JEFFERSON MATH PROJECT REGENTS BY TYPE

The NY Algebra 2/Trigonometry Regents Exams Fall 2009-January 2012

www.jmap.org

$\mathcal{D}_{\text {ear }}{ }^{\text {ö }}$ ir

Ihave to acknofege the reciept of your favor of May 14. in which you mention that you have finished the 6. first fooks of E ucfid, pfane trigonometry, surveying \& afgefra and ask whether \mathscr{I} think a further pursuit of that branch of science would be usefuf to you. there are some propositions in the fatter books of
 them. trigonometry, so far as this, is most valuable to every man, there is scarcely a day in which he wiff not resort to it for some of the purposes of common fife. the science of cafculation afso is indispensibfe as far as the extraction of the square \& cube roots; 㚘Igefra as far as the quadratic equation \& the use of fogarithms are often of vafue in ordinary cases: but aff beyond these is but a fuxury; a deficious fuxury indeed; but not to be indulged in by one who is to have a profession to foffow for hits subsistence. in this fight $\mathscr{I}_{\text {view }}$ the conic sections, curves of the higher orders, perhapps even spherical trigonometry, 㬒fgefraicaf operations beyond the ad dimension, and fluxions.

Letter from Thomas Jefferson to William G. Munford, Monticello, June 18, 1799.

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions

1 The expression $2 i^{2}+3 i^{3}$ is equivalent to

1) $-2-3 i$
2) $2-3 i$
3) $-2+3 i$
4) $2+3 i$

2 If the amount of time students work in any given week is normally distributed with a mean of 10 hours per week and a standard deviation of 2 hours, what is the probability a student works between 8 and 11 hours per week?

1) 34.1%
2) 38.2%
3) 53.2%
4) 68.2%

3 Factored completely, the expression $6 x-x^{3}-x^{2}$ is equivalent to

1) $x(x+3)(x-2)$
2) $x(x-3)(x+2)$
3) $-x(x-3)(x+2)$
4) $-x(x+3)(x-2)$

4 In simplest form, $\sqrt{-300}$ is equivalent to

1) $3 i \sqrt{10}$
2) $5 i \sqrt{12}$
3) $10 i \sqrt{3}$
4) $12 i \sqrt{5}$

5 The value of x in the equation $4^{2 x+5}=8^{3 x}$ is

1) 1
2) 2
3) 5
4) -10

6 What is the solution of the equation $2 \log _{4}(5 x)=3$?

1) 6.4
2) 2.56
3) $\frac{9}{5}$
4) $\frac{8}{5}$

7 If $\log x^{2}-\log 2 a=\log 3 a$, then $\log x$ expressed in terms of $\log a$ is equivalent to

1) $\frac{1}{2} \log 5 a$
2) $\frac{1}{2} \log 6+\log a$
3) $\log 6+\log a$
4) $\log 6+2 \log a$

8 Akeem invests $\$ 25,000$ in an account that pays 4.75\% annual interest compounded continuously. Using the formula $A=P e^{r t}$, where $A=$ the amount in the account after t years, $P=$ principal invested, and $r=$ the annual interest rate, how many years, to the nearest tenth, will it take for Akeem's investment to triple?

1) 10.0
2) 14.6
3) 23.1
4) 24.0

9 In the diagram below of a unit circle, the ordered pair $\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$ represents the point where the terminal side of θ intersects the unit circle.

What is $\mathrm{m} \angle \theta$?

1) 45
2) 135
3) 225
4) 240

10 Written in simplest form, the expression $\frac{\frac{x}{4}-\frac{1}{x}}{\frac{1}{2 x}+\frac{1}{4}}$ is
11 Which expression is equivalent to $\frac{\sqrt{3}+5}{\sqrt{3}-5}$?

1) $-\frac{14+5 \sqrt{3}}{11}$
2) $-\frac{17+5 \sqrt{3}}{11}$
3) $\frac{14+5 \sqrt{3}}{14}$
4) $\frac{17+5 \sqrt{3}}{14}$

12 In the diagram below of right triangle $K T W$, $K W=6, K T=5$, and $\mathrm{m} \angle K T W=90$.

What is the measure of $\angle K$, to the nearest minute?

1) $33^{\circ} 33^{\prime}$
2) $33^{\circ} 34^{\prime}$
3) $33^{\circ} 55^{\prime}$
4) $33^{\circ} 56^{\prime}$

13 A four-digit serial number is to be created from the digits 0 through 9 . How many of these serial numbers can be created if 0 can not be the first digit, no digit may be repeated, and the last digit must be 5 ?

1) 448
2) 504
3) 2,240
4) 2,520

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

14 If $r=\sqrt[3]{\frac{A^{2} B}{C}}$, then $\log r$ can be represented by

1) $\frac{1}{6} \log A+\frac{1}{3} \log B-\log C$
2) $3\left(\log A^{2}+\log B-\log C\right)$
3) $\frac{1}{3} \log \left(A^{2}+B\right)-C$
4) $\frac{2}{3} \log A+\frac{1}{3} \log B-\frac{1}{3} \log C$

15 What is the product of $\left(\frac{x}{4}-\frac{1}{3}\right)$ and $\left(\frac{x}{4}+\frac{1}{3}\right)$?

1) $\frac{x^{2}}{8}-\frac{1}{9}$
2) $\frac{x^{2}}{16}-\frac{1}{9}$
3) $\frac{x^{2}}{8}-\frac{x}{6}-\frac{1}{9}$
4) $\frac{x^{2}}{16}-\frac{x}{6}-\frac{1}{9}$

16 In $\triangle A B C, \mathrm{~m} \angle A=74, a=59.2$, and $c=60.3$. What are the two possible values for $\mathrm{m} \angle C$, to the nearest tenth?

1) 73.7 and 106.3
2) 73.7 and 163.7
3) 78.3 and 101.7
4) 78.3 and 168.3

17 The value of the expression $2 \sum_{n=0}^{2}\left(n^{2}+2^{n}\right)$ is

1) 12
2) 22
3) 24
4) 26

18 The expression $\frac{2 x+4}{\sqrt{x+2}}$ is equivalent to

1) $\frac{(2 x+4) \sqrt{x-2}}{x-2}$
2) $\frac{(2 x+4) \sqrt{x-2}}{x-4}$
3) $2 \sqrt{x-2}$
4) $2 \sqrt{x+2}$

19 What are the domain and the range of the function shown in the graph below?

1) $\{x \mid x>-4\} ;\{y \mid y>2\}$
2) $\{x \mid x \geq-4\} ;\{y \mid y \geq 2\}$
3) $\{x \mid x>2\}$; $\{y \mid y>-4\}$
4) $\{x \mid x \geq 2\} ;\{y \mid y \geq-4\}$

20 The principal would like to assemble a committee of 8 students from the 15 -member student council. How many different committees can be chosen?

1) 120
2) 6,435
3) $32,432,400$
4) $259,459,200$

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

21 The sides of a parallelogram measure 10 cm and 18 cm . One angle of the parallelogram measures 46 degrees. What is the area of the parallelogram, to the nearest square centimeter?

1) 65
2) 125
3) 129
4) 162

22 The solution set of $4^{x^{2}+4 x}=2^{-6}$ is

1) $\{1,3\}$
2) $\{-1,3\}$
3) $\{-1,-3\}$
4) $\{1,-3\}$

23 What is the domain of the function
$\mathrm{f}(x)=\sqrt{x-2}+3$?

1) $(-\infty, \infty)$
2) $(2, \infty)$
3) $[2, \infty)$
4) $[3, \infty)$

24 The expression $x^{-\frac{2}{5}}$ is equivalent to

1) $-\sqrt[2]{x^{5}}$
2) $-\sqrt[5]{x^{2}}$
3) $\frac{1}{\sqrt[2]{x^{5}}}$
4) $\frac{1}{\sqrt[5]{x^{2}}}$

25 Which calculator output shows the strongest linear relationship between x and y ?

Lin Reg
$y=a+b x$
$a=59.026$
$b=6.767$

1) $r=.8643$

Lin Reg
$y=a+b x$
$a=.7$
$b=24.2$
2) $r=.8361$

Lin Reg
$y=a+b x$
$a=2.45$
$b=.95$
3) $r=.6022$

Lin Reg
$y=a+b x$
$a=-2.9$
$b=24.1$
4) $r=-.8924$

26 Which value of r represents data with a strong negative linear correlation between two variables?

1) -1.07
2) -0.89
3) -0.14
4) 0.92

27 The solution set of $\sqrt{3 x+16}=x+2$ is

1) $\{-3,4\}$
2) $\{-4,3\}$
3) $\{3\}$
4) $\{-4\}$

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

28 Which expression, when rounded to three decimal places, is equal to -1.155 ?

1) $\sec \left(\frac{5 \pi}{6}\right)$
2) $\tan \left(49^{\circ} 20^{\prime}\right)$
3) $\sin \left(-\frac{3 \pi}{5}\right)$
4) $\csc \left(-118^{\circ}\right)$

29 The expression $(3-7 i)^{2}$ is equivalent to

1) $-40+0 i$
2) $-40-42 i$
3) $58+0 i$
4) $58-42 i$

30 In $\triangle A B C, a=15, b=14$, and $c=13$, as shown in the diagram below. What is the $\mathrm{m} \angle C$, to the nearest degree?

1) 53
2) 59
3) 67
4) 127

31 Which graph does not represent a function?
1)

2)
3)
4)

32 The expression $\log _{5}\left(\frac{1}{25}\right)$ is equivalent to

1) $\frac{1}{2}$
2) 2
3) $-\frac{1}{2}$
4) -2

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

33 Which graph best represents the inequality $y+6 \geq x^{2}-x$?

1)

2)

3)

34 If $\mathrm{f}(x)=x^{2}-5$ and $\mathrm{g}(x)=6 x$, then $\mathrm{g}(\mathrm{f}(x))$ is equal to

1) $6 x^{3}-30 x$
2) $6 x^{2}-30$
3) $36 x^{2}-5$
4) $x^{2}+6 x-5$

35 The expression $\frac{a^{2} b^{-3}}{a^{-4} b^{2}}$ is equivalent to

1) $\frac{a^{6}}{b^{5}}$
2) $\frac{b^{5}}{a^{6}}$
3) $\frac{a^{2}}{b}$
4) $a^{-2} b^{-1}$

36 What is the common ratio of the geometric sequence whose first term is 27 and fourth term is 64 ?

1) $\frac{3}{4}$
2) $\frac{64}{81}$
3) $\frac{4}{3}$
4) $\frac{37}{3}$

37 On January 1, a share of a certain stock cost \$180. Each month thereafter, the cost of a share of this stock decreased by one-third. If x represents the time, in months, and y represents the cost of the stock, in dollars, which graph best represents the cost of a share over the following 5 months?
1)

2)

3)

38 When simplified, the expression $\left(\frac{w^{-5}}{w^{-9}}\right)^{\frac{1}{2}}$ is equivalent to

1) w^{-7}
2) w^{2}
3) w^{7}
4) w^{14}

39 What are the sum and product of the roots of the equation $6 x^{2}-4 x-12=0$?

1) sum $=-\frac{2}{3}$; product $=-2$
2) sum $=\frac{2}{3}$; product $=-2$
3) sum $=-2$; product $=\frac{2}{3}$
4) sum $=-2$; product $=-\frac{2}{3}$

40 A doctor wants to test the effectiveness of a new drug on her patients. She separates her sample of patients into two groups and administers the drug to only one of these groups. She then compares the results. Which type of study best describes this situation?

1) census
2) survey
3) observation
4) controlled experiment

41 Which values of x are solutions of the equation $x^{3}+x^{2}-2 x=0$?

1) $0,1,2$
2) $0,1,-2$
3) $0,-1,2$
4) $0,-1,-2$

42 What is the value of x in the equation $\log _{5} x=4$?

1) 1.16
2) 20
3) 625
4) 1,024

43 The number of minutes students took to complete a quiz is summarized in the table below.

Minutes	14	15	16	17	18	19	20
Number of Students	5	3	x	5	2	10	1

If the mean number of minutes was 17 , which equation could be used to calculate the value of x ?

1) $17=\frac{119+x}{x}$
2) $17=\frac{119+16 x}{x}$
3) $17=\frac{446+x}{26+x}$
4) $17=\frac{446+16 x}{26+x}$

44 Given $\triangle A B C$ with $a=9, b=10$, and $\mathrm{m} \angle B=70$, what type of triangle can be drawn?

1) an acute triangle, only
2) an obtuse triangle, only
3) both an acute triangle and an obtuse triangle
4) neither an acute triangle nor an obtuse triangle

45 Which graph represents one complete cycle of the equation $y=\sin 3 \pi x$?
1)

2)

3)

46 In $\triangle A B C, \mathrm{~m} \angle A=120, b=10$, and $c=18$. What is the area of $\triangle A B C$ to the nearest square inch?

1) 52
2) 78
3) 90
4) 156

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

47 Which graph represents a one-to-one function?
1)

2)
3)

48 Which statement about the graph of the equation $y=e^{x}$ is not true?

1) It is asymptotic to the x-axis.
2) The domain is the set of all real numbers.
3) It lies in Quadrants I and II.
4) It passes through the point $(e, 1)$.

49 The solution set of the inequality $x^{2}-3 x>10$ is

1) $\{x \mid-2<x<5\}$
2) $\{x \mid 0<x<3\}$
3) $\{x \mid x<-2$ or $x>5\}$
4) $\{x \mid x<-5$ or $x>2\}$

50 A dartboard is shown in the diagram below. The two lines intersect at the center of the circle, and the central angle in sector 2 measures $\frac{2 \pi}{3}$.

If darts thrown at this board are equally likely to land anywhere on the board, what is the probability that a dart that hits the board will land in either sector 1 or sector 3 ?

1) $\frac{1}{6}$
2) $\frac{1}{3}$
3) $\frac{1}{2}$
4) $\frac{2}{3}$

51 A survey completed at a large university asked 2,000 students to estimate the average number of hours they spend studying each week. Every tenth student entering the library was surveyed. The data showed that the mean number of hours that students spend studying was 15.7 per week. Which characteristic of the survey could create a bias in the results?

1) the size of the sample
2) the size of the population
3) the method of analyzing the data
4) the method of choosing the students who were surveyed

52 Samantha constructs the scatter plot below from a set of data.

Based on her scatter plot, which regression model would be most appropriate?

