JEFFERSON MATH PROJECT REGENTS BY TYPE

The NY Algebra 2/Trigonometry Regents Exams Fall 2009-June 2012

www.jmap.org

$\mathcal{D}_{\text {ear }}{ }^{\text {ö }}$ ir

Ihave to acknofege the reciept of your favor of May 14. in which you mention that you have finished the 6. first Gooks of \mathcal{E} ucfid, polane trigonometry, surveying \& afgebra and ask whether \mathscr{I} think a further pursuit of that branch of science would be usefuf to you. there are some propositions in the fatter books of
 them. trigonometry, so far as this, is most valuable to every man, there is scarcely a day in which he wiff not resort to it for some of the purposes of common fife. the science of cafculation afso is indispensibfe as far as the extraction of the square \& cube roots; 㚘Igefra as far as the quadratic equation \& the use of fogarithms are often of vafue in ordinary cases: but aff beyond these is but a fuxury; a deficious fuxury indeed; but not to be indulged in by one who is to have a profession to foffow for hits subsistence. in this fight $\mathscr{I}_{\text {view }}$ the conic sections, curves of the higher orders, perhapps even spherical trigonometry, 㬒fgefraicaf operations beyond the ad dimension, and fluxions.

Letter from Thomas Jefferson to William G. Munford, Monticello, June 18, 1799.

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions

1 Which graph best represents the inequality $y+6 \geq x^{2}-x$?
1)

2)

3)

2 Which graph does not represent a function?
1)

2)

4)

3 Which task is not a component of an observational study?

1) The researcher decides who will make up the sample.
2) The researcher analyzes the data received from the sample.
3) The researcher gathers data from the sample, using surveys or taking measurements.
4) The researcher divides the sample into two groups, with one group acting as a control group.

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

4 Which graph represents a one-to-one function?

6 A population of rabbits doubles every 60 days according to the formula $P=10(2)^{\frac{t}{60}}$, where P is the population of rabbits on day t. What is the value of t when the population is 320 ?

1) 240
2) 300
3) 660
4) 960

7 The product of $(3+\sqrt{5})$ and $(3-\sqrt{5})$ is

1) $4-6 \sqrt{5}$
2) $14-6 \sqrt{5}$
3) 14
4) 4

8 In parallelogram $B F L O, O L=3.8, L F=7.4$, and $\mathrm{m} \angle O=126$. If diagonal $\overline{B L}$ is drawn, what is the area of $\triangle B L F$?

1) 11.4
2) 14.1
3) 22.7
4) 28.1

9 Which function is one-to-one?

1) $\mathrm{k}(x)=x^{2}+2$
2) $g(x)=x^{3}+2$
3) $\mathrm{f}(x)=|x|+2$
4) $\mathrm{j}(\mathrm{x})=\mathrm{x}^{4}+2$

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

10 The graph of $y=\mathrm{f}(x)$ is shown below.

Which set lists all the real solutions of $\mathrm{f}(x)=0$?

1) $\{-3,2\}$
2) $\{-2,3\}$
3) $\{-3,0,2\}$
4) $\{-2,0,3\}$

12 What is the domain of the function $\mathrm{f}(x)=\sqrt{x-2}+3$?

1) $(-\infty, \infty)$
2) $(2, \infty)$
3) $[2, \infty)$
4) $[3, \infty)$

13 The sides of a parallelogram measure 10 cm and 18 cm . One angle of the parallelogram measures 46 degrees. What is the area of the parallelogram, to the nearest square centimeter?

1) 65
2) 125
3) 129
4) 162

14 What is the number of degrees in an angle whose radian measure is $\frac{11 \pi}{12}$?

1) 150
2) 165
3) 330
4) 518

15 Given $\triangle A B C$ with $a=9, b=10$, and $\mathrm{m} \angle B=70$, what type of triangle can be drawn?

1) an acute triangle, only
2) an obtuse triangle, only
3) both an acute triangle and an obtuse triangle
4) neither an acute triangle nor an obtuse triangle

16 When factored completely, $x^{3}+3 x^{2}-4 x-12$ equals

1) $(x+2)(x-2)(x-3)$
2) $(x+2)(x-2)(x+3)$
3) $\left(x^{2}-4\right)(x+3)$
4) $\left(x^{2}-4\right)(x-3)$

17 What is the principal value of $\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$?

1) -30°
2) 60°
3) 150°
4) 240°

18 In which interval of $\mathrm{f}(x)=\cos (x)$ is the inverse also a function?

1) $-\frac{\pi}{2}<x<\frac{\pi}{2}$
2) $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$
3) $0 \leq x \leq \pi$
4) $\frac{\pi}{2} \leq x \leq \frac{3 \pi}{2}$

19 The expression $2 \log x-(3 \log y+\log z)$ is equivalent to

1) $\log \frac{x^{2}}{y^{3} z}$
2) $\log \frac{x^{2} z}{y^{3}}$
3) $\log \frac{2 x}{3 y z}$
4) $\log \frac{2 x z}{3 y}$

20 Which summation represents
$5+7+9+11+\ldots+43$?

1) $\sum_{n=5}^{43} n$
2) $\sum_{n=1}^{20}(2 n+3)$
3) $\sum_{n=4}^{24}(2 n-3)$
4) $\sum_{n=3}^{23}(3 n-4)$

21 Ms. Bell's mathematics class consists of 4 sophomores, 10 juniors, and 5 seniors. How many different ways can Ms. Bell create a four-member committee of juniors if each junior has an equal chance of being selected?

1) 210
2) 3,876
3) 5,040
4) 93,024

22 The yearbook staff has designed a survey to learn student opinions on how the yearbook could be improved for this year. If they want to distribute this survey to 100 students and obtain the most reliable data, they should survey

1) every third student sent to the office
2) every third student to enter the library
3) every third student to enter the gym for the basketball game
4) every third student arriving at school in the morning

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

23 Which value of r represents data with a strong negative linear correlation between two variables?

1) -1.07
2) -0.89
3) -0.14
4) 0.92

24 Which graph represents the equation $y=\cos ^{-1} x$?
1)

2)

3)

4)

25 Which graph represents a relation that is not a function?
1)

2)
3)

4)

26 What is the period of the function
$y=\frac{1}{2} \sin \left(\frac{x}{3}-\pi\right)$?

1) $\frac{1}{2}$
2) $\frac{1}{3}$
3) $\frac{2}{3} \pi$
4) 6π

27 Which calculator output shows the strongest linear relationship between x and y ?

Lin Reg
$y=a+b x$
$a=59.026$
$b=6.767$

1) $r=.8643$

Lin Reg
$y=a+b x$
$a=.7$
$b=24.2$
2) $r=.8361$

Lin Reg
$y=a+b x$
$a=2.45$
$b=.95$
3) $r=.6022$

Lin Reg
$y=a+b x$
$a=-2.9$
$b=24.1$
4) $r=-.8924$

28 What is the sum of the first 19 terms of the sequence $3,10,17,24,31, \ldots$?

1) 1188
2) 1197
3) 1254
4) 1292

29 If $\sin A=\frac{2}{3}$ where $0^{\circ}<A<90^{\circ}$, what is the value of $\sin 2 A$?

1) $\frac{2 \sqrt{5}}{3}$
2) $\frac{2 \sqrt{5}}{9}$
3) $\frac{4 \sqrt{5}}{9}$
4) $-\frac{4 \sqrt{5}}{9}$

30 For which equation does the sum of the roots equal -3 and the product of the roots equal 2 ?

1) $x^{2}+2 x-3=0$
2) $x^{2}-3 x+2=0$
3) $2 x^{2}+6 x+4=0$
4) $2 x^{2}-6 x+4=0$

31 The roots of the equation $x^{2}-10 x+25=0$ are

1) imaginary
2) real and irrational
3) real, rational, and equal
4) real, rational, and unequal

32 What is the domain of the function shown below?

1) $-1 \leq x \leq 6$
2) $-1 \leq y \leq 6$
3) $-2 \leq x \leq 5$
4) $-2 \leq y \leq 5$

33 When $x^{-1}-1$ is divided by $x-1$, the quotient is

1) -1
2) $-\frac{1}{x}$
3) $\frac{1}{x^{2}}$
4) $\frac{1}{(x-1)^{2}}$

34 The expression $\log _{5}\left(\frac{1}{25}\right)$ is equivalent to

1) $\frac{1}{2}$
2) 2
3) $-\frac{1}{2}$
4) -2

35 The expression $\left(x^{2}-1\right)^{-\frac{2}{3}}$ is equivalent to

1) $\sqrt[3]{\left(x^{2}-1\right)^{2}}$
2) $\frac{1}{\sqrt[3]{\left(x^{2}-1\right)^{2}}}$
3) $\sqrt{\left(x^{2}-1\right)^{3}}$
4) $\frac{1}{\sqrt{\left(x^{2}-1\right)^{3}}}$

36 What is the product of $\left(\frac{x}{4}-\frac{1}{3}\right)$ and $\left(\frac{x}{4}+\frac{1}{3}\right)$?

1) $\frac{x^{2}}{8}-\frac{1}{9}$
2) $\frac{x^{2}}{16}-\frac{1}{9}$
3) $\frac{x^{2}}{8}-\frac{x}{6}-\frac{1}{9}$
4) $\frac{x^{2}}{16}-\frac{x}{6}-\frac{1}{9}$

37 Written in simplest form, the expression $\frac{\frac{x}{4}-\frac{1}{x}}{\frac{1}{2 x}+\frac{1}{4}}$ is equivalent to

1) $x-1$
2) $x-2$
3) $\frac{x-2}{2}$
4) $\frac{x^{2}-4}{x+2}$

38 What is the solution set for $2 \cos \theta-1=0$ in the interval $0^{\circ} \leq \theta<360^{\circ}$?

1) $\left\{30^{\circ}, 150^{\circ}\right\}$
2) $\left\{60^{\circ}, 120^{\circ}\right\}$
3) $\left\{30^{\circ}, 330^{\circ}\right\}$
4) $\left\{60^{\circ}, 300^{\circ}\right\}$

39 Which expression, when rounded to three decimal places, is equal to -1.155 ?

1) $\sec \left(\frac{5 \pi}{6}\right)$
2) $\tan \left(49^{\circ} 20^{\prime}\right)$
3) $\sin \left(-\frac{3 \pi}{5}\right)$
4) $\csc \left(-118^{\circ}\right)$

40 What is the range of $\mathrm{f}(x)=|x-3|+2$?

1) $\{x \mid x \geq 3\}$
2) $\{y \mid y \geq 2\}$
3) $\{x \mid x \in$ real numbers $\}$
4) $\{y \mid y \in$ realnumbers $\}$

41 What is the middle term in the expansion of
$\left(\frac{x}{2}-2 y\right)^{6}$?

1) $20 x^{3} y^{3}$
2) $-\frac{15}{4} x^{4} y^{2}$
3) $-20 x^{3} y^{3}$
4) $\frac{15}{4} x^{4} y^{2}$

42 In the diagram below of right triangle JTM, $J T=12, J M=6$, and $\mathrm{m} \angle J M T=90$.

What is the value of $\cot J$?

1) $\frac{\sqrt{3}}{3}$
2) 2
3) $\sqrt{3}$
4) $\frac{2 \sqrt{3}}{3}$

43 Twenty different cameras will be assigned to several boxes. Three cameras will be randomly selected and assigned to box A. Which expression can be used to calculate the number of ways that three cameras can be assigned to box A?

1) 20 !
2) $\frac{20!}{3!}$
3) ${ }_{20} C_{3}$
4) ${ }_{20} P_{3}$

44 In $\triangle A B C, a=3, b=5$, and $c=7$. What is $\mathrm{m} \angle C$?

1) 22
2) 38
3) 60
4) 120

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

45 What is the solution set of the equation
$|4 a+6|-4 a=-10$?

1) \varnothing
2) $\{0\}$
3) $\left\{\frac{1}{2}\right\}$
4) $\left\{0, \frac{1}{2}\right\}$

46 As shown in the table below, a person's target heart rate during exercise changes as the person gets older.

Age (years)	Target Heart Rate (beats per minute)
20	135
25	132
30	129
35	125
40	122
45	119
50	115

Which value represents the linear correlation coefficient, rounded to the nearest thousandth, between a person's age, in years, and that person's target heart rate, in beats per minute?

1) -0.999
2) -0.664
3) 0.998
4) 1.503

47 Which equation has roots with the sum equal to $\frac{9}{4}$ and the product equal to $\frac{3}{4}$?

1) $4 x^{2}+9 x+3=0$
2) $4 x^{2}+9 x-3=0$
3) $4 x^{2}-9 x+3=0$
4) $4 x^{2}-9 x-3=0$

48 In simplest form, $\sqrt{-300}$ is equivalent to

1) $3 i \sqrt{10}$
2) $5 i \sqrt{12}$
3) $10 i \sqrt{3}$
4) $12 i \sqrt{5}$

49 If $x^{2}+2=6 x$ is solved by completing the square, an intermediate step would be

1) $(x+3)^{2}=7$
2) $(x-3)^{2}=7$
3) $(x-3)^{2}=11$
4) $(x-6)^{2}=34$

50 The solution set of $\sqrt{3 x+16}=x+2$ is

1) $\{-3,4\}$
2) $\{-4,3\}$
3) $\{3\}$
4) $\{-4\}$

51 What is the fifteenth term of the sequence
$5,-10,20,-40,80, \ldots$?

1) $-163,840$
2) $-81,920$
3) 81,920
4) 327,680

52 If $\mathrm{f}(x)=x^{2}-5$ and $\mathrm{g}(x)=6 x$, then $\mathrm{g}(\mathrm{f}(x))$ is equal to

1) $6 x^{3}-30 x$
2) $6 x^{2}-30$
3) $36 x^{2}-5$
4) $x^{2}+6 x-5$

53 The expression $\sqrt[4]{16 x^{2} y^{7}}$ is equivalent to

1) $2 x^{\frac{1}{2}} y^{\frac{7}{4}}$
2) $2 x^{8} y^{28}$
3) $4 x^{\frac{1}{2}} y^{\frac{7}{4}}$
4) $4 x^{8} y^{28}$

54 How many distinct triangles can be formed if $\mathrm{m} \angle A=35, a=10$, and $b=13$?

1) 1
2) 2
3) 3
4) 0

55 What is a formula for the nth term of sequence B shown below?

$$
B=10,12,14,16, \ldots
$$

1) $b_{n}=8+2 n$
2) $b_{n}=10+2 n$
3) $b_{n}=10(2)^{n}$
4) $b_{n}=10(2)^{n-1}$

56 The equation $y-2 \sin \theta=3$ may be rewritten as

1) $\mathrm{f}(y)=2 \sin x+3$
2) $\mathrm{f}(y)=2 \sin \theta+3$
3) $\mathrm{f}(x)=2 \sin \theta+3$
4) $\mathrm{f}(\theta)=2 \sin \theta+3$

57 The graph of $y=x^{3}-4 x^{2}+x+6$ is shown below.

What is the product of the roots of the equation $x^{3}-4 x^{2}+x+6=0$?

1) -36
2) -6
3) 6
4) 4

58 An amateur bowler calculated his bowling average for the season. If the data are normally distributed, about how many of his 50 games were within one standard deviation of the mean?

1) 14
2) 17
3) 34
4) 48

59 The expression $x^{-\frac{2}{5}}$ is equivalent to

1) $-\sqrt[2]{x^{5}}$
2) $-\sqrt[5]{x^{2}}$
3) $\frac{1}{\sqrt[2]{x^{5}}}$
4) $\frac{1}{\sqrt[5]{x^{2}}}$

60 In $\triangle A B C, \mathrm{~m} \angle A=120, b=10$, and $c=18$. What is the area of $\triangle A B C$ to the nearest square inch?

1) 52
2) 78
3) 90
4) 156

61 What is the number of degrees in an angle whose measure is 2 radians?

1) $\frac{360}{\pi}$
2) $\frac{\pi}{360}$
3) 360
4) 90

62 Which graph represents the solution set of $|6 x-7| \leq 5$?
1)

2)

3)
4)

63 If $\log x^{2}-\log 2 a=\log 3 a$, then $\log x$ expressed in terms of $\log a$ is equivalent to

1) $\frac{1}{2} \log 5 a$
2) $\frac{1}{2} \log 6+\log a$
3) $\log 6+\log a$
4) $\log 6+2 \log a$

64 Which function is one-to-one?

1) $\mathrm{f}(x)=|x|$
2) $f(x)=2^{x}$
3) $\mathrm{f}(x)=x^{2}$
4) $\mathrm{f}(x)=\sin x$

65 For which equation does the sum of the roots equal $\frac{3}{4}$ and the product of the roots equal -2 ?

1) $4 x^{2}-8 x+3=0$
2) $4 x^{2}+8 x+3=0$
3) $4 x^{2}-3 x-8=0$
4) $4 x^{2}+3 x-2=0$

66 The value of the expression $2 \sum_{n=0}^{2}\left(n^{2}+2^{n}\right)$ is

1) 12
2) 22
3) 24
4) 26

67 Which equation is represented by the graph below?

1) $y=5^{x}$
2) $y=0.5^{x}$
3) $y=5^{-x}$
4) $y=0.5^{-x}$

68 When simplified, the expression $\left(\frac{w^{-5}}{w^{-9}}\right)^{\frac{1}{2}}$ is equivalent to

1) w^{-7}
2) w^{2}
3) w^{7}
4) w^{14}

69 Which values of x are solutions of the equation $x^{3}+x^{2}-2 x=0$?

1) $0,1,2$
2) $0,1,-2$
3) $0,-1,2$
4) $0,-1,-2$

70 The minimum point on the graph of the equation $y=\mathrm{f}(x)$ is $(-1,-3)$. What is the minimum point on the graph of the equation $y=\mathrm{f}(x)+5$?

