JEFFERSON MATH PROJECT REGENTS BY PERFORMANCE INDICATOR: TOPIC

NY Geometry Regents Exam Questions from Fall 2008 to January 2012 Sorted by PI: Topic

www.jmap.org

Dear Sir

Shave to acknolege the reciept of your favor of May 14. in which you mention that you have finished the s. first books of Euclid, plane trigonometry, surveying & algebra and ask whether I think a further pursuit of that branch of science would be useful to you. there are some propositions in the latter books of Euclid, & some of Archimedes, which are useful, & I have no doubt you have been made acquainted with them. trigonometry, so far as this, is most valuable to every man, there is scarcely a day in which he will not resert to it for some of the purposes of common life, the science of calculation also is indispensible as far as the extraction of the square & cube roots; Algebra as far as the quadratic equation & the use of logarithms are often of value in ordinary cases: but all beyond these is but a luxury; a delicious luxury indeed; but not to be indulged in by one who is to have a profession to follow for his subsistence, in this light I view the conic sections, curves of the higher orders, perhaps even spherical trigonometry. Algebraical operations beyond the 2d dimension, and fluxions.

Letter from Thomas Jefferson to William G. Munford, Monticello, June 18, 1799.

TABLE OF CONTENTS

TOPIC	P.I.: SUBTOPIC	QUESTION NUMBER
LINEAR EQUATIONS	G.G.62-65: Parallel and Perpendicular G.G.68: Perpendicular Bisector	
SYSTEMS	G.G.70: Quadratic-Linear Systems .	
TOOLS OF GEOMETRY	G.G.66: Midpoint 41-48 G.G.67: Distance 49-57 G.G.1-9: Planes 58-75 G.G.10, 13: Solids 76-80 G.G.17-20: Constructions 81-102 G.G.22-23: Locus 103-115	
ANGLES	G.G.35: Parallel Lines and Transversa	als 116-121
TRIANGLES	G.G.48: Pythagorean Theorem G.G.30: Interior and Exterior Angles of G.G.31: Isosceles Triangle Theorem G.G.32: Exterior Angle Theorem G.G.33: Triangle Inequality Theorem G.G.34: Angle Side Relationship G.G.46: Side Splitter Theorem G.G.42: Midsegments G.G.21, 43: Centroid, Orthocenter, Inc. G.G.69: Triangles in the Coordinate P.	of Triangles 126-133 134-140 141-147 148-150 151-156 157-162 163-169 center and Circumcenter 170-181
POLYGONS	G.G.36-37: Interior and Exterior Angl G.G.38-39: Parallelograms G.G.40: Trapezoids G.G.41: Special Quadrilaterals G.G.69: Quadrilaterals in the Coordin	
CONICS	G.G.49, 52: Chords G.G.50: Tangents G.G.51: Arcs Intercepted by Angles G.G.53: Segments Intercepted by Circ G.G.71-73: Equations of Circles G.G.74: Graphing Circles	
MEASURING IN THE PLANE AND SPACE	G.G.11-16: Volume, Surface Area and G.G.45, 47: Similarity	
TRANSFORMATIONS	G.G.54: Rotations G.G.54: Reflections G.G.54: Translations G.G.54, 58: Compositions of Transfor G.G.55, 57, 59: Properties of Transfor G.G.56, 60: Identifying Transformatio G.G.61: Analytical Representations of	
LOGIC	G.G.24: Statements and Negations G.G.25: Compound Statements G.G.26: Conditional Statements G.G.28-29: Triangle Congruency G.G.27: Angle Proofs G.G.27: Triangle Proofs G.G.27: Quadrilateral Proofs G.G.27: Circle Proofs G.G.44: Similarity Proofs	

Geometry Regents Exam Questions by Performance Indicator: Topic

LINEAR EQUATIONS

G.G.62: PARALLEL AND PERPENDICULAR **LINES**

- 1 What is the slope of a line perpendicular to the line whose equation is y = 3x + 4?
 - $\frac{1}{3}$ 1

 - 3 3
 - -3
- 2 What is the slope of a line perpendicular to the line whose equation is $y = -\frac{2}{3}x - 5$?

 - 3
- 3 What is the slope of a line perpendicular to the line whose equation is 5x + 3y = 8?
 - 1

 - $\frac{5}{3}$ $\frac{3}{5}$ $-\frac{3}{5}$ $-\frac{5}{3}$

- 4 What is the slope of a line that is perpendicular to the line whose equation is 3x + 4y = 12?
- 5 What is the slope of a line that is perpendicular to the line whose equation is 3x + 5y = 4?

 - 2
- 6 What is the slope of a line that is perpendicular to the line represented by the equation x + 2y = 3?
 - -2
 - 2 2
- 7 What is the slope of a line perpendicular to the line whose equation is 2y = -6x + 8?
 - 1 -3
 - 2
 - 3
 - -6

8 Find the slope of a line perpendicular to the line whose equation is 2y - 6x = 4.

<u>G.G.63: PARALLEL AND PERPENDICULAR</u> <u>LINES</u>

- 9 The equation of line k is $y = \frac{1}{3}x 2$. The equation of line m is -2x + 6y = 18. Lines k and m are
 - 1 parallel
 - 2 perpendicular
 - 3 the same line
 - 4 neither parallel nor perpendicular
- 10 The lines represented by the equations $y + \frac{1}{2}x = 4$
 - and 3x + 6y = 12 are
 - 1 the same line
 - 2 parallel
 - 3 perpendicular
 - 4 neither parallel nor perpendicular
- 11 The lines 3y + 1 = 6x + 4 and 2y + 1 = x 9 are
 - 1 parallel
 - 2 perpendicular
 - 3 the same line
 - 4 neither parallel nor perpendicular
- 12 The two lines represented by the equations below are graphed on a coordinate plane.

$$x + 6y = 12$$

$$3(x-2) = -y - 4$$

Which statement best describes the two lines?

- 1 The lines are parallel.
- 2 The lines are the same line.
- 3 The lines are perpendicular.
- 4 The lines intersect at an angle other than 90°.
- Determine whether the two lines represented by the equations y = 2x + 3 and 2y + x = 6 are parallel, perpendicular, or neither. Justify your response.

- What is the equation of a line that is parallel to the line whose equation is y = x + 2?
 - 1 x + y = 5
 - 2 2x + y = -2
 - y x = -1
 - $4 \quad y 2x = 3$
- 15 Which equation represents a line parallel to the line whose equation is 2y 5x = 10?
 - 1 5y 2x = 25
 - 2 5y + 2x = 10
 - 3 4y 10x = 12
 - 4 2y + 10x = 8
- 16 Two lines are represented by the equations

$$-\frac{1}{2}y = 6x + 10$$
 and $y = mx$. For which value of m

will the lines be parallel?

- 1 -12
- 2 -3
- 3 3
- 4 12
- 17 Which equation represents a line perpendicular to the line whose equation is 2x + 3y = 12?
 - 1 6y = -4x + 12
 - 2 2y = 3x + 6
 - $3 \quad 2y = -3x + 6$
 - $4 \quad 3y = -2x + 12$

<u>G.G.64: PARALLEL AND PERPENDICULAR</u> LINES

What is an equation of the line that passes through the point (-2,5) and is perpendicular to the line

whose equation is $y = \frac{1}{2}x + 5$?

- 1 y = 2x + 1
- y = -2x + 1
- y = 2x + 9
- $4 \quad y = -2x 9$

19 What is an equation of the line that contains the point (3,-1) and is perpendicular to the line whose equation is y = -3x + 2?

1
$$y = -3x + 8$$

$$2 \qquad y = -3x$$

$$3 \qquad y = \frac{1}{3}x$$

$$4 \qquad y = \frac{1}{3}x - 2$$

20 What is an equation of the line that is perpendicular to the line whose equation is $y = \frac{3}{5}x - 2$ and that passes through the point (3,-6)?

1
$$y = \frac{5}{3}x - 11$$

$$2 \qquad y = -\frac{5}{3}x + 11$$

$$y = -\frac{5}{3}x - 1$$

$$4 \qquad y = \frac{5}{3}x + 1$$

Find an equation of the line passing through the point (6,5) and perpendicular to the line whose equation is 2y + 3x = 6.

G.G.65: PARALLEL AND PERPENDICULAR LINES

What is an equation of the line that passes through the point (-2,3) and is parallel to the line whose equation is $y = \frac{3}{2}x - 4$?

$$1 \qquad y = \frac{-2}{3}x$$

$$2 \qquad y = \frac{-2}{3}x + \frac{5}{3}$$

$$3 \qquad y = \frac{3}{2}x$$

$$4 \qquad y = \frac{3}{2}x + 6$$

23 What is the equation of a line passing through (2,-1) and parallel to the line represented by the equation y = 2x + 1?

$$1 \qquad y = -\frac{1}{2}x$$

2
$$y = -\frac{1}{2}x + 1$$

$$3 \qquad y = 2x - 5$$

$$4 y = 2x - 1$$

24 What is the equation of a line that passes through the point (-3,-11) and is parallel to the line whose equation is 2x - y = 4?

$$1 \qquad y = 2x + 5$$

$$2 \qquad y = 2x - 5$$

$$3 \qquad y = \frac{1}{2}x + \frac{25}{2}$$

$$4 \qquad y = -\frac{1}{2}x - \frac{25}{2}$$

25 What is an equation of the line that passes through the point (7,3) and is parallel to the line

$$4x + 2y = 10?$$

$$1 \qquad y = \frac{1}{2}x - \frac{1}{2}$$

$$2 \qquad y = -\frac{1}{2}x + \frac{13}{2}$$

$$y = 2x - 11$$

$$4 \qquad y = -2x + 17$$

26 Which line is parallel to the line whose equation is 4x + 3y = 7 and also passes through the point (-5,2)?

1
$$4x + 3y = -26$$

$$2 \qquad 4x + 3y = -14$$

$$3 \quad 3x + 4y = -7$$

$$4 \qquad 3x + 4y = 14$$

27 Which equation represents the line parallel to the line whose equation is 4x + 2y = 14 and passing through the point (2,2)?

$$1 \qquad y = -2x$$

$$2 \qquad y = -2x + 6$$

$$3 \qquad y = \frac{1}{2}x$$

$$4 \qquad y = \frac{1}{2}x + 1$$

- Find an equation of the line passing through the point (5,4) and parallel to the line whose equation is 2x + y = 3.
- 29 Write an equation of the line that passes through the point (6,-5) and is parallel to the line whose equation is 2x 3y = 11.

G.G.68: PERPENDICULAR BISECTOR

30 The coordinates of the endpoints of \overline{AB} are A(0,0) and B(0,6). The equation of the perpendicular bisector of \overline{AB} is

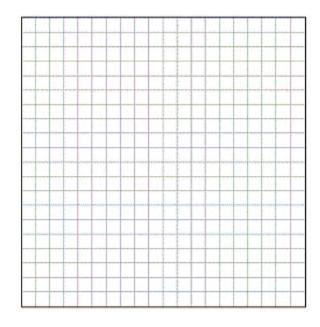
$$1 \quad x = 0$$

$$2 x = 3$$

$$3 \qquad y = 0$$

$$4 y = 3$$

31 Which equation represents the perpendicular bisector of \overline{AB} whose endpoints are A(8,2) and B(0,6)?

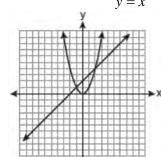

1
$$y = 2x - 4$$

$$2 \qquad y = -\frac{1}{2}x + 2$$

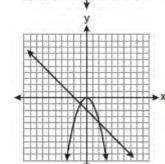
$$3 \qquad y = -\frac{1}{2}x + 6$$

$$4 \quad y = 2x - 12$$

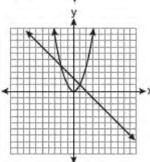
Write an equation of the perpendicular bisector of the line segment whose endpoints are (-1,1) and (7,-5). [The use of the grid below is optional]

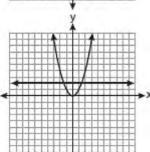

SYSTEMS

G.G.70: QUADRATIC-LINEAR SYSTEMS


Which graph could be used to find the solution to the following system of equations?

$$y = -x + 2$$


$$y = x^2$$


1

2

3

4

34 Given the system of equations: $y = x^2 - 4x$

$$x = 4$$

The number of points of intersection is

- 1
- 2 2
- 3 3
- 4 0

35 Given:
$$y = \frac{1}{4}x - 3$$

$$y = x^2 + 8x + 12$$

In which quadrant will the graphs of the given equations intersect?

- 1
- 2 II

I

- 3 III
- 4 IV
- 36 Given the equations: $y = x^2 6x + 10$

$$y + x = 4$$

What is the solution to the given system of equations?

- 1 (2,3)
- 2 (3,2)
- 3 (2,2) and (1,3)
- 4 (2,2) and (3,1)
- 37 When solved graphically, what is the solution to the following system of equations?

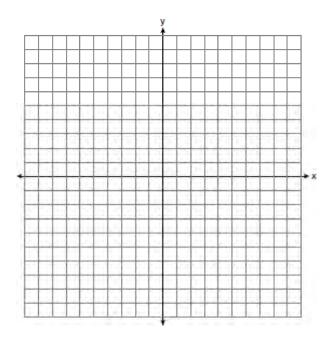
$$y = x^2 - 4x + 6$$

$$y = x + 2$$

- 1 (1,4)
- 2 (4,6)
- 3 (1,3) and (4,6)
- 4 (3,1) and (6,4)

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

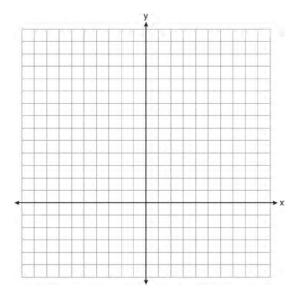
38 What is the solution of the following system of equations?


$$y = (x+3)^2 - 4$$

$$y = 2x + 5$$

- $1 \quad (0,-4)$
- (-4,0)
- $3 \quad (-4,-3) \text{ and } (0,5)$
- 4 (-3,-4) and (5,0)
- 39 Solve the following system of equations graphically.

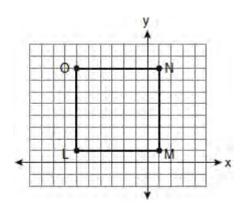
$$2x^2 - 4x = y + 1$$


$$x + y = 1$$

40 On the set of axes below, solve the following system of equations graphically for all values of *x* and *y*.

$$y = (x - 2)^2 + 4$$

$$4x + 2y = 14$$



TOOLS OF GEOMETRY

G.G.66: MIDPOINT

- 41 The endpoints of \overline{CD} are C(-2,-4) and D(6,2). What are the coordinates of the midpoint of \overline{CD} ?
 - 1 (2,3)
 - 2(2,-1)
 - 3 (4,-2)
 - 4 (4,3)
- 42 A line segment has endpoints A(7,-1) and B(-3,3). What are the coordinates of the midpoint of \overline{AB} ?
 - 1 (1,2)
 - $2 \quad (2,1)$
 - 3 (-5,2)
 - 4 (5,-2)

43 Square *LMNO* is shown in the diagram below.

What are the coordinates of the midpoint of diagonal \overline{LN} ?

1
$$\left(4\frac{1}{2}, -2\frac{1}{2}\right)$$

$$2 \quad \left(-3\frac{1}{2}, 3\frac{1}{2}\right)$$

$$3 \quad \left(-2\frac{1}{2}, 3\frac{1}{2}\right)$$

$$4 \quad \left(-2\frac{1}{2}, 4\frac{1}{2}\right)$$

44 Line segment AB has endpoints A(2,-3) and B(-4,6). What are the coordinates of the midpoint of \overline{AB} ?

$$2 \quad \left(-1, 1\frac{1}{2}\right)$$

$$3 (-1,3)$$

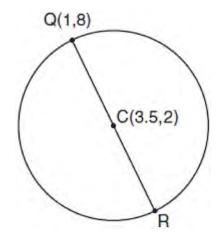
$$4 \quad \left(3,4\frac{1}{2}\right)$$

45 If a line segment has endpoints A(3x + 5,3y) and B(x - 1,-y), what are the coordinates of the midpoint of \overline{AB} ?

$$1 (x+3,2y)$$

2
$$(2x + 2, y)$$

$$3 (2x + 3, y)$$

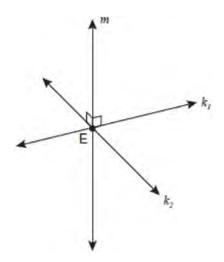

4
$$(4x + 4, 2y)$$

- 46 In circle O, diameter \overline{RS} has endpoints R(3a,2b-1) and S(a-6,4b+5). Find the coordinates of point O, in terms of a and b. Express your answer in simplest form.
- Segment AB is the diameter of circle M. The coordinates of A are (-4,3). The coordinates of M are (1,5). What are the coordinates of B?

$$3(-3,8)$$

$$4(-5,2)$$

48 In the diagram below of circle C, \overline{QR} is a diameter, and Q(1,8) and C(3.5,2) are points on a coordinate plane. Find and state the coordinates of point R.


