JEFFERSON MATH PROJECT REGENTS BY PERFORMANCE INDICATOR: TOPIC

NY Geometry Regents Exam Questions from Fall 2008 to January 2012 Sorted by PI: Topic (Answer Key)

www.jmap.org

$\boldsymbol{D}_{\text {ear }}{ }^{\text {obir }}$

Ihave to ackno ege the reciept of your favor of $\mathscr{M}_{\text {May }}$ 14. in which you mention that you have finished the 6. first focks, of E ucfid, pfane trigonometry, surveying \& afgebra and ask whether It think a further purssuit of that branch of science would be useful to you. there are some propositions in the fatter Fooks of Fucfid, \& some of ötrchitmedes, which are useful, \& I have no doubt you have been made acquainted with them. trigonometry, so far as thi's, is most vafuable to every man, there is scarcely a day in which he wiff not resort to it for some of the phurposes of common fife. the science of cafculation afso is indispensitfe as far as the extraction of the square \& cube roots; ©̈t Igebra as far as the quadratic equation \& the use of fogaritims are often of vafue in ordinary cases: but aff beyond these is but a fuxury; a deficious fuxury indeed; But not to be indu foed in by one who is to Fave a prof ession to foflow for fits subsistence. in thits fight $\mathscr{I}_{\text {view the }}$ conic sections, curves of the higher orders, perháps even spherical trigonometry, ©Ot Igebraical operations beyond the addimension, andffuxions.
Letter from Thomas Jefferson to William G. Munford, Monticello, June 18, 1799.

Geometry Regents Exam Questions by Performance Indicator: Topic Answer Section

1 ANS: $2 \quad$ PTS: 2
TOP: Parallel and Perpendicular Lines
2 ANS: 4
The slope of $y=-\frac{2}{3} x-5$ is $-\frac{2}{3}$. Perpendicular lines have slope that are opposite reciprocals.

PTS: 2 REF: 080917ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
3 ANS: 2
The slope of a line in standard form is $-\frac{A}{B}$ so the slope of this line is $-\frac{5}{3}$ Perpendicular lines have slope that are the opposite and reciprocal of each other.

PTS: 2 REF: fall0828ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
4 ANS: 3
$m=\frac{-A}{B}=-\frac{3}{4}$

PTS: 2 REF: 011025ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
5 ANS: 4
The slope of $3 x+5 y=4$ is $m=\frac{-A}{B}=\frac{-3}{5} . m_{\perp}=\frac{5}{3}$.

PTS: 2 REF: 061127ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
6 ANS: 2
The slope of $x+2 y=3$ is $m=\frac{-A}{B}=\frac{-1}{2} . m_{\perp}=2$.

PTS: 2 REF: 081122ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
7 ANS: 3
$2 y=-6 x+8$ Perpendicular lines have slope the opposite and reciprocal of each other.

$$
y=-3 x+4
$$

$m=-3$
$m_{\perp}=\frac{1}{3}$

PTS: 2 REF: 081024ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
8 ANS:
$m=\frac{-A}{B}=\frac{6}{2}=3 . m_{\perp}=-\frac{1}{3}$.

PTS: 2 REF: 011134ge

STA: G.G. 62
REF: 061113ge

TOP: Parallel and Perpendicular Lines
STA: G.G. 63

TOP: Parallel and Perpendicular Lines

10 ANS: 2
$y+\frac{1}{2} x=4 \quad 3 x+6 y=12$
$\begin{array}{rlrl}y=-\frac{1}{2} x+4 & 6 y & =-3 x+12 \\ 1 & y & =-\frac{3}{6} x+2\end{array}$
$m=-\frac{1}{2} \quad y=-\frac{1}{2} x+2$
PTS: 2 REF: 081014ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
11 ANS: 4
$3 y+1=6 x+4.2 y+1=x-9$

PTS: 2 REF: fall0822ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
12 ANS: 4
$x+6 y=12$

$$
3(x-2)=-y-4
$$

$$
6 y=-x+12 \quad-3(x-2)=y+4
$$

$$
y=-\frac{1}{6} x+2
$$

$$
m=-3
$$

$$
m=-\frac{1}{6}
$$

PTS: 2 REF: 011119ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
13 ANS:
The slope of $y=2 x+3$ is 2 . The slope of $2 y+x=6$ is $\frac{-A}{B}=\frac{-1}{2}$. Since the slopes are opposite reciprocals, the lines are perpendicular.

PTS: 2 REF: 011231ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
14 ANS: 3
The slope of $y=x+2$ is 1 . The slope of $y-x=-1$ is $\frac{-A}{B}=\frac{-(-1)}{1}=1$.
PTS: 2 REF: 080909ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
15 ANS: 3
$m=\frac{-A}{B}=\frac{5}{2} . m=\frac{-A}{B}=\frac{10}{4}=\frac{5}{2}$
PTS: 2 REF: 011014ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines

$$
\begin{aligned}
& 3 y=6 x+3 \quad 2 y=x-10 \\
& y=2 x+1 \quad y=\frac{1}{2} x-5
\end{aligned}
$$

16 ANS: 1

$$
\begin{aligned}
-2\left(-\frac{1}{2} y\right. & =6 x+10) \\
y & =-12 x-20
\end{aligned}
$$

PTS: 2 REF: 061027ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines ANS: 2
The slope of $2 x+3 y=12$ is $-\frac{A}{B}=-\frac{2}{3}$. The slope of a perpendicular line is $\frac{3}{2}$. Rewritten in slope intercept form, (2) becomes $y=\frac{3}{2} x+3$.

PTS: 2 REF: 060926ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
18 ANS: 2
The slope of $y=\frac{1}{2} x+5$ is $\frac{1}{2}$. The slope of a perpendicular line is $-2 . y=m x+b \quad$.

$$
\begin{aligned}
& 5=(-2)(-2)+b \\
& b=1
\end{aligned}
$$

PTS: 2 REF: 060907ge STA: G.G. 64 TOP: Parallel and Perpendicular Lines
19 ANS: 4
The slope of $y=-3 x+2$ is -3 . The perpendicular slope is $\frac{1}{3}$. $-1=\frac{1}{3}(3)+b$

$$
\begin{aligned}
-1 & =1+b \\
b & =-2
\end{aligned}
$$

PTS: 2
REF: 011018ge
STA: G.G. 64
ANS: 3
PTS: 2
REF: 011217ge
TOP: Parallel and Perpendicular Lines
TOP: Parallel and Perpendicular Lines
21 ANS:
$y=\frac{2}{3} x+1.2 y+3 x=6 \quad . y=m x+b$
$\begin{gathered}2 y=-3 x+6 \\ 3\end{gathered} 5=\frac{2}{3}(6)+b$
$y=-\frac{3}{2} x+3 \quad 5=4+b$
$m=-\frac{3}{2} \quad 1=b$
$m_{\perp}=\frac{2}{3} \quad y=\frac{2}{3} x+1$
PTS: 4
REF: 061036ge
STA: G.G. 64
TOP: Parallel and Perpendicular Lines

22 ANS: 4
$y=m x+b$
$3=\frac{3}{2}(-2)+b$
$3=-3+b$
$6=b$
PTS: 2
23 ANS: 3
$y=m x+b$
$-1=2(2)+b$
$-5=b$
PTS: 2 REF: 011224ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
24 ANS: 2
The slope of a line in standard form is $-\frac{A}{B}$, so the slope of this line is $\frac{-2}{-1}=2$. A parallel line would also have a slope of 2. Since the answers are in slope intercept form, find the y-intercept: $\quad y=m x+b$

$$
\begin{aligned}
-11 & =2(-3)+b \\
-5 & =b
\end{aligned}
$$

PTS: 2 REF: fall0812ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
25 ANS: 4
The slope of a line in standard form is $-\frac{A}{B}$, so the slope of this line is $\frac{-4}{2}=-2$. A parallel line would also have a slope of -2 . Since the answers are in slope intercept form, find the y-intercept: $y=m x+b$

$$
\begin{aligned}
3 & =-2(7)+b \\
17 & =b
\end{aligned}
$$

PTS: 2
REF: 081010ge STA: G.G. 65
TOP: Parallel and Perpendicular Lines
ANS: 2
The slope of a line in standard form is $\frac{-A}{B}$, so the slope of this line is $\frac{-4}{3}$. A parallel line would also have a slope of $\frac{-4}{3}$. Since the answers are in standard form, use the point-slope formula. $y-2=-\frac{4}{3}(x+5)$

$$
\begin{aligned}
3 y-6 & =-4 x-20 \\
4 x+3 y & =-14
\end{aligned}
$$

PTS: 2
REF: 061123ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines

27 ANS: 2

$$
\begin{aligned}
m=\frac{-A}{B}=\frac{-4}{2}=-2 \quad y & =m x+b \\
2 & =-2(2)+b \\
6 & =b
\end{aligned}
$$

PTS: 2
REF: 081112ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines
28 ANS:
$y=-2 x+14$. The slope of $2 x+y=3$ is $\frac{-A}{B}=\frac{-2}{1}=-2 . y=m x+b$

$$
\begin{aligned}
& 4=(-2)(5)+b \\
& b=14
\end{aligned}
$$

PTS: 2 REF: 060931ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
29 ANS:
$y=\frac{2}{3} x-9$. The slope of $2 x-3 y=11$ is $-\frac{A}{B}=\frac{-2}{-3}=\frac{2}{3} .-5=\left(\frac{2}{3}\right)(6)+b$

$$
\begin{aligned}
-5 & =4+b \\
b & =-9
\end{aligned}
$$

PTS: 2 REF: 080931ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
30 ANS: 4
$\overline{A B}$ is a vertical line, so its perpendicular bisector is a horizontal line through the midpoint of $\overline{A B}$, which is $(0,3)$.
PTS: 2 REF: 011225ge STA: G.G. 68 TOP: Perpendicular Bisector
31 ANS: 1

$$
\begin{aligned}
& m=\left(\frac{8+0}{2}, \frac{2+6}{2}\right)=(4,4) m=\frac{6-2}{0-8}=\frac{4}{-8}=-\frac{1}{2} m_{\perp}=2 \quad y \\
&=m x+b \\
& 4=2(4)+b \\
&-4=b
\end{aligned}
$$

