JEFFERSON MATH PROJECT REGENTS BY PERFORMANCE INDICATOR: TOPIC

NY Geometry Regents Exam Questions from Fall 2008 to August 2012 Sorted by PI: Topic

www.jmap.org

$\mathscr{D}_{\text {ear }}$ g'ir $_{\text {ir }}$
Thave to acknofege the reciept of your favor of \mathscr{M} ay 14 . in which you mention that you have finished the 6. first focks, of E ucfid, pfane trigonometry, surveying \& afgebra and ask whether If thin \mathbb{K} a further pursuit of that branch of science would be useful to you. there are some propositions in the fatter Fooks of Eucfid, \& some of \mathcal{O} © rcchimedes, which are useful, \& \mathscr{I} have no doubt you have been made acquainted with them. trigonometry, so far as thits, is most vafuable to every man, there is scarcely a day in which he wiff not resort to it for some of the prurposes of common fife. the science of cafcufation also is indispensitfe as far as the extraction of the square \& cube roots; ©̈t Igebra as far as the quadratic equation \& the use of fogarithims are often of vafue in ordinary cases: but aff beyond thesese is but a fuxury; a deficious fuxury indeed; but not to Fe indu $I_{\text {ged }}$ in by one whic is to have a profession to foffow for hits subsistence. in thits fight $\mathscr{I}_{v i e w}$ the conic sections, curves of the fighter orders, perhäps even spheierical trigonometry, ©ٌt'Igebraical operations beyond the ad dimension, andffuxions.
Letter from Thomas Jefferson to William G. Munford, Monticello, June 18, 1799.

TABLE OF CONTENTS

TOPIC	P.I.: SUBTOPIC QUESTION NUMBER
LINEAR EQUATIONS	G.G.62-65: Parallel and Perpendicular Lines1-36 G.G.68: Perpendicular Bisector ...37-39
SYSTEMS	G.G.70: Quadratic-Linear Systems ..40-49
TOOLS OF GEOMETRY	
ANGLES	G.G.35: Parallel Lines and Transversals................................138-145
TRIANGLES	
POLYGONS	
CONICS	
MEASURING IN THE PLANE AND SPACE	G.G.11-16: Volume, Surface Area and Lateral Area ..351-366 G.G.45, 47: Similarity.............350
TRANSFORMATIONS	G.G.54: Rotations ..367-368 G.G.54: Reflections ...369-373 G.G.54: Translations..37-376 G.G.54, 58: Compositions of Transformations377-384 G.G.55, 57, 59: Properties of Transformations385-399 G.G.56, 60: Identifying Transformations......................................400-410 G.G.61: Analytical Representations of Transformations411-412
LOGIC	

Geometry Regents Exam Questions by Performance Indicator: Topic

LINEAR EQUATIONS
G.G.62: PARALLEL AND PERPENDICULAR LINES

1 What is the slope of a line perpendicular to the line whose equation is $5 x+3 y=8$?
$1 \quad \frac{5}{3}$
$2 \quad \frac{3}{5}$
$3-\frac{3}{5}$
$4 \quad-\frac{5}{3}$

2 What is the slope of a line perpendicular to the line whose equation is $y=-\frac{2}{3} x-5$?
$1-\frac{3}{2}$
$2-\frac{2}{3}$
$3 \quad \frac{2}{3}$
$4 \quad \frac{3}{2}$

3 What is the slope of a line that is perpendicular to the line whose equation is $3 x+4 y=12$?
$1 \quad \frac{3}{4}$
$2-\frac{3}{4}$
$3 \quad \frac{4}{3}$
$4 \quad-\frac{4}{3}$

4 What is the slope of a line perpendicular to the line whose equation is $y=3 x+4$?
$1 \quad \frac{1}{3}$
$2-\frac{1}{3}$
3 3
$4-3$

5 What is the slope of a line perpendicular to the line whose equation is $2 y=-6 x+8$?
1 -3
$2 \quad \frac{1}{6}$
$3 \quad \frac{1}{3}$
$4-6$

6 What is the slope of a line that is perpendicular to the line whose equation is $3 x+5 y=4$?
$1-\frac{3}{5}$
$2 \quad \frac{3}{5}$
$3-\frac{5}{3}$
$4 \quad \frac{5}{3}$

7 What is the slope of a line that is perpendicular to the line represented by the equation $x+2 y=3$?
1 -2
22
$3-\frac{1}{2}$
$4 \quad \frac{1}{2}$

8 What is the slope of a line perpendicular to the line whose equation is $20 x-2 y=6$?
1 -10
$2-\frac{1}{10}$
$3 \quad 10$
$4 \quad \frac{1}{10}$

9 The slope of line ℓ is $-\frac{1}{3}$. What is an equation of a line that is perpendicular to line ℓ ?
$1 \quad y+2=\frac{1}{3} x$
$2-2 x+6=6 y$
$3 \quad 9 x-3 y=27$
$4 \quad 3 x+y=0$

10 Find the slope of a line perpendicular to the line whose equation is $2 y-6 x=4$.
G.G.63: PARALLEL AND PERPENDICULAR LINES

11 The lines $3 y+1=6 x+4$ and $2 y+1=x-9$ are
1 parallel
2 perpendicular
3 the same line
4 neither parallel nor perpendicular

12 Which equation represents a line perpendicular to the line whose equation is $2 x+3 y=12$?
$16 y=-4 x+12$
$2 \quad 2 y=3 x+6$
$3 \quad 2 y=-3 x+6$
$4 \quad 3 y=-2 x+12$

13 What is the equation of a line that is parallel to the line whose equation is $y=x+2$?
$1 x+y=5$
$2 \quad 2 x+y=-2$
$3 \quad y-x=-1$
$4 y-2 x=3$

14 Which equation represents a line parallel to the line whose equation is $2 y-5 x=10$?
$15 y-2 x=25$
$25 y+2 x=10$
$3 \quad 4 y-10 x=12$
$42 y+10 x=8$

15 Two lines are represented by the equations
$-\frac{1}{2} y=6 x+10$ and $y=m x$. For which value of m will the lines be parallel?
$1 \quad-12$
2 -3
$3 \quad 3$
$4 \quad 12$

16 The lines represented by the equations $y+\frac{1}{2} x=4$ and $3 x+6 y=12$ are
1 the same line
2 parallel
3 perpendicular
4 neither parallel nor perpendicular

17 The two lines represented by the equations below are graphed on a coordinate plane.

$$
\begin{gathered}
x+6 y=12 \\
3(x-2)=-y-4
\end{gathered}
$$

Which statement best describes the two lines?
1 The lines are parallel.
2 The lines are the same line.
3 The lines are perpendicular.
4 The lines intersect at an angle other than 90°.

18 The equation of line k is $y=\frac{1}{3} x-2$. The equation
of line m is $-2 x+6 y=18$. Lines k and m are
1 parallel
2 perpendicular
3 the same line
4 neither parallel nor perpendicular

19 Determine whether the two lines represented by the equations $y=2 x+3$ and $2 y+x=6$ are parallel, perpendicular, or neither. Justify your response.

20 Two lines are represented by the equations $x+2 y=4$ and $4 y-2 x=12$. Determine whether these lines are parallel, perpendicular, or neither. Justify your answer.
G.G.64: PARALLEL AND PERPENDICULAR LINES

21 What is an equation of the line that passes through the point $(-2,5)$ and is perpendicular to the line whose equation is $y=\frac{1}{2} x+5$?
1 $y=2 x+1$
$2 y=-2 x+1$
$3 y=2 x+9$
$4 y=-2 x-9$

22 What is an equation of the line that contains the point $(3,-1)$ and is perpendicular to the line whose equation is $y=-3 x+2$?
$1 \quad y=-3 x+8$
$2 y=-3 x$
$3 y=\frac{1}{3} x$
$4 y=\frac{1}{3} x-2$

23 What is an equation of the line that is perpendicular to the line whose equation is $y=\frac{3}{5} x-2$ and that passes through the point $(3,-6)$?
$1 y=\frac{5}{3} x-11$
$2 y=-\frac{5}{3} x+11$
$3 y=-\frac{5}{3} x-1$
$4 \quad y=\frac{5}{3} x+1$

24 What is the equation of the line that passes through the point $(-9,6)$ and is perpendicular to the line $y=3 x-5$?
$1 \quad y=3 x+21$
$2 y=-\frac{1}{3} x-3$
$3 y=3 x+33$
$4 y=-\frac{1}{3} x+3$

25 Which equation represents the line that is perpendicular to $2 y=x+2$ and passes through the point (4, 3)?
$1 \quad y=\frac{1}{2} x-5$
$2 \quad y=\frac{1}{2} x+1$
$3 y=-2 x+11$
$4 y=-2 x-5$

26 Find an equation of the line passing through the point $(6,5)$ and perpendicular to the line whose equation is $2 y+3 x=6$.
G.G.65: PARALLEL AND PERPENDICULAR LINES

27 What is the equation of a line that passes through the point $(-3,-11)$ and is parallel to the line whose equation is $2 x-y=4$?
$1 y=2 x+5$
$2 y=2 x-5$
$3 y=\frac{1}{2} x+\frac{25}{2}$
$4 y=-\frac{1}{2} x-\frac{25}{2}$

28 What is an equation of the line that passes through the point $(7,3)$ and is parallel to the line $4 x+2 y=10$?
$1 y=\frac{1}{2} x-\frac{1}{2}$
$2 y=-\frac{1}{2} x+\frac{13}{2}$
$3 y=2 x-11$
$4 y=-2 x+17$

29 What is an equation of the line that passes through the point $(-2,3)$ and is parallel to the line whose equation is $y=\frac{3}{2} x-4$?
$1 y=\frac{-2}{3} x$
$2 y=\frac{-2}{3} x+\frac{5}{3}$
$3 y=\frac{3}{2} x$
$4 \quad y=\frac{3}{2} x+6$

30 Which line is parallel to the line whose equation is $4 x+3 y=7$ and also passes through the point $(-5,2)$?
$1 \quad 4 x+3 y=-26$
$2 \quad 4 x+3 y=-14$
$33 x+4 y=-7$
$4 \quad 3 x+4 y=14$

31 Which equation represents the line parallel to the line whose equation is $4 x+2 y=14$ and passing through the point $(2,2)$?
$1 \quad y=-2 x$
$2 y=-2 x+6$
$3 y=\frac{1}{2} x$
$4 \quad y=\frac{1}{2} x+1$

32 What is the equation of a line passing through $(2,-1)$ and parallel to the line represented by the equation $y=2 x+1$?
$1 y=-\frac{1}{2} x$
$2 y=-\frac{1}{2} x+1$
$3 y=2 x-5$
$4 y=2 x-1$

33 An equation of the line that passes through (2,-1) and is parallel to the line $2 y+3 x=8$ is
$1 y=\frac{3}{2} x-4$
$2 \quad y=\frac{3}{2} x+4$
$3 y=-\frac{3}{2} x-2$
$4 y=-\frac{3}{2} x+2$

34 Which equation represents a line that is parallel to the line whose equation is $y=\frac{3}{2} x-3$ and passes through the point $(1,2)$?
$1 \quad y=\frac{3}{2} x+\frac{1}{2}$
$2 y=\frac{2}{3} x+\frac{4}{3}$
$3 \quad y=\frac{3}{2} x-2$
$4 \quad y=-\frac{2}{3} x+\frac{8}{3}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

35 Find an equation of the line passing through the point $(5,4)$ and parallel to the line whose equation is $2 x+y=3$.

36 Write an equation of the line that passes through the point $(6,-5)$ and is parallel to the line whose equation is $2 x-3 y=11$.

G.G.68: PERPENDICULAR BISECTOR

37 The coordinates of the endpoints of $\overline{A B}$ are $A(0,0)$ and $B(0,6)$. The equation of the perpendicular bisector of $\overline{A B}$ is
$1 x=0$
$2 x=3$
$3 y=0$
$4 \quad y=3$

38 Which equation represents the perpendicular bisector of $\overline{A B}$ whose endpoints are $A(8,2)$ and $B(0,6)$?
$1 \quad y=2 x-4$
$2 y=-\frac{1}{2} x+2$
$3 \quad y=-\frac{1}{2} x+6$
$4 y=2 x-12$

39 Write an equation of the perpendicular bisector of the line segment whose endpoints are $(-1,1)$ and $(7,-5)$. [The use of the grid below is optional]

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

SYSTEMS

G.G.70: QUADRATIC-LINEAR SYSTEMS

40 Which graph could be used to find the solution to the following system of equations?

$$
\begin{gathered}
y=-x+2 \\
y=x^{2}
\end{gathered}
$$

1

2

3

41 Given the system of equations: $y=x^{2}-4 x$

$$
x=4
$$

The number of points of intersection is
11
22
3 3
40

42 Given the equations: $y=x^{2}-6 x+10$

$$
y+x=4
$$

What is the solution to the given system of equations?
$1(2,3)$
$2(3,2)$
$3(2,2)$ and $(1,3)$
$4(2,2)$ and $(3,1)$

43 Given: $y=\frac{1}{4} x-3$

$$
y=x^{2}+8 x+12
$$

In which quadrant will the graphs of the given equations intersect?

1	I
2	II
3	III
4	IV

44 What is the solution of the following system of equations?

$$
\begin{aligned}
& y=(x+3)^{2}-4 \\
& y=2 x+5
\end{aligned}
$$

$1(0,-4)$
$2(-4,0)$
$3(-4,-3)$ and $(0,5)$
$4(-3,-4)$ and $(5,0)$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

45 When solved graphically, what is the solution to the following system of equations?

$$
\begin{gathered}
y=x^{2}-4 x+6 \\
y=x+2
\end{gathered}
$$

$1(1,4)$
$2(4,6)$
$3(1,3)$ and $(4,6)$
$4(3,1)$ and $(6,4)$

46 On the set of axes below, solve the following system of equations graphically for all values of x and y.

$$
\begin{gathered}
y=(x-2)^{2}+4 \\
4 x+2 y=14
\end{gathered}
$$

47 Solve the following system of equations graphically.

$$
\begin{gathered}
2 x^{2}-4 x=y+1 \\
x+y=1
\end{gathered}
$$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

48 On the set of axes below, solve the system of equations graphically and state the coordinates of all points in the solution.

$$
\begin{gathered}
y=(x-2)^{2}-3 \\
2 y+16=4 x
\end{gathered}
$$

49 On the set of axes below, solve the following system of equations graphically and state the coordinates of all points in the solution.

$$
\begin{gathered}
(x+3)^{2}+(y-2)^{2}=25 \\
2 y+4=-x
\end{gathered}
$$

TOOLS OF GEOMETRY

G.G.66: MIDPOINT

50 Line segment $A B$ has endpoints $A(2,-3)$ and $B(-4,6)$. What are the coordinates of the midpoint of $\overline{A B}$?
$1(-2,3)$
$2\left(-1,1 \frac{1}{2}\right)$
$3(-1,3)$
$4 \quad\left(3,4 \frac{1}{2}\right)$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

51 Square $L M N O$ is shown in the diagram below.

What are the coordinates of the midpoint of diagonal $\overline{L N}$?
$1 \quad\left(4 \frac{1}{2},-2 \frac{1}{2}\right)$
$2\left(-3 \frac{1}{2}, 3 \frac{1}{2}\right)$
$3\left(-2 \frac{1}{2}, 3 \frac{1}{2}\right)$
$4\left(-2 \frac{1}{2}, 4 \frac{1}{2}\right)$

52 The endpoints of $\overline{C D}$ are $C(-2,-4)$ and $D(6,2)$.
What are the coordinates of the midpoint of $\overline{C D}$?
$1(2,3)$
$2(2,-1)$
$3(4,-2)$
$4(4,3)$

53 In the diagram below of circle $C, \overline{Q R}$ is a diameter, and $Q(1,8)$ and $C(3.5,2)$ are points on a coordinate plane. Find and state the coordinates of point R.

54 If a line segment has endpoints $A(3 x+5,3 y)$ and $B(x-1,-y)$, what are the coordinates of the midpoint of $\overline{A B}$?
$1(x+3,2 y)$
$2(2 x+2, y)$
$3(2 x+3, y)$
$4 \quad(4 x+4,2 y)$

55 A line segment has endpoints $A(7,-1)$ and $B(-3,3)$.
What are the coordinates of the midpoint of $\overline{A B}$?
$1(1,2)$
$2(2,1)$
$3(-5,2)$
$4 \quad(5,-2)$

56 Segment $A B$ is the diameter of circle M. The coordinates of A are ($-4,3$). The coordinates of M are $(1,5)$. What are the coordinates of B ?

1	$(6,7)$
2	$(5,8)$
3	$(-3,8)$
4	$(-5,2)$

$2(5,8)$
$3(-3,8)$
$4(-5,2)$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

57 Point M is the midpoint of $\overline{A B}$. If the coordinates of A are $(-3,6)$ and the coordinates of M are $(-5,2)$, what are the coordinates of B ?
$1(1,2)$
$2(7,10)$
$3(-4,4)$
$4(-7,-2)$

58 In circle O, diameter $\overline{R S}$ has endpoints $R(3 a, 2 b-1)$ and $S(a-6,4 b+5)$. Find the coordinates of point O, in terms of a and b. Express your answer in simplest form.

G.G.67: DISTANCE

59 If the endpoints of $\overline{A B}$ are $A(-4,5)$ and $B(2,-5)$, what is the length of $\overline{A B}$?
$12 \sqrt{34}$
22
$3 \sqrt{61}$
48

60 What is the distance between the points $(-3,2)$ and $(1,0)$?
$12 \sqrt{2}$
$2 \quad 2 \sqrt{3}$
$3 \quad 5 \sqrt{2}$
$4 \quad 2 \sqrt{5}$

61 What is the length, to the nearest tenth, of the line segment joining the points $(-4,2)$ and $(146,52)$?
$1 \quad 141.4$
$2 \quad 150.5$
3151.9
$4 \quad 158.1$

62 What is the length of the line segment with endpoints $(-6,4)$ and $(2,-5)$?
$1 \sqrt{13}$
$2 \sqrt{17}$
$3 \sqrt{72}$
$4 \sqrt{145}$

63 In circle O, a diameter has endpoints $(-5,4)$ and $(3,-6)$. What is the length of the diameter?
$1 \sqrt{2}$
$2 \quad 2 \sqrt{2}$
$3 \sqrt{10}$
$4 \quad 2 \sqrt{41}$

64 What is the length of the line segment whose endpoints are $A(-1,9)$ and $B(7,4)$?
$1 \sqrt{61}$
$2 \sqrt{89}$
$3 \sqrt{205}$
$4 \sqrt{233}$

65 What is the length of the line segment whose endpoints are $(1,-4)$ and $(9,2)$?
15
$2 \quad 2 \sqrt{17}$
310
$4 \quad 2 \sqrt{26}$

66 A line segment has endpoints $(4,7)$ and $(1,11)$. What is the length of the segment?
15
27
316
425

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

67 What is the length of $\overline{A B}$ with endpoints $A(-1,0)$ and $B(4,-3)$?
$1 \sqrt{6}$
$2 \quad \sqrt{18}$
$3 \sqrt{34}$
$4 \quad \sqrt{50}$

68 The coordinates of the endpoints of $\overline{F G}$ are $(-4,3)$ and (2,5). Find the length of $\overline{F G}$ in simplest radical form.

69 The endpoints of $\overline{P Q}$ are $P(-3,1)$ and $Q(4,25)$.
Find the length of $\overline{P Q}$.

G.G.1: PLANES

70 Lines k_{1} and k_{2} intersect at point E. Line m is perpendicular to lines k_{1} and k_{2} at point E.

Which statement is always true?
1 Lines k_{1} and k_{2} are perpendicular.
2 Line m is parallel to the plane determined by lines k_{1} and k_{2}.
3 Line m is perpendicular to the plane determined by lines k_{1} and k_{2}.
4 Line m is coplanar with lines k_{1} and k_{2}.

71 Lines j and k intersect at point P. Line m is drawn so that it is perpendicular to lines j and k at point P. Which statement is correct?
1 Lines j and k are in perpendicular planes.
2 Line m is in the same plane as lines j and k.
3 Line m is parallel to the plane containing lines j and k.
4 Line m is perpendicular to the plane containing lines j and k.

72 In plane \mathscr{P}, lines m and n intersect at point A. If line k is perpendicular to line m and line n at point A, then line k is
1 contained in plane \mathscr{P}
2 parallel to plane \mathscr{P}
3 perpendicular to plane \mathscr{P}
4 skew to plane \mathscr{P}

73 Lines m and n intersect at point A. Line k is perpendicular to both lines m and n at point A. Which statement must be true?
1 Lines m, n, and k are in the same plane.
2 Lines m and n are in two different planes.
3 Lines m and n are perpendicular to each other.
4 Line k is perpendicular to the plane containing lines m and n.

74 Lines a and b intersect at point P. Line c passes through P and is perpendicular to the plane containing lines a and b. Which statement must be true?
1 Lines a, b, and c are coplanar.
2 Line a is perpendicular to line b.
3 Line c is perpendicular to both line a and line b.

4 Line c is perpendicular to line a or line b, but not both.

G.G.2: PLANES

75 Point P is on line m. What is the total number of planes that are perpendicular to line m and pass through point P ?
$1 \quad 1$
22
30
4 infinite

76 Point P lies on line m. Point P is also included in distinct planes Q, R, S, and \mathcal{T}. At most, how many of these planes could be perpendicular to line m ?
11
22
3
44

G.G.3: PLANES

77 Through a given point, P, on a plane, how many lines can be drawn that are perpendicular to that plane?
11
22
3 more than 2
4 none

78 Point A is not contained in plane \mathscr{B}. How many lines can be drawn through point A that will be perpendicular to plane \mathscr{B} ?
1 one
2 two
3 zero
4 infinite

79 Point A lies in plane \mathfrak{B}. How many lines can be drawn perpendicular to plane \mathcal{B} through point A ?
1 one
2 two
3 zero
4 infinite

G.G.4: PLANES

80 If two different lines are perpendicular to the same plane, they are
1 collinear
2 coplanar
3 congruent
4 consecutive

G.G.5: PLANES

81 If $\overleftrightarrow{A B}$ is contained in plane P, and $\overleftrightarrow{A B}$ is perpendicular to plane \mathbb{R}, which statement is true?
$1 \overleftrightarrow{A B}$ is parallel to plane R
2 Plane \mathscr{P} is parallel to plane \mathbb{R}.
$3 \quad \overleftrightarrow{A B}$ is perpendicular to plane \mathscr{P}.
4 Plane \mathscr{P} is perpendicular to plane \mathbb{R}.

82 As shown in the diagram below, $\overline{F J}$ is contained in plane $\mathrm{R}, \overline{B C}$ and $\overline{D E}$ are contained in plane S , and $\overline{F J}, \overline{B C}$, and $\overline{D E}$ intersect at A.