G.G.67: DISTANCE

- 49 A line segment has endpoints (4,7) and (1,11). What is the length of the segment?
 - 1 5
 - 2 7
 - 3 16
 - 4 25
- 50 What is the length, to the *nearest tenth*, of the line segment joining the points (–4,2) and (146,52)?
 - 1 141.4
 - 2 150.5
 - 3 151.9
 - 4 158.1
- 51 What is the length of the line segment whose endpoints are (1,-4) and (9,2)?
 - 1 5
 - $2 \quad 2\sqrt{17}$
 - 3 10
 - 4 $2\sqrt{26}$
- 52 What is the length of the line segment with endpoints (-6,4) and (2,-5)?
 - $1 \sqrt{13}$
 - $2 \sqrt{17}$
 - $3 \sqrt{72}$
 - $4 \sqrt{145}$
- 53 What is the length of the line segment whose endpoints are A(-1,9) and B(7,4)?
 - $1 \sqrt{61}$
 - $2 \sqrt{89}$
 - $\sqrt{205}$
 - $4 \sqrt{233}$

- 54 What is the distance between the points (-3,2) and (1,0)?
 - $1 \quad 2\sqrt{2}$
 - $2 \quad 2\sqrt{3}$
 - $3 \quad 5\sqrt{2}$
 - 4 $2\sqrt{5}$
- In circle O, a diameter has endpoints (-5,4) and (3,-6). What is the length of the diameter?
 - $1 \sqrt{2}$
 - $2 \quad 2\sqrt{2}$
 - $3 \sqrt{10}$
 - 4 $2\sqrt{41}$
- 56 If the endpoints of \overline{AB} are A(-4,5) and B(2,-5), what is the length of \overline{AB} ?
 - $1 \quad 2\sqrt{34}$
 - 2 2
 - $3 \sqrt{61}$
 - 4 8
- 57 The endpoints of \overline{PQ} are P(-3,1) and Q(4,25). Find the length of \overline{PQ} .

G.G.1: PLANES

58 Lines k_1 and k_2 intersect at point E. Line m is perpendicular to lines k_1 and k_2 at point E.

Which statement is always true?

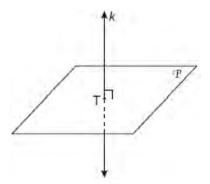
- 1 Lines k_1 and k_2 are perpendicular.
- 2 Line m is parallel to the plane determined by lines k_1 and k_2 .
- 3 Line *m* is perpendicular to the plane determined by lines k_1 and k_2 .
- 4 Line m is coplanar with lines k_1 and k_2 .
- 59 Lines *j* and *k* intersect at point *P*. Line *m* is drawn so that it is perpendicular to lines *j* and *k* at point *P*. Which statement is correct?
 - 1 Lines j and k are in perpendicular planes.
 - 2 Line m is in the same plane as lines j and k.
 - 3 Line m is parallel to the plane containing lines j and k
 - 4 Line *m* is perpendicular to the plane containing lines *j* and *k*.

- 60 In plane \mathcal{P} , lines m and n intersect at point A. If line k is perpendicular to line m and line n at point A, then line k is
 - 1 contained in plane P
 - 2 parallel to plane \mathcal{P}
 - 3 perpendicular to plane P
 - 4 skew to plane P
- 61 Lines *m* and *n* intersect at point *A*. Line *k* is perpendicular to both lines *m* and *n* at point *A*. Which statement *must* be true?
 - 1 Lines m, n, and k are in the same plane.
 - 2 Lines m and n are in two different planes.
 - 3 Lines m and n are perpendicular to each other.
 - 4 Line *k* is perpendicular to the plane containing lines *m* and *n*.

G.G.2: PLANES

- 62 Point *P* is on line *m*. What is the total number of planes that are perpendicular to line *m* and pass through point *P*?
 - 1 1
 - 2 2
 - 3 0
 - 4 infinite
- 63 Point *P* lies on line *m*. Point *P* is also included in distinct planes Q, \mathcal{R} , \mathcal{S} , and \mathcal{T} . At most, how many of these planes could be perpendicular to line m?
 - 1 1
 - 2 2
 - 3 3
 - 4 4

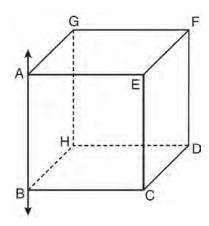
G.G.3: PLANES


- 64 Through a given point, *P*, on a plane, how many lines can be drawn that are perpendicular to that plane?
 - 1 1
 - 2 2
 - 3 more than 2
 - 4 none
- 65 Point *A* is not contained in plane \mathcal{B} . How many lines can be drawn through point *A* that will be perpendicular to plane \mathcal{B} ?
 - 1 one
 - 2 two
 - 3 zero
 - 4 infinite
- Point A lies in plane \mathcal{B} . How many lines can be drawn perpendicular to plane \mathcal{B} through point A?
 - 1 one
 - 2 two
 - 3 zero
 - 4 infinite

G.G.4: PLANES

- 67 If two different lines are perpendicular to the same plane, they are
 - 1 collinear
 - 2 coplanar
 - 3 congruent
 - 4 consecutive

G.G.7: PLANES


68 In the diagram below, line k is perpendicular to plane \mathcal{P} at point T.

Which statement is true?

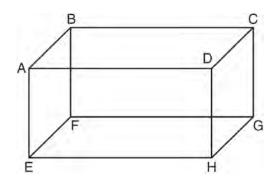
- 1 Any point in plane \mathcal{P} also will be on line k.
- 2 Only one line in plane \mathcal{P} will intersect line k.
- 3 All planes that intersect plane \mathcal{P} will pass through T.
- 4 Any plane containing line k is perpendicular to plane \mathcal{P} .

69 In the diagram below, \overrightarrow{AB} is perpendicular to plane AEFG.

Which plane must be perpendicular to plane *AEFG*?

- 1 ABCE
- 2 BCDH
- 3 CDFE
- 4 HDFG

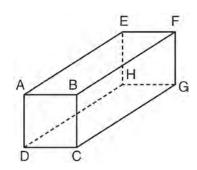
G.G.8: PLANES


- 70 In three-dimensional space, two planes are parallel and a third plane intersects both of the parallel planes. The intersection of the planes is a
 - 1 plane
 - 2 point
 - 3 pair of parallel lines
 - 4 pair of intersecting lines
- 71 Plane \mathcal{A} is parallel to plane \mathcal{B} . Plane \mathcal{C} intersects plane \mathcal{A} in line m and intersects plane \mathcal{B} in line n. Lines m and n are
 - 1 intersecting
 - 2 parallel
 - 3 perpendicular
 - 4 skew

G.G.9: PLANES

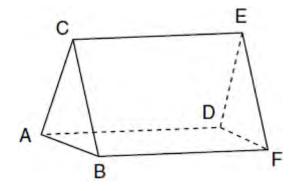
- 72 Line *k* is drawn so that it is perpendicular to two distinct planes, *P* and *R*. What must be true about planes *P* and *R*?
 - 1 Planes *P* and *R* are skew.
 - 2 Planes *P* and *R* are parallel.
 - 3 Planes *P* and *R* are perpendicular.
 - 4 Plane *P* intersects plane *R* but is not perpendicular to plane *R*.
- 73 Plane \mathcal{R} is perpendicular to line k and plane \mathcal{D} is perpendicular to line k. Which statement is correct?
 - 1 Plane \mathcal{R} is perpendicular to plane \mathcal{D} .
 - 2 Plane \mathcal{R} is parallel to plane \mathcal{D} .
 - 3 Plane \mathcal{R} intersects plane \mathcal{D} .
 - 4 Plane \mathcal{R} bisects plane \mathcal{D} .
- 74 If two distinct planes, \mathcal{A} and \mathcal{B} , are perpendicular to line c, then which statement is true?
 - 1 Planes \mathcal{A} and \mathcal{B} are parallel to each other.
 - 2 Planes \mathcal{A} and \mathcal{B} are perpendicular to each other.
 - 3 The intersection of planes \mathcal{A} and \mathcal{B} is a line parallel to line c.
 - 4 The intersection of planes \mathcal{A} and \mathcal{B} is a line perpendicular to line c.
- 75 A support beam between the floor and ceiling of a house forms a 90° angle with the floor. The builder wants to make sure that the floor and ceiling are parallel. Which angle should the support beam form with the ceiling?
 - 1 45°
 - 2 60°
 - 3 90°
 - 4 180°

G.G.10: SOLIDS


76 The diagram below shows a rectangular prism.

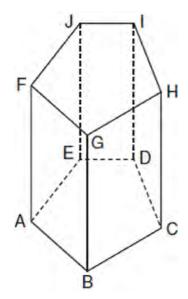
Which pair of edges are segments of lines that are coplanar?

- 1 \overline{AB} and \overline{DH}
- 2 \overline{AE} and \overline{DC}
- $3 \quad \overline{BC} \text{ and } \overline{EH}$
- 4 \overline{CG} and \overline{EF}


77 The diagram below represents a rectangular solid.

Which statement must be true?

- 1 \overline{EH} and \overline{BC} are coplanar
- 2 \overline{FG} and \overline{AB} are coplanar
- \overline{EH} and \overline{AD} are skew
- 4 \overline{FG} and \overline{CG} are skew

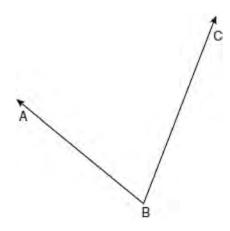

78 The figure in the diagram below is a triangular prism.

Which statement must be true?

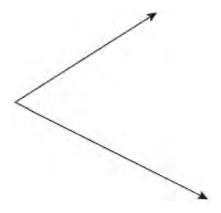
- $1 \quad \overline{DE} \cong \overline{AB}$
- $2 \quad \overline{AD} \cong \overline{BC}$
- $3 \quad \overline{AD} \parallel \overline{CE}$
- 4 $\overline{DE} \parallel \overline{BC}$

79 The diagram below shows a right pentagonal prism.

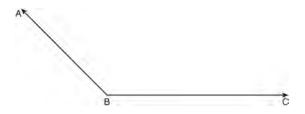
Which statement is always true?

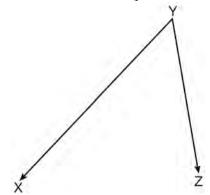

- 1 $\overline{BC} \parallel \overline{ED}$
- 2 $\overline{FG} \parallel \overline{CD}$
- $3 \overline{FJ} \parallel \overline{IH}$
- 4 $\overline{GB} \| \overline{HC}$

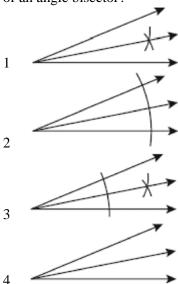
G.G.13: SOLIDS

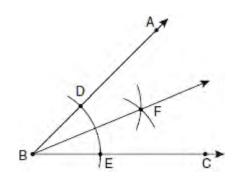

- 80 The lateral faces of a regular pyramid are composed of
 - 1 squares
 - 2 rectangles
 - 3 congruent right triangles
 - 4 congruent isosceles triangles

G.G.17: CONSTRUCTIONS


81 Using a compass and straightedge, construct the angle bisector of ∠*ABC* shown below. [Leave all construction marks.]


82 Using a compass and straightedge, construct the bisector of the angle shown below. [*Leave all construction marks*.]

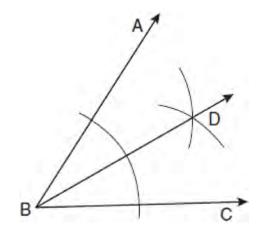

83 On the diagram below, use a compass and straightedge to construct the bisector of $\angle ABC$. [Leave all construction marks.]


84 On the diagram below, use a compass and straightedge to construct the bisector of $\angle XYZ$. [Leave all construction marks.]

85 Which illustration shows the correct construction of an angle bisector?

86 The diagram below shows the construction of the bisector of $\angle ABC$.

Which statement is *not* true?

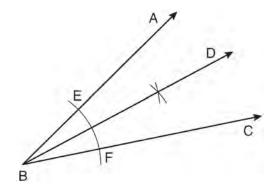

$$1 \quad \text{m} \angle EBF = \frac{1}{2} \,\text{m} \angle ABC$$

2
$$m\angle DBF = \frac{1}{2} m\angle ABC$$

$$3 \quad \text{m}\angle EBF = \text{m}\angle ABC$$

4
$$m\angle DBF = m\angle EBF$$

87 Based on the construction below, which statement must be true?


$$1 \quad \text{m} \angle ABD = \frac{1}{2} \,\text{m} \angle CBD$$

2
$$m\angle ABD = m\angle CBD$$

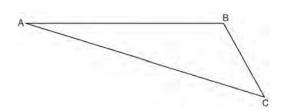
$$3 \quad \text{m} \angle ABD = \text{m} \angle ABC$$

$$4 \quad \text{m} \angle CBD = \frac{1}{2} \,\text{m} \angle ABD$$

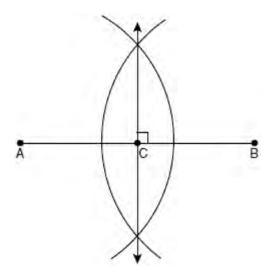
88 .A straightedge and compass were used to create the construction below. Arc *EF* was drawn from point *B*, and arcs with equal radii were drawn from *E* and *F*.

Which statement is false?

$$1 \quad \mathsf{m} \angle ABD = \mathsf{m} \angle DBC$$


$$2 \quad \frac{1}{2} \left(\text{m} \angle ABC \right) = \text{m} \angle ABD$$

$$3 \quad 2(m\angle DBC) = m\angle ABC$$

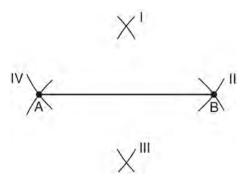

$$4 \qquad 2(m\angle ABC) = m\angle CBD$$

G.G.18: CONSTRUCTIONS

89 On the diagram of $\triangle ABC$ shown below, use a compass and straightedge to construct the perpendicular bisector of \overline{AC} . [Leave all construction marks.]

90 The diagram below shows the construction of the perpendicular bisector of \overline{AB} .

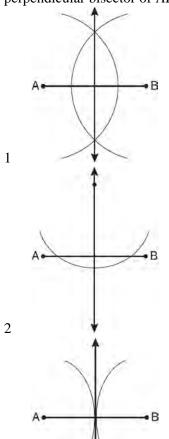
Which statement is *not* true?

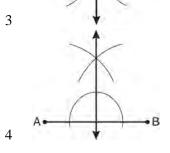

$$1 \qquad AC = CB$$

$$2 CB = \frac{1}{2}AB$$

$$3 \quad AC = 2AB$$

$$4 \qquad AC + CB = AB$$

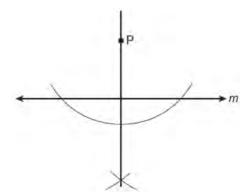

91 Line segment *AB* is shown in the diagram below.



Which two sets of construction marks, labeled I, II, III, and IV, are part of the construction of the perpendicular bisector of line segment *AB*?

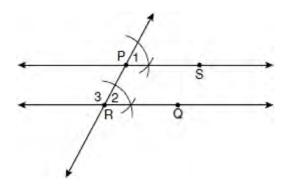
- 1 I and II
- 2 I and III
- 3 II and III
- 4 II and IV
- 92 One step in a construction uses the endpoints of AB to create arcs with the same radii. The arcs intersect above and below the segment. What is the relationship of \overline{AB} and the line connecting the points of intersection of these arcs?
 - 1 collinear
 - 2 congruent
 - 3 parallel
 - 4 perpendicular

93 Which diagram shows the construction of the perpendicular bisector of \overline{AB} ?

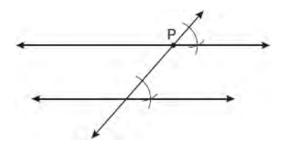


G.G.19: CONSTRUCTIONS

94 Using a compass and straightedge, construct a line that passes through point *P* and is perpendicular to line *m*. [Leave all construction marks.]


95 The diagram below shows the construction of a line through point P perpendicular to line m.

Which statement is demonstrated by this construction?


- 1 If a line is parallel to a line that is perpendicular to a third line, then the line is also perpendicular to the third line.
- 2 The set of points equidistant from the endpoints of a line segment is the perpendicular bisector of the segment.
- 3 Two lines are perpendicular if they are equidistant from a given point.
- Two lines are perpendicular if they intersect to form a vertical line.

96 The diagram below illustrates the construction of $\stackrel{\longleftrightarrow}{PS}$ parallel to $\stackrel{\longleftrightarrow}{RQ}$ through point P.

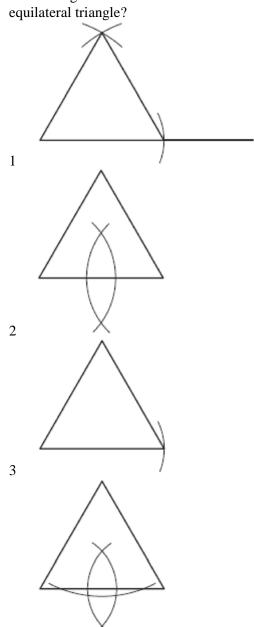
Which statement justifies this construction?

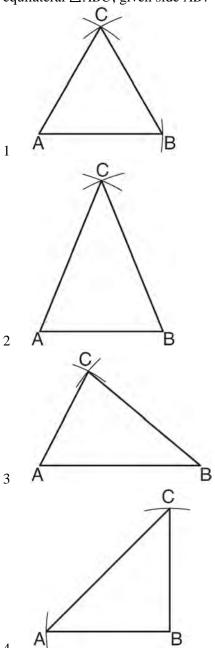
- 1 $m\angle 1 = m\angle 2$
- $2 \quad m \angle 1 = m \angle 3$
- $3 \quad \overline{PR} \cong \overline{RQ}$
- $4 \quad \overline{PS} \cong \overline{RQ}$
- 97 Which geometric principle is used to justify the construction below?

