JEFFERSON MATH PROJECT REGENTS BY DATE

 The NY Geometry Regents ExamsFall, 2008-August, 2012

www.jmap.org

$\boldsymbol{D}_{\text {ear }}{ }^{\text {ºjir }}$

Thave to acknofege the reciept of your favor of $\mathscr{M}_{\text {Aay }}$ 14. in which you mention that you have finished the 6. first Focks of Eucfid, pfane trigonometry, surveying \& afgebra and ask whether $\mathscr{I}_{\text {think }}$ a further pursuit of that branch of science would be usefuf to you. there are some propositions in the fatter Fooks of \mathcal{E} Fucfid, \& some of \mathcal{O} trchitmedes, which are useful, \& \mathscr{I} have no doubt you have been made acquainted with them. trigonometry, so far as thi's, is most vafuable to every man, there is scarcely a day in which he wiff not resort to it for some of the purposes of common fife. the science of cafoufation afso is indispensible as far as the extraction of the square \& cube rocts; ©̈tIgebra as far as the quadratic equation \& the use of fogarithims are often of vafue in ordinary cases: but aff beyond thése is but a fuxury; a deficious fuxury indeed; but not to be indufged in by one whio is to have a profession to foflo w for hits subsistence. in thits fight \mathcal{I} view the conic sections, curves of the fighier orders, perhaps even spherical trigonometry, čt/Igebraical operations beyond the ad dimension, andffuxions.
Letter from Thomas Jefferson to William G. Munford, Monticello, June 18, 1799.

fall08ge

1 Isosceles trapezoid $A B C D$ has diagonals $\overline{A C}$ and $B D$. If $A C=5 x+13$ and $B D=11 x-5$, what is the value of x ?

1) 28
2) $10 \frac{3}{4}$
3) 3
4) $\frac{1}{2}$

2 What is the negation of the statement "The Sun is shining"?

1) It is cloudy.
2) It is daytime.
3) It is not raining.
4) The Sun is not shining.

3 Triangle $A B C$ has vertices $A(1,3), B(0,1)$, and $C(4,0)$. Under a translation, A^{\prime}, the image point of A, is located at $(4,4)$. Under this same translation, point C^{\prime} is located at

1) $(7,1)$
2) $(5,3)$
3) $(3,2)$
4) $(1,-1)$

4 The diagram below shows the construction of the perpendicular bisector of $\overline{A B}$.

Which statement is not true?

1) $A C=C B$
2) $C B=\frac{1}{2} A B$
3) $A C=2 A B$
4) $A C+C B=A B$

5 Which graph could be used to find the solution to the following system of equations?
1)

6 Line k is drawn so that it is perpendicular to two distinct planes, P and R. What must be true about planes P and R ?

1) Planes P and R are skew.
2) Planes P and R are parallel.
3) Planes P and R are perpendicular.
4) Plane P intersects plane R but is not perpendicular to plane R.

7 The diagram below illustrates the construction of $\overleftrightarrow{P S}$ parallel to $\overleftrightarrow{R Q}$ through point P.

Which statement justifies this construction?

1) $\mathrm{m} \angle 1=\mathrm{m} \angle 2$
2) $\mathrm{m} \angle 1=\mathrm{m} \angle 3$
3) $\overline{P R} \cong \overline{R Q}$
4) $\overline{P S} \cong \overline{R Q}$

8 The figure in the diagram below is a triangular prism.

Which statement must be true?

1) $\overline{D E} \cong \overline{A B}$
2) $\overline{A D} \cong \overline{B C}$
3) $\overline{A D} \| \overline{C E}$
4) $\overline{D E} \| \overline{B C}$

9 The vertices of $\triangle A B C$ are $A(-1,-2), B(-1,2)$ and $C(6,0)$. Which conclusion can be made about the angles of $\triangle A B C$?

1) $\mathrm{m} \angle A=\mathrm{m} \angle B$
2) $\mathrm{m} \angle A=\mathrm{m} \angle C$
3) $\mathrm{m} \angle A C B=90$
4) $\mathrm{m} \angle \mathrm{ABC}=60$

10 Given $\triangle A B C$ with base $\overline{A F E D C}$, median $\overline{B F}$, altitude $\overline{B D}$, and $\overline{B E}$ bisects $\angle A B C$, which conclusion is valid?

1) $\angle F A B \cong \angle A B F$
2) $\angle A B F \cong \angle C B D$
3) $\overline{C E} \cong \overline{E A}$
4) $\overline{C F} \cong \overline{F A}$

11 In the diagram below, circle O has a radius of 5, and $C E=2$. Diameter $\overline{A C}$ is perpendicular to chord $\overline{B D}$ at E.

What is the length of $\overline{B D}$?

1) 12
2) 10
3) 8
4) 4

12 What is the equation of a line that passes through the point $(-3,-11)$ and is parallel to the line whose equation is $2 x-y=4$?

1) $y=2 x+5$
2) $y=2 x-5$
3) $y=\frac{1}{2} x+\frac{25}{2}$
4) $y=-\frac{1}{2} x-\frac{25}{2}$

13 Line segment $A B$ has endpoints $A(2,-3)$ and $B(-4,6)$. What are the coordinates of the midpoint of $\overline{A B}$?

1) $(-2,3)$
2) $\left(-1,1 \frac{1}{2}\right)$
3) $(-1,3)$
4) $\left(3,4 \frac{1}{2}\right)$

14 What are the center and radius of a circle whose equation is $(x-A)^{2}+(y-B)^{2}=C$?

1) center $=(A, B)$; radius $=C$
2) center $=(-A,-B)$; radius $=C$
3) center $=(A, B)$; radius $=\sqrt{C}$
4) center $=(-A,-B)$; radius $=\sqrt{C}$

15 A rectangular prism has a volume of $3 x^{2}+18 x+24$. Its base has a length of $x+2$ and a width of 3 . Which expression represents the height of the prism?

1) $x+4$
2) $x+2$
3) 3
4) $x^{2}+6 x+8$

16 Lines k_{1} and k_{2} intersect at point E. Line m is perpendicular to lines k_{1} and k_{2} at point E.

Which statement is always true?

1) Lines k_{1} and k_{2} are perpendicular.
2) Line m is parallel to the plane determined by lines k_{1} and k_{2}.
3) Line m is perpendicular to the plane determined by lines k_{1} and k_{2}.
4) Line m is coplanar with lines k_{1} and k_{2}.

17 In the diagram below, $\overline{P S}$ is a tangent to circle O at point $S, \overline{P Q R}$ is a secant, $P S=x, P Q=3$, and $P R=x+18$.

(Not drawn to scale)
What is the length of $\overline{P S}$?

1) 6
2) 9
3) 3
4) 27

18 A polygon is transformed according to the rule: $(x, y) \rightarrow(x+2, y)$. Every point of the polygon moves two units in which direction?

1) $u p$
2) down
3) left
4) right

19 In the diagram below of $\triangle A B C, D$ is a point on
$\overline{A B}, A C=7, A D=6$, and $B C=18$.

The length of $\overline{D B}$ could be

1) 5
2) 12
3) 19
4) 25

20 The diameter of a circle has endpoints at $(-2,3)$ and $(6,3)$. What is an equation of the circle?

1) $(x-2)^{2}+(y-3)^{2}=16$
2) $(x-2)^{2}+(y-3)^{2}=4$
3) $(x+2)^{2}+(y+3)^{2}=16$
4) $(x+2)^{2}+(y+3)^{2}=4$

21 In the diagram below of $\triangle P R T, Q$ is a point on $\overline{P R}$, S is a point on $\overline{T R}, \overline{Q S}$ is drawn, and $\angle R P T \cong \angle R S Q$.

Which reason justifies the conclusion that
$\triangle P R T \sim \triangle S R Q$?

1) AA
2) $A S A$
3) SAS
4) SSS

22 The lines $3 y+1=6 x+4$ and $2 y+1=x-9$ are

1) parallel
2) perpendicular
3) the same line
4) neither parallel nor perpendicular

23 The endpoints of $\overline{A B}$ are $A(3,2)$ and $B(7,1)$. If $\overline{A^{\prime \prime} B^{\prime \prime}}$ is the result of the transformation of $\overline{A B}$ under $D_{2}{ }^{\circ} T_{-4,3}$ what are the coordinates of $A^{\prime \prime}$ and $B^{\prime \prime}$?

1) $A^{\prime \prime}(-2,10)$ and $B^{\prime \prime}(6,8)$
2) $A^{\prime \prime}(-1,5)$ and $B^{\prime \prime}(3,4)$
3) $A^{\prime \prime}(2,7)$ and $B^{\prime \prime}(10,5)$
4) $A^{\prime \prime}(14,-2)$ and $B^{\prime \prime}(22,-4)$

24 In the diagram below, circle A and circle B are shown.

What is the total number of lines of tangency that are common to circle A and circle B ?

1) 1
2) 2
3) 3
4) 4

25 In which triangle do the three altitudes intersect outside the triangle?

1) a right triangle
2) an acute triangle
3) an obtuse triangle
4) an equilateral triangle

26 Two triangles are similar, and the ratio of each pair of corresponding sides is $2: 1$. Which statement regarding the two triangles is not true?

1) Their areas have a ratio of $4: 1$.
2) Their altitudes have a ratio of $2: 1$.
3) Their perimeters have a ratio of $2: 1$.
4) Their corresponding angles have a ratio of $2: 1$.

27 What is the measure of an interior angle of a regular octagon?

1) 45°
2) 60°
3) 120°
4) 135°

28 What is the slope of a line perpendicular to the line whose equation is $5 x+3 y=8$?

1) $\frac{5}{3}$
2) $\frac{3}{5}$
3) $-\frac{3}{5}$
4) $-\frac{5}{3}$

29 In the diagram below of right triangle $A C B$, altitude $\overline{C D}$ intersects $\overline{A B}$ at D. If $A D=3$ and $D B=4$, find the length of $\overline{C D}$ in simplest radical form.

30 The vertices of $\triangle A B C$ are $A(3,2), B(6,1)$, and $C(4,6)$. Identify and graph a transformation of $\triangle A B C$ such that its image, $\triangle A^{\prime} B^{\prime} C^{\prime}$, results in $\overline{A B} \| \overline{A^{\prime} B^{\prime}}$.

31 The endpoints of $\overline{P Q}$ are $P(-3,1)$ and $Q(4,25)$. Find the length of $\overline{P Q}$.

32 Using a compass and straightedge, construct the bisector of the angle shown below. [Leave all construction marks.]

33 The volume of a cylinder is $12,566.4 \mathrm{~cm}^{3}$. The height of the cylinder is 8 cm . Find the radius of the cylinder to the nearest tenth of a centimeter.

34 Write a statement that is logically equivalent to the statement "If two sides of a triangle are congruent, the angles opposite those sides are congruent." Identify the new statement as the converse, inverse, or contrapositive of the original statement.

35 On the set of axes below, graph and label $\triangle D E F$ with vertices at $D(-4,-4), E(-2,2)$, and $F(8,-2)$. If G is the midpoint of $\overline{E F}$ and H is the midpoint of $\overline{D F}$, state the coordinates of G and H and label each point on your graph. Explain why $\overline{G H} \| \overline{D E}$.

36 In the diagram below of circle O, chords $\overline{D F}, \overline{D E}$, $\overline{F G}$, and $\overline{E G}$ are drawn such that $\mathrm{m} \overparen{D F}: \mathrm{mFE}: \mathrm{mEG}: \mathrm{m} \overparen{G D}=5: 2: 1: 7$. Identify one pair of inscribed angles that are congruent to each other and give their measure.

37 A city is planning to build a new park. The park must be equidistant from school A at $(3,3)$ and school B at $(3,-5)$. The park also must be exactly 5 miles from the center of town, which is located at the origin on the coordinate graph. Each unit on the graph represents 1 mile. On the set of axes below, sketch the compound loci and label with an \mathbf{X} all possible locations for the new park.

38 In the diagram below, quadrilateral $A B C D$ is inscribed in circle $O, \overline{A B} \| \overline{D C}$, and diagonals $\overline{A C}$ and $\overline{B D}$ are drawn. Prove that $\triangle A C D \cong \triangle B D C$.

0609ge

1 Juliann plans on drawing $\triangle A B C$, where the measure of $\angle A$ can range from 50° to 60° and the measure of $\angle B$ can range from 90° to 100°. Given these conditions, what is the correct range of measures possible for $\angle C$?

1) 20° to 40°
2) 30° to 50°
3) 80° to 90°
4) 120° to 130°

2 In the diagram of $\triangle A B C$ and $\triangle D E F$ below, $\overline{A B} \cong \overline{D E}, \angle A \cong \angle D$, and $\angle B \cong \angle E$.

Which method can be used to prove
$\triangle A B C \cong \triangle D E F$?

1) SSS
2) SAS
3) ASA
4) HL

3 In the diagram below, under which transformation will $\triangle A^{\prime} B^{\prime} C^{\prime}$ be the image of $\triangle A B C$?

1) rotation
2) dilation
3) translation
4) glide reflection

4 The lateral faces of a regular pyramid are composed of

1) squares
2) rectangles
3) congruent right triangles
4) congruent isosceles triangles

5 Point A is located at (4,-7). The point is reflected in the x-axis. Its image is located at

1) $(-4,7)$
2) $(-4,-7)$
3) $(4,7)$
4) $(7,-4)$

6 In the diagram of circle O below, chords $\overline{A B}$ and $\overline{C D}$ are parallel, and $\overline{B D}$ is a diameter of the circle.

If $\mathrm{m} \overparen{A D}=60$, what is $\mathrm{m} \angle C D B$?

1) 20
2) 30
3) 60
4) 120

7 What is an equation of the line that passes through the point $(-2,5)$ and is perpendicular to the line whose equation is $y=\frac{1}{2} x+5$?

1) $y=2 x+1$
2) $y=-2 x+1$
3) $y=2 x+9$
4) $y=-2 x-9$

8 After a composition of transformations, the coordinates $A(4,2), B(4,6)$, and $C(2,6)$ become $A^{\prime \prime}(-2,-1), B^{\prime \prime}(-2,-3)$, and $C^{\prime \prime}(-1,-3)$, as shown on the set of axes below.

Which composition of transformations was used?

1) $R_{180^{\circ}} \circ D_{2}$
2) $R_{90} \circ D_{2}$
3) $D_{\frac{1}{2}}^{\circ} R_{180^{\circ}}$
4) $D_{\frac{1}{2}}^{\circ} R_{90^{\circ}}$

9 In an equilateral triangle, what is the difference between the sum of the exterior angles and the sum of the interior angles?

1) 180°
2) 120°
3) 90°
4) 60°

10 What is an equation of a circle with its center at $(-3,5)$ and a radius of 4 ?

1) $(x-3)^{2}+(y+5)^{2}=16$
2) $(x+3)^{2}+(y-5)^{2}=16$
3) $(x-3)^{2}+(y+5)^{2}=4$
4) $(x+3)^{2}+(y-5)^{2}=4$

11 In $\triangle A B C, \mathrm{~m} \angle A=95, \mathrm{~m} \angle B=50$, and $\mathrm{m} \angle C=35$. Which expression correctly relates the lengths of the sides of this triangle?

1) $A B<B C<C A$
2) $A B<A C<B C$
3) $A C<B C<A B$
4) $B C<A C<A B$

12 In a coordinate plane, how many points are both 5 units from the origin and 2 units from the x-axis?

1) 1
2) 2
3) 3
4) 4

13 What is the contrapositive of the statement, "If I am tall, then I will bump my head"?

1) If I bump my head, then I am tall.
2) If I do not bump my head, then I am tall.
3) If I am tall, then I will not bump my head.
4) If I do not bump my head, then I am not tall.

14 In the diagram of $\triangle A B C$ below, Jose found centroid P by constructing the three medians. He measured $\overline{C F}$ and found it to be 6 inches.

If $P F=x$, which equation can be used to find x ?

1) $x+x=6$
2) $2 x+x=6$
3) $3 x+2 x=6$
4) $x+\frac{2}{3} x=6$

15 In the diagram below, the length of the legs $\overline{A C}$ and $\overline{B C}$ of right triangle $A B C$ are 6 cm and 8 cm , respectively. Altitude $\overline{C D}$ is drawn to the hypotenuse of $\triangle A B C$.

What is the length of $\overline{A D}$ to the nearest tenth of a centimeter?

1) 3.6
2) 6.0
3) 6.4
4) 4.0

16 In the diagram below, tangent $\overline{A B}$ and secant $\overline{A C D}$ are drawn to circle O from an external point A, $A B=8$, and $A C=4$.

What is the length of $\overline{C D}$?

1) 16
2) 13
3) 12
4) 10

17 In the diagram of $\triangle A B C$ and $\triangle E D C$ below, $\overline{A E}$ and $\overline{B D}$ intersect at C, and $\angle C A B \cong \angle C E D$.

Which method can be used to show that $\triangle A B C$ must be similar to $\triangle E D C$?

1) SAS
2) $A A$
3) SSS
4) HL

18 Point P is on line m. What is the total number of planes that are perpendicular to line m and pass through point P ?

1) 1
2) 2
3) 0
4) infinite

19 Square $L M N O$ is shown in the diagram below.

What are the coordinates of the midpoint of diagonal $\overline{L N}$?

1) $\left(4 \frac{1}{2},-2 \frac{1}{2}\right)$
2) $\left(-3 \frac{1}{2}, 3 \frac{1}{2}\right)$
3) $\left(-2 \frac{1}{2}, 3 \frac{1}{2}\right)$
4) $\left(-2 \frac{1}{2}, 4 \frac{1}{2}\right)$

20 Which graph represents a circle with the equation $(x-5)^{2}+(y+1)^{2}=9$?
1)

2)

3)

21 In the diagram below, a right circular cone has a diameter of 8 inches and a height of 12 inches.

What is the volume of the cone to the nearest cubic inch?

1) 201
2) 481
3) 603
4) 804

22 A circle is represented by the equation $x^{2}+(y+3)^{2}=13$. What are the coordinates of the center of the circle and the length of the radius?

1) $(0,3)$ and 13
2) $(0,3)$ and $\sqrt{13}$
3) $(0,-3)$ and 13
4) $(0,-3)$ and $\sqrt{13}$

23 Given the system of equations: $y=x^{2}-4 x$

$$
x=4
$$

The number of points of intersection is

1) 1
2) 2
3) 3
4) 0

24 Side $\overline{P Q}$ of $\triangle P Q R$ is extended through Q to point T. Which statement is not always true?

1) $\mathrm{m} \angle R Q T>\mathrm{m} \angle R$
2) $\mathrm{m} \angle R Q T>\mathrm{m} \angle P$
3) $\mathrm{m} \angle R Q T=\mathrm{m} \angle P+\mathrm{m} \angle R$
4) $\mathrm{m} \angle R Q T>\mathrm{m} \angle P Q R$

25 Which illustration shows the correct construction of an angle bisector?
1)

2)

3)

26 Which equation represents a line perpendicular to the line whose equation is $2 x+3 y=12$?

1) $6 y=-4 x+12$
2) $2 y=3 x+6$
3) $2 y=-3 x+6$
4) $3 y=-2 x+12$

27 In $\triangle A B C$, point D is on $\overline{A B}$, and point E is on $\overline{B C}$ such that $\overline{D E} \| \overline{A C}$. If $D B=2, D A=7$, and
$D E=3$, what is the length of $\overline{A C}$?

1) 8
2) 9
3) 10.5
4) 13.5

28 In three-dimensional space, two planes are parallel and a third plane intersects both of the parallel planes. The intersection of the planes is a

1) plane
2) point
3) pair of parallel lines
4) pair of intersecting lines

29 In the diagram of $\triangle A B C$ below, $A B=10, B C=14$, and $A C=16$. Find the perimeter of the triangle formed by connecting the midpoints of the sides of $\triangle A B C$.

30 Using a compass and straightedge, construct a line that passes through point P and is perpendicular to line m. [Leave all construction marks.]

$$
-p
$$

\qquad

31 Find an equation of the line passing through the point $(5,4)$ and parallel to the line whose equation is $2 x+y=3$.

32 The length of $\overline{A B}$ is 3 inches. On the diagram below, sketch the points that are equidistant from A and B and sketch the points that are 2 inches from A. Label with an \mathbf{X} all points that satisfy both conditions.

33 Given: Two is an even integer or three is an even integer.
Determine the truth value of this disjunction. Justify your answer.

34 In the diagram below, $\triangle A B C \sim \triangle E F G$, $\mathrm{m} \angle C=4 x+30$, and $\mathrm{m} \angle G=5 x+10$. Determine the value of x.

35 In the diagram below, circles X and Y have two tangents drawn to them from external point T. The points of tangency are C, A, S, and E. The ratio of $T A$ to $A C$ is $1: 3$. If $T S=24$, find the length of $\overline{S E}$.

(Not drawn to scale)

36 Triangle $A B C$ has coordinates $A(-6,2), B(-3,6)$, and $C(5,0)$. Find the perimeter of the triangle.
Express your answer in simplest radical form. [The use of the grid below is optional.]

37 The coordinates of the vertices of parallelogram $A B C D$ are $A(-2,2), B(3,5), C(4,2)$, and $D(-1,-1)$. State the coordinates of the vertices of parallelogram $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ that result from the transformation $r_{y \text {-axis }}{ }^{\circ} T_{2,-3}$. [The use of the set of axes below is optional.]

38 Given: $\triangle A B C$ and $\triangle E D C, C$ is the midpoint of $\overline{B D}$ and $\overline{A E}$
Prove: $\overline{A B} \| \overline{D E}$

0809ge

1 Based on the diagram below, which statement is true?

1) $a \| b$
2) $a \| c$
3) $b \| c$
4) $d \| e$

2 The diagram below shows the construction of the bisector of $\angle A B C$.

Which statement is not true?

1) $\mathrm{m} \angle E B F=\frac{1}{2} \mathrm{~m} \angle A B C$
2) $\mathrm{m} \angle D B F=\frac{1}{2} \mathrm{~m} \angle A B C$
3) $\mathrm{m} \angle E B F=\mathrm{m} \angle A B C$
4) $\mathrm{m} \angle D B F=\mathrm{m} \angle E B F$

3 In the diagram of $\triangle A B C$ below, $\overline{A B} \cong \overline{A C}$. The measure of $\angle B$ is 40°.

What is the measure of $\angle A$?

1) 40°
2) 50°
3) 70°
4) 100°

4 In the diagram of circle O below, chord $\overline{C D}$ is parallel to diameter $\overline{A O B}$ and $\mathrm{m} \overparen{A C}=30$.

What is $\mathrm{m} \overparen{C D}$?

1) 150
2) 120
3) 100
4) 60

5 In the diagram of trapezoid $A B C D$ below, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E and $\triangle A B C \cong \triangle D C B$.

Which statement is true based on the given information?

1) $\overline{A C} \cong \overline{B C}$
2) $\overline{C D} \cong \overline{A D}$
3) $\angle C D E \cong \angle B A D$
4) $\angle C D B \cong \angle B A C$

6 Which transformation produces a figure similar but not congruent to the original figure?

1) $T_{1,3}$
2) $D_{\frac{1}{2}}$
3) $R_{90^{\circ}}$
4) $r_{y=x}$

7 In the diagram below of parallelogram $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}, \mathrm{~m} \angle 1=45$ and $\mathrm{m} \angle D C B=120$.

What is the measure of $\angle 2$?

1) 15°
2) 30°
3) 45°
4) 60°

8 On the set of axes below, Geoff drew rectangle $A B C D$. He will transform the rectangle by using the translation $(x, y) \rightarrow(x+2, y+1)$ and then will reflect the translated rectangle over the x-axis.

What will be the area of the rectangle after these transformations?

1) exactly 28 square units
2) less than 28 square units
3) greater than 28 square units
4) It cannot be determined from the information given.

9 What is the equation of a line that is parallel to the line whose equation is $y=x+2$?

1) $x+y=5$
2) $2 x+y=-2$
3) $y-x=-1$
4) $y-2 x=3$

10 The endpoints of $\overline{C D}$ are $C(-2,-4)$ and $D(6,2)$.
What are the coordinates of the midpoint of $\overline{C D}$?

1) $(2,3)$
2) $(2,-1)$
3) $(4,-2)$
4) $(4,3)$

11 What are the center and the radius of the circle whose equation is $(x-3)^{2}+(y+3)^{2}=36$

1) center $=(3,-3)$; radius $=6$
2) center $=(-3,3)$; radius $=6$
3) center $=(3,-3)$; radius $=36$
4) center $=(-3,3)$; radius $=36$

12 Given the equations: $y=x^{2}-6 x+10$

$$
y+x=4
$$

What is the solution to the given system of equations?

1) $(2,3)$
2) $(3,2)$
3) $(2,2)$ and $(1,3)$
4) $(2,2)$ and $(3,1)$

13 The diagonal $\overline{A C}$ is drawn in parallelogram $A B C D$. Which method can not be used to prove that $\triangle A B C \cong \triangle C D A$?

1) SSS
2) SAS
3) SSA
4) ASA

14 In the diagram below, line k is perpendicular to plane P at point T.

Which statement is true?

1) Any point in plane \mathscr{P} also will be on line k.
2) Only one line in plane \mathscr{P} will intersect line k.
3) All planes that intersect plane \mathscr{P} will pass through T.
4) Any plane containing line k is perpendicular to plane \mathscr{P}.

15 In the diagram below, which transformation was used to map $\triangle A B C$ to $\triangle A^{\prime} B^{\prime} C^{\prime}$?

1) dilation
2) rotation
3) reflection
4) glide reflection

16 Which set of numbers represents the lengths of the sides of a triangle?

1) $\{5,18,13\}$
2) $\{6,17,22\}$
3) $\{16,24,7\}$
4) $\{26,8,15\}$

17 What is the slope of a line perpendicular to the line whose equation is $y=-\frac{2}{3} x-5$?

1) $-\frac{3}{2}$
2) $-\frac{2}{3}$
3) $\frac{2}{3}$
4) $\frac{3}{2}$

18 A quadrilateral whose diagonals bisect each other and are perpendicular is a

1) rhombus
2) rectangle
3) trapezoid
4) parallelogram

19 If the endpoints of $\overline{A B}$ are $A(-4,5)$ and $B(2,-5)$, what is the length of $\overline{A B}$?

1) $2 \sqrt{34}$
2) 2
3) $\sqrt{61}$
4) 8

20 In the diagram below of $\triangle A C T, D$ is the midpoint of $\overline{A C}, O$ is the midpoint of $\overline{A T}$, and G is the midpoint of $\overline{C T}$.