Which fact is not sufficient to show that planes R and S are perpendicular?
$1 \quad F A \perp D E$
$2 \overline{A D} \perp \overline{A F}$
$3 \overline{B C} \perp \overline{F J}$
$4 \quad \overline{D E} \perp \overline{B C}$

G.G.7: PLANES

83 In the diagram below, line k is perpendicular to plane \mathscr{P} at point T.

Which statement is true?
1 Any point in plane \mathscr{P} also will be on line k.
2 Only one line in plane \mathscr{P} will intersect line k.
3 All planes that intersect plane \mathscr{P} will pass through T.
4 Any plane containing line k is perpendicular to plane \mathscr{P}.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

84 In the diagram below, $\overleftrightarrow{A B}$ is perpendicular to plane AEFG.

Which plane must be perpendicular to plane
AEFG?
1 ABCE
2 BCDH
3 CDFE
4 HDFG

G.G.8: PLANES

85 In three-dimensional space, two planes are parallel and a third plane intersects both of the parallel planes. The intersection of the planes is a
1 plane
2 point
3 pair of parallel lines
4 pair of intersecting lines

86 Plane \mathcal{A} is parallel to plane \mathscr{B}. Plane \mathcal{C} intersects plane \mathcal{A} in line m and intersects plane \mathcal{B} in line n. Lines m and n are
1 intersecting
2 parallel
3 perpendicular
4 skew

G.G.9: PLANES

87 Line k is drawn so that it is perpendicular to two distinct planes, P and R. What must be true about planes P and R ?
$1 \quad$ Planes P and R are skew.
2 Planes P and R are parallel.
$3 \quad$ Planes P and R are perpendicular.
$4 \quad$ Plane P intersects plane R but is not perpendicular to plane R.

88 A support beam between the floor and ceiling of a house forms a 90° angle with the floor. The builder wants to make sure that the floor and ceiling are parallel. Which angle should the support beam form with the ceiling?
145°
260°
390°
4180°

89 Plane \mathbb{R} is perpendicular to line k and plane \mathscr{D} is perpendicular to line k. Which statement is correct?
1 Plane R is perpendicular to plane \mathscr{D}.
2 Plane \mathbb{R} is parallel to plane \mathscr{D}.
3 Plane \mathbb{R} intersects plane \mathscr{D}.
4 Plane \mathbb{R} bisects plane \mathscr{D}.

90 If two distinct planes, \mathcal{A} and \mathcal{B}, are perpendicular to line c, then which statement is true?
1 Planes \mathcal{A} and \mathcal{B} are parallel to each other.
2 Planes \mathcal{A} and \mathcal{B} are perpendicular to each other.
3 The intersection of planes \mathcal{A} and \mathscr{B} is a line parallel to line c.
$4 \quad$ The intersection of planes \mathcal{A} and \mathscr{B} is a line perpendicular to line c.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

91 As shown in the diagram below, $\overleftrightarrow{E F}$ intersects planes \mathbb{P}, Q, and R.

If $\overleftrightarrow{E F}$ is perpendicular to planes \mathscr{P} and \mathbb{R}, which statement must be true?
1 Plane \mathscr{P} is perpendicular to plane Q.
2 Plane R is perpendicular to plane \mathscr{P}.
3 Plane \mathscr{P} is parallel to plane Q.
4 Plane \mathbb{R} is parallel to plane \mathscr{P}.

G.G.10: SOLIDS

92 The figure in the diagram below is a triangular prism.

Which statement must be true?
$1 \overline{D E} \cong \overline{A B}$
$2 \overline{A D} \cong \overline{B C}$
$3 \overline{A D} \| \overline{C E}$
$4 \overline{D E} \| \overline{B C}$

93 The diagram below shows a right pentagonal prism.

Which statement is always true?
$1 \quad \overline{B C} \| \overline{E D}$
$2 \overline{F G} \| \overline{C D}$
$3 \overline{F J} \| \overline{I H}$
$4 \overline{G B} \| \overline{H C}$

94 The diagram below shows a rectangular prism.

Which pair of edges are segments of lines that are coplanar?
$1 \overline{A B}$ and $\overline{D H}$
$2 \overline{A E}$ and $\overline{D C}$
$3 \overline{B C}$ and $\overline{E H}$
$4 \overline{C G}$ and $\overline{E F}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

95 The diagram below represents a rectangular solid.

Which statement must be true?
$1 \overline{E H}$ and $\overline{B C}$ are coplanar
$2 \overline{F G}$ and $\overline{A B}$ are coplanar
$3 \overline{E H}$ and $\overline{A D}$ are skew
$4 \quad \overline{F G}$ and $\overline{C G}$ are skew

G.G.13: SOLIDS

96 The lateral faces of a regular pyramid are composed of
1 squares
2 rectangles
3 congruent right triangles
4 congruent isosceles triangles

G.G.17: CONSTRUCTIONS

97 Which illustration shows the correct construction of an angle bisector?

1

3

4

98 The diagram below shows the construction of the bisector of $\angle A B C$.

Which statement is not true?
$1 \mathrm{~m} \angle E B F=\frac{1}{2} \mathrm{~m} \angle A B C$
$2 \mathrm{~m} \angle D B F=\frac{1}{2} \mathrm{~m} \angle A B C$
$3 \mathrm{~m} \angle E B F=\mathrm{m} \angle A B C$
$4 \mathrm{~m} \angle D B F=\mathrm{m} \angle E B F$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

99 Based on the construction below, which statement must be true?

$1 \mathrm{~m} \angle A B D=\frac{1}{2} \mathrm{~m} \angle C B D$
$2 \mathrm{~m} \angle A B D=\mathrm{m} \angle C B D$
$3 \mathrm{~m} \angle A B D=\mathrm{m} \angle A B C$
$4 \mathrm{~m} \angle C B D=\frac{1}{2} \mathrm{~m} \angle A B D$

100 .A straightedge and compass were used to create the construction below. Arc $E F$ was drawn from point B, and arcs with equal radii were drawn from E and F.

Which statement is false?
$1 \mathrm{~m} \angle A B D=\mathrm{m} \angle D B C$
$2 \quad \frac{1}{2}(\mathrm{~m} \angle A B C)=\mathrm{m} \angle A B D$
$3 \quad 2(\mathrm{~m} \angle D B C)=\mathrm{m} \angle A B C$
$4 \quad 2(\mathrm{~m} \angle A B C)=\mathrm{m} \angle C B D$

101 As shown in the diagram below of $\triangle A B C$, a compass is used to find points D and E, equidistant from point A. Next, the compass is used to find point F, equidistant from points D and E. Finally, a straightedge is used to draw $\overrightarrow{A F}$. Then, point G, the intersection of $\overrightarrow{A F}$ and side $\overline{B C}$ of $\triangle A B C$, is labeled.

Which statement must be true?

$$
\begin{array}{ll}
1 & \overrightarrow{A F} \text { bisects side } \overrightarrow{B C} \\
2 & \overrightarrow{A F} \text { bisects } \angle B A C \\
3 & \overrightarrow{A F} \perp \overrightarrow{B C} \\
4 & \triangle A B G \sim \triangle A C G
\end{array}
$$

102 Using a compass and straightedge, construct the angle bisector of $\angle A B C$ shown below. [Leave all construction marks.]

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

103 On the diagram below, use a compass and straightedge to construct the bisector of $\angle A B C$.
[Leave all construction marks.]

104 On the diagram below, use a compass and straightedge to construct the bisector of $\angle X Y Z$. [Leave all construction marks.]

105 Using a compass and straightedge, construct the bisector of $\angle C B A$. [Leave all construction marks.]

106 Using a compass and straightedge, construct the bisector of the angle shown below. [Leave all construction marks.]

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.18: CONSTRUCTIONS

107 The diagram below shows the construction of the perpendicular bisector of $\overline{A B}$.

Which statement is not true?
$1 \quad A C=C B$
$2 C B=\frac{1}{2} A B$
$3 A C=2 A B$
$4 \quad A C+C B=A B$

108 One step in a construction uses the endpoints of $\overline{A B}$ to create arcs with the same radii. The arcs intersect above and below the segment. What is the relationship of $\overline{A B}$ and the line connecting the points of intersection of these arcs?
1 collinear
2 congruent
3 parallel
4 perpendicular

109 Which diagram shows the construction of the perpendicular bisector of $\overline{A B}$?

1

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

110 Line segment $A B$ is shown in the diagram below.

Which two sets of construction marks, labeled I, II, III, and IV, are part of the construction of the perpendicular bisector of line segment $A B$?
1 I and II
2 I and III
3 II and III
4 II and IV

111 On the diagram of $\triangle A B C$ shown below, use a compass and straightedge to construct the perpendicular bisector of $\overline{A C}$. [Leave all construction marks.]

G.G.19: CONSTRUCTIONS

112 The diagram below illustrates the construction of $\overleftrightarrow{P S}$ parallel to $\overleftrightarrow{R Q}$ through point P.

Which statement justifies this construction?
$1 \mathrm{~m} \angle 1=\mathrm{m} \angle 2$
$2 \mathrm{~m} \angle 1=\mathrm{m} \angle 3$
$3 \overline{P R} \cong \overline{R Q}$
$4 \overline{P S} \cong \overline{R Q}$

113 Which geometric principle is used to justify the construction below?

1 A line perpendicular to one of two parallel lines is perpendicular to the other.
2 Two lines are perpendicular if they intersect to form congruent adjacent angles.
3 When two lines are intersected by a transversal and alternate interior angles are congruent, the lines are parallel.
4 When two lines are intersected by a transversal and the corresponding angles are congruent, the lines are parallel.

114 The diagram below shows the construction of a line through point P perpendicular to line m.

Which statement is demonstrated by this construction?
1 If a line is parallel to a line that is perpendicular to a third line, then the line is also perpendicular to the third line.
2 The set of points equidistant from the endpoints of a line segment is the perpendicular bisector of the segment.
3 Two lines are perpendicular if they are equidistant from a given point.
4 Two lines are perpendicular if they intersect to form a vertical line.

115 Using a compass and straightedge, construct a line perpendicular to $\overline{A B}$ through point P. [Leave all construction marks.]

116 The diagram below shows the construction of $\overleftrightarrow{A B}$ through point P parallel to $\overleftrightarrow{C D}$.

Which theorem justifies this method of construction?
1 If two lines in a plane are perpendicular to a transversal at different points, then the lines are parallel.
2 If two lines in a plane are cut by a transversal to form congruent corresponding angles, then the lines are parallel.
3 If two lines in a plane are cut by a transversal to form congruent alternate interior angles, then the lines are parallel.
4 If two lines in a plane are cut by a transversal to form congruent alternate exterior angles, then the lines are parallel.

117 Using a compass and straightedge, construct a line that passes through point P and is perpendicular to line m. [Leave all construction marks.]

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.20: CONSTRUCTIONS

118 Which diagram shows the construction of an equilateral triangle?

1

2

3

119 Which diagram represents a correct construction of equilateral $\triangle A B C$, given side $\overline{A B}$?

1

4

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

120 On the line segment below, use a compass and straightedge to construct equilateral triangle $A B C$. [Leave all construction marks.]

121 Using a compass and straightedge, and $A B$ below, construct an equilateral triangle with all sides congruent to $\overline{A B}$. [Leave all construction marks.]

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

124 A man wants to place a new bird bath in his yard so that it is 30 feet from a fence, f, and also 10 feet from a light pole, P. As shown in the diagram below, the light pole is 35 feet away from the fence.

125 In the diagram below, point M is located on $\overleftrightarrow{A B}$. Sketch the locus of points that are 1 unit from $\overleftrightarrow{A B}$ and the locus of points 2 units from point M. Label with an \mathbf{X} all points that satisfy both conditions.

How many locations are possible for the bird bath?
$1 \quad 1$
22
33
40

126 The length of $\overline{A B}$ is 3 inches. On the diagram below, sketch the points that are equidistant from A and B and sketch the points that are 2 inches from A. Label with an \mathbf{X} all points that satisfy both conditions.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

127 Two lines, $\overleftrightarrow{A B}$ and $\overleftrightarrow{C R D}$, are parallel and 10 inches apart. Sketch the locus of all points that are equidistant from $\overleftrightarrow{A B}$ and $\overleftrightarrow{C R D}$ and 7 inches from point R. Label with an \mathbf{X} each point that satisfies both conditions.

128
In the diagram below, car A is parked 7 miles from car B. Sketch the points that are 4 miles from car A and sketch the points that are 4 miles from car B. Label with an \mathbf{X} all points that satisfy both conditions.

G.G.23: LOCUS

129 In a coordinate plane, how many points are both 5 units from the origin and 2 units from the x-axis?
11
22
33
$4 \quad 4$

130 How many points are both 4 units from the origin and also 2 units from the line $y=4$?
11
22
3 3
44

131 A city is planning to build a new park. The park must be equidistant from school A at $(3,3)$ and school B at $(3,-5)$. The park also must be exactly 5 miles from the center of town, which is located at the origin on the coordinate graph. Each unit on the graph represents 1 mile. On the set of axes below, sketch the compound loci and label with an \mathbf{X} all possible locations for the new park.

132 On the set of axes below, sketch the points that are 5 units from the origin and sketch the points that are 2 units from the line $y=3$. Label with an \mathbf{X} all points that satisfy both conditions.

133 On the grid below, graph the points that are equidistant from both the x and y axes and the points that are 5 units from the origin. Label with an \mathbf{X} all points that satisfy both conditions.

134 On the set of axes below, graph the locus of points that are four units from the point $(2,1)$. On the same set of axes, graph the locus of points that are two units from the line $x=4$. State the coordinates of all points that satisfy both conditions.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

135 On the set of coordinate axes below, graph the locus of points that are equidistant from the lines $y=6$ and $y=2$ and also graph the locus of points that are 3 units from the y-axis. State the coordinates of all points that satisfy both conditions.

136 On the set of axes below, graph the locus of points that are 4 units from the line $x=3$ and the locus of points that are 5 units from the point $(0,2)$. Label with an \mathbf{X} all points that satisfy both conditions.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

137 The graph below shows the locus of points equidistant from the x-axis and y-axis. On the same set of axes, graph the locus of points 3 units from the line $x=0$. Label with an \mathbf{X} all points that satisfy both conditions.

ANGLES

G.G.35: PARALLEL LINES \& TRANSVERSALS

138 Based on the diagram below, which statement is true?

$1 \quad a \| b$
$2 a \| c$
$3 \quad b \| c$
$4 \quad d \| e$

139 A transversal intersects two lines. Which condition would always make the two lines parallel?
1 Vertical angles are congruent.
2 Alternate interior angles are congruent.
3 Corresponding angles are supplementary.
4 Same-side interior angles are complementary.

140 In the diagram below, line p intersects line m and line n.

If $\mathrm{m} \angle 1=7 x$ and $\mathrm{m} \angle 2=5 x+30$, lines m and n are parallel when x equals
112.5

215
387.5

4105

141 In the diagram below, lines n and m are cut by transversals p and q.

What value of x would make lines n and m parallel?
1110
280
$3 \quad 70$
450

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

142 Line n intersects lines l and m, forming the angles shown in the diagram below.

Which value of x would prove $l \| m$?
12.5
24.5
$3 \quad 6.25$
$4 \quad 8.75$

143 As shown in the diagram below, lines m and n are cut by transversal p.

If $\mathrm{m} \angle 1=4 x+14$ and $\mathrm{m} \angle 2=8 x+10$, lines m and n are parallel when x equals
11
26
$3 \quad 13$
$4 \quad 17$

144 In the diagram below of quadrilateral $A B C D$ with diagonal $B D, \mathrm{~m} \angle A=93, \mathrm{~m} \angle A D B=43$, $\mathrm{m} \angle C=3 x+5, \mathrm{~m} \angle B D C=x+19$, and $\mathrm{m} \angle D B C=2 x+6$. Determine if $\overline{A B}$ is parallel to $\overline{D C}$. Explain your reasoning.

145 In the diagram below, $\ell \| m$ and $\overline{Q R} \perp \overline{S T}$ at R.

If $\mathrm{m} \angle 1=63$, find $\mathrm{m} \angle 2$.

TRIANGLES

G.G.48: PYTHAGOREAN THEOREM

146 In the diagram below of $\triangle A D B, \mathrm{~m} \angle B D A=90$, $A D=5 \sqrt{2}$, and $A B=2 \sqrt{15}$.

What is the length of $\overline{B D}$?
$1 \sqrt{10}$
$2 \sqrt{20}$
$3 \sqrt{50}$
$4 \sqrt{110}$

147 The diagram below shows a pennant in the shape of an isosceles triangle. The equal sides each measure 13 , the altitude is $x+7$, and the base is $2 x$.

What is the length of the base?
15
210
$3 \quad 12$
$4 \quad 24$

148 As shown in the diagram below, a kite needs a vertical and a horizontal support bar attached at opposite corners. The upper edges of the kite are 7 inches, the side edges are x inches, and the vertical support bar is $(x+1)$ inches.

What is the measure, in inches, of the vertical support bar?
$1 \quad 23$
24
$3 \quad 25$
$4 \quad 26$

149 Which set of numbers does not represent the sides of a right triangle?
1 \{6, 8, 10\}
$2\{8,15,17\}$
3 \{8,24,25\}
$4\{15,36,39\}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.30: INTERIOR AND EXTERIOR ANGLES OF TRIANGLES

150 Juliann plans on drawing $\triangle A B C$, where the measure of $\angle A$ can range from 50° to 60° and the measure of $\angle B$ can range from 90° to 100°. Given these conditions, what is the correct range of measures possible for $\angle C$?
120° to 40°
230° to 50°
380° to 90°
$4 \quad 120^{\circ}$ to 130°

151 In an equilateral triangle, what is the difference between the sum of the exterior angles and the sum of the interior angles?
1180°
2120°
390°
460°

152 In $\triangle A B C, \mathrm{~m} \angle A=x, \mathrm{~m} \angle B=2 x+2$, and $\mathrm{m} \angle C=3 x+4$. What is the value of x ?
129
231
359
461

153 In $\triangle D E F, \mathrm{~m} \angle D=3 x+5, \mathrm{~m} \angle E=4 x-15$, and $\mathrm{m} \angle F=2 x+10$. Which statement is true?
$1 \quad D F=F E$
$2 D E=F E$
$3 \mathrm{~m} \angle E=\mathrm{m} \angle F$
$4 \mathrm{~m} \angle D=\mathrm{m} \angle F$

154 Triangle $P Q R$ has angles in the ratio of $2: 3: 5$. Which type of triangle is $\triangle P Q R$?
1 acute
2 isosceles
3 obtuse
4 right

155 The angles of triangle $A B C$ are in the ratio of $8: 3: 4$. What is the measure of the smallest angle?
$1 \quad 12^{\circ}$
$2 \quad 24^{\circ}$
$3 \quad 36^{\circ}$
472°

156 In the diagram of $\triangle J E A$ below, $\mathrm{m} \angle J E A=90$ and $\mathrm{m} \angle E A J=48$. Line segment $M S$ connects points M and S on the triangle, such that $\mathrm{m} \angle E M S=59$.

What is $\mathrm{m} \angle J S M$?
1163
2121
342
417

157 The degree measures of the angles of $\triangle A B C$ are represented by $x, 3 x$, and $5 x-54$. Find the value of x.

158 In right $\triangle D E F, \mathrm{~m} \angle D=90$ and $\mathrm{m} \angle F$ is 12 degrees less than twice $\mathrm{m} \angle E$. Find $\mathrm{m} \angle E$.
G.G.31: ISOSCELES TRIANGLE THEOREM

159 In the diagram of $\triangle A B C$ below, $\overline{A B} \cong \overline{A C}$. The measure of $\angle B$ is 40°.

What is the measure of $\angle A$?
140°
250°
370°
4100°

160 In $\triangle A B C, \overline{A B} \cong \overline{B C}$. An altitude is drawn from B to $\overline{A C}$ and intersects $\overline{A C}$ at D. Which conclusion is not always true?
$1 \angle A B D \cong \angle C B D$
$2 \angle B D A \cong \angle B D C$
$3 \overline{A D} \cong \overline{B D}$
$4 \overline{A D} \cong \overline{D C}$

161 In isosceles triangle $A B C, A B=B C$. Which statement will always be true?
$1 \mathrm{~m} \angle B=\mathrm{m} \angle A$
$2 \mathrm{~m} \angle A>\mathrm{m} \angle B$
$3 \mathrm{~m} \angle A=\mathrm{m} \angle C$
$4 \mathrm{~m} \angle C<\mathrm{m} \angle B$

162 If the vertex angles of two isosceles triangles are congruent, then the triangles must be
1 acute
2 congruent
3 right
4 similar

163 In the diagram below, $\triangle L M O$ is isosceles with $L O=M O$.

If $\mathrm{m} \angle L=55$ and $\mathrm{m} \angle N O M=28$, what is $\mathrm{m} \angle N$?
127
228
342
470

164 In the diagram below of $\triangle A B C, \overline{A B} \cong \overline{A C}$, $\mathrm{m} \angle A=3 x$, and $\mathrm{m} \angle B=x+20$.

What is the value of x ?
$1 \quad 10$
$2 \quad 28$
$3 \quad 32$
440

165 In the diagram below of $\triangle A C D, B$ is a point on $\overline{A C}$ such that $\triangle A D B$ is an equilateral triangle, and $\triangle D B C$ is an isosceles triangle with $\overline{D B} \cong \overline{B C}$. Find $\mathrm{m} \angle C$.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

166 In $\triangle R S T, \mathrm{~m} \angle R S T=46$ and $\overline{R S} \cong \overline{S T}$. Find $\mathrm{m} \angle S T R$.

167 In the diagram below of $\Delta G J K, H$ is a point on $\overline{G J}$, $\overline{H J} \cong \overline{J K}, \mathrm{~m} \angle G=28$, and $\mathrm{m} \angle G J K=70$.
Determine whether $\triangle G H K$ is an isosceles triangle and justify your answer.

G.G.32: EXTERIOR ANGLE THEOREM

168 Side $\overline{P Q}$ of $\triangle P Q R$ is extended through Q to point
T. Which statement is not always true?
$1 \mathrm{~m} \angle R Q T>\mathrm{m} \angle R$
$2 \mathrm{~m} \angle R Q T>\mathrm{m} \angle P$
$3 \mathrm{~m} \angle R Q T=\mathrm{m} \angle P+\mathrm{m} \angle R$
$4 \mathrm{~m} \angle R Q T>\mathrm{m} \angle P Q R$

169 In the diagram below, $\triangle A B C$ is shown with $\overline{A C}$ extended through point D.

If $\mathrm{m} \angle B C D=6 x+2, \mathrm{~m} \angle B A C=3 x+15$, and $\mathrm{m} \angle A B C=2 x-1$, what is the value of x ?
$1 \quad 12$
$2 \quad 14 \frac{10}{11}$
$3 \quad 16$
$4 \quad 18 \frac{1}{9}$

170 In the diagram below of $\triangle A B C$, side $\overline{B C}$ is extended to point $D, \mathrm{~m} \angle A=x, \mathrm{~m} \angle B=2 x+15$, and $\mathrm{m} \angle A C D=5 x+5$.

What is $\mathrm{m} \angle B$?
15
20
325
455

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

171 In the diagram of $\Delta K L M$ below, $\mathrm{m} \angle L=70$, $\mathrm{m} \angle M=50$, and $\overline{M K}$ is extended through N.