- 1 A line perpendicular to one of two parallel lines is perpendicular to the other.
- 2 Two lines are perpendicular if they intersect to form congruent adjacent angles.
- When two lines are intersected by a transversal and alternate interior angles are congruent, the lines are parallel.
- 4 When two lines are intersected by a transversal and the corresponding angles are congruent, the lines are parallel.

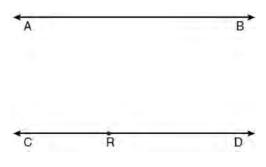
G.G.20: CONSTRUCTIONS

98 Using a compass and straightedge, and \overline{AB} below, construct an equilateral triangle with all sides congruent to \overline{AB} . [Leave all construction marks.]


99 On the line segment below, use a compass and straightedge to construct equilateral triangle *ABC*. [Leave all construction marks.]


100 Using a compass and straightedge, on the diagram below of \overrightarrow{RS} , construct an equilateral triangle with \overline{RS} as one side. [Leave all construction marks.]

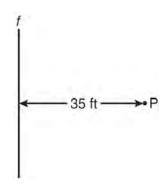
101 Which diagram shows the construction of an equilateral triangle?

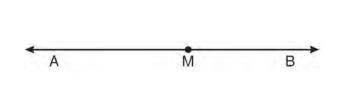


102 Which diagram represents a correct construction of equilateral $\triangle ABC$, given side \overline{AB} ?

G.G.22: LOCUS

103 Two lines, \overrightarrow{AB} and \overrightarrow{CRD} , are parallel and 10 inches apart. Sketch the locus of all points that are equidistant from \overrightarrow{AB} and \overrightarrow{CRD} and 7 inches from point R. Label with an \mathbf{X} each point that satisfies both conditions.

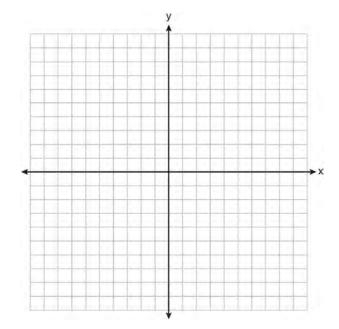


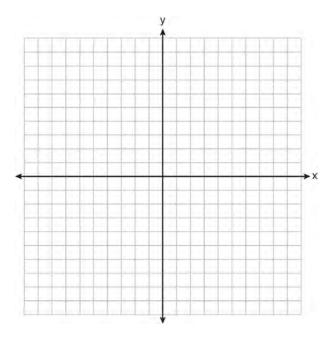

104 In the diagram below, car *A* is parked 7 miles from car *B*. Sketch the points that are 4 miles from car *A* and sketch the points that are 4 miles from car *B*. Label with an **X** all points that satisfy both conditions.

105 A man wants to place a new bird bath in his yard so that it is 30 feet from a fence, *f*, and also 10 feet from a light pole, *P*. As shown in the diagram below, the light pole is 35 feet away from the fence.

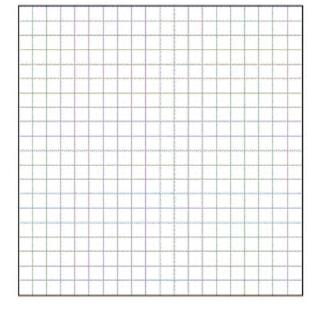
106 In the diagram below, point M is located on \overrightarrow{AB} . Sketch the locus of points that are 1 unit from \overrightarrow{AB} and the locus of points 2 units from point M. Label with an \mathbf{X} all points that satisfy both conditions.

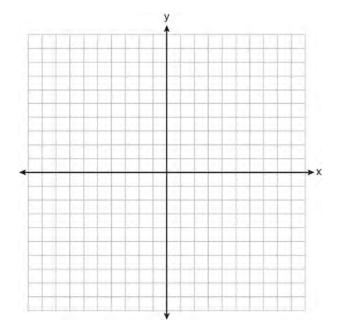
How many locations are possible for the bird bath?


- 1 1
- 2 2
- 3 3
- 4 0
- 107 The length of \overline{AB} is 3 inches. On the diagram below, sketch the points that are equidistant from A and B and sketch the points that are 2 inches from A. Label with an **X** all points that satisfy both conditions.


- 108 Towns *A* and *B* are 16 miles apart. How many points are 10 miles from town *A* and 12 miles from town *B*?
 - 1 1
 - 2 2
 - 3 3
 - 4 0

G.G.23: LOCUS

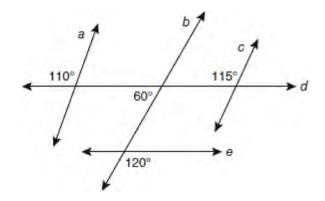

109 A city is planning to build a new park. The park must be equidistant from school *A* at (3,3) and school *B* at (3,-5). The park also must be exactly 5 miles from the center of town, which is located at the origin on the coordinate graph. Each unit on the graph represents 1 mile. On the set of axes below, sketch the compound loci and label with an **X** all possible locations for the new park.


On the set of axes below, sketch the points that are 5 units from the origin and sketch the points that are 2 units from the line y = 3. Label with an **X** all points that satisfy both conditions.


111 On the grid below, graph the points that are equidistant from both the *x* and *y* axes and the points that are 5 units from the origin. Label with an **X** all points that satisfy *both* conditions.

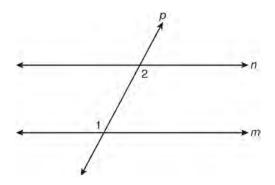
On the set of axes below, graph the locus of points that are four units from the point (2,1). On the same set of axes, graph the locus of points that are two units from the line x = 4. State the coordinates of all points that satisfy both conditions.

On the set of coordinate axes below, graph the locus of points that are equidistant from the lines y = 6 and y = 2 and also graph the locus of points that are 3 units from the y-axis. State the coordinates of *all* points that satisfy *both* conditions.


- How many points are both 4 units from the origin and also 2 units from the line y = 4?
 - 1 1
 - 233
 - 4 4
- In a coordinate plane, how many points are both 5 units from the origin and 2 units from the *x*-axis?
 - 1 1
 - 2 2
 - 3 3
 - 4 4

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

ANGLES


G.G.35: PARALLEL LINES & TRANSVERSALS

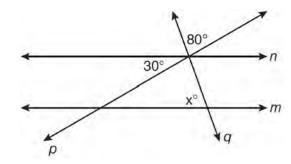
116 Based on the diagram below, which statement is true?

- 1 $a \parallel b$
- $2 \quad a \parallel c$
- 3 $b \parallel c$
- 4 $d \parallel e$

117 In the diagram below, line p intersects line m and line n.

If $m\angle 1 = 7x$ and $m\angle 2 = 5x + 30$, lines m and n are parallel when x equals

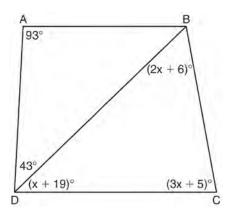
- 1 12.5
- 2 15
- 3 87.5
- 4 105


118 Line *n* intersects lines *l* and *m*, forming the angles shown in the diagram below.

Which value of x would prove $l \parallel m$?

- 1 2.5
- 2 4.5
- 3 6.25
- 4 8.75

In the diagram below, lines n and m are cut by transversals p and q.

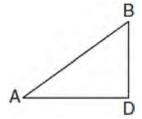

What value of x would make lines n and m parallel?

- 1 110
- 2 80
- 3 70
- 4 50

120 A transversal intersects two lines. Which condition would always make the two lines parallel?

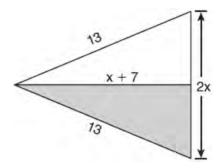
- 1 Vertical angles are congruent.
- 2 Alternate interior angles are congruent.
- 3 Corresponding angles are supplementary.
- 4 Same-side interior angles are complementary.

121 In the diagram below of quadrilateral ABCD with diagonal \overline{BD} , $m\angle A = 93$, $m\angle ADB = 43$, $m\angle C = 3x + 5$, $m\angle BDC = x + 19$, and $m\angle DBC = 2x + 6$. Determine if \overline{AB} is parallel to \overline{DC} . Explain your reasoning.



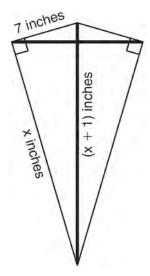
TRIANGLES

G.G.48: PYTHAGOREAN THEOREM


- 122 Which set of numbers does *not* represent the sides of a right triangle?
 - 1 {6,8,10}
 - 2 {8,15,17}
 - 3 {8,24,25}
 - 4 {15,36,39}

123 In the diagram below of $\triangle ADB$, m $\angle BDA = 90$, $AD = 5\sqrt{2}$, and $AB = 2\sqrt{15}$.

What is the length of \overline{BD} ?


- $1 \sqrt{10}$
- $2 \sqrt{20}$
- $3 \sqrt{50}$
- $4 \sqrt{110}$
- 124 The diagram below shows a pennant in the shape of an isosceles triangle. The equal sides each measure 13, the altitude is x + 7, and the base is 2x.

What is the length of the base?

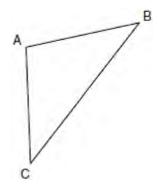
- 1 5
- 2 10
- 3 12
- 4 24

125 As shown in the diagram below, a kite needs a vertical and a horizontal support bar attached at opposite corners. The upper edges of the kite are 7 inches, the side edges are x inches, and the vertical support bar is (x + 1) inches.

What is the measure, in inches, of the vertical support bar?

- 1 23
- 2 24
- 3 25
- 4 26

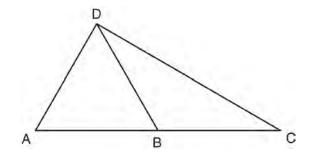
G.G.30: INTERIOR AND EXTERIOR ANGLES OF TRIANGLES

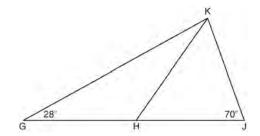

- 126 In an equilateral triangle, what is the difference between the sum of the exterior angles and the sum of the interior angles?
 - 1 180°
 - 2 120°
 - 3 90°
 - 4 60°

- Juliann plans on drawing $\triangle ABC$, where the measure of $\angle A$ can range from 50° to 60° and the measure of $\angle B$ can range from 90° to 100°. Given these conditions, what is the correct range of measures possible for $\angle C$?
 - 1 20° to 40°
 - 2 30° to 50°
 - 3 80° to 90°
 - 4 120° to 130°
- 128 In $\triangle ABC$, m $\angle A = x$, m $\angle B = 2x + 2$, and m $\angle C = 3x + 4$. What is the value of x?
 - 1 29
 - 2 31
 - 3 59
 - 4 61
- 129 In $\triangle DEF$, m $\angle D = 3x + 5$, m $\angle E = 4x 15$, and m $\angle F = 2x + 10$. Which statement is true?
 - 1 DF = FE
 - DE = FE
 - $3 \quad \text{m}\angle E = \text{m}\angle F$
 - 4 $m\angle D = m\angle F$
- 130 Triangle PQR has angles in the ratio of 2:3:5. Which type of triangle is $\triangle PQR$?
 - 1 acute
 - 2 isosceles
 - 3 obtuse
 - 4 right
- 131 The angles of triangle *ABC* are in the ratio of 8:3:4. What is the measure of the *smallest* angle?
 - 1 12°
 - 2 24°
 - 3 36°
 - 4 72°
- 132 In right $\triangle DEF$, m $\angle D = 90$ and m $\angle F$ is 12 degrees less than twice m $\angle E$. Find m $\angle E$.

133 The degree measures of the angles of $\triangle ABC$ are represented by x, 3x, and 5x - 54. Find the value of x.

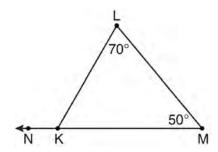
G.G.31: ISOSCELES TRIANGLE THEOREM


134 In the diagram of $\triangle ABC$ below, $\overline{AB} \cong \overline{AC}$. The measure of $\angle B$ is 40° .


What is the measure of $\angle A$?

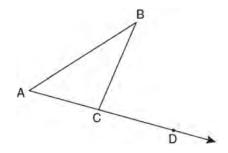
- 1 40°
- 2 50°
- 3 70°
- 4 100°
- 135 In $\triangle ABC$, $\overline{AB} \cong \overline{BC}$. An altitude is drawn from B to \overline{AC} and intersects \overline{AC} at D. Which conclusion is *not* always true?
 - 1 $\angle ABD \cong \angle CBD$
 - $2 \angle BDA \cong \angle BDC$
 - $3 \quad AD \cong BD$
 - $4 \quad \overline{AD} \cong \overline{DC}$
- 136 In isosceles triangle ABC, AB = BC. Which statement will always be true?
 - 1 $m\angle B = m\angle A$
 - 2 $m\angle A > m\angle B$
 - $3 \quad \text{m} \angle A = \text{m} \angle C$
 - 4 $m\angle C < m\angle B$

- 137 If the vertex angles of two isosceles triangles are congruent, then the triangles must be
 - 1 acute
 - 2 congruent
 - 3 right
 - 4 similar
- In the diagram below of $\triangle ACD$, B is a point on \overline{AC} such that $\triangle ADB$ is an equilateral triangle, and $\triangle DBC$ is an isosceles triangle with $\overline{DB} \cong \overline{BC}$. Find $m \angle C$.

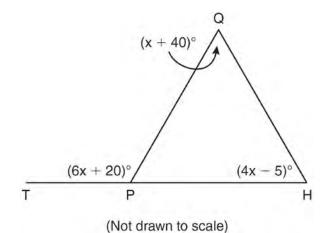


- 139 In $\triangle RST$, m $\angle RST = 46$ and $\overline{RS} \cong \overline{ST}$. Find m $\angle STR$.
- 140 In the diagram below of $\triangle GJK$, H is a point on \overline{GJ} , $\overline{HJ} \cong \overline{JK}$, $m\angle G = 28$, and $m\angle GJK = 70$. Determine whether $\triangle GHK$ is an isosceles triangle and justify your answer.

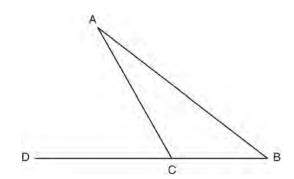
G.G.32: EXTERIOR ANGLE THEOREM


141 In the diagram of $\triangle KLM$ below, m $\angle L = 70$, m $\angle M = 50$, and \overline{MK} is extended through N.

What is the measure of $\angle LKN$?

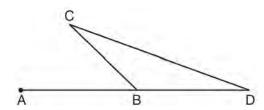

- 1 60°
- 2 120°
- 3 180°
- 4 300°
- 142 In $\triangle FGH$, m $\angle F = 42$ and an exterior angle at vertex *H* has a measure of 104. What is m $\angle G$?
 - 1 34
 - 2 62
 - 3 76
 - 4 146

143 In the diagram below, $\triangle ABC$ is shown with \overline{AC} extended through point D.



If $m\angle BCD = 6x + 2$, $m\angle BAC = 3x + 15$, and $m\angle ABC = 2x - 1$, what is the value of x?

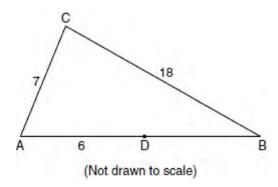
- 1 12
- $2 14\frac{10}{11}$
- 3 16
- 4 $18\frac{1}{9}$
- In the diagram below of $\triangle HQP$, side \overline{HP} is extended through P to T, $m\angle QPT = 6x + 20$, $m\angle HQP = x + 40$, and $m\angle PHQ = 4x 5$. Find $m\angle QPT$.



In the diagram below of $\triangle ABC$, side \overline{BC} is extended to point D, $m\angle A = x$, $m\angle B = 2x + 15$, and $m\angle ACD = 5x + 5$.

What is $m\angle B$?

- 1 5
- 2 20
- 3 25
- 4 55
- 146 In the diagram below of $\triangle BCD$, side \overline{DB} is extended to point A.

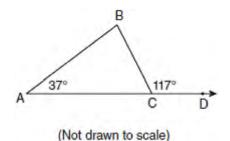


Which statement must be true?

- 1 $m\angle C > m\angle D$
- 2 $m\angle ABC < m\angle D$
- $3 \quad \text{m} \angle ABC > \text{m} \angle C$
- 4 $m\angle ABC > m\angle C + m\angle D$
- 147 Side \overline{PQ} of $\triangle PQR$ is extended through Q to point
 - T. Which statement is *not* always true?
 - 1 $m\angle RQT > m\angle R$
 - 2 $m\angle RQT > m\angle P$
 - $3 \quad \text{m} \angle RQT = \text{m} \angle P + \text{m} \angle R$
 - 4 $m\angle RQT > m\angle PQR$

G.G.33: TRIANGLE INEQUALITY THEOREM

148 In the diagram below of $\triangle ABC$, D is a point on \overline{AB} , AC = 7, AD = 6, and BC = 18.

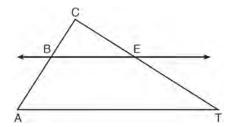


The length of \overline{DB} could be

- 1 5
- 2 12
- 3 19
- 4 25
- 149 Which set of numbers represents the lengths of the sides of a triangle?
 - 1 {5,18,13}
 - 2 {6,17,22}
 - 3 {16,24,7}
 - 4 {26, 8, 15}
- 150 In $\triangle ABC$, AB = 5 feet and BC = 3 feet. Which inequality represents all possible values for the length of \overline{AC} , in feet?
 - 1 $2 \le AC \le 8$
 - 2 2 < AC < 8
 - $3 \quad 3 \leq AC \leq 7$
 - $4 \quad 3 < AC < 7$

G.G.34: ANGLE SIDE RELATIONSHIP

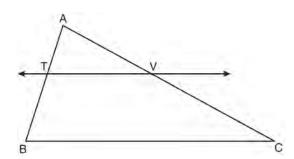
151 In the diagram below of $\triangle ABC$ with side \overline{AC} extended through D, $m\angle A = 37$ and $m\angle BCD = 117$. Which side of $\triangle ABC$ is the longest side? Justify your answer.



