac{(x+8)(x-7)}{3(x+2)}=\frac{x+8}{3}$
PTS: 4 REF: 061037ia STA: A.A. 18 TOP: Multiplication and Division of Rationals
ANS: 4
$\frac{(d \times 3)+(2 \times 2 d)}{2 \times 3}=\frac{3 d+4 d}{6}=\frac{7 d}{6}$
PTS: 2
REF: fall0727ia STA: A.A. 17
TOP: Addition and Subtraction of Rationals
ANS: 2
$\frac{2}{3 x}+\frac{4}{3 x}=\frac{9 x+8 x}{6 x^{2}}=\frac{17 x}{6 x^{2}}=\frac{17}{6 x}$
PTS: 2
REF: 080917ia
STA: A.A. 17
REF: 061024ia
TOP: Addition and Subtraction of Rationals ANS: 1

PTS: 2
STA: A.A. 17
TOP: Addition and Subtraction of Rationals

ANS: 4
PTS: 2
REF: 011025ia
STA: A.A. 17
TOP: Addition and Subtraction of Rationals
297
ANS: 2
$\frac{6}{5 x}-\frac{2}{3 x}=\frac{18 x-10 x}{15 x^{2}}=\frac{8 x}{15 x^{2}}=\frac{8}{15 x}$

PTS: 2
REF: 010921ia
STA: A.A. 17
TOP: Addition and Subtraction of Rationals
298 ANS: 2
$\frac{6}{4 a}-\frac{2}{3 a}=\frac{18 a-8 a}{12 a^{2}}=\frac{10 a}{12 a^{2}}=\frac{5}{6 a}$
PTS: 2
REF: 060929ia
STA: A.A. 17
TOP: Addition and Subtraction of Rationals
299 ANS: 3
$\frac{2+x}{5 x}-\frac{x-2}{5 x}=\frac{2+x-x+2}{5 x}=\frac{4}{5 x}$

PTS: 2
REF: 081027ia
STA: A.A. 17
TOP: Addition and Subtraction of Rationals
300 ANS: 3

$$
\frac{k+4}{2}=\frac{k+9}{3}
$$

$$
\begin{aligned}
3(k+4) & =2(k+9) \\
3 k+12 & =2 k+18 \\
k & =6
\end{aligned}
$$

PTS: 2
301 ANS: 2

$$
\begin{aligned}
& \text { ANS: } 2 \\
& \begin{aligned}
\frac{2 x-3}{x-4} & =\frac{2}{3} \\
3(2 x-3) & =2(x-4) \\
6 x-9 & =2 x-8 \\
4 x & =1 \\
x & =\frac{1}{4}
\end{aligned}
\end{aligned}
$$

PTS: 2
REF: 081012ia
STA: A.A. 26

TOP: Solving Rationals

TOP: Solving Rationals

302 ANS: 1 $\frac{2}{x}-3=\frac{26}{x}$

$$
-3=\frac{24}{x}
$$

$$
x=-8
$$

PTS: 2

$$
\frac{5}{x}=\frac{x+13}{6}
$$

REF: 010918ia
STA: A.A. 26 TOP: Solving Rationals

$$
\begin{gathered}
x^{2}+13 x=30 \\
x^{2}+13 x-30=0 \\
(x+15)(x-2)=0 \\
x=-15 \text { or } 2
\end{gathered}
$$

PTS: 2
REF: 060826ia STA: A.A. 26 TOP: Solving Rationals
ANS: 4

$\frac{x+2}{x-2}$	$=\frac{-3}{x}$
$x(x+2)$	$=-3(x-2)$
$x^{2}+2 x$	$=-3 x+6$
$x^{2}+5 x-6$	$=0$
$(x+6)(x-1)$	$=0$
x	$=-6$ or 1
PTS: $2 \quad$ REF: $011028 i a \quad$ STA: A.A. $26 \quad$ TOP: Solving Rationals	

305 ANS:

$$
\begin{gathered}
6,-2 . \quad \frac{x+1}{x}=\frac{-7}{x-12} \\
(x+1)(x-12)=-7 x \\
x^{2}-11 x-12=-7 x \\
x^{2}-4 x-12=0 \\
(x-6)(x+2)=0 \\
x=6 \text { or }-2
\end{gathered}
$$