PTS: 2 REF: 081126ge STA: G.G. 68 TOP: Perpendicular Bisector

32 ANS:
$y=\frac{4}{3} x-6 . M_{x}=\frac{-1+7}{2}=3 \quad$ The perpendicular bisector goes through $(3,-2)$ and has a slope of $\frac{4}{3}$.

$$
\begin{aligned}
& M_{y}=\frac{1+(-5)}{2}=-2 \\
& m=\frac{1-(-5)}{-1-7}=-\frac{3}{4}
\end{aligned}
$$

$y-y_{M}=m\left(x-x_{M}\right)$.

$$
y-1=\frac{4}{3}(x-2)
$$

PTS: 4
REF: 080935ge
STA: G.G. 68
TOP: Perpendicular Bisector
33 ANS: 3

PTS: 2
34 ANS: 1
$y=x^{2}-4 x=(4)^{2}-4(4)=0 .(4,0)$ is the only intersection.

PTS: 2 REF: 060923ge STA: G.G. 70 TOP: Quadratic-Linear Systems
35 ANS: 3

PTS: 2
REF: 061011ge
STA: G.G. 70
TOP: Quadratic-Linear Systems

36 ANS: 4
$y+x=4 . x^{2}-6 x+10=-x+4 . y+x=4 . y+2=4$

$y=-x+4 \quad x^{2}-5 x+6=0 \quad y+3=4 \quad y=2$

$$
(x-3)(x-2)=0 \quad y=1
$$

$$
x=3 \text { or } 2
$$

PTS: 2 REF: 080912ge STA: G.G. 70 TOP: Quadratic-Linear Systems
37 ANS: 3

PTS: 2
REF: 081118ge
STA: G.G. 70
TOP: Quadratic-Linear Systems
38 ANS: 3

$$
\begin{aligned}
(x+3)^{2}-4 & =2 x+5 \\
x^{2}+6 x+9-4 & =2 x+5 \\
x^{2}+4 x & =0 \\
x(x+4) & =0 \\
x & =0,-4
\end{aligned}
$$

PTS: 2
REF: 081004ge
STA: G.G. 70
TOP: Quadratic-Linear Systems

39
ANS:

PTS: 4
40 ANS:

PTS: 6
REF: 011038ge
STA: G.G. 70
TOP: Quadratic-Linear Systems
41 ANS: 2
$M_{x}=\frac{-2+6}{2}=2 . M_{y}=\frac{-4+2}{2}=-1$

PTS: 2
REF: 080910ge
STA: G.G. 66
TOP: Midpoint
KEY: general
42 ANS: 2
$M_{x}=\frac{7+(-3)}{2}=2 . M_{Y}=\frac{-1+3}{2}=1$.

PTS: 2
REF: 011106ge
STA: G.G. 66
TOP: Midpoint

43 ANS: 4
$M_{x}=\frac{-6+1}{2}=-\frac{5}{2} . M_{y}=\frac{1+8}{2}=\frac{9}{2}$.
PTS: 2 REF: 060919ge STA: G.G. 66 TOP: Midpoint
KEY: graph
44 ANS: 2
$M_{x}=\frac{2+(-4)}{2}=-1 . M_{Y}=\frac{-3+6}{2}=\frac{3}{2}$.
PTS: 2 REF: fall0813ge STA: G.G. 66 TOP: Midpoint
KEY: general
45 ANS: 2
$M_{x}=\frac{3 x+5+x-1}{2}=\frac{4 x+4}{2}=2 x+2 . M_{Y}=\frac{3 y+(-y)}{2}=\frac{2 y}{2}=y$.
PTS: 2 REF: 081019ge STA: G.G. 66 TOP: Midpoint
KEY: general
46 ANS:
$(2 a-3,3 b+2) \cdot\left(\frac{3 a+a-6}{2}, \frac{2 b-1+4 b+5}{2}\right)=\left(\frac{4 a-6}{2}, \frac{6 b+4}{2}\right)=(2 a-3,3 b+2)$
PTS: 2 REF: 061134ge STA: G.G. 66 TOP: Midpoint
47 ANS: 1

$$
1=\frac{-4+x}{2} . \quad 5=\frac{3+y}{2} .
$$

$$
-4+x=2 \quad 3+y=10
$$

$$
x=6 \quad y=7
$$

PTS: 2 REF: 081115ge STA: G.G. 66 TOP: Midpoint
48 ANS:
$(6,-4) . \quad C_{x}=\frac{Q_{x}+R_{x}}{2} . C_{y}=\frac{Q_{y}+R_{y}}{2}$.

$$
\begin{array}{rlrl}
3.5 & =\frac{1+R_{x}}{2} & 2 & =\frac{8+R_{y}}{2} \\
7 & =1+R_{x} & 4 & =8+R_{y} \\
6 & =R_{x} & -4 & =R_{y}
\end{array}
$$

PTS: 2 REF: 011031ge STA: G.G. 66 TOP: Midpoint KEY: graph

49 ANS: 1
$d=\sqrt{(4-1)^{2}+(7-11)^{2}}=\sqrt{9+16}=\sqrt{25}=5$
PTS: 2 REF: 011205ge STA: G.G. 67 TOP: Distance
KEY: general
50 ANS: 4
$d=\sqrt{(146-(-4))^{2}+(52-2)^{2}}=\sqrt{25,000} \approx 158.1$
PTS: 2 REF: 061021ge STA: G.G. 67 TOP: Distance
KEY: general
51 ANS: 3
$d=\sqrt{(1-9)^{2}+(-4-2)^{2}}=\sqrt{64+36}=\sqrt{100}=10$
PTS: 2 REF: 081107ge STA: G.G. 67 TOP: Distance
KEY: general
52 ANS: 4
$d=\sqrt{(-6-2)^{2}+(4-(-5))^{2}}=\sqrt{64+81}=\sqrt{145}$
PTS: 2 REF: 081013ge STA: G.G. 67 TOP: Distance
KEY: general
53 ANS: 2
$d=\sqrt{(-1-7)^{2}+(9-4)^{2}}=\sqrt{64+25}=\sqrt{89}$
PTS: 2 REF: 061109ge STA: G.G. 67 TOP: Distance
KEY: general
54 ANS: 4
$d=\sqrt{(-3-1)^{2}+(2-0)^{2}}=\sqrt{16+4}=\sqrt{20}=\sqrt{4} \cdot \sqrt{5}=2 \sqrt{5}$
PTS: 2 REF: 011017ge STA: G.G. 67 TOP: Distance
KEY: general
55 ANS: 4
$d=\sqrt{(-5-3)^{2}+(4-(-6))^{2}}=\sqrt{64+100}=\sqrt{164}=\sqrt{4} \sqrt{41}=2 \sqrt{41}$
PTS: 2 REF: 011121ge STA: G.G. 67 TOP: Distance
KEY: general
56 ANS: 1
$d=\sqrt{(-4-2)^{2}+(5-(-5))^{2}}=\sqrt{36+100}=\sqrt{136}=\sqrt{4} \cdot \sqrt{34}=2 \sqrt{34}$.
PTS: 2 REF: 080919ge STA: G.G. 67 TOP: Distance
KEY: general

57 ANS:
25. $d=\sqrt{(-3-4)^{2}+(1-25)^{2}}=\sqrt{49+576}=\sqrt{625}=25$.

PTS: 2
KEY: general
58 ANS: 3
TOP: Planes
59 ANS: 4
TOP: Planes
60 ANS: 3
TOP: Planes
61 ANS: 4
TOP: Planes
62 ANS: 1
TOP: Planes
63 ANS: 1
TOP: Planes
64 ANS: 1
TOP: Planes
65 ANS: 1
TOP: Planes
66 ANS: 1
TOP: Planes
67 ANS: 2
TOP: Planes
68 ANS: 4 TOP: Planes
69 ANS: 1 TOP: Planes
70 ANS: 3
TOP: Planes
71 ANS: 2
TOP: Planes
72 ANS: 2
TOP: Planes
73 ANS: 2 TOP: Planes
74 ANS: 1 TOP: Planes
75 ANS: 3
TOP: Planes
76 ANS: 3 TOP: Solids
77 ANS: 1 TOP: Solids

REF: fall0831ge STA: G.G. 67 TOP: Distance
PTS: 2 REF: fall0816ge STA: G.G. 1
PTS: 2 REF: 011012ge STA: G.G. 1
PTS: 2 REF: 061017ge STA: G.G. 1
PTS: 2 REF: 061118ge STA: G.G. 1
PTS: 2 REF: 060918ge STA: G.G. 2
PTS: 2 REF: 011128ge STA: G.G. 2
PTS: 2 REF: 011024ge STA: G.G. 3
PTS: 2 REF: 081008ge STA: G.G. 3
PTS: 2 REF: 011218ge STA: G.G. 3
PTS: 2 REF: 080927ge STA: G.G. 4
PTS: 2 REF: 080914ge STA: G.G. 7
PTS: 2 REF: 081116ge STA: G.G. 7
PTS: 2 REF: 060928ge STA: G.G. 8
PTS: 2 REF: 081120ge STA: G.G. 8
PTS: 2
PTS: 2