1) $(-1,2)$
2) $(-1,-8)$
3) $(4,-3)$
4) $(-6,-3)$

71 A survey completed at a large university asked 2,000 students to estimate the average number of hours they spend studying each week. Every tenth student entering the library was surveyed. The data showed that the mean number of hours that students spend studying was 15.7 per week. Which characteristic of the survey could create a bias in the results?

1) the size of the sample
2) the size of the population
3) the method of analyzing the data
4) the method of choosing the students who were surveyed

72 The graph below shows the function $\mathrm{f}(x)$.

Which graph represents the function $\mathrm{f}(x+2)$?

73 The lengths of 100 pipes have a normal distribution with a mean of 102.4 inches and a standard deviation of 0.2 inch. If one of the pipes measures exactly 102.1 inches, its length lies

1) below the $16^{\text {th }}$ percentile
2) between the $50^{\text {th }}$ and $84^{\text {th }}$ percentiles
3) between the $16^{\text {th }}$ and $50^{\text {th }}$ percentiles
4) above the $84^{\text {th }}$ percentile

74 If $\mathrm{f}(x)=\frac{1}{2} x-3$ and $\mathrm{g}(x)=2 x+5$, what is the value of $(g \circ f)(4)$?

1) -13
2) 3.5
3) 3
4) 6

75 Samantha constructs the scatter plot below from a set of data.

Based on her scatter plot, which regression model would be most appropriate?

1) exponential
2) linear
3) logarithmic
4) power

76 When $x^{-1}+1$ is divided by $x+1$, the quotient equals

1) 1
2) $\frac{1}{x}$
3) x
4) $-\frac{1}{x}$

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

77 The expression $\log _{8} 64$ is equivalent to

1) 8
2) 2
3) $\frac{1}{2}$
4) $\frac{1}{8}$

78 The conjugate of the complex expression $-5 x+4 i$ is

1) $5 x-4 i$
2) $5 x+4 i$
3) $-5 x-4 i$
4) $-5 x+4 i$

79 Three marbles are to be drawn at random, without replacement, from a bag containing 15 red marbles, 10 blue marbles, and 5 white marbles. Which expression can be used to calculate the probability of drawing 2 red marbles and 1 white marble from the bag?

1) $\frac{{ }_{15} C_{2} \cdot{ }_{5} C_{1}}{{ }_{30} C_{3}}$
2) $\frac{{ }_{15} P_{2} \cdot{ }_{5} P_{1}}{{ }_{30} C_{3}}$
3) $\frac{{ }_{15} C_{2}{ }_{5} C_{1}}{{ }_{30} P_{3}}$
4) $\frac{{ }_{15} P_{2} \cdot{ }_{5} P_{1}}{{ }_{30} P_{3}}$

80 If $\mathrm{m} \angle \theta=-50$, which diagram represents θ drawn in standard position?
1)

2)

4)

81 What is the range of $\mathrm{f}(x)=(x+4)^{2}+7$?

1) $y \geq-4$
2) $y \geq 4$
3) $y=7$
4) $y \geq 7$

82 In $\triangle A B C, a=15, b=14$, and $c=13$, as shown in the diagram below. What is the $\mathrm{m} \angle C$, to the nearest degree?

1) 53
2) 59
3) 67
4) 127

83 What is the common ratio of the geometric sequence whose first term is 27 and fourth term is 64 ?

1) $\frac{3}{4}$
2) $\frac{64}{81}$
3) $\frac{4}{3}$
4) $\frac{37}{3}$

84 The value of the expression $\sum_{r=3}^{5}\left(-r^{2}+r\right)$ is

1) -38
2) -12
3) 26
4) 62

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

85 Which graph represents the function $\log _{2} x=y$?
1)
2)
3)

86 If a function is defined by the equation $\mathrm{f}(x)=4^{x}$, which graph represents the inverse of this function?
1)

2)

3)
4)

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

87 The table below shows the first-quarter averages for Mr. Harper's statistics class.

Statistics Class Averages

Quarter Averages	Frequency
99	1
97	5
95	4
92	4
90	7
87	2
84	6
81	2
75	1
70	2
65	1

What is the population variance for this set of data?

1) 8.2
2) 8.3
3) 67.3
4) 69.3

88 If the amount of time students work in any given week is normally distributed with a mean of 10 hours per week and a standard deviation of 2 hours, what is the probability a student works between 8 and 11 hours per week?

1) 34.1%
2) 38.2%
3) 53.2%
4) 68.2%

89 Expressed as a function of a positive acute angle, $\cos \left(-305^{\circ}\right)$ is equal to

1) $-\cos 55^{\circ}$
2) $\cos 55^{\circ}$
3) $-\sin 55^{\circ}$
4) $\sin 55^{\circ}$

90 In which graph is θ coterminal with an angle of -70° ?
1)
2)
3)

)

91 If $a=3$ and $b=-2$, what is the value of the expression $\frac{a^{-2}}{b^{-3}}$?

1) $-\frac{9}{8}$
2) -1
3) $-\frac{8}{9}$
4) $\frac{8}{9}$

92 What is a positive value of $\tan \frac{1}{2} x$, when $\sin x=0.8 ?$

1) 0.5
2) 0.4
3) 0.33
4) 0.25

93 The value of $\tan 126^{\circ} 43^{\prime}$ to the nearest ten-thousandth is

1) -1.3407
2) -1.3408
3) -1.3548
4) -1.3549

94 If $\mathrm{f}(x)=\frac{x}{x^{2}-16}$, what is the value of $\mathrm{f}(-10)$?

1) $-\frac{5}{2}$
2) $-\frac{5}{42}$
3) $\frac{5}{58}$
4) $\frac{5}{18}$

95 The solutions of the equation $y^{2}-3 y=9$ are

1) $\frac{3 \pm 3 i \sqrt{3}}{2}$
2) $\frac{3 \pm 3 i \sqrt{5}}{2}$
3) $\frac{-3 \pm 3 \sqrt{5}}{2}$
4) $\frac{3 \pm 3 \sqrt{5}}{2}$

96 The solution set of $4^{x^{2}+4 x}=2^{-6}$ is

1) $\{1,3\}$
2) $\{-1,3\}$
3) $\{-1,-3\}$
4) $\{1,-3\}$

97 The expression $\cos 4 x \cos 3 x+\sin 4 x \sin 3 x$ is equivalent to

1) $\sin x$
2) $\sin 7 x$
3) $\cos x$
4) $\cos 7 x$

98 What is the fifteenth term of the geometric sequence $-\sqrt{5}, \sqrt{10},-2 \sqrt{5}, \ldots$?

1) $-128 \sqrt{5}$
2) $128 \sqrt{10}$
3) $-16384 \sqrt{5}$
4) $16384 \sqrt{10}$

99 The expression $(3-7 i)^{2}$ is equivalent to

1) $-40+0 i$
2) $-40-42 i$
3) $58+0 i$
4) $58-42 i$

100 Which expression represents the third term in the expansion of $\left(2 x^{4}-y\right)^{3}$?

1) $-y^{3}$
2) $-6 x^{4} y^{2}$
3) $6 x^{4} y^{2}$
4) $2 x^{4} y^{2}$

101 If $\log _{b} x=3 \log _{b} p-\left(2 \log _{b} t+\frac{1}{2} \log _{b} r\right)$, then the value of x is

1) $\frac{p^{3}}{\sqrt{t^{2} r}}$
2) $p^{3} t^{2} r^{\frac{1}{2}}$
3) $\frac{p^{3} t^{2}}{\sqrt{r}}$
4) $\frac{p^{3}}{t^{2} \sqrt{r}}$

102 Which function is not one-to-one?

1) $\{(0,1),(1,2),(2,3),(3,4)\}$
2) $\{(0,0),(1,1),(2,2),(3,3)\}$
3) $\{(0,1),(1,0),(2,3),(3,2)\}$
4) $\{(0,1),(1,0),(2,0),(3,2)\}$

103 The table below displays the results of a survey regarding the number of pets each student in a class has. The average number of pets per student in this class is 2.

Number of Pets	0	1	2	3	4	5
Number of Students	4	6	10	0	k	2

What is the value of k for this table?

1) 9
2) 2
3) 8
4) 4

104 What is the value of x in the equation $\log _{5} x=4$?

1) 1.16
2) 20
3) 625
4) 1,024

105 The value of x in the equation $4^{2 x+5}=8^{3 x}$ is

1) 1
2) 2
3) 5
4) -10

106 What is the value of x in the equation $9^{3 x+1}=27^{x+2}$?

1) 1
2) $\frac{1}{3}$
3) $\frac{1}{2}$
4) $\frac{4}{3}$

On January 1, a share of a certain stock cost $\$ 180$. Each month thereafter, the cost of a share of this stock decreased by one-third. If x represents the time, in months, and y represents the cost of the stock, in dollars, which graph best represents the cost of a share over the following 5 months?
1)

2)

3)

4)

108 A sequence has the following terms: $a_{1}=4$, $a_{2}=10, a_{3}=25, a_{4}=62.5$. Which formula represents the nth term in the sequence?

1) $a_{n}=4+2.5 n$
2) $a_{n}=4+2.5(n-1)$
3) $a_{n}=4(2.5)^{n}$
4) $a_{n}=4(2.5)^{n-1}$

109 If $\angle A$ is acute and $\tan A=\frac{2}{3}$, then

1) $\cot A=\frac{2}{3}$
2) $\cot A=\frac{1}{3}$
3) $\cot \left(90^{\circ}-A\right)=\frac{2}{3}$
4) $\cot \left(90^{\circ}-A\right)=\frac{1}{3}$

110 The conjugate of $7-5 i$ is

1) $-7-5 i$
2) $-7+5 i$
3) $7-5 i$
4) $7+5 i$

111 Which two functions are inverse functions of each other?

1) $\mathrm{f}(x)=\sin x$ and $\mathrm{g}(x)=\cos (x)$
2) $\mathrm{f}(x)=3+8 x$ and $\mathrm{g}(x)=3-8 x$
3) $\mathrm{f}(x)=e^{x}$ and $\mathrm{g}(x)=\ln x$
4) $\mathrm{f}(x)=2 x-4$ and $g(x)=-\frac{1}{2} x+4$

112 Which is a graph of $y=\cot x$?
1)

2)

3)

4)

113 The expression $\cos ^{2} \theta-\cos 2 \theta$ is equivalent to

1) $\sin ^{2} \theta$
2) $-\sin ^{2} \theta$
3) $\cos ^{2} \theta+1$
4) $-\cos ^{2} \theta-1$

114 The roots of the equation $9 x^{2}+3 x-4=0$ are

1) imaginary
2) real, rational, and equal
3) real, rational, and unequal
4) real, irrational, and unequal

115 Which graph represents the solution set of
$\left|\frac{4 x-5}{3}\right|>1$?
1)

116 Which values of x are in the solution set of the following system of equations?

$$
\begin{aligned}
& y=3 x-6 \\
& y=x^{2}-x-6
\end{aligned}
$$

1) $0,-4$
2) 0,4
3) $6,-2$
4) $-6,2$

117 The function $\mathrm{f}(x)=\tan x$ is defined in such a way that $\mathrm{f}^{-1}(x)$ is a function. What can be the domain of $\mathrm{f}(x)$?

1) $\{x \mid 0 \leq x \leq \pi\}$
2) $\{x \mid 0 \leq x \leq 2 \pi\}$
3) $\left\{x \left\lvert\,-\frac{\pi}{2}<x<\frac{\pi}{2}\right.\right\}$
4) $\left\{x \left\lvert\,-\frac{\pi}{2}<x<\frac{3 \pi}{2}\right.\right\}$

118 The expression $\frac{4}{5-\sqrt{13}}$ is equivalent to

1) $\frac{4 \sqrt{13}}{5 \sqrt{13}-13}$
2) $\frac{4(5-\sqrt{13})}{38}$
3) $\frac{5+\sqrt{13}}{3}$
4) $\frac{4(5+\sqrt{13})}{38}$

119 Which ratio represents $\csc A$ in the diagram below?

1) $\frac{25}{24}$
2) $\frac{25}{7}$
3) $\frac{24}{7}$
4) $\frac{7}{24}$

120 The principal would like to assemble a committee of 8 students from the 15 -member student council. How many different committees can be chosen?

1) 120
2) 6,435
3) $32,432,400$
4) $259,459,200$

121 What is the formula for the nth term of the sequence $54,18,6, \ldots$?

1) $a_{n}=6\left(\frac{1}{3}\right)^{n}$
2) $a_{n}=6\left(\frac{1}{3}\right)^{n-1}$
3) $a_{n}=54\left(\frac{1}{3}\right)^{n}$
4) $a_{n}=54\left(\frac{1}{3}\right)^{n-1}$

122 Which expression is equivalent to $\left(\mathrm{n}^{\circ} \mathrm{m} \circ{ }^{\circ} \mathrm{p}\right)(x)$, given $\mathrm{m}(x)=\sin x, \mathrm{n}(x)=3 x$, and $\mathrm{p}(x)=x^{2}$?

1) $\sin (3 x)^{2}$
2) $3 \sin x^{2}$
3) $\sin ^{2}(3 x)$
4) $3 \sin ^{2} x$

123 Which formula can be used to determine the total number of different eight-letter arrangements that can be formed using the letters in the word DEADLINE?

1) $8!$
2) $\frac{8!}{4!}$
3) $\frac{8!}{2!+2!}$
4) $\frac{8!}{2!\cdot 2!}$

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

124 What is the solution of the equation $2 \log _{4}(5 x)=3$?

1) 6.4
2) 2.56
3) $\frac{9}{5}$
4) $\frac{8}{5}$

125 Which equation is represented by the graph below?

1) $y=\cot x$
2) $y=\csc x$
3) $y=\sec x$
4) $y=\tan x$

126 What is the period of the function $\mathrm{f}(\theta)=-2 \cos 3 \theta$?

1) π
2) $\frac{2 \pi}{3}$
3) $\frac{3 \pi}{2}$
4) 2π

127 The fraction $\frac{3}{\sqrt{3 a^{2} b}}$ is equivalent to

1) $\frac{1}{a \sqrt{b}}$
2) $\frac{\sqrt{b}}{a b}$
3) $\frac{\sqrt{3 b}}{a b}$
4) $\frac{\sqrt{3}}{a}$

128 Factored completely, the expression $6 x-x^{3}-x^{2}$ is equivalent to

1) $x(x+3)(x-2)$
2) $x(x-3)(x+2)$
3) $-x(x-3)(x+2)$
4) $-x(x+3)(x-2)$

129 What are the values of θ in the interval $0^{\circ} \leq \theta<360^{\circ}$ that satisfy the equation $\tan \theta-\sqrt{3}=0$?

1) $60^{\circ}, 240^{\circ}$
2) $72^{\circ}, 252^{\circ}$
3) $72^{\circ}, 108^{\circ}, 252^{\circ}, 288^{\circ}$
4) $60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$

130 A doctor wants to test the effectiveness of a new drug on her patients. She separates her sample of patients into two groups and administers the drug to only one of these groups. She then compares the results. Which type of study best describes this situation?