What is the measure of $\angle L K N$?
160°
2120°
3180°
4300°

172 In the diagram below of $\triangle B C D$, side $\overline{D B}$ is extended to point A.

Which statement must be true?
$1 \mathrm{~m} \angle C>\mathrm{m} \angle D$
$2 \mathrm{~m} \angle A B C<\mathrm{m} \angle D$
$3 \mathrm{~m} \angle A B C>\mathrm{m} \angle C$
$4 \mathrm{~m} \angle A B C>\mathrm{m} \angle C+\mathrm{m} \angle D$

173 In the diagram below of $\triangle A B C, \overline{B C}$ is extended to D.

If $\mathrm{m} \angle A=x^{2}-6 x, \mathrm{~m} \angle B=2 x-3$, and $\mathrm{m} \angle A C D=9 x+27$, what is the value of x ?
$1 \quad 10$
22
$3 \quad 3$
415

174 In the diagram below of $\triangle A B C, D$ is a point on $\overline{A B}$, $A C=7, A D=6$, and $B C=18$.

The length of $\overline{D B}$ could be
15
$2 \quad 12$
$3 \quad 19$
425

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

175 In the diagram below of $\triangle H Q P$, side $\overline{H P}$ is extended through P to $T, \mathrm{~m} \angle Q P T=6 x+20$, $\mathrm{m} \angle H Q P=x+40$, and $\mathrm{m} \angle P H Q=4 x-5$. Find $\mathrm{m} \angle Q P T$.

(Not drawn to scale)

G.G.33: TRIANGLE INEQUALITY THEOREM

176 In $\triangle F G H, \mathrm{~m} \angle F=42$ and an exterior angle at vertex H has a measure of 104 . What is $\mathrm{m} \angle G$?
134
262
$3 \quad 76$
4146

177 Which set of numbers represents the lengths of the sides of a triangle?
1 \{5, 18, 13\}
$2\{6,17,22\}$
$3\{16,24,7\}$
4 \{26, 8, 15\}

178 In $\triangle A B C, A B=5$ feet and $B C=3$ feet. Which inequality represents all possible values for the length of $\overline{A C}$, in feet?
$12 \leq A C \leq 8$
$22<A C<8$
$3 \quad 3 \leq A C \leq 7$
$43<A C<7$

G.G.34: ANGLE SIDE RELATIONSHIP

179 In $\triangle A B C, \mathrm{~m} \angle A=95, \mathrm{~m} \angle B=50$, and $\mathrm{m} \angle C=35$. Which expression correctly relates the lengths of the sides of this triangle?
$1 \quad A B<B C<C A$
$2 A B<A C<B C$
$3 \quad A C<B C<A B$
$4 B C<A C<A B$

180 In $\triangle P Q R, P Q=8, Q R=12$, and $R P=13$. Which statement about the angles of $\triangle P Q R$ must be true?
$1 \mathrm{~m} \angle Q>\mathrm{m} \angle P>\mathrm{m} \angle R$
$2 \mathrm{~m} \angle Q>\mathrm{m} \angle R>\mathrm{m} \angle P$
$3 \mathrm{~m} \angle R>\mathrm{m} \angle P>\mathrm{m} \angle Q$
$4 \mathrm{~m} \angle P>\mathrm{m} \angle R>\mathrm{m} \angle Q$

181 In $\triangle A B C, A B=7, B C=8$, and $A C=9$. Which list has the angles of $\triangle A B C$ in order from smallest to largest?
$1 \angle A, \angle B, \angle C$
$2 \angle B, \angle A, \angle C$
$3 \angle C, \angle B, \angle A$
$4 \angle C, \angle A, \angle B$

182 In scalene triangle $A B C, \mathrm{~m} \angle B=45$ and $\mathrm{m} \angle C=55$. What is the order of the sides in length, from longest to shortest?
$1 \overline{A B}, \overline{B C}, \overline{A C}$
$2 \overline{B C}, \overline{A C}, \overline{A B}$
$3 \overline{A C}, \overline{B C}, \overline{A B}$
$4 \overline{B C}, \overline{A B}, \overline{A C}$

183 In $\triangle R S T, \mathrm{~m} \angle R=58$ and $\mathrm{m} \angle S=73$. Which inequality is true?
$1 \quad R T<T S<R S$
$2 R S<R T<T S$
$3 R T<R S<T S$
$4 \quad R S<T S<R T$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

184 As shown in the diagram of $\triangle A C D$ below, B is a point on $\overline{A C}$ and $\overline{D B}$ is drawn.

If $\mathrm{m} \angle A=66, \mathrm{~m} \angle C D B=18$, and $\mathrm{m} \angle C=24$, what is the longest side of $\triangle A B D$?
$\begin{array}{ll}1 & \overline{A B} \\ 2 & \overline{D C} \\ 3 & \overline{A D} \\ 4 & \overline{B D}\end{array}$

185 In the diagram below of $\triangle A B C$ with side $\overline{A C}$ extended through $D, \mathrm{~m} \angle A=37$ and $\mathrm{m} \angle B C D=117$. Which side of $\triangle A B C$ is the longest side? Justify your answer.

G.G.46: SIDE SPLITTER THEOREM

186 In the diagram below of $\triangle A C T, \overleftrightarrow{B E} \| \overline{A T}$

If $C B=3, C A=10$, and $C E=6$, what is the length of $\overline{E T}$?
15
$2 \quad 14$
320
426

187 In the diagram below of $\triangle A B C, \overleftrightarrow{T V} \| \overline{B C}, A T=5$, $T B=7$, and $A V=10$.

What is the length of $\overline{V C}$?
$13 \frac{1}{2}$
$2 \quad 7 \frac{1}{7}$
314
424

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

188 In the diagram of $\triangle A B C$ shown below, $\overline{D E} \| \overline{B C}$.

If $A B=10, A D=8$, and $A E=12$, what is the length of $E C$?
16
22
33
415

189 In $\triangle A B C$, point D is on $\overline{A B}$, and point E is on $\overline{B C}$ such that $\overline{D E} \| \overline{A C}$. If $D B=2, D A=7$, and $D E=3$, what is the length of $\overline{A C}$?
18
29
310.5
413.5

190 In the diagram below of $\triangle A C D, E$ is a point on $\overline{A D}$ and B is a point on $\overline{A C}$, such that $\overline{E B} \| \overline{D C}$. If $A E=3, E D=6$, and $D C=15$, find the length of $\overline{E B}$.

191 In the diagram below of $\triangle A D E, B$ is a point on $\overline{A E}$ and C is a point on $\overline{A D}$ such that $\overline{B C} \| \overline{E D}$, $A C=x-3, B E=20, A B=16$, and $A D=2 x+2$.
Find the length of $\overline{A C}$.

192 In the diagram below of $\triangle A B C, D$ is a point on $\overline{A B}$, E is a point on $\overline{B C}, \overline{A C} \| \overline{D E}, C E=25$ inches, $A D=18$ inches, and $D B=12$ inches. Find, to the nearest tenth of an inch, the length of $\overline{E B}$.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.42: MIDSEGMENTS

193 In the diagram below of $\triangle A C T, D$ is the midpoint of $\overline{A C}, O$ is the midpoint of $\overline{A T}$, and G is the midpoint of $\overline{C T}$.

If $A C=10, A T=18$, and $C T=22$, what is the perimeter of parallelogram $C D O G$?
121
225
332
$4 \quad 40$

194 In the diagram below of $\triangle A B C, \underline{D}$ is the midpoint of $\overline{A B}$, and E is the midpoint of $\overline{B C}$.

If $A C=4 x+10$, which expression represents $D E$?
$1 x+2.5$
$2 \quad 2 x+5$
$3 \quad 2 x+10$
$4 \quad 8 x+20$

195 In the diagram of $\triangle A B C$ shown below, D is the midpoint of $\overline{A B}, E$ is the midpoint of $\overline{B C}$, and F is the midpoint of $\overline{A C}$.

If $A B=20, B C=12$, and $A C=16$, what is the perimeter of trapezoid $A B E F$?
124
236
340
444

196 In the diagram below, $\overline{D E}$ joins the midpoints of two sides of $\triangle A B C$.

Which statement is not true?
$1 C E=\frac{1}{2} C B$
$2 D E=\frac{1}{2} A B$
3 area of $\triangle C D E=\frac{1}{2}$ area of $\triangle C A B$
4 perimeter of $\triangle C D E=\frac{1}{2}$ perimeter of $\triangle C A B$

197 On the set of axes below, graph and label $\triangle D E F$ with vertices at $D(-4,-4), E(-2,2)$, and $F(8,-2)$. If G is the midpoint of $\overline{E F}$ and H is the midpoint of $\overline{D F}$, state the coordinates of G and H and label each point on your graph. Explain why $\overline{G H} \| \overline{D E}$.

198 In the diagram of $\triangle A B C$ below, $A B=10, B C=14$, and $A C=16$. Find the perimeter of the triangle formed by connecting the midpoints of the sides of $\triangle A B C$.

199 In the diagram below of $\triangle A B C, \overline{D E}$ is a midsegment of $\triangle A B C, D E=7, A B=10$, and $B C=13$. Find the perimeter of $\triangle A B C$.

200 In the diagram below, the vertices of $\triangle D E F$ are the midpoints of the sides of equilateral triangle $A B C$, and the perimeter of $\triangle A B C$ is 36 cm .

What is the length, in centimeters, of $\overline{E F}$?
16
212
318
44

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

201 Triangle $H K L$ has vertices $H(-7,2), K(3,-4)$, and $L(5,4)$. The midpoint of $\overline{H L}$ is M and the midpoint of $\overline{L K}$ is N. Determine and state the coordinates of points M and N. Justify the statement: $\overline{M N}$ is parallel to $\overline{H K}$. [The use of the set of axes below is optional.]

G.G.21: CENTROID, ORTHOCENTER, INCENTER AND CIRCUMCENTER

202 In which triangle do the three altitudes intersect outside the triangle?
1 a right triangle
2 an acute triangle
3 an obtuse triangle
4 an equilateral triangle

203 In a given triangle, the point of intersection of the three medians is the same as the point of intersection of the three altitudes. Which classification of the triangle is correct?
1 scalene triangle
2 isosceles triangle
3 equilateral triangle
4 right isosceles triangle

204 For a triangle, which two points of concurrence could be located outside the triangle?
1 incenter and centroid
2 centroid and orthocenter
3 incenter and circumcenter
4 circumcenter and orthocenter

205 In the diagram below of $\triangle A B C, \overline{A E} \cong \overline{B E}$, $\overline{A F} \cong \overline{C F}$, and $\overline{C D} \cong \overline{B D}$.

Point P must be the
1 centroid
2 circumcenter
3 Incenter
4 orthocenter

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

206 The diagram below shows the construction of the center of the circle circumscribed about $\triangle A B C$.

This construction represents how to find the intersection of
1 the angle bisectors of $\triangle A B C$
2 the medians to the sides of $\triangle A B C$
3 the altitudes to the sides of $\triangle A B C$
4 the perpendicular bisectors of the sides of $\triangle A B C$

In the diagram below of $\triangle A B C, \overline{C D}$ is the bisector of $\angle B C A, \overline{A E}$ is the bisector of $\angle C A B$, and $\overline{B G}$ is drawn.

Which statement must be true?
$1 D G=E G$
$2 \quad A G=B G$
$3 \angle A E B \cong \angle A E C$
$4 \angle D B G \cong \angle E B G$

208 Which geometric principle is used in the construction shown below?

1 The intersection of the angle bisectors of a triangle is the center of the inscribed circle.
2 The intersection of the angle bisectors of a triangle is the center of the circumscribed circle.
3 The intersection of the perpendicular bisectors of the sides of a triangle is the center of the inscribed circle.
4 The intersection of the perpendicular bisectors of the sides of a triangle is the center of the circumscribed circle.

209 The vertices of the triangle in the diagram below are $A(7,9), B(3,3)$, and $C(11,3)$.

What are the coordinates of the centroid of $\triangle A B C$?
$1(5,6)$
$2(7,3)$
$3(7,5)$
$4(9,6)$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

210 Triangle $A B C$ has vertices $A(3,3), B(7,9)$, and $C(11,3)$. Determine the point of intersection of the medians, and state its coordinates. [The use of the set of axes below is optional.]

G.G.43: CENTROID

211 In the diagram of $\triangle A B C$ below, Jose found centroid P by constructing the three medians. He measured $\overline{C F}$ and found it to be 6 inches.

If $P F=x$, which equation can be used to find x ?
$1 \quad x+x=6$
$2 \quad 2 x+x=6$
$3 \quad 3 x+2 x=6$
$4 \quad x+\frac{2}{3} x=6$

212 In the diagram below of $\triangle A B C$, medians $\overline{A D}, \overline{B E}$, and $\overline{C F}$ intersect at G.

If $C F=24$, what is the length of $\overline{F G}$?
18
$2 \quad 10$
$3 \quad 12$
$4 \quad 16$

213 In the diagram below of $\triangle A C E$, medians $\overline{A D}, \overline{E B}$, and $\overline{C F}$ intersect at G. The length of $\overline{F G}$ is 12 cm .

What is the length, in centimeters, of $\overline{G C}$?
$1 \quad 24$
$2 \quad 12$
36
44

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

214 In the diagram below, point P is the centroid of $\triangle A B C$.

If $P M=2 x+5$ and $B P=7 x+4$, what is the length of $\overline{P M}$?
19
22
318
$4 \quad 27$

215 In $\triangle A B C$ shown below, P is the centroid and $B F=18$.

What is the length of $\overline{B P}$?
16
29
33
412

216 In the diagram below of $\triangle T E M$, medians $\overline{T B}, \overline{E C}$, and $\overline{M A}$ intersect at D, and $T B=9$. Find the length of $\overline{T D}$.

G.G.69: TRIANGLES IN THE COORDINATE

 PLANE217 The vertices of $\triangle A B C$ are $A(-1,-2), B(-1,2)$ and $C(6,0)$. Which conclusion can be made about the angles of $\triangle A B C$?
$1 \mathrm{~m} \angle A=\mathrm{m} \angle B$
$2 \mathrm{~m} \angle A=\mathrm{m} \angle C$
$3 \mathrm{~m} \angle A C B=90$
$4 \mathrm{~m} \angle A B C=60$

218 Triangle $A B C$ has vertices $A(0,0), B(3,2)$, and $C(0,4)$. The triangle may be classified as
1 equilateral
2 isosceles
3 right
4 scalene

219 Which type of triangle can be drawn using the points $(-2,3),(-2,-7)$, and $(4,-5)$?
1 scalene
2 isosceles
3 equilateral
4 no triangle can be drawn

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

220 Triangle $A B C$ has coordinates $A(-6,2), B(-3,6)$, and $C(5,0)$. Find the perimeter of the triangle.
Express your answer in simplest radical form. [The use of the grid below is optional.]

POLYGONS

G.G.36: INTERIOR AND EXTERIOR ANGLES OF POLYGONS

221 In which polygon does the sum of the measures of the interior angles equal the sum of the measures of the exterior angles?
1 triangle
2 hexagon
3 octagon
4 quadrilateral

222 For which polygon does the sum of the measures of the interior angles equal the sum of the measures of the exterior angles?
1 hexagon
2 pentagon
3 quadrilateral
4 triangle

223 The sum of the interior angles of a polygon of n sides is
1360
$2 \frac{360}{n}$
$3(n-2) \cdot 180$
$4 \frac{(n-2) \cdot 180}{n}$

224 The pentagon in the diagram below is formed by five rays.

What is the degree measure of angle x ?
172
296
3108
4112

225 The number of degrees in the sum of the interior angles of a pentagon is
172
2360
$3 \quad 540$
4720

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.37: INTERIOR AND EXTERIOR ANGLES

 OF POLYGONS226 What is the measure of an interior angle of a regular octagon?
145°
260°
3120°
4135°

227 What is the measure of each interior angle of a regular hexagon?
160°
2120°
3135°
4270°

228 In the diagram below of regular pentagon $A B C D E$, $\overline{E B}$ is drawn.

What is the measure of $\angle A E B$?
136°
254°
$3 \quad 72^{\circ}$
4108°

229 Find, in degrees, the measures of both an interior angle and an exterior angle of a regular pentagon.

G.G.38: PARALLELOGRAMS

230 In the diagram below of parallelogram $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}, \mathrm{~m} \angle 1=45$ and $\mathrm{m} \angle D C B=120$.

What is the measure of $\angle 2$?
$1 \quad 15^{\circ}$
230°
345°
460°

231 In the diagram below of parallelogram STUV, $S V=x+3, V U=2 x-1$, and $T U=4 x-3$.

What is the length of $\overline{S V}$?
15
22
37
44

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

232 Which statement is true about every parallelogram?
1 All four sides are congruent.
2 The interior angles are all congruent.
3 Two pairs of opposite sides are congruent.
4 The diagonals are perpendicular to each other.

233 In the diagram below, parallelogram $A B C D$ has diagonals $\overline{A C}$ and $\overline{B D}$ that intersect at point E.

Which expression is not always true?
$1 \angle D A E \cong \angle B C E$
$2 \angle D E C \cong \angle B E A$
$3 \overline{A C} \cong \overline{D B}$
$4 \overline{D E} \cong \overline{E B}$

234 As shown in the diagram below, the diagonals of parallelogram $Q R S T$ intersect at E. If $Q E=x^{2}+6 x$, $S E=x+14$, and $T E=6 x-1$, determine $T E$ algebraically.

G.G.39: PARALLELOGRAMS

235 In the diagram below of rhombus $A B C D$, $\mathrm{m} \angle C=100$.

What is $\mathrm{m} \angle D B C$?
140
245
350
480

236 In rhombus $A B C D$, the diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E. If $A E=5$ and $B E=12$, what is the length of $\overline{A B}$?
17
$2 \quad 10$
313
417

237 Which quadrilateral has diagonals that always bisect its angles and also bisect each other?
1 rhombus
2 rectangle
3 parallelogram
4 isosceles trapezoid

238 The diagonals of a quadrilateral are congruent but do not bisect each other. This quadrilateral is
1 an isosceles trapezoid
2 a parallelogram
3 a rectangle
4 a rhombus

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

239 Given three distinct quadrilaterals, a square, a rectangle, and a rhombus, which quadrilaterals must have perpendicular diagonals?
1 the rhombus, only
2 the rectangle and the square
3 the rhombus and the square
4 the rectangle, the rhombus, and the square

240 Which reason could be used to prove that a parallelogram is a rhombus?
1 Diagonals are congruent.
2 Opposite sides are parallel.
3 Diagonals are perpendicular.
4 Opposite angles are congruent.

241 In the diagram below, MATH is a rhombus with diagonals $\overline{A H}$ and $\overline{M T}$.

If $\mathrm{m} \angle H A M=12$, what is $\mathrm{m} \angle A M T$?
112
278
384
4156

242 In the diagram below, quadrilateral $S T A R$ is a rhombus with diagonals $\overline{S A}$ and $\overline{T R}$ intersecting at E. $S T=3 x+30, S R=8 x-5, S E=3 z, T E=5 z+5$, $A E=4 z-8, \mathrm{~m} \angle R T A=5 y-2$, and $\mathrm{m} \angle T A S=9 y+8$. Find $S R, R T$, and $\mathrm{m} \angle T A S$.

G.G.40: TRAPEZOIDS

243 If the diagonals of a quadrilateral do not bisect each other, then the quadrilateral could be a
1 rectangle
2 rhombus
3 square
4 trapezoid

244 Isosceles trapezoid $A B C D$ has diagonals $\overline{A C}$ and $\overline{B D}$. If $A C=5 x+13$ and $B D=11 x-5$, what is the value of x ?
128
$2 \quad 10 \frac{3}{4}$
33
$4 \quad \frac{1}{2}$

245 In isosceles trapezoid $A B C D, \overline{A B} \cong \overline{C D}$. If $B C=20, A D=36$, and $A B=17$, what is the length of the altitude of the trapezoid?
110
$2 \quad 12$
315
416

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

Geometry Regents Exam Questions by Performance Indicator: Topic

246 In the diagram below of trapezoid $R S U T, \overline{R S} \| \overline{T U}$, \underline{X} is the midpoint of $\overline{R T}$, and V is the midpoint of $\overline{S U}$.

If $R S=30$ and $X V=44$, what is the length of $\overline{T U}$?
137
$2 \quad 58$
374
4118

247 In the diagram below of isosceles trapezoid $A B C D$, $A B=C D=25, A D=26$, and $B C=12$.

What is the length of an altitude of the trapezoid?
17
214
$3 \quad 19$
$4 \quad 24$

248 In the diagram below, LATE is an isosceles trapezoid with $\overline{L E} \cong \overline{A T}, L A=24, E T=40$, and $A T=10$. Altitudes $\overline{L F}$ and $\overline{A G}$ are drawn.

What is the length of $\overline{L F}$?
16
28
3 3
44

249 In the diagram below, $\overline{E F}$ is the median of trapezoid $A B C D$.

If $A B=5 x-9, D C=x+3$, and $E F=2 x+2$, what is the value of x ?
15
22
37
48

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

250 In the diagram below of isosceles trapezoid $D E F G$, $\overline{D E} \| \overline{G F}, D E=4 x-2, E F=3 x+2, F G=5 x-3$, and $G D=2 x+5$. Find the value of x.

251 The diagram below shows isosceles trapezoid $A B C D$ with $\overline{A B} \| \overline{D C}$ and $\overline{A D} \cong \overline{B C}$. If $\mathrm{m} \angle B A D=2 x$ and $\mathrm{m} \angle B C D=3 x+5$, find $\mathrm{m} \angle B A D$.

G.G.41: SPECIAL QUADRILATERALS

252 A quadrilateral whose diagonals bisect each other and are perpendicular is a
1 rhombus
2 rectangle
3 trapezoid
4 parallelogram

253 Given: Quadrilateral $A B C D$, diagonal $\overline{A F E C}$, $\overline{A E} \cong \overline{F C}, \overline{B F} \perp \overline{A C}, \overline{D E} \perp \overline{A C}, \angle 1 \cong \angle 2$ Prove: $A B C D$ is a parallelogram.

254 Given: $J K L M$ is a parallelogram.

$$
\overline{J M} \cong \overline{L N}
$$

$$
\angle L M N \cong \angle L N M
$$

Prove: JKLM is a rhombus.

G.G.69: QUADRILATERALS IN THE COORDINATE PLANE

255 The coordinates of the vertices of parallelogram $A B C D$ are $A(-3,2), B(-2,-1), C(4,1)$, and $D(3,4)$. The slopes of which line segments could be calculated to show that $A B C D$ is a rectangle?
$1 \quad \overline{A B}$ and $\overline{D C}$
$2 \overline{A B}$ and $\overline{B C}$
$3 \quad \overline{A D}$ and $\overline{B C}$
$4 \quad \overline{A C}$ and $\overline{B D}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

256 Parallelogram $A B C D$ has coordinates $A(1,5)$, $B(6,3), C(3,-1)$, and $D(-2,1)$. What are the coordinates of E, the intersection of diagonals $\overline{A C}$ and $\overline{B D}$?
$1(2,2)$
$2(4.5,1)$
$3(3.5,2)$
$4(-1,3)$

257 Given: Quadrilateral $A B C D$ has vertices $A(-5,6)$, $B(6,6), C(8,-3)$, and $D(-3,-3)$.
Prove: Quadrilateral $A B C D$ is a parallelogram but is neither a rhombus nor a rectangle. [The use of the grid below is optional.]

258 Quadrilateral MATH has coordinates $M(1,1)$, $A(-2,5), T(3,5)$, and $H(6,1)$. Prove that quadrilateral MATH is a rhombus and prove that it is not a square. [The use of the grid is optional.]

259 Given: $\triangle A B C$ with vertices $A(-6,-2), B(2,8)$, and $C(6,-2) . \overline{A B}$ has midpoint $D, \overline{B C}$ has midpoint E, and $\overline{A C}$ has midpoint F.
Prove: $A D E F$ is a parallelogram
$A D E F$ is not a rhombus
[The use of the grid is optional.]