PTS: 2

PTS: 2

PTS: 2
PTS: 2

REF: fall0806ge STA: G.G. 9
REF: 011109ge STA: G.G. 9
REF: 061108ge STA: G.G. 9
REF: 081002ge STA: G.G. 9
REF: 011105ge STA: G.G. 10
REF: 011221ge STA: G.G. 10

78 ANS: 3
The lateral edges of a prism are parallel.
PTS: 2 REF: fall0808ge
79 ANS: 4
PTS: 2
STA: G.G. 10
REF: 061003ge
TOP: Solids
TOP: Solids
80 ANS: 4
PTS: 2
REF: 060904ge
STA: G.G. 13
81 ANS:

PTS: 2
REF: 080932ge
82 ANS:

PTS: 2
REF: fall0832ge
STA: G.G. 17
TOP: Constructions
83 ANS:

PTS: 2
REF: 011133ge
STA: G.G. 17
TOP: Constructions
84
ANS:

PTS: 2
REF: 011233ge
STA: G.G. 17
TOP: Constructions

85	ANS: 3	PTS:	2	REF:	060925ge	STA:	G.G. 17
	TOP: Constructions						
86	ANS: 3	PTS:	2	REF:	080902ge	STA:	G.G. 17
	TOP: Constructions						
87	ANS: 2	PTS:	2	REF:	011004ge	STA:	G.G. 17
	TOP: Constructions						
88	ANS: 4	PTS:	2	REF:	081106ge	STA:	G.G. 17
	TOP: Constructions						

PTS: 2
90 ANS: 3
TOP: Constructions
91 ANS: 2
TOP: Constructions
92 ANS: 4 PTS: 2
TOP: Constructions
93 ANS: 1
TOP: Constructions
94 ANS:
PTS: 2
PTS: 2

PTS: 2

REF: 081130ge

STA: G.G. 18 TOP: Constructions
REF: fall0804ge STA: G.G. 18
REF: 061101ge STA: G.G. 18

REF: 081005ge STA: G.G. 18
REF: 011120ge STA: G.G. 18

PTS: 2
REF: 060930ge
STA: G.G. 19
TOP: Constructions

95 ANS: 2
PTS: 2
TOP: Constructions
96 ANS: 1 PTS: 2
TOP: Constructions
97 ANS: 4 PTS: 2
TOP: Constructions
98 ANS:

PTS: 2
REF: 011032ge
ANS:

PTS: 2
100
ANS:

PTS: 2
ANS: 1
REF: 061130ge
PTS: 2
TOP: Constructions

REF: 061020ge STA: G.G. 19
REF: fall0807ge STA: G.G. 19
REF: 011009ge STA: G.G. 19

STA: G.G. 20
TOP: Constructions

TOP: Constructions

STA: G.G. 20
REF: 061012ge

TOP: Constructions
STA: G.G. 20

102 ANS: 1 PTS: 2 REF: 011207ge STA: G.G. 20
TOP: Constructions
103 ANS:

… -1 - $-\cdots-1$ -

PTS: 2
REF: 061033ge
STA: G.G. 22
TOP: Locus
104 ANS:

PTS: 2
105 ANS: 2
REF: 081033ge
STA: G.G. 22
TOP: Locus
TOP: Locus
106
ANS:

PTS: 2
REF: 011230ge
STA: G.G. 22
TOP: Locus

107 ANS:

PTS: 2
108
ANS: 2 TOP: Locus
109 ANS:

PTS: 4
REF: fall0837ge
STA: G.G. 23
TOP: Locus
110 ANS:

PTS: 4
REF: 080936ge
STA: G.G. 23
TOP: Locus

111 ANS:

PTS: 4
REF: 011037ge
STA: G.G. 23
TOP: Locus
112 ANS:

PTS: 4
REF: 011135ge
STA: G.G. 23
TOP: Locus
113 ANS:

PTS: 4
114 ANS: 2
TOP: Locus
115
ANS: 4
TOP: Locus
116 ANS: 4
The marked 60° angle and the angle above it are on the same straight line and supplementary. This unmarked supplementary angle is 120°. Because the unmarked 120° angle and the marked 120° angle are alternate exterior angles and congruent, $d \| e$.

PTS: 2
REF: 080901ge
STA: G.G. 35
TOP: Parallel Lines and Transversals

117 ANS: 2
$7 x=5 x+30$
$2 x=30$
$x=15$
PTS: 2 REF: 061106ge STA: G.G. 35 TOP: Parallel Lines and Transversals
118 ANS: 2
$6 x+42=18 x-12$

$$
\begin{aligned}
54 & =12 x \\
x & =\frac{54}{12}=4.5
\end{aligned}
$$

PTS: 2
REF: 011201ge STA: G.G. 35
TOP: Parallel Lines and Transversals
119 ANS: 3
$7 x=5 x+30$
$2 x=30$
$x=15$
PTS: 2 REF: 081109ge STA: G.G. 35 TOP: Parallel Lines and Transversals
120 ANS: 2
PTS: 2
TOP: Parallel Lines and Transversals
121 ANS:
Yes, $\mathrm{m} \angle A B D=\mathrm{m} \angle B D C=44180-(93+43)=44 x+19+2 x+6+3 x+5=180$. Because alternate interior

$$
\begin{aligned}
6 x+30 & =180 \\
6 x & =150 \\
x & =25 \\
x+19 & =44
\end{aligned}
$$

angles $\angle A B D$ and $\angle C D B$ are congruent, $\overline{A B}$ is parallel to $\overline{D C}$.
PTS: 4
122 ANS: 3
$8^{2}+24^{2} \neq 25^{2}$
PTS: 2
REF: 011111ge STA: G.G. 48
TOP: Pythagorean Theorem

123
ANS: 1

$$
\begin{aligned}
a^{2}+(5 \sqrt{2})^{2} & =(2 \sqrt{15})^{2} \\
a^{2}+(25 \times 2) & =4 \times 15 \\
a^{2}+50 & =60 \\
a^{2} & =10 \\
a & =\sqrt{10}
\end{aligned}
$$

PTS: 2 REF: 011016ge STA: G.G. 48 TOP: Pythagorean Theorem
124 ANS: 2

$$
\begin{aligned}
x^{2}+(x+7)^{2} & =13^{2} \\
x^{2}+x^{2}+7 x+7 x+49 & =169 \\
2 x^{2}+14 x-120 & =0 \\
x^{2}+7 x-60 & =0 \\
(x+12)(x-5) & =0 \\
x & =5 \\
2 x & =10
\end{aligned}
$$

PTS: 2 REF: 061024ge STA: G.G. 48 TOP: Pythagorean Theorem
125 ANS: 3
$x^{2}+7^{2}=(x+1)^{2} \quad x+1=25$
$x^{2}+49=x^{2}+2 x+1$
$48=2 x$
$24=x$
PTS: 2 REF: 081127ge STA: G.G. 48 TOP: Pythagorean Theorem
126 ANS: 1
In an equilateral triangle, each interior angle is 60° and each exterior angle is $120^{\circ}\left(180^{\circ}-120^{\circ}\right)$. The sum of the three interior angles is 180° and the sum of the three exterior angles is 360°.

PTS: 2 REF: 060909ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
127
ANS: 1
If $\angle A$ is at minimum $\left(50^{\circ}\right)$ and $\angle B$ is at minimum $\left(90^{\circ}\right), \angle C$ is at maximum of $40^{\circ}\left(180^{\circ}-\left(50^{\circ}+90^{\circ}\right)\right.$). If $\angle A$ is at maximum $\left(60^{\circ}\right)$ and $\angle B$ is at maximum $\left(100^{\circ}\right), \angle C$ is at minimum of $20^{\circ}\left(180^{\circ}-\left(60^{\circ}+100^{\circ}\right)\right)$.

PTS: 2
REF: 060901ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles

128 ANS: 1
$x+2 x+2+3 x+4=180$

$$
\begin{aligned}
6 x+6 & =180 \\
x & =29
\end{aligned}
$$

PTS: 2
REF: 011002ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles
129 ANS: 1
$3 x+5+4 x-15+2 x+10=180 . \mathrm{m} \angle D=3(20)+5=65 . \mathrm{m} \angle E=4(20)-15=65$.

$$
\begin{aligned}
9 x & =180 \\
x & =20
\end{aligned}
$$

PTS: 2
REF: 061119ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles
130 ANS: 4
$\frac{5}{2+3+5} \times 180=90$
PTS: 2
REF: 081119ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles
131 ANS: 3
$\frac{3}{8+3+4} \times 180=36$
PTS: 2 REF: 011210ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
132 ANS:
34. $2 x-12+x+90=180$

$$
\begin{aligned}
3 x+78 & =90 \\
3 x & =102 \\
x & =34
\end{aligned}
$$

PTS: 2
REF: 061031ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles
133 ANS:
26. $x+3 x+5 x-54=180$

$$
\begin{aligned}
9 x & =234 \\
x & =26
\end{aligned}
$$

PTS: 2
REF: 080933ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles
134 ANS: 4
$180-(40+40)=100$

PTS: 2
135 ANS: 3
REF: 080903ge
PTS: 2
TOP: Isosceles Triangle Theorem
136
ANS: 3 PTS: 2

TOP: Isosceles Triangle Theorem

137 ANS: 4
PTS: 2
REF: 061124ge STA: G.G. 31
TOP: Isosceles Triangle Theorem
138 ANS:
30.

PTS: 2 REF: 011129ge STA: G.G. 31 TOP: Isosceles Triangle Theorem
139 ANS:
67. $\frac{180-46}{2}=67$

PTS: 2
REF: 011029ge
STA: G.G. 31
TOP: Isosceles Triangle Theorem
140 ANS:

No, $\angle K G H$ is not congruent to $\angle G K H$.
PTS: 2
REF: 081135ge
PTS: 2
STA: G.G. 31
REF: 061107ge
REF: 011206ge
STA: G.G. 32
TOP: Exterior Angle Theorem
142
ANS: 2 PTS: 2
TOP: Exterior Angle Theorem
143 ANS: 1

PTS: 2
REF: 011021ge
STA: G.G. 32
TOP: Exterior Angle Theorem

144
ANS:
110. $6 x+20=x+40+4 x-5$

$$
6 x+20=5 x+35
$$

$$
x=15
$$

$$
6((15)+20=110
$$

PTS: 2
REF: 081031ge
STA: G.G. 32
TOP: Exterior Angle Theorem
145 ANS: 3

$$
\begin{aligned}
x+2 x+15 & =5 x+15 \quad 2(5)+15=25 \\
3 x+15 & =5 x+5 \\
10 & =2 x \\
5 & =x
\end{aligned}
$$

PTS: 2
REF: 011127ge
STA: G.G. 32
ANS: 3
PTS: 2
REF: 081111ge
TOP: Exterior Angle Theorem
TOP: Exterior Angle Theorem
147 ANS: 4
(4) is not true if $\angle P Q R$ is obtuse.