If $A C=10, A T=18$, and $C T=22$, what is the perimeter of parallelogram $C D O G$?

1) 21
2) 25
3) 32
4) 40

21 Which equation represents circle K shown in the graph below?

1) $(x+5)^{2}+(y-1)^{2}=3$
2) $(x+5)^{2}+(y-1)^{2}=9$
3) $(x-5)^{2}+(y+1)^{2}=3$
4) $(x-5)^{2}+(y+1)^{2}=9$

22 In the diagram below of right triangle $A C B$, altitude $\overline{C D}$ is drawn to hypotenuse $\overline{A B}$.

If $A B=36$ and $A C=12$, what is the length of $\overline{A D}$?

1) 32
2) 6
3) 3
4) 4

23 In the diagram of circle O below, chord $\overline{A B}$ intersects chord $\overline{C D}$ at $E, D E=2 x+8, E C=3$, $A E=4 x-3$, and $E B=4$.

What is the value of x ?

1) 1
2) 3.6
3) 5
4) 10.25

24 What is the negation of the statement "Squares are parallelograms"?

1) Parallelograms are squares.
2) Parallelograms are not squares.
3) It is not the case that squares are parallelograms.
4) It is not the case that parallelograms are squares.

25 The diagram below shows the construction of the center of the circle circumscribed about $\triangle A B C$.

This construction represents how to find the intersection of

1) the angle bisectors of $\triangle A B C$
2) the medians to the sides of $\triangle A B C$
3) the altitudes to the sides of $\triangle A B C$
4) the perpendicular bisectors of the sides of $\triangle A B C$

26 A right circular cylinder has a volume of 1,000 cubic inches and a height of 8 inches. What is the radius of the cylinder to the nearest tenth of an inch?

1) 6.3
2) 11.2
3) 19.8
4) 39.8

27 If two different lines are perpendicular to the same plane, they are

1) collinear
2) coplanar
3) congruent
4) consecutive

28 How many common tangent lines can be drawn to the two externally tangent circles shown below?

1) 1
2) 2
3) 3
4) 4

29 In the diagram below of isosceles trapezoid $D E F G$, $\overline{D E} \| \overline{G F}, D E=4 x-2, E F=3 x+2, F G=5 x-3$, and $G D=2 x+5$. Find the value of x.

30 A regular pyramid with a square base is shown in the diagram below.

A side, s, of the base of the pyramid is 12 meters, and the height, h, is 42 meters. What is the volume of the pyramid in cubic meters?

31 Write an equation of the line that passes through the point $(6,-5)$ and is parallel to the line whose equation is $2 x-3 y=11$.

32 Using a compass and straightedge, construct the angle bisector of $\angle A B C$ shown below. [Leave all construction marks.]

33 The degree measures of the angles of $\triangle A B C$ are represented by $x, 3 x$, and $5 x-54$. Find the value of x.

34 In the diagram below of $\triangle A B C$ with side $\overline{A C}$ extended through $D, \mathrm{~m} \angle A=37$ and $\mathrm{m} \angle B C D=117$. Which side of $\triangle A B C$ is the longest side? Justify your answer.

(Not drawn to scale)

35 Write an equation of the perpendicular bisector of the line segment whose endpoints are $(-1,1)$ and $(7,-5)$. [The use of the grid below is optional]

36 On the set of axes below, sketch the points that are 5 units from the origin and sketch the points that are 2 units from the line $y=3$. Label with an \mathbf{X} all points that satisfy both conditions.

37 Triangle $D E G$ has the coordinates $D(1,1), E(5,1)$, and $G(5,4)$. Triangle $D E G$ is rotated 90° about the origin to form $\triangle D^{\prime} E^{\prime} G^{\prime}$. On the grid below, graph and label $\triangle D E G$ and $\triangle D^{\prime} E^{\prime} G^{\prime}$. State the coordinates of the vertices D^{\prime}, E^{\prime}, and G^{\prime}. Justify that this transformation preserves distance.

38 Given: Quadrilateral $A B C D$, diagonal $\overline{A F E C}$, $\overline{A E} \cong \overline{F C}, \overline{B F} \perp \overline{A C}, \overline{D E} \perp \overline{A C}, \angle 1 \cong \angle 2$
Prove: $A B C D$ is a parallelogram.

0110ge

1 In the diagram below of trapezoid $R S U T, \overline{R S} \| \overline{T U}$, X is the midpoint of $\overline{R T}$, and V is the midpoint of $\overline{S U}$.

If $R S=30$ and $X V=44$, what is the length of $\overline{T U}$?

1) 37
2) 58
3) 74
4) 118

2 In $\triangle A B C, \mathrm{~m} \angle A=x, \mathrm{~m} \angle B=2 x+2$, and $\mathrm{m} \angle C=3 x+4$. What is the value of x ?

1) 29
2) 31
3) 59
4) 61

3 Which expression best describes the transformation shown in the diagram below?

1) same orientation; reflection
2) opposite orientation; reflection
3) same orientation; translation
4) opposite orientation; translation

4 Based on the construction below, which statement must be true?

1) $\mathrm{m} \angle A B D=\frac{1}{2} \mathrm{~m} \angle C B D$
2) $\mathrm{m} \angle A B D=\mathrm{m} \angle C B D$
3) $\mathrm{m} \angle A B D=\mathrm{m} \angle A B C$
4) $\mathrm{m} \angle C B D=\frac{1}{2} \mathrm{~m} \angle A B D$

5 In the diagram below, $\triangle A B C$ is inscribed in circle P. The distances from the center of circle P to each side of the triangle are shown.

Which statement about the sides of the triangle is true?

1) $A B>A C>B C$
2) $A B<A C$ and $A C>B C$
3) $A C>A B>B C$
4) $A C=A B$ and $A B>B C$

6 Which transformation is not always an isometry?

1) rotation
2) dilation
3) reflection
4) translation

7 In $\triangle A B C, \overline{A B} \cong \overline{B C}$. An altitude is drawn from B to $\overline{A C}$ and intersects $\overline{A C}$ at D. Which conclusion is not always true?

1) $\angle A B D \cong \angle C B D$
2) $\angle B D A \cong \angle B D C$
3) $\overline{A D} \cong \overline{B D}$
4) $\overline{A D} \cong \overline{D C}$

8 In the diagram below, tangent $\overline{P A}$ and secant $\overline{P B C}$ are drawn to circle O from external point P.

If $P B=4$ and $B C=5$, what is the length of $\overline{P A}$?

1) 20
2) 9
3) 8
4) 6

9 Which geometric principle is used to justify the construction below?

1) A line perpendicular to one of two parallel lines is perpendicular to the other.
2) Two lines are perpendicular if they intersect to form congruent adjacent angles.
3) When two lines are intersected by a transversal and alternate interior angles are congruent, the lines are parallel.
4) When two lines are intersected by a transversal and the corresponding angles are congruent, the lines are parallel.

10 Which equation represents the circle whose center is $(-2,3)$ and whose radius is 5 ?

1) $(x-2)^{2}+(y+3)^{2}=5$
2) $(x+2)^{2}+(y-3)^{2}=5$
3) $(x+2)^{2}+(y-3)^{2}=25$
4) $(x-2)^{2}+(y+3)^{2}=25$

11 Towns A and B are 16 miles apart. How many points are 10 miles from town A and 12 miles from town B ?

1) 1
2) 2
3) 3
4) 0

12 Lines j and k intersect at point P. Line m is drawn so that it is perpendicular to lines j and k at point P. Which statement is correct?

1) Lines j and k are in perpendicular planes.
2) Line m is in the same plane as lines j and k.
3) Line m is parallel to the plane containing lines j and k.
4) Line m is perpendicular to the plane containing lines j and k.

13 In the diagram below of parallelogram STUV, $S V=x+3, V U=2 x-1$, and $T U=4 x-3$.

What is the length of $\overline{S V}$?

1) 5
2) 2
3) 7
4) 4

14 Which equation represents a line parallel to the line whose equation is $2 y-5 x=10$?

1) $5 y-2 x=25$
2) $5 y+2 x=10$
3) $4 y-10 x=12$
4) $2 y+10 x=8$

15 In the diagram below of circle O, chords $\overline{A D}$ and $\overline{B C}$ intersect at $E, \mathrm{~m} \overparen{A C}=87$, and $\mathrm{m} \overparen{B D}=35$.

What is the degree measure of $\angle C E A$?

1) 87
2) 61
3) 43.5
4) 26

16 In the diagram below of $\triangle A D B, \mathrm{~m} \angle B D A=90$, $A D=5 \sqrt{2}$, and $A B=2 \sqrt{15}$.

What is the length of $\overline{B D}$?

1) $\sqrt{10}$
2) $\sqrt{20}$
3) $\sqrt{50}$
4) $\sqrt{110}$

17 What is the distance between the points $(-3,2)$ and $(1,0)$?

1) $2 \sqrt{2}$
2) $2 \sqrt{3}$
3) $5 \sqrt{2}$
4) $2 \sqrt{5}$

18 What is an equation of the line that contains the point $(3,-1)$ and is perpendicular to the line whose equation is $y=-3 x+2$?

1) $y=-3 x+8$
2) $y=-3 x$
3) $y=\frac{1}{3} x$
4) $y=\frac{1}{3} x-2$

19 In the diagram below, $\overline{S Q}$ and $\overline{P R}$ intersect at $T, \overline{P Q}$ is drawn, and $\overline{P S} \| \overline{Q R}$.

What technique can be used to prove that $\triangle P S T \sim \triangle R Q T$?

1) SAS
2) SSS
3) $A S A$
4) AA

20 The equation of a circle is $(x-2)^{2}+(y+4)^{2}=4$. Which diagram is the graph of the circle?
1)

2)

21 In the diagram below, $\triangle A B C$ is shown with $\overline{A C}$ extended through point D.

If $\mathrm{m} \angle B C D=6 x+2, \mathrm{~m} \angle B A C=3 x+15$, and $\mathrm{m} \angle A B C=2 x-1$, what is the value of x ?

1) 12
2) $14 \frac{10}{11}$
3) 16
4) $18 \frac{1}{9}$

22 Given $\triangle A B C \sim \triangle D E F$ such that $\frac{A B}{D E}=\frac{3}{2}$. Which statement is not true?

1) $\frac{B C}{E F}=\frac{3}{2}$
2) $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle D}=\frac{3}{2}$
3) $\frac{\text { area of } \triangle A B C}{\text { area of } \triangle D E F}=\frac{9}{4}$
4) $\frac{\text { perimeter of } \triangle A B C}{\text { perimeter of } \triangle D E F}=\frac{3}{2}$

23 The pentagon in the diagram below is formed by five rays.

What is the degree measure of angle x ?

1) 72
2) 96
3) 108
4) 112

24 Through a given point, P, on a plane, how many lines can be drawn that are perpendicular to that plane?

1) 1
2) 2
3) more than 2
4) none

25 What is the slope of a line that is perpendicular to the line whose equation is $3 x+4 y=12$?

1) $\frac{3}{4}$
2) $-\frac{3}{4}$
3) $\frac{4}{3}$
4) $-\frac{4}{3}$

26 What is the image of point $A(4,2)$ after the composition of transformations defined by $R_{90^{\circ}}{ }^{\circ} r_{y=x}$?

1) $(-4,2)$
2) $(4,-2)$
3) $(-4,-2)$
4) $(2,-4)$

27 Which expression represents the volume, in cubic centimeters, of the cylinder represented in the diagram below?

1) 162π
2) 324π
3) 972π
4) $3,888 \pi$

28 What is the inverse of the statement "If two triangles are not similar, their corresponding angles are not congruent"?

1) If two triangles are similar, their corresponding angles are not congruent.
2) If corresponding angles of two triangles are not congruent, the triangles are not similar.
3) If two triangles are similar, their corresponding angles are congruent.
4) If corresponding angles of two triangles are congruent, the triangles are similar.

29 In $\triangle R S T, \mathrm{~m} \angle R S T=46$ and $\overline{R S} \cong \overline{S T}$. Find $\mathrm{m} \angle S T R$.

30 Tim has a rectangular prism with a length of 10 centimeters, a width of 2 centimeters, and an unknown height. He needs to build another rectangular prism with a length of 5 centimeters and the same height as the original prism. The volume of the two prisms will be the same. Find the width, in centimeters, of the new prism.

31 In the diagram below of circle $C, \overline{Q R}$ is a diameter, and $Q(1,8)$ and $C(3.5,2)$ are points on a coordinate plane. Find and state the coordinates of point R.

32 Using a compass and straightedge, and $\overline{A B}$ below, construct an equilateral triangle with all sides congruent to $\overline{A B}$. [Leave all construction marks.]

33 In the diagram below of $\triangle A C D, E$ is a point on $\overline{A D}$ and B is a point on $\overline{A C}$, such that $\overline{E B} \| \overline{D C}$. If $\underline{A E}=3, E D=6$, and $D C=15$, find the length of EB.

34 In the diagram below of $\triangle T E M$, medians $\overline{T B}, \overline{E C}$, and $\overline{M A}$ intersect at D, and $T B=9$. Find the length of $\overline{T D}$.

35 In $\triangle K L M, \mathrm{~m} \angle K=36$ and $K M=5$. The transformation D_{2} is performed on $\triangle K L M$ to form $\triangle K^{\prime} L^{\prime} M^{\prime}$. Find $\mathrm{m} \angle K^{\prime}$. Justify your answer. Find the length of $\overline{K^{\prime} M^{\prime}}$. Justify your answer.

36 Given: JKLM is a parallelogram.
$\overline{J M} \cong \overline{L N}$
$\angle L M N \cong \angle L N M$
Prove: $J K L M$ is a rhombus.

37 On the grid below, graph the points that are equidistant from both the x and y axes and the points that are 5 units from the origin. Label with an \mathbf{X} all points that satisfy both conditions.

38 On the set of axes below, solve the following system of equations graphically for all values of x and y.

$$
\begin{gathered}
y=(x-2)^{2}+4 \\
4 x+2 y=14
\end{gathered}
$$

0610ge

1 In the diagram below of circle O, chord $\overline{A B} \|$ chord $\overline{C D}$, and chord $\overline{C D} \|$ chord $\overline{E F}$.

Which statement must be true?

1) $\overparen{C E} \cong \overparen{D F}$
2) $\overparen{A C} \cong \overparen{D F}$
3) $\overparen{A C} \cong \overparen{C E}$
4) $\overparen{E F} \cong \overparen{C D}$

2 What is the negation of the statement "I am not going to eat ice cream"?

1) I like ice cream.
2) I am going to eat ice cream.
3) If I eat ice cream, then I like ice cream.
4) If I don't like ice cream, then I don't eat ice cream.

3 The diagram below shows a right pentagonal prism.

Which statement is always true?

1) $\overline{B C} \| \overline{E D}$
2) $\overline{F G} \| \overline{C D}$
3) $\overline{F J} \| \overline{I H}$
4) $\overline{G B} \| \overline{H C}$

4 In isosceles triangle $A B C, A B=B C$. Which statement will always be true?

1) $\mathrm{m} \angle B=\mathrm{m} \angle A$
2) $\mathrm{m} \angle A>\mathrm{m} / B$
3) $\mathrm{m} \angle A=\mathrm{m} \angle C$
4) $\mathrm{m} \angle C<\mathrm{m} \angle B$

5 The rectangle $A B C D$ shown in the diagram below will be reflected across the x-axis.

What will not be preserved?

1) slope of $\overline{A B}$
2) parallelism of $\overline{A B}$ and $\overline{C D}$
3) length of $\overline{A B}$
4) measure of $\angle A$

6 A right circular cylinder has an altitude of 11 feet and a radius of 5 feet. What is the lateral area, in square feet, of the cylinder, to the nearest tenth?

1) 172.7
2) 172.8
3) 345.4
4) 345.6

7 A transversal intersects two lines. Which condition would always make the two lines parallel?

1) Vertical angles are congruent.
2) Alternate interior angles are congruent.
3) Corresponding angles are supplementary.
4) Same-side interior angles are complementary.

8 If the diagonals of a quadrilateral do not bisect each other, then the quadrilateral could be a

1) rectangle
2) rhombus
3) square
4) trapezoid

9 What is the converse of the statement "If Bob does his homework, then George gets candy"?

1) If George gets candy, then Bob does his homework.
2) Bob does his homework if and only if George gets candy.
3) If George does not get candy, then Bob does not do his homework.
4) If Bob does not do his homework, then George does not get candy.

10 In $\triangle P Q R, P Q=8, Q R=12$, and $R P=13$. Which statement about the angles of $\triangle P Q R$ must be true?

1) $\mathrm{m} \angle Q>\mathrm{m} \angle P>\mathrm{m} \angle R$
2) $\mathrm{m} \angle Q>\mathrm{m} \angle R>\mathrm{m} \angle P$
3) $\mathrm{m} \angle R>\mathrm{m} \angle P>\mathrm{m} \angle Q$
4) $\mathrm{m} \angle P>\mathrm{m} \angle R>\mathrm{m} \angle Q$

11 Given: $y=\frac{1}{4} x-3$

$$
y=x^{2}+8 x+12
$$

In which quadrant will the graphs of the given equations intersect?

1) I
2) II
3) III
4) IV

12 Which diagram shows the construction of an equilateral triangle?
1)

3)

13 Line segment $A B$ is tangent to circle O at A. Which type of triangle is always formed when points A, B, and O are connected?

1) right
2) obtuse
3) scalene
4) isosceles

14 What is an equation for the circle shown in the graph below?

1) $x^{2}+y^{2}=2$
2) $x^{2}+y^{2}=4$
3) $x^{2}+y^{2}=8$
4) $x^{2}+y^{2}=16$

15 Which transformation can map the letter S onto itself?

1) glide reflection
2) translation
3) line reflection
4) rotation

16 In isosceles trapezoid $A B C D, \overline{A B} \cong \overline{C D}$. If $B C=20, A D=36$, and $A B=17$, what is the length of the altitude of the trapezoid?

1) 10
2) 12
3) 15
4) 16

17 In plane \mathscr{P}, lines m and n intersect at point A. If line k is perpendicular to line m and line n at point A, then line k is

1) contained in plane \mathscr{P}
2) parallel to plane \mathscr{P}
3) perpendicular to plane \mathscr{P}
4) skew to plane \mathscr{P}

18 The diagram below shows $\overline{A B}$ and $\overline{D E}$.

Which transformation will move $\overline{A B}$ onto $\overline{D E}$ such that point D is the image of point A and point E is the image of point B ?

1) $T_{3,-3}$
2) $D_{\frac{1}{2}}$
3) R_{90} 。
4) $r_{y=x}$

19 In the diagram below of circle O, chords $\overline{A E}$ and $\overline{D C}$ intersect at point B, such that $\mathrm{m} \overparen{A C}=36$ and $\mathrm{m} \overparen{D E}=20$.

What is $\mathrm{m} \angle A B C$?

1) 56
2) 36
3) 28
4) 8

20 The diagram below shows the construction of a line through point P perpendicular to line m.

Which statement is demonstrated by this construction?

1) If a line is parallel to a line that is perpendicular to a third line, then the line is also perpendicular to the third line.
2) The set of points equidistant from the endpoints of a line segment is the perpendicular bisector of the segment.
3) Two lines are perpendicular if they are equidistant from a given point.
4) Two lines are perpendicular if they intersect to form a vertical line.

21 What is the length, to the nearest tenth, of the line segment joining the points $(-4,2)$ and $(146,52)$?

1) 141.4
2) 150.5
3) 151.9
4) 158.1

22 What is the slope of a line perpendicular to the line whose equation is $y=3 x+4$?

1) $\frac{1}{3}$
2) $-\frac{1}{3}$
3) 3
4) -3

23 In the diagram below of circle O, secant $\overline{A B}$ intersects circle O at D, secant $\overline{A O C}$ intersects circle O at $E, A E=4, A B=12$, and $D B=6$.

What is the length of $\overline{O C}$?

1) 4.5
2) 7
3) 9
4) 14

24 The diagram below shows a pennant in the shape of an isosceles triangle. The equal sides each measure 13 , the altitude is $x+7$, and the base is $2 x$.

What is the length of the base?

1) 5
2) 10
3) 12
4) 24

25 In the diagram below of $\triangle A B C, \overline{C D}$ is the bisector of $\angle B C A, \overline{A E}$ is the bisector of $\angle C A B$, and $\overline{B G}$ is drawn.

Which statement must be true?

1) $D G=E G$
2) $A G=B G$
3) $\angle A E B \cong \angle A E C$
4) $\angle D B G \cong \angle E B G$

26 In the diagram below of circle O, chords $\overline{A D}$ and $\overline{B C}$ intersect at E.

Which relationship must be true?

1) $\triangle C A E \cong \triangle D B E$
2) $\triangle A E C \sim \triangle B E D$
3) $\angle A C B \cong \angle C B D$
4) $\overparen{C A} \cong \overparen{D B}$

27 Two lines are represented by the equations
$-\frac{1}{2} y=6 x+10$ and $y=m x$. For which value of m will the lines be parallel?

1) -12
2) -3
3) 3
4) 12

28 The coordinates of the vertices of parallelogram $A B C D$ are $A(-3,2), B(-2,-1), C(4,1)$, and $D(3,4)$. The slopes of which line segments could be calculated to show that $A B C D$ is a rectangle?

1) $\overline{A B}$ and $\overline{D C}$
2) $\overline{A B}$ and $\overline{B C}$
3) $\overline{A D}$ and $\overline{B C}$
4) $\overline{A C}$ and $\overline{B D}$

29 Tim is going to paint a wooden sphere that has a diameter of 12 inches. Find the surface area of the sphere, to the nearest square inch.

30 In the diagram below of $\triangle A B C, \overline{D E}$ is a midsegment of $\triangle A B C, D E=7, A B=10$, and $B C=13$. Find the perimeter of $\triangle A B C$.

31 In right $\triangle D E F, \mathrm{~m} \angle D=90$ and $\mathrm{m} \angle F$ is 12 degrees less than twice $\mathrm{m} \angle E$. Find $\mathrm{m} \angle E$.

32 Triangle $X Y Z$, shown in the diagram below, is reflected over the line $x=2$. State the coordinates of $\triangle X^{\prime} Y^{\prime} Z^{\prime}$, the image of $\triangle X Y Z$.

33 Two lines, $\overleftrightarrow{A B}$ and $\overleftrightarrow{C R D}$, are parallel and 10 inches apart. Sketch the locus of all points that are equidistant from $\overleftrightarrow{A B}$ and $\overleftrightarrow{C R D}$ and 7 inches from point R. Label with an \mathbf{X} each point that satisfies both conditions.

34 The base of a pyramid is a rectangle with a width of 6 cm and a length of 8 cm . Find, in centimeters, the height of the pyramid if the volume is $288 \mathrm{~cm}^{3}$.

35 Given: Quadrilateral $A B C D$ with $\overline{A B} \cong \overline{C D}$, $\overline{A D} \cong \overline{B C}$, and diagonal $\overline{B D}$ is drawn Prove: $\angle B D C \cong \angle A B D$

36 Find an equation of the line passing through the point $(6,5)$ and perpendicular to the line whose equation is $2 y+3 x=6$.

37 Write an equation of the circle whose diameter $\overline{A B}$ has endpoints $A(-4,2)$ and $B(4,-4)$. [The use of the grid below is optional.]

38 In the diagram below, quadrilateral $S T A R$ is a rhombus with diagonals $\overline{S A}$ and $\overline{T R}$ intersecting at E. $S T=3 x+30, S R=8 x-5, S E=3 z, T E=5 z+5$, $A E=4 z-8, \mathrm{~m} \angle R T A=5 y-2$, and $\mathrm{m} \angle T A S=9 y+8$. Find $S R, R T$, and $\mathrm{m} \angle T A S$.

0810ge

1 In the diagram below, $\triangle A B C \cong \triangle X Y Z$.

Which two statements identify corresponding congruent parts for these triangles?

1) $\overline{A B} \cong \overline{X Y}$ and $\angle C \cong \angle Y$
2) $\overline{A B} \cong \overline{Y Z}$ and $\angle C \cong \angle X$
3) $\overline{B C} \cong \overline{X Y}$ and $\angle A \cong \angle Y$
4) $\overline{B C} \cong \overline{Y Z}$ and $\angle A \cong \angle X$

2 A support beam between the floor and ceiling of a house forms a 90° angle with the floor. The builder wants to make sure that the floor and ceiling are parallel. Which angle should the support beam form with the ceiling?

1) 45°
2) 60°
3) 90°
4) 180°

3 In the diagram below, the vertices of $\triangle D E F$ are the midpoints of the sides of equilateral triangle $A B C$, and the perimeter of $\triangle A B C$ is 36 cm .

What is the length, in centimeters, of $\overline{E F}$?

1) 6
2) 12
3) 18
4) 4

4 What is the solution of the following system of equations?

$$
\begin{aligned}
& y=(x+3)^{2}-4 \\
& y=2 x+5
\end{aligned}
$$

1) $(0,-4)$
2) $(-4,0)$
3) $(-4,-3)$ and $(0,5)$
4) $(-3,-4)$ and $(5,0)$

5 One step in a construction uses the endpoints of $\overline{A B}$ to create arcs with the same radii. The arcs intersect above and below the segment. What is the relationship of $\overline{A B}$ and the line connecting the points of intersection of these arcs?

1) collinear
2) congruent
3) parallel
4) perpendicular

6 If $\triangle A B C \sim \triangle Z X Y, \mathrm{~m} \angle A=50$, and $\mathrm{m} \angle C=30$, what is $\mathrm{m} \angle X$?