1) exponential
2) linear
3) logarithmic
4) power

53 What is the conjugate of $\frac{1}{2}+\frac{3}{2} i$?

1) $-\frac{1}{2}+\frac{3}{2}$ i
2) $\frac{1}{2}-\frac{3}{2} i$
3) $\frac{3}{2}+\frac{1}{2} i$
4) $-\frac{1}{2}-\frac{3}{2} i$

54 The expression $\log _{8} 64$ is equivalent to

1) 8
2) 2
3) $\frac{1}{2}$
4) $\frac{1}{8}$

55 The roots of the equation $2 x^{2}+7 x-3=0$ are

1) $-\frac{1}{2}$ and -3
2) $\frac{1}{2}$ and 3
3) $\frac{-7 \pm \sqrt{73}}{4}$
4) $\frac{7 \pm \sqrt{73}}{4}$

56 The minimum point on the graph of the equation $y=\mathrm{f}(x)$ is $(-1,-3)$. What is the minimum point on the graph of the equation $y=\mathrm{f}(x)+5$?

1) $(-1,2)$
2) $(-1,-8)$
3) $(4,-3)$
4) $(-6,-3)$

57 Which relation is not a function?

1) $(x-2)^{2}+y^{2}=4$
2) $x^{2}+4 x+y=4$
3) $x+y=4$
4) $x y=4$

58 Which task is not a component of an observational study?

1) The researcher decides who will make up the sample.
2) The researcher analyzes the data received from the sample.
3) The researcher gathers data from the sample, using surveys or taking measurements.
4) The researcher divides the sample into two groups, with one group acting as a control group.

59 The expression $\cos 4 x \cos 3 x+\sin 4 x \sin 3 x$ is equivalent to

1) $\sin x$
2) $\sin 7 x$
3) $\cos x$
4) $\cos 7 x$

60 Which function is not one-to-one?

1) $\{(0,1),(1,2),(2,3),(3,4)\}$
2) $\{(0,0),(1,1),(2,2),(3,3)\}$
3) $\{(0,1),(1,0),(2,3),(3,2)\}$
4) $\{(0,1),(1,0),(2,0),(3,2)\}$

61 For which equation does the sum of the roots equal $\frac{3}{4}$ and the product of the roots equal -2 ?

1) $4 x^{2}-8 x+3=0$
2) $4 x^{2}+8 x+3=0$
3) $4 x^{2}-3 x-8=0$
4) $4 x^{2}+3 x-2=0$

62 If $\sin A=\frac{2}{3}$ where $0^{\circ}<A<90^{\circ}$, what is the value of $\sin 2 A$?

1) $\frac{2 \sqrt{5}}{3}$
2) $\frac{2 \sqrt{5}}{9}$
3) $\frac{4 \sqrt{5}}{9}$
4) $-\frac{4 \sqrt{5}}{9}$

63 When $\frac{3}{2} x^{2}-\frac{1}{4} x-4$ is subtracted from $\frac{5}{2} x^{2}-\frac{3}{4} x+1$, the difference is

1) $-x^{2}+\frac{1}{2} x-5$
2) $x^{2}-\frac{1}{2} x+5$
3) $-x^{2}-x-3$
4) $x^{2}-x-3$

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

64 The graph of $y=x^{3}-4 x^{2}+x+6$ is shown below.

What is the product of the roots of the equation $x^{3}-4 x^{2}+x+6=0$?

1) -36
2) -6
3) 6
4) 4

65 The fraction $\frac{3}{\sqrt{3 a^{2} b}}$ is equivalent to

1) $\frac{1}{a \sqrt{b}}$
2) $\frac{\sqrt{b}}{a b}$
3) $\frac{\sqrt{3 b}}{a b}$
4) $\frac{\sqrt{3}}{a}$

66 Which is a graph of $y=\cot x$?

2)

3)

4)

67 For which equation does the sum of the roots equal -3 and the product of the roots equal 2 ?

1) $x^{2}+2 x-3=0$
2) $x^{2}-3 x+2=0$
3) $2 x^{2}+6 x+4=0$
4) $2 x^{2}-6 x+4=0$

68 The roots of the equation $x^{2}-10 x+25=0$ are

1) imaginary
2) real and irrational
3) real, rational, and equal
4) real, rational, and unequal

69 Which graph does not represent a function?
1)

70 The value of the expression $\sum_{r=3}^{5}\left(-r^{2}+r\right)$ is

1) -38
2) -12
3) 26
4) 62

71 In the diagram below of right triangle $J T M$, $J T=12, J M=6$, and $\mathrm{m} \angle J M T=90$.

What is the value of $\cot J$?

1) $\frac{\sqrt{3}}{3}$
2) 2
3) $\sqrt{3}$
4) $\frac{2 \sqrt{3}}{3}$

72 In $\triangle A B C, a=3, b=5$, and $c=7$. What is $\mathrm{m} \angle C$?

1) 22
2) 38
3) 60
4) 120

73 What is the fifteenth term of the geometric sequence $-\sqrt{5}, \sqrt{10},-2 \sqrt{5}, \ldots$?

1) $-128 \sqrt{5}$
2) $128 \sqrt{10}$
3) $-16384 \sqrt{5}$
4) $16384 \sqrt{10}$

74 An amateur bowler calculated his bowling average for the season. If the data are normally distributed, about how many of his 50 games were within one standard deviation of the mean?

1) 14
2) 17
3) 34
4) 48

75 The expression $4 a b \sqrt{2 b}-3 a \sqrt{18 b^{3}}+7 a b \sqrt{6 b}$ is equivalent to

1) $2 a b \sqrt{6 b}$
2) $16 a b \sqrt{2 b}$
3) $-5 a b+7 a b \sqrt{6 b}$
4) $-5 a b \sqrt{2 b}+7 a b \sqrt{6 b}$

76 A circle has a radius of 4 inches. In inches, what is the length of the arc intercepted by a central angle of 2 radians?

1) 2π
2) 2
3) 8π
4) 8

77 The roots of the equation $9 x^{2}+3 x-4=0$ are

1) imaginary
2) real, rational, and equal
3) real, rational, and unequal
4) real, irrational, and unequal

78 The expression $\left(x^{2}-1\right)^{-\frac{2}{3}}$ is equivalent to

1) $\sqrt[3]{\left(x^{2}-1\right)^{2}}$
2) $\frac{1}{\sqrt[3]{\left(x^{2}-1\right)^{2}}}$
3) $\sqrt{\left(x^{2}-1\right)^{3}}$
4) $\frac{1}{\sqrt{\left(x^{2}-1\right)^{3}}}$

79 Which formula can be used to determine the total number of different eight-letter arrangements that can be formed using the letters in the word DEADLINE?

1) $8!$
2) $\frac{8!}{4!}$
3) $\frac{8!}{2!+2!}$
4) $\frac{8!}{2!\cdot 2!}$

80 If $\mathrm{f}(x)=4 x-x^{2}$ and $\mathrm{g}(x)=\frac{1}{x}$, then $(\mathrm{f} \circ \mathrm{g})\left(\frac{1}{2}\right)$ is equal to

1) $\frac{4}{7}$
2) -2
3) $\frac{7}{2}$
4) 4

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

81 Which values of x are in the solution set of the following system of equations?

$$
\begin{aligned}
& y=3 x-6 \\
& y=x^{2}-x-6
\end{aligned}
$$

1) $0,-4$
2) 0,4
3) $6,-2$
4) $-6,2$

82 Mrs. Hill asked her students to express the sum $1+3+5+7+9+\ldots+39$ using sigma notation. Four different student answers were given. Which student answer is correct?

1) $\sum_{k=1}^{20}(2 k-1)$
2) $\sum_{k=2}^{40}(k-1)$
3) $\sum_{k=-1}^{37}(k+2)$
4) $\sum_{k=1}^{39}(2 k-1)$

83 If $x^{2}+2=6 x$ is solved by completing the square, an intermediate step would be

1) $(x+3)^{2}=7$
2) $(x-3)^{2}=7$
3) $(x-3)^{2}=11$
4) $(x-6)^{2}=34$

84 The expression $2 \log x-(3 \log y+\log z)$ is equivalent to

1) $\log \frac{x^{2}}{y^{3} z}$
2) $\log \frac{x^{2} z}{y^{3}}$
3) $\log \frac{2 x}{3 y z}$
4) $\log \frac{2 x z}{3 y}$

85 Which ratio represents $\csc A$ in the diagram below?

1) $\frac{25}{24}$
2) $\frac{25}{7}$
3) $\frac{24}{7}$
4) $\frac{7}{24}$

86 What is the range of $\mathrm{f}(x)=(x+4)^{2}+7$?

1) $y \geq-4$
2) $y \geq 4$
3) $y=7$
4) $y \geq 7$

87 A sequence has the following terms: $a_{1}=4$, $a_{2}=10, a_{3}=25, a_{4}=62.5$. Which formula represents the nth term in the sequence?

1) $a_{n}=4+2.5 n$
2) $a_{n}=4+2.5(n-1)$
3) $a_{n}=4(2.5)^{n}$
4) $a_{n}=4(2.5)^{n-1}$

88 The product of i^{7} and i^{5} is equivalent to

1) 1
2) -1
3) i
4) $-i$

89 What is the number of degrees in an angle whose measure is 2 radians?

1) $\frac{360}{\pi}$
2) $\frac{\pi}{360}$
3) 360
4) 90

90 The expression $\cos ^{2} \theta-\cos 2 \theta$ is equivalent to

1) $\sin ^{2} \theta$
2) $-\sin ^{2} \theta$
3) $\cos ^{2} \theta+1$
4) $-\cos ^{2} \theta-1$

91 Expressed as a function of a positive acute angle, $\cos \left(-305^{\circ}\right)$ is equal to

1) $-\cos 55^{\circ}$
2) $\cos 55^{\circ}$
3) $-\sin 55^{\circ}$
4) $\sin 55^{\circ}$

92 Which equation is graphed in the diagram below?

1) $y=3 \cos \left(\frac{\pi}{30} x\right)+8$
2) $y=3 \cos \left(\frac{\pi}{15} x\right)+5$
3) $y=-3 \cos \left(\frac{\pi}{30} x\right)+8$
4) $y=-3 \cos \left(\frac{\pi}{15} x\right)+5$

93 What is the fourth term in the expansion of $(3 x-2)^{5}$?

1) $-720 x^{2}$
2) $-240 x$
3) $720 x^{2}$
4) $1,080 x^{3}$

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

94 A spinner is divided into eight equal sections. Five sections are red and three are green. If the spinner is spun three times, what is the probability that it lands on red exactly twice?

1) $\frac{25}{64}$
2) $\frac{45}{512}$
3) $\frac{75}{512}$
4) $\frac{225}{512}$

95 Which equation is sketched in the diagram below?

1) $y=\csc x$
2) $y=\sec x$
3) $y=\cot x$
4) $y=\tan x$

97 Which graph represents a relation that is not a function?
1)

2)

3)

96 The solution set of the equation $\sqrt{x+3}=3-x$ is

1) $\{1\}$
2) $\{0\}$
3) $\{1,6\}$
4) $\{2,3\}$

98 If p varies inversely as q, and $p=10$ when $q=\frac{3}{2}$, what is the value of p when $q=\frac{3}{5}$?

1) 25
2) 15
3) 9
4) 4

99 The equation $y-2 \sin \theta=3$ may be rewritten as

1) $\mathrm{f}(y)=2 \sin x+3$
2) $\mathrm{f}(y)=2 \sin \theta+3$
3) $\mathrm{f}(\mathrm{x})=2 \sin \theta+3$
4) $\mathrm{f}(\theta)=2 \sin \theta+3$

100 What is the solution set of the equation $|4 a+6|-4 a=-10$?

1) \varnothing
2) $\{0\}$
3) $\left\{\frac{1}{2}\right\}$
4) $\left\{0, \frac{1}{2}\right\}$

101 What is the solution set of the equation

$$
3 x^{5}-48 x=0 ?
$$

1) $\{0, \pm 2\}$
2) $\{0, \pm 2,3\}$
3) $\{0, \pm 2, \pm 2 i\}$
4) $\{ \pm 2, \pm 2 i\}$

102 What is the value of x in the equation $9^{3 x+1}=27^{x+2}$?

1) 1
2) $\frac{1}{3}$
3) $\frac{1}{2}$
4) $\frac{4}{3}$

103 What is the fifteenth term of the sequence $5,-10,20,-40,80, \ldots$?

1) $-163,840$
2) $-81,920$
3) 81,920
4) 327,680

104 Factored completely, the expression $12 x^{4}+10 x^{3}-12 x^{2}$ is equivalent to

1) $x^{2}(4 x+6)(3 x-2)$
2) $2\left(2 x^{2}+3 x\right)\left(3 x^{2}-2 x\right)$
3) $2 x^{2}(2 x-3)(3 x+2)$
4) $2 x^{2}(2 x+3)(3 x-2)$

105 Ms. Bell's mathematics class consists of 4 sophomores, 10 juniors, and 5 seniors. How many different ways can Ms. Bell create a four-member committee of juniors if each junior has an equal chance of being selected?

1) 210
2) 3,876
3) 5,040
4) 93,024

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

106 The expression $\frac{4}{5-\sqrt{13}}$ is equivalent to

1) $\frac{4 \sqrt{13}}{5 \sqrt{13}-13}$
2) $\frac{4(5-\sqrt{13})}{38}$
3) $\frac{5+\sqrt{13}}{3}$
4) $\frac{4(5+\sqrt{13})}{38}$

107 What is the formula for the nth term of the sequence $54,18,6, \ldots$?

1) $a_{n}=6\left(\frac{1}{3}\right)^{n}$
2) $a_{n}=6\left(\frac{1}{3}\right)^{n-1}$
3) $a_{n}=54\left(\frac{1}{3}\right)^{n}$
4) $a_{n}=54\left(\frac{1}{3}\right)^{n-1}$

108 What is the radian measure of the smaller angle formed by the hands of a clock at 7 o'clock?

1) $\frac{\pi}{2}$
2) $\frac{2 \pi}{3}$
3) $\frac{5 \pi}{6}$
4) $\frac{7 \pi}{6}$

109 Three marbles are to be drawn at random, without replacement, from a bag containing 15 red marbles, 10 blue marbles, and 5 white marbles. Which expression can be used to calculate the probability of drawing 2 red marbles and 1 white marble from the bag?