PTS: 2
REF: 060924ge
STA: G.G. 32
TOP: Exterior Angle Theorem
148 ANS: 2
$7+18>6+12$
PTS: 2 REF: fall0819ge STA: G.G. 33 TOP: Triangle Inequality Theorem
149 ANS: 2
$6+17>22$
PTS: 2
REF: 080916ge
STA: G.G. 33
TOP: Triangle Inequality Theorem
150 ANS: 2
$5-3=2,5+3=8$
PTS: 2
REF: 011228ge
STA: G.G. 33
TOP: Triangle Inequality Theorem 151 ANS:
$\overline{A C} . \mathrm{m} \angle B C A=63$ and $\mathrm{m} \angle A B C=80 . \overline{A C}$ is the longest side as it is opposite the largest angle.
PTS: 2 REF: 080934ge STA: G.G. 34 TOP: Angle Side Relationship
152 ANS: 1
PTS: 2
REF: 061010ge
STA: G.G. 34
TOP: Angle Side Relationship
153 ANS: 4
Longest side of a triangle is opposite the largest angle. Shortest side is opposite the smallest angle.
PTS: 2 REF: 081011ge STA: G.G. 34 TOP: Angle Side Relationship

154 ANS: 2
Longest side of a triangle is opposite the largest angle. Shortest side is opposite the smallest angle.
PTS: 2 REF: 060911ge STA: G.G. 34 TOP: Angle Side Relationship
155 ANS: 4
$\mathrm{m} \angle A=80$
PTS: 2
156 ANS: 4
REF: 011115ge
STA: G.G. 34
REF: 011222ge
TOP: Angle Side Relationship
PTS: 2
TOP: Angle Side Relationship
157
ANS: 2
$\frac{3}{7}=\frac{6}{x}$
$3 x=42$
$x=14$
PTS: 2 REF: 081027ge STA: G.G. 46 TOP: Side Splitter Theorem
158 ANS: 3
$\frac{5}{7}=\frac{10}{x}$
$5 x=70$
$x=14$
PTS: 2 REF: 081103ge STA: G.G. 46 TOP: Side Splitter Theorem
159 ANS: 4
$\triangle A B C \sim \triangle D B E . \frac{\overline{A B}}{\overline{D B}}=\frac{\overline{A C}}{\overline{D E}}$

$$
\frac{9}{2}=\frac{x}{3}
$$

$$
x=13.5
$$

PTS: 2
REF: 060927ge
STA: G.G. 46
TOP: Side Splitter Theorem
160 ANS:
5. $\frac{3}{x}=\frac{6+3}{15}$
$9 x=45$
$x=5$
PTS: 2 REF: 011033ge STA: G.G. 46 TOP: Side Splitter Theorem

161 ANS:
32. $\frac{16}{20}=\frac{x-3}{x+5} \cdot \overline{A C}=x-3=35-3=32$

$$
16 x+80=20 x-60
$$

$$
140=4 x
$$

$$
35=x
$$

PTS: 4
REF: 011137ge
STA: G.G. 46
TOP: Side Splitter Theorem
162 ANS:
16.7. $\frac{x}{25}=\frac{12}{18}$

$$
\begin{aligned}
18 x & =300 \\
x & \approx 16.7
\end{aligned}
$$

PTS: 2
REF: 061133ge STA: G.G. 46
TOP: Side Splitter Theorem
163 ANS: 3

PTS: 2
REF: 080920ge
STA: G.G. 42
TOP: Midsegments
164 ANS:
37. Since $\overline{D E}$ is a midsegment, $A C=14.10+13+14=37$

PTS: 2
REF: 061030ge STA: G.G. 42
TOP: Midsegments
165 ANS: 1

PTS: 2
REF: 081003ge STA: G.G. 42
TOP: Midsegments

166
ANS: 2
$\frac{4 x+10}{2}=2 x+5$
PTS: 2 REF: 011103ge STA: G.G. 42 TOP: Midsegments
167 ANS:
20. The sides of the triangle formed by connecting the midpoints are half the sides of the original triangle.
$5+7+8=20$.

PTS: 2
REF: 060929ge
STA: G.G. 42
TOP: Midsegments
168 ANS:

PTS: 4
REF: fall0835ge
STA: G.G. 42
TOP: Midsegments
169 ANS:
$M\left(\frac{-7+5}{2}, \frac{2+4}{2}\right)=M(-1,3) . N\left(\frac{3+5}{2}, \frac{-4+4}{2}\right)=N(4,0) . \overline{M N}$ is a midsegment.

PTS: 4 REF: 011237ge STA: G.G. 42 TOP: Midsegments
ANS: 4
PTS: 2
REF: 080925ge
STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
171 ANS: 4
$\overline{B G}$ is also an angle bisector since it intersects the concurrence of $\overline{C D}$ and $\overline{A E}$
PTS: 2
REF: 061025ge STA: G.G. 21
KEY: Centroid, Orthocenter, Incenter and Circumcenter
172
ANS: 1
PTS: 2
REF: 081028ge
STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter

173
ANS: 3
PTS: 2
REF: 011110ge
STA: G.G. 21
KEY: Centroid, Orthocenter, Incenter and Circumcenter
174 ANS:
$(7,5) m_{\overline{A B}}=\left(\frac{3+7}{2}, \frac{3+9}{2}\right)=(5,6) m_{B C}=\left(\frac{7+11}{2}, \frac{9+3}{2}\right)=(9,6)$

PTS: 2
REF: 081134ge STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
175 ANS: 3 PTS: 2 REF: fall0825ge STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
176 ANS: 3 PTS: 2 REF: 011202ge STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
177 ANS: 1
The centroid divides each median into segments whose lengths are in the ratio $2: 1 . \quad \overline{G C}=2 \overline{F G}$

$$
\begin{aligned}
\overline{G C}+\overline{F G} & =24 \\
2 \overline{F G}+\overline{F G} & =24 \\
3 \overline{F G} & =24 \\
\overline{F G} & =8
\end{aligned}
$$

PTS: 2
REF: 081018ge
STA: G.G. 43
TOP: Centroid
ANS: 1
TOP: Centroid
179 ANS: 2
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.
PTS: 2
REF: 060914ge
STA: G.G. 43
TOP: Centroid
180 ANS: 1
$7 x+4=2(2 x+5) . \quad P M=2(2)+5=9$
$7 x+4=4 x+10$

$$
\begin{array}{r}
3 x=6 \\
x=2
\end{array}
$$

PTS: 2 REF: 011226ge STA: G.G. 43 TOP: Centroid
ANS:
6. The centroid divides each median into segments whose lengths are in the ratio $2: 1 . \overline{T D}=6$ and $\overline{D B}=3$

PTS: 2
REF: 011034ge
STA: G.G. 43
TOP: Centroid

182 ANS: 1
Since $\overline{A C} \cong \overline{B C}, \mathrm{~m} \angle A=\mathrm{m} \angle B$ under the Isosceles Triangle Theorem.
PTS: 2 REF: fall0809ge STA: G.G. 69 TOP: Triangles in the Coordinate Plane
ANS: 2 PTS: 2 REF: 061115ge
STA: G.G. 69
184 ANS:
$15+5 \sqrt{5}$.