1) 30
2) 50
3) 80
4) 100

7 In the diagram below of $\triangle A G E$ and $\triangle O L D$, $\angle G A E \cong \angle L O D$, and $\overline{A E} \cong \overline{O D}$.

To prove that $\triangle A G E$ and $\triangle O L D$ are congruent by SAS, what other information is needed?

1) $\overline{G E} \cong \overline{L D}$
2) $\overline{A G} \cong \overline{O L}$
3) $\angle A G E \cong \angle O L D$
4) $\angle A E G \cong \angle O D L$

8 Point A is not contained in plane \mathcal{B}. How many lines can be drawn through point A that will be perpendicular to plane \mathfrak{B} ?

1) one
2) two
3) zero
4) infinite

9 The equation of a circle is $x^{2}+(y-7)^{2}=16$. What are the center and radius of the circle?

1) center $=(0,7)$; radius $=4$
2) center $=(0,7)$; radius $=16$
3) center $=(0,-7)$; radius $=4$
4) center $=(0,-7)$; radius $=16$

10 What is an equation of the line that passes through the point $(7,3)$ and is parallel to the line $4 x+2 y=10$?

1) $y=\frac{1}{2} x-\frac{1}{2}$
2) $y=-\frac{1}{2} x+\frac{13}{2}$
3) $y=2 x-11$
4) $y=-2 x+17$

11 In $\triangle A B C, A B=7, B C=8$, and $A C=9$. Which list has the angles of $\triangle A B C$ in order from smallest to largest?

1) $\angle A, \angle B, \angle C$
2) $\angle B, \angle A, \angle C$
3) $\angle C, \angle B, \angle A$
4) $\angle C, \angle A, \angle B$

12 Tangents $\overline{P A}$ and $\overline{P B}$ are drawn to circle O from an external point, P, and radii $\overline{O A}$ and $\overline{O B}$ are drawn. If $\mathrm{m} \angle A P B=40$, what is the measure of $\angle A O B$?

1) 140°
2) 100°
3) 70°
4) 50°

13 What is the length of the line segment with endpoints $(-6,4)$ and $(2,-5)$?

1) $\sqrt{13}$
2) $\sqrt{17}$
3) $\sqrt{72}$
4) $\sqrt{145}$

14 The lines represented by the equations $y+\frac{1}{2} x=4$ and $3 x+6 y=12$ are

1) the same line
2) parallel
3) perpendicular
4) neither parallel nor perpendicular

15 A transformation of a polygon that always preserves both length and orientation is

1) dilation
2) translation
3) line reflection
4) glide reflection

16 In which polygon does the sum of the measures of the interior angles equal the sum of the measures of the exterior angles?

1) triangle
2) hexagon
3) octagon
4) quadrilateral

17 In the diagram below of circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E.

If $C E=10, E D=6$, and $A E=4$, what is the length of $\overline{E B}$?

1) 15
2) 12
3) 6.7
4) 2.4

18 In the diagram below of $\triangle A B C$, medians $\overline{A D}, \overline{B E}$, and $\overline{C F}$ intersect at G.

If $C F=24$, what is the length of $\overline{F G}$?

1) 8
2) 10
3) 12
4) 16

19 If a line segment has endpoints $A(3 x+5,3 y)$ and $B(x-1,-y)$, what are the coordinates of the midpoint of $\overline{A B}$?

1) $(x+3,2 y)$
2) $(2 x+2, y)$
3) $(2 x+3, y)$
4) $(4 x+4,2 y)$

20 If the surface area of a sphere is represented by 144π, what is the volume in terms of π ?

1) 36π
2) 48π
3) 216π
4) 288π

21 Which transformation of the line $x=3$ results in an image that is perpendicular to the given line?

1) $r_{x \text {-axis }}$
2) $r_{y \text {-xis }}$
3) $r_{y=x}$
4) $r_{x=1}$

22 In the diagram below of regular pentagon $A B C D E$, $E B$ is drawn.

What is the measure of $\angle A E B$?

1) 36°
2) 54°
3) 72°
4) 108°
$23 \triangle A B C$ is similar to $\triangle D E F$. The ratio of the length of $\overline{A B}$ to the length of $\overline{D E}$ is 3:1. Which ratio is also equal to $3: 1$?
5) $\frac{m / A}{m \angle D}$
6) $\frac{\mathrm{m} \angle B}{\mathrm{~m} \angle F}$
7) $\frac{\text { area of } \triangle A B C}{\text { area of } \triangle D E F}$
8) $\frac{\text { perimeter of } \triangle A B C}{\text { perimeter of } \triangle D E F}$

24 What is the slope of a line perpendicular to the line whose equation is $2 y=-6 x+8$?

1) -3
2) $\frac{1}{6}$
3) $\frac{1}{3}$
4) -6

25 In the diagram below of circle $C, \mathrm{~m} \overparen{Q T}=140$, and $\mathrm{m} \angle P=40$.

What is $\mathrm{m} \overparen{R S}$?

1) 50
2) 60
3) 90
4) 110

26 Which statement is logically equivalent to "If it is warm, then I go swimming"

1) If I go swimming, then it is warm.
2) If it is warm, then I do not go swimming.
3) If I do not go swimming, then it is not warm.
4) If it is not warm, then I do not go swimming.

27 In the diagram below of $\triangle A C T, \overleftrightarrow{B E} \| \overline{A T}$.

If $C B=3, C A=10$, and $C E=6$, what is the length of $\overline{E T}$?

1) 5
2) 14
3) 20
4) 26

28 Which geometric principle is used in the construction shown below?

1) The intersection of the angle bisectors of a triangle is the center of the inscribed circle.
2) The intersection of the angle bisectors of a triangle is the center of the circumscribed circle.
3) The intersection of the perpendicular bisectors of the sides of a triangle is the center of the inscribed circle.
4) The intersection of the perpendicular bisectors of the sides of a triangle is the center of the circumscribed circle.

29 The diagram below shows isosceles trapezoid $A B C D$ with $\overline{A B} \| \overline{D C}$ and $\overline{A D} \cong \overline{B C}$. If $\mathrm{m} \angle B A D=2 x$ and $\mathrm{m} \angle B C D=3 x+5$, find $\mathrm{m} \angle B A D$.

30 A right circular cone has a base with a radius of 15 cm , a vertical height of 20 cm , and a slant height of 25 cm . Find, in terms of' π, the number of square centimeters in the lateral area of the cone.

31 In the diagram below of $\triangle H Q P$, side $\overline{H P}$ is extended through P to $T, \mathrm{~m} \angle Q P T=6 x+20$, $\mathrm{m} \angle H Q P=x+40$, and $\mathrm{m} \angle P H Q=4 x-5$. Find $\mathrm{m} \angle Q P T$.

32 On the line segment below, use a compass and straightedge to construct equilateral triangle $A B C$. [Leave all construction marks.]

33 In the diagram below, car A is parked 7 miles from car B. Sketch the points that are 4 miles from car A and sketch the points that are 4 miles from car B. Label with an \mathbf{X} all points that satisfy both conditions.

34 Write an equation for circle O shown on the graph below.

35 In the diagram below of quadrilateral $A B C D$ with diagonal $\overline{B D}, \mathrm{~m} \angle A=93, \mathrm{~m} \angle A D B=43$, $\mathrm{m} \angle C=3 x+5, \mathrm{~m} \angle B D C=x+19$, and $\mathrm{m} \angle D B C=2 x+6$. Determine if $\overline{A B}$ is parallel to $\overline{D C}$. Explain your reasoning.

36 The coordinates of the vertices of $\triangle A B C A(1,3)$, $B(-2,2)$ and $C(0,-2)$. On the grid below, graph and label $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the result of the composite transformation $D_{2} \circ T_{3,-2}$. State the coordinates of $A^{\prime \prime}, B^{\prime \prime}$, and $C^{\prime \prime}$.

37 In the diagram below, $\triangle R S T$ is a $3-4-5$ right triangle. The altitude, h, to the hypotenuse has been drawn. Determine the length of h.

38 Given: Quadrilateral $A B C D$ has vertices $A(-5,6)$, $B(6,6), C(8,-3)$, and $D(-3,-3)$.
Prove: Quadrilateral $A B C D$ is a parallelogram but is neither a rhombus nor a rectangle. [The use of the grid below is optional.]

0111ge

1 In the diagram below, $\overline{A B}, \overline{B C}$, and $\overline{A C}$ are tangents to circle O at points F, E, and D, respectively, $A F=6, C D=5$, and $B E=4$.

What is the perimeter of $\triangle A B C$?

1) 15
2) 25
3) 30
4) 60

2 Quadrilateral $M N O P$ is a trapezoid with $\overline{M N} \| \overline{O P}$. If $M^{\prime} N^{\prime} O^{\prime} P^{\prime}$ is the image of $M N O P$ after a reflection over the x-axis, which two sides of quadrilateral $M^{\prime} N^{\prime} O^{\prime} P^{\prime}$ are parallel?

1) $\overline{M^{\prime} N^{\prime}}$ and $\overline{O^{\prime} P^{\prime}}$
2) $\overline{M^{\prime} N^{\prime}}$ and $\overline{N^{\prime} O^{\prime}}$
3) $\overline{P^{\prime} M^{\prime}}$ and $\overline{O^{\prime} P^{\prime}}$
4) $\overline{P^{\prime} M^{\prime}}$ and $\overline{N^{\prime} O^{\prime}}$

3 In the diagram below of $\triangle A B C, D$ is the midpoint of $\overline{A B}$, and E is the midpoint of $\overline{B C}$.

If $A C=4 x+10$, which expression represents $D E$?

1) $x+2.5$
2) $2 x+5$
3) $2 x+10$
4) $8 x+20$

4 Which statement is true about every parallelogram?

1) All four sides are congruent.
2) The interior angles are all congruent.
3) Two pairs of opposite sides are congruent.
4) The diagonals are perpendicular to each other.

5 The diagram below shows a rectangular prism.

Which pair of edges are segments of lines that are coplanar?

1) $\overline{A B}$ and $\overline{D H}$
2) $\overline{A E}$ and $\overline{D C}$
3) $\overline{B C}$ and $\overline{E H}$
4) $\overline{C G}$ and $\overline{E F}$

6 A line segment has endpoints $A(7,-1)$ and $B(-3,3)$.
What are the coordinates of the midpoint of $\overline{A B}$?

1) $(1,2)$
2) $(2,1)$
3) $(-5,2)$
4) $(5,-2)$

7 What is the image of the point $(-5,2)$ under the translation $T_{3,-4}$?

1) $(-9,5)$
2) $(-8,6)$
3) $(-2,-2)$
4) $(-15,-8)$

8 When writing a geometric proof, which angle relationship could be used alone to justify that two angles are congruent?

1) supplementary angles
2) linear pair of angles
3) adjacent angles
4) vertical angles

9 Plane \mathcal{R} is perpendicular to line k and plane \mathscr{D} is perpendicular to line k. Which statement is correct?

1) Plane R is perpendicular to plane \mathscr{D}.
2) Plane \mathbb{R} is parallel to plane \mathscr{D}.
3) Plane \mathbb{R} intersects plane \mathscr{D}.
4) Plane \mathbb{R} bisects plane \mathscr{D}.

10 The vertices of the triangle in the diagram below are $A(7,9), B(3,3)$, and $C(11,3)$.

What are the coordinates of the centroid of $\triangle A B C$?

1) $(5,6)$
2) $(7,3)$
3) $(7,5)$
4) $(9,6)$

11 Which set of numbers does not represent the sides of a right triangle?

1) $\{6,8,10\}$
2) $\{8,15,17\}$
3) $\{8,24,25\}$
4) $\{15,36,39\}$

12 In the diagram below of rhombus $A B C D$, $\mathrm{m} \angle C=100$.

What is $\mathrm{m} \angle D B C$?

1) 40
2) 45
3) 50
4) 80

13 In the diagram below of circle O, radius $\overline{O C}$ is 5 cm . Chord $\overline{A B}$ is 8 cm and is perpendicular to $\overline{O C}$ at point P.

What is the length of $\overline{O P}$, in centimeters?

1) 8
2) 2
3) 3
4) 4

14 What is an equation of the line that passes through the point $(-2,3)$ and is parallel to the line whose equation is $y=\frac{3}{2} x-4$?

1) $y=\frac{-2}{3} x$
2) $y=\frac{-2}{3} x+\frac{5}{3}$
3) $y=\frac{3}{2} x$
4) $y=\frac{3}{2} x+6$

15 In scalene triangle $A B C, \mathrm{~m} \angle B=45$ and $\mathrm{m} \angle C=55$. What is the order of the sides in length, from longest to shortest?

1) $\overline{A B}, \overline{B C}, \overline{A C}$
2) $\overline{B C}, \overline{A C}, \overline{A B}$
3) $\overline{A C}, \overline{B C}, \overline{A B}$
4) $\overline{B C}, \overline{A B}, \overline{A C}$

16 What is an equation of a circle with center $(7,-3)$ and radius 4 ?

1) $(x-7)^{2}+(y+3)^{2}=4$
2) $(x+7)^{2}+(y-3)^{2}=4$
3) $(x-7)^{2}+(y+3)^{2}=16$
4) $(x+7)^{2}+(y-3)^{2}=16$

17 What is the volume, in cubic centimeters, of a cylinder that has a height of 15 cm and a diameter of 12 cm ?

1) 180π
2) 540π
3) 675π
4) $2,160 \pi$

18 Which compound statement is true?

1) A triangle has three sides and a quadrilateral has five sides.
2) A triangle has three sides if and only if a quadrilateral has five sides.
3) If a triangle has three sides, then a quadrilateral has five sides.
4) A triangle has three sides or a quadrilateral has five sides.

19 The two lines represented by the equations below are graphed on a coordinate plane.

$$
\begin{gathered}
x+6 y=12 \\
3(x-2)=-y-4
\end{gathered}
$$

Which statement best describes the two lines?

1) The lines are parallel.
2) The lines are the same line.
3) The lines are perpendicular.
4) The lines intersect at an angle other than 90°.

20 Which diagram shows the construction of the perpendicular bisector of $\overline{A B}$?
1)

2)
3)

4)

21 In circle O, a diameter has endpoints $(-5,4)$ and $(3,-6)$. What is the length of the diameter?

1) $\sqrt{2}$
2) $2 \sqrt{2}$
3) $\sqrt{10}$
4) $2 \sqrt{41}$

22 In the diagram of quadrilateral $A B C D, \overline{A B} \| \overline{C D}$, $\angle A B C \cong \angle C D A$, and diagonal $\overline{A C}$ is drawn.

Which method can be used to prove $\triangle A B C$ is congruent to $\triangle C D A$?

1) AAS
2) SSA
3) SAS
4) SSS

23 In the diagram below of right triangle $A B C, \overline{C D}$ is the altitude to hypotenuse $\overline{A B}, C B=6$, and $A D=5$.

What is the length of $\overline{B D}$?

1) 5
2) 9
3) 3
4) 4

24 In the diagram below, quadrilateral JUMP is inscribed in a circle..

Opposite angles J and M must be

1) right
2) complementary
3) congruent
4) supplementary

25 Which graph represents a circle with the equation $(x-3)^{2}+(y+1)^{2}=4$?
1)

2)

3)

26 The point $(3,-2)$ is rotated 90° about the origin and then dilated by a scale factor of 4 . What are the coordinates of the resulting image?

1) $(-12,8)$
2) $(12,-8)$
3) $(8,12)$
4) $(-8,-12)$

27 In the diagram below of $\triangle A B C$, side $\overline{B C}$ is extended to point $D, \mathrm{~m} \angle A=x, \mathrm{~m} \angle B=2 x+15$, and $\mathrm{m} \angle A C D=5 x+5$.

What is $\mathrm{m} \angle B$?

1) 5
2) 20
3) 25
4) 55

28 Point P lies on line m. Point P is also included in distinct planes Q, \mathcal{R}, S, and \mathcal{T}. At most, how many of these planes could be perpendicular to line m ?

1) 1
2) 2
3) 3
4) 4

29 In the diagram below of $\triangle A C D, B$ is a point on $\overline{A C}$ such that $\triangle A D B$ is an equilateral triangle, and $\triangle D B C$ is an isosceles triangle with $\overline{D B} \cong \overline{B C}$. Find $\mathrm{m} \angle C$.

30 Triangle $A B C$ has vertices $A(-2,2), B(-1,-3)$, and $C(4,0)$. Find the coordinates of the vertices of $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after the transformation $r_{x \text {-xxis }}$. [The use of the grid is optional.]

34 Find the slope of a line perpendicular to the line whose equation is $2 y-6 x=4$.
32 In the diagram below of circle O, chord $\overline{A B}$ bisects chord $\overline{C D}$ at E. If $A E=8$ and $B E=9$, find the length of $\overline{C E}$ in simplest radical form.

33 On the diagram below, use a compass and straightedge to construct the bisector of $\angle A B C$. [Leave all construction marks.]

31 Find, in degrees, the measures of both an interior angle and an exterior angle of a regular pentagon.

35 On the set of axes below, graph the locus of points that are four units from the point $(2,1)$. On the same set of axes, graph the locus of points that are two units from the line $x=4$. State the coordinates of all points that satisfy both conditions.

36 In the diagram below, $\overline{B F C E}, \overline{A B} \perp \overline{B E}$, $\overline{D E} \perp \overline{B E}$, and $\angle B F D \cong \angle E C A$. Prove that $\triangle A B C \sim \triangle D E F$.

37 In the diagram below of $\triangle A D E, B$ is a point on $\overline{A E}$ and C is a point on $\overline{A D}$ such that $\overline{B C} \| \overline{E D}$, $A C=x-3, B E=20, A B=16$, and $A D=2 x+2$. Find the length of $\overline{A C}$.

38 Quadrilateral MATH has coordinates $M(1,1)$, $A(-2,5), T(3,5)$, and $H(6,1)$. Prove that quadrilateral MATH is a rhombus and prove that it is not a square. [The use of the grid is optional.]

0611ge

1 Line segment $A B$ is shown in the diagram below.

Which two sets of construction marks, labeled I, II, III, and IV, are part of the construction of the perpendicular bisector of line segment $A B$?

1) I and II
2) I and III
3) II and III
4) II and IV

2 If $\triangle J K L \cong \triangle M N O$, which statement is always true?

1) $\angle K L J \cong \angle N M O$
2) $\angle K J L \cong \angle M O N$
3) $\overline{J L} \cong \overline{M O}$
4) $\overline{J K} \cong \overline{O N}$

3 In the diagram below, $\triangle A^{\prime} B^{\prime} C^{\prime}$ is a transformation of $\triangle A B C$, and $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is a transformation of $\triangle A^{\prime} B^{\prime} C^{\prime}$.

The composite transformation of $\triangle A B C$ to $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is an example of a

1) reflection followed by a rotation
2) reflection followed by a translation
3) translation followed by a rotation
4) translation followed by a reflection

4 In the diagram below of $\triangle A C E$, medians $\overline{A D}, \overline{E B}$, and $\overline{C F}$ intersect at G. The length of $\overline{F G}$ is 12 cm .

What is the length, in centimeters, of $\overline{G C}$?

1) 24
2) 12
3) 6
4) 4

5 In the diagram below of circle O, chord $\overline{A B}$ is parallel to chord $\overline{C D}$.

Which statement must be true?

1) $\overparen{A C} \cong \overparen{B D}$
2) $\overparen{A B} \cong \overparen{C D}$
3) $\overline{A B} \cong \overline{C D}$
4) $\widehat{A B D} \cong \widehat{C D B}$

6 In the diagram below, line p intersects line m and line n.

If $\mathrm{m} \angle 1=7 x$ and $\mathrm{m} \angle 2=5 x+30$, lines m and n are parallel when x equals

1) 12.5
2) 15
3) 87.5
4) 105

7 In the diagram of $\triangle K L M$ below, $\mathrm{m} \angle L=70$, $\mathrm{m} \angle M=50$, and $\overline{M K}$ is extended through N.

What is the measure of $\angle L K N$?

1) 60°
2) 120°
3) 180°
4) 300°

8 If two distinct planes, \mathcal{A} and \mathscr{B}, are perpendicular to line c, then which statement is true?

1) Planes \mathcal{A} and \mathcal{B} are parallel to each other.
2) Planes \mathcal{A} and \mathscr{B} are perpendicular to each other.
3) The intersection of planes \mathcal{A} and \mathscr{B} is a line parallel to line c.
4) The intersection of planes \mathcal{A} and \mathscr{B} is a line perpendicular to line c.

9 What is the length of the line segment whose endpoints are $A(-1,9)$ and $B(7,4)$?

1) $\sqrt{61}$
2) $\sqrt{89}$
3) $\sqrt{205}$
4) $\sqrt{233}$

10 What is an equation of circle O shown in the graph below?

1) $(x+1)^{2}+(y-3)^{2}=25$
2) $(x-1)^{2}+(y+3)^{2}=25$
3) $(x-5)^{2}+(y+6)^{2}=25$
4) $(x+5)^{2}+(y-6)^{2}=25$

11 In the diagram below, parallelogram $A B C D$ has diagonals $\overline{A C}$ and $\overline{B D}$ that intersect at point E.

Which expression is not always true?

1) $\angle D A E \cong \angle B C E$
2) $\angle D E C \cong \angle B E A$
3) $\overline{A C} \cong \overline{D B}$
4) $\overline{D E} \cong \overline{E B}$

12 The volume, in cubic centimeters, of a sphere whose diameter is 6 centimeters is

1) 12π
2) 36π
3) 48π
4) 288π

13 The equation of line k is $y=\frac{1}{3} x-2$. The equation of line m is $-2 x+6 y=18$. Lines k and m are

1) parallel
2) perpendicular
3) the same line
4) neither parallel nor perpendicular

14 What are the center and the radius of the circle whose equation is $(x-5)^{2}+(y+3)^{2}=16$?

1) $(-5,3)$ and 16
2) $(5,-3)$ and 16
3) $(-5,3)$ and 4
4) $(5,-3)$ and 4

15 Triangle $A B C$ has vertices $A(0,0), B(3,2)$, and $C(0,4)$. The triangle may be classified as

1) equilateral
2) isosceles
3) right
4) scalene

16 In rhombus $A B C D$, the diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E. If $A E=5$ and $B E=12$, what is the length of $\overline{A B}$?

1) 7
2) 10
3) 13
4) 17

17 In the diagram below of circle $O, \overline{P A}$ is tangent to circle O at A, and $\overline{P B C}$ is a secant with points B and C on the circle.

If $P A=8$ and $P B=4$, what is the length of $\overline{B C}$?

1) 20
2) 16
3) 15
4) 12

18 Lines m and n intersect at point A. Line k is perpendicular to both lines m and n at point A. Which statement must be true?

1) Lines m, n, and k are in the same plane.
2) Lines m and n are in two different planes.
3) Lines m and n are perpendicular to each other.
4) Line k is perpendicular to the plane containing lines m and n.

19 In $\triangle D E F, \mathrm{~m} \angle D=3 x+5, \mathrm{~m} \angle E=4 x-15$, and $\mathrm{m} \angle F=2 x+10$. Which statement is true?

1) $D F=F E$
2) $D E=F E$
3) $\mathrm{m} \angle E=\mathrm{m} \angle F$
4) $\mathrm{m} \angle D=\mathrm{m} \angle F$

20 As shown in the diagram below, $\triangle A B C \sim \triangle D E F$, $A B=7 x, B C=4, D E=7$, and $E F=x$.

What is the length of $\overline{A B}$?

1) 28
2) 2
3) 14
4) 4

21 A man wants to place a new bird bath in his yard so that it is 30 feet from a fence, f, and also 10 feet from a light pole, P. As shown in the diagram below, the light pole is 35 feet away from the fence.

How many locations are possible for the bird bath?

1) 1
2) 2
3) 3
4) 0

22 As shown on the graph below, $\Delta R^{\prime} S^{\prime} T^{\prime}$ is the image of $\triangle R S T$ under a single transformation.

Which transformation does this graph represent?

1) glide reflection
2) line reflection
3) rotation
4) translation

23 Which lines is parallel to the line whose equation is $4 x+3 y=7$ and also passes through the point $(-5,2)$?

1) $4 x+3 y=-26$
2) $4 x+3 y=-14$
3) $3 x+4 y=-7$
4) $3 x+4 y=14$

24 If the vertex angles of two isosceles triangles are congruent, then the triangles must be

1) acute
2) congruent
3) right
4) similar

25 Which quadrilateral has diagonals that always bisect its angles and also bisect each other?

1) rhombus
2) rectangle
3) parallelogram
4) isosceles trapezoid

26 When $\triangle A B C$ is dilated by a scale factor of 2 , its image is $\triangle A^{\prime} B^{\prime} C^{\prime}$. Which statement is true?

1) $\overline{A C} \cong \overline{A^{\prime} C^{\prime}}$
2) $\angle A \cong \angle A^{\prime}$
3) perimeter of $\triangle A B C=$ perimeter of $\triangle A^{\prime} B^{\prime} C^{\prime}$
4) $2($ area of $\triangle A B C)=$ area of $\triangle A^{\prime} B^{\prime} C^{\prime}$

27 What is the slope of a line that is perpendicular to the line whose equation is $3 x+5 y=4$?

1) $-\frac{3}{5}$
2) $\frac{3}{5}$
3) $-\frac{5}{3}$
4) $\frac{5}{3}$

28 In the diagram below of right triangle $A B C$, altitude $\overline{B D}$ is drawn to hypotenuse $\overline{A C}, A C=16$, and $C D=7$.

What is the length of $\overline{B D}$?

1) $3 \sqrt{7}$
2) $4 \sqrt{7}$
3) $7 \sqrt{3}$
4) 12

29 Given the true statement, "The medians of a triangle are concurrent," write the negation of the statement and give the truth value for the negation.

30 Using a compass and straightedge, on the diagram below of $\overleftrightarrow{R S}$, construct an equilateral triangle with $\overline{R S}$ as one side. [Leave all construction marks.]

31 The Parkside Packing Company needs a rectangular shipping box. The box must have a length of 11 inches and a width of 8 inches. Find, to the nearest tenth of an inch, the minimum height of the box such that the volume is at least 800 cubic inches.