1) census
2) survey
3) observation
4) controlled experiment

131 What are the domain and the range of the function shown in the graph below?

1) $\{x \mid x>-4\} ;\{y \mid y>2\}$
2) $\{x \mid x \geq-4\} ;\{y \mid y \geq 2\}$
3) $\{x \mid x>2\} ;\{y \mid y>-4\}$
4) $\{x \mid x \geq 2\} ;\{y \mid y \geq-4\}$

132 The roots of the equation $2 x^{2}+7 x-3=0$ are

1) $-\frac{1}{2}$ and -3
2) $\frac{1}{2}$ and 3
3) $\frac{-7 \pm \sqrt{73}}{4}$
4) $\frac{7 \pm \sqrt{73}}{4}$

133 Which expression is equivalent to $\frac{x^{-1} y^{4}}{3 x^{-5} y^{-1}}$?

1) $\frac{x^{4} y^{5}}{3}$
2) $\frac{x^{5} y^{4}}{3}$
3) $3 x^{4} y^{5}$
4) $\frac{y^{4}}{3 x^{5}}$

134 If $r=\sqrt[3]{\frac{A^{2} B}{C}}$, then $\log r$ can be represented by

1) $\frac{1}{6} \log A+\frac{1}{3} \log B-\log C$
2) $3\left(\log A^{2}+\log B-\log C\right)$
3) $\frac{1}{3} \log \left(A^{2}+B\right)-C$
4) $\frac{2}{3} \log A+\frac{1}{3} \log B-\frac{1}{3} \log C$

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

135 The solution set of the equation $\sqrt{x+3}=3-x$ is

1) $\{1\}$
2) $\{0\}$
3) $\{1,6\}$
4) $\{2,3\}$

136 Which graph does not represent a function?
1)

2)
3)
4)

137 Which arithmetic sequence has a common difference of 4 ?

1) $\{0,4 n, 8 n, 12 n, \ldots\}$
2) $\{n, 4 n, 16 n, 64 n, \ldots\}$
3) $\{n+1, n+5, n+9, n+13, \ldots\}$
4) $\{n+4, n+16, n+64, n+256, \ldots\}$

138 Which equation represents the circle shown in the graph below that passes through the point $(0,-1)$?

1) $(x-3)^{2}+(y+4)^{2}=16$
2) $(x-3)^{2}+(y+4)^{2}=18$
3) $(x+3)^{2}+(y-4)^{2}=16$
4) $(x+3)^{2}+(y-4)^{2}=18$

139 Given angle A in Quadrant I with $\sin A=\frac{12}{13}$ and angle B in Quadrant II with $\cos B=-\frac{3}{5}$, what is the value of $\cos (A-B)$?

1) $\frac{33}{65}$
2) $-\frac{33}{65}$
3) $\frac{63}{65}$
4) $-\frac{63}{65}$

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

140 What is the common difference of the arithmetic sequence $5,8,11,14$?

1) $\frac{8}{5}$
2) -3
3) 3
4) 9

141 The expression $\frac{\sin ^{2} \theta+\cos ^{2} \theta}{1-\sin ^{2} \theta}$ is equivalent to

1) $\cos ^{2} \theta$
2) $\sin ^{2} \theta$
3) $\sec ^{2} \theta$
4) $\csc ^{2} \theta$

142 Akeem invests $\$ 25,000$ in an account that pays 4.75\% annual interest compounded continuously.

Using the formula $A=P e^{r t}$, where $A=$ the amount in the account after t years, $P=$ principal invested, and $r=$ the annual interest rate, how many years, to the nearest tenth, will it take for Akeem's investment to triple?

1) 10.0
2) 14.6
3) 23.1
4) 24.0

143 The product of i^{7} and i^{5} is equivalent to

1) 1
2) -1
3) i
4) $-i$

144 Which graph shows $y=\cos ^{-1} x$?

145 The expression $\sqrt[3]{64 a^{16}}$ is equivalent to

1) $8 a^{4}$
2) $8 a^{8}$
3) $4 a^{5} \sqrt[3]{a}$
4) $4 a \sqrt[3]{a^{5}}$

146 Which equation is graphed in the diagram below?

1) $y=3 \cos \left(\frac{\pi}{30} x\right)+8$
2) $y=3 \cos \left(\frac{\pi}{15} x\right)+5$
3) $y=-3 \cos \left(\frac{\pi}{30} x\right)+8$
4) $y=-3 \cos \left(\frac{\pi}{15} x\right)+5$

147 In $\triangle A B C, \mathrm{~m} \angle A=74, a=59.2$, and $c=60.3$.
What are the two possible values for $\mathrm{m} \angle C$, to the nearest tenth?

1) 73.7 and 106.3
2) 73.7 and 163.7
3) 78.3 and 101.7
4) 78.3 and 168.3

148 A study finds that 80% of the local high school students text while doing homework. Ten students are selected at random from the local high school. Which expression would be part of the process used to determine the probability that, at most, 7 of the 10 students text while doing homework?

1) ${ }_{10} C_{6}\left(\frac{4}{5}\right)^{6}\left(\frac{1}{5}\right)^{4}$
2) ${ }_{10} C_{7}\left(\frac{4}{5}\right)^{10}\left(\frac{1}{5}\right)^{7}$
3) ${ }_{10} C_{8}\left(\frac{7}{10}\right)^{10}\left(\frac{3}{10}\right)^{2}$
4) ${ }_{10} C_{9}\left(\frac{7}{10}\right)^{9}\left(\frac{3}{10}\right)^{1}$

149 What is the solution set of the equation $3 x^{5}-48 x=0$?

1) $\{0, \pm 2\}$
2) $\{0, \pm 2,3\}$
3) $\{0, \pm 2, \pm 2 i\}$
4) $\{ \pm 2, \pm 2 i\}$

150 In $\triangle M N P, m=6$ and $n=10$. Two distinct triangles can be constructed if the measure of angle M is

1) 35
2) 40
3) 45
4) 50

151 Four points on the graph of the function $\mathrm{f}(x)$ are shown below.

$$
\{(0,1),(1,2),(2,4),(3,8)\}
$$

Which equation represents $\mathrm{f}(x)$?

1) $\mathrm{f}(x)=2^{x}$
2) $\mathrm{f}(\mathrm{x})=2 \mathrm{x}$
3) $\mathrm{f}(x)=x+1$
4) $\mathrm{f}(x)=\log _{2} x$

152 What are the sum and product of the roots of the equation $6 x^{2}-4 x-12=0$?

1) sum $=-\frac{2}{3}$; product $=-2$
2) sum $=\frac{2}{3}$; product $=-2$
3) sum $=-2$; product $=\frac{2}{3}$
4) sum $=-2$; product $=-\frac{2}{3}$

153 What is the product of $\left(\frac{2}{5} x-\frac{3}{4} y^{2}\right)$ and $\left(\frac{2}{5} x+\frac{3}{4} y^{2}\right)$?

1) $\frac{4}{25} x^{2}-\frac{9}{16} y^{4}$
2) $\frac{4}{25} x-\frac{9}{16} y^{2}$
3) $\frac{2}{5} x^{2}-\frac{3}{4} y^{4}$
4) $\frac{4}{5} x$

154 An auditorium has 21 rows of seats. The first row has 18 seats, and each succeeding row has two more seats than the previous row. How many seats are in the auditorium?

1) 540
2) 567
3) 760
4) 798

155 Mrs. Hill asked her students to express the sum $1+3+5+7+9+\ldots+39$ using sigma notation. Four different student answers were given. Which student answer is correct?

1) $\sum_{k=1}^{20}(2 k-1)$
2) $\sum_{k=2}^{40}(k-1)$
3) $\sum_{k=-1}^{37}(k+2)$
4) $\sum_{k=1}^{39}(2 k-1)$

156 Which statement about the graph of the equation $y=e^{x}$ is not true?

1) It is asymptotic to the x-axis.
2) The domain is the set of all real numbers.
3) It lies in Quadrants I and II.
4) It passes through the point $(e, 1)$.

157 In the diagram below of a unit circle, the ordered pair $\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$ represents the point where the terminal side of θ intersects the unit circle.

What is $\mathrm{m} \angle \theta$?

1) 45
2) 135
3) 225
4) 240

158 The equation $x^{2}+y^{2}-2 x+6 y+3=0$ is equivalent to

1) $(x-1)^{2}+(y+3)^{2}=-3$
2) $(x-1)^{2}+(y+3)^{2}=7$
3) $(x+1)^{2}+(y+3)^{2}=7$
4) $(x+1)^{2}+(y+3)^{2}=10$

159 How many negative solutions to the equation $2 x^{3}-4 x^{2}+3 x-1=0$ exist?

1) 1
2) 2
3) 3
4) 0

160 What is the coefficient of the fourth term in the expansion of $(a-4 b)^{9}$?

1) $-5,376$
2) -336
3) 336
4) 5,376

161 If $\sin ^{-1}\left(\frac{5}{8}\right)=A$, then

1) $\sin A=\frac{5}{8}$
2) $\sin A=\frac{8}{5}$
3) $\cos A=\frac{5}{8}$
4) $\cos A=\frac{8}{5}$

162 What is the radian measure of the smaller angle formed by the hands of a clock at 7 o'clock?

1) $\frac{\pi}{2}$
2) $\frac{2 \pi}{3}$
3) $\frac{5 \pi}{6}$
4) $\frac{7 \pi}{6}$

163 A circle has a radius of 4 inches. In inches, what is the length of the arc intercepted by a central angle of 2 radians?

1) 2π
2) 2
3) 8π
4) 8

164 A spinner is divided into eight equal sections. Five sections are red and three are green. If the spinner is spun three times, what is the probability that it lands on red exactly twice?

1) $\frac{25}{64}$
2) $\frac{45}{512}$
3) $\frac{75}{512}$
4) $\frac{225}{512}$

165 Which expression always equals 1 ?

1) $\cos ^{2} x-\sin ^{2} x$
2) $\cos ^{2} x+\sin ^{2} x$
3) $\cos x-\sin x$
4) $\cos x+\sin x$

166 What is the conjugate of $-2+3 i$?

1) $-3+2 i$
2) $-2-3 i$
3) $2-3 i$
4) $3+2 i$

167 The expression $\frac{a^{2} b^{-3}}{a^{-4} b^{2}}$ is equivalent to

1) $\frac{a^{6}}{b^{5}}$
2) $\frac{b^{5}}{a^{6}}$
3) $\frac{a^{2}}{b}$
4) $a^{-2} b^{-1}$

168 The number of minutes students took to complete a quiz is summarized in the table below.

Minutes	14	15	16	17	18	19	20
Number of Students	5	3	x	5	2	10	1

If the mean number of minutes was 17 , which equation could be used to calculate the value of x ?

1) $17=\frac{119+x}{x}$
2) $17=\frac{119+16 x}{x}$
3) $17=\frac{446+x}{26+x}$
4) $17=\frac{446+16 x}{26+x}$

169 If order does not matter, which selection of students would produce the most possible committees?

1) 5 out of 15
2) 5 out of 25
3) 20 out of 25
4) 15 out of 25

170 The expression $2 i^{2}+3 i^{3}$ is equivalent to

1) $-2-3 i$
2) $2-3 i$
3) $-2+3 i$
4) $2+3 i$

171 A four-digit serial number is to be created from the digits 0 through 9 . How many of these serial numbers can be created if 0 can not be the first digit, no digit may be repeated, and the last digit must be 5 ?

1) 448
2) 504
3) 2,240
4) 2,520

172 What is the radian measure of an angle whose measure is -420° ?

1) $-\frac{7 \pi}{3}$
2) $-\frac{7 \pi}{6}$
3) $\frac{7 \pi}{6}$
4) $\frac{7 \pi}{3}$

173 What is the solution set for the equation $\sqrt{5 x+29}=x+3$?

1) $\{4\}$
2) $\{-5\}$
3) $\{4,5\}$
4) $\{-5,4\}$

174 Which equation is sketched in the diagram below?

1) $y=\csc x$
2) $y=\sec x$
3) $y=\cot x$
4) $y=\tan x$

175 Which relation is not a function?

1) $(x-2)^{2}+y^{2}=4$
2) $x^{2}+4 x+y=4$
3) $x+y=4$
4) $x y=4$

176 When $\frac{3}{2} x^{2}-\frac{1}{4} x-4$ is subtracted from $\frac{5}{2} x^{2}-\frac{3}{4} x+1$, the difference is

1) $-x^{2}+\frac{1}{2} x-5$
2) $x^{2}-\frac{1}{2} x+5$
3) $-x^{2}-x-3$
4) $x^{2}-x-3$

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

177 A circle is drawn to represent a pizza with a 12 inch diameter. The circle is cut into eight congruent pieces. What is the length of the outer edge of any one piece of this circle?

1) $\frac{3 \pi}{4}$
2) π
3) $\frac{3 \pi}{2}$
4) 3π

178 The expression $\frac{2 x+4}{\sqrt{x+2}}$ is equivalent to

1) $\frac{(2 x+4) \sqrt{x-2}}{x-2}$
2) $\frac{(2 x+4) \sqrt{x-2}}{x-4}$
3) $2 \sqrt{x-2}$
4) $2 \sqrt{x+2}$

179 If $\mathrm{f}(x)=4 x-x^{2}$ and $\mathrm{g}(x)=\frac{1}{x}$, then $(\mathrm{f} \circ \mathrm{g})\left(\frac{1}{2}\right)$ is equal to

1) $\frac{4}{7}$
2) -2
3) $\frac{7}{2}$
4) 4

180 The value of $\csc 138^{\circ} 23^{\prime}$ rounded to four decimal places is

1) -1.3376
2) -1.3408
3) 1.5012
4) 1.5057

181 The solution set of the inequality $x^{2}-3 x>10$ is

1) $\{x \mid-2<x<5\}$
2) $\{x \mid 0<x<3\}$
3) $\{x \mid x<-2$ or $x>5\}$
4) $\{x \mid x<-5$ or $x>2\}$

182 In the diagram below of right triangle $K T W$, $K W=6, K T=5$, and $\mathrm{m} \angle K T W=90$.

What is the measure of $\angle K$, to the nearest minute?

1) $33^{\circ} 33^{\prime}$
2) $33^{\circ} 34^{\prime}$
3) $33^{\circ} 55^{\prime}$
4) $33^{\circ} 56^{\prime}$

183 Which graph represents one complete cycle of the equation $y=\sin 3 \pi x$?
1)

2)

3)

184 The expression $4 a b \sqrt{2 b}-3 a \sqrt{18 b^{3}}+7 a b \sqrt{6 b}$ is equivalent to

1) $2 a b \sqrt{6 b}$
2) $16 a b \sqrt{2 b}$
3) $-5 a b+7 a b \sqrt{6 b}$
4) $-5 a b \sqrt{2 b}+7 a b \sqrt{6 b}$

185 A dartboard is shown in the diagram below. The two lines intersect at the center of the circle, and the central angle in sector 2 measures $\frac{2 \pi}{3}$.

If darts thrown at this board are equally likely to land anywhere on the board, what is the probability that a dart that hits the board will land in either sector 1 or sector 3 ?

1) $\frac{1}{6}$
2) $\frac{1}{3}$
3) $\frac{1}{2}$
4) $\frac{2}{3}$

186 What is the conjugate of $\frac{1}{2}+\frac{3}{2}$ i?

1) $-\frac{1}{2}+\frac{3}{2} i$
2) $\frac{1}{2}-\frac{3}{2} i$
3) $\frac{3}{2}+\frac{1}{2} i$
4) $-\frac{1}{2}-\frac{3}{2} i$

187 Factored completely, the expression
$12 x^{4}+10 x^{3}-12 x^{2}$ is equivalent to

1) $x^{2}(4 x+6)(3 x-2)$
2) $2\left(2 x^{2}+3 x\right)\left(3 x^{2}-2 x\right)$
3) $2 x^{2}(2 x-3)(3 x+2)$
4) $2 x^{2}(2 x+3)(3 x-2)$

188 Brian correctly used a method of completing the square to solve the equation $x^{2}+7 x-11=0$. Brian's first step was to rewrite the equation as $x^{2}+7 x=11$. He then added a number to both sides of the equation. Which number did he add?

1) $\frac{7}{2}$
2) $\frac{49}{4}$
3) $\frac{49}{2}$
4) 49

189 If p varies inversely as q, and $p=10$ when $q=\frac{3}{2}$, what is the value of p when $q=\frac{3}{5}$?

1) 25
2) 15
3) 9
4) 4

Algebra 2/Trigonometry 2 Point Regents Exam Questions

190
On the axes below, for $-2 \leq x \leq 2$, graph $y=2^{x+1}-3$.

191 A blood bank needs twenty people to help with a blood drive. Twenty-five people have volunteered. Find how many different groups of twenty can be formed from the twenty-five volunteers.

192 Find, to the nearest tenth, the radian measure of 216°.

193 Solve for $x: \frac{4 x}{x-3}=2+\frac{12}{x-3}$

194 The scores of one class on the Unit 2 mathematics test are shown in the table below.
Unit 2 Mathematics Test

Test Score	Frequency
96	1
92	2
84	5
80	3
76	6
72	3
68	2

Find the population standard deviation of these scores, to the nearest tenth.

195 For a given set of rectangles, the length is inversely proportional to the width. In one of these rectangles, the length is 12 and the width is 6 . For this set of rectangles, calculate the width of a rectangle whose length is 9 .

196 A committee of 5 members is to be randomly selected from a group of 9 teachers and 20 students. Determine how many different committees can be formed if 2 members must be teachers and 3 members must be students.

197 Find the third term in the recursive sequence $a_{k+1}=2 a_{k}-1$, where $a_{1}=3$.

198 Find the sum and product of the roots of the equation $5 x^{2}+11 x-3=0$.

199 Assume that the ages of first-year college students are normally distributed with a mean of 19 years and standard deviation of 1 year. To the nearest integer, find the percentage of first-year college students who are between the ages of 18 years and 20 years, inclusive. To the nearest integer, find the percentage of first-year college students who are 20 years old or older.

The graph below represents the function $y=\mathrm{f}(x)$.