1) $\frac{{ }_{15} C_{2} \cdot{ }_{5} C_{1}}{{ }_{30} C_{3}}$
2) $\frac{{ }_{15} P_{2} \cdot{ }_{5} P_{1}}{{ }_{30} C_{3}}$
3) $\frac{{ }_{15} C_{2} \cdot{ }_{5} C_{1}}{{ }_{30} P_{3}}$
4) $\frac{{ }_{15} P_{2} \cdot{ }_{5} P_{1}}{{ }_{30} P_{3}}$

110 If $\mathrm{f}(x)=\frac{1}{2} x-3$ and $\mathrm{g}(x)=2 x+5$, what is the value of $(g \circ f)(4)$?

1) -13
2) 3.5
3) 3
4) 6

111 The value of $\tan 126^{\circ} 43^{\prime}$ to the nearest ten-thousandth is

1) -1.3407
2) -1.3408
3) -1.3548
4) -1.3549

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

112 What is the common difference of the arithmetic sequence $5,8,11,14$?

1) $\frac{8}{5}$
2) -3
3) 3
4) 9

113 If $\mathrm{f}(x)=\frac{x}{x^{2}-16}$, what is the value of $\mathrm{f}(-10)$?

1) $-\frac{5}{2}$
2) $-\frac{5}{42}$
3) $\frac{5}{58}$
4) $\frac{5}{18}$

114 The lengths of 100 pipes have a normal distribution with a mean of 102.4 inches and a standard deviation of 0.2 inch. If one of the pipes measures exactly 102.1 inches, its length lies

1) below the $16^{\text {th }}$ percentile
2) between the $50^{\text {th }}$ and $84^{\text {th }}$ percentiles
3) between the $16^{\text {th }}$ and $50^{\text {th }}$ percentiles
4) above the $84^{\text {th }}$ percentile

115 What are the values of θ in the interval $0^{\circ} \leq \theta<360^{\circ}$ that satisfy the equation $\tan \theta-\sqrt{3}=0$?

1) $60^{\circ}, 240^{\circ}$
2) $72^{\circ}, 252^{\circ}$
3) $72^{\circ}, 108^{\circ}, 252^{\circ}, 288^{\circ}$
4) $60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$

116 In which graph is θ coterminal with an angle of -70° ?
1)

2)
3)

117 In parallelogram $B F L O, O L=3.8, L F=7.4$, and $\mathrm{m} \angle O=126$. If diagonal $\overline{B L}$ is drawn, what is the area of $\triangle B L F$?

1) 11.4
2) 14.1
3) 22.7
4) 28.1

118 If $\angle A$ is acute and $\tan A=\frac{2}{3}$, then

1) $\cot A=\frac{2}{3}$
2) $\cot A=\frac{1}{3}$
3) $\cot \left(90^{\circ}-A\right)=\frac{2}{3}$
4) $\cot \left(90^{\circ}-A\right)=\frac{1}{3}$

119 Which equation is represented by the graph below?

1) $y=5^{x}$
2) $y=0.5^{x}$
3) $y=5^{-x}$
4) $y=0.5^{-x}$

120 What is the principal value of $\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$?

1) -30°
2) 60°
3) 150°
4) 240°

121 What is the number of degrees in an angle whose radian measure is $\frac{11 \pi}{12}$?

1) 150
2) 165
3) 330
4) 518

122 The yearbook staff has designed a survey to learn student opinions on how the yearbook could be improved for this year. If they want to distribute this survey to 100 students and obtain the most reliable data, they should survey

1) every third student sent to the office
2) every third student to enter the library
3) every third student to enter the gym for the basketball game
4) every third student arriving at school in the morning

123 An auditorium has 21 rows of seats. The first row has 18 seats, and each succeeding row has two more seats than the previous row. How many seats are in the auditorium?

1) 540
2) 567
3) 760
4) 798

124 Which two functions are inverse functions of each other?

1) $\mathrm{f}(x)=\sin x$ and $g(x)=\cos (x)$
2) $\mathrm{f}(x)=3+8 x$ and $\mathrm{g}(x)=3-8 x$
3) $\mathrm{f}(x)=e^{x}$ and $\mathrm{g}(x)=\ln x$
4) $\mathrm{f}(x)=2 x-4$ and $\mathrm{g}(x)=-\frac{1}{2} x+4$

125 The expression $\frac{\sin ^{2} \theta+\cos ^{2} \theta}{1-\sin ^{2} \theta}$ is equivalent to

1) $\cos ^{2} \theta$
2) $\sin ^{2} \theta$
3) $\sec ^{2} \theta$
4) $\csc ^{2} \theta$

126 What is the range of $\mathrm{f}(x)=|x-3|+2$?

1) $\{x \mid x \geq 3\}$
2) $\{y \mid y \geq 2\}$
3) $\{x \mid x \in$ real numbers $\}$
4) $\{y \mid y \in$ real numbers $\}$

127 Given angle A in Quadrant I with $\sin A=\frac{12}{13}$ and angle B in Quadrant II with $\cos B=-\frac{3}{5}$, what is the value of $\cos (A-B)$?

1) $\frac{33}{65}$
2) $-\frac{33}{65}$
3) $\frac{63}{65}$
4) $-\frac{63}{65}$

128 The solutions of the equation $y^{2}-3 y=9$ are

1) $\frac{3 \pm 3 i \sqrt{3}}{2}$
2) $\frac{3 \pm 3 i \sqrt{5}}{2}$
3) $\frac{-3 \pm 3 \sqrt{5}}{2}$
4) $\frac{3 \pm 3 \sqrt{5}}{2}$

129 The function $\mathrm{f}(x)=\tan x$ is defined in such a way that $\mathrm{f}^{-1}(x)$ is a function. What can be the domain of $\mathrm{f}(x)$?

1) $\{x \mid 0 \leq x \leq \pi\}$
2) $\{x \mid 0 \leq x \leq 2 \pi\}$
3) $\left\{x \left\lvert\,-\frac{\pi}{2}<x<\frac{\pi}{2}\right.\right\}$
4) $\left\{x \left\lvert\,-\frac{\pi}{2}<x<\frac{3 \pi}{2}\right.\right\}$

130 When $x^{-1}+1$ is divided by $x+1$, the quotient equals

1) 1
2) $\frac{1}{x}$
3) x
4) $-\frac{1}{x}$

131 What is the conjugate of $-2+3 i$?

1) $-3+2 i$
2) $-2-3 i$
3) $2-3 i$
4) $3+2 i$

132 What is a formula for the nth term of sequence B shown below?

$$
B=10,12,14,16, \ldots
$$

1) $b_{n}=8+2 n$
2) $b_{n}=10+2 n$
3) $b_{n}=10(2)^{n}$
4) $b_{n}=10(2)^{n-1}$

133 What is the coefficient of the fourth term in the expansion of $(a-4 b)^{9}$?

1) $-5,376$
2) -336
3) 336
4) 5,376

134 How many distinct triangles can be formed if $\mathrm{m} \angle A=35, a=10$, and $b=13$?

1) 1
2) 2
3) 3
4) 0

135 If $a=3$ and $b=-2$, what is the value of the expression $\frac{a^{-2}}{b^{-3}}$?

1) $-\frac{9}{8}$
2) -1
3) $-\frac{8}{9}$
4) $\frac{8}{9}$

136 Which expression always equals 1 ?

1) $\cos ^{2} x-\sin ^{2} x$
2) $\cos ^{2} x+\sin ^{2} x$
3) $\cos x-\sin x$
4) $\cos x+\sin x$

137 The table below shows the first-quarter averages for Mr. Harper's statistics class.

Statistics Class Averages

Quarter Averages	Frequency
99	1
97	5
95	4
92	4
90	7
87	2
84	6
81	2
75	1
70	2
65	1

What is the population variance for this set of data?

1) 8.2
2) 8.3
3) 67.3
4) 69.3

138 Twenty different cameras will be assigned to several boxes. Three cameras will be randomly selected and assigned to box A . Which expression can be used to calculate the number of ways that three cameras can be assigned to box A ?

1) 20 !
2) $\frac{20!}{3!}$
3) ${ }_{20} C_{3}$
4) ${ }_{20} P_{3}$

139 When $x^{-1}-1$ is divided by $x-1$, the quotient is

1) -1
2) $-\frac{1}{x}$
3) $\frac{1}{x^{2}}$
4) $\frac{1}{(x-1)^{2}}$

140 The product of $(3+\sqrt{5})$ and $(3-\sqrt{5})$ is

1) $4-6 \sqrt{5}$
2) $14-6 \sqrt{5}$
3) 14
4) 4

141 Which expression represents the third term in the expansion of $\left(2 x^{4}-y\right)^{3}$?

1) $-y^{3}$
2) $-6 x^{4} y^{2}$
3) $6 x^{4} y^{2}$
4) $2 x^{4} y^{2}$

142 Which graph represents the solution set of $|6 x-7| \leq 5$?
1)

2)

3)
4)

143 Which equation represents the circle shown in the graph below that passes through the point $(0,-1)$?

1) $(x-3)^{2}+(y+4)^{2}=16$
2) $(x-3)^{2}+(y+4)^{2}=18$
3) $(x+3)^{2}+(y-4)^{2}=16$
4) $(x+3)^{2}+(y-4)^{2}=18$

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

144 Which graph represents the equation $y=\cos ^{-1} x$?
1)

2)

3)

4)

146 A population of rabbits doubles every 60 days according to the formula $P=10(2)^{\frac{t}{60}}$, where P is the population of rabbits on day t. What is the value of t when the population is 320 ?

1) 240
2) 300
3) 660
4) 960

147 If $\sin ^{-1}\left(\frac{5}{8}\right)=A$, then

1) $\sin A=\frac{5}{8}$
2) $\sin A=\frac{8}{5}$
3) $\cos A=\frac{5}{8}$
4) $\cos A=\frac{8}{5}$

148 What is the radian measure of an angle whose measure is -420° ?

1) $-\frac{7 \pi}{3}$
2) $-\frac{7 \pi}{6}$
3) $\frac{7 \pi}{6}$
4) $\frac{7 \pi}{3}$

145 Which arithmetic sequence has a common difference of 4 ?

1) $\{0,4 n, 8 n, 12 n, \ldots\}$
2) $\{n, 4 n, 16 n, 64 n, \ldots\}$
3) $\{n+1, n+5, n+9, n+13, \ldots\}$
4) $\{n+4, n+16, n+64, n+256, \ldots\}$

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

149 If a function is defined by the equation $\mathrm{f}(x)=4^{x}$, which graph represents the inverse of this function?
1)

2)

3)

150 What is the period of the function $y=\frac{1}{2} \sin \left(\frac{x}{3}-\pi\right)$?

1) $\frac{1}{2}$
2) $\frac{1}{3}$
3) $\frac{2}{3} \pi$
4) 6π

151 Which equation is represented by the graph below?

1) $y=\cot x$
2) $y=\csc x$
3) $y=\sec x$
4) $y=\tan x$

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

152 Which function is one-to-one?

1) $\mathrm{f}(x)=|x|$
2) $\mathrm{f}(x)=2^{x}$
3) $\mathrm{f}(x)=x^{2}$
4) $\mathrm{f}(x)=\sin x$

153 The graph of $y=\mathrm{f}(x)$ is shown below.

Which set lists all the real solutions of $\mathrm{f}(x)=0$?

1) $\{-3,2\}$
2) $\{-2,3\}$
3) $\{-3,0,2\}$
4) $\{-2,0,3\}$

154 What is the sum of the first 19 terms of the sequence $3,10,17,24,31, \ldots$?

1) 1188
2) 1197
3) 1254
4) 1292

155 The graph below shows the function $\mathrm{f}(x)$.

156 What is the period of the function $f(\theta)=-2 \cos 3 \theta$?

1) π
2) $\frac{2 \pi}{3}$
3) $\frac{3 \pi}{2}$
4) 2π

157 Four points on the graph of the function $\mathrm{f}(x)$ are shown below.
$\{(0,1),(1,2),(2,4),(3,8)\}$
Which equation represents $\mathrm{f}(x)$?

1) $\mathrm{f}(x)=2^{x}$
2) $\mathrm{f}(x)=2 x$
3) $\mathrm{f}(x)=x+1$
4) $\mathrm{f}(x)=\log _{2} x$

158 The conjugate of $7-5 i$ is

1) $-7-5 i$
2) $-7+5 i$
3) $7-5 i$
4) $7+5 i$

159 The equation $x^{2}+y^{2}-2 x+6 y+3=0$ is equivalent to

1) $(x-1)^{2}+(y+3)^{2}=-3$
2) $(x-1)^{2}+(y+3)^{2}=7$
3) $(x+1)^{2}+(y+3)^{2}=7$
4) $(x+1)^{2}+(y+3)^{2}=10$

160 Which graph shows $y=\cos ^{-1} x$?

161 The expression $\sqrt[4]{16 x^{2} y^{7}}$ is equivalent to

1) $2 x^{\frac{1}{2}} y^{\frac{7}{4}}$
2) $2 x^{8} y^{28}$
3) $4 x^{\frac{1}{2}} y^{\frac{7}{4}}$
4) $4 x^{8} y^{28}$

162 Brian correctly used a method of completing the square to solve the equation $x^{2}+7 x-11=0$.
Brian's first step was to rewrite the equation as $x^{2}+7 x=11$. He then added a number to both sides of the equation. Which number did he add?