32 A pentagon is drawn on the set of axes below. If the pentagon is reflected over the y-axis, determine if this transformation is an isometry. Justify your answer. [The use of the set of axes is optional.]

33 In the diagram below of $\triangle A B C, D$ is a point on $\overline{A B}, E$ is a point on $\overline{B C}, \overline{A C} \| \overline{D E}, C E=25$ inches, $A D=18$ inches, and $D B=12$ inches. Find, to the nearest tenth of an inch, the length of $\overline{E B}$.

34 In circle O, diameter $\overline{R S}$ has endpoints $R(3 a, 2 b-1)$ and $S(a-6,4 b+5)$. Find the coordinates of point O, in terms of a and b. Express your answer in simplest form.

35 On the set of coordinate axes below, graph the locus of points that are equidistant from the lines $y=6$ and $y=2$ and also graph the locus of points that are 3 units from the y-axis. State the coordinates of all points that satisfy both conditions.

36 In the diagram below, tangent $\overline{M L}$ and secant $\overline{M N K}$ are drawn to circle O. The ratio
$\mathrm{m} \overparen{L N}: \mathrm{m} \overparen{N K}: \mathrm{m} \overparen{\mathrm{KL}}$ is 3:4:5. Find $\mathrm{m} \angle L M K$.

37 Solve the following system of equations graphically.

$$
\begin{gathered}
2 x^{2}-4 x=y+1 \\
x+y=1
\end{gathered}
$$

38 In the diagram below, $\overline{P A}$ and $\overline{P B}$ are tangent to circle $O, \overline{O A}$ and $\overline{O B}$ are radii, and $\overline{O P}$ intersects the circle at C. Prove: $\angle A O P \cong \angle B O P$

0811ge

1 The statement " x is a multiple of 3 , and x is an even integer" is true when x is equal to

1) 9
2) 8
3) 3
4) 6

2 In the diagram below, $\triangle A B C \cong \triangle X Y Z$.

Which statement must be true?

1) $\angle C \cong \angle Y$
2) $\angle A \cong \angle X$
3) $\overline{A C} \cong \overline{Y Z}$
4) $\overline{C B} \cong \overline{X Z}$

3 In the diagram below of $\triangle A B C, \overleftrightarrow{T V} \| \overline{B C}, A T=5$, $T B=7$, and $A V=10$.

What is the length of $\overline{V C}$?

1) $3 \frac{1}{2}$
2) $7 \frac{1}{7}$
3) 14
4) 24

4 Pentagon $P Q R S T$ has $\overline{P Q}$ parallel to $\overline{T S}$. After a translation of $T_{2,-5}$, which line segment is parallel to $\overline{P^{\prime} Q^{\prime}}$?

1) $\overline{R^{\prime} Q^{\prime}}$
2) $\overline{R^{\prime} S^{\prime}}$
3) $\frac{T^{\prime} S^{\prime}}{T^{\prime} P^{\prime}}$

5 In the diagram below of $\triangle P A O, \overline{A P}$ is tangent to circle O at point $A, O B=7$, and $B P=18$.

What is the length of $\overline{A P}$?

1) 10
2) 12
3) 17
4) 24

6 .A straightedge and compass were used to create the construction below. Arc $E F$ was drawn from point B, and arcs with equal radii were drawn from E and F.

Which statement is false?

1) $\mathrm{m} \angle A B D=\mathrm{m} \angle D B C$
2) $\frac{1}{2}(\mathrm{~m} \angle A B C)=\mathrm{m} \angle A B D$
3) $2(\mathrm{~m} \angle D B C)=\mathrm{m} \angle A B C$
4) $2(\mathrm{~m} \angle A B C)=\mathrm{m} \angle C B D$

7 What is the length of the line segment whose endpoints are $(1,-4)$ and $(9,2)$?

1) 5
2) $2 \sqrt{17}$
3) 10
4) $2 \sqrt{26}$

8 What is the image of the point $(2,-3)$ after the transformation $r_{y \text {-axis }}$?

1) $(2,3)$
2) $(-2,-3)$
3) $(-2,3)$
4) $(-3,2)$

9 In the diagram below, lines n and m are cut by transversals p and q.

What value of x would make lines n and m parallel?

1) 110
2) 80
3) 70
4) 50

10 What is an equation of the circle with a radius of 5 and center at $(1,-4)$?

1) $(x+1)^{2}+(y-4)^{2}=5$
2) $(x-1)^{2}+(y+4)^{2}=5$
3) $(x+1)^{2}+(y-4)^{2}=25$
4) $(x-1)^{2}+(y+4)^{2}=25$

11 In the diagram below of $\triangle B C D$, side $\overline{D B}$ is extended to point A.

Which statement must be true?

1) $\mathrm{m} \angle C>\mathrm{m} \angle D$
2) $\mathrm{m} \angle A B C<\mathrm{m} \angle D$
3) $\mathrm{m} \angle A B C>\mathrm{m} \angle C$
4) $\mathrm{m} \angle A B C>\mathrm{m} \angle C+\mathrm{m} \angle D$

12 Which equation represents the line parallel to the line whose equation is $4 x+2 y=14$ and passing through the point $(2,2)$?

1) $y=-2 x$
2) $y=-2 x+6$
3) $y=\frac{1}{2} x$
4) $y=\frac{1}{2} x+1$

13 The coordinates of point A are $(-3 a, 4 b)$. If point A^{\prime} is the image of point A reflected over the line $y=x$, the coordinates of A^{\prime} are

1) $(4 b,-3 a)$
2) $(3 a, 4 b)$
3) $(-3 a,-4 b)$
4) $(-4 b,-3 a)$

14 As shown in the diagram below, $\overline{A C}$ bisects $\angle B A D$ and $\angle B \cong \angle D$.

Which method could be used to prove
$\triangle A B C \cong \triangle A D C$?

1) SSS
2) $A A A$
3) SAS
4) AAS

15 Segment $A B$ is the diameter of circle M. The coordinates of A are $(-4,3)$. The coordinates of M are $(1,5)$. What are the coordinates of B ?

1) $(6,7)$
2) $(5,8)$
3) $(-3,8)$
4) $(-5,2)$

16 In the diagram below, $\overleftrightarrow{A B}$ is perpendicular to plane AEFG.

Which plane must be perpendicular to plane $A E F G$?

1) $A B C E$
2) $B C D H$
3) $C D F E$
4) $H D F G$

17 How many points are both 4 units from the origin and also 2 units from the line $y=4$?

1) 1
2) 2
3) 3
4) 4

18 When solved graphically, what is the solution to the following system of equations?

$$
\begin{gathered}
y=x^{2}-4 x+6 \\
y=x+2
\end{gathered}
$$

1) $(1,4)$
2) $(4,6)$
3) $(1,3)$ and $(4,6)$
4) $(3,1)$ and $(6,4)$

19 Triangle $P Q R$ has angles in the ratio of 2:3:5.
Which type of triangle is $\triangle P Q R$?

1) acute
2) isosceles
3) obtuse
4) right

20 Plane \mathcal{A} is parallel to plane \mathscr{B}. Plane C intersects plane \mathcal{A} in line m and intersects plane \mathscr{B} in line n. Lines m and n are

1) intersecting
2) parallel
3) perpendicular
4) skew

21 The diagonals of a quadrilateral are congruent but do not bisect each other. This quadrilateral is

1) an isosceles trapezoid
2) a parallelogram
3) a rectangle
4) a rhombus

22 What is the slope of a line that is perpendicular to the line represented by the equation $x+2 y=3$?

1) -2
2) 2
3) $-\frac{1}{2}$
4) $\frac{1}{2}$

23 A packing carton in the shape of a triangular prism is shown in the diagram below.

What is the volume, in cubic inches, of this carton?

1) 20
2) 60
3) 120
4) 240

24 In the diagram below of circle O, diameter $\overline{A O B}$ is perpendicular to chord $\overline{C D}$ at point $E, O A=6$, and $O E=2$.

What is the length of $\overline{C E}$?

1) $4 \sqrt{3}$
2) $2 \sqrt{3}$
3) $8 \sqrt{2}$
4) $4 \sqrt{2}$

25 What is the measure of each interior angle of a regular hexagon?

1) 60°
2) 120°
3) 135°
4) 270°

26 Which equation represents the perpendicular bisector of $\overline{A B}$ whose endpoints are $A(8,2)$ and $B(0,6)$?

1) $y=2 x-4$
2) $y=-\frac{1}{2} x+2$
3) $y=-\frac{1}{2} x+6$
4) $y=2 x-12$

27 As shown in the diagram below, a kite needs a vertical and a horizontal support bar attached at opposite corners. The upper edges of the kite are 7 inches, the side edges are x inches, and the vertical support bar is $(x+1)$ inches.

What is the measure, in inches, of the vertical support bar?

1) 23
2) 24
3) 25
4) 26

28 Given three distinct quadrilaterals, a square, a rectangle, and a rhombus, which quadrilaterals must have perpendicular diagonals?

1) the rhombus, only
2) the rectangle and the square
3) the rhombus and the square
4) the rectangle, the rhombus, and the square

29 In the diagram below, trapezoid $A B C D$, with bases $\overline{A B}$ and $\overline{D C}$, is inscribed in circle O, with diameter $\overline{D C}$. If $\mathrm{m} \overparen{A B}=80$, find $\mathrm{m} \overparen{B C}$.

30 On the diagram of $\triangle A B C$ shown below, use a compass and straightedge to construct the perpendicular bisector of $\overline{A C}$. [Leave all construction marks.]

31 A sphere has a diameter of 18 meters. Find the volume of the sphere, in cubic meters, in terms of π.

32 Write an equation of the circle graphed in the diagram below.

33 The diagram below shows $\triangle A B C$, with $\overline{A E B}$, $\overline{A D C}$, and $\angle A C B \cong \angle A E D$. Prove that $\triangle A B C$ is similar to $\triangle A D E$.

34 Triangle $A B C$ has vertices $A(3,3), B(7,9)$, and $C(11,3)$. Determine the point of intersection of the medians, and state its coordinates. [The use of the set of axes below is optional.]

35 In the diagram below of $\triangle G J K, H$ is a point on $\overline{G J}, \overline{H J} \cong \overline{J K}, \mathrm{~m} \angle G=28$, and $\mathrm{m} \angle G J K=70$.
Determine whether $\triangle G H K$ is an isosceles triangle and justify your answer.

36 As shown on the set of axes below, $\triangle G H S$ has vertices $G(3,1), H(5,3)$, and $S(1,4)$. Graph and state the coordinates of $\Delta G^{\prime \prime} H^{\prime \prime} S^{\prime \prime}$, the image of $\triangle G H S$ after the transformation $T_{-3,1} \circ D_{2}$.

37 In the diagram below, $\triangle A B C \sim \triangle D E F, D E=4$, $A B=x, A C=x+2$, and $D F=x+6$. Determine the length of $\overline{A B}$. [Only an algebraic solution can receive full credit.]

38 Given: $\triangle A B C$ with vertices $A(-6,-2), B(2,8)$, and $C(6,-2) . \overline{A B}$ has midpoint $D, \overline{B C}$ has midpoint E, and $\overline{A C}$ has midpoint F.
Prove: $A D E F$ is a parallelogram
$A D E F$ is not a rhombus
[The use of the grid is optional.]

0112ge

1 Line n intersects lines l and m, forming the angles shown in the diagram below.

Which value of x would prove $l \| m$?

1) 2.5
2) 4.5
3) 6.25
4) 8.75

2 In a given triangle, the point of intersection of the three medians is the same as the point of intersection of the three altitudes. Which classification of the triangle is correct?

1) scalene triangle
2) isosceles triangle
3) equilateral triangle
4) right isosceles triangle

3 A circle has the equation $(x-2)^{2}+(y+3)^{2}=36$. What are the coordinates of its center and the length of its radius?

1) $(-2,3)$ and 6
2) $(2,-3)$ and 6
3) $(-2,3)$ and 36
4) $(2,-3)$ and 36

4 In the diagram below, MATH is a rhombus with diagonals $\overline{A H}$ and $\overline{M T}$.

If $\mathrm{m} \angle H A M=12$, what is $\mathrm{m} \angle A M T$?

1) 12
2) 78
3) 84
4) 156

5 A line segment has endpoints $(4,7)$ and $(1,11)$. What is the length of the segment?

1) 5
2) 7
3) 16
4) 25

6 In $\triangle F G H, \mathrm{~m} \angle F=42$ and an exterior angle at vertex H has a measure of 104 . What is $\mathrm{m} \angle G$?

1) 34
2) 62
3) 76
4) 146

7 Which diagram represents a correct construction of equilateral $\triangle A B C$, given side $\overline{A B}$?
1)

4)

8 In the diagram below, $\triangle A B C$ is circumscribed about circle O and the sides of $\triangle A B C$ are tangent to the circle at points D, E, and F.

If $A B=20, A E=12$, and $C F=15$, what is the length of $\overline{A C}$?

1) 8
2) 15
3) 23
4) 27

9 In $\triangle A B C$ and $\triangle D E F, \frac{A C}{D F}=\frac{C B}{F E}$. Which additional information would prove
$\triangle A B C \sim \triangle D E F$?

1) $A C=D F$
2) $C B=F E$
3) $\angle A C B \cong \angle D F E$
4) $\angle B A C \cong \angle E D F$

10 The angles of triangle $A B C$ are in the ratio of $8: 3: 4$. What is the measure of the smallest angle?

1) 12°
2) 24°
3) 36°
4) 72°

11 When a quadrilateral is reflected over the line $y=x$, which geometric relationship is not preserved?

1) congruence
2) orientation
3) parallelism
4) perpendicularity

12 Which equation represents circle O with center $(2,-8)$ and radius 9 ?

1) $(x+2)^{2}+(y-8)^{2}=9$
2) $(x-2)^{2}+(y+8)^{2}=9$
3) $(x+2)^{2}+(y-8)^{2}=81$
4) $(x-2)^{2}+(y+8)^{2}=81$

13 Which statement is the negation of "Two is a prime number" and what is the truth value of the negation?

1) Two is not a prime number; false
2) Two is not a prime number; true
3) A prime number is two; false
4) A prime number is two; true

14 In the diagram below of circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E.

If $\mathrm{m} \angle A E C=34$ and $\mathrm{m} \overparen{A C}=50$, what is $\mathrm{m} \overparen{D B}$?

1) 16
2) 18
3) 68
4) 118

15 The volume of a rectangular prism is 144 cubic inches. The height of the prism is 8 inches. Which measurements, in inches, could be the dimensions of the base?

1) 3.3 by 5.5
2) 2.5 by 7.2
3) 12 by 8
4) 9 by 9

16 The diagram below shows a pair of congruent triangles, with $\angle A D B \cong \angle C D B$ and $\angle A B D \cong \angle C B D$.

Which statement must be true?

1) $\angle A D B \cong \angle C B D$
2) $\angle A B C \cong \angle A D C$
3) $\overline{A B} \cong \overline{C D}$
4) $\overline{A D} \cong \overline{C D}$

17 What is an equation of the line that is perpendicular to the line whose equation is $y=\frac{3}{5} x-2$ and that passes through the point $(3,-6)$?

1) $y=\frac{5}{3} x-11$
2) $y=-\frac{5}{3} x+11$
3) $y=-\frac{5}{3} x-1$
4) $y=\frac{5}{3} x+1$

18 Point A lies in plane \mathfrak{B}. How many lines can be drawn perpendicular to plane \mathcal{B} through point A ?

1) one
2) two
3) zero
4) infinite

19 In the diagram below of isosceles trapezoid $A B C D$, $A B=C D=25, A D=26$, and $B C=12$.

What is the length of an altitude of the trapezoid?

1) 7
2) 14
3) 19
4) 24

20 What is an equation of circle O shown in the graph below?

1) $(x+2)^{2}+(y-2)^{2}=9$
2) $(x+2)^{2}+(y-2)^{2}=3$
3) $(x-2)^{2}+(y+2)^{2}=9$
4) $(x-2)^{2}+(y+2)^{2}=3$

21 The diagram below represents a rectangular solid.

Which statement must be true?

1) $\overline{E H}$ and $\overline{B C}$ are coplanar
2) $\overline{F G}$ and $\overline{A B}$ are coplanar
3) $\overline{E H}$ and $\overline{A D}$ are skew
4) $\overline{F G}$ and $\overline{C G}$ are skew

22 In $\triangle R S T, \mathrm{~m} \angle R=58$ and $\mathrm{m} \angle S=73$. Which inequality is true?

1) $R T<T S<R S$
2) $R S<R T<T S$
3) $R T<R S<T S$
4) $R S<T S<R T$

23 The number of degrees in the sum of the interior angles of a pentagon is

1) 72
2) 360
3) 540
4) 720

24 What is the equation of a line passing through $(2,-1)$ and parallel to the line represented by the equation $y=2 x+1$?

1) $y=-\frac{1}{2} x$
2) $y=-\frac{1}{2} x+1$
3) $y=2 x-5$
4) $y=2 x-1$

25 The coordinates of the endpoints of $\overline{A B}$ are $A(0,0)$ and $B(0,6)$. The equation of the perpendicular bisector of $\overline{A B}$ is

1) $x=0$
2) $x=3$
3) $y=0$
4) $y=3$

26 In the diagram below, point P is the centroid of $\triangle A B C$.

If $P M=2 x+5$ and $B P=7 x+4$, what is the length of $\overline{P M}$?

1) 9
2) 2
3) 18
4) 27

27 In $\triangle P Q R, \angle P R Q$ is a right angle and $\overline{R T}$ is drawn perpendicular to hypotenuse $\overline{P Q}$. If $P T=x$, $R T=6$, and $T Q=4 x$, what is the length of $\overline{P Q}$?

1) 9
2) 12
3) 3
4) 15

28 In $\triangle A B C, A B=5$ feet and $B C=3$ feet. Which inequality represents all possible values for the length of $\overline{A C}$, in feet?

1) $2 \leq A C \leq 8$
2) $2<A C<8$
3) $3 \leq A C \leq 7$
4) $3<A C<7$

29 In the diagram below, two parallel lines intersect circle O at points A, B, C, and D, with $\mathrm{m} \overparen{A B}=x+20$ and $\mathrm{m} \overparen{D C}=2 x-20$. Find $\mathrm{m} \overparen{A B}$.

30 In the diagram below, point M is located on $\overleftrightarrow{A B}$ Sketch the locus of points that are 1 unit from $\overleftrightarrow{A B}$ and the locus of points 2 units from point M. Label with an \mathbf{X} all points that satisfy both conditions.

31 Determine whether the two lines represented by the equations $y=2 x+3$ and $2 y+x=6$ are parallel, perpendicular, or neither. Justify your response.

32 The coordinates of the vertices of $\triangle R S T$ are $R(-2,3), S(4,4)$, and $T(2,-2)$. Triangle $R^{\prime} S^{\prime} T^{\prime}$ is the image of $\triangle R S T$ after a rotation of 90° about the origin. State the coordinates of the vertices of $\triangle R^{\prime} S^{\prime} T^{\prime}$. [The use of the set of axes below is optional.]

33 On the diagram below, use a compass and straightedge to construct the bisector of $\angle X Y Z$. [Leave all construction marks.]

34 In the diagram below of circle O, diameter $\overline{A B}$ is perpendicular to chord $\overline{C D}$ at E. If $A O=10$ and $B E=4$, find the length of $\overline{C E}$.

35 Triangle $A B C$ has coordinates $A(2,-2), B(2,1)$, and $C(4,-2)$. Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ under $T_{5,-2}$. On the set of axes below, graph and label $\triangle A B C$ and its image, $\triangle A^{\prime} B^{\prime} C^{\prime}$. Determine the relationship between the area of $\triangle A B C$ and the area of $\triangle A^{\prime} B^{\prime} C^{\prime}$. Justify your response.

36 A paint can is in the shape of a right circular cylinder. The volume of the paint can is 600π cubic inches and its altitude is 12 inches. Find the radius, in inches, of the base of the paint can. Express the answer in simplest radical form. Find, to the nearest tenth of a square inch, the lateral area of the paint can.

37 Triangle $H K L$ has vertices $H(-7,2), K(3,-4)$, and $L(5,4)$. The midpoint of $\overline{H L}$ is M and the midpoint of $\overline{L K}$ is N. Determine and state the coordinates of points M and N. Justify the statement: $\overline{M N}$ is parallel to $\overline{H K}$. [The use of the set of axes below is optional.]

38 In the diagram below of quadrilateral $A B C D$,
$\overline{A D} \cong \overline{B C}$ and $\angle D A E \cong \angle B C E$. Line segments
$A C, D B$, and $F G$ intersect at E.
Prove: $\triangle A E F \cong \triangle C E G$

0612ge

1 Triangle $A B C$ is graphed on the set of axes below.

Which transformation produces an image that is similar to, but not congruent to, $\triangle A B C$?

1) $T_{2,3}$
2) D_{2}
3) $r_{y=x}$
4) R_{90}

2 A student wrote the sentence " 4 is an odd integer." What is the negation of this sentence and the truth value of the negation?

1) 3 is an odd integer; true
2) 4 is not an odd integer; true
3) 4 is not an even integer; false
4) 4 is an even integer; false

3 As shown in the diagram below, $\overleftrightarrow{E F}$ intersects planes \mathscr{P}, Q, and \mathbb{R}.

If $\overleftrightarrow{E F}$ is perpendicular to planes \mathscr{P} and R, which statement must be true?

1) Plane \mathscr{P} is perpendicular to plane Q.
2) Plane \mathbb{R} is perpendicular to plane \mathscr{P}.
3) Plane \mathscr{P} is parallel to plane Q.
4) Plane R is parallel to plane P.

4 In the diagram below, LATE is an isosceles trapezoid with $\overline{L E} \cong \overline{A T}, L A=24, E T=40$, and $A T=10$. Altitudes $\overline{L F}$ and $\overline{A G}$ are drawn.

What is the length of $\overline{L F}$?

1) 6
2) 8
3) 3
4) 4

5 In the diagram below of circle O, diameter $\overline{A B}$ is parallel to chord $\overline{C D}$.

If $\mathrm{m} \overparen{C D}=70$, what is $\mathrm{m} \overparen{A C}$?

1) 110
2) 70
3) 55
4) 35

6 In the diagram below of $\overline{A B C D}, \overline{A C} \cong \overline{B D}$.

Using this information, it could be proven that

1) $B C=A B$
2) $A B=C D$
3) $A D-B C=C D$
4) $A B+C D=A D$

7 The diameter of a sphere is 15 inches. What is the volume of the sphere, to the nearest tenth of a cubic inch?

1) 706.9
2) 1767.1
3) 2827.4
4) $14,137.2$

8 The diagram below shows the construction of $\overleftrightarrow{A B}$ through point P parallel to $\overleftrightarrow{C D}$.

Which theorem justifies this method of construction?

1) If two lines in a plane are perpendicular to a transversal at different points, then the lines are parallel.
2) If two lines in a plane are cut by a transversal to form congruent corresponding angles, then the lines are parallel.
3) If two lines in a plane are cut by a transversal to form congruent alternate interior angles, then the lines are parallel.
4) If two lines in a plane are cut by a transversal to form congruent alternate exterior angles, then the lines are parallel.

9 Parallelogram $A B C D$ has coordinates $A(1,5)$, $B(6,3), C(3,-1)$, and $D(-2,1)$. What are the coordinates of E, the intersection of diagonals $\overline{A C}$ and $\overline{B D}$?

1) $(2,2)$
2) $(4.5,1)$
3) $(3.5,2)$
4) $(-1,3)$

10 What is the equation of a circle whose center is 4 units above the origin in the coordinate plane and whose radius is 6 ?

1) $x^{2}+(y-6)^{2}=16$
2) $(x-6)^{2}+y^{2}=16$
3) $x^{2}+(y-4)^{2}=36$
4) $(x-4)^{2}+y^{2}=36$

11 In the diagram of $\triangle A B C$ shown below, D is the midpoint of $\overline{A B}, E$ is the midpoint of $\overline{B C}$, and F is the midpoint of $\overline{A C}$.

If $A B=20, B C=12$, and $A C=16$, what is the perimeter of trapezoid $A B E F$?

1) 24
2) 36
3) 40
4) 44

12 In the diagram below, $\triangle L M O$ is isosceles with $L O=M O$.

If $\mathrm{m} \angle L=55$ and $\mathrm{m} \angle N O M=28$, what is $\mathrm{m} \angle N$?

1) 27
2) 28
3) 42
4) 70

13 If $\overleftrightarrow{A B}$ is contained in plane P, and $\overleftrightarrow{A B}$ is perpendicular to plane R, which statement is true?

1) $\overleftrightarrow{A B}$ is parallel to plane R
2) Plane P is parallel to plane R.
3) $\overleftrightarrow{A B}$ is perpendicular to plane \mathscr{P}.
4) Plane \mathscr{P} is perpendicular to plane \mathbb{R}.

14 In the diagram below of $\triangle A B C, \overline{A E} \cong \overline{B E}$, $\overline{A F} \cong \overline{C F}$, and $\overline{C D} \cong \overline{B D}$.

Point P must be the

1) centroid
2) circumcenter
3) incenter
4) orthocenter

15 What is the equation of the line that passes through the point $(-9,6)$ and is perpendicular to the line $y=3 x-5$?

1) $y=3 x+21$
2) $y=-\frac{1}{3} x-3$
3) $y=3 x+33$
4) $y=-\frac{1}{3} x+3$

16 In the diagram of $\triangle A B C$ shown below, $\overline{D E} \| \overline{B C}$.

If $A B=10, A D=8$, and $A E=12$, what is the length of $\overline{E C}$?

1) 6
2) 2
3) 3
4) 15

17 What is the length of $\overline{A B}$ with endpoints $A(-1,0)$ and $B(4,-3)$?

1) $\sqrt{6}$
2) $\sqrt{18}$
3) $\sqrt{34}$
4) $\sqrt{50}$

18 The sum of the interior angles of a polygon of n sides is

1) 360
2) $\frac{360}{n}$
3) $(n-2) \cdot 180$
4) $\frac{(n-2) \cdot 180}{n}$

19 What is the slope of a line perpendicular to the line whose equation is $20 x-2 y=6$?

1) -10
2) $-\frac{1}{10}$
3) 10
4) $\frac{1}{10}$

20 Which graph represents a circle whose equation is $(x+2)^{2}+y^{2}=16 ?$
1)

2)

21 In circle O shown below, diameter $\overline{D B}$ is perpendicular to chord $\overline{A C}$ at E.

If $D B=34, A C=30$, and $D E>B E$, what is the length of $\overline{B E}$?