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

CONICS

G.G.49: CHORDS

260 In the diagram below, circle O has a radius of 5, and $C E=2$. Diameter $\overline{A C}$ is perpendicular to chord $\overline{B D}$ at E.

What is the length of $\overline{B D}$?
$1 \quad 12$
210
38
44

261 In the diagram below, $\triangle A B C$ is inscribed in circle P. The distances from the center of circle P to each side of the triangle are shown.

Which statement about the sides of the triangle is true?
$1 \quad A B>A C>B C$
$2 A B<A C$ and $A C>B C$
$3 A C>A B>B C$
$4 \quad A C=A B$ and $A B>B C$

262 In the diagram below of circle O, radius $\overline{O C}$ is 5 cm . Chord $\overline{A B}$ is 8 cm and is perpendicular to $\overline{O C}$ at point P.

What is the length of $\overline{O P}$, in centimeters?
18
22
33
$4 \quad 4$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

263 In the diagram below of circle O, diameter $\overline{A O B}$ is perpendicular to chord $\overline{C D}$ at point $E, O A=6$, and $O E=2$.

What is the length of $\overline{C E}$?

$$
\begin{array}{ll}
1 & 4 \sqrt{3} \\
2 & 2 \sqrt{3} \\
3 & 8 \sqrt{2} \\
4 & 4 \sqrt{2}
\end{array}
$$

264 In circle O shown below, diameter $\overline{D B}$ is perpendicular to chord $\overline{A C}$ at E.

If $D B=34, A C=30$, and $D E>B E$, what is the length of $\overline{B E}$?
18
29
316
$4 \quad 25$

265 In the diagram below of circle O, diameter $\overline{A B}$ is perpendicular to chord $\overline{C D}$ at E. If $A O=10$ and $B E=4$, find the length of $\overline{C E}$.

G.G.52: CHORDS

266 In the diagram of circle O below, chords $\overline{A B}$ and $\overline{C D}$ are parallel, and $\overline{B D}$ is a diameter of the circle.

If $\mathrm{m} \widehat{A D}=60$, what is $\mathrm{m} \angle C D B$?
120
230
360
4120

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

267 In the diagram of circle O below, chord $\overline{C D}$ is parallel to diameter $\overline{A O B}$ and $\mathrm{m} \overparen{A C}=30$.

What is $\mathrm{m} \widehat{C D}$?
1150
2120
3100
460

268
In the diagram below of circle O, chord $\overline{A B} \|$ chord $\overline{C D}$, and chord $\overline{C D} \|$ chord $\overline{E F}$.

Which statement must be true?
$1 \quad \overparen{C E} \cong \overparen{D F}$
$2 \overrightarrow{A C} \cong \overparen{D F}$
$3 \overparen{A C} \cong \overparen{C E}$
$4 \overparen{E F} \cong \overparen{C D}$

269 In the diagram below of circle O, chord $\overline{A B}$ is parallel to chord $\overline{C D}$.

Which statement must be true?
$1 \quad \overparen{A C} \cong \overparen{B D}$
2 $\overparen{A B} \cong \overparen{C D}$
$3 \overline{A B} \cong \overline{C D}$
$4 \widehat{A B D} \cong \widehat{C D B}$

270 In the diagram below of circle O, chord $\overline{A B}$ is parallel to chord $\overline{G H}$. Chord $\overline{C D}$ intersects $\overline{A B}$ at E and $\overline{G H}$ at F.

Which statement must always be true?
$1 \widetilde{A C} \cong \overparen{C B}$
$2 \widehat{D H} \cong \widehat{B H}$
$3 \overparen{A B} \cong \widehat{G H}$
$4 \widehat{A G} \cong \widehat{B H}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

271 In the diagram below of circle O, diameter $\overline{A B}$ is parallel to chord $\overline{C D}$.

If $\mathrm{m} \overparen{C D}=70$, what is $\mathrm{m} \overparen{A C}$?
1110
270
355
435

272 In the diagram below, trapezoid $A B C D$, with bases $\overline{A B}$ and $\overline{D C}$, is inscribed in circle O, with diameter $\overline{D C}$. If $\mathrm{m} \overparen{A B}=80$, find $\mathrm{m} \overparen{B C}$.

273 In the diagram below, two parallel lines intersect circle O at points A, B, C, and D, with $\mathrm{m} \overparen{A B}=x+20$ and $\mathrm{m} \overparen{D C}=2 x-20$. Find $\mathrm{m} \overparen{A B}$.

G.G.50: TANGENTS

274 In the diagram below, circle A and circle B are shown.

What is the total number of lines of tangency that are common to circle A and circle B ?
11
22
$3 \quad 3$
44

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

275 How many common tangent lines can be drawn to the two externally tangent circles shown below?

11
22
33
44

276 Line segment $A B$ is tangent to circle O at A. Which type of triangle is always formed when points A, B, and O are connected?
1 right
2 obtuse
3 scalene
4 isosceles

277 The angle formed by the radius of a circle and a tangent to that circle has a measure of
145°
290°
3135°
4180°

278 Tangents $\overline{P A}$ and $\overline{P B}$ are drawn to circle O from an external point, P, and radii $\overline{O A}$ and $\overline{O B}$ are drawn. If $\mathrm{m} \angle A P B=40$, what is the measure of $\angle A O B$?
1140°
2100°
370°
450°

279 In the diagram below of $\triangle P A O, \overline{A P}$ is tangent to circle O at point $A, O B=7$, and $B P=18$.

What is the length of $\overline{A P}$?
$1 \quad 10$
$2 \quad 12$
$3 \quad 17$
$4 \quad 24$

280 In the diagram below, circles X and Y have two tangents drawn to them from external point T. The points of tangency are C, A, S, and E. The ratio of $T A$ to $A C$ is $1: 3$. If $T S=24$, find the length of $\overline{S E}$.

(Not drawn to scale)

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.51: ARCS DETERMINED BY ANGLES

281 In the diagram below of circle O, chords $\overline{A D}$ and $\overline{B C}$ intersect at $E, \overline{\mathrm{~m} A C}=87$, and $\mathrm{m} \widehat{B D}=35$.

What is the degree measure of $\angle C E A$?
187
261
343.5

426

282 In the diagram below of circle O, chords $\overline{A E}$ and $\overline{D C}$ intersect at point B, such that $\mathrm{m} \overparen{A C}=36$ and $\mathrm{m} \overparen{D E}=20$.

What is $\mathrm{m} \angle A B C$?
156
236
328
48

283 In the diagram below of circle O, chords $\overline{A D}$ and $\overline{B C}$ intersect at E.

Which relationship must be true?
$1 \quad \triangle C A E \cong \triangle D B E$
$2 \quad \triangle A E C \sim \triangle B E D$
$3 \angle A C B \cong \angle C B D$
$4 \widehat{C A} \cong \overparen{D B}$

284 In the diagram below of circle $C, \mathrm{mPT}=140$, and $\mathrm{m} \angle P=40$.

What is $\mathrm{m} \overparen{R S}$?
150
260
390
4110

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

285 In the diagram below, quadrilateral JUMP is inscribed in a circle..

Opposite angles J and M must be
1 right
2 complementary
3 congruent
4 supplementary

286 In the diagram below of circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E.

If $\mathrm{m} \angle A E C=34$ and $\mathrm{m} \overparen{A C}=50$, what is $\mathrm{m} \overparen{D B}$?
116
218
368
4118

287 In the diagram below, tangent $\overline{M L}$ and secant $\overline{M N K}$ are drawn to circle O. The ratio $\mathrm{m} \overparen{L N}: \mathrm{m} \overparen{N K}: \mathrm{m} \overparen{K L}$ is 3:4:5. Find $\mathrm{m} \angle L M K$.

288 In the diagram below of circle O, chords $\overline{D F}, \overline{D E}$, $\overline{F G}$, and $\overline{E G}$ are drawn such that $\mathrm{m} \overparen{D F}: \mathrm{m} \overparen{F E}: \mathrm{m} \overparen{E G}: \mathrm{m} \overparen{G D}=5: 2: 1: 7$. Identify one pair of inscribed angles that are congruent to each other and give their measure.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

289 Chords $\overline{A B}$ and $\overline{C D}$ intersect at E in circle O, as shown in the diagram below. Secant $F D A$ and tangent $\overline{F B}$ are drawn to circle O from external point F and chord $\overline{A C}$ is drawn. The $\mathrm{m} \overparen{D A}=56$, $\mathrm{m} \overparen{D B}=112$, and the ratio of $\mathrm{m} \overparen{A C}: \mathrm{m} \overparen{C B}=3: 1$.

Determine $\mathrm{m} \angle C E B$. Determine $\mathrm{m} \angle F$. Determine $\mathrm{m} \angle D A C$.

G.G.53: SEGMENTS INTERCEPTED BY CIRCLE

290 In the diagram below, $\overline{P S}$ is a tangent to circle O at point $S, \overline{P Q R}$ is a secant, $P S=x, P Q=3$, and $P R=x+18$.

(Not drawn to scale)
What is the length of $\overline{P S}$?
16
29
$3 \quad 3$
427

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

291 In the diagram below, tangent $\overline{A B}$ and secant $\overline{A C D}$ are drawn to circle O from an external point A, $A B=8$, and $A C=4$.

What is the length of $\overline{C D}$?
$1 \quad 16$
$2 \quad 13$
$3 \quad 12$
$4 \quad 10$

292 In the diagram of circle O below, chord $\overline{A B}$ intersects chord $\overline{C D}$ at $E, D E=2 x+8, E C=3$, $A E=4 x-3$, and $E B=4$.

What is the value of x ?
11
23.6

35
$4 \quad 10.25$

293 In the diagram below, tangent $\overline{P A}$ and secant $\overline{P B C}$ are drawn to circle O from external point P.

If $P B=4$ and $B C=5$, what is the length of $\overline{P A}$?
120
29
38
46

294 In the diagram below of circle O, secant $\overline{A B}$ intersects circle O at D, secant $\overline{A O C}$ intersects circle O at $E, A E=4, A B=12$, and $D B=6$.

What is the length of $\overline{O C}$?
14.5

27
39
414

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

295 In the diagram below of circle O, chords $\overline{A B}$ and $C D$ intersect at E.

If $C E=10, E D=6$, and $A E=4$, what is the length of $\overline{E B}$?
115
$2 \quad 12$
$\begin{array}{ll}3 & 6.7\end{array}$
$4 \quad 2.4$

296 In the diagram below, $\overline{A B}, \overline{B C}$, and $\overline{A C}$ are tangents to circle O at points F, E, and D, respectively, $A F=6, C D=5$, and $B E=4$.

What is the perimeter of $\triangle A B C$?
115
$2 \quad 25$
$3 \quad 30$
460

297 In the diagram below of circle $O, \overline{P A}$ is tangent to circle O at A, and $\overline{P B C}$ is a secant with points B and C on the circle.

If $P A=8$ and $P B=4$, what is the length of $\overline{B C}$?
120
$2 \quad 16$
315
412

298 In the diagram below, $\triangle A B C$ is circumscribed about circle O and the sides of $\triangle A B C$ are tangent to the circle at points D, E, and F.

If $A B=20, A E=12$, and $C F=15$, what is the length of $\overline{A C}$?
18
$2 \quad 15$
$3 \quad 23$
$4 \quad 27$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

299
In the diagram below of circle O, chord $\overline{A B}$ bisects chord $\overline{C D}$ at E. If $A E=8$ and $B E=9$, find the length of $\overline{C E}$ in simplest radical form.

300 In the diagram below of circle O, chords $\overline{R T}$ and $\overline{Q S}$ intersect at M. Secant $\overline{P T R}$ and tangent $\overline{P S}$ are drawn to circle O. The length of $\overline{R M}$ is two more than the length of $\overline{T M}, Q M=2, S M=12$, and $P T=8$.

Find the length of $\overline{R T}$. Find the length of $\overline{P S}$.

G.G.71: EQUATIONS OF CIRCLES

301 The diameter of a circle has endpoints at $(-2,3)$ and $(6,3)$. What is an equation of the circle?
$1(x-2)^{2}+(y-3)^{2}=16$
$2(x-2)^{2}+(y-3)^{2}=4$
$3(x+2)^{2}+(y+3)^{2}=16$
$4(x+2)^{2}+(y+3)^{2}=4$

302 What is an equation of a circle with its center at $(-3,5)$ and a radius of 4 ?
$1(x-3)^{2}+(y+5)^{2}=16$
$2(x+3)^{2}+(y-5)^{2}=16$
$3(x-3)^{2}+(y+5)^{2}=4$
$4(x+3)^{2}+(y-5)^{2}=4$

303 Which equation represents the circle whose center is $(-2,3)$ and whose radius is 5 ?
$1(x-2)^{2}+(y+3)^{2}=5$
$2(x+2)^{2}+(y-3)^{2}=5$
$3(x+2)^{2}+(y-3)^{2}=25$
$4(x-2)^{2}+(y+3)^{2}=25$

304 What is an equation of a circle with center (7,-3) and radius 4?
$1(x-7)^{2}+(y+3)^{2}=4$
$2(x+7)^{2}+(y-3)^{2}=4$
$3(x-7)^{2}+(y+3)^{2}=16$
$4(x+7)^{2}+(y-3)^{2}=16$

305 What is an equation of the circle with a radius of 5 and center at $(1,-4)$?
$1(x+1)^{2}+(y-4)^{2}=5$
$2(x-1)^{2}+(y+4)^{2}=5$
$3(x+1)^{2}+(y-4)^{2}=25$
$4 \quad(x-1)^{2}+(y+4)^{2}=25$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

306 Which equation represents circle O with center $(2,-8)$ and radius 9 ?
$1(x+2)^{2}+(y-8)^{2}=9$
$2(x-2)^{2}+(y+8)^{2}=9$
$3(x+2)^{2}+(y-8)^{2}=81$
$4(x-2)^{2}+(y+8)^{2}=81$

307 What is the equation of a circle whose center is 4 units above the origin in the coordinate plane and whose radius is 6 ?
$1 \quad x^{2}+(y-6)^{2}=16$
$2(x-6)^{2}+y^{2}=16$
$3 \quad x^{2}+(y-4)^{2}=36$
$4 \quad(x-4)^{2}+y^{2}=36$

308 The equation of a circle with its center at $(-3,5)$ and a radius of 4 is
$1(x+3)^{2}+(y-5)^{2}=4$
$2(x-3)^{2}+(y+5)^{2}=4$
$3(x+3)^{2}+(y-5)^{2}=16$
$4 \quad(x-3)^{2}+(y+5)^{2}=16$

309 Write an equation of the circle whose diameter $\overline{A B}$ has endpoints $A(-4,2)$ and $B(4,-4)$. [The use of the grid below is optional.]

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.72: EQUATIONS OF CIRCLES

310 Which equation represents circle K shown in the graph below?

$1(x+5)^{2}+(y-1)^{2}=3$
$2(x+5)^{2}+(y-1)^{2}=9$
$3(x-5)^{2}+(y+1)^{2}=3$
$4(x-5)^{2}+(y+1)^{2}=9$

311 What is an equation for the circle shown in the graph below?

$1 \quad x^{2}+y^{2}=2$
$2 x^{2}+y^{2}=4$
$3 \quad x^{2}+y^{2}=8$
$4 \quad x^{2}+y^{2}=16$

312 What is an equation of circle O shown in the graph below?

$1(x+1)^{2}+(y-3)^{2}=25$
$2(x-1)^{2}+(y+3)^{2}=25$
$3(x-5)^{2}+(y+6)^{2}=25$
$4(x+5)^{2}+(y-6)^{2}=25$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

313 What is an equation of circle O shown in the graph below?

$1(x+2)^{2}+(y-2)^{2}=9$
$2(x+2)^{2}+(y-2)^{2}=3$
$3(x-2)^{2}+(y+2)^{2}=9$
$4(x-2)^{2}+(y+2)^{2}=3$

314 What is an equation of the circle shown in the graph below?

$1(x-3)^{2}+(y-4)^{2}=25$
$2(x+3)^{2}+(y+4)^{2}=25$
$3(x-3)^{2}+(y-4)^{2}=10$
$4(x+3)^{2}+(y+4)^{2}=10$

315 Write an equation for circle O shown on the graph below.

316 Write an equation of the circle graphed in the diagram below.

G.G.73: EQUATIONS OF CIRCLES

317 What are the center and radius of a circle whose equation is $(x-A)^{2}+(y-B)^{2}=C$?
1 center $=(A, B)$; radius $=C$
2 center $=(-A,-B)$; radius $=C$
3 center $=(A, B)$; radius $=\sqrt{C}$
4 center $=(-A,-B) ;$ radius $=\sqrt{C}$

318 A circle is represented by the equation
$x^{2}+(y+3)^{2}=13$. What are the coordinates of the center of the circle and the length of the radius?
$1(0,3)$ and 13
$2(0,3)$ and $\sqrt{13}$
$3(0,-3)$ and 13
$4(0,-3)$ and $\sqrt{13}$

319 What are the center and the radius of the circle
whose equation is $(x-3)^{2}+(y+3)^{2}=36$
1 center $=(3,-3)$; radius $=6$
2 center $=(-3,3)$; radius $=6$
3 center $=(3,-3)$; radius $=36$
4 center $=(-3,3)$; radius $=36$

320 The equation of a circle is $x^{2}+(y-7)^{2}=16$. What are the center and radius of the circle?
1 center $=(0,7)$; radius $=4$
2 center $=(0,7)$; radius $=16$
3 center $=(0,-7)$; radius $=4$
4 center $=(0,-7)$; radius $=16$

321 What are the center and the radius of the circle
whose equation is $(x-5)^{2}+(y+3)^{2}=16$?
$1(-5,3)$ and 16
$2(5,-3)$ and 16
$3(-5,3)$ and 4
$4(5,-3)$ and 4

322 A circle has the equation $(x-2)^{2}+(y+3)^{2}=36$. What are the coordinates of its center and the length of its radius?
$1 \quad(-2,3)$ and 6
$2(2,-3)$ and 6
$3 \quad(-2,3)$ and 36
$4(2,-3)$ and 36

323 Which equation of a circle will have a graph that lies entirely in the first quadrant?
$1(x-4)^{2}+(y-5)^{2}=9$
$2(x+4)^{2}+(y+5)^{2}=9$
$3(x+4)^{2}+(y+5)^{2}=25$
$4(x-5)^{2}+(y-4)^{2}=25$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.74: GRAPHING CIRCLES

324 Which graph represents a circle with the equation
$(x-5)^{2}+(y+1)^{2}=9$?

1

3

4

325 The equation of a circle is $(x-2)^{2}+(y+4)^{2}=4$. Which diagram is the graph of the circle?

1

3

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

326 Which graph represents a circle with the equation
$(x-3)^{2}+(y+1)^{2}=4$?

1

2

327 Which graph represents a circle whose equation is $(x+2)^{2}+y^{2}=16$?

1

2

MEASURING IN THE PLANE AND SPACE

G.G.11: VOLUME

328 Tim has a rectangular prism with a length of 10 centimeters, a width of 2 centimeters, and an unknown height. He needs to build another rectangular prism with a length of 5 centimeters and the same height as the original prism. The volume of the two prisms will be the same. Find the width, in centimeters, of the new prism.

G.G.12: VOLUME

329 A rectangular prism has a volume of
$3 x^{2}+18 x+24$. Its base has a length of $x+2$ and a width of 3 . Which expression represents the height of the prism?
$1 \quad x+4$
$2 x+2$
3 3
$4 x^{2}+6 x+8$

330 A packing carton in the shape of a triangular prism is shown in the diagram below.

What is the volume, in cubic inches, of this carton?
120
260
3120
4240

331 The volume of a rectangular prism is 144 cubic inches. The height of the prism is 8 inches. Which measurements, in inches, could be the dimensions of the base?
$1 \quad 3.3$ by 5.5
$2 \quad 2.5$ by 7.2
$3 \quad 12$ by 8
49 by 9

332 The Parkside Packing Company needs a rectangular shipping box. The box must have a length of 11 inches and a width of 8 inches. Find, to the nearest tenth of an inch, the minimum height of the box such that the volume is at least 800 cubic inches.

G.G.13: VOLUME

333 A regular pyramid with a square base is shown in the diagram below.

A side, s, of the base of the pyramid is 12 meters, and the height, h, is 42 meters. What is the volume of the pyramid in cubic meters?

334 The base of a pyramid is a rectangle with a width of 6 cm and a length of 8 cm . Find, in centimeters, the height of the pyramid if the volume is $288 \mathrm{~cm}^{3}$.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org
G.G.14: VOLUME AND LATERAL AREA

335 A right circular cylinder has a volume of 1,000 cubic inches and a height of 8 inches. What is the radius of the cylinder to the nearest tenth of an inch?
16.3
$2 \quad 11.2$
$3 \quad 19.8$
439.8

336 Which expression represents the volume, in cubic centimeters, of the cylinder represented in the diagram below?

$1 \quad 162 \pi$
2324π
3972π
$43,888 \pi$

337 A right circular cylinder has an altitude of 11 feet and a radius of 5 feet. What is the lateral area, in square feet, of the cylinder, to the nearest tenth?
$1 \quad 172.7$
$2 \quad 172.8$
$\begin{array}{ll}3 & 345.4\end{array}$
4345.6

338 What is the volume, in cubic centimeters, of a cylinder that has a height of 15 cm and a diameter of 12 cm ?
$1 \quad 180 \pi$
2540π
3675π
$42,160 \pi$

339 A paint can is in the shape of a right circular cylinder. The volume of the paint can is 600π cubic inches and its altitude is 12 inches. Find the radius, in inches, of the base of the paint can. Express the answer in simplest radical form. Find, to the nearest tenth of a square inch, the lateral area of the paint can.

340 The cylindrical tank shown in the diagram below is to be painted. The tank is open at the top, and the bottom does not need to be painted. Only the outside needs to be painted. Each can of paint covers 600 square feet. How many cans of paint must be purchased to complete the job?

341 A cylinder has a height of 7 cm and a base with a diameter of 10 cm . Determine the volume, in cubic centimeters, of the cylinder in terms of π.

342 The volume of a cylinder is $12,566.4 \mathrm{~cm}^{3}$. The height of the cylinder is 8 cm . Find the radius of the cylinder to the nearest tenth of a centimeter.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org
G.G.15: VOLUME AND LATERAL AREA

343 In the diagram below, a right circular cone has a diameter of 8 inches and a height of 12 inches.

What is the volume of the cone to the nearest cubic inch?
1201
2481
3603
4804

344 A right circular cone has a base with a radius of 15 cm , a vertical height of 20 cm , and a slant height of 25 cm . Find, in terms of π, the number of square centimeters in the lateral area of the cone.
G.G.16: VOLUME AND SURFACE AREA

345 If the surface area of a sphere is represented by 144π, what is the volume in terms of π ?
136π
248π
3216π
4288π

347 The diameter of a sphere is 15 inches. What is the volume of the sphere, to the nearest tenth of a cubic inch?
1706.9
21767.1
$3 \quad 2827.4$
4 14,137.2

348 A sphere has a diameter of 18 meters. Find the volume of the sphere, in cubic meters, in terms of π.

349 Tim is going to paint a wooden sphere that has a diameter of 12 inches. Find the surface area of the sphere, to the nearest square inch.