State the domain and range of this function.

201 Find the solution of the inequality $x^{2}-4 x>5$, algebraically.

202 Write an equation of the circle shown in the graph below.

203 Find the first four terms of the recursive sequence defined below.

$$
\begin{gathered}
a_{1}=-3 \\
a_{n}=a_{(n-1)}-n
\end{gathered}
$$

204 Matt places $\$ 1,200$ in an investment account earning an annual rate of 6.5%, compounded continuously. Using the formula $V=P e^{r t}$, where V is the value of the account in t years, P is the principal initially invested, e is the base of a natural logarithm, and r is the rate of interest, determine the amount of money, to the nearest cent, that Matt will have in the account after 10 years.

205 The graph of the equation $y=\left(\frac{1}{2}\right)^{x}$ has an asymptote. On the grid below, sketch the graph of $y=\left(\frac{1}{2}\right)^{x}$ and write the equation of this asymptote.

If $\mathrm{f}(x)=x^{2}-6$, find $\mathrm{f}^{-1}(x)$.

208 Express $\frac{5}{3-\sqrt{2}}$ with a rational denominator, in simplest radical form.

209 A cup of soup is left on a countertop to cool. The table below gives the temperatures, in degrees Fahrenheit, of the soup recorded over a 10 -minute period.

Time in Minutes (x)	0	2	4	6	8	10
Temperature in ${ }^{\circ} \mathbf{F}(y)$	180.2	165.8	146.3	135.4	127.7	110.5

Write an exponential regression equation for the data, rounding all values to the nearest thousandth.

210 A circle shown in the diagram below has a center of $(-5,3)$ and passes through point $(-1,7)$.

Write an equation that represents the circle.

211 Two sides of a parallelogram are 24 feet and 30 feet. The measure of the angle between these sides is 57°. Find the area of the parallelogram, to the nearest square foot.

212 On the unit circle shown in the diagram below, sketch an angle, in standard position, whose degree measure is 240 and find the exact value of $\sin 240^{\circ}$.

213 Solve algebraically for x : $4-\sqrt{2 x-5}=1$

214 Starting with $\sin ^{2} A+\cos ^{2} A=1$, derive the formula $\tan ^{2} A+1=\sec ^{2} A$.

215 Factor the expression $12 t^{8}-75 t^{4}$ completely.

216 Use the discriminant to determine all values of k that would result in the equation $x^{2}-k x+4=0$ having equal roots.

217 Determine the value of n in simplest form:

$$
i^{13}+i^{18}+i^{31}+n=0
$$

218 Express the product of $\left(\frac{1}{2} y^{2}-\frac{1}{3} y\right)$ and $\left(12 y+\frac{3}{5}\right)$ as a trinomial.

219 In a study of 82 video game players, the researchers found that the ages of these players were normally distributed, with a mean age of 17 years and a standard deviation of 3 years. Determine if there were 15 video game players in this study over the age of 20 . Justify your answer.

220 Express in simplest form: $\sqrt[3]{\frac{a^{6} b^{9}}{-64}}$

221 The two sides and included angle of a parallelogram are 18,22 , and 60°. Find its exact area in simplest form.

222 The formula for continuously compounded interest is $A=P e^{r t}$, where A is the amount of money in the account, P is the initial investment, r is the interest rate, and t is the time in years. Using the formula, determine, to the nearest dollar, the amount in the account after 8 years if $\$ 750$ is invested at an annual rate of 3%.

223 The table below shows the number of new stores in a coffee shop chain that opened during the years 1986 through 1994.

Year	Number of New Stores
1986	14
1987	27
1988	48
1989	80
1990	110
1991	153
1992	261
1993	403
1994	681

Using $x=1$ to represent the year 1986 and y to represent the number of new stores, write the exponential regression equation for these data. Round all values to the nearest thousandth.

224 Howard collected fish eggs from a pond behind his house so he could determine whether sunlight had an effect on how many of the eggs hatched. After he collected the eggs, he divided them into two tanks. He put both tanks outside near the pond, and he covered one of the tanks with a box to block out all sunlight. State whether Howard's investigation was an example of a controlled experiment, an observation, or a survey. Justify your response.

225 Express the sum $7+14+21+28+\ldots+105$ using sigma notation.

226 Evaluate: $10+\sum_{n=1}^{5}\left(n^{3}-1\right)$

227 If θ is an angle in standard position and its terminal side passes through the point $(-3,2)$, find the exact value of $\csc \theta$.

228 Express $5 \sqrt{3 x^{3}}-2 \sqrt{27 x^{3}}$ in simplest radical form.

229 Solve the equation $2 \tan C-3=3 \tan C-4$ algebraically for all values of C in the interval $0^{\circ} \leq C<360^{\circ}$.

230 Find the total number of different twelve-letter arrangements that can be formed using the letters in the word PENNSYLVANIA.

231 Write an equation of the circle shown in the diagram below.

232 Evaluate: $\sum_{n=1}^{3}\left(-n^{4}-n\right)$

233 Simplify the expression $\frac{3 x^{-4} y^{5}}{\left(2 x^{3} y^{-7}\right)^{-2}}$ and write the answer using only positive exponents.

234
Express $\cos \theta(\sec \theta-\cos \theta)$, in terms of $\sin \theta$.

235 Express $\left(\frac{2}{3} x-1\right)^{2}$ as a trinomial.

236 Find, to the nearest minute, the angle whose measure is 3.45 radians.

237 If $\mathrm{f}(x)=x^{2}-6$ and $\mathrm{g}(x)=2^{x}-1$, determine the value of $(g \circ f)(-3)$.

238 Write a quadratic equation such that the sum of its roots is 6 and the product of its roots is -27 .

239 Evaluate $e^{x \ln y}$ when $x=3$ and $y=2$.

240 Express $\frac{\sqrt{108 x^{5} y^{8}}}{\sqrt{6 x y^{5}}}$ in simplest radical form.

241 Write an equation for the graph of the trigonometric function shown below.

242 Express in simplest form: $\frac{\frac{1}{2}-\frac{4}{d}}{\frac{1}{d}+\frac{3}{2 d}}$

243 Solve algebraically for x : $16^{2 x+3}=64^{x+2}$

244 Express the exact value of $\csc 60^{\circ}$, with a rational denominator.

245 Factor completely: $10 a x^{2}-23 a x-5 a$

Algebra 2/Trigonometry 4 Point Regents Exam Questions

246
Dung a partic local company surveyed all its employees to determine their travel times to work, in minutes. The data for all 15 employees are shown below.

$$
\begin{array}{rrrrr}
25 & 55 & 40 & 65 & 29 \\
45 & 59 & 35 & 25 & 37 \\
52 & 30 & 8 & 40 & 55
\end{array}
$$

Determine the number of employees whose travel time is within one standard deviation of the mean.

247 Graph the inequality $-3|6-x|<-15$ for x. Graph the solution on the line below.

248 If $\tan A=\frac{2}{3}$ and $\sin B=\frac{5}{\sqrt{41}}$ and angles A and B are in Quadrant I, find the value of $\tan (A+B)$.

Express in simplest form: $\frac{\frac{4-x^{2}}{x^{2}+7 x+12}}{\frac{2 x-4}{x+3}}$

250 The probability that a professional baseball player will get a hit is $\frac{1}{3}$. Calculate the exact probability that he will get at least 3 hits in 5 attempts.

251 Solve $2 x^{2}-12 x+4=0$ by completing the square, expressing the result in simplest radical form.

252 The diagram below shows the plans for a cell phone tower. A guy wire attached to the top of the tower makes an angle of 65 degrees with the ground. From a point on the ground 100 feet from the end of the guy wire, the angle of elevation to the top of the tower is 32 degrees. Find the height of the tower, to the nearest foot.

253 The probability that the Stormville Sluggers will win a baseball game is $\frac{2}{3}$. Determine the probability, to the nearest thousandth, that the Stormville Sluggers will win at least 6 of their next 8 games.

254 The letters of any word can be rearranged. Carol believes that the number of different 9 -letter arrangements of the word "TENNESSEE" is greater than the number of different 7-letter arrangements of the word "VERMONT." Is she correct? Justify your answer.

255 Write the binomial expansion of $(2 x-1)^{5}$ as a polynomial in simplest form.

256 If $\log _{4} x=2.5$ and $\log _{y} 125=-\frac{3}{2}$, find the numerical value of $\frac{x}{y}$, in simplest form.

257 The table below shows the results of an experiment involving the growth of bacteria.

Time (x) (in minutes)	1	3	5	7	9	11
Number of Bacteria (y)	2	25	81	175	310	497

Write a power regression equation for this set of data, rounding all values to three decimal places. Using this equation, predict the bacteria's growth, to the nearest integer, after 15 minutes.

258 A study shows that 35% of the fish caught in a local lake had high levels of mercury. Suppose that 10 fish were caught from this lake. Find, to the nearest tenth of a percent, the probability that at least 8 of the 10 fish caught did not contain high levels of mercury.

259 The measures of the angles between the resultant and two applied forces are 60° and 45°, and the magnitude of the resultant is 27 pounds. Find, to the nearest pound, the magnitude of each applied force.

260 Solve algebraically for $x: \frac{1}{x+3}-\frac{2}{3-x}=\frac{4}{x^{2}-9}$

261 Solve the equation $8 x^{3}+4 x^{2}-18 x-9=0$ algebraically for all values of x.

262 A population of single-celled organisms was grown in a Petri dish over a period of 16 hours. The number of organisms at a given time is recorded in the table below.

Time, hrs (x)	Number of Organisms (y)
0	25
2	36
4	52
6	68
8	85
10	104
12	142
16	260

Determine the exponential regression equation model for these data, rounding all values to the nearest ten-thousandth. Using this equation, predict the number of single-celled organisms, to the nearest whole number, at the end of the 18th hour.

263 Find all values of θ in the interval $0^{\circ} \leq \theta<360^{\circ}$ that satisfy the equation $\sin 2 \theta=\sin \theta$.

Express as a single fraction the exact value of $\sin 75^{\circ}$.

265 In $\triangle A B C, \mathrm{~m} \angle A=32, a=12$, and $b=10$. Find the measures of the missing angles and side of $\triangle A B C$. Round each measure to the nearest tenth.

266 The members of a men's club have a choice of wearing black or red vests to their club meetings. A study done over a period of many years determined that the percentage of black vests worn is 60%. If there are 10 men at a club meeting on a given night, what is the probability, to the nearest thousandth, that at least 8 of the vests worn will be black?

Algebra 2/Trigonometry 6 Point Regents Exam Questions

267 Two forces of 25 newtons and 85 newtons acting on a body form an angle of 55°. Find the magnitude of the resultant force, to the nearest hundredth of a newton. Find the measure, to the nearest degree, of the angle formed between the resultant and the larger force.

268 The temperature, T, of a given cup of hot chocolate after it has been cooling for t minutes can best be modeled by the function below, where T_{0} is the temperature of the room and k is a constant.

$$
\ln \left(T-T_{0}\right)=-k t+4.718
$$

A cup of hot chocolate is placed in a room that has a temperature of 68°. After 3 minutes, the temperature of the hot chocolate is 150°. Compute the value of k to the nearest thousandth. [Only an algebraic solution can receive full credit.] Using this value of k, find the temperature, T, of this cup of hot chocolate if it has been sitting in this room for a total of 10 minutes. Express your answer to the nearest degree. [Only an algebraic solution can receive full credit.]

269 Solve the following systems of equations algebraically: $5=y-x$

$$
4 x^{2}=-17 x+y+4
$$

In a triangle, two sides that measure 6 cm and 10 cm form an angle that measures 80°. Find, to the nearest degree, the measure of the smallest angle in the triangle.

271 Solve algebraically for all values of x :
$81^{x^{3}+2 x^{2}}=27^{\frac{5 x}{3}}$

272 Perform the indicated operations and simplify completely:
$\frac{x^{3}-3 x^{2}+6 x-18}{x^{2}-4 x} \cdot \frac{2 x-4}{x^{4}-3 x^{3}} \div \frac{x^{2}+2 x-8}{16-x^{2}}$

273 Solve algebraically for $x: \log _{x+3} \frac{x^{3}+x-2}{x}=2$

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions
 Answer Section

1 ANS: 1
$y \geq x^{2}-x-6$
$y \geq(x-3)(x+2)$
PTS: 2 REF: 061017a2 STA: A2.A. 4 TOP: Quadratic Inequalities
KEY: two variables
2 ANS: 4 PTS: 2 REF: fall0908a2 STA: A2.A. 38
TOP: Defining Functions
KEY: graphs
3 ANS: 4
PTS: 2
REF: 011127a2
STA: A2.S. 1
TOP: Analysis of Data
4 ANS: 3
(1) and (4) fail the horizontal line test and are not one-to-one. Not every element of the range corresponds to only one element of the domain. (2) fails the vertical line test and is not a function. Not every element of the domain corresponds to only one element of the range.

PTS: 2 REF: 081020a2 STA: A2.A. 43 TOP: Defining Functions
5 ANS: 1
${ }_{5} C_{3}(3 x)^{2}(-2)^{3}=10 \cdot 9 x^{2} \cdot-8=-720 x^{2}$
PTS: 2 REF: fall0919a2 STA: A2.A. 36 TOP: Binomial Expansions
6 ANS: 2

$$
\begin{aligned}
320 & =10(2)^{\frac{t}{60}} \\
32 & =(2)^{\frac{t}{60}} \\
\log 32 & =\log (2)^{\frac{t}{60}} \\
\log 32 & =\frac{t \log 2}{60} \\
\frac{60 \log 32}{\log 2} & =t \\
300 & =t
\end{aligned}
$$

PTS: 2 REF: 011205a2 STA: A2.A. 6 TOP: Exponential Growth
7 ANS: 4
$(3+\sqrt{5})(3-\sqrt{5})=9-\sqrt{25}=4$
PTS: 2 REF: 081001a2 STA: A2.N. 2 TOP: Operations with Radicals

8 ANS: 1
$\frac{1}{2}(7.4)(3.8) \sin 126 \approx 11.4$
PTS: 2 REF: 011218a2 STA: A2.A.74 TOP: Using Trigonometry to Find Area
KEY: basic
9 ANS: $2 \quad$ PTS: 2
REF: 061218a2 STA: A2.A. 43
TOP: Defining Functions
10 PTS: 2 REF: 061005a2 STA: A2.A. 50
TOP: Solving Polynomial Equations
11 ANS: 1
$\frac{\sqrt{3}+5}{\sqrt{3}-5} \cdot \frac{\sqrt{3}+5}{\sqrt{3}+5}=\frac{3+5 \sqrt{3}+5 \sqrt{3}+25}{3-25}=\frac{28+10 \sqrt{3}}{-22}=-\frac{14+5 \sqrt{3}}{11}$

PTS: 2
12 ANS: 3
REF: 061012a2
PTS: 2
TOP: Domain and Range
13 ANS: 3
$K=(10)(18) \sin 46 \approx 129$
PTS: 2 REF: 081021a2 STA: A2.A. 74 TOP: Using Trigonometry to Find Area
KEY: parallelograms
14 ANS: 2
$\frac{11 \pi}{12} \cdot \frac{180}{\pi}=165$
PTS: 2 REF: 061002a2 STA: A2.M. 2 TOP: Radian Measure
KEY: degrees
15 ANS: 1
$\frac{9}{\sin A}=\frac{10}{\sin 70} .58^{\circ}+70^{\circ}$ is possible. $122^{\circ}+70^{\circ}$ is not possible.

$$
A=58
$$

PTS: 2
REF: 011210a2
STA: A2.A. 75
TOP: Law of Sines - The Ambiguous Case
16 ANS: 2
$x^{3}+3 x^{2}-4 x-12$
$x^{2}(x+3)-4(x+3)$

$$
\left(x^{2}-4\right)(x+3)
$$

$(x+2)(x-2)(x+3)$
PTS: 2
17 ANS: 3
REF: 061214a2
PTS: 2
TOP: Using Inverse Trigonometric Functions

STA: A2.N. 5 TOP: Rationalizing Denominators
REF: fall0923a2 STA: A2.A. 39
KEY: real domain

18 ANS: 3 PTS: 2 REF: 061224a2 STA: A2.A. 63
TOP: Domain and Range
19 ANS: 1
$2 \log x-(3 \log y+\log z)=\log x^{2}-\log y^{3}-\log z=\log \frac{x^{2}}{y^{3} z}$
PTS: 2 REF: 061010a2 STA: A2.A. 19 TOP: Properties of Logarithms
20 ANS: 2
PTS: 2
REF: 061205a2 STA: A2.A. 34
TOP: Sigma Notation
21 ANS: 1
${ }_{10} C_{4}=210$
PTS: 2
REF: 061113a2
STA: A2.S. 11
TOP: Combinations
22 ANS: 4
PTS: 2
REF: 011201a2 STA: A2.S. 2
TOP: Analysis of Data
23 ANS: $2 \quad$ PTS: 2
REF: 061021a2 STA: A2.S.8
TOP: Correlation Coefficient
24 ANS: 3 PTS: 2 REF: fall0913a2 STA: A2.A. 65
TOP: Graphing Trigonometric Functions
25 ANS: 3 PTS: 2 REF: 061114a2 STA: A2.A. 38
TOP: Defining Functions
KEY: graphs
26 ANS: 4
$\frac{2 \pi}{b}=\frac{2 \pi}{\frac{1}{3}}=6 \pi$
PTS: 2
REF: 061027a2 STA: A2.A. 69
TOP: Properties of Graphs of Trigonometric Functions
KEY: period
27 ANS: 1
(4) shows the strongest linear relationship, but if $r<0, b<0$.