1) 8
2) 9
3) 16
4) 25

22 In parallelogram $A B C D$ shown below, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E.

Which statement must be true?

1) $\overline{A C} \cong \overline{D B}$
2) $\angle A B D \cong \angle C B D$
3) $\triangle A E D \cong \triangle C E B$
4) $\triangle D C E \cong \triangle B C E$

23 Which equation of a circle will have a graph that lies entirely in the first quadrant?

1) $(x-4)^{2}+(y-5)^{2}=9$
2) $(x+4)^{2}+(y+5)^{2}=9$
3) $(x+4)^{2}+(y+5)^{2}=25$
4) $(x-5)^{2}+(y-4)^{2}=25$

24 In the diagram below, $\triangle A B C \sim \triangle R S T$.

Which statement is not true?

1) $\angle A \cong \angle R$
2) $\frac{A B}{R S}=\frac{B C}{S T}$
3) $\frac{A B}{B C}=\frac{S T}{R S}$
4) $\frac{A B+B C+A C}{R S+S T+R T}=\frac{A B}{R S}$

25 In the diagram below of $\triangle A B C, \overline{B C}$ is extended to D.

If $\mathrm{m} \angle A=x^{2}-6 x, \mathrm{~m} \angle B=2 x-3$, and $\mathrm{m} \angle A C D=9 x+27$, what is the value of x ?

1) 10
2) 2
3) 3
4) 15

26 An equation of the line that passes through $(2,-1)$ and is parallel to the line $2 y+3 x=8$ is

1) $y=\frac{3}{2} x-4$
2) $y=\frac{3}{2} x+4$
3) $y=-\frac{3}{2} x-2$
4) $y=-\frac{3}{2} x+2$

27 The graph below shows $\overline{J T}$ and its image, $\overline{J^{\prime} T^{\prime}}$, after a transformation.

Which transformation would map $\overline{J T}$ onto $\overline{J^{\prime} T^{\prime}}$?

1) translation
2) glide reflection
3) rotation centered at the origin
4) reflection through the origin

28 Which reason could be used to prove that a parallelogram is a rhombus?

1) Diagonals are congruent.
2) Opposite sides are parallel.
3) Diagonals are perpendicular.
4) Opposite angles are congruent.

29 Triangle TAP has coordinates $T(-1,4), A(2,4)$, and $P(2,0)$. On the set of axes below, graph and label $\triangle T^{\prime} A^{\prime} P^{\prime}$, the image of $\triangle T A P$ after the translation $(x, y) \rightarrow(x-5, y-1)$.

30 In the diagram below, $\ell \| m$ and $\overline{Q R} \perp \overline{S T}$ at R.

If $\mathrm{m} \angle 1=63$, find $\mathrm{m} \angle 2$.
31 Two lines are represented by the equations $x+2 y=4$ and $4 y-2 x=12$. Determine whether these lines are parallel, perpendicular, or neither. Justify your answer.

32 Using a compass and straightedge, construct the bisector of $\angle C B A$. [Leave all construction marks.]

33 The cylindrical tank shown in the diagram below is to be painted. The tank is open at the top, and the bottom does not need to be painted. Only the outside needs to be painted. Each can of paint covers 600 square feet. How many cans of paint must be purchased to complete the job?

34 On the set of axes below, graph the locus of points that are 4 units from the line $x=3$ and the locus of points that are 5 units from the point $(0,2)$. Label with an \mathbf{X} all points that satisfy both conditions.

35 Given: $\overline{A D}$ bisects $\overline{B C}$ at E. $\overline{A B} \perp \overline{B C}$ $\overline{D C} \perp \overline{B C}$
Prove: $\overline{A B} \cong \overline{D C}$

36 The coordinates of trapezoid $A B C D$ are $A(-4,5)$, $B(1,5), C(1,2)$, and $D(-6,2)$. Trapezoid $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ is the image after the composition $r_{x-\text { axis }}{ }^{\circ} r_{y=x}$ is performed on trapezoid $A B C D$. State the coordinates of trapezoid $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$. [The use of the set of axes below is optional.]

37 In the diagram below of circle O, chords $\overline{R T}$ and $\overline{Q S}$ intersect at M. Secant $\overline{P T R}$ and tangent $\overline{P S}$ are drawn to circle O. The length of $\overline{R M}$ is two more than the length of $\overline{T M}, Q M=2, S M=12$, and $P T=8$.

Find the length of $\overline{R T}$. Find the length of $\overline{P S}$.
38 On the set of axes below, solve the system of equations graphically and state the coordinates of all points in the solution.

$$
\begin{gathered}
y=(x-2)^{2}-3 \\
2 y+16=4 x
\end{gathered}
$$

0812ge

1 In the diagram below of circle O, chord $\overline{A B}$ is parallel to chord $\overline{G H}$. Chord $\overline{C D}$ intersects $\overline{A B}$ at E and $\overline{G H}$ at F.

Which statement must always be true?

1) $\overparen{A C} \cong \overparen{C B}$
2) $\overparen{D H} \cong \overparen{B H}$
3) $\overparen{A B} \cong \overparen{G H}$
4) $\overparen{A G} \cong \overparen{B H}$

2 The vertices of parallelogram $A B C D$ are $A(2,0)$, $B(0,-3), C(3,-3)$, and $D(5,0)$. If $A B C D$ is reflected over the x-axis, how many vertices remain invariant?

1) 1
2) 2
3) 3
4) 0

3 Point M is the midpoint of $\overline{A B}$. If the coordinates of A are $(-3,6)$ and the coordinates of M are $(-5,2)$, what are the coordinates of B ?

1) $(1,2)$
2) $(7,10)$
3) $(-4,4)$
4) $(-7,-2)$

4 When a dilation is performed on a hexagon, which property of the hexagon will not be preserved in its image?

1) parallelism
2) orientation
3) length of sides
4) measure of angles

5 As shown in the diagram below of $\triangle A B C$, a compass is used to find points D and E, equidistant from point A. Next, the compass is used to find point F, equidistant from points D and E. Finally, a straightedge is used to draw $\overrightarrow{A F}$. Then, point G, the intersection of $\overrightarrow{A F}$ and side $\overline{B C}$ of $\triangle A B C$, is labeled.

Which statement must be true?

1) $\overrightarrow{A F}$ bisects side $\overrightarrow{B C}$
2) $\overrightarrow{A F}$ bisects $\angle B A C$
3) $\overrightarrow{A F} \perp \overrightarrow{B C}$
4) $\triangle A B G \sim \triangle A C G$

6 In the diagram of $\triangle J E A$ below, $\mathrm{m} \angle J E A=90$ and $\mathrm{m} \angle E A J=48$. Line segment $M S$ connects points M and S on the triangle, such that $\mathrm{m} \angle E M S=59$.

What is $\mathrm{m} \angle J S M$?

1) 163
2) 121
3) 42
4) 17

7 In $\triangle A E D$ with $\overline{A B C D}$ shown in the diagram below, $\overline{E B}$ and $\overline{E C}$ are drawn.

If $\overline{A B} \cong \overline{C D}$, which statement could always be proven?

1) $\overline{A C} \cong \overline{D B}$
2) $\overline{A E} \cong \overline{E D}$
3) $\overline{A B} \cong \overline{B C}$
4) $\overline{E C} \cong \overline{E A}$

8 Given that $A B C D$ is a parallelogram, a student wrote the proof below to show that a pair of its opposite angles are congruent.

What is the reason justifying that $\angle B \cong \angle D$?

1) Opposite angles in a quadrilateral are congruent.
2) Parallel lines have congruent corresponding angles.
3) Corresponding parts of congruent triangles are congruent.
4) Alternate interior angles in congruent triangles are congruent.

9 The equation of a circle with its center at $(-3,5)$ and a radius of 4 is

1) $(x+3)^{2}+(y-5)^{2}=4$
2) $(x-3)^{2}+(y+5)^{2}=4$
3) $(x+3)^{2}+(y-5)^{2}=16$
4) $(x-3)^{2}+(y+5)^{2}=16$

10 In the diagram below of $\triangle D A E$ and $\triangle B C E, \overline{A B}$ and $\overline{C D}$ intersect at E, such that $\overline{A E} \cong \overline{C E}$ and $\angle B C E \cong \angle D A E$.

Triangle DAE can be proved congruent to triangle BCE by

1) $A S A$
2) SAS
3) SSS
4) HL

11 As shown in the diagram below, $\overline{F J}$ is contained in plane $\mathbb{R}, \overline{B C}$ and $\overline{D E}$ are contained in plane S, and $\overline{F J}, \overline{B C}$, and $\overline{D E}$ intersect at A.

Which fact is not sufficient to show that planes \mathbb{R} and S are perpendicular?

1) $\overline{F A} \perp \overline{D E}$
2) $\overline{A D} \perp \overline{A F}$
3) $\overline{B C} \perp \overline{F J}$
4) $\overline{D E} \perp \overline{B C}$

12 What is an equation of the circle shown in the graph below?

1) $(x-3)^{2}+(y-4)^{2}=25$
2) $(x+3)^{2}+(y+4)^{2}=25$
3) $(x-3)^{2}+(y-4)^{2}=10$
4) $(x+3)^{2}+(y+4)^{2}=10$

13 As shown in the diagram below, lines m and n are cut by transversal p.

If $\mathrm{m} \angle 1=4 x+14$ and $\mathrm{m} \angle 2=8 x+10$, lines m and n are parallel when x equals

1) 1
2) 6
3) 13
4) 17

14 The angle formed by the radius of a circle and a tangent to that circle has a measure of

1) 45°
2) 90°
3) 135°
4) 180°

15 A sphere is inscribed inside a cube with edges of 6 cm . In cubic centimeters, what is the volume of the sphere, in terms of π ?

1) 12π
2) 36π
3) 48π
4) 288π

16 Scalene triangle $A B C$ is similar to triangle $D E F$. Which statement is false?

1) $A B: B C=D E: E F$
2) $A C: D F=B C: E F$
3) $\angle A C B \cong \angle D F E$
4) $\angle A B C \cong \angle E D F$

17 Which equation represents a line that is parallel to the line whose equation is $y=\frac{3}{2} x-3$ and passes through the point $(1,2)$?

1) $y=\frac{3}{2} x+\frac{1}{2}$
2) $y=\frac{2}{3} x+\frac{4}{3}$
3) $y=\frac{3}{2} x-2$
4) $y=-\frac{2}{3} x+\frac{8}{3}$

18 Lines a and b intersect at point P. Line c passes through P and is perpendicular to the plane containing lines a and b. Which statement must be true?

1) Lines a, b, and c are coplanar.
2) Line a is perpendicular to line b.
3) Line c is perpendicular to both line a and line b.
4) Line c is perpendicular to line a or line b, but not both.

19 As shown in the diagram of $\triangle A C D$ below, B is a point on $\overline{A C}$ and $\overline{D B}$ is drawn.

If $\mathrm{m} \angle A=66, \mathrm{~m} \angle C D B=18$, and $\mathrm{m} \angle C=24$, what is the longest side of $\triangle A B D$?

1) $\overline{A B}$
2) $\overline{D C}$
3) $\overline{A D}$
4) $\overline{B D}$

20 In $\triangle A B C$ shown below, P is the centroid and $B F=18$.

What is the length of $\overline{B P}$?

1) 6
2) 9
3) 3
4) 12

21 In the diagram below, $\overline{E F}$ is the median of trapezoid $A B C D$.

If $A B=5 x-9, D C=x+3$, and $E F=2 x+2$, what is the value of x ?

1) 5
2) 2
3) 7
4) 8

22 In the diagram below of $\triangle A B C, \overline{A B} \cong \overline{A C}$, $\mathrm{m} \angle A=3 x$, and $\mathrm{m} \angle B=x+20$.

What is the value of x ?

1) 10
2) 28
3) 32
4) 40

23 For which polygon does the sum of the measures of the interior angles equal the sum of the measures of the exterior angles?

1) hexagon
2) pentagon
3) quadrilateral
4) triangle

24 For a triangle, which two points of concurrence could be located outside the triangle?

1) incenter and centroid
2) centroid and orthocenter
3) incenter and circumcenter
4) circumcenter and orthocenter

25 The slope of line ℓ is $-\frac{1}{3}$. What is an equation of a line that is perpendicular to line ℓ ?

1) $y+2=\frac{1}{3} x$
2) $-2 x+6=6 y$
3) $9 x-3 y=27$
4) $3 x+y=0$

26 Which type of triangle can be drawn using the points ($-2,3$), ($-2,-7$), and ($4,-5$)?

1) scalene
2) isosceles
3) equilateral
4) no triangle can be drawn

27 In the diagram below, $\overline{D E}$ joins the midpoints of two sides of $\triangle A B C$.

Which statement is not true?

1) $C E=\frac{1}{2} C B$
2) $D E=\frac{1}{2} A B$
3) area of $\triangle C D E=\frac{1}{2}$ area of $\triangle C A B$
4) perimeter of $\triangle C D E=\frac{1}{2}$ perimeter of $\triangle C A B$

28 Which equation represents the line that is perpendicular to $2 y=x+2$ and passes through the point $(4,3)$?

1) $y=\frac{1}{2} x-5$
2) $y=\frac{1}{2} x+1$
3) $y=-2 x+11$
4) $y=-2 x-5$

29 Write the negation of the statement " 2 is a prime number," and determine the truth value of the negation.

30 The coordinates of the vertices of $\triangle A B C$ are $A(1,2), B(-4,3)$, and $C(-3,-5)$. State the coordinates of $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a rotation of 90° about the origin. [The use of the set of axes below is optional.]

31 A cylinder has a height of 7 cm and a base with a diameter of 10 cm . Determine the volume, in cubic centimeters, of the cylinder in terms of π.

32 The coordinates of the endpoints of $\overline{F G}$ are $(-4,3)$ and $(2,5)$. Find the length of $\overline{F G}$ in simplest radical form.

33 Using a compass and straightedge, construct a line perpendicular to $\overline{A B}$ through point P. [Leave all construction marks.]

34 The graph below shows the locus of points equidistant from the x-axis and y-axis. On the same set of axes, graph the locus of points 3 units from the line $x=0$. Label with an \mathbf{X} all points that satisfy both conditions.

35 As shown in the diagram below, the diagonals of parallelogram QRST intersect at E. If $Q E=x^{2}+6 x, S E=x+14$, and $T E=6 x-1$, determine $T E$ algebraically.

36 The vertices of $\triangle R S T$ are $R(-6,5), S(-7,-2)$, and $T(1,4)$. The image of $\triangle R S T$ after the composition $T_{-2,3} \circ r_{y=x}$ is $\triangle R " S " T$ ". State the coordinates of $\Delta R " S " T$ ". [The use of the set of axes below is optional.]

37 On the set of axes below, solve the following system of equations graphically and state the coordinates of all points in the solution.

$$
\begin{gathered}
(x+3)^{2}+(y-2)^{2}=25 \\
2 y+4=-x
\end{gathered}
$$

38 Chords $\overline{A B}$ and $\overline{C D}$ intersect at E in circle O, as shown in the diagram below. Secant $\overline{F D A}$ and tangent $\overline{F B}$ are drawn to circle O from external point F and chord $\overline{A C}$ is drawn. The $\mathrm{m} \overparen{D A}=56$, $\mathrm{m} \overparen{D B}=112$, and the ratio of $\mathrm{m} \overparen{A C}: \mathrm{m} \overparen{C B}=3: 1$.

Determine $\mathrm{m} \angle C E B$. Determine $\mathrm{m} \angle F$. Determine $\mathrm{m} \angle D A C$.

fall08ge
 Answer Section

1 ANS: 3
The diagonals of an isosceles trapezoid are congruent. $5 x+3=11 x-5$.

$$
\begin{aligned}
6 x & =18 \\
x & =3
\end{aligned}
$$

| | PTS: 2 | REF: fall0801ge | STA: G.G. 40 | TOP: Trapezoids |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | ANS: 4 | PTS: 2 | REF: fall0802ge | STA: G.G. 24 |
| TOP: Negations | | | | |
| 3 | ANS: 1 | | | |

PTS: 2 REF: fall0803ge STA: G.G. 54 TOP: Translations
4 ANS: 3
PTS: 2
REF: fall0804ge
STA: G.G. 18
TOP: Constructions
5 ANS: 3

	PTS: 2	REF: fall0805ge	STA: G.G. 70	TOP: Quadratic-Linear Systems	
6	ANS: 2	PTS: 2	REF: fall0806ge	STA: G.G. 9	
	TOP: Planes				
7	ANS: 1	PTS: 2	REF: fall0807ge	STA: G.G. 19	
	TOP: Constructions				
8	ANS: 3				
	The lateral edges of a prism are parallel.				

PTS: 2 REF: fall0808ge STA: G.G. 10 TOP: Solids
9 ANS: 1
Since $\overline{A C} \cong \overline{B C}, \mathrm{~m} \angle A=\mathrm{m} \angle B$ under the Isosceles Triangle Theorem.
PTS: 2 REF: fall0809ge STA: G.G. 69 TOP: Triangles in the Coordinate Plane
10 ANS: 4
Median $\overline{B F}$ bisects $\overline{A C}$ so that $\overline{C F} \cong \overline{F A}$.
PTS: 2 REF: fall0810ge STA: G.G. 24 TOP: Statements
11 ANS: 3
Because $\overline{O C}$ is a radius, its length is 5. Since $C E=2 O E=3 . \triangle E D O$ is a 3-4-5 triangle. If $E D=4, B D=8$.
PTS: 2 REF: fall0811ge STA: G.G. 49 TOP: Chords

12 ANS: 2
The slope of a line in standard form is $-\frac{A}{B}$, so the slope of this line is $\frac{-2}{-1}=2$. A parallel line would also have a slope of 2. Since the answers are in slope intercept form, find the y-intercept: $\quad y=m x+b$

$$
\begin{aligned}
-11 & =2(-3)+b \\
-5 & =b
\end{aligned}
$$

PTS: 2 REF: fall0812ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
13 ANS: 2
$M_{x}=\frac{2+(-4)}{2}=-1 . M_{Y}=\frac{-3+6}{2}=\frac{3}{2}$.
PTS: 2 REF: fall0813ge STA: G.G. 66 TOP: Midpoint
14 ANS: 3 PTS: 2 REF: fall0814ge STA: G.G. 73
TOP: Equations of Circles
15 ANS: 1
$3 x^{2}+18 x+24$
$3\left(x^{2}+6 x+8\right)$
$3(x+4)(x+2)$
PTS: 2 REF: fall0815ge STA: G.G. 12 TOP: Volume
16 ANS: 3 PTS: 2 REF: fall0816ge STA: G.G. 1
TOP: Planes
17 ANS: 2

$$
\begin{aligned}
x^{2} & =3(x+18) \\
x^{2}-3 x-54 & =0 \\
(x-9)(x+6) & =0 \\
x & =9
\end{aligned}
$$

PTS: 2 REF: fall0817ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: tangent and secant
18 ANS: $4 \quad$ PTS: 2
REF: fall0818ge STA: G.G. 61
TOP: Analytical Representations of Transformations
19 ANS: 2
$7+18>6+12$
PTS: 2 REF: fall0819ge STA: G.G. 33 TOP: Triangle Inequality Theorem
20 ANS: 1
$M_{x}=\frac{-2+6}{2}=2 . M_{y}=\frac{3+3}{2}=3$. The center is (2,3). $d=\sqrt{(-2-6)^{2}+(3-3)^{2}}=\sqrt{64+0}=8$. If the diameter is 8 , the radius is 4 and $r^{2}=16$.

PTS: 2 REF: fall0820ge STA: G.G. 71 TOP: Equations of Circles

21 ANS: 1
$\triangle P R T$ and $\triangle S R Q$ share $\angle R$ and it is given that $\angle R P T \cong \angle R S Q$.
PTS: 2 REF: fall0821ge STA: G.G. 44 TOP: Similarity Proofs
22 ANS: 4
$3 y+1=6 x+4.2 y+1=x-9$

$$
\begin{array}{rlrl}
3 y & =6 x+3 & 2 y & =x-10 \\
y & =2 x+1 & y & =\frac{1}{2} x-5
\end{array}
$$

PTS: 2 REF: fall0822ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
23 ANS: 1
After the translation, the coordinates are $A^{\prime}(-1,5)$ and $B^{\prime}(3,4)$. After the dilation, the coordinates are $A^{\prime \prime}(-2,10)$ and $B^{\prime \prime}(6,8)$.

PTS: 2 REF: fall0823ge STA: G.G. 58 TOP: Compositions of Transformations
24 ANS: 4
TOP: Tangents
PTS: 2 REF: fall0824ge
STA: G.G. 50
25 ANS: 3 PTS: 2 REF: fall0825ge STA: G.G. 21
KEY: common tangency
TOP: Centroid, Orthocenter, Incenter and Circumcenter
26 ANS: 4
Corresponding angles of similar triangles are congruent.
PTS: 2 REF: fall0826ge STA: G.G. 45 TOP: Similarity
KEY: perimeter and area
ANS: 4
$(n-2) 180=(8-2) 180=1080 . \frac{1080}{8}=135$.
PTS: 2 REF: fall0827ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons
28 ANS: 2
The slope of a line in standard form is $-\frac{A}{B}$ so the slope of this line is $-\frac{5}{3}$ Perpendicular lines have slope that are the opposite and reciprocal of each other.

PTS: 2 REF: fall0828ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
29 ANS:
$2 \sqrt{3} \cdot x^{2}=3 \cdot 4$

$$
x=\sqrt{12}=2 \sqrt{3}
$$

PTS: 2 REF: fall0829ge STA: G.G. 47 TOP: Similarity
KEY: altitude

30 ANS:

PTS: 2 REF: fall0830ge STA: G.G. 55 TOP: Properties of Transformations
31 ANS:
25. $d=\sqrt{(-3-4)^{2}+(1-25)^{2}}=\sqrt{49+576}=\sqrt{625}=25$.

PTS: 2
REF: fall0831ge
STA: G.G. 67
TOP: Distance
32 ANS:

PTS: 2
REF: fall0832ge
STA: G.G. 17
TOP: Constructions
33 ANS:
22.4. $\quad V=\pi r^{2} h$

$$
\begin{aligned}
12566.4 & =\pi r^{2} \cdot 8 \\
r^{2} & =\frac{12566.4}{8 \pi}
\end{aligned}
$$

$$
r \approx 22.4
$$

PTS: 2
REF: fall0833ge
STA: G.G. 14
TOP: Volume
34 ANS:
Contrapositive-If two angles of a triangle are not congruent, the sides opposite those angles are not congruent.
PTS: 2
REF: fall0834ge
STA: G.G. 26
TOP: Conditional Statements

ANS:

PTS: 4 REF: fall0835ge STA: G.G. 42 TOP: Midsegments
36 ANS:
$\angle D, \angle G$ and 24° or $\angle E, \angle F$ and $84^{\circ} . \mathrm{m} \overparen{F E}=\frac{2}{15} \times 360=48$. Since the chords forming $\angle D$ and $\angle G$ are intercepted by $\overparen{F E}$, their measure is 24°. m $\overparen{G D}=\frac{7}{15} \times 360=168$. Since the chords forming $\angle E$ and $\angle F$ are intercepted by $\overparen{G D}$, their measure is 84°.

PTS: 4 REF: fall0836ge STA: G.G. 51 TOP: Arcs Determined by Angles
KEY: inscribed
37 ANS:

PTS: 4 REF: fall0837ge STA: G.G. 23 TOP: Locus
38 ANS:
Because $\overline{A B} \| \overline{D C}, \overparen{A D} \cong \overparen{B C}$ since parallel chords intersect congruent arcs. $\angle B D C \cong \angle A C D$ because inscribed angles that intercept congruent arcs are congruent. $\overline{A D} \cong \overline{B C}$ since congruent chords intersect congruent arcs. $\overline{D C} \cong \overline{C D}$ because of the reflexive property. Therefore, $\triangle A C D \cong \triangle B D C$ because of SAS.

PTS: 6
REF: fall0838ge
STA: G.G. 27
TOP: Circle Proofs

0609ge

Answer Section

1 ANS: 1
If $\angle A$ is at minimum $\left(50^{\circ}\right)$ and $\angle B$ is at minimum $\left(90^{\circ}\right), \angle C$ is at maximum of $40^{\circ}\left(180^{\circ}-\left(50^{\circ}+90^{\circ}\right)\right.$). If $\angle A$ is at maximum $\left(60^{\circ}\right)$ and $\angle B$ is at maximum $\left(100^{\circ}\right), \angle C$ is at minimum of $20^{\circ}\left(180^{\circ}-\left(60^{\circ}+100^{\circ}\right)\right)$.

PTS: 2 REF: 060901ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
2 ANS: 3

	PTS: 2	REF: 060902ge	STA: G.G. 28	TOP: Triangle Congruency
3	ANS: 1	PTS: 2	REF: 060903ge	STA: G.G. 56
TOP: Identifying Transformations				
4	ANS: 4	PTS: 2	REF: 060904ge	STA: G.G. 13
TOP: Solids				
5	ANS: 3	PTS: 2	REF: 060905ge	STA: G.G. 54
TOP: Reflections	KEY: basic			
6	ANS: 2			

Parallel chords intercept congruent arcs. $\mathrm{m} \overparen{A D}=\mathrm{m} \overparen{B C}=60 . \mathrm{m} \angle C D B=\frac{1}{2} \mathrm{~m} \overparen{B C}=30$.