315 ANS: 3
An element of the domain, 1 , is paired with two different elements of the range, 3 and 7 .
PTS: 2 REF: 080919ia STA: A.G. 3 TOP: Defining Functions
316 ANS: 4
In (4), each element in the domain corresponds to a unique element in the range.
PTS: 2 REF: 011018ia STA: A.G. 3 TOP: Defining Functions

317 ANS: 3

$$
\begin{aligned}
3^{2}+5^{2} & =x^{2} \\
34 & =x^{2} \\
\sqrt{34} & =x
\end{aligned}
$$

PTS: 2
REF: 060909ia
STA: A.A. 45
TOP: Pythagorean Theorem
318 ANS: 1
$8^{2}+15^{2}=c^{2}$

$$
\begin{aligned}
c^{2} & =289 \\
c & =17
\end{aligned}
$$

PTS: 2
REF: 080906ia
STA: A.A. 45
TOP: Pythagorean Theorem
319 ANS: 1
$30^{2}+40^{2}=c^{2} .30,40,50$ is a multiple of $3,4,5$.

$$
\begin{aligned}
2500 & =c^{2} \\
50 & =c
\end{aligned}
$$

PTS: 2
REF: fall0711ia
STA: A.A. 45
TOP: Pythagorean Theorem
320 ANS: 2
$\sqrt{5^{2}+7^{2}} \approx 8.6$

PTS: 2
321 ANS: 3
PTS: 2
TOP: Pythagorean Theorem
322 ANS: 4
$16^{2}+b^{2}=34^{2}$

$$
\begin{aligned}
b^{2} & =900 \\
b & =30
\end{aligned}
$$

PTS: 2
REF: 080809ia
STA: A.A. 45
TOP: Pythagorean Theorem
323 ANS: 2
$\sin U=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{15}{17}$
PTS: 2
REF: 010919ia
STA: A.A. 42
TOP: Trigonometric Ratios
324 ANS: 2
$\tan B=\frac{\text { opposite }}{\text { adjacent }}=\frac{8}{15}=0.5 \overline{3}$
PTS: 2
REF: 081026ia
STA: A.A. 42

TOP: Pythagorean Theorem

STA: A.A. 45

STA: A.A. 45
REF: 060825ia

325 ANS: 3
$\cos A=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{15}{17}$
PTS: 2 REF: 011008ia STA: A.A. 42 TOP: Trigonometric Ratios
326 ANS: 1
$\sin C=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{13}{85}$
PTS: 2
REF: fall0721ia STA: A.A. 42
TOP: Trigonometric Ratios
327 ANS: 2
$\tan A=\frac{\text { opposite }}{\text { adjacent }}=\frac{14}{48}$
PTS: 2
REF: 061009ia
STA: A.A. 42
TOP: Trigonometric Ratios
328 ANS: 3
$\cos 30=\frac{x}{24}$

$$
x \approx 21
$$

PTS: 2
REF: 010912ia
STA: A.A. 44
TOP: Using Trigonometry to Find a Side 329 ANS:

39, 63. $\tan 52=\frac{50}{x} \cdot \sin 52=\frac{50}{x}$

$$
x \approx 39 \quad x \approx 63
$$

PTS: 4
REF: 060937ia
STA: A.A. 44
ANS: 2
$\tan 32=\frac{x}{25}$

$$
x \approx 15.6
$$

PTS: 2
REF: 080914ia
STA: A.A. 44
TOP: Using Trigonometry to Find a Side
331 ANS:
$84,71 \sin 50=\frac{x}{110} \cos 50=\frac{y}{110}$

$$
x \approx 84 \quad y \approx 71
$$

PTS: 4
REF: 081039ia
STA: A.A. 44
ANS: 1
PTS: 2
REF: 080824ia
TOP: Using Trigonometry to Find a Side STA: A.A. 43
TOP: Using Trigonometry to Find an Angle

PTS: 2 REF: 011032ia STA: A.A. 43 TOP: Using Trigonometry to Find an Angle
STA: A.G. 1
ANS: 2
$\sin A=\frac{8}{12}$

$$
A \approx 42
$$

PTS: 2 REF: 060816ia STA: A.A. 43 TOP: Using Trigonometry to Find an Angle
ANS: 3
$\sin A=\frac{10}{16} \quad B=180-(90=38.7)=51.3 . \quad$ A 90° angle is not acute.