350 A sphere is inscribed inside a cube with edges of 6 cm . In cubic centimeters, what is the volume of the sphere, in terms of p ?
1 12p
2 36p
3 48p
4 288p

G.G.45: SIMILARITY

351 Two triangles are similar, and the ratio of each pair of corresponding sides is $2: 1$. Which statement regarding the two triangles is not true?
1 Their areas have a ratio of 4:1.
2 Their altitudes have a ratio of 2:1.
3 Their perimeters have a ratio of 2:1.
4 Their corresponding angles have a ratio of 2:1.

346 The volume, in cubic centimeters, of a sphere whose diameter is 6 centimeters is
112π
236π
348π
4288π

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

352 Given $\triangle A B C \sim \triangle D E F$ such that $\frac{A B}{D E}=\frac{3}{2}$. Which statement is not true?
$1 \quad \frac{B C}{E F}=\frac{3}{2}$
$2 \frac{\mathrm{~m} \angle A}{\mathrm{~m} \angle D}=\frac{3}{2}$
$3 \frac{\text { area of } \triangle A B C}{\text { area of } \triangle D E F}=\frac{9}{4}$
$4 \frac{\text { perimeter of } \triangle A B C}{\text { perimeter of } \triangle D E F}=\frac{3}{2}$
$353 \triangle A B C$ is similar to $\triangle D E F$. The ratio of the length of $\overline{A B}$ to the length of $\overline{D E}$ is 3:1. Which ratio is also equal to $3: 1$?
$1 \frac{\mathrm{~m} \angle A}{\mathrm{~m} \angle D}$
$2 \frac{\mathrm{~m} \angle B}{\mathrm{~m} \angle F}$
$3 \frac{\text { area of } \triangle A B C}{\text { area of } \triangle D E F}$
$4 \frac{\text { perimeter of } \triangle A B C}{\text { perimeter of } \triangle D E F}$

354 In the diagram below, $\triangle A B C \sim \Delta R S T$.

Which statement is not true?
$1 \angle A \cong \angle R$
$2 \quad \frac{A B}{R S}=\frac{B C}{S T}$
$3 \quad \frac{A B}{B C}=\frac{S T}{R S}$
$4 \frac{A B+B C+A C}{R S+S T+R T}=\frac{A B}{R S}$

355 Scalene triangle $A B C$ is similar to triangle $D E F$. Which statement is false?
$1 A B: B C=D E: E F$
$2 A C: D F=B C: E F$
$3 \angle A C B \cong \angle D F E$
$4 \angle A B C \cong \angle E D F$

356 In the diagram below, $\triangle A B C \sim \Delta E F G$, $\mathrm{m} \angle C=4 x+30$, and $\mathrm{m} \angle G=5 x+10$. Determine the value of x.

357 If $\triangle A B C \sim \Delta Z X Y, \mathrm{~m} \angle A=50$, and $\mathrm{m} \angle C=30$, what is $\mathrm{m} \angle X$?
130
250
380
4100

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

As shown in the diagram below, $\triangle A B C \sim \triangle D E F$, $A B=7 x, B C=4, D E=7$, and $E F=x$.

What is the length of $\overline{A B}$?
128
22
314
44

359 In the diagram below, $\triangle A B C \sim \triangle D E F, D E=4$, $A B=x, A C=x+2$, and $D F=x+6$. Determine the length of $\overline{A B}$. [Only an algebraic solution can receive full credit.]

G.G.47: SIMILARITY

360 In the diagram below, the length of the legs $\overline{A C}$ and $\overline{B C}$ of right triangle $A B C$ are 6 cm and 8 cm , respectively. Altitude $\overline{C D}$ is drawn to the hypotenuse of $\triangle A B C$.

What is the length of $\overline{A D}$ to the nearest tenth of a centimeter?
13.6
26.0
36.4
44.0

361 In the diagram below of right triangle $A C B$, altitude $\overline{C D}$ is drawn to hypotenuse $\overline{A B}$.

If $A B=36$ and $A C=12$, what is the length of $\overline{A D}$?
132
26
3
44

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

362 In the diagram below of right triangle $A B C, \overline{C D}$ is the altitude to hypotenuse $A B, C B=6$, and $A D=5$.

What is the length of $\overline{B D}$?
15
29
3 3
44

363 In the diagram below of right triangle $A B C$, altitude $\overline{B D}$ is drawn to hypotenuse $\overline{A C}, A C=16$, and $C D=7$.

What is the length of $\overline{B D}$?
$1 \quad 3 \sqrt{7}$
$2 \quad 4 \sqrt{7}$
$3 \quad 7 \sqrt{3}$
412

364 In $\triangle P Q R, \angle P R Q$ is a right angle and $\overline{R T}$ is drawn perpendicular to hypotenuse $\overline{P Q}$. If $P T=x$, $R T=6$, and $T Q=4 x$, what is the length of $\overline{P Q}$?
19
$2 \quad 12$
33
415

365 In the diagram below of right triangle $A C B$, altitude $\overline{C D}$ intersects $\overline{A B}$ at D. If $A D=3$ and $D B=4$, find the length of $\overline{C D}$ in simplest radical form.

366 In the diagram below, $\Delta R S T$ is a 3-4-5 right triangle. The altitude, h, to the hypotenuse has been drawn. Determine the length of h.

TRANSFORMATIONS

G.G.54: ROTATIONS

367 The coordinates of the vertices of $\triangle R S T$ are $R(-2,3), S(4,4)$, and $T(2,-2)$. Triangle $R^{\prime} S^{\prime} T^{\prime}$ is the image of $\Delta R S T$ after a rotation of 90° about the origin. State the coordinates of the vertices of $\Delta R^{\prime} S^{\prime} T^{\prime}$. [The use of the set of axes below is optional.]

368 The coordinates of the vertices of $\triangle A B C$ are $A(1,2), B(-4,3)$, and $C(-3,-5)$. State the coordinates of $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a rotation of 90° about the origin. [The use of the set of axes below is optional.]

G.G.54: REFLECTIONS

369 Point A is located at (4, -7). The point is reflected in the x-axis. Its image is located at
$1(-4,7)$
$2(-4,-7)$
$3(4,7)$
$4(7,-4)$

370 What is the image of the point $(2,-3)$ after the transformation $r_{y \text {-axis }}$?
$1(2,3)$
$2(-2,-3)$
$3(-2,3)$
$4 \quad(-3,2)$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

371 The coordinates of point A are $(-3 a, 4 b)$. If point A^{\prime} is the image of point A reflected over the line $y=x$, the coordinates of A^{\prime} are
$1(4 b,-3 a)$
$2(3 a, 4 b)$
$3(-3 a,-4 b)$
$4(-4 b,-3 a)$

372 Triangle $X Y Z$, shown in the diagram below, is reflected over the line $x=2$. State the coordinates of $\Delta X^{\prime} Y^{\prime} Z^{\prime}$, the image of $\Delta X Y Z$.

373 Triangle $A B C$ has vertices $A(-2,2), B(-1,-3)$, and $C(4,0)$. Find the coordinates of the vertices of $\Delta A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after the transformation $r_{\text {x-axis }}$. [The use of the grid is optional.]

G.G.54: TRANSLATIONS

374 Triangle $A B C$ has vertices $A(1,3), B(0,1)$, and $C(4,0)$. Under a translation, A^{\prime}, the image point of A, is located at $(4,4)$. Under this same translation, point C^{\prime} is located at
$1(7,1)$
$2(5,3)$
$3(3,2)$
$4(1,-1)$

375 What is the image of the point $(-5,2)$ under the translation $T_{3,-4}$?
$1(-9,5)$
$2(-8,6)$
$3(-2,-2)$
$4(-15,-8)$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

376 Triangle TAP has coordinates $T(-1,4), A(2,4)$, and $P(2,0)$. On the set of axes below, graph and label $\Delta T^{\prime} A^{\prime} P^{\prime}$, the image of $\Delta T A P$ after the translation $(x, y) \rightarrow(x-5, y-1)$.

G.G.54: COMPOSITIONS OF

 TRANSFORMATIONSWhat is the image of point $A(4,2)$ after the composition of transformations defined by $R_{90^{\circ}}{ }^{\circ} r_{y=x}$?
$1(-4,2)$
$2(4,-2)$
$3(-4,-2)$
$4(2,-4)$

378
The point $(3,-2)$ is rotated 90° about the origin and then dilated by a scale factor of 4 . What are the coordinates of the resulting image?
$1(-12,8)$
2 (12,-8)
$3(8,12)$
$4(-8,-12)$

379 The coordinates of the vertices of parallelogram $A B C D$ are $A(-2,2), B(3,5), C(4,2)$, and $D(-1,-1)$. State the coordinates of the vertices of parallelogram $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ that result from the transformation $r_{y-\text { axis }} \circ T_{2,-3}$. [The use of the set of axes below is optional.]

G.G.58: COMPOSITIONS OF

TRANSFORMATIONS
380 The endpoints of $\overline{A B}$ are $A(3,2)$ and $B(7,1)$. If $\overline{A^{\prime \prime} B^{\prime \prime}}$ is the result of the transformation of $\overline{A B}$ under $D_{2}{ }^{\circ} T_{-4,3}$ what are the coordinates of $A^{\prime \prime}$ and $B^{\prime \prime}$?
$1 \quad A^{\prime \prime}(-2,10)$ and $B^{\prime \prime}(6,8)$
$2 A^{\prime \prime}(-1,5)$ and $B^{\prime \prime}(3,4)$
$3 \quad A^{\prime \prime}(2,7)$ and $B^{\prime \prime}(10,5)$
$4 \quad A^{\prime \prime}(14,-2)$ and $B^{\prime \prime}(22,-4)$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

381 The coordinates of the vertices of $\triangle A B C A(1,3)$, $B(-2,2)$ and $C(0,-2)$. On the grid below, graph and label $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the result of the composite transformation $D_{2}{ }^{\circ} T_{3,-2}$. State the coordinates of $A^{\prime \prime}, B^{\prime \prime}$, and $C^{\prime \prime}$.

382 As shown on the set of axes below, $\Delta G H S$ has vertices $G(3,1), H(5,3)$, and $S(1,4)$. Graph and state the coordinates of $\Delta G^{\prime \prime} H^{\prime \prime} S^{\prime \prime}$, the image of $\Delta G H S$ after the transformation $T_{-3,1} \circ D_{2}$.

383 The coordinates of trapezoid $A B C D$ are $A(-4,5)$, $B(1,5), C(1,2)$, and $D(-6,2)$. Trapezoid $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ is the image after the composition $r_{x-\text { axis }}{ }^{\circ} r_{y=x}$ is performed on trapezoid $A B C D$. State the coordinates of trapezoid $A=B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$. [The use of the set of axes below is optional.]

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

384 The vertices of $\triangle R S T$ are $R(-6,5), S(-7,-2)$, and $T(1,4)$. The image of $\Delta R S T$ after the composition $T_{-2,3}{ }^{\circ} r_{y=x}$ is $\Delta R " S " T$ ". State the coordinates of $\Delta R " S " T$ ". [The use of the set of axes below is optional.]

G.G.55: PROPERTIES OF TRANSFORMATIONS

385 Which expression best describes the transformation shown in the diagram below?

1 same orientation; reflection 2 opposite orientation; reflection 3 same orientation; translation 4 opposite orientation; translation

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

386 The rectangle $A B C D$ shown in the diagram below will be reflected across the x-axis.

What will not be preserved?
1 slope of $\overline{A B}$
2 parallelism of $\overline{A B}$ and $\overline{C D}$
3 length of $\overline{A B}$
4 measure of $\angle A$

387 A transformation of a polygon that always
preserves both length and orientation is
1 dilation
2 translation
3 line reflection
4 glide reflection

388 Quadrilateral $M N O P$ is a trapezoid with $\overline{M N} \| \overline{O P}$.
If $M^{\prime} N^{\prime} O^{\prime} P^{\prime}$ is the image of $M N O P$ after a reflection over the x-axis, which two sides of quadrilateral $M^{\prime} N^{\prime} O^{\prime} P^{\prime}$ are parallel?
$1 \overline{M^{\prime} N^{\prime}}$ and $\overline{O^{\prime} P^{\prime}}$
$2 \overline{M^{\prime} N^{\prime}}$ and $\overline{N^{\prime} O^{\prime}}$
$3 \overline{P^{\prime} M^{\prime}}$ and $\overline{O^{\prime} P^{\prime}}$
$4 \quad \overline{P^{\prime} M^{\prime}}$ and $\overline{N^{\prime} O^{\prime}}$

389 Pentagon $P Q R S T$ has $\overline{P Q}$ parallel to $\overline{T S}$. After a translation of $T_{2,-5}$, which line segment is parallel $\begin{array}{cc}\text { to } & \overline{P^{\prime} Q^{\prime}} \text { ? } \\ 1 & \overline{R^{\prime} Q^{\prime}} \\ 2 & \overline{R^{\prime} S^{\prime}} \\ 3 & \frac{T^{\prime} S^{\prime}}{T^{\prime} P^{\prime}} \\ 4 & \end{array}$

390 When a quadrilateral is reflected over the line $y=x$, which geometric relationship is not preserved?
1 congruence
2 orientation
3 parallelism
4 perpendicularity

391 The vertices of parallelogram $A B C D$ are $A(2,0)$, $B(0,-3), C(3,-3)$, and $D(5,0)$. If $A B C D$ is reflected over the x-axis, how many vertices remain invariant?
11
22
33
40

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

392 The vertices of $\triangle A B C$ are $A(3,2), B(6,1)$, and $C(4,6)$. Identify and graph a transformation of $\triangle A B C$ such that its image, $\Delta A^{\prime} B^{\prime} C^{\prime}$, results in $\overline{A B} \| \overline{A^{\prime} B^{\prime}}$.

393 Triangle $D E G$ has the coordinates $D(1,1), E(5,1)$, and $G(5,4)$. Triangle $D E G$ is rotated 90° about the origin to form $\Delta D^{\prime} E^{\prime} G^{\prime}$. On the grid below, graph and label $\triangle D E G$ and $\Delta D^{\prime} E^{\prime} G^{\prime}$. State the coordinates of the vertices D^{\prime}, E^{\prime}, and G^{\prime}. Justify that this transformation preserves distance.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

394 Triangle $A B C$ has coordinates $A(2,-2), B(2,1)$, and $C(4,-2)$. Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ under $T_{5,-2}$. On the set of axes below, graph and label $\triangle A B C$ and its image, $\Delta A^{\prime} B^{\prime} C^{\prime}$. Determine the relationship between the area of $\triangle A B C$ and the area of $\Delta A^{\prime} B^{\prime} C^{\prime}$. Justify your response.

G.G.57: PROPERTIES OF
 TRANSFORMATIONS

395
Which transformation of the line $x=3$ results in an image that is perpendicular to the given line?
$1 r_{x \text {-xxis }}$
$2 \quad r_{y \text {-xis }}$
$3 \quad r_{y=x}$
$4 \quad r_{x=1}$

G.G.59: PROPERTIES OF TRANSFORMATIONS

396 When $\triangle A B C$ is dilated by a scale factor of 2 , its image is $\Delta A^{\prime} B^{\prime} C^{\prime}$. Which statement is true?
$1 \overline{A C} \cong \overline{A^{\prime} C^{\prime}}$
$2 \angle A \cong \angle A^{\prime}$
3 perimeter of $\triangle A B C=$ perimeter of $\triangle A^{\prime} B^{\prime} C^{\prime}$
4 2(area of $\triangle A B C)=$ area of $\Delta A^{\prime} B^{\prime} C^{\prime}$

397 Triangle $A B C$ is graphed on the set of axes below.

Which transformation produces an image that is similar to, but not congruent to, $\triangle A B C$?
$1 T_{2,3}$
$2 \quad D_{2}$
$3 \quad r_{y=x}$
$4 \quad R_{90}$

398 When a dilation is performed on a hexagon, which property of the hexagon will not be preserved in its image?
1 parallelism
2 orientation
3 length of sides
4 measure of angles

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

399 In $\Delta K L M, \mathrm{~m} \angle K=36$ and $K M=5$. The transformation D_{2} is performed on $\Delta K L M$ to form $\Delta K^{\prime} L^{\prime} M^{\prime}$. Find $\mathrm{m} \angle K^{\prime}$. Justify your answer. Find the length of $\overline{K^{\prime} M^{\prime}}$. Justify your answer.

G.G.56: IDENTIFYING TRANSFORMATIONS

400 In the diagram below, under which transformation will $\Delta A^{\prime} B^{\prime} C^{\prime}$ be the image of $\triangle A B C$?

1 rotation
2 dilation
3 translation
4 glide reflection

401 In the diagram below, which transformation was used to map $\triangle A B C$ to $\triangle A^{\prime} B^{\prime} C^{\prime}$?

1 dilation
2 rotation
3 reflection
4 glide reflection

402 Which transformation is not always an isometry?
1 rotation
2 dilation
3 reflection
4 translation

403 Which transformation can map the letter S onto itself?
1 glide reflection
2 translation
3 line reflection
4 rotation

404 The diagram below shows $\overline{A B}$ and $\overline{D E}$.

Which transformation will move $\overline{A B}$ onto $\overline{D E}$ such that point D is the image of point A and point E is the image of point B ?
$1 T_{3,-3}$
$2 D_{\frac{1}{2}}$
$3 R_{90}$
$4 \quad r_{y=x}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

405 As shown on the graph below, $\Delta R^{\prime} S^{\prime} T^{\prime}$ is the image of $\triangle R S T$ under a single transformation.

Which transformation does this graph represent?
1 glide reflection
2 line reflection
3 rotation
4 translation

406 The graph below shows $\overline{J T}$ and its image, $\overline{J^{\prime} T^{\prime}}$, after a transformation.

Which transformation would map $\overline{J T}$ onto $\overline{J^{\prime} T^{\prime} \text { ? }}$
1 translation
2 glide reflection
3 rotation centered at the origin
4 reflection through the origin

407 A pentagon is drawn on the set of axes below. If the pentagon is reflected over the y-axis, determine if this transformation is an isometry. Justify your answer. [The use of the set of axes is optional.]

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.60: IDENTIFYING TRANSFORMATIONS

408 After a composition of transformations, the coordinates $A(4,2), B(4,6)$, and $C(2,6)$ become $A^{\prime \prime}(-2,-1), B^{\prime \prime}(-2,-3)$, and $C^{\prime \prime}(-1,-3)$, as shown on the set of axes below.

Which composition of transformations was used?
$1 \quad R_{180^{\circ}}{ }^{\circ} D_{2}$
$2 R_{90^{\circ}} \circ D_{2}$
$3 \quad D \frac{1}{2} \circ R_{180^{\circ}}$
$4 \quad D_{\frac{1}{2}}^{\circ} R_{90^{\circ}}$

Which transformation produces a figure similar but not congruent to the original figure?
$1 T_{1,3}$
$2 D_{\frac{1}{2}}$
$3 R_{90}$
$4 \quad r_{y=x}$

410 In the diagram below, $\Delta A^{\prime} B^{\prime} C^{\prime}$ is a transformation of $\triangle A B C$, and $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is a transformation of $\Delta A^{\prime} B^{\prime} C^{\prime}$.

The composite transformation of $\triangle A B C$ to $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is an example of a
1 reflection followed by a rotation 2 reflection followed by a translation 3 translation followed by a rotation 4 translation followed by a reflection

G.G.61: ANALYTICAL REPRESENTATIONS OF TRANSFORMATIONS

411 A polygon is transformed according to the rule: $(x, y) \rightarrow(x+2, y)$. Every point of the polygon moves two units in which direction?
1 up
2 down
3 left
4 right

412 On the set of axes below, Geoff drew rectangle $A B C D$. He will transform the rectangle by using the translation $(x, y) \rightarrow(x+2, y+1)$ and then will reflect the translated rectangle over the x-axis.

What will be the area of the rectangle after these transformations?
1 exactly 28 square units
2 less than 28 square units
3 greater than 28 square units
4 It cannot be determined from the information given.

LOGIC

G.G.24: STATEMENTS AND NEGATIONS

413 Given $\triangle A B C$ with base $\overline{A F E D C}$, median $\overline{B F}$, altitude $\overline{B D}$, and $\overline{B E}$ bisects $\angle A B C$, which conclusion is valid?

$1 \angle F A B \cong \angle A B F$
$2 \angle A B F \cong \angle C B D$
$3 \overline{C E} \cong \overline{E A}$
$4 \overline{C F} \cong \overline{F A}$

414 What is the negation of the statement "The Sun is shining"?
1 It is cloudy.
2 It is daytime.
3 It is not raining.
4 The Sun is not shining.

415 What is the negation of the statement "Squares are parallelograms"?
1 Parallelograms are squares.
2 Parallelograms are not squares.
3 It is not the case that squares are parallelograms.
4 It is not the case that parallelograms are squares.

416 What is the negation of the statement "I am not going to eat ice cream"?
1 I like ice cream.
2 I am going to eat ice cream.
3 If I eat ice cream, then I like ice cream.
4 If I don't like ice cream, then I don't eat ice cream.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

417 Which statement is the negation of "Two is a prime number" and what is the truth value of the negation?
1 Two is not a prime number; false
2 Two is not a prime number; true
3 A prime number is two; false
4 A prime number is two; true

418 A student wrote the sentence " 4 is an odd integer." What is the negation of this sentence and the truth value of the negation?
13 is an odd integer; true
24 is not an odd integer; true
34 is not an even integer; false
$4 \quad 4$ is an even integer; false

419 Given the true statement, "The medians of a triangle are concurrent," write the negation of the statement and give the truth value for the negation.

420 Write the negation of the statement " 2 is a prime number," and determine the truth value of the negation.

G.G.25: COMPOUND STATEMENTS

421 Which compound statement is true?
1 A triangle has three sides and a quadrilateral has five sides.
2 A triangle has three sides if and only if a quadrilateral has five sides.
3 If a triangle has three sides, then a quadrilateral has five sides.
4 A triangle has three sides or a quadrilateral has five sides.

422 The statement " x is a multiple of 3 , and x is an even integer" is true when x is equal to

[^0]423 Given: Two is an even integer or three is an even integer.
Determine the truth value of this disjunction. Justify your answer.

G.G.26: CONDITIONAL STATEMENTS

424 What is the inverse of the statement "If two triangles are not similar, their corresponding angles are not congruent"?
1 If two triangles are similar, their corresponding angles are not congruent.
2 If corresponding angles of two triangles are not congruent, the triangles are not similar.
3 If two triangles are similar, their corresponding angles are congruent.
4 If corresponding angles of two triangles are congruent, the triangles are similar.

425 What is the converse of the statement "If Bob does his homework, then George gets candy"?
1 If George gets candy, then Bob does his homework.
2 Bob does his homework if and only if George gets candy.
3 If George does not get candy, then Bob does not do his homework.
4 If Bob does not do his homework, then George does not get candy.

426 What is the contrapositive of the statement, "If I am tall, then I will bump my head"?
1 If I bump my head, then I am tall.
2 If I do not bump my head, then I am tall.
3 If I am tall, then I will not bump my head.
4 If I do not bump my head, then I am not tall.

427 Which statement is logically equivalent to "If it is warm, then I go swimming"
1 If I go swimming, then it is warm.
2 If it is warm, then I do not go swimming.
3 If I do not go swimming, then it is not warm.
4 If it is not warm, then I do not go swimming.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

428 Write a statement that is logically equivalent to the statement "If two sides of a triangle are congruent, the angles opposite those sides are congruent." Identify the new statement as the converse, inverse, or contrapositive of the original statement.