PTS: 2
REF: 060906ge
STA: G.G. 52
TOP: Chords
7 ANS: 2
The slope of $y=\frac{1}{2} x+5$ is $\frac{1}{2}$. The slope of a perpendicular line is $-2 . y=m x+b$

$$
\begin{aligned}
& 5=(-2)(-2)+b \\
& b=1
\end{aligned}
$$

PTS: 2
8 ANS: 3
REF: 060907ge
STA: G.G. 64
TOP: Identifying Transformations
9 ANS: 1
In an equilateral triangle, each interior angle is 60° and each exterior angle is $120^{\circ}\left(180^{\circ}-120^{\circ}\right)$. The sum of the three interior angles is 180° and the sum of the three exterior angles is 360°.

PTS: 2 REF: 060909ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
10 ANS: 2
PTS: 2
REF: 060910ge
STA: G.G. 71
TOP: Equations of Circles
11 ANS: 2
Longest side of a triangle is opposite the largest angle. Shortest side is opposite the smallest angle.
PTS: 2 REF: 060911ge STA: G.G. 34 TOP: Angle Side Relationship

12 ANS: 4 PTS: 2 REF: 060912ge STA: G.G. 23
TOP: Locus
13 ANS: 4 PTS: 2 REF: 060913ge STA: G.G. 26
TOP: Conditional Statements
14 ANS: 2
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.
PTS: 2 REF: 060914ge STA: G.G. 43 TOP: Centroid
15 ANS: 1
$\overline{A B}=10$ since $\triangle A B C$ is a 6-8-10 triangle. $6^{2}=10 x$

$$
3.6=x
$$

PTS: 2 REF: 060915ge STA: G.G. 47 TOP: Similarity
KEY: leg
16 ANS: 3
$4(x+4)=8^{2}$
$4 x+16=64$
$x=12$
PTS: 2 REF: 060916ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: tangent and secant
17 ANS: 2
$\angle A C B$ and $\angle E C D$ are congruent vertical angles and $\angle C A B \cong \angle C E D$.

PTS: 2
18 ANS: 1
TOP: Planes
19 ANS: 4
$M_{x}=\frac{-6+1}{2}=-\frac{5}{2} . M_{y}=\frac{1+8}{2}=\frac{9}{2}$.
PTS: 2
20 ANS: 1
TOP: Graphing Circles
21 ANS: 1
$V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi \cdot 4^{2} \cdot 12 \approx 201$
PTS: 2
22 ANS: 4
TOP: Equations of Circles

REF: 060917ge
PTS: 2
STA: G.G. 44
REF: 060918ge
TOP: Similarity Proofs
STA: G.G. 2

23 ANS: 1
$y=x^{2}-4 x=(4)^{2}-4(4)=0 .(4,0)$ is the only intersection.
PTS: 2 REF: 060923ge STA: G.G. 70 TOP: Quadratic-Linear Systems
24 ANS: 4
(4) is not true if $\angle P Q R$ is obtuse.

PTS: 2 REF: 060924ge STA: G.G. 32 TOP: Exterior Angle Theorem
25 ANS: 3 PTS: 2 REF: 060925ge STA: G.G. 17
TOP: Constructions
26 ANS: 2
The slope of $2 x+3 y=12$ is $-\frac{A}{B}=-\frac{2}{3}$. The slope of a perpendicular line is $\frac{3}{2}$. Rewritten in slope intercept form,
(2) becomes $y=\frac{3}{2} x+3$.

PTS: 2 REF: 060926ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
27 ANS: 4
$\triangle A B C \sim \triangle D B E . \frac{\overline{A B}}{\overline{D B}}=\frac{\overline{A C}}{\overline{D E}}$

$$
\begin{aligned}
& \frac{9}{2}=\frac{x}{3} \\
& x=13.5
\end{aligned}
$$

PTS: 2
28 ANS: 3
REF: 060927ge
STA: G.G. 46
TOP: Side Splitter Theorem
TOP: Planes
PTS: 2
REF: 060928ge
STA: G.G. 8
ANS:
20. The sides of the triangle formed by connecting the midpoints are half the sides of the original triangle.
$5+7+8=20$.
PTS: 2

REF: 060929ge
STA: G.G. 42
TOP: Midsegments

30 ANS:

PTS: 2
REF: 060930ge
STA: G.G. 19 TOP: Constructions
31
ANS:
$y=-2 x+14$. The slope of $2 x+y=3$ is $\frac{-A}{B}=\frac{-2}{1}=-2 . y=m x+b$

$$
\begin{aligned}
& 4=(-2)(5)+b \\
& b=14
\end{aligned}
$$

PTS: 2
REF: 060931ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines
32
ANS:

PTS: 2 REF: 060932ge STA: G.G. 22 TOP: Locus
33 ANS:
True. The first statement is true and the second statement is false. In a disjunction, if either statement is true, the disjunction is true.

PTS: 2
REF: 060933ge
STA: G.G. 25
TOP: Compound Statements
KEY: disjunction

34 ANS:
20. $5 x+10=4 x+30$

$$
x=20
$$

PTS: 2
REF: 060934ge
STA: G.G. 45
TOP: Similarity
KEY: basic
35 ANS:
18. If the ratio of $T A$ to $A C$ is $1: 3$, the ratio of $T E$ to $E S$ is also $1: 3 . x+3 x=24.3(6)=18$.

$$
x=6
$$

PTS: 4
REF: 060935ge
STA: G.G. 50
TOP: Tangents
KEY: common tangency
36
ANS:
$15+5 \sqrt{5}$.

PTS: 4
REF: 060936ge
STA: G.G. 69
TOP: Triangles in the Coordinate Plane
37 ANS:

PTS: 4
REF: 060937ge STA: G.G. 54
TOP: Compositions of Transformations KEY: grids

38 ANS:
$\overline{A C} \cong \overline{E C}$ and $\overline{D C} \cong \overline{B C}$ because of the definition of midpoint. $\angle A C B \cong \angle E C D$ because of vertical angles. $\triangle A B C \cong \triangle E D C$ because of SAS. $\angle C D E \cong \angle C B A$ because of CPCTC. $\overline{B D}$ is a transversal intersecting $\overline{A B}$ and $\triangle A B C \cong \triangle E D C$ because of SAS. $\angle C D E \cong \angle C B A$ because of CPCTC. BD is a transversal in
$\overline{E D}$. Therefore $\overline{A B} \| \overline{D E}$ because $\angle C D E$ and $\angle C B A$ are congruent alternate interior angles.

PTS: 6 REF: 060938ge STA: G.G. 27 TOP: Triangle Proofs

0809ge

Answer Section

1 ANS: 4
The marked 60° angle and the angle above it are on the same straight line and supplementary. This unmarked supplementary angle is 120°. Because the unmarked 120° angle and the marked 120° angle are alternate exterior angles and congruent, $d \| e$.
$\begin{array}{lllll}\text { PTS: } 2 & \text { REF: 080901ge } & \text { STA: G.G. } 35 & \text { TOP: Parallel Lines and Transversals } \\ \text { ANS: } 3 & \text { PTS: } 2 & \text { REF: 080902ge } & \text { STA: } \mathrm{G} . \mathrm{G} .17\end{array}$
TOP: Constructions
3 ANS: 4
$180-(40+40)=100$
PTS: 2 REF: 080903ge STA: G.G. 31 TOP: Isosceles Triangle Theorem
4 ANS: 2
Parallel chords intercept congruent arcs. $\mathrm{m} \overparen{A C}=\mathrm{m} \overparen{B D}=30.180-30-30=120$.
PTS: 2 REF: 080904ge STA: G.G. 52 TOP: Chords
5 ANS: 4 PTS: 2 REF: 080905ge STA: G.G. 29
TOP: Triangle Congruency
6 ANS: 2
A dilation affects distance, not angle measure.
PTS: 2 REF: 080906ge STA: G.G. 60 TOP: Identifying Transformations
7 ANS: 1
$\angle D C B$ and $\angle A D C$ are supplementary adjacent angles of a parallelogram. $180-120=60 . \angle 2=60-45=15$.
PTS: 2 REF: 080907ge STA: G.G. 38 TOP: Parallelograms
8 ANS: 1
Translations and reflections do not affect distance.
PTS: 2 REF: 080908ge STA: G.G. 59 TOP: Properties of Transformations
9 ANS: 3
The slope of $y=x+2$ is 1 . The slope of $y-x=-1$ is $\frac{-A}{B}=\frac{-(-1)}{1}=1$.
PTS: 2 REF: 080909ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
10 ANS: 2
$M_{x}=\frac{-2+6}{2}=2 . M_{y}=\frac{-4+2}{2}=-1$
$\begin{array}{lllll}\text { PTS: } 2 & \text { REF: 080910ge } & \text { STA: G.G.66 } & \text { TOP: Midpoint } \\ \text { ANS: } 1 & \text { PTS: } 2 & \text { REF: 080911ge } & \text { STA: } & \text { G.G. } 73\end{array}$
TOP: Equations of Circles

12 ANS: 4
$y+x=4 . x^{2}-6 x+10=-x+4$.
$y=-x+4$
$y=4$
$x^{2}-5 x+6=0$

$\begin{array}{ll}x-3)(x-2)=0 & y+3=4\end{array} \quad y=2$
$x=3$ or 2
PTS: 2 REF: 080912ge STA: G.G.70
13 ANS: 3 PTS: 2 REF: 080913ge
TOP: Triangle Congruency
14 ANS: 4 PTS: 2
TOP: Planes
15 ANS: 4 PTS: 2
REF: 080914ge
TOP: Quadratic-Linear Systems
STA: G.G. 28

TOP: Identifying Transformations
16 ANS: 2
$6+17>22$
PTS: 2
REF: 080916ge
STA: G.G. 33
TOP: Triangle Inequality Theorem
17 ANS: 4
The slope of $y=-\frac{2}{3} x-5$ is $-\frac{2}{3}$. Perpendicular lines have slope that are opposite reciprocals.
PTS: 2 REF: 080917ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
18 ANS: 1
PTS: 2
REF: 080918ge
STA: G.G. 41
TOP: Special Quadrilaterals
19 ANS: 1
$d=\sqrt{(-4-2)^{2}+(5-(-5))^{2}}=\sqrt{36+100}=\sqrt{136}=\sqrt{4} \cdot \sqrt{34}=2 \sqrt{34}$.
PTS: 2 REF: 080919ge STA: G.G. 67 TOP: Distance
20 ANS: 3

$\begin{array}{llll}\text { PTS: } 2 & \text { REF: 080920ge } & \text { STA: G.G. } 42 & \text { TOP: Midsegments } \\ \text { ANS: } 2 & \text { PTS: } 2 & \text { REF: 080921ge } & \text { STA: G.G. } 72 \\ \text { TOP: Equations of Circles } & & & \end{array}$

22 ANS: 4
Let $\overline{A D}=x . \quad 36 x=12^{2}$

$$
x=4
$$

PTS: 2
REF: 080922ge
STA: G.G. 47
TOP: Similarity
KEY: leg
23 ANS: 2
$4(4 x-3)=3(2 x+8)$
$16 x-12=6 x+24$
$10 x=36$
$x=3.6$
PTS: 2 REF: 080923ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: two chords
24 ANS: 3 PTS: 2 REF: 080924ge STA: G.G. 24
TOP: Negations
25 ANS: $4 \quad$ PTS: 2
REF: 080925ge STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
26 ANS: 1

$$
\begin{aligned}
V & =\pi r^{2} h \\
1000 & =\pi r^{2} \cdot 8 \\
r^{2} & =\frac{1000}{8 \pi} \\
r & \approx 6.3
\end{aligned}
$$

PTS: 2
27 ANS: 2
TOP: Planes
28 ANS: 3
TOP: Tangents

REF: 080926ge
PTS: 2
PTS: 2 KEY: common tangency

29 ANS:
3. The non-parallel sides of an isosceles trapezoid are congruent. $2 x+5=3 x+2$

$$
x=3
$$

PTS: 2
REF: 080929ge STA: G.G. 40
TOP: Trapezoids
30 ANS:
2016. $V=\frac{1}{3} B h=\frac{1}{3} s^{2} h=\frac{1}{3} 12^{2} \cdot 42=2016$

PTS: 2
REF: 080930ge
STA: G.G. 13
TOP: Volume

31 ANS:
$y=\frac{2}{3} x-9$. The slope of $2 x-3 y=11$ is $-\frac{A}{B}=\frac{-2}{-3}=\frac{2}{3} .-5=\left(\frac{2}{3}\right)(6)+b$
$-5=4+b$
$b=-9$
PTS: 2 REF: 080931ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
32 ANS:

PTS: 2
REF: 080932ge
STA: G.G. 17
TOP: Constructions
33 ANS:
26. $x+3 x+5 x-54=180$

$$
\begin{aligned}
9 x & =234 \\
x & =26
\end{aligned}
$$

PTS: 2
REF: 080933ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles
34 ANS:
$\overline{A C} . \mathrm{m} \angle B C A=63$ and $\mathrm{m} \angle A B C=80 . \overline{A C}$ is the longest side as it is opposite the largest angle.
PTS: 2
REF: 080934ge
STA: G.G. 34
TOP: Angle Side Relationship

35 ANS:
$y=\frac{4}{3} x-6 . \quad M_{x}=\frac{-1+7}{2}=3 \quad$ The perpendicular bisector goes through $(3,-2)$ and has a slope of $\frac{4}{3}$.

$$
\begin{aligned}
& M_{y}=\frac{1+(-5)}{2}=-2 \\
& m=\frac{1-(-5)}{-1-7}=-\frac{3}{4}
\end{aligned}
$$

$$
y-y_{M}=m\left(x-x_{M}\right) .
$$

$$
y-1=\frac{4}{3}(x-2)
$$

PTS: 4
REF: 080935ge
STA: G.G. 68
TOP: Perpendicular Bisector
36 ANS:

PTS: 4
REF: 080936ge
STA: G.G. 23
TOP: Locus
37 ANS:

PTS: 4
REF: 080937ge STA: G.G. 55
TOP: Properties of Transformations

ANS:

$$
\overline{F E} \cong \overline{F E} \text { (Reflexive Property); } \overline{A E}-\overline{F E} \cong \overline{F C}-\overline{E F} \text { (Line Segment Subtraction }
$$

Theorem); $\overline{A F} \cong \overline{C E}$ (Substitution); $\angle B F A \cong \angle D E C$ (All right angles are congruent); $\triangle B F A \cong \triangle D E C$ (AAS); $\overline{A B} \cong \overline{C D}$ and $\overline{B F} \cong \overline{D E}$ (CPCTC); $\angle B F C \cong \angle D E A$ (All right angles are congruent); $\triangle B F C \cong \triangle D E A$ (SAS);
$\overline{A D} \cong \overline{C B}$ (СРСТС); $A B C D$ is a parallelogram (opposite sides of quadrilateral $A B C D$ are congruent)
PTS: 6
REF: 080938ge
STA: G.G. 41
TOP: Special Quadrilaterals

0110ge

Answer Section

1 ANS: 2
The length of the midsegment of a trapezoid is the average of the lengths of its bases. $\frac{x+30}{2}=44$.

$$
\begin{array}{r}
x+30=88 \\
x=58
\end{array}
$$

PTS: 2 REF: 011001ge STA: G.G. 40 TOP: Trapezoids
2 ANS: 1
$x+2 x+2+3 x+4=180$

$$
\begin{aligned}
6 x+6 & =180 \\
x & =29
\end{aligned}
$$

PTS: 2
3 ANS: 2
REF: 011002ge
STA: G.G. 30
REF: 011003ge
TOP: Interior and Exterior Angles of Triangles
TOP: Properties of Transformations
4 ANS: 2
PTS: 2
REF: 011004ge
STA: G.G. 55

TOP: Constructions
5 ANS: 1
The closer a chord is to the center of a circle, the longer the chord.

	PTS: 2	REF: 011005ge	STA: G.G. 49	TOP: Chords
6	ANS: 2	PTS: 2	REF: 011006ge	STA: G.G. 56
TOP: Isometries				
7	ANS: 3	PTS: 2	REF: 011007ge	STA: G.G. 31
	TOP: Isosceles Triangle Theorem			
8	ANS: 4			
	$x^{2}=(4+5) \times 4$			
	$x^{2}=36$			

PTS: 2
REF: 011008ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: tangent and secant
9 ANS: 4 PTS: 2
TOP: Constructions
10 ANS: $3 \quad$ PTS: 2
TOP: Equations of Circles
11 ANS: 2
PTS: 2
TOP: Locus
12 ANS: 4
PTS: 2
REF: 011009ge
STA: G.G. 19
REF: 011010ge
STA: G.G. 71

TOP: Planes
REF: 011011ge
STA: G.G. 22
REF: 011012ge
STA: G.G. 1

13 ANS: 1
Opposite sides of a parallelogram are congruent. $4 x-3=x+3 . S V=(2)+3=5$.

$$
\begin{array}{r}
3 x=6 \\
x=2
\end{array}
$$

PTS: 2 REF: 011013ge STA: G.G. 38 TOP: Parallelograms
14 ANS: 3
$m=\frac{-A}{B}=\frac{5}{2} . m=\frac{-A}{B}=\frac{10}{4}=\frac{5}{2}$
PTS: 2 REF: 011014ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
15 ANS: 2
$\frac{87+35}{2}=\frac{122}{2}=61$
PTS: 2 REF: 011015ge STA: G.G. 51 TOP: Arcs Determined by Angles
KEY: inside circle
16 ANS: 1

$$
\begin{aligned}
a^{2}+(5 \sqrt{2})^{2} & =(2 \sqrt{15})^{2} \\
a^{2}+(25 \times 2) & =4 \times 15 \\
a^{2}+50 & =60 \\
a^{2} & =10 \\
a & =\sqrt{10}
\end{aligned}
$$

PTS: 2 REF: 011016ge STA: G.G. 48 TOP: Pythagorean Theorem
17 ANS: 4
$d=\sqrt{(-3-1)^{2}+(2-0)^{2}}=\sqrt{16+4}=\sqrt{20}=\sqrt{4} \cdot \sqrt{5}=2 \sqrt{5}$
PTS: 2 REF: 011017ge STA: G.G. 67 TOP: Distance
18 ANS: 4
The slope of $y=-3 x+2$ is -3 . The perpendicular slope is $\frac{1}{3} .-1=\frac{1}{3}(3)+b$

$$
\begin{aligned}
-1 & =1+b \\
b & =-2
\end{aligned}
$$

PTS: 2
19 ANS: 4
REF: 011018ge
STA: G.G. 64
REF: 011019ge
TOP: Parallel and Perpendicular Lines
TOP: Similarity Proofs
20 ANS: 2
PTS: 2
REF: 011020ge STA: G.G. 74
TOP: Graphing Circles

21 ANS: 1

PTS: 2 REF: 011021ge STA: G.G. 32 TOP: Exterior Angle Theorem
22 ANS: 2
Because the triangles are similar, $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle D}=1$
PTS: 2 REF: 011022ge STA: G.G. 45 TOP: Similarity
KEY: perimeter and area
23 ANS: 3

. The sum of the interior angles of a pentagon is $(5-2) 180=540$.

PTS: 2
24 ANS: 1
TOP: Planes
25 ANS: 3
$m=\frac{-A}{B}=-\frac{3}{4}$
PTS: 2
26 ANS: 1
$A^{\prime}(2,4)$
PTS: 2 REF: 011023ge STA: G.G. 54 TOP: Compositions of Transformations
KEY: basic
27 ANS: 3
$V=\pi r^{2} h=\pi \cdot 6^{2} \cdot 27=972 \pi$
PTS: 2
28 ANS: 3
REF: 011027ge
PTS: 2
TOP: Conditional Statements

REF: 011023ge STA: G.G. 36
PTS: 2 REF: 011024ge
TOP: Interior and Exterior Angles of Polygons STA: G.G. 3

29 ANS:
67. $\frac{180-46}{2}=67$

PTS: 2 REF: 011029ge STA: G.G. 31 TOP: Isosceles Triangle Theorem
30 ANS:
4. $l_{1} w_{1} h_{1}=l_{2} w_{2} h_{2}$
$10 \times 2 \times h=5 \times w_{2} \times h$

$$
20=5 w_{2}
$$

$$
w_{2}=4
$$

PTS: 2 REF: 011030ge STA: G.G. 11 TOP: Volume
31 ANS:
$(6,-4) . C_{x}=\frac{Q_{x}+R_{x}}{2} . C_{y}=\frac{Q_{y}+R_{y}}{2}$.

$$
\begin{array}{rlrl}
3.5 & =\frac{1+R_{x}}{2} & 2 & =\frac{8+R_{y}}{2} \\
7 & =1+R_{x} & 4 & =8+R_{y} \\
6 & =R_{x} & -4 & =R_{y}
\end{array}
$$

PTS: 2 REF: 011031ge STA: G.G. 66 TOP: Midpoint
32 ANS:

PTS: 2
REF: 011032ge
STA: G.G. 20
TOP: Constructions
33 ANS:
5. $\frac{3}{x}=\frac{6+3}{15}$

$$
\begin{aligned}
9 x & =45 \\
x & =5
\end{aligned}
$$

PTS: 2
REF: 011033ge
STA: G.G. 46
TOP: Side Splitter Theorem
34 ANS:
6. The centroid divides each median into segments whose lengths are in the ratio $2: 1 . \overline{T D}=6$ and $\overline{D B}=3$

PTS: 2
REF: 011034ge
STA: G.G. 43
TOP: Centroid

35 ANS:
36, because a dilation does not affect angle measure. 10 , because a dilation does affect distance.
PTS: 4 REF: 011035ge STA: G.G. 59 TOP: Properties of Transformations
36 ANS:
$\overline{J K} \cong \overline{L M}$ because opposite sides of a parallelogram are congruent. $\overline{L M} \cong \overline{L N}$ because of the Isosceles Triangle Theorem. $\overline{L M} \cong \overline{J M}$ because of the transitive property. JKLM is a rhombus because all sides are congruent.

PTS: 4 REF: 011036ge STA: G.G. 41 TOP: Special Quadrilaterals
37 ANS:

PTS: 4
REF: 011037ge
STA: G.G. 23
TOP: Locus
38

PTS: 6
REF: 011038ge
STA: G.G. 70
TOP: Quadratic-Linear Systems

0610ge

Answer Section

1 ANS: 1
Parallel lines intercept congruent arcs.

	PTS: 2	REF: 061001ge	STA: G.G.52	TOP: Chords
2	ANS: 2	PTS: 2	REF: 061002ge	STA: G.G. 24
TOP: Negations				
3	ANS: 4	PTS: 2	REF: 061003ge	STA: G.G. 10
TOP: Solids				
4	ANS: 3	PTS: 2	REF: 061004ge	STA: G.G. 31
TOP: Isosceles Triangle Theorem				
5	ANS: 1	PTS: 2	REF: 061005ge	STA: G.G. 55

TOP: Properties of Transformations
6 ANS: 4
$L=2 \pi r h=2 \pi \cdot 5 \cdot 11 \approx 345.6$
PTS: 2 REF: 061006ge
STA: G.G. 14 TOP: Volume
7 ANS: 2
PTS: 2
REF: 061007ge
STA: G.G. 35
TOP: Parallel Lines and Transversals
8 ANS: $4 \quad$ PTS: 2
TOP: Trapezoids
9 ANS: 1
TOP: Converse
10 ANS: 1
PTS: 2
REF: 061008ge STA: G.G. 40

TOP: Angle Side Relationship
11 ANS: 3

	PTS: 2	REF:	061011ge	STA:	G.G. 70	TOP:	Quadratic-Linear Systems
12	ANS: 1	PTS:	2	REF:	061012ge	STA:	G.G. 20
	TOP: Constructions						
13	ANS: 1	PTS:	2	REF:	061013ge	STA:	G.G. 50
	TOP: Tangents		point of tan				
14	ANS: 4						
The radius is 4. $r^{2}=16$.							
	PTS: 2	REF:	061014ge	STA:	G.G. 72	TOP:	Equations of Circles
15	ANS: 4	PTS:	2	REF:	061015ge	STA:	G.G. 56
	TOP: Identifying Tra	ansfor	nations				

16 ANS: 3

PTS: 2 REF: 061016ge STA: G.G. 40 TOP: Trapezoids
ANS: 3
PTS: 2
REF: 061017ge
STA: G.G. 1
TOP: Planes
REF: 061018ge
STA: G.G. 56
18 ANS: 4 PTS: 2
TOP: Identifying Transformations
19 ANS: 3
$\frac{36+20}{2}=28$

PTS: 2
REF: 061019ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inside circle
20 ANS: 2
PTS: 2 REF: 061020ge
STA: G.G. 19
TOP: Constructions
21 ANS: 4
$d=\sqrt{(146-(-4))^{2}+(52-2)^{2}}=\sqrt{25,000} \approx 158.1$

PTS: 2
22 ANS: 2
TOP: Parallel and Perpendicular Lines
23 ANS: 2
$(d+4) 4=12(6)$
$4 d+16=72$
$d=14$
$r=7$
PTS: 2
KEY: two secants
REF: 061021ge

REF: 061023ge STA: G.G. 53 TOP: Segments Intercepted by Circle

STA: G.G. 67
REF: 061022ge

TOP: Distance
STA: G.G. 62

24 ANS: 2

$$
\begin{aligned}
x^{2}+(x+7)^{2} & =13^{2} \\
x^{2}+x^{2}+7 x+7 x+49 & =169 \\
2 x^{2}+14 x-120 & =0 \\
x^{2}+7 x-60 & =0 \\
(x+12)(x-5) & =0 \\
x & =5 \\
2 x & =10
\end{aligned}
$$

PTS: 2 REF: 061024ge STA: G.G. 48 TOP: Pythagorean Theorem
25 ANS: 4
$\overline{B G}$ is also an angle bisector since it intersects the concurrence of $\overline{C D}$ and $\overline{A E}$
PTS: 2
REF: 061025ge STA: G.G. 21
KEY: Centroid, Orthocenter, Incenter and Circumcenter
26
ANS: 2

PTS: 2
REF: 061026GE
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inscribed
27 ANS: 1

$$
\begin{aligned}
-2\left(-\frac{1}{2} y\right. & =6 x+10) \\
y & =-12 x-20
\end{aligned}
$$

PTS: 2
REF: 061027ge
STA: G.G. 63
TOP: Parallel and Perpendicular Lines
28 ANS: 2
Adjacent sides of a rectangle are perpendicular and have opposite and reciprocal slopes.
PTS: 2 REF: 061028ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane
29 ANS:
452. $S A=4 \pi r^{2}=4 \pi \cdot 6^{2}=144 \pi \approx 452$

PTS: 2 REF: 061029ge STA: G.G. 16 TOP: Volume and Surface Area

30 ANS:
37. Since $\overline{D E}$ is a midsegment, $A C=14.10+13+14=37$

PTS: 2 REF: 061030ge STA: G.G. 42 TOP: Midsegments
31 ANS:
34. $2 x-12+x+90=180$

$$
\begin{aligned}
3 x+78 & =90 \\
3 x & =102 \\
x & =34
\end{aligned}
$$

PTS: 2
REF: 061031ge
STA: G.G. 30
32 ANS:

PTS: 2
REF: 061032ge
STA: G.G. 54
TOP: Reflections
KEY: grids
33 ANS:

PTS: 2
REF: 061033ge
STA: G.G. 22
TOP: Interior and Exterior Angles of Triangles

TOP: Locus

34 ANS:
18. $\quad V=\frac{1}{3} B h=\frac{1}{3} l w h$

$$
\begin{aligned}
288 & =\frac{1}{3} \cdot 8 \cdot 6 \cdot h \\
288 & =16 h \\
18 & =h
\end{aligned}
$$

PTS: 2 REF: 061034ge STA: G.G. 13 TOP: Volume
35 ANS:
$\overline{B D} \cong \overline{D B}$ (Reflexive Property); $\triangle A B D \cong \triangle C D B$ (SSS); $\angle B D C \cong \angle A B D$ (СРСТС).