1) $\frac{7}{2}$
2) $\frac{49}{4}$
3) $\frac{49}{2}$
4) 49

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions

Answer Section

1 ANS: 1
$2 i^{2}+3 i^{3}=2(-1)+3(-i)=-2-3 i$
PTS: 2 REF: 081004a2 STA: A2.N. 7 TOP: Imaginary Numbers
2 ANS: 3
$34.1 \%+19.1 \%=53.2 \%$
PTS: 2
REF: 011212a2
STA: A2.S. 5
TOP: Normal Distributions
KEY: probability
3 ANS: 4
$6 x-x^{3}-x^{2}=-x\left(x^{2}+x-6\right)=-x(x+3)(x-2)$
PTS: 2 REF: fall0917a2 STA: A2.A. 7 TOP: Factoring Polynomials
KEY: single variable
4 ANS: 3
$\sqrt{-300}=\sqrt{100} \sqrt{-1} \sqrt{3}$
PTS: 2 REF: 061006a2 STA: A2.N. 6 TOP: Square Roots of Negative Numbers
5 ANS: 2

$$
4^{2 x+5}=8^{3 x}
$$

$$
\left(2^{2}\right)^{2 x+5}=\left(2^{3}\right)^{3 x}
$$

$$
2^{4 x+10}=2^{9 x}
$$

$$
4 x+10=9 x
$$

$$
10=5 x
$$

$$
2=x
$$

PTS: 2
REF: 061105a2
STA: A2.A. 27
TOP: Exponential Equations
KEY: common base not shown

6 ANS: 4

$$
\begin{array}{r}
2 \log _{4}(5 x)=3 \\
\log _{4}(5 x)=\frac{3}{2}
\end{array}
$$

$$
5 x=4^{\frac{3}{2}}
$$

$$
5 x=8
$$

$$
x=\frac{8}{5}
$$

PTS: 2
REF: fall0921a2 STA: A2.A. 28
TOP: Logarithmic Equations
KEY: advanced
7 ANS: 2

$$
\begin{aligned}
& \log x^{2}=\log 3 a+\log 2 a \\
& 2 \log x=\log 6 a^{2} \\
& \log x=\frac{\log 6}{2}+\frac{\log a^{2}}{2} \\
& \log x=\frac{1}{2} \log 6+\frac{2 \log a}{2} \\
& \log x=\frac{1}{2} \log 6+\log a
\end{aligned}
$$

PTS: 2 REF: 011224a2 STA: A2.A. 19 TOP: Properties of Logarithms
KEY: splitting logs
8 ANS: 3

$$
75000=25000 e^{.0475 t}
$$

$$
3=e^{.0475 t}
$$

$$
\ln 3=\ln e^{.0475 t}
$$

$\frac{\ln 3}{.0475}=\frac{.0475 t \cdot \ln e}{.0475}$
$23.1 \approx t$
$\begin{array}{llll}\text { PTS: } 2 & \text { REF: 061117a2 } & \text { STA: A2.A. } 6 & \text { TOP: Exponential Growth } \\ \text { ANS: } 3 & \text { PTS: } 2 & \text { REF: 011104a2 } & \text { STA: A2.A. } 64\end{array}$
9 ANS: 3
TOP: Using Inverse Trigonometric Functions
KEY: unit circle

10 ANS: 2
$\frac{\frac{x}{4}-\frac{1}{x}}{\frac{1}{2 x}+\frac{1}{4}}=\frac{\frac{x^{2}-4}{4 x}}{\frac{2 x+4}{8 x}}=\frac{(x+2)(x-2)}{4 x} \times \frac{8 x}{2(x+2)}=x-2$
PTS: 2 REF: fall0920a2 STA: A2.A. 17 TOP: Complex Fractions
11 ANS: 1
$\frac{\sqrt{3}+5}{\sqrt{3}-5} \cdot \frac{\sqrt{3}+5}{\sqrt{3}+5}=\frac{3+5 \sqrt{3}+5 \sqrt{3}+25}{3-25}=\frac{28+10 \sqrt{3}}{-22}=-\frac{14+5 \sqrt{3}}{11}$
PTS: 2 REF: 061012a2 STA: A2.N. 5 TOP: Rationalizing Denominators
12 ANS: 1
$\cos K=\frac{5}{6}$

$$
\begin{aligned}
& K=\cos ^{-1} \frac{5}{6} \\
& K \approx 33^{\circ} 33^{\prime}
\end{aligned}
$$

PTS: 2 REF: 061023a2 STA: A2.A. 55 TOP: Trigonometric Ratios
13 ANS: 1
$8 \times 8 \times 7 \times 1=448$. The first digit cannot be 0 or 5 . The second digit cannot be 5 or the same as the first digit. The third digit cannot be 5 or the same as the first or second digit.

PTS: 2 REF: 011125a2 STA: A2.S. 20 TOP: Permutations
14 ANS: 4
PTS: 2
REF: 061120a2
STA: A2.A. 19
TOP: Properties of Logarithms
KEY: splitting logs
15 ANS: 2
The binomials are conjugates, so use FL.
PTS: 2
REF: 011206a2
STA: A2.N. 3
TOP: Operations with Polynomials
16 ANS: 3

$$
\begin{aligned}
\frac{59.2}{\sin 74} & =\frac{60.3}{\sin C} \quad 180-78.3=101.7 \\
C & \approx 78.3
\end{aligned}
$$

PTS: 2
REF: 081006a2 STA: A2.A. 75
TOP: Law of Sines - The Ambiguous Case

17 ANS: 3

n	0	1	2	\sum
$n^{2}+2^{n}$	$0^{2}+2^{0}=1$	$1^{2}+2^{2}=3$	$2^{2}+2^{2}=8$	12

PTS: 2 REF: fall0911a2 STA: A2.N. 10 TOP: Sigma Notation
KEY: basic
18 ANS: 4
$\frac{2 x+4}{\sqrt{x+2}} \cdot \frac{\sqrt{x+2}}{\sqrt{x+2}}=\frac{2(x+2) \sqrt{x+2}}{x+2}=2 \sqrt{x+2}$
PTS: 2
KEY: index = 2
19 ANS: 2
PTS: 2
TOP: Domain and Range
20 ANS: 2
${ }_{15} C_{8}=6,435$
PTS: 2
REF: 081012a2
STA: A2.S. 11
21 ANS: 3
$K=(10)(18) \sin 46 \approx 129$
PTS: 2 REF: 081021a2 STA: A2.A. 74 TOP: Using Trigonometry to Find Area
KEY: parallelograms
22 ANS: 3

$$
\begin{array}{rlrl}
4^{x^{2}+4 x} & =2^{-6} . & 2 x^{2}+8 x & =-6 \\
\left(2^{2}\right)^{x^{2}+4 x} & =2^{-6} & 2 x^{2}+8 x+6 & =0 \\
2^{2 x^{2}+8 x} & =2^{-6} & x^{2}+4 x+3 & =0 \\
(x+3)(x+1) & =0 \\
x & =-3 x=-1
\end{array}
$$

PTS: 2
REF: 061015a2
KEY: common base shown
23 ANS: $3 \quad$ PTS: 2
TOP: Domain and Range
STA: A2.A. 27
REF: fall0923a2
KEY: real domain
24 ANS: 4
$x^{-\frac{2}{5}}=\frac{1}{x^{\frac{2}{5}}}=\frac{1}{\sqrt[5]{x^{2}}}$
PTS: 2
REF: 011118a2
STA: A2.A. 10
TOP: Fractional Exponents as Radicals

25 ANS: 1
(4) shows the strongest linear relationship, but if $r<0, b<0$.

PTS: 2
26 ANS: 2
REF: 011223a2
STA: A2.S. 8
REF: 061021a2
TOP: Correlation Coefficient
27 ANS: 3
$3 x+16=(x+2)^{2} \quad .-4$ is an extraneous solution.
$3 x+16=x^{2}+4 x+4$
$0=x^{2}+x-12$
$0=(x+4)(x-3)$
$x=-4 \quad x=3$
PTS: 2
REF: 061121a2
STA: A2.A. 22
TOP: Solving Radicals
KEY: extraneous solutions
28

PTS: 2
REF: 011203a2 STA: A2.A. 66
TOP: Determining Trigonometric Functions
29 ANS: 2
$(3-7 i)(3-7 i)=9-21 i-21 i+49 i^{2}=9-42 i-49=-40-42 i$
PTS: 2
REF: fall0901a2 STA: A2.N.9
TOP: Multiplication and Division of Complex Numbers
30 ANS: 1

$$
\begin{aligned}
13^{2} & =15^{2}+14^{2}-2(15)(14) \cos C \\
169 & =421-420 \cos C \\
-252 & =-420 \cos C \\
\frac{252}{420} & =\cos C \\
53 & \approx C
\end{aligned}
$$

PTS: 2
REF: 061110a2
STA: A2.A. 73
KEY: find angle
31 ANS: 4
PTS: 2
TOP: Defining Functions
REF: 011101a2
KEY: graphs
32 ANS: 4 PTS: 2
REF: 011124a2 STA: A2.A. 18
TOP: Evaluating Logarithmic Expressions

TOP: Correlation Coefficient
STA: A2.S. 8

33 ANS: 1
$y \geq x^{2}-x-6$
$y \geq(x-3)(x+2)$
PTS: 2
REF: 061017a2
STA: A2.A. 4
TOP: Quadratic Inequalities
KEY: two variables
34 ANS: 2
$6\left(x^{2}-5\right)=6 x^{2}-30$
PTS: 2
KEY: variables
35 ANS: 1
REF: 011109a2
STA: A2.A. 42
TOP: Compositions of Functions
PTS: 2
REF: fall0914a2 STA: A2.A.8
TOP: Negative and Fractional Exponents
36 ANS: 3
$27 r^{4-1}=64$

$$
\begin{aligned}
r^{3} & =\frac{64}{27} \\
r & =\frac{4}{3}
\end{aligned}
$$

PTS: 2
37 ANS: 3
REF: 081025a2
STA: A2.A. 31
REF: 011119a2
TOP: Conjugates of Complex Numbers
TOP: Families of Functions
38 ANS: 2
$\left(\frac{w^{-5}}{w^{-9}}\right)^{\frac{1}{2}}=\left(w^{4}\right)^{\frac{1}{2}}=w^{2}$
PTS: 2
REF: 081011a2 STA: A2.A. 8
TOP: Negative and Fractional Exponents
39 ANS: 2
sum: $\frac{-b}{a}=\frac{4}{6}=\frac{2}{3}$. product: $\frac{c}{a}=\frac{-12}{6}=-2$

PTS: 2
REF: 011209a2
40 ANS: 4
PTS: 2
STA: A2.A. 20
REF: 061101a2
TOP: Roots of Quadratics
TOP: Analysis of Data
41 ANS: 2

$$
\begin{gathered}
x^{3}+x^{2}-2 x=0 \\
x\left(x^{2}+x-2\right)=0 \\
x(x+2)(x-1)=0 \\
x=0,-2,1
\end{gathered}
$$

PTS: 2
REF: 011103a2
STA: A2.A. 26
TOP: Solving Polynomial Equations

42 ANS: 3
$x=5^{4}=625$
PTS: 2 REF: 061106a2 STA: A2.A. 28 TOP: Logarithmic Equations
KEY: basic
43 ANS: 4 PTS: 2 REF: 061124a2 STA: A2.S. 3
TOP: Central Tendency
44 ANS: 1
$\frac{9}{\sin A}=\frac{10}{\sin 70} .58^{\circ}+70^{\circ}$ is possible. $122^{\circ}+70^{\circ}$ is not possible.
$A=58$
PTS: 2 REF: 011210a2 STA: A2.A. 75 TOP: Law of Sines - The Ambiguous Case
45 ANS: 3
period $=\frac{2 \pi}{b}=\frac{2 \pi}{3 \pi}=\frac{2}{3}$
PTS: 2 REF: 081026a2 STA: A2.A. 70 TOP: Graphing Trigonometric Functions
KEY: recognize
46 ANS: 2
$K=\frac{1}{2}(10)(18) \sin 120=45 \sqrt{3} \approx 78$
PTS: 2 REF: fall0907a2 STA: A2.A. 74 TOP: Using Trigonometry to Find Area
KEY: basic
47 ANS: 3
(1) and (4) fail the horizontal line test and are not one-to-one. Not every element of the range corresponds to only one element of the domain. (2) fails the vertical line test and is not a function. Not every element of the domain corresponds to only one element of the range.

PTS: 2 REF: 081020a2 STA: A2.A. 43 TOP: Defining Functions
48 ANS: 4 PTS: 2 REF: 011219a2 STA: A2.A. 52
TOP: Properties of Graphs of Functions and Relations
49 ANS: 3

$$
\begin{array}{cc}
x^{2}-3 x-10>0 & \text { or } \\
(x-5)(x+2)>0 & x-5<0 \text { and } x+2<0 \\
x-5>0 \text { and } x+2>0 & x<5 \text { and } x<-2 \\
x>5 \text { and } x>-2 & x<-2 \\
x>5 &
\end{array}
$$

PTS: 2 REF: 011115a2 STA: A2.A. 4 TOP: Quadratic Inequalities
KEY: one variable

50 ANS: 2
$\frac{\frac{2 \pi}{3} / \frac{\pi}{3}}{3 \frac{\pi}{3}+\frac{2 \pi}{3}} \frac{\frac{\pi}{3}}{2 \pi}=\frac{\frac{2 \pi}{3}}{2 \pi}=\frac{1}{3}$
PTS: 2 REF: 011108a2 STA: A2.S. 13 TOP: Geometric Probability
51 ANS: 4
Students entering the library are more likely to spend more time studying, creating bias.
PTS: 2 REF: fall0904a2 STA: A2.S. 2 TOP: Analysis of Data
52 ANS: 3
PTS: 2
REF: 061127a2
TOP: Regression
53 ANS: 2 PTS: 2 REF: 011213a2 STA: A2.N. 8
TOP: Conjugates of Complex Numbers
54 ANS: 2
$8^{2}=64$
PTS: 2 REF: fall0909a2 STA: A2.A. 18 TOP: Evaluating Logarithmic Expressions
55 ANS: 3
$\frac{-7 \pm \sqrt{7^{2}-4(2)(-3)}}{2(2)}=\frac{-7 \pm \sqrt{73}}{4}$
PTS: 2
REF: 081009a2
STA: A2.A. 25 TOP: Quadratic Formula
56 ANS: 1
PTS: 2
REF: 081022a2 STA: A2.A. 46
TOP: Transformations with Functions and Relations
57 ANS: 1 PTS: 2 REF: 061013a2 STA: A2.A. 38
TOP: Defining Functions
58 ANS: 4 PTS: 2 REF: 011127a2 STA: A2.S. 1
TOP: Analysis of Data
59 ANS: 3 PTS: 2 REF: fall0910a2 STA: A2.A.76
TOP: Angle Sum and Difference Identities KEY: simplifying
60 ANS: 4
(4) fails the horizontal line test. Not every element of the range corresponds to only one element of the domain.