G.G.28: TRIANGLE CONGRUENCY

429 In the diagram of $\triangle A B C$ and $\triangle D E F$ below, $\overline{A B} \cong \overline{D E}, \angle A \cong \angle D$, and $\angle B \cong \angle E$.

Which method can be used to prove
$\triangle A B C \cong \triangle D E F$?
1 SSS
2 SAS
3 ASA
4 HL

430 The diagonal $\overline{A C}$ is drawn in parallelogram $A B C D$. Which method can not be used to prove that
$\triangle A B C \cong \triangle C D A$?
1 SSS
2 SAS
3 SSA
4 ASA

431 In the diagram below of $\triangle A G E$ and $\triangle O L D$, $\angle G A E \cong \angle L O D$, and $\overline{A E} \cong \overline{O D}$.

To prove that $\triangle A G E$ and $\triangle O L D$ are congruent by SAS, what other information is needed?
$1 \overline{G E} \cong \overline{L D}$
$2 \overline{A G} \cong \overline{O L}$
$3 \angle A G E \cong \angle O L D$
$4 \angle A E G \cong \angle O D L$

432 In the diagram of quadrilateral $A B C D, \overline{A B} \| \overline{C D}$, $\angle A B C \cong \angle C D A$, and diagonal $\overline{A C}$ is drawn.

Which method can be used to prove $\triangle A B C$ is congruent to $\triangle C D A$?
1 AAS
2 SSA
3 SAS
4 SSS

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

433 As shown in the diagram below, $\overline{A C}$ bisects $\angle B A D$ and $\angle B \cong \angle D$.

Which method could be used to prove
$\triangle A B C \cong \triangle A D C$?
1 SSS
2 AAA
3 SAS
4 AAS

434 In parallelogram $A B C D$ shown below, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E.

Which statement must be true?
$1 \overline{A C} \cong \overline{D B}$
$2 \angle A B D \cong \angle C B D$
$3 \triangle A E D \cong \triangle C E B$
$4 \triangle D C E \cong \triangle B C E$

435 In the diagram below of $\triangle D A E$ and $\triangle B C E, \overline{A B}$ and $\overline{C D}$ intersect at E, such that $\overline{A E} \cong \overline{C E}$ and $\angle B C E \cong \angle D A E$.

Triangle DAE can be proved congruent to triangle BCE by
1 ASA
2 SAS
3 SSS
4 HL

G.G.29: TRIANGLE CONGRUENCY

436 In the diagram of trapezoid $A B C D$ below, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E and $\triangle A B C \cong \triangle D C B$.

Which statement is true based on the given information?
$\begin{array}{ll}1 & \overline{A C} \cong \overline{B C} \\ 2 & \overline{C D} \cong \overline{A D} \\ 3 & \angle C D E \cong \angle B A D \\ 4 & \angle C D B \cong \angle B A C\end{array}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

437 In the diagram below, $\triangle A B C \cong \triangle X Y Z$.

Which two statements identify corresponding congruent parts for these triangles?
$1 \overline{A B} \cong \overline{X Y}$ and $\angle C \cong \angle Y$
$2 \overline{A B} \cong \overline{Y Z}$ and $\angle C \cong \angle X$
$3 \overline{B C} \cong \overline{X Y}$ and $\angle A \cong \angle Y$
$4 \quad \overline{B C} \cong \overline{Y Z}$ and $\angle A \cong \angle X$

438 If $\triangle J K L \cong \triangle M N O$, which statement is always true?
$1 \angle K L J \cong \angle N M O$
$2 \angle K J L \cong \angle M O N$
$3 \overline{J L} \cong \overline{M O}$
$4 \overline{J K} \cong \overline{O N}$

439 In the diagram below, $\triangle A B C \cong \triangle X Y Z$.

Which statement must be true?
$1 \angle C \cong \angle Y$
$2 \angle A \cong \angle X$
$3 \overline{A C} \cong \overline{Y Z}$
$4 \overline{C B} \cong \overline{X Z}$

440 The diagram below shows a pair of congruent triangles, with $\angle A D B \cong \angle C D B$ and $\angle A B D \cong \angle C B D$.

Which statement must be true?
$1 \angle A D B \cong \angle C B D$
$2 \angle A B C \cong \angle A D C$
$3 \overline{A B} \cong \overline{C D}$
$4 \overline{A D} \cong \overline{C D}$

G.G.27: LINE PROOFS

441 In the diagram below of $\overline{A B C D}, \overline{A C} \cong \overline{B D}$.

Using this information, it could be proven that
$1 \quad B C=A B$
$2 \quad A B=C D$
$3 A D-B C=C D$
$4 \quad A B+C D=A D$

G.G.27: ANGLE PROOFS

442 When writing a geometric proof, which angle relationship could be used alone to justify that two angles are congruent?
1 supplementary angles
2 linear pair of angles
3 adjacent angles
4 vertical angles

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.27: TRIANGLE PROOFS

443 In $\triangle A E D$ with $\overline{A B C D}$ shown in the diagram below, $\overline{E B}$ and $\overline{E C}$ are drawn.

If $\overline{A B} \cong \overline{C D}$, which statement could always be proven?
$1 \overline{A C} \cong \overline{D B}$
$2 \overline{A E} \cong \overline{E D}$
$3 \overline{A B} \cong \overline{B C}$
$4 \overline{E C} \cong \overline{E A}$

444 Given: $\triangle A B C$ and $\triangle E D C, C$ is the midpoint of $\overline{B D}$ and $\overline{A E}$
Prove: $\overline{A B} \| \overline{D E}$

445 Given: $\overline{A D}$ bisects $\overline{B C}$ at E. $\overline{A B} \perp \overline{B C}$ $\overline{D C} \perp \overline{B C}$
Prove: $\overline{A B} \cong \overline{D C}$

G.G.27: QUADRILATERAL PROOFS

446 Given that $A B C D$ is a parallelogram, a student wrote the proof below to show that a pair of its opposite angles are congruent.

What is the reason justifying that $\angle B \cong \angle D$?
1 Opposite angles in a quadrilateral are congruent.
2 Parallel lines have congruent corresponding angles.
3 Corresponding parts of congruent triangles are congruent.
4 Alternate interior angles in congruent triangles are congruent.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

447 In the diagram below of quadrilateral $A B C D$,
$\overline{A D} \cong \overline{B C}$ and $\angle D A E \cong \angle B C E$. Line segments $A C$, $D B$, and $F G$ intersect at E.
Prove: $\triangle A E F \cong \triangle C E G$

448 Given: Quadrilateral $A B C D$ with $\overline{A B} \cong \overline{C D}$, $\overline{A D} \cong \overline{B C}$, and diagonal $\overline{B D}$ is drawn Prove: $\angle B D C \cong \angle A B D$

G.G.27: CIRCLE PROOFS

449 In the diagram below, quadrilateral $A B C D$ is inscribed in circle $O, \overline{A B} \| \overline{D C}$, and diagonals $\overline{A C}$ and $B D$ are drawn. Prove that $\triangle A C D \cong \triangle B D C$.

450 In the diagram below, $\overline{P A}$ and $\overline{P B}$ are tangent to circle $O, \overline{O A}$ and $\overline{O B}$ are radii, and $\overline{O P}$ intersects the circle at C. Prove: $\angle A O P \cong \angle B O P$

G.G.44: SIMILARITY PROOFS

451 In the diagram below of $\triangle P R T, Q$ is a point on $\overline{P R}$, S is a point on $\overline{T R}, \overline{Q S}$ is drawn, and $\angle R P T \cong \angle R S Q$.

Which reason justifies the conclusion that
$\triangle P R T \sim \Delta S R Q$?
1 AA
2 ASA
3 SAS
4 SSS

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

452 In the diagram of $\triangle A B C$ and $\triangle E D C$ below, $\overline{A E}$ and $\overline{B D}$ intersect at C, and $\angle C A B \cong \angle C E D$.

Which method can be used to show that $\triangle A B C$ must be similar to $\triangle E D C$?
1 SAS
2 AA
3 SSS
4 HL

453 In the diagram below, $\overline{S Q}$ and $\overline{P R}$ intersect at $T, \overline{P Q}$ is drawn, and $\overline{P S} \| \overline{Q R}$.

What technique can be used to prove that
$\triangle P S T \sim \Delta R Q T$?
1 SAS
2 SSS
3 ASA
4 AA

454 In $\triangle A B C$ and $\triangle D E F, \frac{A C}{D F}=\frac{C B}{F E}$. Which additional information would prove
$\triangle A B C \sim \triangle D E F$?
$1 \quad A C=D F$
$2 C B=F E$
$3 \angle A C B \cong \angle D F E$
$4 \angle B A C \cong \angle E D F$

455 In the diagram below, $\overline{B F C E}, \overline{A B} \perp \overline{B E}, \overline{D E} \perp \overline{B E}$, and $\angle B F D \cong \angle E C A$. Prove that $\triangle A B C \sim \triangle D E F$.

456 The diagram below shows $\triangle A B C$, with $\overline{A E B}, \overline{A D C}$, and $\angle A C B \cong \angle A E D$. Prove that $\triangle A B C$ is similar to $\triangle A D E$.

Geometry Regents Exam Questions by Performance Indicator: Topic Answer Section

1 ANS: 2
The slope of a line in standard form is $-\frac{A}{B}$ so the slope of this line is $-\frac{5}{3}$ Perpendicular lines have slope that are the opposite and reciprocal of each other.

PTS: 2 REF: fall0828ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
2 ANS: 4
The slope of $y=-\frac{2}{3} x-5$ is $-\frac{2}{3}$. Perpendicular lines have slope that are opposite reciprocals.
PTS: 2 REF: 080917ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
3 ANS: 3
$m=\frac{-A}{B}=-\frac{3}{4}$
PTS: 2 REF: 011025ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
4 ANS: 2
PTS: 2
REF: 061022ge
STA: G.G. 62
TOP: Parallel and Perpendicular Lines
5 ANS: 3
$2 y=-6 x+8$ Perpendicular lines have slope the opposite and reciprocal of each other.
$y=-3 x+4$
$m=-3$
$m_{\perp}=\frac{1}{3}$
PTS: 2 REF: 081024ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
6 ANS: 4
The slope of $3 x+5 y=4$ is $m=\frac{-A}{B}=\frac{-3}{5} . m_{\perp}=\frac{5}{3}$.
PTS: 2 REF: 061127ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
7 ANS: 2
The slope of $x+2 y=3$ is $m=\frac{-A}{B}=\frac{-1}{2} . \quad m_{\perp}=2$.
PTS: 2
REF: 081122ge STA: G.G. 62
TOP: Parallel and Perpendicular Lines
8 ANS: 2
$m=\frac{-A}{B}=\frac{-20}{-2}=10 . m_{\perp}=-\frac{1}{10}$
PTS: 2 REF: 061219ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines

9 ANS: 3
The slope of $9 x-3 y=27$ is $m=\frac{-A}{B}=\frac{-9}{-3}=3$, which is the opposite reciprocal of $-\frac{1}{3}$.
PTS: 2 REF: 081225ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
10 ANS:
$m=\frac{-A}{B}=\frac{6}{2}=3 . m_{\perp}=-\frac{1}{3}$.
PTS: 2 REF: 011134ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
11 ANS: 4
$3 y+1=6 x+4.2 y+1=x-9$

$$
\begin{array}{rlrl}
3 y & =6 x+3 & 2 y & =x-10 \\
y & =2 x+1 & y & =\frac{1}{2} x-5
\end{array}
$$

PTS: 2 REF: fall0822ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
12 ANS: 2
The slope of $2 x+3 y=12$ is $-\frac{A}{B}=-\frac{2}{3}$. The slope of a perpendicular line is $\frac{3}{2}$. Rewritten in slope intercept form,
(2) becomes $y=\frac{3}{2} x+3$.

PTS: 2 REF: 060926ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
13 ANS: 3
The slope of $y=x+2$ is 1 . The slope of $y-x=-1$ is $\frac{-A}{B}=\frac{-(-1)}{1}=1$.
PTS: 2 REF: 080909ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
14 ANS: 3
$m=\frac{-A}{B}=\frac{5}{2} . m=\frac{-A}{B}=\frac{10}{4}=\frac{5}{2}$
PTS: 2 REF: 011014ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
15 ANS: 1

$$
-2\left(-\frac{1}{2} y=6 x+10\right)
$$

$$
y=-12 x-20
$$

PTS: 2 REF: 061027ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines

16 ANS: 2
$y+\frac{1}{2} x=4 \quad 3 x+6 y=12$
$y=-\frac{1}{2} x+4$

$$
\begin{aligned}
6 y & =-3 x+12 \\
y & =-\frac{3}{6} x+2 \\
y & =-\frac{1}{2} x+2
\end{aligned}
$$

$m=-\frac{1}{2}$

PTS: 2
REF: 081014ge
STA: G.G. 63
TOP: Parallel and Perpendicular Lines
17 ANS: 4

$$
\begin{array}{rlrl}
x+6 y & =12 & 3(x-2) & =-y-4 \\
6 y & =-x+12 & -3(x-2) & =y+4 \\
y & =-\frac{1}{6} x+2 & m & =-3 \\
m & =-\frac{1}{6} & &
\end{array}
$$

PTS: 2 REF: 011119ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
18 ANS: 1
PTS: 2
REF: 061113ge
STA: G.G. 63
TOP: Parallel and Perpendicular Lines
19 ANS:
The slope of $y=2 x+3$ is 2 . The slope of $2 y+x=6$ is $\frac{-A}{B}=\frac{-1}{2}$. Since the slopes are opposite reciprocals, the lines are perpendicular.

PTS: 2 REF: 011231ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
20 ANS:
The slope of $x+2 y=4$ is $m=\frac{-A}{B}=\frac{-1}{2}$. The slope of $4 y-2 x=12$ is $\frac{-A}{B}=\frac{2}{4}=\frac{1}{2}$. Since the slopes are neither equal nor opposite reciprocals, the lines are neither parallel nor perpendicular.

PTS: 2
21 ANS: 2
The slope of $y=\frac{1}{2} x+5$ is $\frac{1}{2}$. The slope of a perpendicular line is $-2 . y=m x+b \quad$.

$$
\begin{aligned}
& 5=(-2)(-2)+b \\
& b=1
\end{aligned}
$$

PTS: 2
REF: 060907ge
STA: G.G. 64
TOP: Parallel and Perpendicular Lines

22 ANS: 4
The slope of $y=-3 x+2$ is -3 . The perpendicular slope is $\frac{1}{3} \cdot-1=\frac{1}{3}(3)+b$

$$
\begin{aligned}
-1 & =1+b \\
b & =-2
\end{aligned}
$$

PTS: 2 REF: 011018ge
STA: G.G. 64
REF: 011217ge
TOP: Parallel and Perpendicular Lines
PTS: 2
TOP: Parallel and Perpendicular Lines
24 ANS: 4

$$
\begin{aligned}
m_{\perp}=-\frac{1}{3} \cdot y & =m x+b \\
6 & =-\frac{1}{3}(-9)+b \\
6 & =3+b \\
3 & =b
\end{aligned}
$$

PTS: 2 REF: 061215ge STA: G.G. 64 TOP: Parallel and Perpendicular Lines
25 ANS: 3
The slope of $2 y=x+2$ is $\frac{1}{2}$, which is the opposite reciprocal of $-2 . \quad 3=-2(4)+b$

$$
11=b
$$

PTS: 2 REF: 081228ge STA: G.G. 64 TOP: Parallel and Perpendicular Lines
26 ANS:

$$
\begin{aligned}
& y=\frac{2}{3} x+1.2 y+3 x=6 \quad . y=m x+b \\
& 2 y=-3 x+6 \quad 5=\frac{2}{3}(6)+b \\
& y=-\frac{3}{2} x+3 \quad 5=4+b \\
& m=-\frac{3}{2} \quad 1=b \\
& m_{\perp}=\frac{2}{3} \quad y=\frac{2}{3} x+1
\end{aligned}
$$

PTS: 4
REF: 061036ge
STA: G.G. 64
TOP: Parallel and Perpendicular Lines
27 ANS: 2
The slope of a line in standard form is $-\frac{A}{B}$, so the slope of this line is $\frac{-2}{-1}=2$. A parallel line would also have a slope of 2. Since the answers are in slope intercept form, find the y-intercept: $\quad y=m x+b$

$$
\begin{aligned}
-11 & =2(-3)+b \\
-5 & =b
\end{aligned}
$$

PTS: 2
REF: fall0812ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines

28 ANS: 4
The slope of a line in standard form is $-\frac{A}{B}$, so the slope of this line is $\frac{-4}{2}=-2$. A parallel line would also have a slope of -2 . Since the answers are in slope intercept form, find the y-intercept: $\quad y=m x+b$

$$
\begin{aligned}
3 & =-2(7)+b \\
17 & =b
\end{aligned}
$$

PTS: 2
REF: 081010ge STA: G.G. 65
TOP: Parallel and Perpendicular Lines
29 ANS: 4
$y=m x+b$
$3=\frac{3}{2}(-2)+b$
$3=-3+b$
$6=b$
PTS: 2 REF: 011114ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
30 ANS: 2
The slope of a line in standard form is $\frac{-A}{B}$, so the slope of this line is $\frac{-4}{3}$. A parallel line would also have a slope of $\frac{-4}{3}$. Since the answers are in standard form, use the point-slope formula. $y-2=-\frac{4}{3}(x+5)$

$$
\begin{aligned}
3 y-6 & =-4 x-20 \\
4 x+3 y & =-14
\end{aligned}
$$

PTS: 2
REF: 061123ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines
31 ANS: 2
$m=\frac{-A}{B}=\frac{-4}{2}=-2 \quad y=m x+b$
$2=-2(2)+b$
$6=b$
PTS: 2 REF: 081112ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
32 ANS: 3
$y=m x+b$
$-1=2(2)+b$
$-5=b$
PTS: 2
REF: 011224ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines

33 ANS: 4
$m=\frac{-A}{B}=\frac{-3}{2} . \quad y=m x+b$

$$
\begin{aligned}
-1 & =\left(\frac{-3}{2}\right)(2)+b \\
-1 & =-3+b \\
2 & =b
\end{aligned}
$$

PTS: 2
REF: 061226ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines
34 ANS: 1

$$
\begin{aligned}
m=\frac{3}{2} \quad y & =m x+b \\
2 & =\frac{3}{2}(1)+b \\
\frac{1}{2} & =b
\end{aligned}
$$

PTS: 2 REF: 081217ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
35 ANS:
$y=-2 x+14$. The slope of $2 x+y=3$ is $\frac{-A}{B}=\frac{-2}{1}=-2 . y=m x+b$

$$
\begin{aligned}
& 4=(-2)(5)+b \\
& b=14
\end{aligned}
$$

PTS: 2 REF: 060931ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
36
ANS:
$y=\frac{2}{3} x-9$. The slope of $2 x-3 y=11$ is $-\frac{A}{B}=\frac{-2}{-3}=\frac{2}{3} .-5=\left(\frac{2}{3}\right)(6)+b$

$$
\begin{aligned}
-5 & =4+b \\
b & =-9
\end{aligned}
$$

PTS: 2 REF: 080931ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
37 ANS: 4
$\overline{A B}$ is a vertical line, so its perpendicular bisector is a horizontal line through the midpoint of $\overline{A B}$, which is $(0,3)$.
PTS: 2 REF: 011225ge STA: G.G. 68 TOP: Perpendicular Bisector
38 ANS: 1

$$
\begin{aligned}
& m=\left(\frac{8+0}{2}, \frac{2+6}{2}\right)=(4,4) m=\frac{6-2}{0-8}=\frac{4}{-8}=-\frac{1}{2} \quad m_{\perp}=2 \quad y=m x+b \\
& 4=2(4)+b \\
& -4=b
\end{aligned}
$$

PTS: 2
REF: 081126ge
STA: G.G. 68
TOP: Perpendicular Bisector

39 ANS:
$y=\frac{4}{3} x-6 . M_{x}=\frac{-1+7}{2}=3 \quad$ The perpendicular bisector goes through $(3,-2)$ and has a slope of $\frac{4}{3}$.

$$
\begin{aligned}
& M_{y}=\frac{1+(-5)}{2}=-2 \\
& m=\frac{1-(-5)}{-1-7}=-\frac{3}{4}
\end{aligned}
$$

$y-y_{M}=m\left(x-x_{M}\right)$.

$y-1=\frac{4}{3}(x-2)$
PTS: 4
REF: 080935ge
STA: G.G. 68
TOP: Perpendicular Bisector
40 ANS: 3

PTS: 2
REF: fall0805ge
STA: G.G. 70
TOP: Quadratic-Linear Systems
41 ANS: 1
$y=x^{2}-4 x=(4)^{2}-4(4)=0 .(4,0)$ is the only intersection.
PTS: 2
REF: 060923ge
STA: G.G. 70

TOP: Quadratic-Linear Systems

42 ANS: 4
$y+x=4 . x^{2}-6 x+10=-x+4 . y+x=4 . y+2=4$

$y=-x+4 \quad x^{2}-5 x+6=0 \quad y+3=4 \quad y=2$

$$
(x-3)(x-2)=0 \quad y=1
$$

$$
x=3 \text { or } 2
$$

PTS: 2
REF: 080912ge
STA: G.G. 70
TOP: Quadratic-Linear Systems
43 ANS: 3

PTS: 2 REF: 061011ge STA: G.G. 70 TOP: Quadratic-Linear Systems
44 ANS: 3

$$
\begin{aligned}
(x+3)^{2}-4 & =2 x+5 \\
x^{2}+6 x+9-4 & =2 x+5 \\
x^{2}+4 x & =0 \\
x(x+4) & =0 \\
x & =0,-4
\end{aligned}
$$

PTS: 2
REF: 081004ge
STA: G.G. 70
TOP: Quadratic-Linear Systems
45 ANS: 3

PTS: 2
REF: 081118ge
STA: G.G. 70
TOP: Quadratic-Linear Systems

46
ANS:

PTS: 6
REF: 011038ge
STA: G.G. 70
47 ANS:

PTS: 4
REF: 061137ge
STA: G.G. 70
48 ANS:

REF: 061238ge
STA: G.G. 70
TOP: Quadratic-Linear Systems

49 ANS:
(
PTS: 4 REF: 081237ge STA: G.G. 70 TOP: Quadratic-Linear Systems
50 ANS: 2
$M_{x}=\frac{2+(-4)}{2}=-1 . M_{Y}=\frac{-3+6}{2}=\frac{3}{2}$.
PTS: 2 REF: fall0813ge STA: G.G. 66 TOP: Midpoint
KEY: general
51 ANS: 4
$M_{x}=\frac{-6+1}{2}=-\frac{5}{2} . M_{y}=\frac{1+8}{2}=\frac{9}{2}$.
PTS: 2
REF: 060919ge STA: G.G. 66
TOP: Midpoint
KEY: graph
52 ANS: 2
$M_{x}=\frac{-2+6}{2}=2 . M_{y}=\frac{-4+2}{2}=-1$
PTS: 2 REF: 080910ge STA: G.G. 66 TOP: Midpoint
KEY: general
53 ANS:
$(6,-4) . \quad C_{x}=\frac{Q_{x}+R_{x}}{2} . C_{y}=\frac{Q_{y}+R_{y}}{2}$.

$$
\begin{array}{rlrl}
3.5 & =\frac{1+R_{x}}{2} & 2 & =\frac{8+R_{y}}{2} \\
7 & =1+R_{x} & 4 & =8+R_{y} \\
6 & =R_{x} & -4 & =R_{y}
\end{array}
$$

PTS: 2 REF: 011031ge STA: G.G. 66 TOP: Midpoint
KEY: graph
54 ANS: 2
$M_{x}=\frac{3 x+5+x-1}{2}=\frac{4 x+4}{2}=2 x+2 . M_{Y}=\frac{3 y+(-y)}{2}=\frac{2 y}{2}=y$.