PTS: 2
REF: 011223a2 STA: A2.S.8
TOP: Correlation Coefficient
28
ANS: 3
$S_{n}=\frac{n}{2}[2 a+(n-1) d]=\frac{19}{2}[2(3)+(19-1) 7]=1254$
PTS: 2 REF: 011202a2 STA: A2.A. 35 TOP: Summations
KEY: arithmetic

29 ANS: 3
$\left(\frac{2}{3}\right)^{2}+\cos ^{2} A=1$

$$
\sin 2 A=2 \sin A \cos A
$$

$\cos ^{2} A=\frac{5}{9}$
$=2\left(\frac{2}{3}\right)\left(\frac{\sqrt{5}}{3}\right)$
$\cos A=+\frac{\sqrt{5}}{3}, \sin \mathrm{~A}$ is acute. $\quad=\frac{4 \sqrt{5}}{9}$
PTS: 2
REF: 011107a2 STA: A2.A. 77
TOP: Double Angle Identities
KEY: evaluating
30 ANS: 3
$\frac{-b}{a}=\frac{-6}{2}=-3 . \frac{c}{a}=\frac{4}{2}=2$
PTS: 2 REF: 011121a2 STA: A2.A. 21 TOP: Roots of Quadratics
KEY: basic
31 ANS: 3
$b^{2}-4 a c=(-10)^{2}-4(1)(25)=100-100=0$
PTS: 2 REF: 011102a2 STA: A2.A. 2 TOP: Using the Discriminant
KEY: determine nature of roots given equation
32 ANS: 1 PTS: 2 REF: 061202a2 STA: A2.A. 51
TOP: Domain and Range
33 ANS: 2
$\frac{x^{-1}-1}{x-1}=\frac{\frac{1}{x}-1}{x-1}=\frac{\frac{1-x}{x}}{x-1}=\frac{\frac{-(x-1)}{x}}{x-1}=-\frac{1}{x}$
PTS: 2
REF: 081018a2
STA: A2.A. 9
34 ANS: 4
PTS: 2 REF: 011124a2
TOP: Evaluating Logarithmic Expressions
35 ANS: 2
PTS: 2
REF: 061011a2
TOP: Negative Exponents
STA: A2.A. 18

TOP: Fractional Exponents as Radicals
36 ANS: 2
The binomials are conjugates, so use FL.
PTS: 2 REF: 011206a2 STA: A2.N. 3 TOP: Operations with Polynomials
37 ANS: 2
$\frac{\frac{x}{4}-\frac{1}{x}}{\frac{1}{2 x}+\frac{1}{4}}=\frac{\frac{x^{2}-4}{4 x}}{\frac{2 x+4}{8 x}}=\frac{(x+2)(x-2)}{4 x} \times \frac{8 x}{2(x+2)}=x-2$
PTS: 2 REF: fall0920a2 STA: A2.A. 17 TOP: Complex Fractions

38 ANS: 4
$2 \cos \theta=1$

$$
\cos \theta=\frac{1}{2}
$$

$$
\theta=\cos ^{-1} \frac{1}{2}=60,300
$$

PTS: 2
REF: 061203a2
STA: A2.A. 68
TOP: Trigonometric Equations
KEY: basic
39 ANS: 1

PTS: 2 REF: 011203a2 STA: A2.A. 66 TOP: Determining Trigonometric Functions
40 ANS: 2
PTS: 2
REF: 011222a2
STA: A2.A. 39
TOP: Domain and Range
KEY: real domain
41 ANS: 3
${ }_{6} C_{3}\left(\frac{x}{2}\right)^{3}(-2 y)^{3}=20 \cdot \frac{x^{3}}{8} \cdot-8 y^{3}=-20 x^{3} y^{3}$
PTS: 2 REF: 061215a2 STA: A2.A. 36 TOP: Binomial Expansions
42 ANS: 1
$\sqrt{12^{2}-6^{2}}=\sqrt{108}=\sqrt{36} \sqrt{3}=6 \sqrt{3} . \cot J=\frac{A}{O}=\frac{6}{6 \sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3}$

PTS: 2
43 ANS: 3
REF: 011120a2
STA: A2.A. 55
TOP: Trigonometric Ratios
TOP: Differentiating Permutations and Combinations

44 ANS： 4
$7^{2}=3^{2}+5^{2}-2(3)(5) \cos A$
$49=34-30 \cos A$
$15=-30 \cos A$
$-\frac{1}{2}=\cos A$
$120=\cos A$
PTS： 2 REF：081017a2 STA：A2．A． 73 TOP：Law of Cosines
KEY：angle，without calculator
45 ANS： 1

$$
\begin{array}{rlrl}
4 a+6=4 a-10.4 a+6 & =-4 a+10 . & \left|4\left(\frac{1}{2}\right)+6\right|-4\left(\frac{1}{2}\right) & =-10 \\
6 \neq-10 & 8 a & =4 & 8-2 \neq-10 \\
a & =\frac{4}{8}=\frac{1}{2} &
\end{array}
$$

PTS： 2 REF：011106a2 STA：A2．A． 1 TOP：Absolute Value Equations
46 ANS： 1

Lit	LE	$\underline{3}$
	18	－
晹	$\frac{1}{14}$	
$\begin{aligned} & \text { 䧈 } \\ & \text { 㖇 } \end{aligned}$		

PTS： 2 REF：061225a2 STA：A2．S． 8 TOP：Correlation Coefficient
47 ANS： 3
sum of the roots，$\frac{-b}{a}=\frac{-(-9)}{4}=\frac{9}{4}$ ．product of the roots，$\frac{c}{a}=\frac{3}{4}$
PTS： 2
REF：061208a2
STA：A2．A． 21
TOP：Roots of Quadratics
KEY：basic
48 ANS： 3
$\sqrt{-300}=\sqrt{100} \sqrt{-1} \sqrt{3}$
PTS： 2 REF：061006a2 STA：A2．N． 6 TOP：Square Roots of Negative Numbers

49 ANS: 2

$$
\begin{aligned}
x^{2}+2 & =6 x \\
x^{2}-6 x & =-2 \\
x^{2}-6 x+9 & =-2+9 \\
(x-3)^{2} & =7
\end{aligned}
$$

PTS: 2
REF: 011116a2
STA: A2.A. 24
TOP: Completing the Square
50 ANS: 3
$3 x+16=(x+2)^{2} \quad .-4$ is an extraneous solution.
$3 x+16=x^{2}+4 x+4$
$0=x^{2}+x-12$
$0=(x+4)(x-3)$
$x=-4 x=3$
PTS: 2
REF: 061121a2
STA: A2.A. 22
TOP: Solving Radicals
KEY: extraneous solutions
51 ANS: 3
$a_{n}=5(-2)^{n-1}$
$a_{15}=5(-2)^{15-1}=81,920$
PTS: 2
REF: 011105a2
STA: A2.A. 32
TOP: Sequences
52 ANS: 2
$6\left(x^{2}-5\right)=6 x^{2}-30$
PTS: 2
REF: 011109a2
STA: A2.A. 42
TOP: Compositions of Functions
KEY: variables
53 ANS: 1
$\sqrt[4]{16 x^{2} y^{7}}=16^{\frac{1}{4}} x^{\frac{2}{4}} y^{\frac{7}{4}}=2 x^{\frac{1}{2}} y^{\frac{7}{4}}$
PTS: 2
REF: 061107a2
STA: A2.A. 11
TOP: Radicals as Fractional Exponents
54 ANS: 2
$\frac{10}{\sin 35}=\frac{13}{\sin B} . \quad 35+48<180$ $B \approx 48,132 \quad 35+132<180$

PTS: 2
REF: 011113a2
STA: A2.A. 75
TOP: Law of Sines - The Ambiguous Case

55 ANS: 1
common difference is $2 . b_{n}=x+2 n$

$$
\begin{aligned}
10 & =x+2(1) \\
8 & =x
\end{aligned}
$$

PTS: 2
REF: 081014a2
STA: A2.A. 29
TOP: Sequences
56 ANS: 4
$y-2 \sin \theta=3$

$$
y=2 \sin \theta+3
$$

$$
\mathrm{f}(\theta)=2 \sin \theta+3
$$

PTS: 2
REF: fall0927a2
STA: A2.A. 40
TOP: Functional Notation
57 ANS: 2
The roots are $-1,2,3$.
PTS: 2
REF: 081023a2
STA: A2.A. 50
TOP: Solving Polynomial Equations
58 ANS: 3
$68 \% \times 50=34$
PTS: 2
REF: 081013a2
STA: A2.S. 5
TOP: Normal Distributions
KEY: predict
59 ANS: 4
$x^{-\frac{2}{5}}=\frac{1}{x^{\frac{2}{5}}}=\frac{1}{\sqrt[5]{x^{2}}}$
PTS: 2
REF: 011118a2
STA: A2.A. 10
TOP: Fractional Exponents as Radicals
60 ANS: 2
$K=\frac{1}{2}(10)(18) \sin 120=45 \sqrt{3} \approx 78$
PTS: 2
REF: fall0907a2
STA: A2.A. 74
TOP: Using Trigonometry to Find Area
KEY: basic
61 ANS: 1
$2 \cdot \frac{180}{\pi}=\frac{360}{\pi}$
PTS: 2
REF: 011220a2
STA: A2.M. 2
TOP: Radian Measure
KEY: degrees

62 ANS: 1
$6 x-7 \leq 5 \quad 6 x-7 \geq-5$

$$
\begin{array}{crl}
6 x & \leq 12 & 6 x \\
x & \geq 2 \\
x & x & \geq \frac{1}{3}
\end{array}
$$

PTS: 2
REF: fall0905a2 STA: A2.A. 1
KEY: graph
63 ANS: 2
$\log x^{2}=\log 3 a+\log 2 a$
$2 \log x=\log 6 a^{2}$

$$
\begin{aligned}
& \log x=\frac{\log 6}{2}+\frac{\log a^{2}}{2} \\
& \log x=\frac{1}{2} \log 6+\frac{2 \log a}{2} \\
& \log x=\frac{1}{2} \log 6+\log a
\end{aligned}
$$

PTS: 2
REF: 011224a2
STA: A2.A. 19
TOP: Properties of Logarithms
KEY: splitting logs
64 ANS: 2 PTS: 2
REF: 011225a2
STA: A2.A. 43
TOP: Defining Functions
65 ANS: 3
$S=\frac{-b}{a}=\frac{-(-3)}{4}=\frac{3}{4} . P=\frac{c}{a}=\frac{-8}{4}=-2$
PTS: 2
REF: fall0912a2
STA: A2.A. 21
TOP: Roots of Quadratics
KEY: basic
66 ANS: 3

n	0	1	2	Σ
$n^{2}+2^{n}$	$0^{2}+2^{0}=1$	$1^{2}+2^{2}=3$	$2^{2}+2^{2}=8$	12

PTS: 2
REF: fall0911a2
STA: A2.N. 10
TOP: Sigma Notation
KEY: basic
67
ANS: 2
PTS: 2
REF: 061108a2
STA: A2.A. 52
TOP: Identifying the Equation of a Graph
68
ANS: 2
$\left(\frac{w^{-5}}{w^{-9}}\right)^{\frac{1}{2}}=\left(w^{4}\right)^{\frac{1}{2}}=w^{2}$
PTS: 2
REF: 081011a2
STA: A2.A. 8
TOP: Negative and Fractional Exponents

69 ANS: 2

$$
\begin{gathered}
x^{3}+x^{2}-2 x=0 \\
x\left(x^{2}+x-2\right)=0 \\
x(x+2)(x-1)=0 \\
x=0,-2,1
\end{gathered}
$$

PTS: 2 REF: 011103a2 STA: A2.A. 26 TOP: Solving Polynomial Equations
70 ANS: 1
PTS: 2
REF: 081022a2
STA: A2.A. 46
TOP: Transformations with Functions and Relations
71 ANS: 4
Students entering the library are more likely to spend more time studying, creating bias.

PTS: 2
72 ANS: 2
TOP: Transformations with Functions and Relations
73 ANS: 1

PTS: 2
KEY: interval
74 ANS: 3
$f(4)=\frac{1}{2}(4)-3=-1 . g(-1)=2(-1)+5=3$

PTS: 2
KEY: numbers
75 ANS: 3
TOP: Regression
76 ANS: 2
$\frac{x^{-1}+1}{x+1}=\frac{\frac{1}{x}+1}{x+1}=\frac{\frac{1+x}{x}}{x+1}=\frac{1}{x}$
PTS: 2
77 ANS: 2
$8^{2}=64$
PTS: 2
REF: fall0909a2
STA: A2.A. 18

REF: fall0915a2
STA: A2.S. 5
TOP: Normal Distributions
TOP: Analysis of Data
STA: A2.A. 46

TOp: Nomal Distibutions

STA: A2.A. 42
TOP: Compositions of Functions
PTS: 2
REF: 061127a2
STA: A2.S. 6
(

-

Res

78 ANS: $3 \quad$ PTS: 2
TOP: Conjugates of Complex Numbers
79 ANS: 1
PTS: 2
TOP: Differentiating Permutations and Combinations
80 ANS: 4 PTS: 2
TOP: Unit Circle
81 ANS: 4
PTS: 2
TOP: Domain and Range
82 ANS: 1
$13^{2}=15^{2}+14^{2}-2(15)(14) \cos C$
$169=421-420 \cos C$
$-252=-420 \cos C$
$\frac{252}{420}=\cos C$
$53 \approx C$
PTS: 2
KEY: find angle
83 ANS: 3
$27 r^{4-1}=64$
$r^{3}=\frac{64}{27}$ $r=\frac{4}{3}$

PTS: 2 REF: 081025a2 STA: A2.A. 31 TOP: Sequences
84 ANS: 1

n	3	4	5	Σ
$-r^{2}+r$	$-3^{2}+3=-6$	$-4^{2}+4=-12$	$-5^{2}+5=-20$	-38

PTS: 2
REF: 061118a2
STA: A2.N. 10
KEY: basic
85 ANS: 1
PTS: 2
REF: 061211a2
STA: A2.A. 54
TOP: Graphing Logarithmic Functions
86 ANS: 2
$\mathrm{f}^{-1}(x)=\log _{4} x$
PTS: 2 REF: fall0916a2 STA: A2.A. 54 TOP: Graphing Logarithmic Functions

87 ANS: 3

PTS: 2 REF: fall0924a2 STA: A2.S. 4 TOP: Dispersion
KEY: variance
88 ANS: 3
$34.1 \%+19.1 \%=53.2 \%$
PTS: 2
REF: 011212a2
STA: A2.S. 5
TOP: Normal Distributions
KEY: probability
89 ANS: 2
$\cos \left(-305^{\circ}+360^{\circ}\right)=\cos \left(55^{\circ}\right)$
PTS: 2
REF: 061104a2
STA: A2.A. 57
TOP: Reference Angles
90 ANS: 4
PTS: 2
REF: 081005a2 STA: A2.A. 60
TOP: Unit Circle
91 ANS: 3
$\frac{3^{-2}}{(-2)^{-3}}=\frac{\frac{1}{9}}{-\frac{1}{8}}=-\frac{8}{9}$
PTS: 2
REF: 061003a2 STA: A2.N. 1
TOP: Negative and Fractional Exponents
92 ANS: 1
If $\sin x=0.8$, then $\cos x=0.6 . \tan \frac{1}{2} x=\sqrt{\frac{1-0.6}{1+0.6}}=\sqrt{\frac{0.4}{1.6}}=0.5$.
PTS: 2 REF: 061220a2 STA: A2.A.77 TOP: Half Angle Identities
93 ANS: 2
tanc126"43.) -1.3497834
PTS: 2 REF: 061115a2 STA: A2.A. 66 TOP: Determining Trigonometric Functions
94 ANS: 2
$f(10)=\frac{-10}{(-10)^{2}-16}=\frac{-10}{84}=-\frac{5}{42}$

PTS: 2
REF: 061102a2
STA: A2.A. 41
TOP: Functional Notation

95 ANS: 4
$\frac{3 \pm \sqrt{(-3)^{2}-4(1)(-9)}}{2(1)}=\frac{3 \pm \sqrt{45}}{2}=\frac{3 \pm 3 \sqrt{5}}{2}$
PTS: 2 REF: 061009a2 STA: A2.A. 25 TOP: Quadratic Formula
96 ANS: 3

$$
\begin{array}{rlrl}
4^{x^{2}+4 x} & =2^{-6} . & 2 x^{2}+8 x & =-6 \\
\left(2^{2}\right)^{x^{2}+4 x} & =2^{-6} & 2 x^{2}+8 x+6 & =0 \\
2^{2 x^{2}+8 x} & =2^{-6} & x^{2}+4 x+3 & =0 \\
(x+3)(x+1) & =0 \\
x & =-3 x=-1
\end{array}
$$

PTS: 2 REF: 061015a2 STA: A2.A. 27 TOP: Exponential Equations
KEY: common base shown
97 ANS: 3 PTS: 2 REF: fall0910a2 STA: A2.A. 76
TOP: Angle Sum and Difference Identities KEY: simplifying
98 ANS: 1
$a_{n}=-\sqrt{5}(-\sqrt{2})^{n-1}$
$a_{15}=-\sqrt{5}(-\sqrt{2})^{15-1}=-\sqrt{5}(-\sqrt{2})^{14}=-\sqrt{5} \cdot 2^{7}=-128 \sqrt{5}$
PTS: 2 REF: 061109a2 STA: A2.A. 32 TOP: Sequences
99 ANS: 2
$(3-7 i)(3-7 i)=9-21 i-21 i+49 i^{2}=9-42 i-49=-40-42 i$
PTS: 2 REF: fall0901a2 STA: A2.N.9
TOP: Multiplication and Division of Complex Numbers
100 ANS: 3
${ }_{3} C_{2}\left(2 x^{4}\right)^{1}(-y)^{2}=6 x^{4} y^{2}$
PTS: 2 REF: 011215a2 STA: A2.A. 36 TOP: Binomial Expansions
101 ANS: 4
PTS: 2
TOP: Properties of Logarithms
REF: 061207a2 STA: A2.A. 19
KEY: antilogarithms
102 ANS: 4
(4) fails the horizontal line test. Not every element of the range corresponds to only one element of the domain.