PTS: 2
REF: fall0906a2 STA: A2.A. 43 TOP: Defining Functions

61 ANS: 3
$S=\frac{-b}{a}=\frac{-(-3)}{4}=\frac{3}{4} . P=\frac{c}{a}=\frac{-8}{4}=-2$
PTS: 2 REF: fall0912a2 STA: A2.A. 21 TOP: Roots of Quadratics
KEY: basic
62 ANS: 3
$\left(\frac{2}{3}\right)^{2}+\cos ^{2} A=1$

$$
\sin 2 A=2 \sin A \cos A
$$

$\cos ^{2} A=\frac{5}{9}$

$$
=2\left(\frac{2}{3}\right)\left(\frac{\sqrt{5}}{3}\right)
$$

$\cos A=+\frac{\sqrt{5}}{3}, \sin A$ is acute. $\quad=\frac{4 \sqrt{5}}{9}$
PTS: 2 REF: 011107a2 STA: A2.A. 77 TOP: Double Angle Identities
KEY: evaluating
63 ANS: 2
PTS: 2
REF: 011114a2
STA: A2.N. 3
TOP: Operations with Polynomials
64 ANS: 2
The roots are $-1,2,3$.
PTS: 2 REF: 081023a2 STA: A2.A. 50 TOP: Solving Polynomial Equations
65 ANS: 3
$\frac{3}{\sqrt{3 a^{2} b}}=\frac{3}{a \sqrt{3 b}} \cdot \frac{\sqrt{3 b}}{\sqrt{3 b}}=\frac{3 \sqrt{3 b}}{3 a b}=\frac{\sqrt{3 b}}{a b}$
PTS: 2 REF: 081019a2 STA: A2.A. 15 TOP: Rationalizing Denominators
KEY: index $=2$
66 ANS: 3

PTS: 2 REF: 011207a2 STA: A2.A. 71 TOP: Graphing Trigonometric Functions
67 ANS: 3
$\frac{-b}{a}=\frac{-6}{2}=-3 . \frac{c}{a}=\frac{4}{2}=2$

PTS: 2 REF: 011121a2 STA: A2.A. 21 TOP: Roots of Quadratics
KEY: basic

68 ANS: 3
$b^{2}-4 a c=(-10)^{2}-4(1)(25)=100-100=0$
PTS: 2 REF: 011102a2 STA: A2.A. 2 TOP: Using the Discriminant
KEY: determine nature of roots given equation
69 ANS: $4 \quad$ PTS: 2
REF: fall0908a2 STA: A2.A. 38
TOP: Defining Functions
KEY: graphs
70 ANS: 1

n	3	4	5	Σ
$-r^{2}+r$	$-3^{2}+3=-6$	$-4^{2}+4=-12$	$-5^{2}+5=-20$	-38

PTS: 2 REF: 061118a2 STA: A2.N. 10 TOP: Sigma Notation
KEY: basic
71 ANS: 1
$\sqrt{12^{2}-6^{2}}=\sqrt{108}=\sqrt{36} \sqrt{3}=6 \sqrt{3} . \cot J=\frac{A}{O}=\frac{6}{6 \sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3}$

PTS: 2 REF: 011120a2 STA: A2.A. 55 TOP: Trigonometric Ratios
72 ANS: 4
$7^{2}=3^{2}+5^{2}-2(3)(5) \cos A$
$49=34-30 \cos A$
$15=-30 \cos A$
$-\frac{1}{2}=\cos A$
$120=\cos A$
PTS: 2 REF: 081017a2 STA: A2.A.73 TOP: Law of Cosines
KEY: angle, without calculator
73 ANS: 1
$a_{n}=-\sqrt{5}(-\sqrt{2})^{n-1}$
$a_{15}=-\sqrt{5}(-\sqrt{2})^{15-1}=-\sqrt{5}(-\sqrt{2})^{14}=-\sqrt{5} \cdot 2^{7}=-128 \sqrt{5}$
PTS: 2 REF: 061109a2 STA: A2.A. 32 TOP: Sequences
74 ANS: 3
$68 \% \times 50=34$
PTS: 2
REF: 081013a2 STA: A2.S. 5
TOP: Normal Distributions
KEY: predict

75 ANS: 4
$4 a b \sqrt{2 b}-3 a \sqrt{9 b^{2}} \sqrt{2 b}+7 a b \sqrt{6 b}=4 a b \sqrt{2 b}-9 a b \sqrt{2 b}+7 a b \sqrt{6 b}=-5 a b \sqrt{2 b}+7 a b \sqrt{6 b}$
PTS: 2 REF: fall0918a2 STA: A2.A. 14 TOP: Operations with Radicals
KEY: with variables \mid index $=2$
76 ANS: 4
$s=\theta r=2 \cdot 4=8$
PTS: 2 REF: fall0922a2 STA: A2.A. 61 TOP: Arc Length
KEY: arc length
77 ANS: 4
$b^{2}-4 a c=3^{2}-4(9)(-4)=9+144=153$
PTS: 2
REF:
KEY: determine nature of roots given equation
78 ANS: 2 PTS: 2
79 ANS: 4 PTS: 2 REF: fall0925a2 STA: A2.S. 10
TOP: Permutations
80 ANS: 4
$g\left(\frac{1}{2}\right)=\frac{1}{\frac{1}{2}}=2 . f(2)=4(2)-2^{2}=4$

PTS: 2 REF: 011204a2 STA: A2.A. 42 TOP: Compositions of Functions
KEY: numbers
81 ANS: 2
$x^{2}-x-6=3 x-6$

$$
\begin{aligned}
x^{2}-4 x & =0 \\
x(x-4) & =0 \\
x & =0,4
\end{aligned}
$$

PTS: 2
REF: 081015a2
STA: A2.A. 3
TOP: Quadratic-Linear Systems
KEY: equations
82 ANS: 1
PTS: 2
REF: 061025a2 STA: A2.A. 34
TOP: Sigma Notation
83 ANS: 2

$$
\begin{aligned}
x^{2}+2 & =6 x \\
x^{2}-6 x & =-2 \\
x^{2}-6 x+9 & =-2+9 \\
(x-3)^{2} & =7
\end{aligned}
$$

PTS: 2
REF: 011116a2
STA: A2.A. 24
TOP: Completing the Square

84 ANS: 1
$2 \log x-(3 \log y+\log z)=\log x^{2}-\log y^{3}-\log z=\log \frac{x^{2}}{y^{3} z}$
PTS: 2 REF: 061010a2 STA: A2.A. 19 TOP: Properties of Logarithms
85 ANS: $2 \quad$ PTS: 2
TOP: Trigonometric Ratios
86 ANS: 4 PTS: 2 REF: 061112a2 STA: A2.A.39
TOP: Domain and Range KEY: real domain
87 ANS: 4
$\frac{10}{4}=2.5$

PTS: 2 REF: 011217a2 STA: A2.A. 29 TOP: Sequences
88 ANS: 1 PTS: 2
REF: 061019a2 STA: A2.N.7
TOP: Imaginary Numbers
89 ANS: 1
$2 \cdot \frac{180}{\pi}=\frac{360}{\pi}$
PTS: 2 REF: 011220a2 STA: A2.M. 2 TOP: Radian Measure
KEY: degrees
90 ANS: 1
$\cos ^{2} \theta-\cos 2 \theta=\cos ^{2} \theta-\left(\cos ^{2} \theta-\sin ^{2} \theta\right)=\sin ^{2} \theta$
PTS: 2 REF: 061024a2 STA: A2.A. 77 TOP: Double Angle Identities
KEY: simplifying
91 ANS: 2
$\cos \left(-305^{\circ}+360^{\circ}\right)=\cos \left(55^{\circ}\right)$
PTS: 2 REF: 061104a2 STA: A2.A. 57 TOP: Reference Angles
92 ANS: 4
$\frac{2 \pi}{b}=30$
$b=\frac{\pi}{15}$
PTS: 2 REF: 011227a2 STA: A2.A.72
TOP: Identifying the Equation of a Trigonometric Graph
93 ANS: 1
${ }_{5} C_{3}(3 x)^{2}(-2)^{3}=10 \cdot 9 x^{2} \cdot-8=-720 x^{2}$
PTS: 2 REF: fall0919a2 STA: A2.A. 36 TOP: Binomial Expansions

94 ANS: 4
${ }_{3} C_{2}\left(\frac{5}{8}\right)^{2}\left(\frac{3}{8}\right)^{1}=\frac{225}{512}$
PTS: 2 REF: 011221a2 STA: A2.S. 15 TOP: Binomial Probability
KEY: spinner
95 ANS: 1

PTS: 2
96 ANS: 1
REF: 011123a2
STA: A2.A. 71
TOP: Graphing Trigonometric Functions
PTS: 2
TOP: Solving Radicals
97 ANS: 3
PTS: 2
TOP: Defining Functions
REF: 061018a2 STA: A2.A. 22
KEY: extraneous solutions
REF: 061114a2 STA: A2.A. 38
KEY: graphs
98 ANS: 1
$10 \cdot \frac{3}{2}=\frac{3}{5} p$

$$
\begin{aligned}
& 15=\frac{3}{5} p \\
& 25=p
\end{aligned}
$$

PTS: 2 REF: 011226a2 STA: A2.A. 5 TOP: Inverse Variation
99 ANS: 4
$y-2 \sin \theta=3$

$$
\begin{array}{r}
y=2 \sin \theta+3 \\
\mathrm{f}(\theta)=2 \sin \theta+3
\end{array}
$$

PTS: 2 REF: fall0927a2 STA: A2.A. 40 TOP: Functional Notation
100 ANS: 1
$\begin{array}{rlrl}4 a+6 & =4 a-10 . & 4 a+6 & =-4 a+10 . \\ 6 & \neq-10 \quad 8 a & =4\end{array} \quad\left|4\left(\frac{1}{2}\right)+6\right|-4\left(\frac{1}{2}\right)=-10$
$6 \neq-10$

$$
8 a=4
$$

$$
a=\frac{4}{8}=\frac{1}{2}
$$

$$
8-2 \neq-10
$$

PTS: 2
REF: 011106a2 STA: A2.A. 1
TOP: Absolute Value Equations

101
ANS: 3

$$
\begin{aligned}
3 x^{5}-48 x & =0 \\
3 x\left(x^{4}-16\right) & =0 \\
3 x\left(x^{2}+4\right)\left(x^{2}-4\right) & =0 \\
3 x\left(x^{2}+4\right)(x+2)(x-2) & =0
\end{aligned}
$$

PTS: 2 REF: 011216a2 STA: A2.A. 26 TOP: Solving Polynomial Equations
102 ANS: 4

$$
\begin{aligned}
9^{3 x+1} & =27^{x+2} . \\
\left(3^{2}\right)^{3 x+1} & =\left(3^{3}\right)^{x+2} \\
3^{6 x+2} & =3^{3 x+6} \\
6 x+2 & =3 x+6 \\
3 x & =4 \\
x & =\frac{4}{3}
\end{aligned}
$$

PTS: 2
REF: 081008a2
STA: A2.A. 27
TOP: Exponential Equations
KEY: common base not shown
103 ANS: 3
$a_{n}=5(-2)^{n-1}$
$a_{15}=5(-2)^{15-1}=81,920$
PTS: 2
REF: 011105a2
STA: A2.A. 32
TOP: Sequences
104 ANS: 4
$12 x^{4}+10 x^{3}-12 x^{2}=2 x^{2}\left(6 x^{2}+5 x-6\right)=2 x^{2}(2 x+3)(3 x-2)$
PTS: 2
REF: 061008a2 STA: A2.A. 7
TOP: Factoring Polynomials
KEY: single variable
105 ANS: 1
${ }_{10} C_{4}=210$
PTS: 2
REF: 061113a2
STA: A2.S. 11
TOP: Combinations
106 ANS: 3
$\frac{4}{5-\sqrt{13}} \cdot \frac{5+\sqrt{13}}{5+\sqrt{13}}=\frac{4(5+\sqrt{13})}{25-13}=\frac{5+\sqrt{13}}{3}$

PTS: 2
107 ANS: 4 TOP: Sequences

REF: 061116a2
PTS: 2

STA: A2.N. 5
REF: 061026a2

TOP: Rationalizing Denominators STA: A2.A. 29

108 ANS: 3
$2 \pi \cdot \frac{5}{12}=\frac{10 \pi}{12}=\frac{5 \pi}{6}$
PTS: 2
REF: 061125a2
STA: A2.M. 1
PTS: 2
REF: 011117a2
TOP: Differentiating Permutations and Combinations
110 ANS: 3
$f(4)=\frac{1}{2}(4)-3=-1 . g(-1)=2(-1)+5=3$
PTS: 2 REF: fall0902a2 STA: A2.A. 42 TOP: Compositions of Functions
KEY: numbers
111 ANS: 2

PTS: 2
112 ANS: 3
TOP: Sequences
113 ANS: 2
$f(10)=\frac{-10}{(-10)^{2}-16}=\frac{-10}{84}=-\frac{5}{42}$
PTS: 2
REF: 061102a2
STA: A2.A. 41
TOP: Functional Notation

REF: 061115a2
PTS: 2

STA: A2.A. 66
REF: 061001a2

ANS: 1

PTS: 2
REF: fall0915a2 STA: A2.S. 5
REF: fall0915a2 STA: A2.S. 5
TOP: Normal Distributions
KEY: interval

TOP: Determining Trigonometric Functions STA: A2.A. 30

115 ANS: 1
$\tan \theta-\sqrt{3}=0$

$$
\begin{aligned}
\tan \theta & =\sqrt{3} \\
\theta & =\tan ^{-1} \sqrt{3} \\
\theta & =60,240
\end{aligned}
$$

PTS: 2
REF: fall0903a2 STA: A2.A. 68
TOP: Trigonometric Equations
KEY: basic
116 ANS: 4
PTS: 2
REF: 081005a2
STA: A2.A. 60
TOP: Unit Circle
117 ANS: 1
$\frac{1}{2}(7.4)(3.8) \sin 126 \approx 11.4$
PTS: 2
REF: 011218a2
STA: A2.A. 74
TOP: Using Trigonometry to Find Area
KEY: basic
118 ANS: 3
Cofunctions tangent and cotangent are complementary
PTS: 2
REF: 061014a2 STA: A2.A. 58
TOP: Cofunction Trigonometric Relationships
119 ANS: 2
PTS: 2
REF: 061108a2
STA: A2.A. 52
TOP: Identifying the Equation of a Graph
120 ANS: 3
PTS: 2
REF: 081007a2
STA: A2.A. 64
TOP: Using Inverse Trigonometric Functions
KEY: basic
121 ANS: 2
$\frac{11 \pi}{12} \cdot \frac{180}{\pi}=165$
PTS: 2
KEY: degrees
122 ANS: 4
PTS: 2
REF: 011201a2
STA: A2.S. 2
TOP: Analysis of Data
123 ANS: 4
$S_{n}=\frac{n}{2}[2 a+(n-1) d]=\frac{21}{2}[2(18)+(21-1) 2]=798$
PTS: 2
REF: 061103a2
STA: A2.A. 35
TOP: Series
KEY: arithmetic
124
Ton

TOP: Inverse of Functions
REF: 081027a2
KEY: equations

STA: A2.A. 44

125 ANS: 3
$\frac{\sin ^{2} \theta+\cos ^{2} \theta}{1-\sin ^{2} \theta}=\frac{1}{\cos ^{2} \theta}=\sec ^{2} \theta$
PTS: 2
REF: 061123a2
PTS: 2
TOP: Domain and Range
ANS: 1
$\cos (A-B)=\left(\frac{5}{13}\right)\left(-\frac{3}{5}\right)+\left(\frac{12}{13}\right)\left(\frac{4}{5}\right)=-\frac{15}{65}+\frac{48}{65}=\frac{33}{65}$
PTS: 2
REF: 011214a2 STA: A2.A.76
KEY: evaluating
128 ANS: 4
$\frac{3 \pm \sqrt{(-3)^{2}-4(1)(-9)}}{2(1)}=\frac{3 \pm \sqrt{45}}{2}=\frac{3 \pm 3 \sqrt{5}}{2}$
PTS: 2
REF: 061009a2
PTS: 2
STA: A2.A. 25
REF: 061022a2
TOP: Quadratic Formula
129 ANS: 3
TOP: Domain and Range
130 ANS: 2
$\frac{x^{-1}+1}{x+1}=\frac{\frac{1}{x}+1}{x+1}=\frac{\frac{1+x}{x}}{x+1}=\frac{1}{x}$
PTS: 2
REF: 011211a2
PTS: 2
ANS: 2
TOP: Conjugates of Complex Numbers
132 ANS: 1
common difference is 2. $b_{n}=x+2 n$

$$
\begin{aligned}
10 & =x+2(1) \\
8 & =x
\end{aligned}
$$

PTS: 2
REF: 081014a2
STA: A2.A. 29
TOP: Sequences
133 ANS: 1
${ }_{9} C_{3} a^{6}(-4 b)^{3}=-5376 a^{6} b^{3}$
PTS: 2
REF: 061126a2
STA: A2.A. 36
TOP: Binomial Expansions
134
ANS: 2

$$
\begin{aligned}
\frac{10}{\sin 35} & =\frac{13}{\sin B} \quad . \quad 35+48<180 \\
B & \approx 48,132 \quad 35+132<180
\end{aligned}
$$