- 152 In $\triangle PQR$, PQ = 8, QR = 12, and RP = 13. Which statement about the angles of $\triangle PQR$ must be true?
 - 1 $m\angle Q > m\angle P > m\angle R$
 - 2 $m\angle Q > m\angle R > m\angle P$
 - $3 \quad \text{m} \angle R > \text{m} \angle P > \text{m} \angle Q$
 - 4 $\text{m}\angle P > \text{m}\angle R > \text{m}\angle Q$
- 153 In $\triangle ABC$, AB = 7, BC = 8, and AC = 9. Which list has the angles of $\triangle ABC$ in order from smallest to largest?
 - 1 $\angle A, \angle B, \angle C$
 - $2 \angle B, \angle A, \angle C$
 - $3 \angle C, \angle B, \angle A$
 - 4 $\angle C, \angle A, \angle B$
- 154 In $\triangle ABC$, m $\angle A = 95$, m $\angle B = 50$, and m $\angle C = 35$. Which expression correctly relates the lengths of the sides of this triangle?
 - 1 AB < BC < CA
 - 2 AB < AC < BC
 - 3 AC < BC < AB
 - $4 \qquad BC < AC < AB$

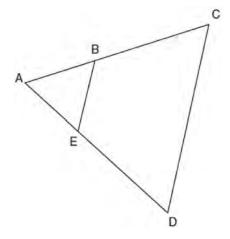
- 155 In scalene triangle ABC, $m\angle B = 45$ and $m\angle C = 55$. What is the order of the sides in length, from longest to shortest?
 - 1 \overline{AB} , BC, AC
 - $2 \overline{BC}, \overline{AC}, \overline{AB}$
 - $\overline{AC}, \overline{BC}, \overline{AB}$
 - 4 \overline{BC} , \overline{AB} , \overline{AC}
- 156 In $\triangle RST$, m $\angle R = 58$ and m $\angle S = 73$. Which inequality is true?
 - 1 RT < TS < RS
 - 2 RS < RT < TS
 - 3 RT < RS < TS
 - 4 RS < TS < RT

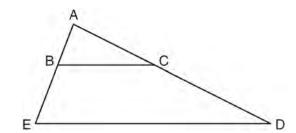
G.G.46: SIDE SPLITTER THEOREM


157 In the diagram below of $\triangle ACT$, $\overrightarrow{BE} \parallel \overline{AT}$.

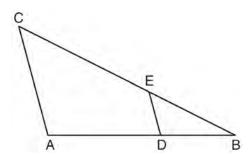
If $\overline{CB} = 3$, $\overline{CA} = 10$, and $\overline{CE} = 6$, what is the length of \overline{ET} ?

- 1 5
- 2 14
- 3 20
- 4 26

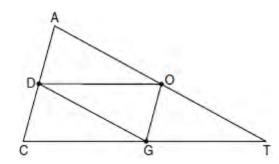

158 In the diagram below of $\triangle ABC$, $\overrightarrow{TV} \parallel \overrightarrow{BC}$, AT = 5, TB = 7, and AV = 10.


What is the length of \overline{VC} ?

- 1 $3\frac{1}{2}$
- $2 \quad 7\frac{1}{7}$
- 3 14
- 4 24
- 159 In $\triangle ABC$, point \underline{D} is on \overline{AB} , and point E is on \overline{BC} such that $\overline{DE} \parallel \overline{AC}$. If DB = 2, DA = 7, and DE = 3, what is the length of \overline{AC} ?
 - 1 8
 - 2 9
 - 3 10.5
 - 4 13.5

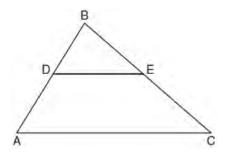

In the diagram below of $\triangle ACD$, E is a point on \overline{AD} and B is a point on \overline{AC} , such that $\overline{EB} \parallel \overline{DC}$. If $\underline{AE} = 3$, ED = 6, and DC = 15, find the length of \overline{EB} .

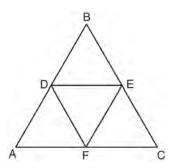
161 In the diagram below of $\triangle ADE$, \underline{B} is a point on \overline{AE} and C is a point on \overline{AD} such that $\overline{BC} \parallel \overline{ED}$, AC = x - 3, BE = 20, AB = 16, and AD = 2x + 2. Find the length of \overline{AC} .



In the diagram below of $\triangle ABC$, D is a point on \overline{AB} , E is a point on \overline{BC} , $\overline{AC} \parallel \overline{DE}$, CE = 25 inches, AD = 18 inches, and DB = 12 inches. Find, to the nearest tenth of an inch, the length of \overline{EB} .

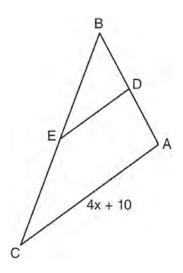
G.G.42: MIDSEGMENTS


163 In the diagram below of $\triangle ACT$, D is the midpoint of \overline{AC} , O is the midpoint of \overline{AT} , and G is the midpoint of \overline{CT} .


If AC = 10, AT = 18, and CT = 22, what is the perimeter of parallelogram CDOG?

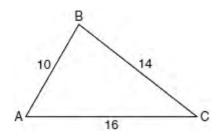
- 1 21
- 2 25
- 3 32
- 4 40

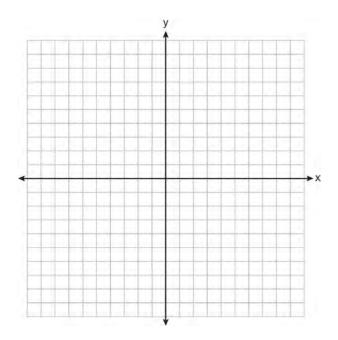
In the diagram below of $\triangle ABC$, \overline{DE} is a midsegment of $\triangle ABC$, DE = 7, AB = 10, and BC = 13. Find the perimeter of $\triangle ABC$.


In the diagram below, the vertices of $\triangle DEF$ are the midpoints of the sides of equilateral triangle *ABC*, and the perimeter of $\triangle ABC$ is 36 cm.

What is the length, in centimeters, of \overline{EF} ?

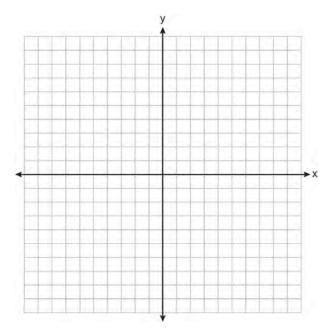
- 1 6
- 2 12
- 3 18
- 4 4


166 In the diagram below of $\triangle ABC$, D is the midpoint of \overline{AB} , and E is the midpoint of \overline{BC} .

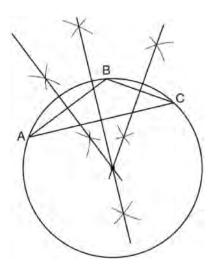

If AC = 4x + 10, which expression represents *DE*?

- 1 x + 2.5
- 2 2x + 5
- 3 2x + 10
- 4 8x + 20

167 In the diagram of $\triangle ABC$ below, AB = 10, BC = 14, and AC = 16. Find the perimeter of the triangle formed by connecting the midpoints of the sides of $\triangle ABC$.

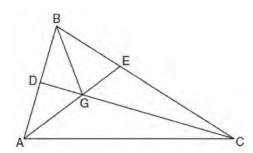


On the set of axes below, graph and label $\triangle DEF$ with vertices at D(-4,-4), E(-2,2), and F(8,-2). If \underline{G} is the midpoint of \overline{EF} and H is the midpoint of \overline{DF} , state the coordinates of G and H and label each point on your graph. Explain why $\overline{GH} \parallel \overline{DE}$.

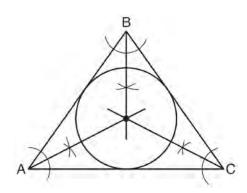

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

169 Triangle HKL has vertices H(-7,2), K(3,-4), and L(5,4). The midpoint of \overline{HL} is M and the midpoint of \overline{LK} is N. Determine and state the coordinates of points M and N. Justify the statement: \overline{MN} is parallel to \overline{HK} . [The use of the set of axes below is optional.]

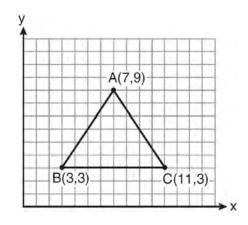
<u>G.G.21: CENTROID, ORTHOCENTER,</u> <u>INCENTER AND CIRCUMCENTER</u>


170 The diagram below shows the construction of the center of the circle circumscribed about $\triangle ABC$.

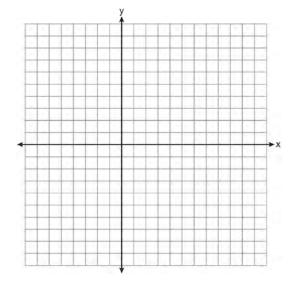
This construction represents how to find the intersection of


- 1 the angle bisectors of $\triangle ABC$
- 2 the medians to the sides of $\triangle ABC$
- 3 the altitudes to the sides of $\triangle ABC$
- 4 the perpendicular bisectors of the sides of $\triangle ABC$

171 In the diagram below of $\triangle ABC$, \overline{CD} is the bisector of $\angle BCA$, \overline{AE} is the bisector of $\angle CAB$, and \overline{BG} is drawn.

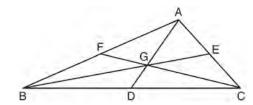

Which statement must be true?

- 1 DG = EG
- $2 \quad AG = BG$
- $3 \angle AEB \cong \angle AEC$
- $4 \angle DBG \cong \angle EBG$
- 172 Which geometric principle is used in the construction shown below?


- 1 The intersection of the angle bisectors of a triangle is the center of the inscribed circle.
- 2 The intersection of the angle bisectors of a triangle is the center of the circumscribed circle.
- 3 The intersection of the perpendicular bisectors of the sides of a triangle is the center of the inscribed circle.
- 4 The intersection of the perpendicular bisectors of the sides of a triangle is the center of the circumscribed circle.

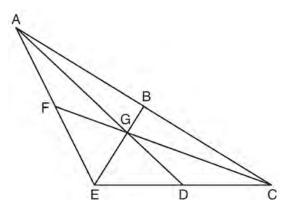
173 The vertices of the triangle in the diagram below are A(7,9), B(3,3), and C(11,3).

What are the coordinates of the centroid of $\triangle ABC$?


- 1 (5,6)
- 2 (7,3)
- 3(7,5)
- 4 (9,6)
- 174 Triangle ABC has vertices A(3,3), B(7,9), and C(11,3). Determine the point of intersection of the medians, and state its coordinates. [The use of the set of axes below is optional.]

- 175 In which triangle do the three altitudes intersect outside the triangle?
 - 1 a right triangle
 - 2 an acute triangle
 - 3 an obtuse triangle
 - 4 an equilateral triangle
- 176 In a given triangle, the point of intersection of the three medians is the same as the point of intersection of the three altitudes. Which classification of the triangle is correct?
 - 1 scalene triangle
 - 2 isosceles triangle
 - 3 equilateral triangle
 - 4 right isosceles triangle

G.G.43: CENTROID


177 In the diagram below of $\triangle ABC$, medians \overline{AD} , \overline{BE} , and \overline{CF} intersect at G.

If CF = 24, what is the length of \overline{FG} ?

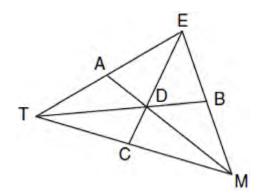

- 1 8
- 2 10
- 3 12
- 4 16

178 In the diagram below of $\triangle ACE$, medians \overline{AD} , \overline{EB} , and \overline{CF} intersect at G. The length of \overline{FG} is 12 cm.

What is the length, in centimeters, of \overline{GC} ?

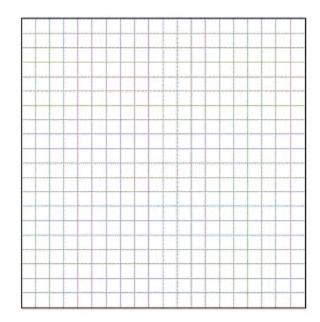
- 1 24
- 2 12
- 3 6
- 4 4
- 179 In the diagram of $\triangle ABC$ below, Jose found centroid P by constructing the three medians. He measured \overline{CF} and found it to be 6 inches.

If PF = x, which equation can be used to find x?


- $1 \qquad x + x = 6$
- 2 2x + x = 6
- $3 \quad 3x + 2x = 6$
- $4 \quad x + \frac{2}{3}x = 6$

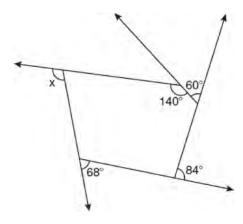
180 In the diagram below, point P is the centroid of $\triangle ABC$.

If PM = 2x + 5 and BP = 7x + 4, what is the length of PM?


- 1 9
- 2 2
- 3 18
- 4 27
- In the diagram below of $\triangle TEM$, medians \overline{TB} , \overline{EC} , and \overline{MA} intersect at D, and TB = 9. Find the length of \overline{TD} .

G.G.69: TRIANGLES IN THE COORDINATE PLANE

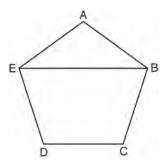
- 182 The vertices of $\triangle ABC$ are A(-1,-2), B(-1,2) and C(6,0). Which conclusion can be made about the angles of $\triangle ABC$?
 - 1 $m\angle A = m\angle B$
 - 2 $m\angle A = m\angle C$
 - $3 \quad \text{m} \angle ACB = 90$
 - 4 $m\angle ABC = 60$


- 183 Triangle *ABC* has vertices A(0,0), B(3,2), and C(0,4). The triangle may be classified as
 - 1 equilateral
 - 2 isosceles
 - 3 right
 - 4 scalene
- 184 Triangle *ABC* has coordinates A(-6,2), B(-3,6), and C(5,0). Find the perimeter of the triangle. Express your answer in simplest radical form. [The use of the grid below is optional.]

POLYGONS

G.G.36: INTERIOR AND EXTERIOR ANGLES OF POLYGONS

185 The pentagon in the diagram below is formed by five rays.

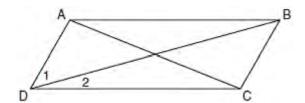


What is the degree measure of angle x?

- 1 72
- 2 96
- 3 108
- 4 112
- 186 The number of degrees in the sum of the interior angles of a pentagon is
 - 1 72
 - 2 360
 - 3 540
 - 4 720
- 187 In which polygon does the sum of the measures of the interior angles equal the sum of the measures of the exterior angles?
 - 1 triangle
 - 2 hexagon
 - 3 octagon
 - 4 quadrilateral

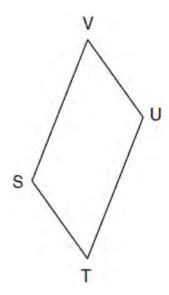
G.G.37: INTERIOR AND EXTERIOR ANGLES OF POLYGONS

188 In the diagram below of regular pentagon *ABCDE*, \overline{EB} is drawn.



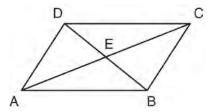
What is the measure of $\angle AEB$?

- 1 36°
- 2 54°
- 3 72°
- 4 108°
- 189 What is the measure of an interior angle of a regular octagon?
 - 1 45°
 - 2 60°
 - 3 120°
 - 4 135°
- 190 What is the measure of each interior angle of a regular hexagon?
 - 1 60°
 - 2 120°
 - 3 135°
 - 4 270°
- 191 Find, in degrees, the measures of both an interior angle and an exterior angle of a regular pentagon.


G.G.38: PARALLELOGRAMS

In the diagram below of parallelogram ABCD with diagonals \overline{AC} and \overline{BD} , $m\angle 1 = 45$ and $m\angle DCB = 120$.

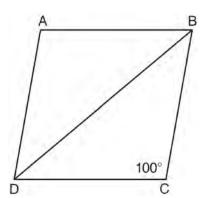
What is the measure of $\angle 2$?


- 1 15°
- 2 30°
- 3 45°
- 4 60°
- 193 In the diagram below of parallelogram STUV, SV = x + 3, VU = 2x 1, and TU = 4x 3.

What is the length of \overline{SV} ?

- 1 5
- 2 2
- 3 7
- 4 4

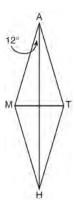
- 194 Which statement is true about every parallelogram?
 - 1 All four sides are congruent.
 - 2 The interior angles are all congruent.
 - 3 Two pairs of opposite sides are congruent.
 - 4 The diagonals are perpendicular to each other.
- In the diagram below, parallelogram ABCD has diagonals \overline{AC} and \overline{BD} that intersect at point E.



Which expression is *not* always true?

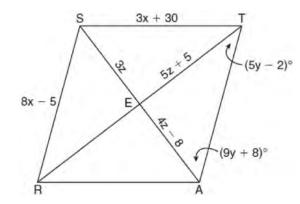
- 1 $\angle DAE \cong \angle BCE$
- $2 \angle DEC \cong \angle BEA$
- $3 \quad AC \cong DB$
- $4 \quad \overline{DE} \cong \overline{EB}$

G.G.39: PARALLELOGRAMS


196 In the diagram below of rhombus *ABCD*, $m\angle C = 100$.

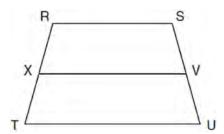
What is $m \angle DBC$?