PTS: 2
REF: fall0906a2 STA: A2.A. 43 TOP: Defining Functions

103 ANS: 4
$\frac{4 \cdot 0+6 \cdot 1+10 \cdot 2+0 \cdot 3+4 k+2 \cdot 5}{4+6+10+0+k+2}=2$

$$
\begin{aligned}
\frac{4 k+36}{k+22} & =2 \\
4 k+36 & =2 k+44 \\
2 k & =8 \\
k & =4
\end{aligned}
$$

PTS: 2
REF: 061221a2
STA: A2.S. 3
TOP: Average Known with Missing Data
ANS: 3
$x=5^{4}=625$
PTS: 2 REF: 061106a2 STA: A2.A. 28 TOP: Logarithmic Equations
KEY: basic
105 ANS: 2

$$
4^{2 x+5}=8^{3 x}
$$

$\left(2^{2}\right)^{2 x+5}=\left(2^{3}\right)^{3 x}$
$2^{4 x+10}=2^{9 x}$
$4 x+10=9 x$

$$
10=5 x
$$

$$
2=x
$$

PTS: 2
REF: 061105a2
STA: A2.A. 27
TOP: Exponential Equations
KEY: common base not shown
106 ANS: 4

$$
9^{3 x+1}=27^{x+2} .
$$

$\left(3^{2}\right)^{3 x+1}=\left(3^{3}\right)^{x+2}$

$$
3^{6 x+2}=3^{3 x+6}
$$

$$
6 x+2=3 x+6
$$

$$
3 x=4
$$

$$
x=\frac{4}{3}
$$

PTS: 2
REF: 081008a2
STA: A2.A. 27
KEY: common base not shown
107
ANS: 3 PTS: 2
TOP: Families of Functions

108 ANS: 4
$\frac{10}{4}=2.5$
PTS: 2 REF: 011217a2 STA: A2.A. 29 TOP: Sequences
109 ANS: 3
Cofunctions tangent and cotangent are complementary
PTS: 2
110 ANS: 4
REF: 061014a2
STA: A2.A. 58
TOP: Cofunction Trigonometric Relationships
TOP: Conjugates of Complex Numbers
111 ANS: 3 PTS: 2
TOP: Inverse of Functions
REF: 081027a2
KEY: equations
112 ANS: 3

$\begin{array}{r} y_{2}^{2}= \\ 4= \\ 4= \\ u_{5}= \end{array}$

PTS: 2
REF: 011207a2 STA: A2.A. 71
TOP: Graphing Trigonometric Functions
113 ANS: 1
$\cos ^{2} \theta-\cos 2 \theta=\cos ^{2} \theta-\left(\cos ^{2} \theta-\sin ^{2} \theta\right)=\sin ^{2} \theta$
PTS: 2
REF: 061024a2
STA: A2.A. 77
TOP: Double Angle Identities
KEY: simplifying
114 ANS: 4
$b^{2}-4 a c=3^{2}-4(9)(-4)=9+144=153$
PTS: 2
REF: 081016a2 STA: A2.A. 2
TOP: Using the Discriminant
KEY: determine nature of roots given equation
115 ANS: 3

$$
\begin{array}{rlrl}
\frac{4 x-5}{3} & >1 \text { or } & \frac{4 x-5}{3} & <-1 \\
4 x-5 & >3 & 4 x-5 & <-3 \\
4 x & >8 & 4 x & <2 \\
x & >2 & x & <\frac{1}{2}
\end{array}
$$

PTS: 2
REF: 061209a2
STA: A2.A. 1
TOP: Absolute Value Inequalities
KEY: graph

116 ANS: 2
$x^{2}-x-6=3 x-6$

$$
\begin{aligned}
x^{2}-4 x & =0 \\
x(x-4) & =0 \\
x & =0,4
\end{aligned}
$$

PTS: 2
REF: 081015a2 STA: A2.A. 3
TOP: Quadratic-Linear Systems
KEY: equations
117 ANS: 3
PTS: 2
REF: 061022a2
STA: A2.A. 63
TOP: Domain and Range
118 ANS: 3
$\frac{4}{5-\sqrt{13}} \cdot \frac{5+\sqrt{13}}{5+\sqrt{13}}=\frac{4(5+\sqrt{13})}{25-13}=\frac{5+\sqrt{13}}{3}$
PTS: 2 REF: 061116a2 STA: A2.N. 5 TOP: Rationalizing Denominators
119 ANS: 2
PTS: 2
REF: 081010a2 STA: A2.A.55
TOP: Trigonometric Ratios
120 ANS: 2
${ }_{15} C_{8}=6,435$

PTS: 2
ANS: 4
TOP: Sequences
122
ANS: 2
TOP: Compositions of Functions
TOP: Permutations
124

$$
\begin{aligned}
2 \log _{4}(5 x) & =3 \\
\log _{4}(5 x) & =\frac{3}{2} \\
5 x & =4^{\frac{3}{2}} \\
5 x & =8 \\
x & =\frac{8}{5}
\end{aligned}
$$

PTS: 2
REF: fall0921a2 STA: A2.A. 28 TOP: Logarithmic Equations

PTS: 2
REF: 081012a2
PTS: 2
PTS: 2
216a2
KEY: variables
REF: fall0925a2 STA: A2.S. 10

KEY: advanced

125

PTS: 2
REF: 061020a2 STA: A2.A.71
TOP: Graphing Trigonometric Functions
126 ANS: 2
$\frac{2 \pi}{b}=\frac{2 \pi}{3}$

PTS: 2
REF: 061111a2 STA: A2.A. 69
TOP: Properties of Graphs of Trigonometric Functions
KEY: period
127 ANS: 3
$\frac{3}{\sqrt{3 a^{2} b}}=\frac{3}{a \sqrt{3 b}} \cdot \frac{\sqrt{3 b}}{\sqrt{3 b}}=\frac{3 \sqrt{3 b}}{3 a b}=\frac{\sqrt{3 b}}{a b}$

PTS: 2
REF: 081019a2
STA: A2.A. 15
TOP: Rationalizing Denominators
KEY: index = 2
128 ANS: 4
$6 x-x^{3}-x^{2}=-x\left(x^{2}+x-6\right)=-x(x+3)(x-2)$
PTS: 2 REF: fall0917a2 STA: A2.A. 7 TOP: Factoring Polynomials
KEY: single variable
129 ANS: 1
$\tan \theta-\sqrt{3}=0$

$\tan \theta=\sqrt{3}$

$$
\begin{aligned}
& \theta=\tan ^{-1} \sqrt{3} \\
& \theta=60,240
\end{aligned}
$$

PTS: 2
REF: fall0903a2 STA: A2.A. 68
KEY: basic
130
ANS: 4
PTS: 2
REF: 061101a2
STA: A2.S. 1
TOP: Analysis of Data
131
ANS: 2
PTS: 2
REF: 081003a2
STA: A2.A. 51
TOP: Domain and Range

132 ANS: 3
$\frac{-7 \pm \sqrt{7^{2}-4(2)(-3)}}{2(2)}=\frac{-7 \pm \sqrt{73}}{4}$
PTS: 2 REF: 081009a2 STA: A2.A. 25 TOP: Quadratic Formula
133 ANS: $1 \quad$ PTS: 2
TOP: Negative Exponents
134 ANS: 4 PTS: 2
TOP: Properties of Logarithms
135 ANS: 1 PTS: 2
TOP: Solving Radicals
REF: 061210a2 STA: A2.A. 9

REF: 061120a2 STA: A2.A. 19
KEY: splitting logs
REF: 061018a2 STA: A2.A. 22
KEY: extraneous solutions
REF: 011101a2 STA: A2.A. 38
KEY: graphs
REF: 011110a2 STA: A2.A. 30
TOP: Sequences
138 ANS: $2 \quad$ PTS: 2
REF: 011126a2 STA: A2.A. 49
TOP: Equations of Circles
139 ANS: 1
$\cos (A-B)=\left(\frac{5}{13}\right)\left(-\frac{3}{5}\right)+\left(\frac{12}{13}\right)\left(\frac{4}{5}\right)=-\frac{15}{65}+\frac{48}{65}=\frac{33}{65}$
PTS: 2
REF: 011214a2
STA: A2.A. 76
TOP: Angle Sum and Difference Identities
KEY: evaluating
140 ANS: 3
PTS: 2
REF: 061001a2
STA: A2.A. 30
TOP: Sequences
141 ANS: 3
$\frac{\sin ^{2} \theta+\cos ^{2} \theta}{1-\sin ^{2} \theta}=\frac{1}{\cos ^{2} \theta}=\sec ^{2} \theta$
PTS: 2
REF: 061123a2
STA: A2.A. 58
TOP: Reciprocal Trigonometric Relationships
142 ANS: 3
$75000=25000 e^{.0475 t}$

$$
3=e^{.0475 t}
$$

$$
\ln 3=\ln e^{.0475 t}
$$

$\frac{\ln 3}{.0475}=\frac{.0475 t \cdot \ln e}{.0475}$
$23.1 \approx t$
PTS: 2
REF: 061117a2
STA: A2.A. 6
TOP: Exponential Growth
143 ANS: 1
PTS: 2
TOP: Imaginary Numbers
144 ANS: 3
PTS: 2
REF: 061019a2
STA: A2.N. 7

TOP: Graphing Trigonometric Functions

145 ANS: 3
$\sqrt[3]{4^{3} a^{15} a}=4 a^{5} \sqrt[3]{a}$
PTS: 2 REF: 061204a2 STA: A2.A. 13 TOP: Simplifying Radicals
KEY: index > 2
146 ANS: 4
$\frac{2 \pi}{b}=30$
$b=\frac{\pi}{15}$

PTS: 2
REF: 011227a2 STA: A2.A.72
TOP: Identifying the Equation of a Trigonometric Graph
147 ANS: 3
$\frac{59.2}{\sin 74}=\frac{60.3}{\sin C} \quad 180-78.3=101.7$

$$
C \approx 78.3
$$

PTS: 2
REF: 081006a2
STA: A2.A. 75
REF: 061223a2
KEY: modeling
TOP: Law of Sines - The Ambiguous Case
148 ANS: 1
PTS: 2
TOP: Binomial Probability STA: A2.S. 15

ANS: 3

$$
\begin{aligned}
3 x^{5}-48 x & =0 \\
3 x\left(x^{4}-16\right) & =0 \\
3 x\left(x^{2}+4\right)\left(x^{2}-4\right) & =0 \\
3 x\left(x^{2}+4\right)(x+2)(x-2) & =0
\end{aligned}
$$

PTS: 2
REF: 011216a2
STA: A2.A. 26
TOP: Solving Polynomial Equations
150 ANS: 1

$$
\begin{aligned}
\frac{6}{\sin 35} & =\frac{10}{\sin N} \\
N & \approx 73 \\
73+35 & <180 \\
(180-73)+35 & <180
\end{aligned}
$$

PTS: 2
REF: 061226a2
STA: A2.A. 75
ANS: 1
PTS: 2
REF: 061004a2
TOP: Identifying the Equation of a Graph
152 ANS: 2
sum: $\frac{-b}{a}=\frac{4}{6}=\frac{2}{3}$. product: $\frac{c}{a}=\frac{-12}{6}=-2$
PTS: 2
REF: 011209a2 STA: A2.A. 20
TOP: Law of Sines - The Ambiguous Case STA: A2.A. 52

153 ANS: 1

The binomials are conjugates, so use FL.
PTS: 2
REF: 061201a2
STA: A2.N. 3
TOP: Operations with Polynomials
154 ANS: 4
$S_{n}=\frac{n}{2}[2 a+(n-1) d]=\frac{21}{2}[2(18)+(21-1) 2]=798$

PTS: 2
REF: 061103a2 STA: A2.A. 35 TOP: Series
KEY: arithmetic
155 ANS: 1
PTS: 2
REF: 061025a2 STA: A2.A. 34
TOP: Sigma Notation
156
TOP: Properties of Graphs of Functions and Relations
PTS: 2
REF: 011219a2 STA: A2.A.52
157 ANS: 3
PTS: 2
REF: 011104a2
STA: A2.A. 64
TOP: Using Inverse Trigonometric Functions
158 ANS: 2
$x^{2}-2 x+y^{2}+6 y=-3$
$x^{2}-2 x+1+y^{2}+6 y+9=-3+1+9$
$(x-1)^{2}+(y+3)^{2}=7$
PTS: 2 REF: 061016a2 STA: A2.A. 47 TOP: Equations of Circles
159 ANS: 4

PTS: 2
REF: 061222a2 STA: A2.A.50
TOP: Solving Polynomial Equations
160 ANS: 1
${ }_{9} C_{3} a^{6}(-4 b)^{3}=-5376 a^{6} b^{3}$
PTS: 2
REF: 061126a2
STA: A2.A. 36
TOP: Binomial Expansions
161 ANS: 1
PTS: 2
REF: 011112a2
STA: A2.A. 64
TOP: Using Inverse Trigonometric Functions
162 ANS: 3
$2 \pi \cdot \frac{5}{12}=\frac{10 \pi}{12}=\frac{5 \pi}{6}$
PTS: 2
REF: 061125a2
STA: A2.M. 1
TOP: Radian Measure
163 ANS: 4
$s=\theta r=2 \cdot 4=8$
PTS: 2
REF: fall0922a2 STA: A2.A. 61
TOP: Arc Length
KEY: arc length

164
ANS: 4
${ }_{3} C_{2}\left(\frac{5}{8}\right)^{2}\left(\frac{3}{8}\right)^{1}=\frac{225}{512}$
PTS: 2 REF: 011221a2 STA: A2.S. 15 TOP: Binomial Probability
KEY: spinner
165 ANS: $2 \quad$ PTS: 2
TOP: Proving Trigonometric Identities
166 ANS: $2 \quad$ PTS: 2
TOP: Conjugates of Complex Numbers
167 ANS: $1 \quad$ PTS: 2
TOP: Negative and Fractional Exponents
168 ANS: $4 \quad$ PTS: 2
TOP: Average Known with Missing Data
169 ANS: 4
${ }_{15} C_{5}=3,003 .{ }_{25} C_{5}={ }_{25} C_{20}=53,130 .{ }_{25} C_{15}=3,268,760$.
PTS: 2 REF: 061227a2 STA: A2.S. 11 TOP: Combinations
170 ANS: 1
$2 i^{2}+3 i^{3}=2(-1)+3(-i)=-2-3 i$
PTS: 2 REF: 081004a2 STA: A2.N. 7 TOP: Imaginary Numbers
171 ANS: 1
$8 \times 8 \times 7 \times 1=448$. The first digit cannot be 0 or 5 . The second digit cannot be 5 or the same as the first digit. The third digit cannot be 5 or the same as the first or second digit.