PTS: 2 REF: 081019ge STA: G.G. 66 TOP: Midpoint KEY: general

55 ANS: 2
$M_{x}=\frac{7+(-3)}{2}=2 . M_{Y}=\frac{-1+3}{2}=1$.
PTS: 2 REF: 011106ge STA: G.G. 66 TOP: Midpoint
56 ANS: 1

$$
\begin{array}{rlrl}
1 & =\frac{-4+x}{2}, & 5 & =\frac{3+y}{2} . \\
-4+x & =2 & 3+y & =10 \\
x & =6 & y & =7
\end{array}
$$

PTS: 2 REF: 081115ge STA: G.G. 66 TOP: Midpoint
57 ANS: 4

$$
\begin{array}{rlrl}
-5 & =\frac{-3+x}{2} . & 2 & =\frac{6+y}{2} \\
-10 & =-3+x & 4 & =6+y \\
-7 & =x & -2 & =y
\end{array}
$$

PTS: 2 REF: 081203ge STA: G.G. 66 TOP: Midpoint
58 ANS:
$(2 a-3,3 b+2) .\left(\frac{3 a+a-6}{2}, \frac{2 b-1+4 b+5}{2}\right)=\left(\frac{4 a-6}{2}, \frac{6 b+4}{2}\right)=(2 a-3,3 b+2)$
PTS: 2 REF: 061134ge STA: G.G. 66 TOP: Midpoint
59 ANS: 1
$d=\sqrt{(-4-2)^{2}+(5-(-5))^{2}}=\sqrt{36+100}=\sqrt{136}=\sqrt{4} \cdot \sqrt{34}=2 \sqrt{34}$.
PTS: 2 REF: 080919ge STA: G.G. 67 TOP: Distance
KEY: general
60 ANS: 4
$d=\sqrt{(-3-1)^{2}+(2-0)^{2}}=\sqrt{16+4}=\sqrt{20}=\sqrt{4} \cdot \sqrt{5}=2 \sqrt{5}$
PTS: 2 REF: 011017ge STA: G.G. 67 TOP: Distance
KEY: general
61 ANS: 4
$d=\sqrt{(146-(-4))^{2}+(52-2)^{2}}=\sqrt{25,000} \approx 158.1$
PTS: 2 REF: 061021ge STA: G.G. 67 TOP: Distance
KEY: general

62
ANS: 4
$d=\sqrt{(-6-2)^{2}+(4-(-5))^{2}}=\sqrt{64+81}=\sqrt{145}$
PTS: 2 REF: 081013ge STA: G.G. 67 TOP: Distance
KEY: general

63
$d=\sqrt{(-5-3)^{2}+(4-(-6))^{2}}=\sqrt{64+100}=\sqrt{164}=\sqrt{4} \sqrt{41}=2 \sqrt{41}$
PTS: 2 REF: 011121ge STA: G.G. 67 TOP: Distance
KEY: general
$d=\sqrt{(-1-7)^{2}+(9-4)^{2}}=\sqrt{64+25}=\sqrt{89}$
PTS: 2 REF: 061109ge STA: G.G. 67 TOP: Distance
KEY: general
65
$d=\sqrt{(1-9)^{2}+(-4-2)^{2}}=\sqrt{64+36}=\sqrt{100}=10$
PTS: 2
REF: 081107ge STA: G.G. 67
TOP: Distance
KEY: general
66
$d=\sqrt{(4-1)^{2}+(7-11)^{2}}=\sqrt{9+16}=\sqrt{25}=5$
PTS: 2
REF: 011205ge STA: G.G. 67
KEY: general
67 ANS: 3
$d=\sqrt{(-1-4)^{2}+(0-(-3))^{2}}=\sqrt{25+9}=\sqrt{34}$
PTS: 2
REF: 061217ge STA: G.G. 67
TOP: Distance
KEY: general
$\sqrt{(-4-2)^{2}+(3-5)^{2}}=\sqrt{36+4}=\sqrt{40}=\sqrt{4} \sqrt{10}=2 \sqrt{10}$.
PTS: 2
REF: 081232ge STA: G.G. 67
ANS:
25. $d=\sqrt{(-3-4)^{2}+(1-25)^{2}}=\sqrt{49+576}=\sqrt{625}=25$.

PTS: 2
KEY: general
70 ANS: 3
TOP: Planes
71 ANS: 4
TOP: Planes

REF: fall0831ge STA: G.G. 67

PTS: 2
PTS: 2
REF: 011012ge

TOP: Distance

STA: G.G. 1
STA: G.G. 1

94	ANS: 3 TOP: Solids	PTS:	2	REF:	011105ge	STA:	G.G. 10
95	ANS: 1 TOP: Solids	PTS:	2	REF:	011221ge	STA:	G.G. 10
96	ANS: 4 TOP: Solids	PTS:	2	REF:	060904ge	STA:	G.G. 13
97	ANS: 3 TOP: Constructions	PTS:	2	REF:	060925ge	STA:	G.G. 17
98	ANS: 3 TOP: Constructions	PTS:	2	REF:	080902ge	STA:	G.G. 17
99	ANS: 2 TOP: Constructions	PTS:	2	REF:	011004ge	STA:	G.G. 17
100	ANS: 4 TOP: Constructions	PTS:	2	REF:	081106ge	STA:	G.G. 17
101	ANS: 2 TOP: Constructions	PTS:	2	REF:	081205ge	STA:	G.G. 17
102	ANS:						

PTS: 2
103
ANS:

PTS: 2
104 ANS:

PTS: 2

REF: 011133ge
STA: G.G. 17
TOP: Constructions

REF: 011233ge
STA: G.G. 17
TOP: Constructions

105 ANS:

PTS: 2 REF: 061232ge STA: G.G. 17 TOP: Constructions
106 ANS:

PTS: 2 REF: fall0832ge
STA: G.G. 17
TOP: Constructions
ANS: 3
PTS: 2
REF: fall0804ge
STA: G.G. 18
TOP: Constructions
108
ANS: 4
TOP: Constructions
109 ANS: 1
PTS: 2
REF: 081005ge
STA: G.G. 18

TOP: Constructions
110 ANS: 2
PTS: 2
REF: 011120ge
STA: G.G. 18

TOP: Constructions
111 ANS:

PTS: 2
112 ANS: 1
REF: 081130ge
PTS: 2
TOP: Constructions

STA: G.G. 18 TOP: Constructions
REF: fall0807ge STA: G.G. 19

PTS: 2
116 ANS: 2
REF: 081233ge
TOP: Constructions
117 ANS:

χ

PTS: 2
118 ANS: 1
TOP: Constructions
119 ANS: 1
TOP: Constructions
120 ANS:

STA: G.G. 20

PTS: 2
REF: 081032ge

TOP: Constructions
STA: G.G. 20
REF: 061012ge
REF: 011207ge
STA: G.G. 20

TOP: Constructions

121 ANS:

PTS: 2
REF: 011032ge
STA: G.G. 20
TOP: Constructions
122 ANS:

PTS: 2
123 ANS: 2 TOP: Locus
124 ANS: 2 TOP: Locus
125 ANS:

PTS: 2
REF: 011230ge
STA: G.G. 22
TOP: Locus

126 ANS:

PTS: 2
REF: 060932ge
STA: G.G. 22
TOP: Locus
127 ANS:

- -- -

PTS: 2
REF: 061033ge
STA: G.G. 22
TOP: Locus
128 ANS:

PTS: 2
129
ANS: 4 TOP: Locus
130 ANS: 2 TOP: Locus

REF: 081033ge
PTS: 2
PTS: 2

REF: 081117ge
STA: G.G. 22
REF: 060912ge

TOP: Locus STA: G.G. 23

STA: G.G. 23

131 ANS:

PTS: 4
132 ANS:

PTS: 4
REF: 080936ge

PTS: 4 REF: 011037ge STA: G.G. 23 TOP: Locus
REF: fall0837ge
STA: G.G. 23
TOP: Locus

134 ANS:

PTS: 4
REF: 011135ge
STA: G.G. 23
TOP: Locus
135 ANS:

REF: 061135ge
STA: G.G. 23
TOP: Locus
136 ANS:

PTS: 2
REF: 061234ge
STA: G.G. 23
TOP: Locus

137
ANS:

PTS: 2
REF: 081234ge
STA: G.G. 23 TOP: Locus
138 ANS: 4
The marked 60° angle and the angle above it are on the same straight line and supplementary. This unmarked supplementary angle is 120°. Because the unmarked 120° angle and the marked 120° angle are alternate exterior angles and congruent, $d \| e$.

PTS: 2 REF: 080901ge
139 ANS: 2
PTS: 2
STA: G.G. 35
REF: 061007ge
TOP: Parallel Lines and Transversals
TOP: Parallel Lines and Transversals
140 ANS: 2
$7 x=5 x+30$
$2 x=30$
$x=15$
PTS: 2 REF: 061106ge STA: G.G. 35 TOP: Parallel Lines and Transversals
141 ANS: 3
$7 x=5 x+30$
$2 x=30$
$x=15$
PTS: 2
REF: 081109ge
STA: G.G. 35
TOP: Parallel Lines and Transversals
142 ANS: 2
$6 x+42=18 x-12$
$54=12 x$

$$
x=\frac{54}{12}=4.5
$$

PTS: 2
REF: 011201ge
STA: G.G. 35
TOP: Parallel Lines and Transversals

143 ANS: 3
$4 x+14+8 x+10=180$

$$
\begin{aligned}
12 x & =156 \\
x & =13
\end{aligned}
$$

PTS: 2
REF: 081213ge
STA: G.G. 35
TOP: Parallel Lines and Transversals
144 ANS:
Yes, $\mathrm{m} \angle A B D=\mathrm{m} \angle B D C=44180-(93+43)=44 x+19+2 x+6+3 x+5=180$. Because alternate interior

$$
\begin{aligned}
6 x+30 & =180 \\
6 x & =150 \\
x & =25 \\
x+19 & =44
\end{aligned}
$$

angles $\angle A B D$ and $\angle C D B$ are congruent, $\overline{A B}$ is parallel to $\overline{D C}$.
PTS: 4 REF: 081035ge STA: G.G. 35 TOP: Parallel Lines and Transversals
145 ANS:
$180-(90+63)=27$
PTS: 2
REF: 061230ge
STA: G.G. 35
TOP: Parallel Lines and Transversals
146 ANS: 1
$a^{2}+(5 \sqrt{2})^{2}=(2 \sqrt{15})^{2}$
$a^{2}+(25 \times 2)=4 \times 15$
$a^{2}+50=60$

$$
a^{2}=10
$$

$$
a=\sqrt{10}
$$

PTS: 2
REF: 011016ge
STA: G.G. 48
TOP: Pythagorean Theorem
147 ANS: 2

$$
\begin{aligned}
x^{2}+(x+7)^{2} & =13^{2} \\
x^{2}+x^{2}+7 x+7 x+49 & =169 \\
2 x^{2}+14 x-120 & =0 \\
x^{2}+7 x-60 & =0 \\
(x+12)(x-5) & =0 \\
x & =5 \\
2 x & =10
\end{aligned}
$$

PTS: 2
REF: 061024ge
STA: G.G. 48
TOP: Pythagorean Theorem

148 ANS: 3
$x^{2}+7^{2}=(x+1)^{2} \quad x+1=25$
$x^{2}+49=x^{2}+2 x+1$
$48=2 x$
$24=x$
PTS: 2 REF: 081127ge STA: G.G. 48 TOP: Pythagorean Theorem
149 ANS: 3
$8^{2}+24^{2} \neq 25^{2}$
PTS: 2 REF: 011111ge STA: G.G. 48 TOP: Pythagorean Theorem
150 ANS: 1
If $\angle A$ is at minimum $\left(50^{\circ}\right)$ and $\angle B$ is at minimum $\left(90^{\circ}\right), \angle C$ is at maximum of $40^{\circ}\left(180^{\circ}-\left(50^{\circ}+90^{\circ}\right)\right.$). If $\angle A$ is at maximum $\left(60^{\circ}\right)$ and $\angle B$ is at maximum $\left(100^{\circ}\right), \angle C$ is at minimum of $20^{\circ}\left(180^{\circ}-\left(60^{\circ}+100^{\circ}\right)\right.$).

PTS: 2 REF: 060901ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
151 ANS: 1
In an equilateral triangle, each interior angle is 60° and each exterior angle is $120^{\circ}\left(180^{\circ}-120^{\circ}\right)$. The sum of the three interior angles is 180° and the sum of the three exterior angles is 360°.

PTS: 2 REF: 060909ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
152 ANS: 1
$x+2 x+2+3 x+4=180$

$$
\begin{aligned}
6 x+6 & =180 \\
x & =29
\end{aligned}
$$

PTS: 2 REF: 011002ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
153 ANS: 1
$3 x+5+4 x-15+2 x+10=180 . \mathrm{m} \angle D=3(20)+5=65 . \mathrm{m} \angle E=4(20)-15=65$.

$$
\begin{aligned}
9 x & =180 \\
x & =20
\end{aligned}
$$

PTS: 2
154 ANS: 4
$\frac{5}{2+3+5} \times 180=90$
PTS: 2 REF: 081119ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
155 ANS: 3
$\frac{3}{8+3+4} \times 180=36$
PTS: 2 REF: 011210ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
156 ANS: 4
PTS: 2 REF: 081206ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles

157 ANS:
26. $x+3 x+5 x-54=180$

$$
\begin{aligned}
9 x & =234 \\
x & =26
\end{aligned}
$$

PTS: 2
REF: 080933ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles
158 ANS:
34. $2 x-12+x+90=180$

$$
\begin{aligned}
3 x+78 & =90 \\
3 x & =102 \\
x & =34
\end{aligned}
$$

PTS: 2
REF: 061031ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles
159 ANS: 4
$180-(40+40)=100$
PTS: 2
160 ANS: 3
REF: 080903ge
TOP: Isosceles Triangle Theorem
161 ANS: 3
PTS: 2
TOP: Isosceles Triangle Theorem
162 ANS: 4
PTS: 2
TOP: Isosceles Triangle Theorem
163 ANS: 1

PTS: 2
REF: 061211ge
STA: G.G. 31
TOP: Isosceles Triangle Theorem
164
ANS: 2
$3 x+x+20+x+20=180$

$$
5 x=40
$$

$$
x=28
$$

PTS: 2
REF: 081222ge
STA: G.G. 31
TOP: Isosceles Triangle Theorem

165 ANS:
30.

PTS: 2
REF: 011129ge
STA: G.G. 31
TOP: Isosceles Triangle Theorem
166 ANS:
67. $\frac{180-46}{2}=67$

PTS: 2
REF: 011029ge
STA: G.G. 31
TOP: Isosceles Triangle Theorem
167 ANS:

No, $\angle K G H$ is not congruent to $\angle G K H$.

PTS: 2
REF: 081135ge
STA: G.G. 31
TOP: Isosceles Triangle Theorem
168 ANS: 4
(4) is not true if $\angle P Q R$ is obtuse.

PTS: 2 REF: 060924ge STA: G.G. 32 TOP: Exterior Angle Theorem
169 ANS: 1

PTS: 2
REF: 011021ge
STA: G.G. 32
TOP: Exterior Angle Theorem

170 ANS: 3

$$
\begin{aligned}
x+2 x+15 & =5 x+15 \quad 2(5)+15=25 \\
3 x+15 & =5 x+5 \\
10 & =2 x \\
5 & =x
\end{aligned}
$$

PTS: 2 REF: 011127ge
171 ANS: 2
PTS: 2
STA: G.G. 32
REF: 061107ge
REF: 081111ge
PTS: 2
TOP: Exterior Angle Theorem
173 ANS: 4
$x^{2}-6 x+2 x-3=9 x+27$
$x^{2}-4 x-3=9 x+27$

$$
x^{2}-13 x-30=0
$$

$$
(x-15)(x+2)=0
$$

$$
x=15,-2
$$

PTS: 2
REF: 061225ge
STA: G.G. 32
TOP: Exterior Angle Theorem
174 ANS: 2
$7+18>6+12$
PTS: 2
REF: fall0819ge
STA: G.G. 33
TOP: Triangle Inequality Theorem
175 ANS:
110. $6 x+20=x+40+4 x-5$
$6 x+20=5 x+35$
$x=15$
$6((15)+20=110$
PTS: 2
REF: 081031ge
PTS: 2
TOP: Exterior Angle Theorem
177 ANS: 2
$6+17>22$
PTS: 2
REF: 080916ge
STA: G.G. 33
TOP: Triangle Inequality Theorem
178 ANS: 2
$5-3=2,5+3=8$
PTS: 2
REF: 011228ge
STA: G.G. 33
TOP: Triangle Inequality Theorem
179 ANS: 2
Longest side of a triangle is opposite the largest angle. Shortest side is opposite the smallest angle.
PTS: 2
REF: 060911ge
STA: G.G. 34
TOP: Angle Side Relationship

ANS: 1
PTS: 2
REF: 061010ge
STA: G.G. 34
TOP: Angle Side Relationship
181 ANS: 4
Longest side of a triangle is opposite the largest angle. Shortest side is opposite the smallest angle.
PTS: 2
REF: 081011ge
STA: G.G. 34
TOP: Angle Side Relationship
182 ANS: 4
$\mathrm{m} \angle A=80$
$\begin{array}{lllllll} & \text { PTS: } 2 & \text { REF: 011115ge } & \text { STA: G.G. } 34 & \text { TOP: Angle Side Relationship } \\ 183 & \text { ANS: } 4 & \text { PTS: } 2 & \text { REF: } 011222 \text { ge } & \text { STA: } & \text { G.G. } 34\end{array}$
TOP: Angle Side Relationship
184 ANS: 1

PTS: 2
REF: 081219ge STA: G.G. 34
TOP: Angle Side Relationship
185 ANS:
$\overline{A C} . \mathrm{m} \angle B C A=63$ and $\mathrm{m} \angle A B C=80 . \overline{A C}$ is the longest side as it is opposite the largest angle.
PTS: 2
REF: 080934ge STA: G.G. 34
TOP: Angle Side Relationship
186
ANS: 2
$\frac{3}{7}=\frac{6}{x}$
$3 x=42$
$x=14$
PTS: 2
187 ANS: 3
$\frac{5}{7}=\frac{10}{x}$
$5 x=70$
$x=14$
PTS: 2 REF: 081103ge STA: G.G. 46 TOP: Side Splitter Theorem

188 ANS: 3

PTS: 2 REF: 061216ge STA: G.G. 46 TOP: Side Splitter Theorem
189 ANS: 4
$\triangle A B C \sim \triangle D B E . \frac{\overline{A B}}{\overline{D B}}=\frac{\overline{A C}}{\overline{D E}}$

$$
\begin{aligned}
\frac{9}{2} & =\frac{x}{3} \\
x & =13.5
\end{aligned}
$$

PTS: 2
REF: 060927ge
STA: G.G. 46
TOP: Side Splitter Theorem
190 ANS:
5. $\frac{3}{x}=\frac{6+3}{15}$

$$
\begin{aligned}
9 x & =45 \\
x & =5
\end{aligned}
$$

PTS: 2 REF: 011033ge STA: G.G. 46 TOP: Side Splitter Theorem
191 ANS:
32. $\frac{16}{20}=\frac{x-3}{x+5} \cdot \overline{A C}=x-3=35-3=32$

$$
16 x+80=20 x-60
$$

$$
140=4 x
$$

$$
35=x
$$

PTS: 4
REF: 011137ge
STA: G.G. 46
TOP: Side Splitter Theorem
192
ANS:
16.7. $\frac{x}{25}=\frac{12}{18}$

$$
\begin{aligned}
18 x & =300 \\
x & \approx 16.7
\end{aligned}
$$

PTS: 2
REF: 061133ge
STA: G.G. 46
TOP: Side Splitter Theorem

193 ANS: 3

PTS: 2 REF: 080920ge STA: G.G. 42 TOP: Midsegments
194 ANS: 2
$\frac{4 x+10}{2}=2 x+5$
PTS: 2
REF: 011103ge STA: G.G. 42 TOP: Midsegments
195 ANS: 4

PTS: 2
196 ANS: 3
REF: 061211ge
STA: G.G. 42
PTS: 2
REF: 081227ge
TOP: Midsegments
TOP: Midsegments
197
ANS:

PTS: 4
REF: fall0835ge STA: G.G. 42 TOP: Midsegments

198
ANS:
20. The sides of the triangle formed by connecting the midpoints are half the sides of the original triangle.
$5+7+8=20$.

PTS: 2
REF: 060929ge
STA: G.G. 42
TOP: Midsegments
ANS:
37. Since $\overline{D E}$ is a midsegment, $A C=14.10+13+14=37$

PTS: 2 REF: 061030ge STA: G.G. 42 TOP: Midsegments
ANS: 1

PTS: 2
REF: 081003ge
STA: G.G. 42
TOP: Midsegments
$M\left(\frac{-7+5}{2}, \frac{2+4}{2}\right)=M(-1,3) . N\left(\frac{3+5}{2}, \frac{-4+4}{2}\right)=N(4,0) . \overline{M N}$ is a midsegment.

PTS: 4
REF: 011237ge
STA: G.G. 42
PTS: 2
REF: fall0825ge
TOP: Midsegments
ANS: 3
STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
ANS: 3
PTS: 2
REF: 011202ge
STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
PTS: 2
REF: 081224ge
STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
ANS: 1
PTS: 2
REF: 061214ge
STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter

206
ANS: 4
PTS: 2
REF: 080925ge
STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
207 ANS: 4
$\overline{B G}$ is also an angle bisector since it intersects the concurrence of $\overline{C D}$ and $\overline{A E}$
PTS: 2
REF: 061025ge STA: G.G. 21
KEY: Centroid, Orthocenter, Incenter and Circumcenter
208
TOP: Centroid, Orthocenter, Incenter and Circumcenter
209 ANS: 3 PTS: 2 REF: 011110
KEY: Centroid, Orthocenter, Incenter and Circumcenter
210 ANS:
$(7,5) m_{\overline{A B}}=\left(\frac{3+7}{2}, \frac{3+9}{2}\right)=(5,6) m_{B C}=\left(\frac{7+11}{2}, \frac{9+3}{2}\right)=(9,6)$

PTS: 2
REF: 081134ge STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
211 ANS: 2
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.
PTS: 2 REF: 060914ge STA: G.G. 43 TOP: Centroid
212 ANS: 1
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.

$$
\begin{aligned}
\overline{G C} & =2 \overline{F G} \\
\overline{G C}+\overline{F G} & =24 \\
2 \overline{F G}+\overline{F G} & =24 \\
3 \overline{F G} & =24 \\
\overline{F G} & =8
\end{aligned}
$$

PTS: 2
213 ANS: 1
TOP: Centroid

REF: 081018ge
PTS: 2
STA: G.G. 43
REF: 061104ge

TOP: Centroid
STA: G.G. 43

214 ANS: 1

$$
\begin{aligned}
7 x+4 & =2(2 x+5) . P M=2(2)+5=9 \\
7 x+4 & =4 x+10 \\
3 x & =6 \\
x & =2
\end{aligned}
$$

PTS: 2 REF: 011226ge STA: G.G. 43 TOP: Centroid
215 ANS: 4
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.
PTS: 2
REF: 081220ge STA: G.G. 43 TOP: Centroid
216 ANS:
6. The centroid divides each median into segments whose lengths are in the ratio $2: 1 . \overline{T D}=6$ and $\overline{D B}=3$

PTS: 2 REF: 011034ge STA: G.G. 43 TOP: Centroid
217 ANS: 1
Since $\overline{A C} \cong \overline{B C}, \mathrm{~m} \angle A=\mathrm{m} \angle B$ under the Isosceles Triangle Theorem.