- 1 40
- 2 45
- 3 50
- 4 80

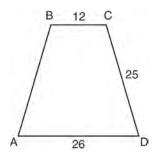

197 In the diagram below, MATH is a rhombus with diagonals \overline{AH} and \overline{MT} .

If $m\angle HAM = 12$, what is $m\angle AMT$?

- 1 12
- 2 78
- 3 84
- 4 156
- In rhombus ABCD, the diagonals \overline{AC} and \overline{BD} intersect at E. If AE = 5 and BE = 12, what is the length of \overline{AB} ?
 - 1 7
 - 2 10
 - 3 13
 - 4 17
- 199 Which quadrilateral has diagonals that always bisect its angles and also bisect each other?
 - 1 rhombus
 - 2 rectangle
 - 3 parallelogram
 - 4 isosceles trapezoid
- 200 The diagonals of a quadrilateral are congruent but do not bisect each other. This quadrilateral is
 - 1 an isosceles trapezoid
 - 2 a parallelogram
 - 3 a rectangle
 - 4 a rhombus

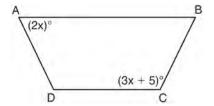

- 201 Given three distinct quadrilaterals, a square, a rectangle, and a rhombus, which quadrilaterals must have perpendicular diagonals?
 - 1 the rhombus, only
 - 2 the rectangle and the square
 - 3 the rhombus and the square
 - 4 the rectangle, the rhombus, and the square
- 202 In the diagram below, quadrilateral STAR is a rhombus with diagonals \overline{SA} and \overline{TR} intersecting at E. ST = 3x + 30, SR = 8x 5, SE = 3z, TE = 5z + 5, AE = 4z 8, $\text{m} \angle RTA = 5y 2$, and $\text{m} \angle TAS = 9y + 8$. Find SR, RT, and $\text{m} \angle TAS$.

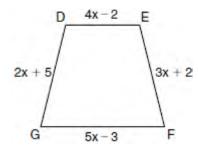
G.G.40: TRAPEZOIDS


- 203 <u>Isosceles trapezoid *ABCD*</u> has diagonals \overline{AC} and \overline{BD} . If AC = 5x + 13 and BD = 11x 5, what is the value of x?
 - 1 28
 - $2 \quad 10\frac{3}{4}$
 - 3 3
 - $4 \frac{1}{2}$

204 In the diagram below of trapezoid *RSUT*, $\overline{RS} \parallel \overline{TU}$, X is the midpoint of \overline{RT} , and V is the midpoint of \overline{SU} .

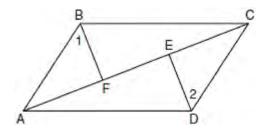
If RS = 30 and XV = 44, what is the length of \overline{TU} ?


- 1 37
- 2 58
- 3 74
- 4 118
- 205 In isosceles trapezoid ABCD, $\overline{AB} \cong \overline{CD}$. If BC = 20, AD = 36, and AB = 17, what is the length of the altitude of the trapezoid?
 - 1 10
 - 2 12
 - 3 15
 - 4 16
- 206 In the diagram below of isosceles trapezoid *ABCD*, AB = CD = 25, AD = 26, and BC = 12.


What is the length of an altitude of the trapezoid?

- 1 7
- 2 14
- 3 19
- 4 24

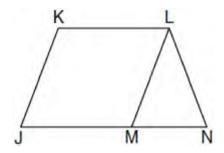
- 207 If the diagonals of a quadrilateral do *not* bisect each other, then the quadrilateral could be a
 - 1 rectangle
 - 2 rhombus
 - 3 square
 - 4 trapezoid
- 208 The diagram below shows isosceles trapezoid ABCD with $\overline{AB} \parallel \overline{DC}$ and $\overline{AD} \cong \overline{BC}$. If $m\angle BAD = 2x$ and $m\angle BCD = 3x + 5$, find $m\angle BAD$.


209 In the diagram below of isosceles trapezoid *DEFG*, $\overline{DE} \parallel \overline{GF}$, DE = 4x - 2, EF = 3x + 2, FG = 5x - 3, and GD = 2x + 5. Find the value of x.

G.G.41: SPECIAL QUADRILATERALS

- 210 A quadrilateral whose diagonals bisect each other and are perpendicular is a
 - 1 rhombus
 - 2 rectangle
 - 3 trapezoid
 - 4 parallelogram

211 Given: Quadrilateral *ABCD*, diagonal \overline{AFEC} , $\overline{AE} \cong \overline{FC}$, $\overline{BF} \perp \overline{AC}$, $\overline{DE} \perp \overline{AC}$, $\angle 1 \cong \angle 2$ Prove: *ABCD* is a parallelogram.



212 Given: <u>JKLM is a parallelogram</u>.

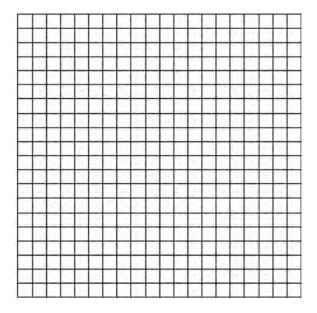
 $\overline{JM} \cong \overline{LN}$

 $\angle LMN \cong \angle LNM$

Prove: JKLM is a rhombus.

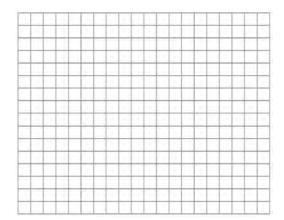


G.G.69: QUADRILATERALS IN THE COORDINATE PLANE

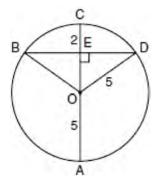

- 213 The coordinates of the vertices of parallelogram ABCD are A(-3,2), B(-2,-1), C(4,1), and D(3,4). The slopes of which line segments could be calculated to show that ABCD is a rectangle?
 - 1 \overline{AB} and \overline{DC}
 - 2 \overline{AB} and \overline{BC}
 - $3 \quad \overline{AD} \text{ and } \overline{BC}$
 - 4 \overline{AC} and \overline{BD}

214 Given: Quadrilateral *ABCD* has vertices A(-5,6), B(6,6), C(8,-3), and D(-3,-3).

Prove: Quadrilateral *ABCD* is a parallelogram but is neither a rhombus nor a rectangle. [The use of the grid below is optional.]

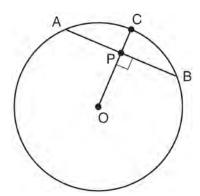


Quadrilateral *MATH* has coordinates M(1,1), A(-2,5), T(3,5), and H(6,1). Prove that quadrilateral *MATH* is a rhombus and prove that it is *not* a square. [The use of the grid is optional.]

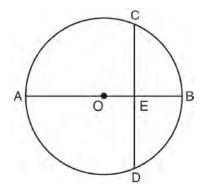

Geometry Regents Exam Questions by Performance Indicator: Topic

- 216 Given: $\triangle ABC$ with vertices A(-6,-2), B(2,8), and C(6,-2). \overline{AB} has midpoint D, \overline{BC} has midpoint E, and \overline{AC} has midpoint F.
 - Prove: *ADEF* is a parallelogram *ADEF* is *not* a rhombus [The use of the grid is optional.]

CONICS G.G.49: CHORDS

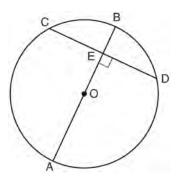

217 In the diagram below, circle O has a radius of 5, and CE = 2. Diameter \overline{AC} is perpendicular to chord \overline{BD} at E.

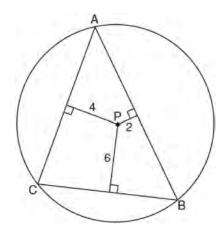
What is the length of \overline{BD} ?


- 1 12
- 2 10
- 3 8
- 4 4

In the diagram below of circle O, radius \overline{OC} is 5 cm. Chord \overline{AB} is 8 cm and is perpendicular to \overline{OC} at point P.

What is the length of \overline{OP} , in centimeters?

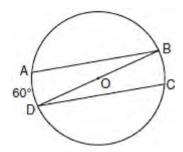

- 1 8
- 2 2
- 3 3
- 4 4
- 219 In the diagram below of circle O, diameter \overline{AOB} is perpendicular to chord \overline{CD} at point E, OA = 6, and OE = 2.


What is the length of \overline{CE} ?

- 1 $4\sqrt{3}$
- $2 \quad 2\sqrt{3}$
- $3 8\sqrt{2}$
- $4 4\sqrt{2}$

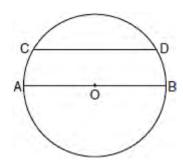
220 In the diagram below of circle O, diameter \overline{AB} is perpendicular to chord \overline{CD} at E. If AO = 10 and BE = 4, find the length of \overline{CE} .

221 In the diagram below, $\triangle ABC$ is inscribed in circle P. The distances from the center of circle P to each side of the triangle are shown.



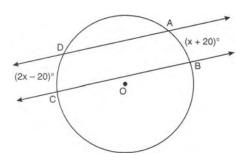
Which statement about the sides of the triangle is true?

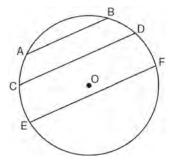
- 1 AB > AC > BC
- 2 AB < AC and AC > BC
- 3 AC > AB > BC
- 4 AC = AB and AB > BC


G.G.52: CHORDS

222 In the diagram of circle O below, chords \overline{AB} and \overline{CD} are parallel, and \overline{BD} is a diameter of the circle.

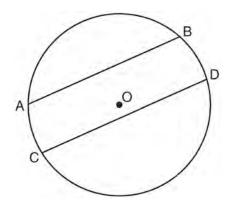
If $\widehat{\text{mAD}} = 60$, what is $\text{m}\angle CDB$?


- 1 20
- 2 30
- 3 60
- 4 120
- In the diagram of circle *O* below, chord \overline{CD} is parallel to diameter \overline{AOB} and $\overline{mAC} = 30$.


What is \widehat{mCD} ?

- 1 150
- 2 120
- 3 100
- 4 60

224 In the diagram below, two parallel lines intersect circle O at points A, B, C, and D, with $\widehat{\mathbf{m}AB} = x + 20$ and $\widehat{\mathbf{m}DC} = 2x - 20$. Find $\widehat{\mathbf{m}AB}$.

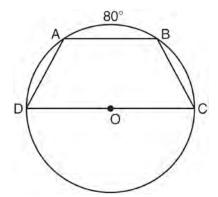

In the diagram below of circle O, chord \overline{AB} || chord \overline{CD} , and chord \overline{CD} || chord \overline{EF} .

Which statement must be true?

- 1 $\widehat{CE} \cong \widehat{DF}$
- $2 \quad \widehat{AC} \cong \widehat{DF}$
- $3 \quad \widehat{AC} \cong \widehat{CE}$
- $4 \quad \widehat{EF} \cong \widehat{CD}$

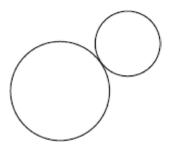
226 In the diagram below of circle O, chord \overline{AB} is parallel to chord \overline{CD} .

Which statement must be true?


1
$$\widehat{AC} \cong \widehat{BD}$$

2
$$\widehat{AB} \cong \widehat{CD}$$

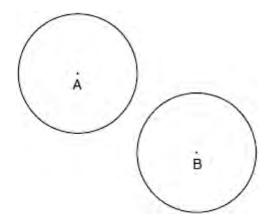
$$3 \quad \overline{AB} \cong \overline{CD}$$


4
$$\widehat{ABD} \cong \widehat{CDB}$$

227 In the diagram below, trapezoid ABCD, with bases \overline{AB} and \overline{DC} , is inscribed in circle O, with diameter \overline{DC} . If \widehat{mAB} =80, find \widehat{mBC} .

G.G.50: TANGENTS

How many common tangent lines can be drawn to the two externally tangent circles shown below?


1 1

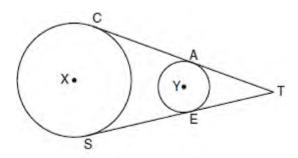
2 2

3 3

4 4

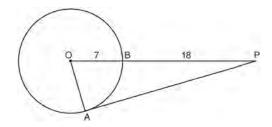
229 In the diagram below, circle *A* and circle *B* are shown.

What is the total number of lines of tangency that are common to circle *A* and circle *B*?


1 1

2 2

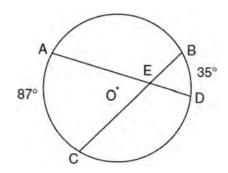
3 3


45

- 230 Line segment AB is tangent to circle O at A. Which type of triangle is always formed when points A, B, and O are connected?
 - 1 right
 - 2 obtuse
 - 3 scalene
 - 4 isosceles
- Tangents \overline{PA} and \overline{PB} are drawn to circle O from an external point, P, and radii \overline{OA} and \overline{OB} are drawn. If $m\angle APB = 40$, what is the measure of $\angle AOB$?
 - 1 140°
 - 2 100°
 - 3 70°
 - 4 50°
- 232 In the diagram below, circles X and Y have two tangents drawn to them from external point T. The points of tangency are C, A, S, and E. The ratio of TA to AC is 1:3. If TS = 24, find the length of \overline{SE} .

(Not drawn to scale)

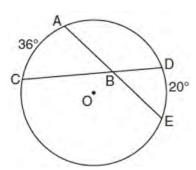
233 In the diagram below of $\triangle PAO$, \overline{AP} is tangent to circle O at point A, OB = 7, and BP = 18.



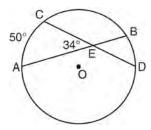
What is the length of \overline{AP} ?

- 1 10
- 2 12
- 3 17
- 4 24

G.G.51: ARCS DETERMINED BY ANGLES

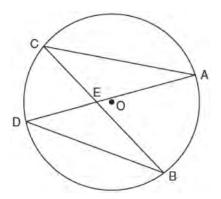

In the diagram below of circle O, chords \overline{AD} and \overline{BC} intersect at E, $\widehat{mAC} = 87$, and $\widehat{mBD} = 35$.

What is the degree measure of $\angle CEA$?

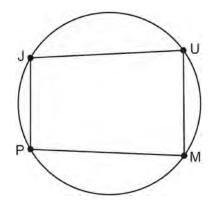

- 1 87
- 2 61
- 3 43.5
- 4 26

235 In the diagram below of circle O, chords \overline{AE} and \overline{DC} intersect at point B, such that $\widehat{mAC} = 36$ and $\widehat{mDE} = 20$.

What is $m\angle ABC$?

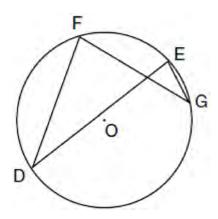

- 1 56
- 2 36
- 3 28
- 4 8
- 236 In the diagram below of circle O, chords \overline{AB} and \overline{CD} intersect at E.

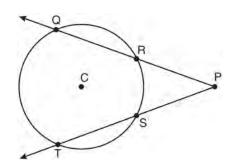
If $m\angle AEC = 34$ and $\widehat{mAC} = 50$, what is \widehat{mDB} ?


- 1 16
- 2 18
- 3 68
- 4 118

237 In the diagram below of circle O, chords \overline{AD} and \overline{BC} intersect at E.

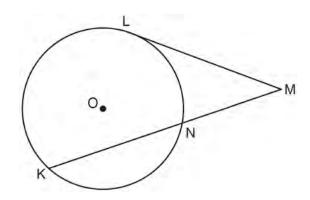
Which relationship must be true?


- 1 $\triangle CAE \cong \triangle DBE$
- 2 $\triangle AEC \sim \triangle BED$
- $3 \angle ACB \cong \angle CBD$
- 4 $\widehat{CA} \cong \widehat{DB}$
- 238 In the diagram below, quadrilateral *JUMP* is inscribed in a circle..

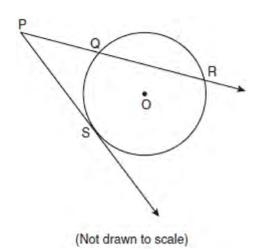

Opposite angles J and M must be

- 1 right
- 2 complementary
- 3 congruent
- 4 supplementary

239 In the diagram below of circle O, chords \overline{DF} , \overline{DE} , \overline{FG} , and \overline{EG} are drawn such that $\widehat{mDF}:\widehat{mFE}:\widehat{mEG}:\widehat{mGD}=5:2:1:7$. Identify one pair of inscribed angles that are congruent to each other and give their measure.

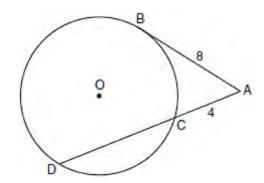

240 In the diagram below of circle C, $\widehat{mQT} = 140$, and $m\angle P = 40$.

What is \widehat{mRS} ?

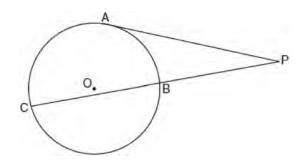

- 1 50
- 2 60
- 3 90
- 4 110

241 In the diagram below, tangent \overline{ML} and secant \overline{MNK} are drawn to circle O. The ratio $\widehat{mLN} : \widehat{mNK} : \widehat{mKL}$ is 3:4:5. Find $m\angle LMK$.

G.G.53: SEGMENTS INTERCEPTED BY CIRCLE

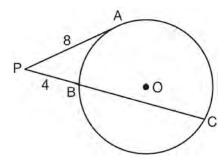

242 In the diagram below, \overline{PS} is a tangent to circle O at point S, \overline{PQR} is a secant, PS = x, PQ = 3, and PR = x + 18.