PTS: 2 REF: 011125a2 STA: A2.S. 10 TOP: Permutations
172 ANS: 1
$-420\left(\frac{\pi}{180}\right)=-\frac{7 \pi}{3}$
PTS: 2 REF: 081002a2 STA: A2.M. 2 TOP: Radian Measure
KEY: radians
173 ANS: 1

$$
\begin{aligned}
5 x+29 & =(x+3)^{2} \quad \cdot(-5)+3 \text { shows an extraneous solution. } \\
5 x+29 & =x^{2}+6 x+9 \\
0 & =x^{2}+x-20 \\
0 & =(x+5)(x-4) \\
x & =-5,4
\end{aligned}
$$

PTS: 2 REF: 061213a2 STA: A2.A. 22 TOP: Solving Radicals
KEY: extraneous solutions

174 ANS: 1

PTS: 2
REF: 011123a2
ANS: 1
PTS: 2
STA: A2.A. 71
REF: 061013a2
TOP: Graphing Trigonometric Functions
TOP: Defining Functions
176 ANS: 2
PTS: 2
TOP: Operations with Polynomials
ANS: 3
$s=\theta r=\frac{2 \pi}{8} \cdot 6=\frac{3 \pi}{2}$

PTS: 2
REF: 061212a2
STA: A2.A. 61
TOP: Arc Length
KEY: arc length
178 ANS: 4
$\frac{2 x+4}{\sqrt{x+2}} \cdot \frac{\sqrt{x+2}}{\sqrt{x+2}}=\frac{2(x+2) \sqrt{x+2}}{x+2}=2 \sqrt{x+2}$
PTS: 2
REF: 011122a2
STA: A2.A. 15
TOP: Rationalizing Denominators
KEY: index = 2
179 ANS: 4
$g\left(\frac{1}{2}\right)=\frac{1}{\frac{1}{2}}=2 . f(2)=4(2)-2^{2}=4$

PTS: 2
KEY: numbers

180

PTS: 2
REF: 061217a2
STA: A2.A. 66
TOP: Determining Trigonometric Functions

181
ANS: 3

$$
\begin{array}{cc}
x^{2}-3 x-10>0 & \text { or } \\
(x-5)(x+2)>0 & x-5<0 \text { and } x+2<0 \\
x-5>0 \text { and } x+2>0 & x<5 \text { and } x<-2 \\
x>5 \text { and } x>-2 & x<-2 \\
x>5 &
\end{array}
$$

PTS: 2 REF: 011115a2 STA: A2.A. 4 TOP: Quadratic Inequalities
KEY: one variable
ANS: 1

$\cos K=\frac{5}{6}$

$$
\begin{aligned}
& K=\cos ^{-1} \frac{5}{6} \\
& K \approx 33^{\circ} 33^{\prime}
\end{aligned}
$$

PTS: 2 REF: 061023a2 STA: A2.A. 55 TOP: Trigonometric Ratios

183
ANS: 3
period $=\frac{2 \pi}{b}=\frac{2 \pi}{3 \pi}=\frac{2}{3}$

PTS: 2 REF: 081026a2 STA: A2.A. 70 TOP: Graphing Trigonometric Functions
KEY: recognize
ANS: 4
$4 a b \sqrt{2 b}-3 a \sqrt{9 b^{2}} \sqrt{2 b}+7 a b \sqrt{6 b}=4 a b \sqrt{2 b}-9 a b \sqrt{2 b}+7 a b \sqrt{6 b}=-5 a b \sqrt{2 b}+7 a b \sqrt{6 b}$
PTS: 2 REF: fall0918a2 STA: A2.A. 14 TOP: Operations with Radicals KEY: with variables \mid index $=2$

185 ANS: 2

PTS: 2
REF: 011108a2
STA: A2.S. 13
REF: 011213a2 STA: A2.N.8
TOP: Geometric Probability
186 ANS: 2
PTS: 2
TOP: Conjugates of Complex Numbers
187 ANS: 4
$12 x^{4}+10 x^{3}-12 x^{2}=2 x^{2}\left(6 x^{2}+5 x-6\right)=2 x^{2}(2 x+3)(3 x-2)$
PTS: 2 REF: 061008a2 STA: A2.A. 7 TOP: Factoring Polynomials
KEY: single variable
188
ANS: 2 PTS: 2
REF: 061122a2
STA: A2.A. 24
TOP: Completing the Square
189
ANS: 1
$10 \cdot \frac{3}{2}=\frac{3}{5} p$
$15=\frac{3}{5} p$
$25=p$
PTS: 2
REF: 011226a2
STA: A2.A. 5
TOP: Inverse Variation

Algebra 2/Trigonometry 2 Point Regents Exam Questions

Answer Section

190 ANS:

PTS: 2
REF: 011234a2
STA: A2.A. 53
TOP: Graphing Exponential Functions
191 ANS:
${ }_{25} C_{20}=53,130$
PTS: 2
REF: 011232a2
STA: A2.S. 11
TOP: Combinations
192 ANS:
$216\left(\frac{\pi}{180}\right) \approx 3.8$
PTS: 2
REF: 061232a2
STA: A2.M. 2
TOP: Radian Measure
KEY: radians
193
ANS:
no solution. $\quad \frac{4 x}{x-3}=2+\frac{12}{x-3}$

$$
\begin{aligned}
\frac{4 x-12}{x-3} & =2 \\
\frac{4(x-3)}{x-3} & =2 \\
4 & \neq 2
\end{aligned}
$$

PTS: 2
REF: fall0930a2 STA: A2.A. 23
TOP: Solving Rationals
KEY: rational solutions
194 ANS:
7.4

PTS: 2
REF: 061029a2
STA: A2.S. 4
TOP: Dispersion
KEY: basic, group frequency distributions

195 ANS:

$$
\begin{aligned}
12 \cdot 6 & =9 w \\
8 & =w
\end{aligned}
$$

PTS: 2 REF: 011130a2 STA: A2.A. 5 TOP: Inverse Variation
196 ANS:

PTS: 2 REF: fall0935a2 STA: A2.S. 12 TOP: Sample Space
197 ANS:
$a_{1}=3 . a_{2}=2(3)-1=5 . \quad a_{3}=2(5)-1=9$.
PTS: 2 REF: 061233a2 STA: A2.A. 33 TOP: Recursive Sequences
198 ANS:
Sum $\frac{-b}{a}=-\frac{11}{5}$. Product $\frac{c}{a}=-\frac{3}{5}$
PTS: 2 REF: 061030a2 STA: A2.A. 20 TOP: Roots of Quadratics 199 ANS:
68% of the students are within one standard deviation of the mean. 16% of the students are more than one standard deviation above the mean.

PTS: 2 REF: 011134a2 STA: A2.S. 5 TOP: Normal Distributions
KEY: percent
200
ANS:
D: $-5 \leq x \leq 8 . \mathrm{R}:-3 \leq y \leq 2$
PTS: 2 REF: 011132a2 STA: A2.A. 51 TOP: Domain and Range
201 ANS:
$x<-1$ or $x>5 . \quad x^{2}-4 x-5>0 . x-5>0$ and $x+1>0$ or $x-5<0$ and $x+1<0$

$$
\begin{array}{ccc}
(x-5)(x+1)>0 & x>5 \text { and } x>-1 & x<5 \text { and } x<-1 \\
x>5 & x<-1
\end{array}
$$

PTS: 2
REF: 011228a2
STA: A2.A. 4
TOP: Quadratic Inequalities
KEY: one variable
202
ANS:
$(x+3)^{2}+(y-4)^{2}=25$
PTS: 2 REF: fall0929a2 STA: A2.A. 49 TOP: Writing Equations of Circles

ANS:
$-3,-5,-8,-12$

PTS: 2
REF: fall0934a2
STA: A2.A. 33
TOP: Recursive Sequences
204 ANS:

PTS: 2 ANS:

$$
y=0
$$

PTS: 2
REF: 061031a2
STA: A2.A. 53
TOP: Graphing Exponential Functions
ANS:
$y=x^{2}-6 . \mathrm{f}^{-1}(x)$ is not a function.
$x=y^{2}-6$
$x+6=y^{2}$
$\pm \sqrt{x+6}=y$
PTS: 2
REF: 061132a2
STA: A2.A. 44
TOP: Inverse of Functions
KEY: equations
207
ANS:
$2.5 \cdot \frac{180}{\pi} \approx 143.2^{\circ}$
PTS: 2
REF: 011129a2
STA: A2.M. 2
TOP: Radian Measure KEY: degrees

REF: fall0932a2
STA: A2.A. 12
TOP: Evaluating Exponential Expressions

208 ANS:
$\frac{5(3+\sqrt{2})}{7} \cdot \frac{5}{3-\sqrt{2}} \times \frac{3+\sqrt{2}}{3+\sqrt{2}}=\frac{5(3+\sqrt{2})}{9-2}=\frac{5(3+\sqrt{2})}{7}$

PTS: 2 REF: fall0928a2 STA: A2.N. 5 TOP: Rationalizing Denominators
209 ANS:
$y=180.377(0.954)^{x}$
PTS: 2
REF: 061231a2
STA: A2.S. 7
TOP: Exponential Regression
210 ANS:
$(x+5)^{2}+(y-3)^{2}=32$
PTS: 2 REF: 081033a2 STA: A2.A. 49 TOP: Writing Equations of Circles
211 ANS:
$K=a b \sin C=24 \cdot 30 \sin 57 \approx 604$
PTS: 2 REF: 061034a2 STA: A2.A. 74 TOP: Using Trigonometry to Find Area
KEY: parallelograms
212 ANS:

$$
-\frac{\sqrt{3}}{2}
$$

PTS: 2
REF: 061033a2 STA: A2.A. 60
TOP: Unit Circle
213 ANS:
7. $4-\sqrt{2 x-5}=1$

$$
\begin{aligned}
-\sqrt{2 x-5} & =-3 \\
2 x-5 & =9 \\
2 x & =14 \\
x & =7
\end{aligned}
$$

PTS: 2
REF: 011229a2
STA: A2.A. 22
TOP: Solving Radicals
KEY: basic

214
ANS:
$\frac{\sin ^{2} A}{\cos ^{2} A}+\frac{\cos ^{2} A}{\cos ^{2} A}=\frac{1}{\cos ^{2} A}$

$$
\tan ^{2} A+1=\sec ^{2} A
$$

PTS: 2 REF: 011135a2 STA: A2.A. 67 TOP: Proving Trigonometric Identities
215 ANS:
$12 t^{8}-75 t^{4}=3 t^{4}\left(4 t^{4}-25\right)=3 t^{4}\left(2 t^{2}+5\right)\left(2 t^{2}-5\right)$
PTS: 2
REF: 061133a2 STA: A2.A. 7
TOP: Factoring the Difference of Perfect Squares
KEY: binomial
216 ANS:

$$
\begin{aligned}
b^{2}-4 a c & =0 \\
k^{2}-4(1)(4) & =0 \\
k^{2}-16 & =0 \\
(k+4)(k-4) & =0 \\
k & = \pm 4
\end{aligned}
$$

PTS: 2
REF: 061028a2
STA: A2.A. 2
KEY: determine equation given nature of roots
217 ANS:

$$
\begin{array}{r}
i^{13}+i^{18}+i^{31}+n=0 \\
i+(-1)-i+n=0 \\
-1+n=0 \\
n=1
\end{array}
$$

PTS: 2 REF: 061228a2 STA: A2.N. 7 TOP: Imaginary Numbers
218 ANS:
$6 y^{3}-\frac{37}{10} y^{2}-\frac{1}{5} y \cdot\left(\frac{1}{2} y^{2}-\frac{1}{3} y\right)\left(12 y+\frac{3}{5}\right)=6 y^{3}+\frac{3}{10} y^{2}-4 y^{2}-\frac{1}{5} y=6 y^{3}-\frac{37}{10} y^{2}-\frac{1}{5} y$
PTS: 2 REF: 061128a2 STA: A2.N. 3 TOP: Operations with Polynomials
219 ANS:
no. over 20 is more than 1 standard deviation above the mean. $0.159 \cdot 82 \approx 13.038$
PTS: 2
REF: 061129a2 STA: A2.S.5
TOP: Normal Distributions
KEY: predict

220 ANS:
$-\frac{a^{2} b^{3}}{4}$
PTS: 2 REF: 011231a2 STA: A2.A. 13 TOP: Simplifying Radicals
KEY: index > 2
221 ANS:
$K=a b \sin C=18 \cdot 22 \sin 60=396 \frac{\sqrt{3}}{2}=198 \sqrt{3}$
PTS: 2 REF: 061234a2 STA: A2.A.74 TOP: Using Trigonometry to Find Area
KEY: Parallelograms
222 ANS:
$A=750 e^{(0.03)(8)} \approx 953$
PTS: 2 REF: 061229a2 STA: A2.A. 12 TOP: Evaluating Exponential Expressions
223 ANS:
$y=10.596(1.586)^{x}$
PTS: 2 REF: 081031a2 STA: A2.S. 7 TOP: Exponential Regression
224 ANS:
Controlled experiment because Howard is comparing the results obtained from an experimental sample against a control sample.

PTS: 2 REF: 081030a2 STA: A2.S. 1 TOP: Analysis of Data
225 ANS:
$\sum_{n=1}^{15} 7 n$
PTS: 2 REF: 081029a2 STA: A2.A. 34 TOP: Sigma Notation
226 ANS:
230. $10+\left(1^{3}-1\right)+\left(2^{3}-1\right)+\left(3^{3}-1\right)+\left(4^{3}-1\right)+\left(5^{3}-1\right)=10+0+7+26+63+124=230$

PTS: 2 REF: 011131a2 STA: A2.N. 10 TOP: Sigma Notation
KEY: basic
227
ANS:
$\frac{\sqrt{13}}{2} \cdot \sin \theta=\frac{y}{\sqrt{x^{2}+y^{2}}}=\frac{2}{\sqrt{(-3)^{2}+2^{2}}}=\frac{2}{\sqrt{13}} . \csc \theta=\frac{\sqrt{13}}{2}$.
PTS: 2 REF: fall0933a2 STA: A2.A. 62 TOP: Determining Trigonometric Functions
228 ANS:
$5 \sqrt{3 x^{3}}-2 \sqrt{27 x^{3}}=5 \sqrt{x^{2}} \sqrt{3 x}-2 \sqrt{9 x^{2}} \sqrt{3 x}=5 x \sqrt{3 x}-6 x \sqrt{3 x}=-x \sqrt{3 x}$
PTS: 2 REF: 061032a2 STA: A2.N. 2 TOP: Operations with Radicals

ANS:
45, $2252 \tan C-3=3 \tan C-4$

$$
\begin{aligned}
1 & =\tan C \\
\tan ^{-1} 1 & =C \\
C & =45,225
\end{aligned}
$$

PTS: 2 REF: 081032a2 STA: A2.A. 68 TOP: Trigonometric Equations KEY: basic
230 ANS:
$39,916,800 \cdot \frac{{ }_{12} P_{12}}{3!\cdot 2!}=\frac{479,001,600}{12}=39,916,800$
PTS: 2
REF: 081035a2 STA: A2.S. 10
TOP: Permutations
231 ANS:
$r=\sqrt{2^{2}+3^{2}}=\sqrt{13} .(x+5)^{2}+(y-2)^{2}=13$
PTS: 2 REF: 011234a2 STA: A2.A. 49 TOP: Writing Equations of Circles
232 ANS:

PTS: 2 REF: 011230a2 STA: A2.N. 10 TOP: Sigma Notation
KEY: basic
233 ANS:
$\frac{12 x^{2}}{y^{9}} \cdot \frac{3 x^{-4} y^{5}}{\left(2 x^{3} y^{-7}\right)^{-2}}=\frac{3 y^{5}\left(2 x^{3} y^{-7}\right)^{2}}{x^{4}}=\frac{3 y^{5}\left(4 x^{6} y^{-14}\right)}{x^{4}}=\frac{12 x^{6} y^{-9}}{x^{4}}=\frac{12 x^{2}}{y^{9}}$
PTS: 2 REF: 061134a2 STA: A2.A. 9 TOP: Negative Exponents
234 ANS:
$\cos \theta \cdot \frac{1}{\cos \theta}-\cos ^{2} \theta=1-\cos ^{2} \theta=\sin ^{2} \theta$

PTS: 2 REF: 061230a2 STA: A2.A. 58 TOP: Reciprocal Trigonometric Relationships
235 ANS:
$\frac{4}{9} x^{2}-\frac{4}{3} x+1 .\left(\frac{2}{3} x-1\right)^{2}=\left(\frac{2}{3} x-1\right)\left(\frac{2}{3} x-1\right)=\frac{4}{9} x^{2}-\frac{2}{3} x-\frac{2}{3} x+1=\frac{4}{9} x^{2}-\frac{4}{3} x+1$
PTS: 2 REF: 081034a2 STA: A2.N. 3 TOP: Operations with Polynomials

236 ANS:

PTS: 2 REF: fall0931a2 STA: A2.M. 2 TOP: Radian Measure
KEY: degrees
237 ANS:
7. $f(-3)=(-3)^{2}-6=3 . g(x)=2^{3}-1=7$.