PTS: 2
REF: 011113a2 STA: A2.A. 75
TOP: Law of Sines - The Ambiguous Case

135 ANS: 3
$\frac{3^{-2}}{(-2)^{-3}}=\frac{\frac{1}{9}}{-\frac{1}{8}}=-\frac{8}{9}$

PTS: 2
136 ANS: 2
REF: 061003a2
STA: A2.A. 8
REF: 011208a2
TOP: Negative and Fractional Exponents
TOP: Proving Trigonometric Identities
137 ANS: 3

PTS: 2
REF: fall0924a2 STA: A2.S. 4
KEY: variance
138 ANS: 3
PTS: 2
REF: 061007a2
TOP: Differentiating Permutations and Combinations
139 ANS: 2
$\frac{x^{-1}-1}{x-1}=\frac{\frac{1}{x}-1}{x-1}=\frac{\frac{1-x}{x}}{x-1}=\frac{\frac{-(x-1)}{x}}{x-1}=-\frac{1}{x}$
PTS: 2
REF: 081018a2
STA: A2.A. 9
TOP: Negative Exponents
140 ANS: 4
$(3+\sqrt{5})(3-\sqrt{5})=9-\sqrt{25}=4$
PTS: 2
REF: 081001a2
STA: A2.N. 2
TOP: Operations with Radicals
141 ANS: 3
${ }_{3} C_{2}\left(2 x^{4}\right)^{1}(-y)^{2}=6 x^{4} y^{2}$
PTS: 2 REF: 011215a2 STA: A2.A. 36 TOP: Binomial Expansions
142 ANS: 1
$6 x-7 \leq 5 \quad 6 x-7 \geq-5$

$$
6 x \leq 12 \quad 6 x \geq 2
$$

$$
x \leq 2 \quad x \geq \frac{1}{3}
$$

PTS: 2
REF: fall0905a2
STA: A2.A. 1
TOP: Absolute Value Inequalities
KEY: graph
143 ANS: 2
PTS: 2
REF: 011126a2 STA: A2.A. 49
TOP: Equations of Circles

PTS: 2
147 ANS: 1
PTS: 2
TOP: Using Inverse Trigonometric Functions
148 ANS: 1
$-420\left(\frac{\pi}{180}\right)=-\frac{7 \pi}{3}$
PTS: 2
REF: 081002a2 STA: A2.M. 2
KEY: radians
149 ANS: 2
$\mathrm{f}^{-1}(x)=\log _{4} x$

PTS: 2
REF: fall0916a2
STA: A2.A. 54
150 ANS: 4
$\frac{2 \pi}{b}=\frac{2 \pi}{\frac{1}{3}}=6 \pi$

PTS: 2
REF: 061027a2 STA: A2.A. 69
TOP: Properties of Graphs of Trigonometric Functions

TOP: Exponential Growth
STA: A2.A. 64
KEY: advanced

TOP: Graphing Logarithmic Functions

KEY: period

151

PTS: 2
152 ANS: 2
TOP: Defining Functions
153 ANS: 4 PTS: 2
TOP: Solving Polynomial Equations
154 ANS: 3
$S_{n}=\frac{n}{2}[2 a+(n-1) d]=\frac{19}{2}[2(3)+(19-1) 7]=1254$
PTS: 2
KEY: arithmetic
155 ANS: 2
PTS: 2
TOP: Transformations with Functions and Relations
156 ANS: 2
$\frac{2 \pi}{b}=\frac{2 \pi}{3}$
PTS: 2
REF: 061111a2 STA: A2.A. 69
TOP: Properties of Graphs of Trigonometric Functions
157 ANS: 1
PTS: 2
REF: 061004a2
TOP: Identifying the Equation of a Graph
158 ANS: 4
PTS: 2
TOP: Conjugates of Complex Numbers
159 ANS: 2
$x^{2}-2 x+y^{2}+6 y=-3$
$x^{2}-2 x+1+y^{2}+6 y+9=-3+1+9$
$(x-1)^{2}+(y+3)^{2}=7$
PTS: 2 REF: 061016a
160 ANS: 3
TOP: Graphing Trigonometric Functions
161 ANS: 1
$\sqrt[4]{16 x^{2} y^{7}}=16^{\frac{1}{4}} x^{\frac{2}{4}} y^{\frac{7}{4}}=2 x^{\frac{1}{2}} y^{\frac{7}{4}}$
PTS: 2
REF: 061107a2
ANS: 2 PTS: 2
TOP: Completing the Square

STA: A2.A. 71
REF: 011225a2

REF: 061005a2

TOP: Graphing Trigonometric Functions
STA: A2.A. 43

STA: A2.A. 50

Algebra 2/Trigonometry 2 Point Regents Exam Questions

163 Matt places \$1,200 in an investment account earning an annual rate of 6.5%, compounded continuously. Using the formula $V=P e^{r t}$, where V is the value of the account in t years, P is the principal initially invested, e is the base of a natural logarithm, and r is the rate of interest, determine the amount of money, to the nearest cent, that Matt will have in the account after 10 years.

164 The scores of one class on the Unit 2 mathematics test are shown in the table below.
Unit 2 Mathematics Test

Test Score	Frequency
96	1
92	2
84	5
80	3
76	6
72	3
68	2

Find the population standard deviation of these scores, to the nearest tenth.

165 Find the first four terms of the recursive sequence defined below.

$$
\begin{gathered}
a_{1}=-3 \\
a_{n}=a_{(n-1)}-n
\end{gathered}
$$

166 Write a quadratic equation such that the sum of its roots is 6 and the product of its roots is -27 .

167 Write an equation of the circle shown in the graph below.

168 Find the sum and product of the roots of the equation $5 x^{2}+11 x-3=0$.

169 Find the solution of the inequality $x^{2}-4 x>5$, algebraically.

170 On the unit circle shown in the diagram below, sketch an angle, in standard position, whose degree measure is 240 and find the exact value of $\sin 240^{\circ}$.

171 Solve the equation $2 \tan C-3=3 \tan C-4$ algebraically for all values of C in the interval $0^{\circ} \leq C<360^{\circ}$.

172 Evaluate $e^{x \ln y}$ when $x=3$ and $y=2$.

173 Two sides of a parallelogram are 24 feet and 30 feet. The measure of the angle between these sides is 57°. Find the area of the parallelogram, to the nearest square foot.

174 Evaluate: $\sum_{n=1}^{3}\left(-n^{4}-n\right)$

175 The graph below represents the function $y=\mathrm{f}(x)$.

State the domain and range of this function.

176 Express $\frac{5}{3-\sqrt{2}}$ with a rational denominator, in simplest radical form.

177 A blood bank needs twenty people to help with a blood drive. Twenty-five people have volunteered. Find how many different groups of twenty can be formed from the twenty-five volunteers.

178 Factor the expression $12 t^{8}-75 t^{4}$ completely.

179 Express $\left(\frac{2}{3} x-1\right)^{2}$ as a trinomial.

Algebra 2/Trigonometry 2 Point Regents Exam Questions www.jmap.org

180 Factor completely: $10 a x^{2}-23 a x-5 a$

181 Write an equation of the circle shown in the diagram below.

182 The table below shows the number of new stores in a coffee shop chain that opened during the years 1986 through 1994.

Year	Number of New Stores
1986	14
1987	27
1988	48
1989	80
1990	110
1991	153
1992	261
1993	403
1994	681

Using $x=1$ to represent the year 1986 and y to represent the number of new stores, write the exponential regression equation for these data. Round all values to the nearest thousandth.

183 Solve algebraically for $x: 16^{2 x+3}=64^{x+2}$

184 A circle shown in the diagram below has a center of $(-5,3)$ and passes through point $(-1,7)$.

Write an equation that represents the circle.

185 Express the sum $7+14+21+28+\ldots+105$ using sigma notation.

186 A committee of 5 members is to be randomly selected from a group of 9 teachers and 20 students. Determine how many different committees can be formed if 2 members must be teachers and 3 members must be students.

Algebra 2/Trigonometry 2 Point Regents Exam Questions www.jmap.org

187 Howard collected fish eggs from a pond behind his house so he could determine whether sunlight had an effect on how many of the eggs hatched. After he collected the eggs, he divided them into two tanks. He put both tanks outside near the pond, and he covered one of the tanks with a box to block out all sunlight. State whether Howard's investigation was an example of a controlled experiment, an observation, or a survey. Justify your response.

188 Evaluate: $10+\sum_{n=1}^{5}\left(n^{3}-1\right)$

189 On the axes below, for $-2 \leq x \leq 2$, graph $y=2^{x+1}-3$.

190 The graph of the equation $y=\left(\frac{1}{2}\right)^{x}$ has an asymptote. On the grid below, sketch the graph of $y=\left(\frac{1}{2}\right)^{x}$ and write the equation of this asymptote.

191 In a study of 82 video game players, the researchers found that the ages of these players were normally distributed, with a mean age of 17 years and a standard deviation of 3 years. Determine if there were 15 video game players in this study over the age of 20 . Justify your answer.

192 Express $\frac{\sqrt{108 x^{5} y^{8}}}{\sqrt{6 x y^{5}}}$ in simplest radical form.

193 Simplify the expression $\frac{3 x^{-4} y^{5}}{\left(2 x^{3} y^{-7}\right)^{-2}}$ and write the answer using only positive exponents.

194 Express in simplest form: $\sqrt[3]{\frac{a^{6} b^{9}}{-64}}$

195 Starting with $\sin ^{2} A+\cos ^{2} A=1$, derive the formula $\tan ^{2} A+1=\sec ^{2} A$.

196 If θ is an angle in standard position and its terminal side passes through the point $(-3,2)$, find the exact value of $\csc \theta$.

197 Solve for $x: \frac{4 x}{x-3}=2+\frac{12}{x-3}$

For a given set of rectangles, the length is inversely proportional to the width. In one of these rectangles, the length is 12 and the width is 6 . For this set of rectangles, calculate the width of a rectangle whose length is 9 .

199 Find, to the nearest tenth of a degree, the angle whose measure is 2.5 radians.

200 Find, to the nearest minute, the angle whose measure is 3.45 radians.

201 Find the total number of different twelve-letter arrangements that can be formed using the letters in the word PENNSYLVANIA.

202 If $\mathrm{f}(x)=x^{2}-6$, find $\mathrm{f}^{-1}(x)$.

203 If $\mathrm{f}(x)=x^{2}-6$ and $\mathrm{g}(x)=2^{x}-1$, determine the value of $(g \circ f)(-3)$.

204 Express the exact value of $\csc 60^{\circ}$, with a rational denominator.

205 Assume that the ages of first-year college students are normally distributed with a mean of 19 years and standard deviation of 1 year. To the nearest integer, find the percentage of first-year college students who are between the ages of 18 years and 20 years, inclusive. To the nearest integer, find the percentage of first-year college students who are 20 years old or older.

206 Use the discriminant to determine all values of k that would result in the equation $x^{2}-k x+4=0$ having equal roots.

Algebra 2/Trigonometry 2 Point Regents Exam Questions www.jmap.org

207 Express $5 \sqrt{3 x^{3}}-2 \sqrt{27 x^{3}}$ in simplest radical form.

208 Express in simplest form: $\frac{\frac{1}{2}-\frac{4}{d}}{\frac{1}{d}+\frac{3}{2 d}}$

209 Solve algebraically for x : $4-\sqrt{2 x-5}=1$

210 Express the product of $\left(\frac{1}{2} y^{2}-\frac{1}{3} y\right)$ and $\left(12 y+\frac{3}{5}\right)$ as a trinomial.

Algebra 2/Trigonometry 2 Point Regents Exam Questions

Answer Section

163 ANS:

PTS: 2 REF: fall0932a2 STA: A2.A. 12 TOP: Evaluating Exponential Expressions
164 ANS:
7.4

PTS: 2 REF: 061029a2 STA: A2.S. 4 TOP: Dispersion
KEY: basic, group frequency distributions
165 ANS:
$-3,-5,-8,-12$
PTS: 2 REF: fall0934a2 STA: A2.A. 33 TOP: Recursive Sequences
166 ANS:
$x^{2}-6 x-27=0, \frac{-b}{a}=6$. $\frac{c}{a}=-27$. If $a=1$ then $b=-6$ and $c=-27$
PTS: 4 REF: 061130a2 STA: A2.A. 21 TOP: Roots of Quadratics
KEY: basic
167 ANS:
$(x+3)^{2}+(y-4)^{2}=25$
PTS: 2 REF: fall0929a2 STA: A2.A. 49 TOP: Writing Equations of Circles
168
ANS:
Sum $\frac{-b}{a}=-\frac{11}{5}$. Product $\frac{c}{a}=-\frac{3}{5}$
PTS: 2 REF: 061030a2 STA: A2.A. 20 TOP: Roots of Quadratics
169 ANS:
$x<-1$ or $x>5 . \quad x^{2}-4 x-5>0 . x-5>0$ and $x+1>0$ or $x-5<0$ and $x+1<0$

$$
\begin{array}{ccc}
(x-5)(x+1)>0 & x>5 \text { and } x>-1 & x<5 \text { and } x<-1 \\
x>5 & x<-1
\end{array}
$$

PTS: 2
REF: 011228a2 STA: A2.A. 4 TOP: Quadratic Inequalities
KEY: one variable

170 ANS:

$$
-\frac{\sqrt{3}}{2}
$$

PTS: 2 REF: 061033a2 STA: A2.A. 60 TOP: Unit Circle
171 ANS:
45, $2252 \tan C-3=3 \tan C-4$

$$
\begin{aligned}
1 & =\tan C \\
\tan ^{-1} 1 & =C \\
C & =45,225
\end{aligned}
$$

PTS: 2
REF: 081032a2 STA: A2.A. 68
TOP: Trigonometric Equations
KEY: basic
172 ANS:
$e^{3 \ln 2}=e^{\ln 2^{3}}=e^{\ln 8}=8$
PTS: 2 REF: 061131a2 STA: A2.A. 12 TOP: Evaluating Exponential Expressions
173 ANS:
$K=a b \sin C=24 \cdot 30 \sin 57 \approx 604$
PTS: 2 REF: 061034a2 STA: A2.A.74 TOP: Using Trigonometry to Find Area
KEY: parallelograms
ANS:
-104.