PTS: 4
REF: 061035ge STA: G.G. 27
TOP: Quadrilateral Proofs
36 ANS:
$y=\frac{2}{3} x+1.2 y+3 x=6 \quad . y=m x+b$

$$
\begin{gathered}
2 y=-3 x+6 \\
3
\end{gathered} 5=\frac{2}{3}(6)+b
$$

$$
y=-\frac{3}{2} x+3 \quad 5=4+b
$$

$$
m=-\frac{3}{2} \quad 1=b
$$

$$
m_{\perp}=\frac{2}{3} \quad y=\frac{2}{3} x+1
$$

PTS: 4 REF: 061036ge STA: G.G. 64 TOP: Parallel and Perpendicular Lines
37 ANS:
Midpoint: $\left(\frac{-4+4}{2}, \frac{2+(-4)}{2}\right)=(0,-1)$. Distance: $d=\sqrt{(-4-4)^{2}+(2-(-4))^{2}}=\sqrt{100}=10$
$r=5$

$$
r^{2}=25
$$

$x^{2}+(y+1)^{2}=25$
PTS: 2
REF: 061037ge
STA: G.G. 71
TOP: Equations of Circles

38 ANS:

$$
\begin{aligned}
& 8 x-5=3 x+30.4 z-8=3 z .9 y+8+5 y-2=90 . \\
& 5 x=35 \\
& z=8 \\
& 14 y+6=90 \\
& x=7 \\
& 14 y=84 \\
& y=6
\end{aligned}
$$

PTS: 6
REF: 061038ge STA: G.G. 39
TOP: Special Parallelograms

0810ge

Answer Section

1 ANS: 4

PTS: 2
2 ANS: 3 TOP: Planes
3 ANS: 1

PTS: 2
STA: G.G. 42
TOP: Midsegments
4 ANS: 3

$$
\begin{aligned}
(x+3)^{2}-4 & =2 x+5 \\
x^{2}+6 x+9-4 & =2 x+5 \\
x^{2}+4 x & =0 \\
x(x+4) & =0 \\
x & =0,-4
\end{aligned}
$$

PTS: 2
5 ANS: 4
TOP: Constructions
6 ANS: 4
$180-(50+30)=100$
PTS: 2
KEY: basic
\qquad

REF: 081003ge

REF: 081004ge
PTS: 2
REF: 081001ge
PTS: 2

STA: G.G. 29
REF: 081002ge

TOP: Triangle Congruency
STA: G.G. 9

7 ANS: 2

PTS: 2
8 ANS: 1
TOP: Planes
9 ANS: 1
REF: 081007ge
STA: G.G. 28
TOP: Triangle Congruency
PTS: 2
REF: 081008ge
PTS: 2
REF: 081009ge
STA: G.G. 73
TOP: Equations of Circles
10 ANS: 4
The slope of a line in standard form is $-\frac{A}{B}$, so the slope of this line is $\frac{-4}{2}=-2$. A parallel line would also have a slope of -2 . Since the answers are in slope intercept form, find the y-intercept: $\quad y=m x+b$

$$
\begin{aligned}
3 & =-2(7)+b \\
17 & =b
\end{aligned}
$$

PTS: 2 REF: 081010ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
11 ANS: 4
Longest side of a triangle is opposite the largest angle. Shortest side is opposite the smallest angle.
$\begin{array}{lllll}\text { PTS: } 2 & \text { REF: 081011ge } & \text { STA: G.G. } 34 & \text { TOP: Angle Side Relationship } \\ \text { ANS: } 1 & \text { PTS: } 2 & \text { REF: 081012ge } & \text { STA: G.G. } 50\end{array}$
TOP: Tangents KEY: two tangents
13 ANS: 4
$d=\sqrt{(-6-2)^{2}+(4-(-5))^{2}}=\sqrt{64+81}=\sqrt{145}$
PTS: 2
REF: 081013ge
STA: G.G. 67
TOP: Distance
14 ANS: 2
$y+\frac{1}{2} x=4 \quad 3 x+6 y=12$
$y=-\frac{1}{2} x+4$

$$
\begin{aligned}
6 y & =-3 x+12 \\
y & =-\frac{3}{6} x+2 \\
y & =-\frac{1}{2} x+2
\end{aligned}
$$

$$
\begin{array}{rl}
y=-\frac{1}{2} x+4 \\
1 & y
\end{array}
$$

$m=-\frac{1}{2}$

PTS: 2
REF: 081014ge
STA: G.G. 63
15 ANS: 2
PTS: 2
TOP: Properties of Transformations

16 ANS: 4
sum of interior $\angle \mathrm{s}=$ sum of exterior $\angle \mathrm{s}$

$$
\begin{aligned}
(n-2) 180 & =n\left(180-\frac{(n-2) 180}{n}\right) \\
180 n-360 & =180 n-180 n+360 \\
180 n & =720 \\
n & =4
\end{aligned}
$$

PTS: 2
REF: 081016ge
STA: G.G. 36
TOP: Interior and Exterior Angles of Polygons
17 ANS: 1

PTS: 2 REF: 081017ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: two chords
18 ANS: 1
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.

$$
\begin{aligned}
\overline{G C} & =2 \overline{F G} \\
\overline{G C}+\overline{F G} & =24 \\
2 \overline{F G}+\overline{F G} & =24 \\
3 \overline{F G} & =24 \\
\overline{F G} & =8
\end{aligned}
$$

PTS: 2 REF: 081018ge STA: G.G. 43 TOP: Centroid
19 ANS: 2
$M_{x}=\frac{3 x+5+x-1}{2}=\frac{4 x+4}{2}=2 x+2 . M_{Y}=\frac{3 y+(-y)}{2}=\frac{2 y}{2}=y$.
PTS: 2
REF: 081019ge
STA: G.G. 66
TOP: Midpoint

20 ANS: 4

$$
\mathrm{SA}=4 \pi r^{2} \quad V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot 6^{3}=288 \pi
$$

$144 \pi=4 \pi r^{2}$
$36=r^{2}$
$6=r$
PTS: 2
21 ANS: 3
REF: 081020ge
STA: G.G. 16
TOP: Properties of Transformations
22 ANS: 1
$\angle A=\frac{(n-2) 180}{n}=\frac{(5-2) 180}{5}=108 \angle A E B=\frac{180-108}{2}=36$
PTS: 2 REF: 081022ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons
23 ANS: 4
PTS: 2 REF: 081023ge
STA: G.G. 45
TOP: Similarity KEY: perimeter and area
24 ANS: 3
$2 y=-6 x+8$ Perpendicular lines have slope the opposite and reciprocal of each other.

$$
\begin{aligned}
y & =-3 x+4 \\
m & =-3 \\
m_{\perp} & =\frac{1}{3}
\end{aligned}
$$

PTS: 2 REF: 081024ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
25 ANS: 2
$\frac{140-\overline{R S}}{2}=40$

$$
\begin{aligned}
140-\overline{R S} & =80 \\
\overline{R S} & =60
\end{aligned}
$$

PTS: 2
REF: 081025ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: outside circle
26 ANS: 3
PTS: 2
REF: 081026ge
STA: G.G. 26
TOP: Contrapositive
27 ANS: 2
$\frac{3}{7}=\frac{6}{x}$
$3 x=42$
$x=14$
PTS: 2 REF: 081027ge STA: G.G. 46 TOP: Side Splitter Theorem

28 ANS: 1
PTS: 2
REF: 081028ge
STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
29 ANS:
70. $3 x+5+3 x+5+2 x+2 x=180$

$$
\begin{aligned}
10 x+10 & =360 \\
10 x & =350 \\
x & =35 \\
2 x & =70
\end{aligned}
$$

PTS: 2
REF: 081029ge
STA: G.G. 40
TOP: Trapezoids
30 ANS:
$375 \pi L=\pi r l=\pi(15)(25)=375 \pi$
PTS: 2
REF: 081030ge
STA: G.G. 15
TOP: Volume and Lateral Area
31 ANS:
110. $6 x+20=x+40+4 x-5$

$$
\begin{aligned}
6 x+20 & =5 x+35 \\
x & =15 \\
6((15)+20 & =110
\end{aligned}
$$

PTS: 2
REF: 081031ge
STA: G.G. 31
32 ANS:

PTS: 2
REF: 081032ge
STA: G.G. 20
33 ANS:

PTS: 2
REF: 081033ge
STA: G.G. 22

TOP: Locus

ANS:
$(x+1)^{2}+(y-2)^{2}=36$
PTS: 2 REF: 081034ge STA: G.G. 72 TOP: Equations of Circles
35 ANS:
Yes, $\mathrm{m} \angle A B D=\mathrm{m} \angle B D C=44180-(93+43)=44 x+19+2 x+6+3 x+5=180$. Because alternate interior

$$
\begin{aligned}
6 x+30 & =180 \\
6 x & =150 \\
x & =25 \\
x+19 & =44
\end{aligned}
$$

angles $\angle A B D$ and $\angle C D B$ are congruent, $\overline{A B}$ is parallel to $\overline{D C}$.
PTS: 4 REF: 081035ge STA: G.G. 35 TOP: Parallel Lines and Transversals
ANS:

$$
A^{\prime \prime}(8,2), B^{\prime \prime}(2,0), C^{\prime \prime}(6,-8)
$$

PTS: 4 REF: 081036ge STA: G.G. 58 TOP: Compositions of Transformations
37 ANS:
2.4. $5 a=4^{2} \quad 5 b=3^{2} \quad h^{2}=a b$

$$
a=3.2 \quad b=1.8 \quad h^{2}=3.2 \cdot 1.8
$$

$$
h=\sqrt{5.76}=2.4
$$

PTS: 4
REF: 081037ge STA: G.G. 47 TOP: Similarity
KEY: altitude

ANS:

$\overline{A B} \| \overline{C D}$ and $\overline{A D} \| \overline{C B}$ because their slopes are equal. $A B C D$ is a parallelogram because opposite side are parallel. $\overline{A B} \neq \overline{B C} . A B C D$ is not a rhombus because all sides are not equal.
$A B \sim \perp B C$ because their slopes are not opposite reciprocals. $A B C D$ is not a rectangle because $\angle A B C$ is not a right angle.

PTS: 4
REF: 081038ge
STA: G.G. 69
TOP: Quadrilaterals in the Coordinate Plane

0111ge

Answer Section
1 ANS: 3

PTS: 2 REF: 011101ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: two tangents
2 ANS: 1 PTS: 2
REF: 011102ge STA: G.G. 55
TOP: Properties of Transformations
3 ANS: 2
$\frac{4 x+10}{2}=2 x+5$
PTS: 2
4 ANS: 3
REF: 011103ge
STA: G.G. 42
REF: 011104ge
TOP: Parallelograms
5 ANS: $3 \quad$ PTS: 2
REF: 011105ge
TOP: Midsegments
STA: G.G. 38

TOP: Solids
6 ANS: 2
$M_{x}=\frac{7+(-3)}{2}=2 . M_{Y}=\frac{-1+3}{2}=1$.
PTS: 2
REF: 011106ge
STA: G.G. 66
TOP: Midpoint
7 ANS: 3
$-5+3=-2 \quad 2+-4=-2$
PTS: 2
8 ANS: 4
REF: 011107ge
STA: G.G. 54
REF: 011108ge
TOP: Translations
TOP: Angle Proofs
9 ANS: 2
PTS: 2
REF: 011109ge STA: G.G. 9
TOP: Planes
10 ANS: 3
PTS: 2
REF: 011110ge
STA: G.G. 21
KEY: Centroid, Orthocenter, Incenter and Circumcenter
11 ANS: 3
$8^{2}+24^{2} \neq 25^{2}$
PTS: 2
REF: 011111ge
STA: G.G. 48
REF: 011112ge
TOP: Pythagorean Theorem
12 ANS: 1
PTS: 2
STA: G.G. 39

13 ANS: 3

PTS: 2
REF: 011112ge
STA: G.G. 49
TOP: Chords
14 ANS: 4
$y=m x+b$
$3=\frac{3}{2}(-2)+b$
$3=-3+b$
$6=b$

PTS: 2
15 ANS: 4
$\mathrm{m} \angle A=80$
PTS: 2
16 ANS: 3
REF: 011115ge
TOP: Equations of Circles
17 ANS: 2
$V=\pi r^{2} h=\pi \cdot 6^{2} \cdot 15=540 \pi$
PTS: 2
18 ANS: 4
REF: 011117ge
TOP: Compound Statements
19 ANS: 4

$$
\begin{array}{rlrl}
x+6 y & =12 & 3(x-2) & =-y-4 \\
6 y & =-x+12 & -3(x-2) & =y+4 \\
y & =-\frac{1}{6} x+2 & m & =-3 \\
m & =-\frac{1}{6} &
\end{array}
$$

PTS: 2
REF: 011119ge
STA: G.G. 63
REF: 011120ge
TOP: Parallel and Perpendicular Lines
STA: G.G. 18

21 ANS: 4
$d=\sqrt{(-5-3)^{2}+(4-(-6))^{2}}=\sqrt{64+100}=\sqrt{164}=\sqrt{4} \sqrt{41}=2 \sqrt{41}$
PTS: 2 REF: 011121ge STA: G.G. 67 TOP: Distance
KEY: general
22 ANS: $1 \quad$ PTS:
REF: 011122GE STA: G.G. 28
TOP: Triangle Congruency
23 ANS: 4
$6^{2}=x(x+5)$
$36=x^{2}+5 x$
$0=x^{2}+5 x-36$
$0=(x+9)(x-4)$
$x=4$
PTS: 2 REF: 011123ge STA: G.G. 47 TOP: Similarity
KEY: leg
24 ANS: 4
PTS: 2
TOP: Arcs Determined by Angles
25 ANS: $2 \quad$ PTS: 2
KEY:
KEY: inscribed
REF: 011125ge
STA: G.G. 74
TOP: Graphing Circles
26 ANS: 3
$(3,-2) \rightarrow(2,3) \rightarrow(8,12)$
PTS: 2
REF: 011126ge
STA: G.G. 54
TOP: Compositions of Transformations
KEY: basic
27 ANS: 3
$x+2 x+15=5 x+152(5)+15=25$
$3 x+15=5 x+5$
$10=2 x$
$5=x$

PTS: 2
28 ANS: 1
TOP: Planes

REF: 011127ge
PTS: 2
STA: G.G. 32
REF: 011128ge
TOP: Exterior Angle Theorem STA: G.G. 2

29 ANS:

PTS: 2
REF: 011129ge
STA: G.G. 31
TOP: Isosceles Triangle Theorem

30 ANS:

PTS: 2
REF: 011130ge
STA: G.G. 54
TOP: Reflections
KEY: grids
31 ANS:
$(5-2) 180=540 . \frac{540}{5}=108$ interior. $180-108=72$ exterior
PTS: 2
REF: 011131ge
STA: G.G. 37
TOP: Interior and Exterior Angles of Polygons
32 ANS:
$x^{2}=9 \cdot 8$
$x=\sqrt{72}$
$x=\sqrt{36} \sqrt{2}$
$x=6 \sqrt{2}$
PTS: 2 REF: 011132ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: two chords
33 ANS:

PTS: 2
REF: 011133ge
STA: G.G. 17
TOP: Constructions
34 ANS:
$m=\frac{-A}{B}=\frac{6}{2}=3 . m_{\perp}=-\frac{1}{3}$.
PTS: 2
REF: 011134ge
STA: G.G. 62
TOP: Parallel and Perpendicular Lines

35 ANS:

PTS: 4
REF: 011135ge
STA: G.G. 23 TOP: Locus
36 ANS:
$\angle B$ and $\angle E$ are right angles because of the definition of perpendicular lines. $\angle B \cong \angle E$ because all right angles are congruent. $\angle B F D$ and $\angle D F E$ are supplementary and $\angle E C A$ and $\angle A C B$ are supplementary because of the definition of supplementary angles. $\angle D F E \cong \angle A C B$ because angles supplementary to congruent angles are congruent. $\triangle A B C \sim \triangle D E F$ because of AA.

PTS: 4 REF: 011136ge STA: G.G. 44 TOP: Similarity Proofs
37
ANS:
32. $\frac{16}{20}=\frac{x-3}{x+5} \quad \cdot \overline{A C}=x-3=35-3=32$

$$
16 x+80=20 x-60
$$

$$
140=4 x
$$

$$
35=x
$$

PTS: 4 REF: 011137ge STA: G.G. 46 TOP: Side Splitter Theorem
38 ANS:

The length of each side of quadrilateral is 5 . Since each side is congruent, quadrilateral MATH is a rhombus. The slope of $\overline{M H}$ is 0 and the slope of $\overline{H T}$ is $-\frac{4}{3}$. Since the slopes are not negative reciprocals, the sides are not perpendicular and do not form rights angles. Since adjacent sides are not perpendicular, quadrilateral MATH is not a square.

PTS: 6 REF: 011138ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane

0611ge

Answer Section

PTS: 2 REF: 061105ge STA: G.G. 52 TOP: Chords
6 ANS: 2
$7 x=5 x+30$
$2 x=30$
$x=15$

PTS: 2
7 ANS: 2

8 ANS: 1
TOP: Planes
9 ANS: 2
$d=\sqrt{(-1-7)^{2}+(9-4)^{2}}=\sqrt{64+25}=\sqrt{89}$
PTS: 2
REF: 061109ge
PTS: 2
10 ANS: 1
TOP: Equations of Circles
11 ANS: 3 PTS: 2
TOP: Parallelograms
12 ANS: 2
$V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot 3^{3}=36 \pi$

PTS: 2
13 ANS: 1
REF: 061112ge
PTS: 2
TOP: Parallel and Perpendicular Lines
14 ANS: 4 PTS: 2
TOP: Equations of Circles
15 ANS: $2 \quad$ PTS: 2
TOP: Triangles in the Coordinate Plane

STA: G.G. 16
REF: 061113ge
REF: 061114ge
REF: 061115ge

TOP: Volume and Surface Area
STA: G.G. 63
STA: G.G. 73

STA: G.G. 69

16 ANS: 3
$\sqrt{5^{2}+12^{2}}=13$
PTS: 2 REF: 061116ge STA: G.G. 39 TOP: Special Parallelograms
17 ANS: 4
$4(x+4)=8^{2}$
$4 x+16=64$
$4 x=48$
$x=12$
PTS: 2
REF: 061117ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: tangent and secant
18 ANS: 4
PTS: 2
REF: 061118ge
STA: G.G. 1
TOP: Planes
19 ANS: 1
$3 x+5+4 x-15+2 x+10=180 . \mathrm{m} \angle D=3(20)+5=65 . \mathrm{m} \angle E=4(20)-15=65$.

$$
9 x=180
$$

$$
x=20
$$

PTS: 2 REF: 061119ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
20 ANS: 3
$\frac{7 x}{4}=\frac{7}{x} \cdot 7(2)=14$
$7 x^{2}=28$
$x=2$
PTS: 2 REF: 061120ge STA: G.G. 45 TOP: Similarity
KEY: basic
21 ANS: 2
TOP: Locus
22 ANS: 3
PTS: 2
REF: 061122ge STA: G.G. 56
TOP: Identifying Transformations
23 ANS: 2
The slope of a line in standard form is $\frac{-A}{B}$, so the slope of this line is $\frac{-4}{3}$. A parallel line would also have a slope of $\frac{-4}{3}$. Since the answers are in standard form, use the point-slope formula. $y-2=-\frac{4}{3}(x+5)$

$$
\begin{aligned}
3 y-6 & =-4 x-20 \\
4 x+3 y & =-14
\end{aligned}
$$

PTS: 2
REF: 061123ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines

24 ANS: 4
TOP: Isosceles Triangle Theorem
25 ANS: $1 \quad$ PTS: 2
TOP: Special Parallelograms
26 ANS: 2 PTS: 2
TOP: Properties of Transformations
27 ANS: 4
The slope of $3 x+5 y=4$ is $m=\frac{-A}{B}=\frac{-3}{5} . m_{\perp}=\frac{5}{3}$.

PTS: 2
REF: 061127ge STA: G.G. 62
28 ANS: 1
$x^{2}=7(16-7)$
$x^{2}=63$
$x=\sqrt{9} \sqrt{7}$
$x=3 \sqrt{7}$
PTS: 2
REF: 061128ge
STA: G.G. 47
KEY: altitude
29 ANS:
The medians of a triangle are not concurrent. False.
PTS: 2
REF: 061129ge
STA: G.G. 24
TOP: Negations
30 ANS:

PTS: 2
REF: 061130ge
STA: G.G. 20
TOP: Parallel and Perpendicular Lines

TOP: Constructions

31 ANS:
9.1. $(11)(8) h=800$
$h \approx 9.1$
PTS: 2 REF: 061131ge STA: G.G. 12 TOP: Volume
32 ANS:
Yes. A reflection is an isometry.
PTS: 2 REF: 061132ge STA: G.G. 56 TOP: Identifying Transformations
33 ANS:
16.7. $\frac{x}{25}=\frac{12}{18}$

$$
\begin{aligned}
18 x & =300 \\
x & \approx 16.7
\end{aligned}
$$

PTS: 2 REF: 061133ge STA: G.G. 46 TOP: Side Splitter Theorem
34 ANS:
$(2 a-3,3 b+2) .\left(\frac{3 a+a-6}{2}, \frac{2 b-1+4 b+5}{2}\right)=\left(\frac{4 a-6}{2}, \frac{6 b+4}{2}\right)=(2 a-3,3 b+2)$
PTS: 2 REF: 061134ge STA: G.G. 66 TOP: Midpoint
35 ANS:

PTS: 4 REF: 061135ge STA: G.G. 23 TOP: Locus
36 ANS:
30. $3 x+4 x+5 x=360 . \mathrm{m} \overparen{\mathrm{LN}}: \mathrm{m} \overparen{\mathrm{NK}}: \mathrm{m} \overparen{\mathrm{KL}}=90: 120: 150 . \frac{150-90}{2}=30$

$$
x=20
$$

PTS: 4 REF: 061136ge STA: G.G. 51 TOP: Arcs Determined by Angles
KEY: outside circle

ANS:

PTS: 4
REF: 061137ge
STA: G.G. 70
TOP: Quadratic-Linear Systems
38 ANS:
$\overline{O A} \cong \overline{O B}$ because all radii are equal. $\overline{O P} \cong \overline{O P}$ because of the reflexive property. $\overline{O A} \perp \overline{P A}$ and $\overline{O B} \perp \overline{P B}$ because tangents to a circle are perpendicular to a radius at a point on a circle. $\angle P A O$ and $\angle P B O$ are right angles because of the definition of perpendicular. $\angle P A O \cong \angle P B O$ because all right angles are congruent. $\triangle A O P \cong \triangle B O P$ because of HL. $\angle A O P \cong \angle B O P$ because of CPCTC.