PTS: 2 REF: 061135a2 STA: A2.A. 42 TOP: Compositions of Functions
KEY: numbers
238 ANS:
$x^{2}-6 x-27=0, \frac{-b}{a}=6$. $\frac{c}{a}=-27$. If $a=1$ then $b=-6$ and $c=-27$
PTS: 4 REF: 061130a2 STA: A2.A. 21 TOP: Roots of Quadratics
KEY: basic
239 ANS:
$e^{3 \ln 2}=e^{\ln 2^{3}}=e^{\ln 8}=8$
PTS: 2 REF: 061131a2 STA: A2.A. 12 TOP: Evaluating Exponential Expressions
240 ANS:
$\frac{\sqrt{108 x^{5} y^{8}}}{\sqrt{6 x y^{5}}}=\sqrt{18 x^{4} y^{3}}=3 x^{2} y \sqrt{2 y}$
PTS: 2 REF: 011133a2 STA: A2.A. 14 TOP: Operations with Radicals
KEY: with variables | index = 2
241 ANS:
$y=-3 \sin 2 x$. The period of the function is π, the amplitude is 3 and it is reflected over the x-axis.
PTS: 2
REF: 061235a2 STA: A2.A.72
TOP: Identifying the Equation of a Trigonometric Graph
242
ANS:
$\frac{\frac{1}{2}-\frac{4}{d}}{\frac{1}{d}+\frac{3}{2 d}}=\frac{\frac{d-8}{2 d}}{\frac{2 d+3 d}{2 d^{2}}}=\frac{d-8}{2 d} \times \frac{2 d^{2}}{5 d}=\frac{d-8}{5}$
PTS: 2 REF: 061035a2 STA: A2.A. 17 TOP: Complex Fractions

243 ANS:

$$
\begin{aligned}
16^{2 x+3} & =64^{x+2} \\
\left(4^{2}\right)^{2 x+3} & =\left(4^{3}\right)^{x+2} \\
4 x+6 & =3 x+6 \\
x & =0
\end{aligned}
$$

PTS: 2
REF: 011128a2
STA: A2.A. 27
TOP: Exponential Equations
KEY: common base not shown
244
$\frac{2 \sqrt{3}}{3}$. If $\sin 60=\frac{\sqrt{3}}{2}$, then $\csc 60=\frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}$

PTS: 2
REF: 011235a2 STA: A2.A.59
TOP: Reciprocal Trigonometric Relationships
245 ANS:
$10 a x^{2}-23 a x-5 a=a\left(10 x^{2}-23 x-5\right)=a(5 x+1)(2 x-5)$
PTS: 2
REF: 081028a2
STA: A2.A. 7
TOP: Factoring Polynomials
KEY: multiple variables

Algebra 2/Trigonometry 4 Point Regents Exam Questions

Answer Section

246 ANS:
$\sigma_{x}=14.9 . \bar{x}=40$. There are 8 scores between 25.1 and 54.9.
PTS: 4 REF: 061237a2 STA: A2.S. 4 TOP: Dispersion
KEY: advanced
247 ANS:

$$
-3|6-x|<-15
$$

$6-x>5$ or $6-x<-5$

$$
1>x \text { or } 11<x
$$

PTS: 2 REF: 061137a2 STA: A2.A. 1 TOP: Absolute Value Inequalities
KEY: graph
ANS:

$$
\begin{aligned}
\frac{23}{2} \cos ^{2} B+\sin ^{2} B & =1 \quad \tan B=\frac{\sin B}{\cos B}=\frac{\frac{5}{\sqrt{41}}}{\frac{4}{\sqrt{41}}}=\frac{5}{4} \quad \tan (A+B)=\frac{\frac{2}{3}+\frac{5}{4}}{1-\left(\frac{2}{3}\right)\left(\frac{5}{4}\right)}=\frac{\frac{8+15}{12}}{\frac{12}{12}-\frac{10}{12}}=\frac{\frac{23}{12}}{\frac{2}{12}}=\frac{23}{2} \\
\cos ^{2} B+\left(\frac{5}{\sqrt{41}}\right)^{2} & =1 \\
\cos ^{2} B+\frac{25}{41} & =\frac{41}{41} \\
\cos ^{2} B & =\frac{16}{41} \\
\cos B & =\frac{4}{\sqrt{41}}
\end{aligned}
$$

PTS: 4 REF: 081037a2 STA: A2.A.76 TOP: Angle Sum and Difference Identities KEY: evaluating
249 ANS:
$\frac{-\left(x^{2}-4\right)}{(x+4)(x+3)} \times \frac{x+3}{2(x-2)}=\frac{-(x+2)(x-2)}{x+4} \times \frac{1}{2(x-2)}=\frac{-(x+2)}{2(x+4)}$
PTS: 4
REF: 061236a2 STA: A2.A. 16 TOP: Multiplication and Division of Rationals
KEY: division

250
ANS:

$$
\begin{array}{r}
\frac{51}{243} \cdot{ }_{5} C_{3}\left(\frac{1}{3}\right)^{3}\left(\frac{2}{3}\right)^{2}=\frac{40}{243} \\
{ }_{5} C_{4}\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)^{1}=\frac{10}{243} \\
{ }_{5} C_{3}\left(\frac{1}{3}\right)^{5}\left(\frac{2}{3}\right)^{0}=\frac{1}{243}
\end{array}
$$

PTS: 4 REF: 061138a2 STA: A2.S. 15 TOP: Binomial Probability KEY: at least or at most
251 ANS:

$$
\begin{aligned}
3 \pm \sqrt{7} \cdot 2 x^{2}-12 x+4 & =0 \\
x^{2}-6 x+2 & =0 \\
x^{2}-6 x & =-2 \\
x^{2}-6 x+9 & =-2+9 \\
(x-3)^{2} & =7 \\
x-3 & = \pm \sqrt{7} \\
x & =3 \pm \sqrt{7}
\end{aligned}
$$

PTS: 4 REF: fall0936a2 STA: A2.A. 24 TOP: Completing the Square
252 ANS:
88. $\frac{100}{\sin 33}=\frac{x}{\sin 32} \cdot \sin 66 \approx \frac{T}{97.3}$

$$
x \approx 97.3 \quad t \approx 88
$$

PTS: 4 REF: 011236a2 STA: A2.A. 73 TOP: Law of Sines
KEY: advanced
253 ANS:
0.468. ${ }_{8} C_{6}\left(\frac{2}{3}\right)^{6}\left(\frac{1}{3}\right)^{2} \approx 0.27313 .{ }_{8} C_{7}\left(\frac{2}{3}\right)^{7}\left(\frac{1}{3}\right)^{1} \approx 0.15607 .{ }_{8} C_{8}\left(\frac{2}{3}\right)^{8}\left(\frac{1}{3}\right)^{0} \approx 0.03902$.

PTS: 4 REF: 011138a2 STA: A2.S. 15 TOP: Binomial Probability
KEY: at least or at most
254
ANS:
No. TENNESSEE: $\frac{{ }_{9} P_{9}}{4!\cdot 2!\cdot 2!}=\frac{362,880}{96}=3,780$. VERMONT: ${ }_{7} P_{7}=5,040$
PTS: 4
REF: 061038a2 STA: A2.S. 10 TOP: Permutations

255
ANS:
$32 x^{5}-80 x^{4}+80 x^{3}-40 x^{2}+10 x-1 .{ }_{5} C_{0}(2 x)^{5}(-1)^{0}=32 x^{5} .{ }_{5} C_{1}(2 x)^{4}(-1)^{1}=-80 x^{4} .{ }_{5} C_{2}(2 x)^{3}(-1)^{2}=80 x^{3}$.
${ }_{5} C_{3}(2 x)^{2}(-1)^{3}=-40 x^{2} .{ }_{5} C_{4}(2 x)^{1}(-1)^{4}=10 x .{ }_{5} C_{5}(2 x)^{0}(-1)^{5}=-1$
PTS: 4 REF: 011136a2 STA: A2.A. 36 TOP: Binomial Expansions
256 ANS:
800. $x=4^{2.5}=32 . y^{-\frac{3}{2}}=125 \quad . \frac{x}{y}=\frac{32}{\frac{1}{25}}=800$

$$
y=125^{-\frac{2}{3}}=\frac{1}{25}
$$

PTS: 4 REF: 011237a2 STA: A2.A. 28 TOP: Logarithmic Equations
KEY: advanced
$y=2.001 x^{2.298}, 1,009 . y=2.001(15)^{2.298} \approx 1009$
PTS: 4 REF: fall0938a2 STA: A2.S. 7 TOP: Power Regression ANS:
$26.2 \% .{ }_{10} C_{8} \cdot 0.65^{8} \cdot 0.35^{2}+{ }_{10} C_{9} \cdot 0.65^{9} \cdot 0.35^{1}+{ }_{10} C_{10} \cdot 0.65^{10} \cdot 0.35^{0} \approx 0.262$
PTS: 4 REF: 081038a2 STA: A2.S. 15 TOP: Binomial Probability
KEY: at least or at most
259
ANS:

$\frac{27}{\sin 75}=\frac{F_{1}}{\sin 60} . \frac{27}{\sin 75}=\frac{F_{2}}{\sin 45}$.

$$
F_{1} \approx 24 \quad F_{1} \approx 20
$$

PTS: 4
REF: 061238a2
STA: A2.A. 73
TOP: Vectors

260 ANS:

$$
\begin{aligned}
\frac{1}{3} \quad \frac{1}{x+3}-\frac{2}{3-x} & =\frac{4}{x^{2}-9} \\
\frac{1}{x+3}+\frac{2}{x-3} & =\frac{4}{x^{2}-9} \\
\frac{x-3+2(x+3)}{(x+3)(x-3)} & =\frac{4}{(x+3)(x-3)} \\
x-3+2 x+6 & =4 \\
3 x & =1 \\
x & =\frac{1}{3}
\end{aligned}
$$

PTS: 4 REF: 081036a2 STA: A2.A. 23 TOP: Solving Rationals KEY: rational solutions

ANS:
$\pm \frac{3}{2},-\frac{1}{2} . \quad 8 x^{3}+4 x^{2}-18 x-9=0$

$$
4 x^{2}(2 x+1)-9(2 x+1)=0
$$

$$
\left(4 x^{2}-9\right)(2 x+1)=0
$$

$$
4 x^{2}-9=0 \text { or } 2 x+1=0
$$

$$
(2 x+3)(2 x-3)=0 \quad x=-\frac{1}{2}
$$

$$
x= \pm \frac{3}{2}
$$

PTS: 4
REF: fall0937a2 STA: A2.A. 26
TOP: Solving Polynomial Equations
262 ANS:
$y=27.2025(1.1509)^{x} . y=27.2025(1.1509)^{18} \approx 341$
PTS: 4
REF: 011238a2
STA: A2.S. 7
TOP: Exponential Regression

ANS:
$0,60,180,300 . \quad \sin 2 \theta=\sin \theta$

$$
\begin{gathered}
\sin 2 \theta-\sin \theta=0 \\
2 \sin \theta \cos \theta-\sin \theta=0 \\
\sin \theta(2 \cos \theta-1)=0 \\
\sin \theta=0 \quad 2 \cos \theta-1=0 \\
\theta=0,180 \cos \theta=\frac{1}{2}
\end{gathered}
$$

$$
\theta=60,300
$$

PTS: 4 REF: 061037a2 STA: A2.A. 68 TOP: Trigonometric Equations
KEY: double angle identities
264 ANS:
$\sin (45+30)=\sin 45 \cos 30+\cos 45 \sin 30$

$$
=\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2} \cdot \frac{1}{2}=\frac{\sqrt{6}}{4}+\frac{\sqrt{2}}{4}=\frac{\sqrt{6}+\sqrt{2}}{4}
$$

PTS: 4
REF: 061136a2 STA: A2.A. 76
TOP: Angle Sum and Difference Identities
KEY: evaluating
265
ANS:

PTS: 4 REF: 011137a2 STA: A2.A.73 TOP: Law of Sines
KEY: basic
266
ANS:
0.167. ${ }_{10} C_{8} \cdot 0.6^{8} \cdot 0.4^{2}+{ }_{10} C_{9} \cdot 0.6^{9} \cdot 0.4^{1}+{ }_{10} C_{10} \cdot 0.6^{10} \cdot 0.4^{0} \approx 0.167$

PTS: 4
REF: 061036a2 STA: A2.S. 15 TOP: Binomial Probability
KEY: at least or at most

$$
\begin{aligned}
& \frac{12}{\sin 32}=\frac{10}{\sin B} \\
& \text {. } C \approx 180-(32+26.2) \approx 121.8 \cdot \frac{12}{\sin 32}=\frac{C}{\sin 121.8} \\
& B=\sin ^{-1} \frac{10 \sin 32}{12} \approx 26.2 \\
& c=\frac{12 \sin 121.8}{\sin 32} \approx 19.2
\end{aligned}
$$

Algebra 2/Trigonometry 6 Point Regents Exam Questions

Answer Section

267 ANS:

$$
\begin{aligned}
r^{2} & \approx 10287.7 \\
r & \approx 101.43
\end{aligned}
$$

$$
\begin{aligned}
\frac{2.5}{\sin x} & =\frac{101.43}{\sin 125} \\
x & \approx 12
\end{aligned}
$$

PTS: 6 REF: fall0939a2 STA: A2.A. 73 TOP: Vectors
268 ANS:

$$
\begin{array}{rlrl}
\ln \left(T-T_{0}\right) & =-k t+4.718 & . \ln (T-68) & =-0.104(10)+4.718 . \\
\ln (150-68) & =-k(3)+4.718 & \ln (T-68) & =3.678 \\
4.407 & \approx-3 k+4.718 & T-68 & \approx 39.6 \\
k & \approx 0.104 & T & \approx 108
\end{array}
$$

PTS: 6 REF: 011139a2 STA: A2.A. 28 TOP: Logarithmic Equations
KEY: advanced
269

$$
\begin{array}{rl}
\left(-\frac{9}{2}, \frac{1}{2}\right) \text { and }\left(\frac{1}{2}, \frac{11}{2}\right) \cdot y=x+5 & 4 x^{2}+17 x-4=x+5 \\
y=4 x^{2}+17 x-4 & 4 x^{2}+16 x-9=0 \\
& (2 x+9)(2 x-1)=0 \\
& x=-\frac{9}{2} \text { and } x=\frac{1}{2} \\
& y=-\frac{9}{2}+5=\frac{1}{2} \text { and } y=\frac{1}{2}+5=\frac{11}{2}
\end{array}
$$

PTS: 6
REF: 061139a2 STA: A2.A. 3
TOP: Quadratic-Linear Systems
KEY: equations

270 ANS:
33. $a=\sqrt{10^{2}+6^{2}-2(10)(6) \cos 80} \approx 10.7 . \angle C$ is opposite the shortest side. $\frac{6}{\sin C}=\frac{10.7}{\sin 80}$

$$
C \approx 33
$$

PTS: 6
REF: 061039a2
STA: A2.A. 73
TOP: Law of Cosines
KEY: advanced
ANS:

$$
\begin{aligned}
81^{x^{3}+2 x^{2}} & =27^{\frac{5 x}{3}} \\
\left(3^{4}\right)^{x^{3}+2 x^{2}} & =\left(3^{3}\right)^{\frac{5 x}{3}} \\
3^{4 x^{3}+8 x^{2}} & =3^{5 x} \\
4 x^{3}+8 x^{2}-5 x & =0 \\
x\left(4 x^{2}+8 x-5\right) & =0 \\
x(2 x-1)(2 x+5) & =0 \\
x & =0, \frac{1}{2},-\frac{5}{2}
\end{aligned}
$$

PTS: 6
REF: 061239a2
STA: A2.A. 27
TOP: Exponential Equations
KEY: common base not shown

$$
\begin{gathered}
\frac{-2\left(x^{2}+6\right)}{x^{4}} \cdot \frac{x^{2}(x-3)+6(x-3)}{x^{2}-4 x} \cdot \frac{2 x-4}{x^{4}-3 x^{3}} \div \frac{x^{2}+2 x-8}{16-x^{2}} \\
\frac{\left(x^{2}+6\right)(x-3)}{x(x-4)} \cdot \frac{2(x-2)}{x^{3}(x-3)} \cdot \frac{(4+x)(4-x)}{(x+4)(x-2)} \\
\frac{-2\left(x^{2}+6\right)}{x^{4}}
\end{gathered}
$$

PTS: 6
REF: 011239a2 STA: A2.A. 16
TOP: Multiplication and Division of Rationals
KEY: division

273 ANS:
$x=-\frac{1}{3},-1 \log _{x+3} \frac{x^{3}+x-2}{x}=2$

$$
\begin{aligned}
\frac{x^{3}+x-2}{x} & =(x+3)^{2} \\
\frac{x^{3}+x-2}{x} & =x^{2}+6 x+9 \\
x^{3}+x-2 & =x^{3}+6 x^{2}+9 x \\
0 & =6 x^{2}+8 x+2 \\
0 & =3 x^{2}+4 x+1 \\
0 & =(3 x+1)(x+1) \\
x & =-\frac{1}{3},-1
\end{aligned}
$$

PTS: 6 REF: 081039a2

STA: A2.A. 28
TOP: Logarithmic Equations KEY: basic