What is the length of \overline{PS} ?

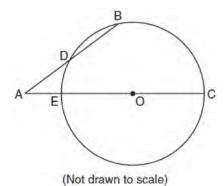

- 1 6
- 2 9
- 3 3
- 4 27

In the diagram below, tangent \overline{AB} and secant \overline{ACD} are drawn to circle O from an external point A, AB = 8, and AC = 4.

What is the length of \overline{CD} ?


- 1 16
- 2 13
- 3 12
- 4 10
- In the diagram below, tangent \overline{PA} and secant \overline{PBC} are drawn to circle O from external point P.

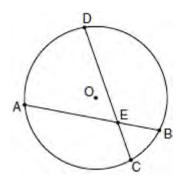
If PB = 4 and BC = 5, what is the length of \overline{PA} ?


- 1 20
- 2 9
- 3 8
- 4 6

In the diagram below of circle O, \overline{PA} is tangent to circle O at A, and \overline{PBC} is a secant with points B and C on the circle.

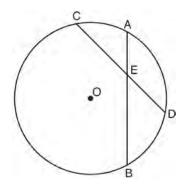
If PA = 8 and PB = 4, what is the length of \overline{BC} ?

- 1 20
- 2 16
- 3 15
- 4 12
- 246 In the diagram below of circle O, secant \overline{AB} intersects circle O at D, secant \overline{AOC} intersects circle O at E, E and E are E and E and E are E and E are E and E are E and E are E are E and E are E and E are E are E and E are E are E and E are E and E are E and E are E are E are E are E are E and E are E are E are E are E and E are E are E are E are E are E and E are E and E are E are E and E are E are E are E are E are E and E are E and E are E are E are E and E are E are E and E are E are E are E are E and E are E are E are E are E and E are E are E are E are E and E are E and E are E are E are E are E are E and E are E are E are E are E and E are E are E are E are E and E are E are E are E are E are E and E are E and E are E are E and E are E are E are E and E are E are E are E and E


What is the length of \overline{OC} ?

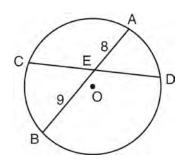
1 4.5

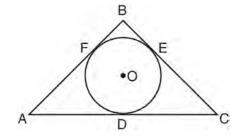
7


- 2
- 3 9
- 4 14

In the diagram of circle *O* below, chord \overline{AB} intersects chord \overline{CD} at E, DE = 2x + 8, EC = 3, AE = 4x - 3, and EB = 4.

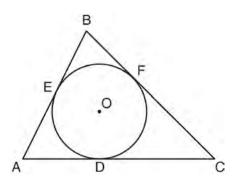
What is the value of x?


- 1 1
- 2 3.6
- 3 5
- 4 10.25
- In the diagram below of circle O, chords \overline{AB} and \overline{CD} intersect at E.


If $\underline{CE} = 10$, ED = 6, and AE = 4, what is the length of \overline{EB} ?

- 1 15
- 2 12
- 3 6.7
- 4 2.4

249 In the diagram below of circle O, chord \overline{AB} bisects chord \overline{CD} at E. If AE = 8 and BE = 9, find the length of \overline{CE} in simplest radical form.


250 In the diagram below, \overline{AB} , \overline{BC} , and \overline{AC} are tangents to circle O at points F, E, and D, respectively, AF = 6, CD = 5, and BE = 4.

What is the perimeter of $\triangle ABC$?

- 1 15
- 2 25
- 3 30
- 4 60

251 In the diagram below, $\triangle ABC$ is circumscribed about circle O and the sides of $\triangle ABC$ are tangent to the circle at points D, E, and F.

If AB = 20, AE = 12, and CF = 15, what is the length of \overline{AC} ?

- 1 8
- 2 15
- 3 23
- 4 27

G.G.71: EQUATIONS OF CIRCLES

252 The diameter of a circle has endpoints at (-2,3) and (6,3). What is an equation of the circle?

1
$$(x-2)^2 + (y-3)^2 = 16$$

$$2 (x-2)^2 + (y-3)^2 = 4$$

$$3 (x+2)^2 + (y+3)^2 = 16$$

$$4 \quad (x+2)^2 + (y+3)^2 = 4$$

253 What is an equation of a circle with its center at (-3,5) and a radius of 4?

1
$$(x-3)^2 + (y+5)^2 = 16$$

$$2 (x+3)^2 + (y-5)^2 = 16$$

$$3 \quad (x-3)^2 + (y+5)^2 = 4$$

4
$$(x+3)^2 + (y-5)^2 = 4$$

254 Which equation represents the circle whose center is (-2,3) and whose radius is 5?

1
$$(x-2)^2 + (y+3)^2 = 5$$

$$2 (x+2)^2 + (y-3)^2 = 5$$

$$3 (x+2)^2 + (y-3)^2 = 25$$

4
$$(x-2)^2 + (y+3)^2 = 25$$

255 What is an equation of a circle with center (7,-3) and radius 4?

1
$$(x-7)^2 + (y+3)^2 = 4$$

$$2 (x+7)^2 + (y-3)^2 = 4$$

$$3 (x-7)^2 + (y+3)^2 = 16$$

$$4 \quad (x+7)^2 + (y-3)^2 = 16$$

256 What is an equation of the circle with a radius of 5 and center at (1,-4)?

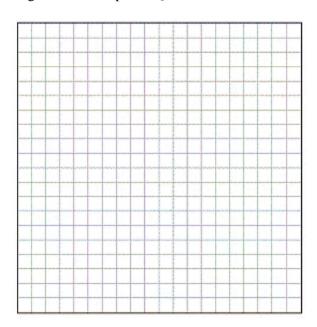
1
$$(x+1)^2 + (y-4)^2 = 5$$

$$2 (x-1)^2 + (y+4)^2 = 5$$

$$3 (x+1)^2 + (y-4)^2 = 25$$

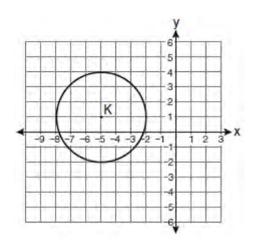
$$4 \quad (x-1)^2 + (y+4)^2 = 25$$

257 Which equation represents circle O with center (2,-8) and radius 9?


1
$$(x+2)^2 + (y-8)^2 = 9$$

$$2 (x-2)^2 + (y+8)^2 = 9$$

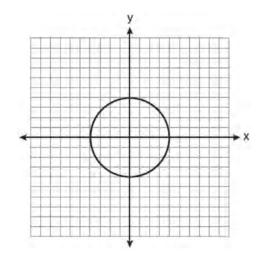
3
$$(x+2)^2 + (y-8)^2 = 81$$


4
$$(x-2)^2 + (y+8)^2 = 81$$

Write an equation of the circle whose diameter \overline{AB} has endpoints A(-4,2) and B(4,-4). [The use of the grid below is optional.]

G.G.72: EQUATIONS OF CIRCLES

259 Which equation represents circle *K* shown in the graph below?

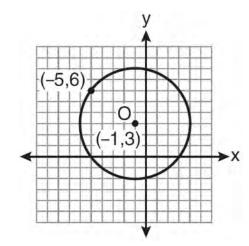

1
$$(x+5)^2 + (y-1)^2 = 3$$

$$2 (x+5)^2 + (y-1)^2 = 9$$

$$3 \quad (x-5)^2 + (y+1)^2 = 3$$

4
$$(x-5)^2 + (y+1)^2 = 9$$

260 What is an equation for the circle shown in the graph below?

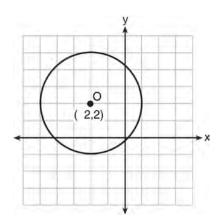

$$1 \qquad x^2 + y^2 = 2$$

$$2 \quad x^2 + y^2 = 4$$

$$3 \quad x^2 + y^2 = 8$$

$$4 x^2 + y^2 = 16$$

261 What is an equation of circle *O* shown in the graph below?

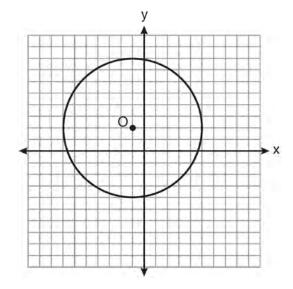

1
$$(x+1)^2 + (y-3)^2 = 25$$

$$2 (x-1)^2 + (y+3)^2 = 25$$

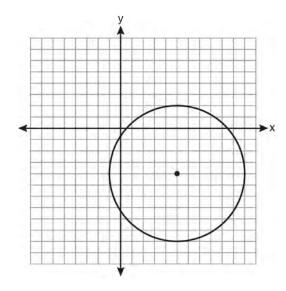
$$3 \quad (x-5)^2 + (y+6)^2 = 25$$

4
$$(x+5)^2 + (y-6)^2 = 25$$

262 What is an equation of circle *O* shown in the graph below?


1
$$(x+2)^2 + (y-2)^2 = 9$$

$$2 (x+2)^2 + (y-2)^2 = 3$$


$$3 \quad (x-2)^2 + (y+2)^2 = 9$$

4
$$(x-2)^2 + (y+2)^2 = 3$$

263 Write an equation for circle *O* shown on the graph below.

264 Write an equation of the circle graphed in the diagram below.

G.G.73: EQUATIONS OF CIRCLES

265 What are the center and radius of a circle whose equation is $(x-A)^2 + (y-B)^2 = C$?

1 center =
$$(A, B)$$
; radius = C

2 center =
$$(-A, -B)$$
; radius = C

3 center =
$$(A, B)$$
; radius = \sqrt{C}

4 center =
$$(-A, -B)$$
; radius = \sqrt{C}

266 What are the center and the radius of the circle whose equation is $(x-3)^2 + (y+3)^2 = 36$

1 center =
$$(3,-3)$$
; radius = 6

2 center =
$$(-3,3)$$
; radius = 6

3 center =
$$(3,-3)$$
; radius = 36

4 center =
$$(-3,3)$$
; radius = 36

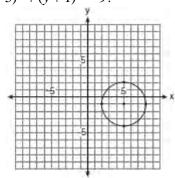
267 The equation of a circle is $x^2 + (y-7)^2 = 16$. What are the center and radius of the circle?

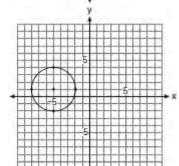
1 center =
$$(0,7)$$
; radius = 4

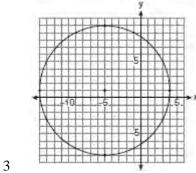
2 center =
$$(0,7)$$
; radius = 16

3 center =
$$(0,-7)$$
; radius = 4

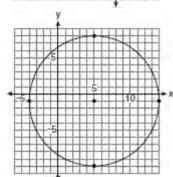
4 center =
$$(0,-7)$$
; radius = 16

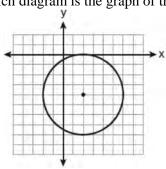

- 268 What are the center and the radius of the circle whose equation is $(x-5)^2 + (y+3)^2 = 16$?
 - 1 (-5,3) and 16
 - 2 (5,-3) and 16
 - $3 \quad (-5,3) \text{ and } 4$
 - 4 (5,-3) and 4
- 269 A circle has the equation $(x-2)^2 + (y+3)^2 = 36$. What are the coordinates of its center and the length of its radius?
 - 1 (-2,3) and 6
 - 2 (2,-3) and 6
 - 3 (-2,3) and 36
 - 4 (2,-3) and 36
- 270 A circle is represented by the equation $x^2 + (y+3)^2 = 13$. What are the coordinates of the

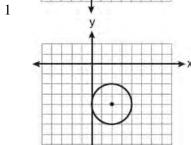

center of the circle and the length of the radius?

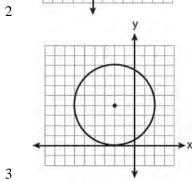

- $1 \quad (0,3) \text{ and } 13$
- 2 (0,3) and $\sqrt{13}$
- 3 (0,-3) and 13
- 4 (0,-3) and $\sqrt{13}$

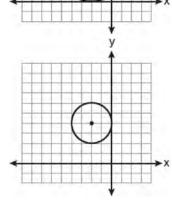
G.G.74: GRAPHING CIRCLES


271 Which graph represents a circle with the equation $(x-5)^2 + (y+1)^2 = 9$?

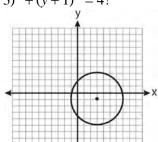


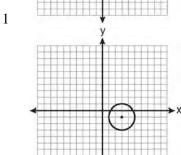


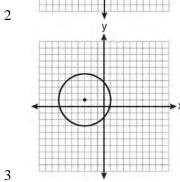

2

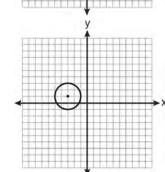


272 The equation of a circle is $(x-2)^2 + (y+4)^2 = 4$. Which diagram is the graph of the circle?

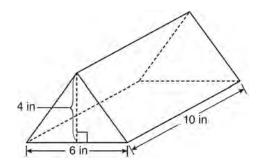








273 Which graph represents a circle with the equation $(x-3)^2 + (y+1)^2 = 4$?


MEASURING IN THE PLANE AND SPACE

G.G.11: VOLUME

274 Tim has a rectangular prism with a length of 10 centimeters, a width of 2 centimeters, and an unknown height. He needs to build another rectangular prism with a length of 5 centimeters and the same height as the original prism. The volume of the two prisms will be the same. Find the width, in centimeters, of the new prism.

G.G.12: VOLUME

275 A packing carton in the shape of a triangular prism is shown in the diagram below.

What is the volume, in cubic inches, of this carton?

- 1 20
- 2 60
- 3 120
- 4 240

276 The Parkside Packing Company needs a rectangular shipping box. The box must have a length of 11 inches and a width of 8 inches. Find, to the *nearest tenth of an inch*, the minimum height of the box such that the volume is *at least* 800 cubic inches.

277 A rectangular prism has a volume of

 $3x^2 + 18x + 24$. Its base has a length of x + 2 and a width of 3. Which expression represents the height of the prism?

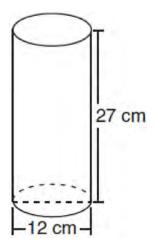
- 1 x + 4
- 2 x+2
- 3 3
- $4 \quad x^2 + 6x + 8$

278 The volume of a rectangular prism is 144 cubic inches. The height of the prism is 8 inches. Which measurements, in inches, could be the dimensions of the base?

- 1 3.3 by 5.5
- 2 2.5 by 7.2
- 3 12 by 8
- 4 9 by 9

G.G.13: VOLUME

279 A regular pyramid with a square base is shown in the diagram below.

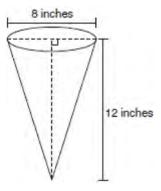


A side, *s*, of the base of the pyramid is 12 meters, and the height, *h*, is 42 meters. What is the volume of the pyramid in cubic meters?

280 The base of a pyramid is a rectangle with a width of 6 cm and a length of 8 cm. Find, in centimeters, the height of the pyramid if the volume is 288 cm³.

G.G.14: VOLUME AND LATERAL AREA

Which expression represents the volume, in cubic centimeters, of the cylinder represented in the diagram below?



- 1 162π
- $2 324\pi$
- 3 972π
- 4 $3,888\pi$
- What is the volume, in cubic centimeters, of a cylinder that has a height of 15 cm and a diameter of 12 cm?
 - 1 180π
 - 2 540π
 - 3 675π
 - 4 $2,160\pi$
- 283 A right circular cylinder has a volume of 1,000 cubic inches and a height of 8 inches. What is the radius of the cylinder to the *nearest tenth of an inch*?
 - 1 6.3
 - 2 11.2
 - 3 19.8
 - 4 39.8

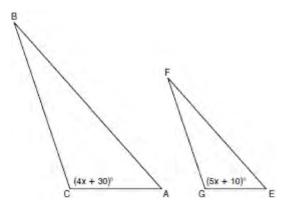
- 284 The volume of a cylinder is 12,566.4 cm³. The height of the cylinder is 8 cm. Find the radius of the cylinder to the *nearest tenth of a centimeter*.
- A right circular cylinder has an altitude of 11 feet and a radius of 5 feet. What is the lateral area, in square feet, of the cylinder, to the *nearest tenth*?
 - 1 172.7
 - 2 172.8
 - 3 345.4
 - 4 345.6
- 286 A paint can is in the shape of a right circular cylinder. The volume of the paint can is 600π cubic inches and its altitude is 12 inches. Find the radius, in inches, of the base of the paint can. Express the answer in simplest radical form. Find, to the *nearest tenth of a square inch*, the lateral area of the paint can.

G.G.15: VOLUME AND LATERAL AREA

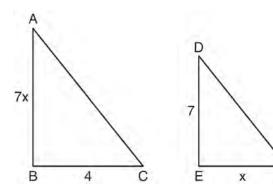
287 In the diagram below, a right circular cone has a diameter of 8 inches and a height of 12 inches.

What is the volume of the cone to the *nearest cubic inch*?

- 1 201
- 2 481
- 3 603
- 4 804

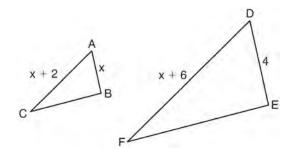

288 A right circular cone has a base with a radius of 15 cm, a vertical height of 20 cm, and a slant height of 25 cm. Find, in terms of π , the number of square centimeters in the lateral area of the cone.