PTS: 4
REF: 060936ge STA: G.G. 69
TOP: Triangles in the Coordinate Plane
185 ANS: 3

. The sum of the interior angles of a pentagon is $(5-2) 180=540$.
PTS: 2 REF: 011023ge STA: G.G. 36 TOP: Interior and Exterior Angles of Polygons
186 ANS: 3
$(n-2) 180=(5-2) 180=540$
PTS: 2 REF: 011223ge STA: G.G. 36 TOP: Interior and Exterior Angles of Polygons
187 ANS: 4
sum of interior $\angle \mathrm{s}=$ sum of exterior $\angle \mathrm{s}$

$$
\begin{aligned}
(n-2) 180 & =n\left(180-\frac{(n-2) 180}{n}\right) \\
180 n-360 & =180 n-180 n+360 \\
180 n & =720 \\
n & =4
\end{aligned}
$$

PTS: 2
REF: 081016ge
STA: G.G. 36
TOP: Interior and Exterior Angles of Polygons

188
ANS: 1
$\angle A=\frac{(n-2) 180}{n}=\frac{(5-2) 180}{5}=108 \angle A E B=\frac{180-108}{2}=36$
PTS: 2 REF: 081022ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons
ANS: 4
$(n-2) 180=(8-2) 180=1080 . \frac{1080}{8}=135$.
PTS: 2 REF: fall0827ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons
190 ANS: 2
$(n-2) 180=(6-2) 180=720 . \frac{720}{6}=120$.
PTS: 2 REF: 081125ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons
191 ANS:
$(5-2) 180=540 . \frac{540}{5}=108$ interior. $180-108=72$ exterior
PTS: 2 REF: 011131ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons 192 ANS: 1
$\angle D C B$ and $\angle A D C$ are supplementary adjacent angles of a parallelogram. $180-120=60 . \angle 2=60-45=15$.
PTS: 2 REF: 080907ge STA: G.G. 38 TOP: Parallelograms
193 ANS: 1
Opposite sides of a parallelogram are congruent. $4 x-3=x+3 . S V=(2)+3=5$.

$$
\begin{aligned}
3 x & =6 \\
x & =2
\end{aligned}
$$

PTS: 2
REF: 011013ge
STA: G.G. 38
REF: 011104ge
REF: 061111ge STA: G.G. 38
ANS: 3 PTS: 2
TOP: Parallelograms
196 ANS: $1 \quad$ PTS:
REF: 011112ge STA: G.G. 39
TOP: Special Parallelograms
ANS: 2
The diagonals of a rhombus are perpendicular. $180-(90+12)=78$
PTS: 2
REF: 011204ge
STA: G.G. 39
TOP: Special Parallelograms
198 ANS: 3
$\sqrt{5^{2}+12^{2}}=13$
PTS: 2
199 ANS: 1
REF: 061116ge
STA: G.G. 39
REF: 061125ge
TOP: Special Parallelograms STA: G.G. 39

TOP: Special Parallelograms

ANS: 1
PTS: 2
REF: 081121ge STA: G.G. 39
TOP: Special Parallelograms
201 ANS: 3
PTS: 2
REF: 081128ge STA: G.G. 39
TOP: Special Parallelograms
202 ANS:

$$
\begin{aligned}
& 8 x-5=3 x+30.4 z-8=3 z .9 y+8+5 y-2=90 . \\
& 5 x=35 \quad z=8 \quad 14 y+6=90 \\
& x=7 \\
& 14 y=84 \\
& y=6
\end{aligned}
$$

PTS: 6 REF: 061038ge STA: G.G. 39 TOP: Special Parallelograms
ANS: 3
The diagonals of an isosceles trapezoid are congruent. $5 x+3=11 x-5$.

$$
\begin{aligned}
6 x & =18 \\
x & =3
\end{aligned}
$$

PTS: 2
REF: fall0801ge STA: G.G. 40
TOP: Trapezoids
ANS: 2
The length of the midsegment of a trapezoid is the average of the lengths of its bases. $\frac{x+30}{2}=44$.

$$
\begin{array}{r}
x+30=88 \\
x=58
\end{array}
$$

PTS: 2 REF: 011001ge STA: G.G. 40 TOP: Trapezoids
ANS: 3

PTS: 2
REF: 061016ge
STA: G.G. 40
TOP: Trapezoids

206
ANS: 4
$\sqrt{25^{2}-\left(\frac{26-12}{2}\right)^{2}}=24$

PTS: 2
207 ANS: 4
TOP: Trapezoids
208 ANS:
70. $3 x+5+3 x+5+2 x+2 x=180$

$$
\begin{aligned}
10 x+10 & =360 \\
10 x & =350 \\
x & =35 \\
2 x & =70
\end{aligned}
$$

PTS: 2 REF: 081029ge STA: G.G. 40 TOP: Trapezoids
209 ANS:
3. The non-parallel sides of an isosceles trapezoid are congruent. $2 x+5=3 x+2$

$$
x=3
$$

PTS: 2
210 ANS: 1
REF: 080929ge
STA: G.G. 40
REF: 080918ge
TOP: Trapezoids
STA: G.G. 41

TOP: Special Quadrilaterals
211 ANS:

$\overline{F E} \cong \overline{F E}$ (Reflexive Property); $\overline{A E}-\overline{F E} \cong \overline{F C}-\overline{E F}$ (Line Segment Subtraction Theorem); $\overline{A F} \cong \overline{C E}$ (Substitution); $\angle B F A \cong \angle D E C$ (All right angles are congruent); $\triangle B F A \cong \triangle D E C$ (AAS); $\overline{\overline{A B}} \cong \overline{C D}$ and $\overline{B F} \cong \overline{D E}$ (СРСТС); $\angle B F C \cong \angle D E A$ (All right angles are congruent); $\triangle B F C \cong \triangle D E A$ (SAS); $\overline{A D} \cong \overline{C B}$ (СРСТС); $A B C D$ is a parallelogram (opposite sides of quadrilateral $A B C D$ are congruent)

PTS: 6 REF: 080938ge STA: G.G. 41 TOP: Special Quadrilaterals
212 ANS:
$\overline{J K} \cong \overline{L M}$ because opposite sides of a parallelogram are congruent. $\overline{L M} \cong \overline{L N}$ because of the Isosceles Triangle Theorem. $\overline{L M} \cong \overline{J M}$ because of the transitive property. JKLM is a rhombus because all sides are congruent.

PTS: 4 REF: 011036ge STA: G.G. 41 TOP: Special Quadrilaterals
213 ANS: 2
Adjacent sides of a rectangle are perpendicular and have opposite and reciprocal slopes.
PTS: 2 REF: 061028ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane

ANS:

$\overline{A B} \| \overline{C D}$ and $\overline{A D} \| \overline{C B}$ because their slopes are equal. $A B C D$ is a parallelogram because opposite side are parallel. $\overline{A B} \neq \overline{B C} . A B C D$ is not a rhombus because all sides are not equal. $\overline{A B} \sim \perp \overline{B C}$ because their slopes are not opposite reciprocals. $A B C D$ is not a rectangle because $\angle A B C$ is not a right angle.

PTS: 4 REF: 081038ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane
215 ANS:

The length of each side of quadrilateral is 5 . Since each side is congruent, quadrilateral MATH is a rhombus. The slope of $\overline{M H}$ is 0 and the slope of $\overline{H T}$ is $-\frac{4}{3}$. Since the slopes are not negative reciprocals, the sides are not perpendicular and do not form rights angles. Since adjacent sides are not perpendicular, quadrilateral MATH is not a square.

PTS: 6 REF: 011138ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane

Geometry Regents Exam Questions by Performance Indicator: Topic Answer Section

216 ANS:
$m_{\overline{A B}}=\left(\frac{-6+2}{2}, \frac{-2+8}{2}\right)=D(2,3) m_{B C}=\left(\frac{2+6}{2}, \frac{8+-2}{2}\right)=E(4,3) F(0,-2)$. To prove that $A D E F$ is a
parallelogram, show that both pairs of opposite sides of the parallelogram are parallel by showing the opposite sides have the same slope: $\mathrm{m}_{\overline{A D}}=\frac{3--2}{-2--6}=\frac{5}{4} \quad \overline{A F} \| \overline{D E}$ because all horizontal lines have the same slope. $A D E F$

$$
\mathrm{m}_{F E}=\frac{3--2}{4-0}=\frac{5}{4}
$$

is not a rhombus because not all sides are congruent. $A D=\sqrt{5^{2}+4^{2}}=\sqrt{41} \quad A F=6$
PTS: 6 REF: 081138ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane
217 ANS: 3
Because $\overline{O C}$ is a radius, its length is 5 . Since $C E=2 O E=3 . \triangle E D O$ is a 3-4-5 triangle. If $E D=4, B D=8$.
PTS: 2 REF: fall0811ge STA: G.G. 49 TOP: Chords
218 ANS: 3

PTS: 2 REF: 011112ge STA: G.G. 49 TOP: Chords
219 ANS: 4
$\sqrt{6^{2}-2^{2}}=\sqrt{32}=\sqrt{16} \sqrt{2}=4 \sqrt{2}$
PTS: 2 REF: 081124ge STA: G.G. 49 TOP: Chords
220 ANS:
$E O=6 . C E=\sqrt{10^{2}-6^{2}}=8$
PTS: 2 REF: 011234ge STA: G.G. 49 TOP: Chords
221 ANS: 1
The closer a chord is to the center of a circle, the longer the chord.
PTS: 2 REF: 011005ge STA: G.G. 49 TOP: Chords

222 ANS: 2
Parallel chords intercept congruent arcs. $\mathrm{m} \overparen{A D}=\mathrm{m} \overparen{B C}=60 . \mathrm{m} \angle C D B=\frac{1}{2} \mathrm{~m} \overparen{B C}=30$.
PTS: 2 REF: 060906ge STA: G.G. 52 TOP: Chords
223 ANS: 2
Parallel chords intercept congruent arcs. $\mathrm{m} \overparen{A C}=\mathrm{m} \overparen{B D}=30 \cdot 180-30-30=120$.
PTS: 2 REF: 080904ge STA: G.G. 52 TOP: Chords
224 ANS:
$2 x-20=x+20 . \mathrm{m} \overparen{A B}=x+20=40+20=60$
$x=40$
PTS: 2 REF: 011229ge STA: G.G. 52 TOP: Chords
225 ANS: 1
Parallel lines intercept congruent arcs.
PTS: 2 REF: 061001ge STA: G.G. 52 TOP: Chords
226 ANS: 1
Parallel lines intercept congruent arcs.
PTS: 2 REF: 061105ge STA: G.G. 52 TOP: Chords
227 ANS:
$\frac{180-80}{2}=50$
PTS: 2
228 ANS: 3
TOP: Tangents
REF: 081129ge
STA: G.G. 52
PTS: 2
REF: 080928ge
TOP: Chords
gents
KEY: common tangency
229 ANS: 4
TOP: Tangents
PTS: 2 REF
KEY: common tangency
230 ANS: 1
TOP: Tangents
PTS: 2
REF: 061013ge
STA: G.G. 50
231 ANS: 1 PTS: 2 REF: 081012ge STA: G.G.50
TOP: Tangents KEY: two tangents
232 ANS:
18. If the ratio of $T A$ to $A C$ is 1:3, the ratio of $T E$ to $E S$ is also 1:3. $x+3 x=24.3(6)=18$.