$$
A \approx 38.7
$$

PTS: 2 REF: 080829ia STA: A.A. 43 TOP: Using Trigonometry to Find an Angle ANS:
$\sin x=\frac{30}{50}$

$$
\begin{aligned}
& x=\sin ^{-1} \frac{3}{5} \\
& x \approx 37
\end{aligned}
$$

33.4. Serena needs $24(9+6+9)$ feet of fencing to surround the rectangular portion of the garden. The length of

PTS: 2 REF: fall0733ia STA: A.G. 1 TOP: Compositions of Polygons and Circles

ANS:
53. $\sin A=\frac{16}{20}$
$A \approx 53$ ANS: 1

PTS: 2
REF: 080924ia
TOP: Compositions of Polygons and Circles
ANS: the fencing needed for the semicircular portion of the garden is $\frac{1}{2} \pi d=3 \pi \approx 9.4$ feet.

ANS:
50. $12+10+12+\frac{1}{2}(10 \pi) \approx 50$

PTS: 2 REF: 010931ia STA: A.G. 1
PTS: 2
REF: 080815ia

TOP: Compositions of Polygons and Circles STA: A.G. 1

TOP: Compositions of Polygons and Circles

341
ANS: 2
$A=l w+\frac{\pi r^{2}}{2}=6 \cdot 5+\frac{\pi \cdot 3^{2}}{2} \approx 44.1$
PTS: 2 REF: 061029ia STA: A.G. 1 TOP: Compositions of Polygons and Circles 342 ANS:
$36-9 \pi$. 15.6. Area of square-area of 4 quarter circles. $(3+3)^{2}-3^{2} \pi=36-9 \pi$
PTS: 2 REF: 060832ia STA: A.G. 1 TOP: Compositions of Polygons and Circles
343 ANS: 2

$$
\begin{aligned}
\text { shaded } & =\text { whole }- \text { unshaded } \\
& =\text { rectangle-triangle } \\
& =l w-\frac{1}{2} b h \\
& =15 \times 6-\frac{1}{2} \times 15 \times 4.6 \\
& =90-34.5 \\
& =55.5
\end{aligned}
$$

PTS: 2 REF: 081019ia STA: A.G. 1 TOP: Compositions of Polygons and Circles
ANS:
56. If the circumference of circle O is 16 inches, the diameter, $\overline{A D}$, is 16 inches and the length of $\overline{B C}$ is 12 inches $\frac{3}{4} \times 16$. The area of trapezoid $A B C D$ is $\frac{1}{2} \times 4(12+16)=56$.

PTS: 3
REF: 060934ia
STA: A.G. 1
TOP: Compositions of Polygons and Circles
ANS: 2
$1.5^{3}=3.375$
PTS: 2
REF: 060809ia
STA: A.G. 2
TOP: Volume
5,112. $(12 \times 30 \times 16)-(6 \times 12 \times 9)=5112$
PTS: 2
REF: 080932ia
STA: A.G. 2
TOP: Volume
347
ANS: 4
$V=\pi r^{2} h=\pi \cdot 6^{2} \cdot 15 \approx 1696.5$
PTS: 2 REF: fall0712ia STA: A.G. 2 TOP: Volume

348 ANS:
$\begin{aligned} & \frac{38}{\pi}, 2 . V \\ &=\pi r^{2} h \quad \cdot \frac{36}{\left(\frac{38}{\pi}\right)} \approx 2.97 . \text { Three cans will not fit. The maximum number is } 2 . \\ & 342=\pi\left(\frac{6}{2}\right)^{2} h\end{aligned}$

$$
\begin{aligned}
\frac{342}{9 \pi} & =h \\
\frac{38}{\pi} & =h
\end{aligned}
$$

PTS: 3 REF: 010936ia STA: A.G. 2 TOP: Volume
349 ANS: 4
$\mathrm{SA}=2 l w+2 h w+2 l h=2(2)(3)+2(4)(3)+2(2)(4)=52$
PTS: 2 REF: 011029ia STA: A.G. 2 TOP: Surface Area
350 ANS: 4
$\mathrm{SA}=2 l w+2 h w+2 l h=2(3)(1.5)+2(2)(1.5)+2(3)(2)=27$
PTS: 2 REF: 060827ia STA: A.G. 2 TOP: Surface Area
ANS:
80, $136 V=l w h=10 \cdot 2 \cdot 4=80 \quad S A=2 l w+2 h w+2 l h=2 \cdot 10 \cdot 2+2 \cdot 4 \cdot 2+2 \cdot 10 \cdot 4=136$
PTS: 3
REF: 081035ia
STA: A.G. 2
TOP: Surface Area