G.G.16: VOLUME AND SURFACE AREA


- 289 The volume, in cubic centimeters, of a sphere whose diameter is 6 centimeters is
 - $1 \quad 12\pi$
 - $2 \quad 36\pi$
 - $3 48\pi$
 - 4 288π
- 290 A sphere has a diameter of 18 meters. Find the volume of the sphere, in cubic meters, in terms of π .
- 291 If the surface area of a sphere is represented by 144π , what is the volume in terms of π ?
 - $1 \quad 36\pi$
 - $2 ext{ } 48\pi$
 - $3 \quad 216\pi$
 - 4 288π
- 292 Tim is going to paint a wooden sphere that has a diameter of 12 inches. Find the surface area of the sphere, to the *nearest square inch*.

G.G.45: SIMILARITY

293 In the diagram below, $\triangle ABC \sim \triangle EFG$, $m\angle C = 4x + 30$, and $m\angle G = 5x + 10$. Determine the value of x.


- 294 If $\triangle ABC \sim \triangle ZXY$, m $\angle A = 50$, and m $\angle C = 30$, what is m $\angle X$?
 - 1 30
 - 2 50
 - 3 80
 - 4 100
- 295 As shown in the diagram below, $\triangle ABC \sim \triangle DEF$, AB = 7x, BC = 4, DE = 7, and EF = x.

What is the length of \overline{AB} ?

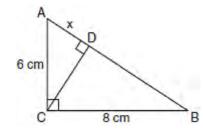
- 1 28
- 2 2
- 3 14
- 4 4

296 In the diagram below, $\triangle ABC \sim \triangle DEF$, DE = 4, AB = x, AC = x + 2, and DF = x + 6. Determine the length of \overline{AB} . [Only an algebraic solution can receive full credit.]

- 297 Two triangles are similar, and the ratio of each pair of corresponding sides is 2:1. Which statement regarding the two triangles is *not* true?
 - 1 Their areas have a ratio of 4:1.
 - 2 Their altitudes have a ratio of 2:1.
 - 3 Their perimeters have a ratio of 2:1.
 - 4 Their corresponding angles have a ratio of 2:1.
- 298 Given $\triangle ABC \sim \triangle DEF$ such that $\frac{AB}{DE} = \frac{3}{2}$. Which statement is *not* true?

$$1 \qquad \frac{BC}{EF} = \frac{3}{2}$$

$$2 \frac{m\angle A}{m\angle D} = \frac{3}{2}$$

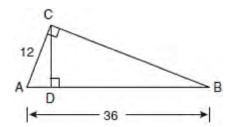

$$3 \quad \frac{\text{area of } \triangle ABC}{\text{area of } \triangle DEF} = \frac{9}{4}$$

$$4 \frac{\text{perimeter of } \triangle ABC}{\text{perimeter of } \triangle DEF} = \frac{3}{2}$$

- 299 $\triangle ABC$ is similar to $\triangle DEF$. The ratio of the length of \overline{AB} to the length of \overline{DE} is 3:1. Which ratio is also equal to 3:1?
 - $1 \quad \frac{\text{m}\angle A}{\text{m}\angle D}$
 - $2 \frac{m\angle B}{m\angle F}$
 - $3 \quad \frac{\text{area of } \triangle ABC}{\text{area of } \triangle DEF}$
 - $4 \quad \frac{\text{perimeter of } \triangle ABC}{\text{perimeter of } \triangle DEF}$

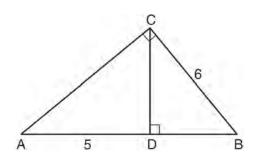
G.G.47: SIMILARITY

300 In the diagram below, the length of the legs \overline{AC} and \overline{BC} of right triangle ABC are 6 cm and 8 cm, respectively. Altitude \overline{CD} is drawn to the hypotenuse of $\triangle ABC$.



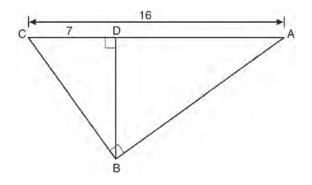
What is the length of \overline{AD} to the nearest tenth of a centimeter?

- 1 3.6
- 2 6.0
- 3 6.4
- 4 4.0


Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

301 In the diagram below of right triangle ACB, altitude \overline{CD} is drawn to hypotenuse \overline{AB} .

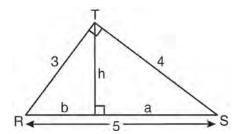
If AB = 36 and AC = 12, what is the length of \overline{AD} ?


- 1 32
- 2 6
- 3 3
- 4 4
- 302 In the diagram below of right triangle ABC, \overline{CD} is the altitude to hypotenuse \overline{AB} , CB = 6, and AD = 5.

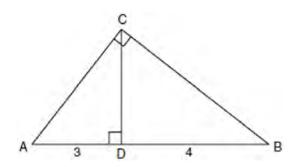
What is the length of \overline{BD} ?

- 1 5
- 2 9
- 3 3
- 4 4

303 In the diagram below of right triangle *ABC*, altitude \overline{BD} is drawn to hypotenuse \overline{AC} , AC = 16, and CD = 7.

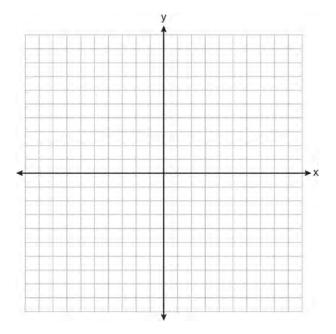


What is the length of \overline{BD} ?


- 1 $3\sqrt{7}$
- 2 $4\sqrt{7}$
- 3 $7\sqrt{3}$
- 4 12
- 304 In $\triangle PQR$, $\angle PRQ$ is a right angle and \overline{RT} is drawn perpendicular to hypotenuse \overline{PQ} . If PT = x,

$$RT = 6$$
, and $TQ = 4x$, what is the length of \overline{PQ} ?

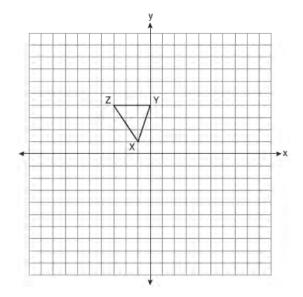
- 1 9
- 2 12
- 3 3
- 4 15
- 305 In the diagram below, $\triangle RST$ is a 3-4-5 right triangle. The altitude, h, to the hypotenuse has been drawn. Determine the length of h.


306 In the diagram below of right triangle ACB, altitude \overline{CD} intersects \overline{AB} at D. If AD = 3 and DB = 4, find the length of \overline{CD} in simplest radical form.

TRANSFORMATIONS

G.G.54: ROTATIONS

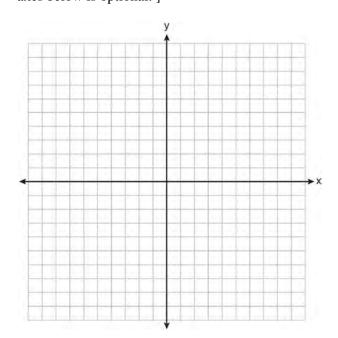
307 The coordinates of the vertices of $\triangle RST$ are R(-2,3), S(4,4), and T(2,-2). Triangle R'S'T' is the image of $\triangle RST$ after a rotation of 90° about the origin. State the coordinates of the vertices of $\triangle R'S'T'$. [The use of the set of axes below is optional.]


G.G.54: REFLECTIONS

308 Triangle *ABC* has vertices A(-2,2), B(-1,-3), and C(4,0). Find the coordinates of the vertices of $\triangle A'B'C'$, the image of $\triangle ABC$ after the transformation $r_{\text{x-axis}}$. [The use of the grid is optional.]

Geometry Regents Exam Questions by Performance Indicator: Topic $\underline{www.jmap.org}$

309 Triangle *XYZ*, shown in the diagram below, is reflected over the line x = 2. State the coordinates of $\Delta X'Y'Z'$, the image of ΔXYZ .


- 310 Point A is located at (4,-7). The point is reflected in the x-axis. Its image is located at
 - $1 \quad (-4,7)$
 - 2 (-4,-7)
 - 3 (4,7)
 - 4 (7,-4)
- 311 What is the image of the point (2,-3) after the transformation r_{y-axis} ?
 - 1 (2,3)
 - 2 (-2,-3)
 - 3 (-2,3)
 - 4 (-3,2)
- 312 The coordinates of point A are (-3a,4b). If point A' is the image of point A reflected over the line y = x, the coordinates of A' are
 - 1 (4b, -3a)
 - (3a,4b)
 - $3 \quad (-3a, -4b)$
 - 4 (-4b, -3a)

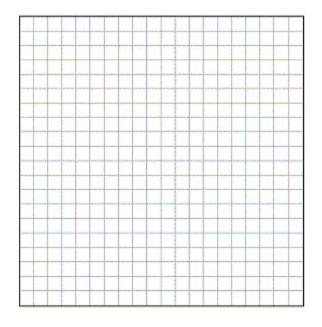
G.G.54: TRANSLATIONS

- 313 What is the image of the point (-5,2) under the translation T_{3-4} ?
 - $1 \quad (-9,5)$
 - 2 (-8,6)
 - 3(-2,-2)
 - 4 (-15, -8)
- 314 Triangle ABC has vertices A(1,3), B(0,1), and C(4,0). Under a translation, A', the image point of A, is located at (4,4). Under this same translation, point C' is located at
 - 1 (7,1)
 - 2 (5,3)
 - 3 (3,2)
 - 4(1,-1)

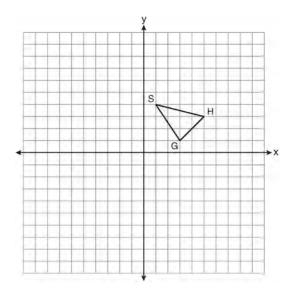
G.G.54: COMPOSITIONS OF TRANSFORMATIONS

315 The coordinates of the vertices of parallelogram ABCD are A(-2,2), B(3,5), C(4,2), and D(-1,-1). State the coordinates of the vertices of parallelogram A''B''C''D'' that result from the transformation $r_{y-axis} \circ T_{2,-3}$. [The use of the set of axes below is optional.]

316 What is the image of point A(4,2) after the composition of transformations defined by

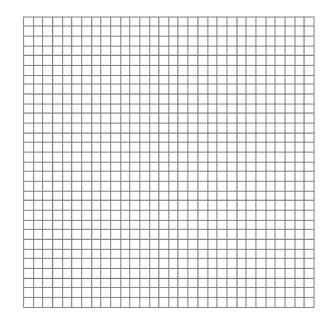

$$R_{90^{\circ}} \circ r_{y=x}$$
?

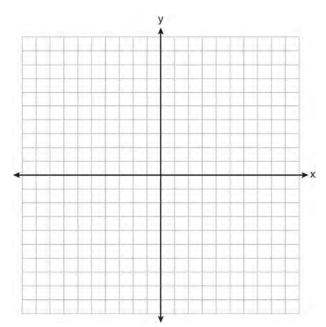
- 4 (2,-4)
- 317 The point (3,-2) is rotated 90° about the origin and then dilated by a scale factor of 4. What are the coordinates of the resulting image?


$$1 (-12,8)$$

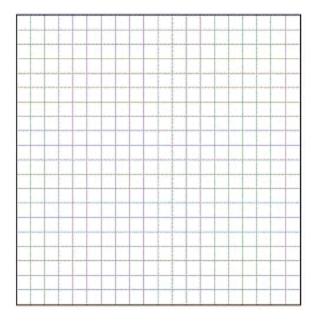
G.G.58: COMPOSITIONS OF TRANSFORMATIONS

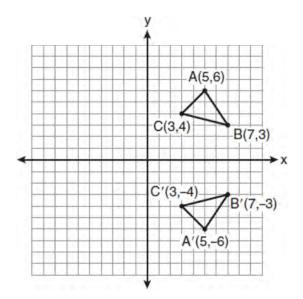
318 The coordinates of the vertices of $\triangle ABC$ A(1,3), B(-2,2) and C(0,-2). On the grid below, graph and label $\triangle A''B''C''$, the result of the composite transformation $D_2 \circ T_{3,-2}$. State the coordinates of A'', B'', and C''.


319 As shown on the set of axes below, $\triangle GHS$ has vertices G(3,1), H(5,3), and S(1,4). Graph and state the coordinates of $\triangle G''H''S''$, the image of $\triangle GHS$ after the transformation $T_{-3,1} \circ D_2$.

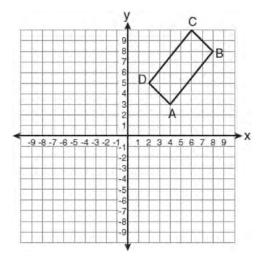

- 320 The endpoints of \overline{AB} are A(3,2) and B(7,1). If $\overline{A''B''}$ is the result of the transformation of \overline{AB} under $D_2 \circ T_{-4,3}$ what are the coordinates of A'' and B''?
 - 1 A''(-2,10) and B''(6,8)
 - 2 A''(-1,5) and B''(3,4)
 - 3 A''(2,7) and B''(10,5)
 - 4 A''(14,-2) and B''(22,-4)

G.G.55: PROPERTIES OF TRANSFORMATIONS


321 The vertices of $\triangle ABC$ are A(3,2), B(6,1), and C(4,6). Identify and graph a transformation of $\triangle ABC$ such that its image, $\triangle A'B'C'$, results in $\overline{AB} \parallel \overline{A'B'}$.


322 Triangle ABC has coordinates A(2,-2), B(2,1), and C(4,-2). Triangle A'B'C' is the image of $\triangle ABC$ under $T_{5,-2}$. On the set of axes below, graph and label $\triangle ABC$ and its image, $\triangle A'B'C'$. Determine the relationship between the area of $\triangle ABC$ and the area of $\triangle A'B'C'$. Justify your response.

323 Triangle DEG has the coordinates D(1,1), E(5,1), and G(5,4). Triangle DEG is rotated 90° about the origin to form $\Delta D'E'G'$. On the grid below, graph and label ΔDEG and $\Delta D'E'G'$. State the coordinates of the vertices D', E', and G'. Justify that this transformation preserves distance.



Which expression best describes the transformation shown in the diagram below?

- 1 same orientation; reflection
- 2 opposite orientation; reflection
- 3 same orientation; translation
- 4 opposite orientation; translation

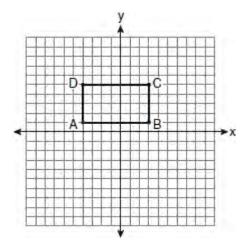
325 The rectangle *ABCD* shown in the diagram below will be reflected across the *x*-axis.

What will *not* be preserved?

- 1 slope of \overline{AB}
- 2 parallelism of \overline{AB} and \overline{CD}
- 3 length of \overline{AB}
- 4 measure of $\angle A$
- 326 A transformation of a polygon that always preserves both length and orientation is
 - 1 dilation
 - 2 translation
 - 3 line reflection
 - 4 glide reflection
- Quadrilateral MNOP is a trapezoid with $\overline{MN} \parallel \overline{OP}$. If M'N'O'P' is the image of MNOP after a reflection over the x-axis, which two sides of quadrilateral M'N'O'P' are parallel?
 - 1 $\overline{M'N'}$ and $\overline{O'P'}$
 - 2 $\overline{M'N'}$ and $\overline{N'O'}$
 - $3 \quad \overline{P'M'} \text{ and } \overline{O'P'}$
 - $\overline{P'M'}$ and $\overline{N'O'}$

328 Pentagon *PQRST* has \overline{PQ} parallel to \overline{TS} . After a translation of $T_{2,-5}$, which line segment is parallel

to
$$\overline{P'Q'}$$
?

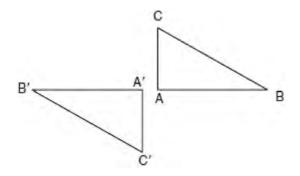

- 1 $\overline{R'Q'}$
- $2 \quad \overline{R'S'}$
- $3 \overline{T'S'}$
- 4 $\overline{T'P'}$
- When a quadrilateral is reflected over the line y = x, which geometric relationship is *not* preserved?
 - 1 congruence
 - 2 orientation
 - 3 parallelism
 - 4 perpendicularity

G.G.57: PROPERTIES OF TRANSFORMATIONS

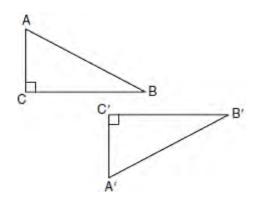
- 330 Which transformation of the line x = 3 results in an image that is perpendicular to the given line?
 - 1 r_{x-axis}
 - r_{y-axis}
 - $r_{y=x}$
 - 4 $r_{x=1}$

G.G.59: PROPERTIES OF TRANSFORMATIONS

331 On the set of axes below, Geoff drew rectangle *ABCD*. He will transform the rectangle by using the translation $(x,y) \rightarrow (x+2,y+1)$ and then will reflect the translated rectangle over the *x*-axis.

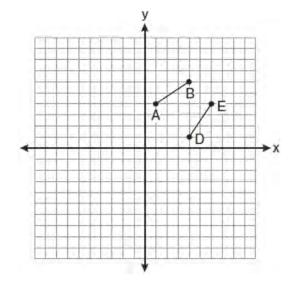


What will be the area of the rectangle after these transformations?