$$
x=6
$$

PTS: 4 REF: 060935ge STA: G.G. 50 TOP: Tangents
KEY: common tangency

233 ANS: 4
$\sqrt{25^{2}-7^{2}}=24$
PTS: 2
REF: 081105ge
KEY: point of tangency
234 ANS: 2
$\frac{87+35}{2}=\frac{122}{2}=61$
PTS: 2
KEY: inside circle
235 ANS: 3
$\frac{36+20}{2}=28$
PTS: 2
REF: 061019ge
KEY: inside circle
236 ANS: 2
$\frac{50+x}{2}=34$
$50+x=68$
$x=18$
PTS: 2
REF: 011214ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inside circle
237 ANS: 2

PTS: 2
REF: 061026GE
STA: G.G. 51
PTS: 2
ANS: 4
PTS: 2
TOP: Arcs Determined by Angles

STA: G.G. 51
TOP: Arcs Determined by Angles
STA: G.G. 50
TOP: Tangents

TA: G.G. 51
TOP: Arcs Determined by Angles TOP: Arcs Detine by Angle

239
ANS:
$\angle D, \angle G$ and 24° or $\angle E, \angle F$ and $84^{\circ} . \mathrm{m} \overparen{F E}=\frac{2}{15} \times 360=48$. Since the chords forming $\angle D$ and $\angle G$ are intercepted by $\overparen{F E}$, their measure is $24^{\circ} . \mathrm{m} \overparen{G D}=\frac{7}{15} \times 360=168$. Since the chords forming $\angle E$ and $\angle F$ are intercepted by $\overparen{G D}$, their measure is 84°.

PTS: 4 REF: fall0836ge STA: G.G. 51 TOP: Arcs Determined by Angles
KEY: inscribed
240
ANS: 2
$\frac{140-\overline{R S}}{2}=40$
$140-\overline{R S}=80$

$$
\overline{R S}=60
$$

PTS: 2 REF: 081025ge STA: G.G. 51 TOP: Arcs Determined by Angles
KEY: outside circle
241 ANS:
30. $3 x+4 x+5 x=360 . \mathrm{m} \overparen{\mathrm{LN}}: \mathrm{m} \overparen{\mathrm{NK}}: \mathrm{m} \overparen{\mathrm{KL}}=90: 120: 150 . \frac{150-90}{2}=30$

$$
x=20
$$

PTS: 4 REF: 061136ge STA: G.G. 51 TOP: Arcs Determined by Angles
KEY: outside circle
ANS: 2

$$
x^{2}=3(x+18)
$$

$$
\begin{aligned}
x^{2}-3 x-54 & =0 \\
(x-9)(x+6) & =0 \\
x & =9
\end{aligned}
$$

PTS: 2 REF: fall0817ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: tangent and secant
ANS: 3

$$
\begin{aligned}
4(x+4) & =8^{2} \\
4 x+16 & =64 \\
x & =12
\end{aligned}
$$

PTS: 2 REF: 060916ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: tangent and secant

244 ANS: 4
$x^{2}=(4+5) \times 4$
$x^{2}=36$
$x=6$
PTS: 2 REF: 011008ge STA: G.G. 33 TOP: Segments Intercepted by Circle
KEY: tangent and secant
245 ANS: 4

$$
4(x+4)=8^{2}
$$

$$
4 x+16=64
$$

$$
4 x=48
$$

$$
x=12
$$

PTS: 2
REF: 061117ge
STA: G.G. 53
TOP: Segments Intercepted by Circle KEY: tangent and secant
$(d+4) 4=12(6)$
$4 d+16=72$
$d=14$
$r=7$
PTS: 2
REF: 061023ge
STA: G.G. 53
TOP: Segments Intercepted by Circle KEY: two secants
247 ANS: 2

$$
\begin{aligned}
4(4 x-3) & =3(2 x+8) \\
16 x-12 & =6 x+24 \\
10 x & =36 \\
x & =3.6
\end{aligned}
$$

PTS: 2 REF: 080923ge STA: G.G. 53 TOP: Segments Intercepted by Circle KEY: two chords

248 ANS: 1
$4 x=6 \cdot 10$

$x=15$
PTS: 2
REF: 081017ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: two chords
249
ANS:
$x^{2}=9 \cdot 8$
$x=\sqrt{72}$
$x=\sqrt{36} \sqrt{2}$
$x=6 \sqrt{2}$
PTS: 2
REF: 011132ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: two chords
ANS: 3

PTS: 2
REF: 011101ge
STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: two tangents
251 ANS: 4 PTS: 2
TOP: Segments Intercepted by Circle
REF: 011208ge STA: G.G. 53
KEY: two tangents
ANS: 1
$M_{x}=\frac{-2+6}{2}=2 . M_{y}=\frac{3+3}{2}=3$. The center is (2,3). $d=\sqrt{(-2-6)^{2}+(3-3)^{2}}=\sqrt{64+0}=8$. If the diameter is 8 , the radius is 4 and $r^{2}=16$.
PTS: 2
ANS: 2 REF: fall0820ge \quad STA: G.G. 71 TOP: Equations of Circles

256
ANS: 4 PTS: 2
TOP: Equations of Circles
257
ANS: 4
PTS: 2
TOP: Equations of Circles
258 ANS:
Midpoint: $\left(\frac{-4+4}{2}, \frac{2+(-4)}{2}\right)=(0,-1)$. Distance: $d=\sqrt{(-4-4)^{2}+(2-(-4))^{2}}=\sqrt{100}=10$
$r=5$
$r^{2}=25$

$$
\text { + }-0
$$

$x^{2}+(y+1)^{2}=25$
PTS: 4 REF: 061037ge STA: G.G. 71 TOP: Equations of Circles 259 ANS: 2

PTS: 2
TOP: Equations of Circles
260 ANS: 4
The radius is $4 . r^{2}=16$.
PTS: 2 REF: 061014ge STA: G.G. 72 TOP: Equations of Circles
261 ANS: 1
PTS: 2
TOP: Equations of Circles
262 ANS: 1
PTS: 2
REF: 061110ge
STA: G.G. 72

REF: 011220ge STA: G.G. 72
TOP: Equations of Circles
263 ANS:
$(x+1)^{2}+(y-2)^{2}=36$

PTS: 2 REF: 081034ge STA: G.G. 72 TOP: Equations of Circles
264 ANS:
$(x-5)^{2}+(y+4)^{2}=36$
PTS: 2 REF: 081132ge STA: G.G. 72 TOP: Equations of Circles
REF: 081110ge STA: G.G. 71

REF: 011212ge STA: G.G. 71

REF: 080921ge

STA: G.G. 72

ANS: 3
PTS: 2
TOP: Equations of Circles
266 ANS: 1
PTS: 2
TOP: Equations of Circles
267 ANS: 1 PTS: 2
TOP: Equations of Circles
268 ANS: 4 PTS: 2
TOP: Equations of Circles
269 ANS: 2
PTS: 2
TOP: Equations of Circles
270
TOP: Equations of Circles
271 ANS: $1 \quad$ PTS: 2
TOP: Graphing Circles
265 ANS: 1

REF: fall0814ge STA: G.G. 73

REF: 080911ge STA: G.G. 73
REF: 081009ge STA: G.G. 73

REF: 061114ge STA: G.G. 73
REF: 011203ge STA: G.G. 73

REF: 060922ge STA: G.G. 73

REF: 060920ge STA: G.G. 74

272 ANS: 2
PTS: 2
REF: 011020ge STA: G.G. 74
TOP: Graphing Circles
273 ANS: 2
PTS: 2
REF: 011125ge STA: G.G. 74
TOP: Graphing Circles
274 ANS:
4. $l_{1} w_{1} h_{1}=l_{2} w_{2} h_{2}$

$$
10 \times 2 \times h=5 \times w_{2} \times h
$$

$$
20=5 w_{2}
$$

$$
w_{2}=4
$$

PTS: 2
275 ANS: 3
TOP: Volume
276 ANS:
9.1. $(11)(8) h=800$

$$
h \approx 9.1
$$

PTS: 2
REF: 061131ge
STA: G.G. 12
TOP: Volume
277 ANS: 1
$3 x^{2}+18 x+24$
$3\left(x^{2}+6 x+8\right)$
$3(x+4)(x+2)$
PTS: 2
278 ANS: 2
REF: fall0815ge
PTS: 2
TOP: Volume
279 ANS:
2016. $V=\frac{1}{3} B h=\frac{1}{3} s^{2} h=\frac{1}{3} 12^{2} \cdot 42=2016$

PTS: 2 REF: 080930ge STA: G.G. 13 TOP: Volume 280 ANS:
18. $V=\frac{1}{3} B h=\frac{1}{3} l w h$
$288=\frac{1}{3} \cdot 8 \cdot 6 \cdot h$
$288=16 h$
$18=h$
PTS: 2
REF: 061034ge
STA: G.G. 13
TOP: Volume