PTS: 2
REF: 011230a2
STA: A2.N. 10
TOP: Sigma Notation
KEY: basic

175
ANS:
D: $-5 \leq x \leq 8 . \mathrm{R}:-3 \leq y \leq 2$
PTS: 2 REF: 011132a2 STA: A2.A.51 TOP: Domain and Range
176 ANS:
$\frac{5(3+\sqrt{2})}{7} \cdot \frac{5}{3-\sqrt{2}} \times \frac{3+\sqrt{2}}{3+\sqrt{2}}=\frac{5(3+\sqrt{2})}{9-2}=\frac{5(3+\sqrt{2})}{7}$
PTS: 2
REF: fall0928a2 STA: A2.N.5
ANS:
${ }_{25} C_{20}=53,130$
PTS: 2
REF: 011232a2
STA: A2.S. 11
TOP: Combinations
178
ANS:
$12 t^{8}-75 t^{4}=3 t^{4}\left(4 t^{4}-25\right)=3 t^{4}\left(2 t^{2}+5\right)\left(2 t^{2}-5\right)$
PTS: 2
REF: 061133a2 STA: A2.A. 7
TOP: Factoring the Difference of Perfect Squares
KEY: binomial
179 ANS:
$\frac{4}{9} x^{2}-\frac{4}{3} x+1 .\left(\frac{2}{3} x-1\right)^{2}=\left(\frac{2}{3} x-1\right)\left(\frac{2}{3} x-1\right)=\frac{4}{9} x^{2}-\frac{2}{3} x-\frac{2}{3} x+1=\frac{4}{9} x^{2}-\frac{4}{3} x+1$
PTS: 2 REF: 081034a2 STA: A2.N. 3 TOP: Operations with Polynomials 180 ANS:
$10 a x^{2}-23 a x-5 a=a\left(10 x^{2}-23 x-5\right)=a(5 x+1)(2 x-5)$
PTS: 2
REF: 081028a2 STA: A2.A. 7
TOP: Factoring Polynomials
KEY: multiple variables
181 ANS:
$r=\sqrt{2^{2}+3^{2}}=\sqrt{13} .(x+5)^{2}+(y-2)^{2}=13$
PTS: 2 REF: 011234a2 STA: A2.A. 49 TOP: Writing Equations of Circles 182 ANS:
$y=10.596(1.586)^{x}$
PTS: 2
REF: 081031a2
STA: A2.S. 7
TOP: Exponential Regression

183
ANS:

$$
\begin{aligned}
16^{2 x+3} & =64^{x+2} \\
\left(4^{2}\right)^{2 x+3} & =\left(4^{3}\right)^{x+2} \\
4 x+6 & =3 x+6 \\
x & =0
\end{aligned}
$$

PTS: 2
REF: 011128a2
STA: A2.A. 27
TOP: Exponential Equations
KEY: common base not shown
184
$(x+5)^{2}+(y-3)^{2}=32$
PTS: 2 REF: 081033a2 STA: A2.A. 49 TOP: Writing Equations of Circles
185 ANS:
$\sum_{n=1}^{15} 7 n$
PTS: 2 REF: 081029a2 STA: A2.A. 34 TOP: Sigma Notation
186 ANS:

41,040.

PTS: 2
REF: fall0935a2
STA: A2.S. 12
TOP: Sample Space
187 ANS:
Controlled experiment because Howard is comparing the results obtained from an experimental sample against a control sample.

PTS: 2 REF: 081030a2 STA: A2.S. 1 TOP: Analysis of Data
ANS:
230. $10+\left(1^{3}-1\right)+\left(2^{3}-1\right)+\left(3^{3}-1\right)+\left(4^{3}-1\right)+\left(5^{3}-1\right)=10+0+7+26+63+124=230$

PTS: 2
REF: 011131a2
STA: A2.N. 10 TOP: Sigma Notation
KEY: basic

189
ANS:

PTS: 2 REF: 011234a2 STA: A2.A. 53 TOP: Graphing Exponential Functions
190 ANS:

PTS: 2
REF: 061031a2
STA: A2.A. 53
TOP: Graphing Exponential Functions
191
ANS:
no. over 20 is more than 1 standard deviation above the mean. $0.159 \cdot 82 \approx 13.038$
PTS: 2 REF: 061129a2 STA: A2.S. 5 TOP: Normal Distributions
KEY: predict
192 ANS:
$\frac{\sqrt{108 x^{5} y^{8}}}{\sqrt{6 x y^{5}}}=\sqrt{18 x^{4} y^{3}}=3 x^{2} y \sqrt{2 y}$
PTS: 2 REF: 011133a2 STA: A2.A. 14 TOP: Operations with Radicals
KEY: with variables \mid index $=2$
193 ANS:
$\frac{12 x^{2}}{y^{9}} \cdot \frac{3 x^{-4} y^{5}}{\left(2 x^{3} y^{-7}\right)^{-2}}=\frac{3 y^{5}\left(2 x^{3} y^{-7}\right)^{2}}{x^{4}}=\frac{3 y^{5}\left(4 x^{6} y^{-14}\right)}{x^{4}}=\frac{12 x^{6} y^{-9}}{x^{4}}=\frac{12 x^{2}}{y^{9}}$
PTS: 2 REF: 061134a2 STA: A2.A. 9 TOP: Negative Exponents

194 ANS:
$-\frac{a^{2} b^{3}}{4}$
PTS: 2 REF: 011231a2 STA: A2.A. 13 TOP: Simplifying Radicals
KEY: index > 2
ANS:
$\frac{\sin ^{2} A}{\cos ^{2} A}+\frac{\cos ^{2} A}{\cos ^{2} A}=\frac{1}{\cos ^{2} A}$

$$
\tan ^{2} A+1=\sec ^{2} A
$$

PTS: 2 REF: 011135a2 STA: A2.A. 67 TOP: Proving Trigonometric Identities
196 ANS:
$\frac{\sqrt{13}}{2} \cdot \sin \theta=\frac{y}{\sqrt{x^{2}+y^{2}}}=\frac{2}{\sqrt{(-3)^{2}+2^{2}}}=\frac{2}{\sqrt{13}} . \csc \theta=\frac{\sqrt{13}}{2}$.

PTS: 2 REF: fall0933a2 STA: A2.A. 62 TOP: Determining Trigonometric Functions
197 ANS:
no solution. $\frac{4 x}{x-3}=2+\frac{12}{x-3}$

$$
\begin{aligned}
\frac{4 x-12}{x-3} & =2 \\
\frac{4(x-3)}{x-3} & =2 \\
4 & \neq 2
\end{aligned}
$$

PTS: 2 REF: fall0930a2 STA: A2.A. 23 TOP: Solving Rationals
KEY: rational solutions
ANS:
$12 \cdot 6=9 w$
$8=w$
PTS: 2
REF: 011130a2
STA: A2.A. 5
TOP: Inverse Variation
ANS:
$2.5 \cdot \frac{180}{\pi} \approx 143.2^{\circ}$
PTS: 2
REF: 011129a2
STA: A2.M. 2
TOP: Radian Measure
KEY: degrees

200 ANS:

PTS: 2 REF: fall0931a2 STA: A2.M. 2 TOP: Radian Measure
KEY: degrees
201
ANS:
$39,916,800 \cdot \frac{{ }_{12} P_{12}}{3!\cdot 2!}=\frac{479,001,600}{12}=39,916,800$
PTS: 2 REF: 081035a2 STA: A2.S. 10 TOP: Permutations 202 ANS:

$$
\begin{aligned}
y & =x^{2}-6 . \mathrm{f}^{-1}(x) \text { is not a function. } \\
x & =y^{2}-6 \\
x+6 & =y^{2} \\
\pm \sqrt{x+6} & =y
\end{aligned}
$$

PTS: 2
REF: 061132a2
STA: A2.A. 44
TOP: Inverse of Functions
KEY: equations
203 ANS:
7. $f(-3)=(-3)^{2}-6=3 . g(x)=2^{3}-1=7$.

PTS: 2
REF: 061135a2
STA: A2.A. 42
TOP: Compositions of Functions
KEY: numbers
204 ANS:
$\frac{2 \sqrt{3}}{3}$. If $\sin 60=\frac{\sqrt{3}}{2}$, then $\csc 60=\frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}$
PTS: 2
REF: 011235a2 STA: A2.A.59
TOP: Reciprocal Trigonometric Relationships
205 ANS:
68% of the students are within one standard deviation of the mean. 16% of the students are more than one standard deviation above the mean.

PTS: 2
REF: 011134a2
STA: A2.S. 5
TOP: Normal Distributions
KEY: percent

206
ANS:

$$
\begin{aligned}
b^{2}-4 a c & =0 \\
k^{2}-4(1)(4) & =0 \\
k^{2}-16 & =0 \\
(k+4)(k-4) & =0 \\
k & = \pm 4
\end{aligned}
$$

PTS: 2
REF: 061028a2 STA: A2.A. 2
TOP: Using the Discriminant
KEY: determine equation given nature of roots
207
ANS:
$5 \sqrt{3 x^{3}}-2 \sqrt{27 x^{3}}=5 \sqrt{x^{2}} \sqrt{3 x}-2 \sqrt{9 x^{2}} \sqrt{3 x}=5 x \sqrt{3 x}-6 x \sqrt{3 x}=-x \sqrt{3 x}$
PTS: 2 REF: 061032a2 STA: A2.N. 2 TOP: Operations with Radicals
ANS:
$\frac{\frac{1}{2}-\frac{4}{d}}{\frac{1}{d}+\frac{3}{2 d}}=\frac{\frac{d-8}{2 d}}{\frac{2 d+3 d}{2 d^{2}}}=\frac{d-8}{2 d} \times \frac{2 d^{2}}{5 d}=\frac{d-8}{5}$
PTS: 2 REF: 061035a2 STA: A2.A. 17 TOP: Complex Fractions
209 ANS:
7. $4-\sqrt{2 x-5}=1$

$$
\begin{aligned}
-\sqrt{2 x-5} & =-3 \\
2 x-5 & =9 \\
2 x & =14 \\
x & =7
\end{aligned}
$$

PTS: 2 REF: 011229a2 STA: A2.A. 22 TOP: Solving Radicals KEY: basic
210 ANS:
$6 y^{3}-\frac{37}{10} y^{2}-\frac{1}{5} y \cdot\left(\frac{1}{2} y^{2}-\frac{1}{3} y\right)\left(12 y+\frac{3}{5}\right)=6 y^{3}+\frac{3}{10} y^{2}-4 y^{2}-\frac{1}{5} y=6 y^{3}-\frac{37}{10} y^{2}-\frac{1}{5} y$
PTS: 2
REF: 061128a2 STA: A2.N. 3 TOP: Operations with Polynomials

Algebra 2/Trigonometry 4 Point Regents Exam Questions

211 Find all values of θ in the interval $0^{\circ} \leq \theta<360^{\circ}$ that satisfy the equation $\sin 2 \theta=\sin \theta$.

212 Solve algebraically for x : $\frac{1}{x+3}-\frac{2}{3-x}=\frac{4}{x^{2}-9}$

213 The probability that a professional baseball player will get a hit is $\frac{1}{3}$. Calculate the exact probability that he will get at least 3 hits in 5 attempts.

214 A study shows that 35% of the fish caught in a local lake had high levels of mercury. Suppose that 10 fish were caught from this lake. Find, to the nearest tenth of a percent, the probability that at least 8 of the 10 fish caught did not contain high levels of mercury.

215 Express as a single fraction the exact value of $\sin 75^{\circ}$.

216 If $\log _{4} x=2.5$ and $\log _{y} 125=-\frac{3}{2}$, find the numerical value of $\frac{x}{y}$, in simplest form.

217 Solve $2 x^{2}-12 x+4=0$ by completing the square, expressing the result in simplest radical form.

218 The diagram below shows the plans for a cell phone tower. A guy wire attached to the top of the tower makes an angle of 65 degrees with the ground. From a point on the ground 100 feet from the end of the guy wire, the angle of elevation to the top of the tower is 32 degrees. Find the height of the tower, to the nearest foot.

219 Solve the equation $8 x^{3}+4 x^{2}-18 x-9=0$ algebraically for all values of x.

220 The probability that the Stormville Sluggers will win a baseball game is $\frac{2}{3}$. Determine the probability, to the nearest thousandth, that the Stormville Sluggers will win at least 6 of their next 8 games.

221 Write the binomial expansion of $(2 x-1)^{5}$ as a polynomial in simplest form.

222 The members of a men's club have a choice of wearing black or red vests to their club meetings. A study done over a period of many years determined that the percentage of black vests worn is 60%. If there are 10 men at a club meeting on a given night, what is the probability, to the nearest thousandth, that at least 8 of the vests worn will be black?

223 The table below shows the results of an experiment involving the growth of bacteria.

Time (x) (in minutes)	1	3	5	7	9	11
Number of Bacteria (y)	2	25	81	175	310	497

Write a power regression equation for this set of data, rounding all values to three decimal places. Using this equation, predict the bacteria's growth, to the nearest integer, after 15 minutes.

224 If $\tan A=\frac{2}{3}$ and $\sin B=\frac{5}{\sqrt{41}}$ and angles A and B are in Quadrant I , find the value of $\tan (A+B)$.

225 In $\triangle A B C, \mathrm{~m} \angle A=32, a=12$, and $b=10$. Find the measures of the missing angles and side of $\triangle A B C$. Round each measure to the nearest tenth.

226 A population of single-celled organisms was grown in a Petri dish over a period of 16 hours. The number of organisms at a given time is recorded in the table below.

Time, hrs (x)	Number of Organisms (y)
0	25
2	36
4	52
6	68
8	85
10	104
12	142
16	260

Determine the exponential regression equation model for these data, rounding all values to the nearest ten-thousandth. Using this equation, predict the number of single-celled organisms, to the nearest whole number, at the end of the 18th hour.

227 The letters of any word can be rearranged. Carol believes that the number of different 9 -letter arrangements of the word "TENNESSEE" is greater than the number of different 7-letter arrangements of the word "VERMONT." Is she correct? Justify your answer.