PTS: 5
REF: 061138ge
STA: G.G. 27
TOP: Circle Proofs

0811ge

Answer Section

1 ANS: $4 \quad$ PTS: 2
TOP: Compound Statements
2 ANS: 2 PTS: 2
TOP: Triangle Congruency
3 ANS: 3
$\frac{5}{7}=\frac{10}{x}$
$5 x=70$
$x=14$

PTS: 2
4 ANS: 3
REF: 081103ge
PTS: 2
TOP: Properties of Transformations
5 ANS: 4
$\sqrt{25^{2}-7^{2}}=24$

PTS: 2
REF: 081105ge
KEY: point of tangency
6 ANS: 4 PTS: 2
TOP: Constructions
7 ANS: 3
$d=\sqrt{(1-9)^{2}+(-4-2)^{2}}=\sqrt{64+36}=\sqrt{100}=10$

PTS: 2
REF: 081107ge
STA: G.G. 67
TOP: Distance
KEY: general
8 ANS: $2 \quad$ PTS: 2
TOP: Reflections
KEY: basic
9 ANS: 3
$7 x=5 x+30$
$2 x=30$
$x=15$

PTS: 2
10 ANS: 4
REF: 081109ge
PTS: 2
TOP: Equations of Circles
11 ANS: 3 PTS: 2
TOP: Exterior Angle Theorem

REF: 081101ge
KEY: conjunction
REF: 081102ge STA: G.G. 29

STA: G.G. 25

12 ANS: 2

$$
\begin{aligned}
m=\frac{-A}{B}=\frac{-4}{2}=-2 \quad y & =m x+b \\
2 & =-2(2)+b \\
6 & =b
\end{aligned}
$$

PTS: 2
13 ANS: 1
TOP: Reflections
REF: 081112ge
PTS: 2
KEY: basic
14 ANS: 4

PTS: 2
REF: 081114ge
STA: G.G. 28
ANS: 1

$$
1=\frac{-4+x}{2} . \quad 5=\frac{3+y}{2} .
$$

$$
-4+x=2 \quad 3+y=10
$$

$$
x=6 \quad y=7
$$

PTS: 2
16 ANS: 1
TOP: Planes
17 ANS: 2
TOP: Locus
18 ANS: 3

PTS: 2
REF: 081118ge
STA: G.G. 70
19 ANS: 4
$\frac{5}{2+3+5} \times 180=90$

PTS: 2
20 ANS: 2
TOP: Planes

REF: 081115ge
PTS: 2
PTS: 2

STA: G.G. 65
REF: 081113ge

TOP: Parallel and Perpendicular Lines
STA: G.G. 54

TOP: Triangle Congruency

STA: G.G. 66 TOP: Midpoint
REF: 081116ge STA: G.G. 7
REF: 081117ge STA: G.G. 23

REF: 081119ge
PTS: 2
STA: G.G. 30
REF: 081120ge

TOP: Quadratic-Linear Systems

TOP: Interior and Exterior Angles of Triangles STA: G.G. 8

21 ANS: 1 PTS: 2 REF: 081121ge STA: G.G. 39
TOP: Special Parallelograms
22 ANS: 2
The slope of $x+2 y=3$ is $m=\frac{-A}{B}=\frac{-1}{2} . \quad m_{\perp}=2$.
PTS: 2
23 ANS: 3
TOP: Volume
24 ANS: 4
$\sqrt{6^{2}-2^{2}}=\sqrt{32}=\sqrt{16} \sqrt{2}=4 \sqrt{2}$
PTS: 2
25 ANS: 2
$(n-2) 180=(6-2) 180=720 . \frac{720}{6}=120$.
PTS: 2 REF: 081125ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons
26 ANS: 1
$m=\left(\frac{8+0}{2}, \frac{2+6}{2}\right)=(4,4) m=\frac{6-2}{0-8}=\frac{4}{-8}=-\frac{1}{2} \quad m_{\perp}=2 \quad y=m x+b$ $4=2(4)+b$ $-4=b$

PTS: 2 REF: 081126ge STA: G.G. 68 TOP: Perpendicular Bisector
27 ANS: 3
$x^{2}+7^{2}=(x+1)^{2} \quad x+1=25$
$x^{2}+49=x^{2}+2 x+1$
$48=2 x$
$24=x$
PTS: 2
28 ANS: 3
REF: 081127ge
PTS: 2
TOP: Special Parallelograms
29 ANS:
$\frac{180-80}{2}=50$
PTS: 2
REF: 081129ge
STA: G.G. 52
TOP: Chords

30 ANS:

PTS: 2 REF: 081130ge STA: G.G. 18 TOP: Constructions
31 ANS:
$V=\frac{4}{3} \pi \cdot 9^{3}=972 \pi$

PTS: 2 REF: 081131ge STA: G.G. 16 TOP: Surface Area
32 ANS:
$(x-5)^{2}+(y+4)^{2}=36$
PTS: 2 REF: 081132ge STA: G.G. 72 TOP: Equations of Circles
33 ANS:
$\angle A C B \cong \angle A E D$ is given. $\angle A \cong \angle A$ because of the reflexive property. Therefore $\triangle A B C \sim \triangle A D E$ because of AA.

PTS: 2 REF: 081133ge STA: G.G. 44 TOP: Similarity Proofs
$(7,5) m_{\overline{A B}}=\left(\frac{3+7}{2}, \frac{3+9}{2}\right)=(5,6) m_{B C}=\left(\frac{7+11}{2}, \frac{9+3}{2}\right)=(9,6)$

PTS: 2
REF: 081134ge STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter

35
ANS:

No, $\angle K G H$ is not congruent to $\angle G K H$.

PTS: 2
REF: 081135ge
STA: G.G. 31
TOP: Isosceles Triangle Theorem
36
ANS:

$$
G^{\prime \prime}(3,3), H^{\prime \prime}(7,7), S^{\prime \prime}(-1,9)
$$

PTS: 4
REF: 081136ge
STA: G.G. 58
TOP: Compositions of Transformations
37 ANS:
$2 \frac{x+2}{x}=\frac{x+6}{4}$

$$
\begin{aligned}
x^{2}+6 x & =4 x+8 \\
x^{2}+2 x-8 & =0 \\
(x+4)(x-2) & =0 \\
x & =2
\end{aligned}
$$

PTS: 2
REF: 081137ge
STA: G.G. 45
TOP: Similarity
KEY: basic
ANS:
$m_{\overline{A B}}=\left(\frac{-6+2}{2}, \frac{-2+8}{2}\right)=D(2,3) m_{B C}=\left(\frac{2+6}{2}, \frac{8+-2}{2}\right)=E(4,3) F(0,-2)$. To prove that $A D E F$ is a parallelogram, show that both pairs of opposite sides of the parallelogram are parallel by showing the opposite sides have the same slope: $\mathrm{m}_{A D}=\frac{3--2}{-2--6}=\frac{5}{4} \overline{A F} \| \overline{D E}$ because all horizontal lines have the same slope. ADEF

$$
\mathrm{m}_{F E}=\frac{3--2}{4-0}=\frac{5}{4}
$$

is not a rhombus because not all sides are congruent. $A D=\sqrt{5^{2}+4^{2}}=\sqrt{41} \quad A F=6$
PTS: 6 REF: 081138ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane

0112ge

Answer Section

1 ANS: 2
$6 x+42=18 x-12$

$$
\begin{aligned}
54 & =12 x \\
x & =\frac{54}{12}=4.5
\end{aligned}
$$

PTS: 2
REF: 011201ge
STA: G.G. 35
2 ANS: 3
PTS: 2
REF: 011202ge
TOP: Parallel Lines and Transversals
TOP: Centroid, Orthocenter, Incenter and Circumcenter
3 ANS: 2 PTS: 2 REF: 011203ge STA: G.G. 73
TOP: Equations of Circles
4 ANS: 2
The diagonals of a rhombus are perpendicular. $180-(90+12)=78$
PTS: 2 REF: 011204ge STA: G.G. 39 TOP: Special Parallelograms
5 ANS: 1
$d=\sqrt{(4-1)^{2}+(7-11)^{2}}=\sqrt{9+16}=\sqrt{25}=5$
PTS: 2
REF: 011205ge
STA: G.G. 67
TOP: Distance
KEY: general
6 ANS: $2 \quad$ PTS: 2
REF: 011206ge STA: G.G. 32
TOP: Exterior Angle Theorem
7 ANS: $1 \quad$ PTS: 2
REF: 011207ge STA: G.G. 20
TOP: Constructions
8 ANS: $4 \quad$ PTS: 2
TOP: Segments Intercepted by Circle
REF: 011208ge STA: G.G. 53
KEY: two tangents
9 ANS: $3 \quad$ PTS: 2
REF: 011209ge STA: G.G. 44
TOP: Similarity Proofs
10 ANS: 3
$\frac{3}{8+3+4} \times 180=36$
PTS: 2
11 ANS: 2
REF: 011210ge
STA: G.G. 30
REF: 011211ge
TOP: Interior and Exterior Angles of Triangles
TOP: Properties of Transformations
12 ANS: 4 PTS: 2
REF: 011212ge
STA: G.G. 71
TOP: Equations of Circles
13 ANS: 1
PTS: 2
REF: 011213ge STA: G.G. 24
TOP: Negations

14 ANS: 2

$$
\begin{aligned}
\frac{50+x}{2} & =34 \\
50+x & =68 \\
x & =18
\end{aligned}
$$

PTS: 2 REF: 011214ge STA: G.G. 51 TOP: Arcs Determined by Angles
KEY: inside circle
15 ANS: 2
PTS: 2
REF: 011215ge
STA: G.G. 12
TOP: Volume
16 ANS: 4
PTS: 2
TOP: Triangle Congruency
17 ANS: 3 PTS: 2
TOP: Parallel and Perpendicular Lines
18 ANS: $1 \quad$ PTS: 2
TOP: Planes
19 ANS: 4
$\sqrt{25^{2}-\left(\frac{26-12}{2}\right)^{2}}=24$
PTS: 2
REF: 011219ge
STA: G.G. 40
REF: 011220ge

REF: 011221ge
STA: G.G. 10
21 ANS: 1 PTS.
TOP: Solids
22 ANS: 4
PTS: 2
REF: 011222ge STA: G.G. 34
TOP: Angle Side Relationship
23 ANS: 3
$(n-2) 180=(5-2) 180=540$
PTS: 2
REF: 011223ge
STA: G.G. 36
TOP: Interior and Exterior Angles of Polygons
24 ANS: 3
$y=m x+b$
$-1=2(2)+b$
$-5=b$
PTS: 2
REF: 011224ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines
25 ANS: 4
$\overline{A B}$ is a vertical line, so its perpendicular bisector is a horizontal line through the midpoint of $\overline{A B}$, which is $(0,3)$.
PTS: 2
REF: 011225ge STA: G.G. 68
TOP: Perpendicular Bisector

26 ANS: 1

$$
\begin{aligned}
7 x+4 & =2(2 x+5) . P M=2(2)+5=9 \\
7 x+4 & =4 x+10 \\
3 x & =6 \\
x & =2
\end{aligned}
$$

PTS: 2
REF: 011226ge
STA: G.G. 43
TOP: Centroid
27 ANS: 4
$x \cdot 4 x=6^{2} . P Q=4 x+x=5 x=5(3)=15$

$$
\begin{aligned}
4 x^{2} & =36 \\
x & =3
\end{aligned}
$$

PTS: 2 REF: 011227ge STA: G.G. 47 TOP: Similarity
KEY: leg
28 ANS: 2
$5-3=2,5+3=8$
PTS: 2 REF: 011228ge STA: G.G. 33 TOP: Triangle Inequality Theorem
29 ANS:
$2 x-20=x+20 . \mathrm{m} \overparen{A B}=x+20=40+20=60$

$$
x=40
$$

PTS: 2
REF: 011229ge
STA: G.G. 52
TOP: Chords
30 ANS:

PTS: 2 REF: 011230ge STA: G.G. 22 TOP: Locus
31 ANS:
The slope of $y=2 x+3$ is 2 . The slope of $2 y+x=6$ is $\frac{-A}{B}=\frac{-1}{2}$. Since the slopes are opposite reciprocals, the lines are perpendicular.

PTS: 2 REF: 011231ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
32 ANS:
$R^{\prime}(-3,-2), S^{\prime}(-4,4)$, and $T^{\prime}(2,2)$.
PTS: 2
REF: 011232ge
STA: G.G. 54
TOP: Rotations

33 ANS:

PTS: 2
REF: 011233ge
STA: G.G. 17
TOP: Constructions
34 ANS:
$E O=6 . C E=\sqrt{10^{2}-6^{2}}=8$
PTS: 2 REF: 011234ge STA: G.G. 49 TOP: Chords
35
ANS:
$A^{\prime}(7,-4), B^{\prime}(7,-1) . C^{\prime}(9,-4)$. The areas are equal because translations preserve distance.

PTS: 4
REF: 011235ge
STA: G.G. 55
TOP: Properties of Transformations
36 ANS:

$$
\begin{aligned}
V & =\pi r^{2} h \quad . L=2 \pi r h=2 \pi \cdot 5 \sqrt{2} \cdot 12 \approx 533.1 \\
600 \pi & =\pi r^{2} \cdot 12 \\
50 & =r^{2} \\
\sqrt{25} \sqrt{2} & =r \\
5 \sqrt{2} & =r
\end{aligned}
$$

PTS: 4 REF: 011236ge STA: G.G. 14 TOP: Volume
37 ANS:
$M\left(\frac{-7+5}{2}, \frac{2+4}{2}\right)=M(-1,3) . N\left(\frac{3+5}{2}, \frac{-4+4}{2}\right)=N(4,0) . \overline{M N}$ is a midsegment.

PTS: 4
REF: 011237ge
STA: G.G. 42 TOP: Midsegments

ANS:
Quadrilateral $A B C D, \overline{A D} \cong \overline{B C}$ and $\angle D A E \cong \angle B C E$ are given. $\overline{A D} \| \overline{B C}$ because if two lines are cut by a transversal so that a pair of alternate interior angles are congruent, the lines are parallel. $A B C D$ is a parallelogram because if one pair of opposite sides of a quadrilateral are both congruent and parallel, the quadrilateral is a parallelogram. $\overline{A E} \cong \overline{C E}$ because the diagonals of a parallelogram bisect each other. $\angle F E A \cong \angle G E C$ as vertical angles. $\triangle A E F \cong \triangle C E G$ by ASA.

PTS: 6 REF: 011238ge STA: G.G. 27 TOP: Quadrilateral Proofs

0612ge
 Answer Section

1 ANS: $2 \quad$ PTS: 2
TOP: Properties of Transformations
2 ANS: 2 PTS: 2
TOP: Negations
3 ANS: 4 TOP: Planes
4 ANS: 1
$\frac{40-24}{2}=8 . \sqrt{10^{2}-8^{2}}=6$.

PTS: 2 REF: 061204ge STA: G.G. 40 TOP: Trapezoids
5 ANS: 3
$\frac{180-70}{2}=55$

PTS: 2
REF: 061205ge
STA: G.G. 52
TOP: Chords
6 ANS: 2

$$
A C=B D
$$

$A C-B C=B D-B C$

$$
A B=C D
$$

PTS: 2
REF: 061206ge
STA: G.G. 27
TOP: Line Proofs
7 ANS: 2
$V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot\left(\frac{15}{2}\right)^{3} \approx 1767.1$

PTS: 2
8 ANS: 2
REF: 061207ge
PTS: 2
STA: G.G. 16
REF: 061208ge
TOP: Volume and Surface Area

TOP: Constructions
9 ANS: 1
The diagonals of a parallelogram intersect at their midpoints. $M_{A C}\left(\frac{1+3}{2}, \frac{5+(-1)}{2}\right)=(2,2)$

PTS: 2
REF: 061209ge
STA: G.G. 69
REF: 061210ge
TOP: Quadrilaterals in the Coordinate Plane
ANS: 3
PTS: 2
TOP: Equations of Circles

REF: 061201ge
STA: G.G. 59

REF: 061202ge STA: G.G. 24

REF: 061203ge STA: G.G. 9

11 ANS: 4

PTS: 2
REF: 061211ge
STA: G.G. 42
TOP: Midsegments
12 ANS: 1

PTS: 2
13 ANS: 4
TOP: Planes
14 ANS: 1
REF: 061211ge
STA: G.G. 31
REF: 061213ge
REF: 061214ge
TOP: Centroid, Orthocenter, Incenter and Circumcenter
15 ANS: 4

$$
\begin{aligned}
m_{\perp}=-\frac{1}{3} \cdot y & =m x+b \\
6 & =-\frac{1}{3}(-9)+b \\
6 & =3+b \\
3 & =b
\end{aligned}
$$

PTS: 2
REF: 061215ge
STA: G.G. 64
TOP: Parallel and Perpendicular Lines
16 ANS: 3

$8 x=24$
$x=3$
PTS: 2
REF: 061216ge
STA: G.G. 46

TOP: Isosceles Triangle Theorem
STA: G.G. 5
STA: G.G. 21

17 ANS: 3
$d=\sqrt{(-1-4)^{2}+(0-(-3))^{2}}=\sqrt{25+9}=\sqrt{34}$
PTS: 2 REF: 061217ge STA: G.G. 67 TOP: Distance
KEY: general
18 ANS: 3 PTS: 2 REF: 061218ge STA: G.G. 36
TOP: Interior and Exterior Angles of Polygons
19 ANS: 2
$m=\frac{-A}{B}=\frac{-20}{-2}=10 . m_{\perp}=-\frac{1}{10}$
$\begin{array}{llll}\text { PTS: } 2 & \text { REF: 061219ge } & \text { STA: G.G.62 } & \text { TOP: Parallel and Perpendicular Lines } \\ \text { ANS: } 3 & \text { PTS: } 2 & \text { REF: 061220ge } & \text { STA: G.G. } 74\end{array}$
TOP: Graphing Circles
21 ANS: 2

PTS: 2 REF: 061221ge STA: G.G. 49 TOP: Chords
22 ANS: 3

. Opposite sides of a parallelogram are congruent and the diagonals of a parallelogram bisect each other.

PTS: 2 REF: 061222ge
23 ANS: 1
PTS: 2
TOP: Equations of Circles
24 ANS: 3 PTS: 2
TOP: Similarity KEY: basic
25 ANS: 4
$x^{2}-6 x+2 x-3=9 x+27$

$$
\begin{aligned}
x^{2}-4 x-3 & =9 x+27 \\
x^{2}-13 x-30 & =0 \\
(x-15)(x+2) & =0 \\
x & =15,-2
\end{aligned}
$$

PTS: 2
REF: 061225ge
STA: G.G. 32
TOP: Exterior Angle Theorem

26 ANS: 4
$m=\frac{-A}{B}=\frac{-3}{2} . \quad y=m x+b$

$$
\begin{aligned}
-1 & =\left(\frac{-3}{2}\right)(2)+b \\
-1 & =-3+b \\
2 & =b
\end{aligned}
$$

PTS: 2
27 ANS: 2
TOP: Identifying Transformations
28 ANS: 3
TS: 2
TOP: Special Parallelograms
29 ANS:

PTS: 2 REF: 061229ge STA: G.G. 54 TOP: Translations
30 ANS:
$180-(90+63)=27$
PTS: 2 REF: 061230ge STA: G.G. 35 TOP: Parallel Lines and Transversals
31 ANS:
The slope of $x+2 y=4$ is $m=\frac{-A}{B}=\frac{-1}{2}$. The slope of $4 y-2 x=12$ is $\frac{-A}{B}=\frac{2}{4}=\frac{1}{2}$. Since the slopes are neither equal nor opposite reciprocals, the lines are neither parallel nor perpendicular.

PTS: 2 REF: 061231ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
32 ANS:

PTS: 2
REF: 061232ge
STA: G.G. 17
TOP: Constructions

33 ANS:
$L=2 \pi r h=2 \pi \cdot 12 \cdot 22 \approx 1659 . \frac{1659}{600} \approx 2.8 .3$ cans are needed.
PTS: 2 REF: 061233ge STA: G.G. 14 TOP: Lateral Area
34 ANS:

PTS: 2 REF: 061234ge STA: G.G. 23 TOP: Locus
35 ANS:
$\angle B$ and $\angle C$ are right angles because perpendicular lines form right angles. $\angle B \cong \angle C$ because all right angles are congruent. $\angle A E B \cong \angle D E C$ because vertical angles are congruent. $\triangle A B E \cong \triangle D C E$ because of ASA. $\overline{A B} \cong \overline{D C}$ because СРСТС.

PTS: 4 REF: 061235ge STA: G.G. 27 TOP: Triangle Proofs
36 ANS:

$$
A^{\prime}(5,-4), B^{\prime}(5,1), C^{\prime}(2,1), D^{\prime}(2,-6) ; A^{\prime \prime}(5,4), B^{\prime \prime}(5,-1), C^{\prime \prime}(2,-1), D^{\prime \prime}(2,6)
$$

PTS: 4
REF: 061236ge STA: G.G. 58
TOP: Compositions of Transformations KEY: grids

37 ANS:

$$
\begin{array}{rlrl}
x(x+2) & =12 \cdot 2 \cdot \overline{R T}=6+4=10 . y \cdot y & =18 \cdot 8 \\
x^{2}+2 x-24 & =0 & y^{2} & =144 \\
(x+6)(x-4) & =0 & y & =12
\end{array}
$$

PTS: 4
REF: 061237ge
STA: G.G. 53
TOP: Segments Intercepted by Circle KEY: tangent and secant
38 ANS:

PTS: 6
REF: 061238ge
STA: G.G. 70
TOP: Quadratic-Linear Systems

0812ge

Answer Section
1 ANS: 4
Parallel lines intercept congruent arcs.
PTS: 2 REF: 081201ge STA: G.G. 52 TOP: Chords
2 ANS: 2 PTS: 2
REF: 081202ge STA: G.G. 55
TOP: Properties of Transformations
3 ANS: 4

$$
\left.\begin{array}{rlrl}
-5 & =\frac{-3+x}{2} . & & 2=\frac{6+y}{2} \\
-10 & =-3+x & & 4
\end{array}=6+y\right)
$$

PTS: 2
4 ANS: 3
TOP: Properties of Transformations
5 ANS: $2 \quad$ PTS: 2
TOP: Constructions
6 ANS: 4
TOP: Interior and Exterior Angles of Triangles
7 ANS: 1

$$
A B=C D
$$

$A B+B C=C D+B C$
$A C=B D$
PTS: 2
8 ANS: 3
TOP: Quadrilateral Proofs
9 ANS: 3
TOP: Equations of Circles
10 ANS: 1

PTS: 2
11 ANS: 4
TOP: Planes

PTS: 2
REF: 081207ge
PTS: 2

.

REF: 081209ge
TOP: Line Proofs
STA: G.G. 27
STA: G.G. 27
REF: 081208ge
STA: G.G. 71

	PTS: 2	REF: 081210ge	STA: G.G. 28	TOP: Triangle Congruency	
11	ANS: 4	PTS: 2	REF: 081211ge	STA: G.G. 5	
TOP: Planes					

12 ANS: 2 PTS: 2 REF: 081212ge STA: G.G. 72
TOP: Equations of Circles
13 ANS: 3

$$
\begin{aligned}
4 x+14+8 x+10 & =180 \\
12 x & =156 \\
x & =13
\end{aligned}
$$

PTS: 2
14 ANS: 2
TOP: Tangents
15 ANS: 2
$V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot\left(\frac{6}{2}\right)^{3} \approx 36 \pi$
PTS: 2
16 ANS: 4
TOP: Similarity
17 ANS: 1
$m=\frac{3}{2} \quad y=m x+b$
$2=\frac{3}{2}(1)+b$
$\frac{1}{2}=b$
PTS: 2
18 ANS: 3
TOP: Planes
19 ANS: 1

PTS: 2 REF: 081219ge STA: G.G. 34 TOP: Angle Side Relationship
20 ANS: 4
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.
PTS: 2 REF: 081220ge STA: G.G. 43 TOP: Centroid

21 ANS: 1
The length of the midsegment of a trapezoid is the average of the lengths of its bases. $\frac{x+3+5 x-9}{2}=2 x+2$.

$$
\begin{aligned}
6 x-6 & =4 x+4 \\
2 x & =10 \\
x & =5
\end{aligned}
$$

PTS: 2 REF: 081221ge STA: G.G. 40 TOP: Trapezoids
22 ANS: 2
$3 x+x+20+x+20=180$

$$
\begin{aligned}
5 x & =40 \\
x & =28
\end{aligned}
$$

PTS: 2 REF: 081222ge STA: G.G. 31 TOP: Isosceles Triangle Theorem
23 ANS: 3

$$
\begin{aligned}
180(n-2) & =n\left(180-\frac{180(n-2)}{n}\right) \\
180 n-360 & =180 n-180 n+360 \\
180 n & =720 \\
n & =4
\end{aligned}
$$

PTS: 2 REF: 081223ge STA: G.G. 36 TOP: Interior and Exterior Angles of Polygons
24 ANS: 4
PTS: 2
REF: 081224ge
STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
25 ANS: 3
The slope of $9 x-3 y=27$ is $m=\frac{-A}{B}=\frac{-9}{-3}=3$, which is the opposite reciprocal of $-\frac{1}{3}$.
PTS: 2
REF: 081225ge
ANS: 2
PTS: 2
STA: G.G. 62
REF: 081226ge
TOP: Parallel and Perpendicular Lines
TOP: Triangles in the Coordinate Plane
27 ANS: 3
PTS: 2
REF: 081227ge STA: G.G. 42
TOP: Midsegments
28 ANS: 3
The slope of $2 y=x+2$ is $\frac{1}{2}$, which is the opposite reciprocal of $-2 . \quad 3=-2(4)+b$

$$
11=b
$$

PTS: 2 REF: 081228ge STA: G.G. 64 TOP: Parallel and Perpendicular Lines
29 ANS:
2 is not a prime number, false.
PTS: 2 REF: 081229ge STA: G.G. 24 TOP: Negations

ANS:

$$
A^{\prime}(-2,1), B^{\prime}(-3,-4) \text {, and } C^{\prime}(5,-3)
$$

PTS: 2
REF: 081230ge STA: G.G. 54
TOP: Rotations
31 ANS:
$V=\pi r^{2} h=\pi(5)^{2} \cdot 7=175 \pi$
PTS: 2 REF: 081231ge STA: G.G. 14 TOP: Volume
32 ANS:
$\sqrt{(-4-2)^{2}+(3-5)^{2}}=\sqrt{36+4}=\sqrt{40}=\sqrt{4} \sqrt{10}=2 \sqrt{10}$.
PTS: 2 REF: 081232ge STA: G.G. 67 TOP: Distance
33 ANS:

PTS: 2 REF: 081233ge STA: G.G. 19 TOP: Constructions
34 ANS:

PTS: 2
REF: 081234ge STA: G.G. 23
TOP: Locus

35 ANS:
11. $x^{2}+6 x=x+14.6(2)-1=11$

$$
\begin{aligned}
x^{2}+5 x-14 & =0 \\
(x+7)(x-2) & =0 \\
x & =2
\end{aligned}
$$

PTS: 2 REF: 081235ge STA: G.G. 38 TOP: Parallelograms
36

PTS: 4
REF: 081236ge
STA: G.G. 58
TOP: Compositions of Transformations
KEY: grids
37

PTS: 4
REF: 081237ge STA: G.G. 70 TOP: Quadratic-Linear Systems
$52,40,80.360-(56+112)=192 . \frac{192-112}{2}=40 . \frac{112+48}{2}=80$

$$
\begin{aligned}
& \frac{1}{4} \times 192=48 \\
& \frac{56+48}{2}=52
\end{aligned}
$$

PTS: 6
REF: 081238ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inscribed