281 ANS: 3
$V=\pi r^{2} h=\pi \cdot 6^{2} \cdot 27=972 \pi$
PTS: 2 REF: 011027ge STA: G.G. 14 TOP: Volume
282 ANS: 2
$V=\pi r^{2} h=\pi \cdot 6^{2} \cdot 15=540 \pi$
PTS: 2 REF: 011117ge STA: G.G. 14 TOP: Volume
283 ANS: 1

$$
\begin{aligned}
V & =\pi r^{2} h \\
1000 & =\pi r^{2} \cdot 8 \\
r^{2} & =\frac{1000}{8 \pi} \\
r & \approx 6.3
\end{aligned}
$$

PTS: 2 REF: 080926ge STA: G.G. 14 TOP: Volume 284 ANS:
22.4. $\quad V=\pi r^{2} h$

$$
12566.4=\pi r^{2} \cdot 8
$$

$$
r^{2}=\frac{12566.4}{8 \pi}
$$

$$
r \approx 22.4
$$

PTS: 2 REF: fall0833ge STA: G.G. 14 TOP: Volume
285 ANS: 4
$L=2 \pi r h=2 \pi \cdot 5 \cdot 11 \approx 345.6$
PTS: 2 REF: 061006ge STA: G.G. 14 TOP: Volume
286 ANS:

$$
\begin{aligned}
V & =\pi r^{2} h \quad . L=2 \pi r h=2 \pi \cdot 5 \sqrt{2} \cdot 12 \approx 533.1 \\
600 \pi & =\pi r^{2} \cdot 12 \\
50 & =r^{2} \\
\sqrt{25} \sqrt{2} & =r \\
5 \sqrt{2} & =r
\end{aligned}
$$

PTS: 4
REF: 011236ge
STA: G.G. 14
TOP: Volume
287 ANS: 1
$V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi \cdot 4^{2} \cdot 12 \approx 201$
PTS: 2
REF: 060921ge STA: G.G. 15
TOP: Volume

288 ANS:
$375 \pi L=\pi r l=\pi(15)(25)=375 \pi$
PTS: 2 REF: 081030ge STA: G.G. 15 TOP: Lateral Area
289 ANS: 2
$V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot 3^{3}=36 \pi$
PTS: 2 REF: 061112ge STA: G.G. 16 TOP: Volume and Surface Area
290 ANS:
$V=\frac{4}{3} \pi \cdot 9^{3}=972 \pi$

PTS: 2
REF: 081131ge
STA: G.G. 16
TOP: Surface Area
291 ANS: 4

$$
\mathrm{SA}=4 \pi r^{2} \quad V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot 6^{3}=288 \pi
$$

$144 \pi=4 \pi r^{2}$

$$
36=r^{2}
$$

$$
6=r
$$

PTS: 2
REF: 081020ge
STA: G.G. 16
TOP: Surface Area
292 ANS:
452. $S A=4 \pi r^{2}=4 \pi \cdot 6^{2}=144 \pi \approx 452$

PTS: 2
REF: 061029ge
STA: G.G. 16
TOP: Surface Area
293 ANS:
20. $5 x+10=4 x+30$

$$
x=20
$$

PTS: 2
REF: 060934ge
STA: G.G. 45
TOP: Similarity
KEY: basic
294 ANS: 4
$180-(50+30)=100$
PTS: 2
REF: 081006ge
STA: G.G. 45
TOP: Similarity
KEY: basic
295
ANS: 3
$\frac{7 x}{4}=\frac{7}{x} .7(2)=14$
$7 x^{2}=28$

$$
x=2
$$

PTS: 2
REF: 061120ge
STA: G.G. 45
KEY: basic

296 ANS:
$2 \quad \frac{x+2}{x}=\frac{x+6}{4}$
$x^{2}+6 x=4 x+8$
$x^{2}+2 x-8=0$
$(x+4)(x-2)=0$
$x=2$
PTS: 4
REF: 081137ge
STA: G.G. 45
TOP: Similarity
KEY: basic
297 ANS: 4
Corresponding angles of similar triangles are congruent.
PTS: 2 REF: fall0826ge STA: G.G. 45 TOP: Similarity
KEY: perimeter and area
298 ANS: 2
Because the triangles are similar, $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle D}=1$

PTS: 2 REF: 011022ge STA: G.G. 45 TOP: Similarity
KEY: perimeter and area
299 ANS: $4 \quad$ PTS: 2
REF: 081023ge STA: G.G. 45
TOP: Similarity KEY: perimeter and area
300 ANS: 1
$\overline{A B}=10$ since $\triangle A B C$ is a 6-8-10 triangle. $6^{2}=10 x$
$3.6=x$
PTS: 2 REF: 060915ge STA: G.G. 47 TOP: Similarity
KEY: leg
301 ANS: 4
Let $\overline{A D}=x . \quad 36 x=12^{2}$

$$
x=4
$$

PTS: 2
REF: 080922ge
STA: G.G. 47
TOP: Similarity
KEY: leg

302 ANS: 4
$6^{2}=x(x+5)$
$36=x^{2}+5 x$
$0=x^{2}+5 x-36$
$0=(x+9)(x-4)$
$x=4$
PTS: 2
REF: 011123ge
STA: G.G. 47
TOP: Similarity
KEY: leg
303 ANS: 1
$x^{2}=7(16-7)$
$x^{2}=63$
$x=\sqrt{9} \sqrt{7}$
$x=3 \sqrt{7}$
PTS: 2
REF: 061128ge
STA: G.G. 47
TOP: Similarity
KEY: altitude
304 ANS: 4
$x \cdot 4 x=6^{2} . P Q=4 x+x=5 x=5(3)=15$

$$
\begin{aligned}
4 x^{2} & =36 \\
x & =3
\end{aligned}
$$

PTS: 2
REF: 011227ge
STA: G.G. 47
TOP: Similarity
KEY: leg
305 ANS:
2.4. $5 a=4^{2} \quad 5 b=3^{2} \quad h^{2}=a b$

$$
\begin{aligned}
a=3.2 \quad b=1.8 & h^{2}=3.2 \cdot 1.8 \\
& h=\sqrt{5.76}=2.4
\end{aligned}
$$

PTS: 4
REF: 081037ge
STA: G.G. 47
TOP: Similarity
KEY: altitude
306
ANS:
$2 \sqrt{3} . x^{2}=3 \cdot 4$

$$
x=\sqrt{12}=2 \sqrt{3}
$$

PTS: 2
REF: fall0829ge STA: G.G. 47
TOP: Similarity
KEY: altitude

307 ANS:
$R^{\prime}(-3,-2), S^{\prime}(-4,4)$, and $T^{\prime}(2,2)$.
PTS: 2 REF: 011232ge STA: G.G. 54 TOP: Rotations
308 ANS:

PTS: 2 REF: 011130ge STA: G.G. 54 TOP: Reflections KEY: grids
309 ANS:

PTS: 2
KEY: grids
310 ANS: 3
TOP: Reflections
311 ANS: 2
TOP: Reflections
312 ANS: 1
TOP: Reflections
313 ANS: 3
$-5+3=-2 \quad 2+-4=-2$
PTS: 2
314 ANS: 1
$(x, y) \rightarrow(x+3, y+1)$
PTS: 2
REF: fall0803ge
STA: G.G. 54
TOP: Translations

315 ANS:

PTS: 4
REF: 060937ge
KEY: grids
316 ANS: 1
$A^{\prime}(2,4)$
PTS: 2
REF: 011023ge
STA: G.G. 54
TOP: Compositions of Transformations
KEY: basic
317 ANS: 3 $(3,-2) \rightarrow(2,3) \rightarrow(8,12)$

PTS: 2
REF: 011126ge
STA: G.G. 54
TOP: Compositions of Transformations KEY: basic
318 ANS:

$$
A^{\prime \prime}(8,2), B^{\prime \prime}(2,0), C^{\prime \prime}(6,-8)
$$

PTS: 4
319 ANS:

PTS: 4

REF: 081036ge STA: G.G. 58

$$
G^{\prime \prime}(3,3), H^{\prime \prime}(7,7), S^{\prime \prime}(-1,9)
$$

REF: 081136ge
STA: G.G. 58

TOP: Compositions of Transformations

TOP: Compositions of Transformations

320 ANS: 1
After the translation, the coordinates are $A^{\prime}(-1,5)$ and $B^{\prime}(3,4)$. After the dilation, the coordinates are $A^{\prime \prime}(-2,10)$ and $B^{\prime \prime}(6,8)$.