- 1 exactly 28 square units
- 2 less than 28 square units
- 3 greater than 28 square units
- 4 It cannot be determined from the information given.
- 332 When $\triangle ABC$ is dilated by a scale factor of 2, its image is $\triangle A'B'C'$. Which statement is true?
 - 1 $\overline{AC} \cong \overline{A'C'}$
 - $2 \qquad \angle A \cong \angle A'$
 - 3 perimeter of $\triangle ABC$ = perimeter of $\triangle A'B'C'$
 - 4 2(area of $\triangle ABC$) = area of $\triangle A'B'C'$
- 333 In $\triangle KLM$, m $\angle K = 36$ and KM = 5. The transformation D_2 is performed on $\triangle KLM$ to form $\triangle K'L'M'$. Find m $\angle K'$. Justify your answer. Find the length of $\overline{K'M'}$. Justify your answer.

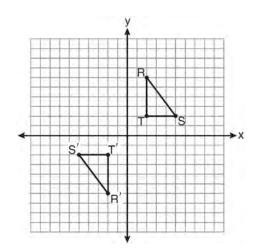
G.G.56: IDENTIFYING TRANSFORMATIONS

334 In the diagram below, under which transformation will $\triangle A'B'C'$ be the image of $\triangle ABC$?

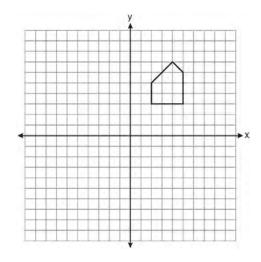


- 1 rotation
- 2 dilation
- 3 translation
- 4 glide reflection
- 335 In the diagram below, which transformation was used to map $\triangle ABC$ to $\triangle A'B'C'$?

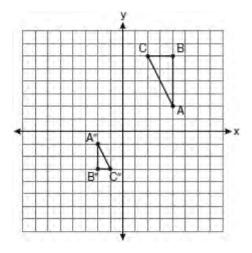
- 1 dilation
- 2 rotation
- 3 reflection
- 4 glide reflection
- 336 Which transformation is *not* always an isometry?
 - 1 rotation
 - 2 dilation
 - 3 reflection
 - 4 translation


- 337 Which transformation can map the letter **S** onto itself?
 - 1 glide reflection
 - 2 translation
 - 3 line reflection
 - 4 rotation
- 338 The diagram below shows \overline{AB} and \overline{DE} .

Which transformation will move \overline{AB} onto \overline{DE} such that point D is the image of point A and point E is the image of point B?

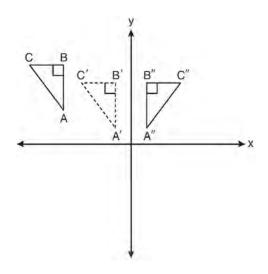

- 1 $T_{3,-3}$
- 2 $D_{\frac{1}{2}}$
- 3 $R_{90^{\circ}}$
- 4 $r_{y=x}$

339 As shown on the graph below, $\Delta R'S'T'$ is the image of ΔRST under a single transformation.


Which transformation does this graph represent?

- 1 glide reflection
- 2 line reflection
- 3 rotation
- 4 translation
- 340 A pentagon is drawn on the set of axes below. If the pentagon is reflected over the *y*-axis, determine if this transformation is an isometry. Justify your answer. [The use of the set of axes is optional.]

G.G.60: IDENTIFYING TRANSFORMATIONS


341 After a composition of transformations, the coordinates A(4,2), B(4,6), and C(2,6) become A''(-2,-1), B''(-2,-3), and C''(-1,-3), as shown on the set of axes below.

Which composition of transformations was used?

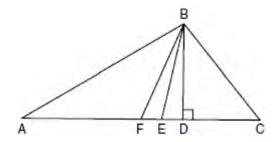
- 1 $R_{180^{\circ}} \circ D_2$
- $R_{90^{\circ}} \circ D_2$
- $3 \quad D_{\frac{1}{2}} \circ R_{180^{\circ}}$
- $4 \quad D_{\frac{1}{2}} \circ R_{90^{\circ}}$
- Which transformation produces a figure similar but not congruent to the original figure?
 - 1 $T_{1,3}$
 - 2 $D_{\frac{1}{2}}$
 - $R_{90^{\circ}}$
 - $4 r_{y=x}$

343 In the diagram below, $\triangle A'B'C'$ is a transformation of $\triangle ABC$, and $\triangle A''B''C''$ is a transformation of $\triangle A'B'C'$.

The composite transformation of $\triangle ABC$ to $\triangle A''B''C''$ is an example of a

- 1 reflection followed by a rotation
- 2 reflection followed by a translation
- 3 translation followed by a rotation
- 4 translation followed by a reflection

G.G.61: ANALYTICAL REPRESENTATIONS OF TRANSFORMATIONS


- 344 A polygon is transformed according to the rule: $(x,y) \rightarrow (x+2,y)$. Every point of the polygon moves two units in which direction?
 - 1 up
 - 2 down
 - 3 left
 - 4 right

LOGIC

G.G.24: STATEMENTS AND NEGATIONS

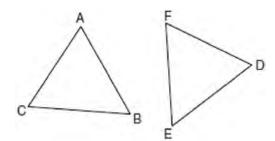
- 345 What is the negation of the statement "The Sun is shining"?
 - 1 It is cloudy.
 - 2 It is daytime.
 - 3 It is not raining.
 - 4 The Sun is not shining.
- 346 What is the negation of the statement "Squares are parallelograms"?
 - 1 Parallelograms are squares.
 - 2 Parallelograms are not squares.
 - 3 It is not the case that squares are parallelograms.
 - 4 It is not the case that parallelograms are squares.
- 347 What is the negation of the statement "I am not going to eat ice cream"?
 - 1 I like ice cream.
 - 2 I am going to eat ice cream.
 - 3 If I eat ice cream, then I like ice cream.
 - 4 If I don't like ice cream, then I don't eat ice cream.
- 348 Which statement is the negation of "Two is a prime number" and what is the truth value of the negation?
 - 1 Two is not a prime number; false
 - 2 Two is not a prime number; true
 - 3 A prime number is two; false
 - 4 A prime number is two; true
- 349 Given the true statement, "The medians of a triangle are concurrent," write the negation of the statement and give the truth value for the negation.

350 Given $\triangle ABC$ with base \overline{AFEDC} , median \overline{BF} , altitude \overline{BD} , and \overline{BE} bisects $\angle ABC$, which conclusion is valid?

- 1 $\angle FAB \cong \angle ABF$
- 2 $\angle ABF \cong \angle CBD$
- $3 \quad \overline{CE} \cong \overline{EA}$
- 4 $\overline{CF} \cong \overline{FA}$

G.G.25: COMPOUND STATEMENTS

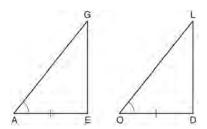
- 351 Which compound statement is true?
 - 1 A triangle has three sides and a quadrilateral has five sides.
 - 2 A triangle has three sides if and only if a quadrilateral has five sides.
 - 3 If a triangle has three sides, then a quadrilateral has five sides.
 - 4 A triangle has three sides or a quadrilateral has five sides.
- 352 The statement "*x* is a multiple of 3, and *x* is an even integer" is true when *x* is equal to
 - 1 9
 - 2 8
 - 3 3
 - 4 6
- 353 Given: Two is an even integer or three is an even integer.


Determine the truth value of this disjunction. Justify your answer.

G.G.26: CONDITIONAL STATEMENTS

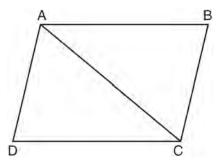
- What is the inverse of the statement "If two triangles are not similar, their corresponding angles are not congruent"?
 - 1 If two triangles are similar, their corresponding angles are not congruent.
 - 2 If corresponding angles of two triangles are not congruent, the triangles are not similar.
 - 3 If two triangles are similar, their corresponding angles are congruent.
 - 4 If corresponding angles of two triangles are congruent, the triangles are similar.
- What is the converse of the statement "If Bob does his homework, then George gets candy"?
 - 1 If George gets candy, then Bob does his homework.
 - 2 Bob does his homework if and only if George gets candy.
 - 3 If George does not get candy, then Bob does not do his homework.
 - 4 If Bob does not do his homework, then George does not get candy.
- Which statement is logically equivalent to "If it is warm, then I go swimming"
 - 1 If I go swimming, then it is warm.
 - 2 If it is warm, then I do not go swimming.
 - 3 If I do not go swimming, then it is not warm.
 - 4 If it is not warm, then I do not go swimming.
- What is the contrapositive of the statement, "If I am tall, then I will bump my head"?
 - 1 If I bump my head, then I am tall.
 - 2 If I do not bump my head, then I am tall.
 - 3 If I am tall, then I will not bump my head.
 - 4 If I do not bump my head, then I am not tall.
- 358 Write a statement that is logically equivalent to the statement "If two sides of a triangle are congruent, the angles opposite those sides are congruent." Identify the new statement as the converse, inverse, or contrapositive of the original statement.

G.G.28: TRIANGLE CONGRUENCY

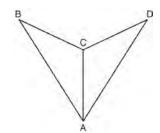

359 In the diagram of $\triangle ABC$ and $\triangle DEF$ below, $\overline{AB} \cong \overline{DE}$, $\angle A \cong \angle D$, and $\angle B \cong \angle E$.

Which method can be used to prove

 $\triangle ABC \cong \triangle DEF$?


- 1 SSS
- 2 SAS
- 3 ASA
- 4 HL
- 360 In the diagram below of $\triangle AGE$ and $\triangle OLD$, $\angle GAE \cong \angle LOD$, and $\overline{AE} \cong \overline{OD}$.

To prove that $\triangle AGE$ and $\triangle OLD$ are congruent by SAS, what other information is needed?


- $1 \quad \overline{GE} \cong \overline{LD}$
- $2 \quad \overline{AG} \cong \overline{OL}$
- $3 \quad \angle AGE \cong \angle OLD$
- 4 $\angle AEG \cong \angle ODL$

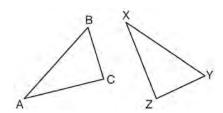
361 In the diagram of quadrilateral \overline{ABCD} , $\overline{AB} \parallel \overline{CD}$, $\angle ABC \cong \angle CDA$, and diagonal \overline{AC} is drawn.

Which method can be used to prove $\triangle ABC$ is congruent to $\triangle CDA$?

- 1 AAS
- 2 SSA
- 3 SAS
- 4 SSS
- 362 As shown in the diagram below, \overline{AC} bisects $\angle BAD$ and $\angle B \cong \angle D$.

Which method could be used to prove

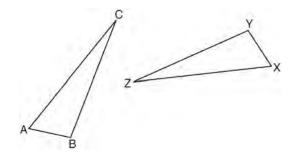
 $\triangle ABC \cong \triangle ADC$?


- 1 SSS
- 2 AAA
- 3 SAS
- 4 AAS
- 363 The diagonal \overline{AC} is drawn in parallelogram *ABCD*. Which method can *not* be used to prove that

 $\triangle ABC \cong \triangle CDA$?

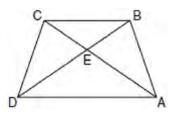
- 1 SSS
- 2 SAS
- 3 SSA
- 4 ASA

G.G.29: TRIANGLE CONGRUENCY


364 In the diagram below, $\triangle ABC \cong \triangle XYZ$.

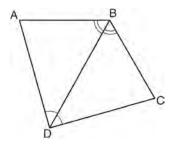
Which two statements identify corresponding congruent parts for these triangles?

- 1 $\overline{AB} \cong \overline{XY}$ and $\angle C \cong \angle Y$
- $2 \quad \overline{AB} \cong \overline{YZ} \text{ and } \angle C \cong \angle X$
- $3 \quad \overline{BC} \cong \overline{XY} \text{ and } \angle A \cong \angle Y$
- $4 \quad \overline{BC} \cong \overline{YZ} \text{ and } \angle A \cong \angle X$


365 In the diagram below, $\triangle ABC \cong \triangle XYZ$.

Which statement must be true?

- 1 $\angle C \cong \angle Y$
- 2 $\angle A \cong \angle X$
- $3 \quad AC \cong YZ$
- 4 $\overline{CB} \cong \overline{XZ}$


366 In the diagram of trapezoid *ABCD* below, diagonals \overline{AC} and \overline{BD} intersect at *E* and $\triangle ABC \cong \triangle DCB$.

Which statement is true based on the given information?

- $1 \quad \overline{AC} \cong \overline{BC}$
- 2 $\overline{CD} \cong \overline{AD}$
- $3 \angle CDE \cong \angle BAD$
- $4 \angle CDB \cong \angle BAC$

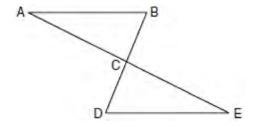
367 The diagram below shows a pair of congruent triangles, with $\angle ADB \cong \angle CDB$ and $\angle ABD \cong \angle CBD$.

Which statement must be true?

- 1 $\angle ADB \cong \angle CBD$
- 2 $\angle ABC \cong \angle ADC$
- $3 \quad AB \cong CD$
- $4 \quad \overline{AD} \cong \overline{CD}$

368 If $\triangle JKL \cong \triangle MNO$, which statement is always true?

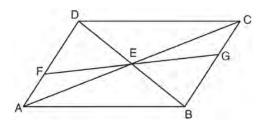
- 1 $\angle KLJ \cong \angle NMO$
- 2 $\angle KJL \cong \angle MON$
- $3 \quad JL \cong MO$
- $4 JK \cong ON$


G.G.27: ANGLE PROOFS

- 369 When writing a geometric proof, which angle relationship could be used alone to justify that two angles are congruent?
 - 1 supplementary angles
 - 2 linear pair of angles
 - 3 adjacent angles
 - 4 vertical angles

G.G.27: TRIANGLE PROOFS

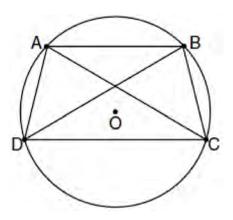
370 Given: $\triangle ABC$ and $\triangle EDC$, C is the midpoint of


BD and AEProve: $\overline{AB} \parallel \overline{DE}$

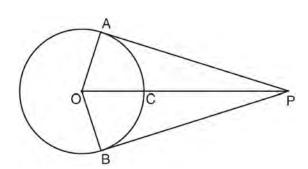
G.G.27: QUADRILATERAL PROOFS

371 In the diagram below of quadrilateral *ABCD*, $\overline{AD} \cong \overline{BC}$ and $\angle DAE \cong \angle BCE$. Line segments AC, DB, and FG intersect at E.

Prove: $\triangle AEF \cong \triangle CEG$

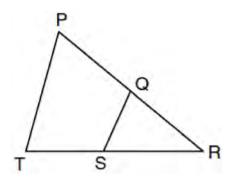

372 Given: Quadrilateral ABCD with $\overline{AB} \cong \overline{CD}$,

 $\overline{AD} \cong \overline{BC}$, and diagonal \overline{BD} is drawn


Prove: $\angle BDC \cong \angle ABD$

G.G.27: CIRCLE PROOFS

373 In the diagram below, quadrilateral *ABCD* is inscribed in circle O, $\overline{AB} \parallel \overline{DC}$, and diagonals \overline{AC} and \overline{BD} are drawn. Prove that $\triangle ACD \cong \triangle BDC$.



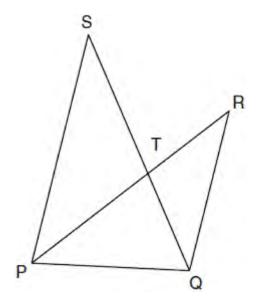
374 In the diagram below, \overline{PA} and \overline{PB} are tangent to circle O, \overline{OA} and \overline{OB} are radii, and \overline{OP} intersects the circle at C. Prove: $\angle AOP \cong \angle BOP$

G.G.44: SIMILARITY PROOFS

375 In the diagram below of $\triangle PRT$, Q is a point on \overline{PR} , S is a point on \overline{TR} , \overline{QS} is drawn, and $\angle RPT \cong \angle RSQ$.

Which reason justifies the conclusion that $\triangle PRT \sim \triangle SRQ$?

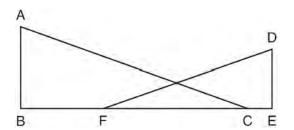
- 1 AA
- 2 ASA
- 3 SAS
- 4 SSS


376 In the diagram of $\triangle ABC$ and $\triangle EDC$ below, \overline{AE} and \overline{BD} intersect at C, and $\angle CAB \cong \angle CED$.

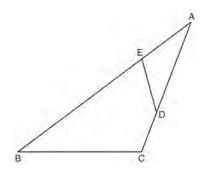
Which method can be used to show that $\triangle ABC$ must be similar to $\triangle EDC$?

- 1 SAS
- 2 AA
- 3 SSS
- 4 HL

377 In the diagram below, \overline{SQ} and \overline{PR} intersect at T, \overline{PQ} is drawn, and $\overline{PS} \parallel \overline{QR}$.


What technique can be used to prove that $\triangle PST \sim \triangle RQT$?

- 1 SAS
- 2 SSS
- 3 ASA
- 4 AA


378 In $\triangle ABC$ and $\triangle DEF$, $\frac{AC}{DF} = \frac{CB}{FE}$. Which additional information would prove $\triangle ABC \sim \triangle DEF$?

- $1 \quad AC = DF$
- CB = FE
- $3 \angle ACB \cong \angle DFE$
- $4 \angle BAC \cong \angle EDF$

379 In the diagram below, \overline{BFCE} , $\overline{AB} \perp \overline{BE}$, $\overline{DE} \perp \overline{BE}$, and $\angle BFD \cong \angle ECA$. Prove that $\triangle ABC \sim \triangle DEF$.

380 The diagram below shows $\triangle ABC$, with \overline{AEB} , \overline{ADC} , and $\angle ACB \cong \angle AED$. Prove that $\triangle ABC$ is similar to $\triangle ADE$.