228 Graph the inequality $-3|6-x|<-15$ for x. Graph the solution on the line below.

Algebra 2/Trigonometry 4 Point Regents Exam Questions

Answer Section

211 ANS:
$0,60,180,300 . \quad \sin 2 \theta=\sin \theta$
$\sin 2 \theta-\sin \theta=0$
$2 \sin \theta \cos \theta-\sin \theta=0$
$\sin \theta(2 \cos \theta-1)=0$
$\sin \theta=0 \quad 2 \cos \theta-1=0$
$\theta=0,180 \cos \theta=\frac{1}{2}$

$$
\theta=60,300
$$

PTS: 4
REF: 061037a2
STA: A2.A. 68
TOP: Trigonometric Equations
KEY: double angle identities
212 ANS:
$\frac{1}{3} \quad \frac{1}{x+3}-\frac{2}{3-x}=\frac{4}{x^{2}-9}$
$\frac{1}{x+3}+\frac{2}{x-3}=\frac{4}{x^{2}-9}$
$\frac{x-3+2(x+3)}{(x+3)(x-3)}=\frac{4}{(x+3)(x-3)}$
$x-3+2 x+6=4$
$3 x=1$

$$
x=\frac{1}{3}
$$

PTS: 4
REF: 081036a2
STA: A2.A. 23
TOP: Solving Rationals
KEY: rational solutions

213 ANS:

$$
\begin{array}{r}
\frac{51}{243} \cdot{ }_{5} C_{3}\left(\frac{1}{3}\right)^{3}\left(\frac{2}{3}\right)^{2}=\frac{40}{243} \\
{ }_{5} C_{4}\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)^{1}=\frac{10}{243} \\
{ }_{5} C_{3}\left(\frac{1}{3}\right)^{5}\left(\frac{2}{3}\right)^{0}=\frac{1}{243}
\end{array}
$$

PTS: 4 REF: 061138a2 STA: A2.S. 15 TOP: Binomial Probability KEY: at least or at most
214 ANS:
26.2\%. ${ }_{10} C_{8} \cdot 0.65^{8} \cdot 0.35^{2}+{ }_{10} C_{9} \cdot 0.65^{9} \cdot 0.35^{1}+{ }_{10} C_{10} \cdot 0.65^{10} \cdot 0.35^{0} \approx 0.262$

PTS: 4 REF: 081038a2 STA: A2.S. 15 TOP: Binomial Probability
KEY: at least or at most
215 ANS:
$\sin (45+30)=\sin 45 \cos 30+\cos 45 \sin 30$

$$
=\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2} \cdot \frac{1}{2}=\frac{\sqrt{6}}{4}+\frac{\sqrt{2}}{4}=\frac{\sqrt{6}+\sqrt{2}}{4}
$$

PTS: 4
REF: 061136a2 STA: A2.A.76
TOP: Angle Sum and Difference Identities KEY: evaluating
ANS:
800. $x=4^{2.5}=32 . y^{-\frac{3}{2}}=125 \quad . \frac{x}{y}=\frac{32}{\frac{1}{25}}=800$

$$
y=125^{-\frac{2}{3}}=\frac{1}{25}
$$

PTS: 4
REF: 011237a2 STA: A2.A. 28 TOP: Logarithmic Equations
KEY: advanced

217 ANS:
$3 \pm \sqrt{7} \cdot 2 x^{2}-12 x+4=0$

$$
\begin{aligned}
x^{2}-6 x+2 & =0 \\
x^{2}-6 x & =-2 \\
x^{2}-6 x+9 & =-2+9 \\
(x-3)^{2} & =7 \\
x-3 & = \pm \sqrt{7} \\
x & =3 \pm \sqrt{7}
\end{aligned}
$$

PTS: 4 REF: fall0936a2 STA: A2.A. 24 TOP: Completing the Square
218 ANS:
88. $\frac{100}{\sin 33}=\frac{x}{\sin 32} \cdot \sin 66 \approx \frac{T}{97.3}$

$$
x \approx 97.3 \quad t \approx 88
$$

PTS: 4
REF: 011236a2
STA: A2.A. 73
TOP: Law of Sines
KEY: advanced
219

$$
\begin{aligned}
& \text { ANS: } \\
& \begin{aligned}
\pm \frac{3}{2},-\frac{1}{2} \cdot \quad 8 x^{3}+4 x^{2}-18 x-9 & =0 \\
4 x^{2}(2 x+1)-9(2 x+1) & =0 \\
\left(4 x^{2}-9\right)(2 x+1) & =0 \\
4 x^{2}-9 & =0 \text { or } 2 x+1=0 \\
(2 x+3)(2 x-3) & =0 \quad x=-\frac{1}{2} \\
x & = \pm \frac{3}{2}
\end{aligned}
\end{aligned}
$$

PTS: 4 REF: fall0937a2 STA: A2.A. 26 TOP: Solving Polynomial Equations
ANS:
0.468. ${ }_{8} C_{6}\left(\frac{2}{3}\right)^{6}\left(\frac{1}{3}\right)^{2} \approx 0.27313 .{ }_{8} C_{7}\left(\frac{2}{3}\right)^{7}\left(\frac{1}{3}\right)^{1} \approx 0.15607 .{ }_{8} C_{8}\left(\frac{2}{3}\right)^{8}\left(\frac{1}{3}\right)^{0} \approx 0.03902$.

PTS: 4
REF: 011138a2
STA: A2.S. 15
TOP: Binomial Probability
KEY: at least or at most

221 ANS:
$32 x^{5}-80 x^{4}+80 x^{3}-40 x^{2}+10 x-1 .{ }_{5} C_{0}(2 x)^{5}(-1)^{0}=32 x^{5} .{ }_{5} C_{1}(2 x)^{4}(-1)^{1}=-80 x^{4} .{ }_{5} C_{2}(2 x)^{3}(-1)^{2}=80 x^{3}$. ${ }_{5} C_{3}(2 x)^{2}(-1)^{3}=-40 x^{2} .{ }_{5} C_{4}(2 x)^{1}(-1)^{4}=10 x .{ }_{5} C_{5}(2 x)^{0}(-1)^{5}=-1$

PTS: 4 REF: 011136a2 STA: A2.A. 36 TOP: Binomial Expansions
222 ANS:
0.167. ${ }_{10} C_{8} \cdot 0.6^{8} \cdot 0.4^{2}+{ }_{10} C_{9} \cdot 0.6^{9} \cdot 0.4^{1}+{ }_{10} C_{10} \cdot 0.6^{10} \cdot 0.4^{0} \approx 0.167$

PTS: 4 REF: 061036a2 STA: A2.S. 15 TOP: Binomial Probability
KEY: at least or at most
223 ANS:
$y=2.001 x^{2.298}, 1,009 . y=2.001(15)^{2.298} \approx 1009$
PTS: 4 REF: fall0938a2 STA: A2.S. 7 TOP: Power Regression
224 ANS:
$\frac{23}{2} \quad \cos ^{2} B+\sin ^{2} B=1 \quad \tan B=\frac{\sin B}{\cos B}=\frac{\frac{5}{\sqrt{41}}}{\frac{4}{\sqrt{41}}}=\frac{5}{4} \tan (A+B)=\frac{\frac{2}{3}+\frac{5}{4}}{1-\left(\frac{2}{3}\right)\left(\frac{5}{4}\right)}=\frac{\frac{8+15}{12}}{\frac{12}{12}-\frac{10}{12}}=\frac{\frac{23}{12}}{\frac{2}{12}}=\frac{23}{2}$
$\cos ^{2} B+\left(\frac{5}{\sqrt{41}}\right)^{2}=1$
$\cos ^{2} B+\frac{25}{41}=\frac{41}{41}$
$\cos ^{2} B=\frac{16}{41}$
$\cos B=\frac{4}{\sqrt{41}}$
PTS: 4 REF: 081037a2 STA: A2.A.76 TOP: Angle Sum and Difference Identities KEY: evaluating
225

$$
\begin{aligned}
\frac{12}{\sin 32} & =\frac{10}{\sin B} \quad . C \approx 180-(32+26.2) \approx 121.8 . \\
B & =\sin ^{-1} \frac{12}{\sin 32}=\frac{c}{\sin 32} 121.8 \\
& 26.2
\end{aligned} \quad c=\frac{12 \sin 121.8}{\sin 32} \approx 19.2 ~ \$
$$

PTS: 4 REF: 011137a2 STA: A2.A. 73 TOP: Law of Sines
KEY: basic
226
ANS:
$y=27.2025(1.1509)^{x} . y=27.2025(1.1509)^{18} \approx 341$
PTS: 4 REF: 011238a2 STA: A2.S. 7 TOP: Exponential Regression

227 ANS:
No. TENNESSEE: $\frac{{ }_{9} P_{9}}{4!\cdot 2!\cdot 2!}=\frac{362,880}{96}=3,780$. VERMONT: ${ }_{7} P_{7}=5,040$
PTS: 4
REF: 061038a2 STA: A2.S. 10 TOP: Permutations
228 ANS:

$$
\begin{gathered}
-3|6-x|<-15 \\
|6-x|>5 \\
6-x>5 \text { or } 6-x<-5 \\
1>x \text { or } 11<x
\end{gathered}
$$

PTS: 2
REF: 061137a2 STA: A2.A. 1 TOP: Absolute Value Inequalities
KEY: graph

Algebra 2/Trigonometry 6 Point Regents Exam Questions

229 In a triangle, two sides that measure 6 cm and 10 cm form an angle that measures 80°. Find, to the nearest degree, the measure of the smallest angle in the triangle.

230 Perform the indicated operations and simplify completely:

$$
\frac{x^{3}-3 x^{2}+6 x-18}{x^{2}-4 x} \cdot \frac{2 x-4}{x^{4}-3 x^{3}} \div \frac{x^{2}+2 x-8}{16-x^{2}}
$$

231 The temperature, T, of a given cup of hot chocolate after it has been cooling for t minutes can best be modeled by the function below, where T_{0} is the temperature of the room and k is a constant.

$$
\ln \left(T-T_{0}\right)=-k t+4.718
$$

A cup of hot chocolate is placed in a room that has a temperature of 68°. After 3 minutes, the temperature of the hot chocolate is 150°. Compute the value of k to the nearest thousandth. [Only an algebraic solution can receive full credit.] Using this value of k, find the temperature, T, of this cup of hot chocolate if it has been sitting in this room for a total of 10 minutes. Express your answer to the nearest degree. [Only an algebraic solution can receive full credit.]

232 Solve algebraically for $x: \log _{x+3} \frac{x^{3}+x-2}{x}=2$

233 Two forces of 25 newtons and 85 newtons acting on a body form an angle of 55°. Find the magnitude of the resultant force, to the nearest hundredth of a newton. Find the measure, to the nearest degree, of the angle formed between the resultant and the larger force.

Solve the following systems of equations
algebraically: $5=y-x$

$$
4 x^{2}=-17 x+y+4
$$

Algebra 2/Trigonometry 6 Point Regents Exam Questions

Answer Section

229
ANS:
33. $a=\sqrt{10^{2}+6^{2}-2(10)(6) \cos 80} \approx 10.7 . \angle C$ is opposite the shortest side. $\frac{6}{\sin C}=\frac{10.7}{\sin 80}$

$$
C \approx 33
$$

PTS: 6 REF: 061039a2 STA: A2.A. 73 TOP: Law of Cosines
KEY: advanced
230

$$
\begin{gathered}
\frac{-2\left(x^{2}+6\right)}{x^{4}} \cdot \frac{x^{2}(x-3)+6(x-3)}{x^{2}-4 x} \cdot \frac{2 x-4}{x^{4}-3 x^{3}} \div \frac{x^{2}+2 x-8}{16-x^{2}} \\
\frac{\left(x^{2}+6\right)(x-3)}{x(x-4)} \cdot \frac{2(x-2)}{x^{3}(x-3)} \cdot \frac{(4+x)(4-x)}{(x+4)(x-2)} \\
\frac{-2\left(x^{2}+6\right)}{x^{4}}
\end{gathered}
$$

PTS: 6 REF: 011239a2 STA: A2.A. 16 TOP: Multiplication and Division of Rationals
ANS:

$$
\begin{array}{rlrl}
\ln \left(T-T_{0}\right) & =-k t+4.718 & . \ln (T-68) & =-0.104(10)+4.718 . \\
\ln (150-68) & =-k(3)+4.718 & \ln (T-68) & =3.678 \\
4.407 & \approx-3 k+4.718 & T-68 & \approx 39.6 \\
k & \approx 0.104 & T & \approx 108
\end{array}
$$

PTS: 6
KEY: advanced

232 ANS:
$x=-\frac{1}{3},-1 \log _{x+3} \frac{x^{3}+x-2}{x}=2$

$$
\begin{aligned}
\frac{x^{3}+x-2}{x} & =(x+3)^{2} \\
\frac{x^{3}+x-2}{x} & =x^{2}+6 x+9 \\
x^{3}+x-2 & =x^{3}+6 x^{2}+9 x \\
0 & =6 x^{2}+8 x+2 \\
0 & =3 x^{2}+4 x+1 \\
0 & =(3 x+1)(x+1) \\
x & =-\frac{1}{3},-1
\end{aligned}
$$

PTS: 6 KEY: basic

REF: 081039a2
STA: A2.A. 28
TOP: Logarithmic Equations

101.43, 12.

Body $\quad \mathbf{8 5} \quad$ Force $1 r^{2}=25^{2}+85^{2}-2(25)(85) \cos 125$.

$$
\begin{gathered}
r^{2} \approx 10287.7 \\
r \approx 101.43
\end{gathered}
$$

$$
\begin{gathered}
\frac{2.5}{\sin x}=\frac{101.43}{\sin 125} \\
x \approx 12
\end{gathered}
$$

PTS: 6
REF: fall0939a2 STA: A2.A. 73 TOP: Vectors

234 ANS:

$$
\begin{aligned}
& \left(-\frac{9}{2}, \frac{1}{2}\right) \text { and }\left(\frac{1}{2}, \frac{11}{2}\right) \cdot y=x+5 \quad .4 x^{2}+17 x-4=x+5 \\
& y=4 x^{2}+17 x-4 \quad 4 x^{2}+16 x-9=0 \\
& (2 x+9)(2 x-1)=0 \\
& x=-\frac{9}{2} \text { and } x=\frac{1}{2} \\
& y=-\frac{9}{2}+5=\frac{1}{2} \text { and } y=\frac{1}{2}+5=\frac{11}{2}
\end{aligned}
$$

PTS: 6
REF: 061139a2
STA: A2.A. 3
TOP: Quadratic-Linear Systems
KEY: equations