PTS: 2 REF: fall0823ge STA: G.G. 58 TOP: Compositions of Transformations
ANS:

PTS: 2
REF: fall0830ge
STA: G.G. 55
TOP: Properties of Transformations
322 ANS:

$A^{\prime}(7,-4), B^{\prime}(7,-1) . C^{\prime}(9,-4)$. The areas are equal because translations preserve distance.
PTS: 4 REF: 011235ge STA: G.G. 55 TOP: Properties of Transformations
323 ANS:

PTS: 4
324 ANS: 2
REF: 080937ge
PTS: 2
TOP: Properties of Transformations
325 ANS: 1

PTS: 2

REF: 061005ge
TOP: Properties of Transformations
STA: G.G. 55
STA: G.G. 55

| 326 | ANS: 2 | PTS: 2 | REF: 081015ge | STA: G.G. 55 |
| :--- | :--- | :---: | :--- | :--- | :--- |
| | TOP: Properties of Transformations | | | |
| 327 | ANS: 1 | REF: 011102ge | STA: G.G. 55 | |
| | TOP: Properties of Transformations | | | |
| 328 | ANS: 3 PTS: 2 | REF: 081104ge | STA: G.G. 55 | |
| | TOP: Properties of Transformations | | | |
| 329 | ANS: 2 PTS: 2 | REF: 011211ge | STA: G.G. 55 | |
| | TOP: Properties of Transformations | | | |
| 330 | ANS: 3 \quad REF: 081021ge | STA: G.G. 57 | | |
| | TOP: Properties of Transformations | | | |

331 ANS: 1

Translations and reflections do not affect distance.

| PTS: 2 | REF: 080908ge | STA: G.G. 59 | TOP: Properties of Transformations | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 332 | ANS: 2 | PTS: 2 | REF: 061126ge | STA: G.G. 59 |
| TOP: Properties of Transformations | | | | |

333 ANS:
36, because a dilation does not affect angle measure. 10 , because a dilation does affect distance.

	PTS: 4 REF: 011035ge	STA:	G.G. 59	TOP:	Propertie
334	ANS: 1 PTS: 2	REF:	060903ge	STA:	G.G. 56
	TOP: Identifying Transformations				
335	ANS: 4 PTS: 2	REF:	080915ge	STA:	G.G. 56
	TOP: Identifying Transformations				
336	ANS: 2 PTS: 2	REF:	011006ge	STA:	G.G. 56
	TOP: Identifying Transformations				
337	ANS: 4 PTS: 2	REF:	061015ge	STA:	G.G. 56
	TOP: Identifying Transformations				
338	ANS: 4 PTS: 2	REF:	061018ge	STA:	G.G. 56
	TOP: Identifying Transformations				
339	ANS: 3 PTS: 2	REF:	061122ge	STA:	G.G. 56
	TOP: Identifying Transformations				
340	ANS:				
	Yes. A reflection is an isometry.				

PTS: 2 REF: 061132ge STA: G.G. 56 TOP: Identifying Transformations
341 ANS: 3
PTS: 2
TOP: Identifying Transformations
342 ANS: 2
A dilation affects distance, not angle measure.

| | PTS: 2 | REF: 080906ge | STA: G.G.60 | TOP: Identifying Transformations |
| :--- | :--- | :---: | :--- | :--- | :--- |
| 343 | ANS: 4 | PTS: 2 | REF: 061103ge | STA: G.G. 60 |
| | TOP: Identifying Transformations | | | |
| 344 | ANS: 4 | PTS: 2 | REF: fall0818ge | STA: G.G. 61 |

TOP: Analytical Representations of Transformations

345 ANS: 4
346 ANS: 3
TOP: Negations
347 ANS: 2
TOP: Negations
348 ANS: 1
TOP: Negations
349 ANS:
The medians of a triangle are not concurrent. False.
PTS: 2
REF: 061129ge STA: G.G. 24
ANS: 4
Median $\overline{B F}$ bisects $\overline{A C}$ so that $\overline{C F} \cong \overline{F A}$.

| | PTS: 2 | REF: fall0810ge | STA: G.G. 24 | TOP: Statements |
| :--- | :--- | :---: | :--- | :--- | :--- |
| 351 | ANS: 4 | PTS: 2 | REF: 011118ge | STA: G.G. 25 |
| | TOP: Compound Statements | KEY: general | | |
| 352 | ANS: 4 | PTS: 2 | REF: 081101ge | STA: G.G. 25 |
| | TOP: Compound Statements | KEY: conjunction | | |

353 ANS:
True. The first statement is true and the second statement is false. In a disjunction, if either statement is true, the disjunction is true.

PTS: 2 REF: 060933ge STA: G.G. 25 TOP: Compound Statements
KEY: disjunction
354 ANS: $3 \quad$ PTS: 2
REF: 011028ge STA: G.G. 26
TOP: Conditional Statements
355 ANS: $1 \quad$ PTS: 2
TOP: Converse and Biconditional
356 ANS: 3
PTS: 2
REF: 081026ge
STA: G.G. 26
TOP: Contrapositive
357 ANS: 4
PTS: 2
REF: 060913ge STA: G.G. 26
TOP: Conditional Statements
358
Contrapositive-If two angles of a triangle are not congruent, the sides opposite those angles are not congruent.
PTS: 2 REF: fall0834ge STA: G.G. 26 TOP: Conditional Statements
359 ANS: 3

PTS: 2
REF: 060902ge STA: G.G. 28
TOP: Triangle Congruency

360 ANS: 2

PTS: 2
361 ANS: 1
REF: 081007ge
PTS: 2
STA: G.G. 28
TOP: Triangle Congruency
TOP: Triangle Congruency
362

PTS: 2
365 ANS: 2
REF: 081001ge
STA: G.G. 29
PTS: 2
TOP: Triangle Congruency
366 ANS: 4
PTS: 2
TOP: Triangle Congruency
367 ANS: 4
PTS: 2
TOP: Triangle Congruency
PTS: 2
TOP: Triangle Congruency
369
ANS: 4
PTS: 2
TOP: Angle Proofs

370
ANS:
$\overline{A C} \cong \overline{E C}$ and $\overline{D C} \cong \overline{B C}$ because of the definition of midpoint. $\angle A C B \cong \angle E C D$ because of vertical angles. $\triangle A B C \cong \triangle E D C$ because of SAS. $\angle C D E \cong \angle C B A$ because of CPCTC. $\overline{B D}$ is a transversal intersecting $\overline{A B}$ and
$\overline{E D}$. Therefore $\overline{A B} \| \overline{D E}$ because $\angle C D E$ and $\angle C B A$ are congruent alternate interior angles.

PTS: 6 REF: 060938ge STA: G.G. 27 TOP: Triangle Proofs
371 ANS:
Quadrilateral $A B C D, \overline{A D} \cong \overline{B C}$ and $\angle D A E \cong \angle B C E$ are given. $\overline{A D} \| \overline{B C}$ because if two lines are cut by a transversal so that a pair of alternate interior angles are congruent, the lines are parallel. $A B C D$ is a parallelogram because if one pair of opposite sides of a quadrilateral are both congruent and parallel, the quadrilateral is a parallelogram. $\overline{A E} \cong \overline{C E}$ because the diagonals of a parallelogram bisect each other. $\angle F E A \cong \angle G E C$ as vertical angles. $\triangle A E F \cong \triangle C E G$ by ASA.

PTS: 6 REF: 011238ge STA: G.G. 27 TOP: Quadrilateral Proofs
372 ANS: $\overline{B D} \cong \overline{D B}$ (Reflexive Property); $\triangle A B D \cong \triangle C D B$ (SSS); $\angle B D C \cong \angle A B D$ (CPCTC).

PTS: 4 REF: 061035ge STA: G.G. 27 TOP: Quadrilateral Proofs
373 ANS:
Because $\overline{A B} \| \overline{D C}, \overparen{A D} \cong \overparen{B C}$ since parallel chords intersect congruent arcs. $\angle B D C \cong \angle A C D$ because inscribed angles that intercept congruent arcs are congruent. $\overline{A D} \cong \overline{B C}$ since congruent chords intersect congruent arcs. $\overline{D C} \cong \overline{C D}$ because of the reflexive property. Therefore, $\triangle A C D \cong \triangle B D C$ because of SAS.

PTS: 6 REF: fall0838ge STA: G.G. 27 TOP: Circle Proofs
374 ANS:
$\overline{O A} \cong \overline{O B}$ because all radii are equal. $\overline{O P} \cong \overline{O P}$ because of the reflexive property. $\overline{O A} \perp \overline{P A}$ and $\overline{O B} \perp \overline{P B}$ because tangents to a circle are perpendicular to a radius at a point on a circle. $\angle P A O$ and $\angle P B O$ are right angles because of the definition of perpendicular. $\angle P A O \cong \angle P B O$ because all right angles are congruent.
$\triangle A O P \cong \triangle B O P$ because of HL. $\angle A O P \cong \angle B O P$ because of СРСТС.
PTS: 6
REF: 061138ge
STA: G.G. 27 TOP: Circle Proofs

375 ANS: 1
$\triangle P R T$ and $\triangle S R Q$ share $\angle R$ and it is given that $\angle R P T \cong \angle R S Q$.
PTS: 2 REF: fall0821ge STA: G.G. 44 TOP: Similarity Proofs
376 ANS: 2
$\angle A C B$ and $\angle E C D$ are congruent vertical angles and $\angle C A B \cong \angle C E D$.

PTS: 2 REF: 060917ge STA: G.G. 44 TOP: Similarity Proofs
377 ANS: 4
PTS: 2
REF: 011019ge STA: G.G. 44
TOP: Similarity Proofs
378 ANS: 3 PTS: 2 REF: 011209ge STA: G.G. 44
TOP: Similarity Proofs
379 ANS:
$\angle B$ and $\angle E$ are right angles because of the definition of perpendicular lines. $\angle B \cong \angle E$ because all right angles are congruent. $\angle B F D$ and $\angle D F E$ are supplementary and $\angle E C A$ and $\angle A C B$ are supplementary because of the definition of supplementary angles. $\angle D F E \cong \angle A C B$ because angles supplementary to congruent angles are congruent. $\triangle A B C \sim \triangle D E F$ because of AA.

PTS: 4 REF: 011136ge STA: G.G. 44 TOP: Similarity Proofs
380 ANS:
$\angle A C B \cong \angle A E D$ is given. $\angle A \cong \angle A$ because of the reflexive property. Therefore $\triangle A B C \sim \triangle A D E$ because of AA.

PTS: 2 REF: 081133ge STA: G.G. 44 TOP: Similarity Proofs