218 ANS: 2
REF: fall0809ge
PTS: 2
TOP: Triangles in the Coordinate Plane
219 ANS: 2
PTS: 2
TOP: Triangles in the Coordinate Plane
220 ANS:
$15+5 \sqrt{5}$.

PTS: 4
REF: 060936ge
STA: G.G. 69
TOP: Triangles in the Coordinate Plane
221 ANS: 4
sum of interior $\angle \mathrm{s}=$ sum of exterior $\angle \mathrm{s}$

$$
\begin{aligned}
(n-2) 180 & =n\left(180-\frac{(n-2) 180}{n}\right) \\
180 n-360 & =180 n-180 n+360 \\
180 n & =720 \\
n & =4
\end{aligned}
$$

PTS: 2
REF: 081016ge
STA: G.G. 36
TOP: Interior and Exterior Angles of Polygons

222 ANS: 3

$$
\begin{aligned}
180(n-2) & =n\left(180-\frac{180(n-2)}{n}\right) \\
180 n-360 & =180 n-180 n+360 \\
180 n & =720 \\
n & =4
\end{aligned}
$$

PTS: 2 REF: 081223ge STA: G.G. 36 TOP: Interior and Exterior Angles of Polygons ANS: 3 PTS: 2 REF: 061218ge STA: G.G. 36
TOP: Interior and Exterior Angles of Polygons
224 ANS: 3

. The sum of the interior angles of a pentagon is $(5-2) 180=540$.
PTS: 2 REF: 011023ge STA: G.G. 36 TOP: Interior and Exterior Angles of Polygons
225 ANS: 3
$(n-2) 180=(5-2) 180=540$
PTS: 2 REF: 011223ge STA: G.G. 36 TOP: Interior and Exterior Angles of Polygons
226
ANS: 4
$(n-2) 180=(8-2) 180=1080 . \frac{1080}{8}=135$.
PTS: 2 REF: fall0827ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons
227 ANS: 2
$(n-2) 180=(6-2) 180=720 . \frac{720}{6}=120$.
PTS: 2 REF: 081125ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons 228 ANS: 1
$\angle A=\frac{(n-2) 180}{n}=\frac{(5-2) 180}{5}=108 \angle A E B=\frac{180-108}{2}=36$
PTS: 2 REF: 081022ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons 229 ANS:
$(5-2) 180=540 . \frac{540}{5}=108$ interior. $180-108=72$ exterior
PTS: 2 REF: 011131ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons

230 ANS: 1
$\angle D C B$ and $\angle A D C$ are supplementary adjacent angles of a parallelogram. $180-120=60 . \angle 2=60-45=15$.
PTS: 2 REF: 080907ge STA: G.G. 38 TOP: Parallelograms
231 ANS: 1
Opposite sides of a parallelogram are congruent. $4 x-3=x+3 . S V=(2)+3=5$.

$$
\begin{aligned}
3 x & =6 \\
x & =2
\end{aligned}
$$

PTS: 2
232 ANS: 3
TOP: Parallelograms
233 ANS: 3
TOP: Parallelograms
234 ANS:
11. $x^{2}+6 x=x+14.6(2)-1=11$

$$
\begin{aligned}
x^{2}+5 x-14 & =0 \\
(x+7)(x-2) & =0 \\
x & =2
\end{aligned}
$$

PTS: 2
235 ANS: 1
REF: 081235ge
STA: G.G. 38
REF: 011112ge
TOP: Parallelograms
TOP: Special Parallelograms
236 ANS: 3
$\sqrt{5^{2}+12^{2}}=13$
PTS: 2
237 ANS: 1
REF: 061116ge
STA: G.G. 39
REF: 061125ge
REF: 081121ge STA: G.G. 39
238 ANS: $1 \quad$ PTS: 2
TOP: Special Parallelograms
239 ANS: 3
PTS: 2
REF: 081128ge STA: G.G. 39
TOP: Special Parallelograms
240 ANS: $3 \quad$ PTS: 2
TOP: Special Parallelograms
241 ANS: 2
The diagonals of a rhombus are perpendicular. $180-(90+12)=78$
PTS: 2 REF: 011204ge STA: G.G. 39 TOP: Special Parallelograms

242 ANS:

$$
\begin{aligned}
& 8 x-5=3 x+30.4 z-8=3 z .9 y+8+5 y-2=90 . \\
& 5 x=35 \\
& z=8 \\
& x=7 \\
& 14 y+6=90 \\
& 14 y=84 \\
& y=6
\end{aligned}
$$

PTS: 6 REF: 061038ge STA: G.G. 39 TOP: Special Parallelograms ANS: 4 PTS: 2

REF: 061008ge
STA: G.G. 40
244 ANS: 3
The diagonals of an isosceles trapezoid are congruent. $5 x+3=11 x-5$.

$$
\begin{aligned}
6 x & =18 \\
x & =3
\end{aligned}
$$

PTS: 2 REF: fall0801ge STA: G.G. 40 TOP: Trapezoids
245 ANS: 3

PTS: 2
REF: 061016ge
STA: G.G. 40
TOP: Trapezoids

Geometry Regents Exam Questions by Performance Indicator: Topic Answer Section

246 ANS: 2
The length of the midsegment of a trapezoid is the average of the lengths of its bases. $\frac{x+30}{2}=44$.

$$
\begin{aligned}
x+30 & =88 \\
x & =58
\end{aligned}
$$

PTS: 2 REF: 011001ge STA: G.G. 40 TOP: Trapezoids
247 ANS: 4
$\sqrt{25^{2}-\left(\frac{26-12}{2}\right)^{2}}=24$
PTS: 2
REF: 011219ge
STA: G.G. 40
TOP: Trapezoids
248 ANS: 1
$\frac{40-24}{2}=8 . \quad \sqrt{10^{2}-8^{2}}=6$.

PTS: 2
REF: 061204ge
STA: G.G. 40
TOP: Trapezoids
249 ANS: 1
The length of the midsegment of a trapezoid is the average of the lengths of its bases. $\frac{x+3+5 x-9}{2}=2 x+2$.

$$
\begin{aligned}
6 x-6 & =4 x+4 \\
2 x & =10 \\
x & =5
\end{aligned}
$$

PTS: 2
REF: 081221ge
STA: G.G. 40
TOP: Trapezoids
250 ANS:
3. The non-parallel sides of an isosceles trapezoid are congruent. $2 x+5=3 x+2$

$$
x=3
$$

PTS: 2
REF: 080929ge
STA: G.G. 40
TOP: Trapezoids
251 ANS:
70. $3 x+5+3 x+5+2 x+2 x=180$

$$
\begin{aligned}
10 x+10 & =360 \\
10 x & =350 \\
x & =35 \\
2 x & =70
\end{aligned}
$$

PTS: 2
REF: 081029ge
STA: G.G. 40
TOP: Trapezoids

252
ANS: 1
PTS: 2
REF: 080918ge
STA: G.G. 41
TOP: Special Quadrilaterals
253
ANS:

$\overline{F E} \cong \overline{F E}$ (Reflexive Property); $\overline{A E}-\overline{F E} \cong \overline{F C}-\overline{E F}$ (Line Segment Subtraction Theorem); $\overline{A F} \cong \overline{C E}$ (Substitution); $\angle B F A \cong \angle D E C$ (All right angles are congruent); $\triangle B F A \cong \triangle D E C$ (AAS); $\overline{A B} \cong \overline{C D}$ and $\overline{B F} \cong \overline{D E}$ (CPCTC); $\angle B F C \cong \angle D E A$ (All right angles are congruent); $\triangle B F C \cong \triangle D E A$ (SAS); $\overline{A D} \cong \overline{C B}$ (СРСТС); $A B C D$ is a parallelogram (opposite sides of quadrilateral $A B C D$ are congruent)

PTS: 6 REF: 080938ge STA: G.G. 41 TOP: Special Quadrilaterals
254 ANS:
$\overline{J K} \cong \overline{L M}$ because opposite sides of a parallelogram are congruent. $\overline{L M} \cong \overline{L N}$ because of the Isosceles Triangle Theorem. $\overline{L M} \cong \overline{J M}$ because of the transitive property. JKLM is a rhombus because all sides are congruent.

PTS: 4 REF: 011036ge STA: G.G. 41 TOP: Special Quadrilaterals
255 ANS: 2
Adjacent sides of a rectangle are perpendicular and have opposite and reciprocal slopes.
PTS: 2 REF: 061028ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane

ANS: 1

The diagonals of a parallelogram intersect at their midpoints. $M_{A C}^{-}\left(\frac{1+3}{2}, \frac{5+(-1)}{2}\right)=(2,2)$
PTS: 2 REF: 061209ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane
ANS:

$\overline{A B} \| \overline{C D}$ and $\overline{A D} \| \overline{C B}$ because their slopes are equal. $A B C D$ is a parallelogram because opposite side are parallel. $\overline{A B} \neq \overline{B C} . A B C D$ is not a rhombus because all sides are not equal. $\overline{A B} \sim \perp \overline{B C}$ because their slopes are not opposite reciprocals. $A B C D$ is not a rectangle because $\angle A B C$ is not a right angle.

PTS: 4
REF: 081038ge
STA: G.G. 69
TOP: Quadrilaterals in the Coordinate Plane

258
ANS:

The length of each side of quadrilateral is 5 . Since each side is congruent, quadrilateral $M A T H$ is a rhombus. The slope of $\overline{M H}$ is 0 and the slope of $\overline{H T}$ is $-\frac{4}{3}$. Since the slopes are not negative reciprocals, the sides are not perpendicular and do not form rights angles. Since adjacent sides are not perpendicular, quadrilateral MATH is not a square.

PTS: 6 REF: 011138ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane
259 ANS:
$m_{\overline{A B}}=\left(\frac{-6+2}{2}, \frac{-2+8}{2}\right)=D(2,3) m_{B C}=\left(\frac{2+6}{2}, \frac{8+-2}{2}\right)=E(4,3) F(0,-2)$. To prove that $A D E F$ is a parallelogram, show that both pairs of opposite sides of the parallelogram are parallel by showing the opposite sides have the same slope: $\mathrm{m}_{\overline{A D}}=\frac{3--2}{-2--6}=\frac{5}{4} \quad \overline{A F} \| \overline{D E}$ because all horizontal lines have the same slope. $A D E F$

$$
\mathrm{m}_{F E}=\frac{3--2}{4-0}=\frac{5}{4}
$$

is not a rhombus because not all sides are congruent. $A D=\sqrt{5^{2}+4^{2}}=\sqrt{41} \quad A F=6$
PTS: 6 REF: 081138ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane
260 ANS: 3
Because $\overline{O C}$ is a radius, its length is 5. Since $C E=2 O E=3 . \Delta E D O$ is a 3-4-5 triangle. If $E D=4, B D=8$.
PTS: 2
REF: fall0811ge STA: G.G. 49 TOP: Chords
ANS: 1
The closer a chord is to the center of a circle, the longer the chord.
PTS: 2 REF: 011005ge STA: G.G. 49 TOP: Chords

262
ANS: 3

PTS: 2
REF: 011112ge
STA: G.G. 49
TOP: Chords
263 ANS: 4
$\sqrt{6^{2}-2^{2}}=\sqrt{32}=\sqrt{16} \sqrt{2}=4 \sqrt{2}$
PTS: 2 REF: 081124ge STA: G.G. 49 TOP: Chords
264 ANS: 2

PTS: 2 REF: 061221ge STA: G.G. 49 TOP: Chords 265 ANS:
$E O=6 . C E=\sqrt{10^{2}-6^{2}}=8$
PTS: 2 REF: 011234ge STA: G.G. 49 TOP: Chords 266 ANS: 2

Parallel chords intercept congruent arcs. $\mathrm{m} \overparen{A D}=\mathrm{m} \overparen{B C}=60 . \mathrm{m} \angle C D B=\frac{1}{2} \mathrm{~m} \overparen{B C}=30$.
PTS: 2
REF: 060906ge
STA: G.G. 52
TOP: Chords
ANS: 2
Parallel chords intercept congruent arcs. $\mathrm{m} \overparen{A C}=\mathrm{m} \overparen{B D}=30.180-30-30=120$.
PTS: 2
REF: 080904ge
STA: G.G. 52
TOP: Chords
268
ANS: 1
Parallel lines intercept congruent arcs.
PTS: 2 REF: 061001ge STA: G.G. 52 TOP: Chords

269 ANS: 1
Parallel lines intercept congruent arcs.
PTS: 2 REF: 061105ge STA: G.G. 52 TOP: Chords
270 ANS: 4
Parallel lines intercept congruent arcs.
PTS: 2 REF: 081201ge STA: G.G. 52 TOP: Chords
271 ANS: 3
$\frac{180-70}{2}=55$
PTS: 2 REF: 061205ge STA: G.G. 52 TOP: Chords
272 ANS:
$\frac{180-80}{2}=50$
PTS: 2 REF: 081129ge STA: G.G. 52 TOP: Chords 273 ANS:
$2 x-20=x+20 . \mathrm{m} \overparen{A B}=x+20=40+20=60$
$x=40$
PTS: 2 REF: 011229ge STA: G.G. 52 TOP: Chords
274 ANS: 4
TOP: Tangents
PTS: 2
REF: fall0824ge
STA: G.G. 50
KEY: common tangency
PTS: 2 REF
KEY: common tangency
TOP: Tangents
PTS: 2 REF: 061013ge STA: G.G. 50
KEY: point of tangency
PTS: 2 REF: 081214ge STA: G.G. 50
KEY: point of tangency
PTS: 2 REF: 081012ge STA: G.G. 50
278 ANS:
TOP: Tangents
KEY: two tangents
279
ANS: 4
$\sqrt{25^{2}-7^{2}}=24$
PTS: 2 REF: 081105ge STA: G.G. 50 TOP: Tangents
KEY: point of tangency
280
ANS:
18. If the ratio of $T A$ to $A C$ is $1: 3$, the ratio of $T E$ to $E S$ is also $1: 3 . x+3 x=24.3(6)=18$.

$$
x=6
$$

PTS: 4 REF: 060935ge STA: G.G. 50 TOP: Tangents
KEY: common tangency

281 ANS: 2
$\frac{87+35}{2}=\frac{122}{2}=61$
PTS: 2
REF: 011015ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inside circle
282 ANS: 3
$\frac{36+20}{2}=28$
PTS: 2
REF: 061019ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inside circle
283 ANS: 2

PTS: 2
REF: 061026GE
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inscribed
284 ANS: 2
$\frac{140-\overline{R S}}{2}=40$

$$
\begin{aligned}
140-\overline{R S} & =80 \\
\overline{R S} & =60
\end{aligned}
$$

PTS: 2
REF: 081025ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: outside circle
285
TOP: Arcs Determined by Angles
REF: 011124ge
KEY: inscribed
286 ANS: 2

$$
\frac{50+x}{2}=34
$$

$$
50+x=68
$$

$$
x=18
$$

PTS: 2
REF: 011214ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inside circle

287
ANS:
30. $3 x+4 x+5 x=360 . \mathrm{m} \overparen{\mathrm{LN}}: \mathrm{m} \overparen{\mathrm{NK}}: \mathrm{m} \overparen{\mathrm{KL}}=90: 120: 150 . \frac{150-90}{2}=30$

$$
x=20
$$

PTS: 4 REF: 061136ge STA: G.G. 51 TOP: Arcs Determined by Angles
KEY: outside circle
ANS.
$\angle D, \angle G$ and 24° or $\angle E, \angle F$ and 84°. $\mathrm{m} \overparen{F E}=\frac{2}{15} \times 360=48$. Since the chords forming $\angle D$ and $\angle G$ are intercepted by $\overparen{F E}$, their measure is $24^{\circ} . \mathrm{m} \overparen{G D}=\frac{7}{15} \times 360=168$. Since the chords forming $\angle E$ and $\angle F$ are intercepted by $\overparen{G D}$, their measure is 84°.

PTS: 4 REF: fall0836ge STA: G.G. 51 TOP: Arcs Determined by Angles
KEY: inscribed
ANS:
52, 40, 80. $360-(56+112)=192 . \frac{192-112}{2}=40 . \frac{112+48}{2}=80$

$$
\begin{aligned}
& \frac{1}{4} \times 192=48 \\
& \frac{56+48}{2}=52
\end{aligned}
$$

PTS: 6 REF: 081238ge STA: G.G. 51 TOP: Arcs Determined by Angles
KEY: mixed
290 ANS: 2

$$
x^{2}=3(x+18)
$$

$$
x^{2}-3 x-54=0
$$

$$
(x-9)(x+6)=0
$$

$$
x=9
$$

PTS: 2 REF: fall0817ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: tangent and secant
291
ANS: 3

$$
\begin{aligned}
4(x+4) & =8^{2} \\
4 x+16 & =64 \\
x & =12
\end{aligned}
$$

PTS: 2 REF: 060916ge STA: G.G. 53 TOP: Segments Intercepted by Circle KEY: tangent and secant

292 ANS: 2

$$
\begin{aligned}
4(4 x-3) & =3(2 x+8) \\
16 x-12 & =6 x+24 \\
10 x & =36 \\
x & =3.6
\end{aligned}
$$

PTS: 2 REF: 080923ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: two chords
293 ANS: 4
$x^{2}=(4+5) \times 4$
$x^{2}=36$
$x=6$
PTS: 2
REF: 011008ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: tangent and secant
294 ANS: 2
$(d+4) 4=12(6)$
$4 d+16=72$
$d=14$
$r=7$
PTS: 2 REF: 061023ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: two secants
295 ANS: 1

PTS: 2
REF: 081017ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: two chords

296 ANS: 3

PTS: 2
REF: 011101ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: two tangents
297 ANS: 4
$4(x+4)=8^{2}$
$4 x+16=64$
$4 x=48$
$x=12$
PTS: 2
REF: 061117ge
STA: G.G. 53
REF: 011208ge
STA: G.G. 53
KEY: two tangents
299
KEY: tangent and secant
298 ANS: 4
PTS: 2
TOP: Segments Intercepted by Circle ANS:
$x^{2}=9 \cdot 8$
$x=\sqrt{72}$
$x=\sqrt{36} \sqrt{2}$
$x=6 \sqrt{2}$
PTS: 2 REF: 011132ge STA: G.G. 53 TOP: Segments Intercepted by Circle KEY: two chords

ANS:

$$
\begin{array}{rlrl}
x(x+2) & =12 \cdot 2 . \overline{R T}=6+4=10 . y \cdot y & =18 \cdot 8 \\
x^{2}+2 x-24 & =0 & y^{2} & =144 \\
(x+6)(x-4) & =0 & y & =12 \\
x & =4 &
\end{array}
$$

PTS: 4 REF: 061237ge STA: G.G. 53 TOP: Segments Intercepted by Circle KEY: tangent and secant
ANS: 1
$M_{x}=\frac{-2+6}{2}=2 . M_{y}=\frac{3+3}{2}=3$. The center is (2,3). $d=\sqrt{(-2-6)^{2}+(3-3)^{2}}=\sqrt{64+0}=8$. If the diameter is 8 , the radius is 4 and $r^{2}=16$.

PTS: 2
ANS: 2
TOP: Equations of Circles
303 ANS: 3
TOP: Equations of Circles
304
ANS: 3 PTS: 2
TOP: Equations of Circles
305 ANS: 4 PTS: 2
TOP: Equations of Circles
306 ANS: 4
PTS: 2
TOP: Equations of Circles
PTS: 2

PTS: 2

ANS: 3 PTS: 2 TOP: Equations of Circles ANS: 3 PTS: 2

REF: fall0820ge

TOP: Equations of Circles

STA: G.G. 71
REF: 060910ge
REF: 011010ge STA: G.G. 71
REF: 011116ge
REF: 081110ge
REF: 011212ge STA: G.G. 71
REF: 061210ge STA: G.G. 71
REF: 081209ge STA: G.G. 71

STA: G.G. 71
STA: G.G. 71
TOP: Equations of Circles
STA: G.G. 71

309
ANS:
Midpoint: $\left(\frac{-4+4}{2}, \frac{2+(-4)}{2}\right)=(0,-1)$. Distance: $d=\sqrt{(-4-4)^{2}+(2-(-4))^{2}}=\sqrt{100}=10$

$$
r=5
$$

$$
r^{2}=25
$$

$x^{2}+(y+1)^{2}=25$
PTS: 4 REF: 061037ge STA: G.G. 71 TOP: Equations of Circles
310 ANS: 2
PTS: 2
TOP: Equations of Circles
311 ANS: 4
The radius is 4. $r^{2}=16$.

$(x+1)^{2}+(y-2)^{2}=36$
PTS: 2 REF: 081034ge STA: G.G. 72 TOP: Equations of Circles
316 ANS:
$(x-5)^{2}+(y+4)^{2}=36$
PTS: 2 REF: 081132ge STA: G.G. 72 TOP: Equations of Circles
317 ANS: 3 PTS: 2
TOP: Equations of Circles
318 ANS: 4 PTS: 2
TOP: Equations of Circles
319 ANS: $1 \quad$ PTS:
TOP: Equations of Circles
320 ANS: $1 \quad$ PTS: 2
TOP: Equations of Circles
321 ANS: 4 PTS: 2
TOP: Equations of Circles
322 ANS: $2 \quad$ PTS: 2
TOP: Equations of Circles
323
324

PTS: 2
TOP: Equations of Circles ANS: 1 PTS: 2
TOP: Graphing Circles

REF: fall0814ge STA: G.G. 73

REF: 060922ge STA: G.G. 73
REF: 080911ge STA: G.G. 73
REF: 081009ge STA: G.G. 73
REF: 061114ge STA: G.G. 73
REF: 011203ge STA: G.G. 73
REF: 061223ge STA: G.G. 73
REF: 060920ge STA: G.G. 74

STA: G.G. 72

REF: 080921ge
促

PTS: 2
REF: 011020ge STA: G.G. 74
TOP: Graphing Circles
326 ANS: $2 \quad$ PTS: 2
REF: 011125ge STA: G.G. 74
TOP: Graphing Circles
327 TOP: Graphing Circles
328 ANS:
4. $l_{1} w_{1} h_{1}=l_{2} w_{2} h_{2}$ $10 \times 2 \times h=5 \times w_{2} \times h$
$20=5 w_{2}$
$w_{2}=4$
PTS: 2 REF: 011030ge STA: G.G. 11 TOP: Volume
329 ANS: 1
$3 x^{2}+18 x+24$
$3\left(x^{2}+6 x+8\right)$
$3(x+4)(x+2)$

PTS: 2
330 ANS: 3
TOP: Volume
331 ANS: 2
TOP: Volume
332 ANS:
9.1. $(11)(8) h=800$

$$
h \approx 9.1
$$

PTS: 2 REF: 061131ge STA: G.G. 12 TOP: Volume
333 ANS:
2016. $V=\frac{1}{3} B h=\frac{1}{3} s^{2} h=\frac{1}{3} 12^{2} \cdot 42=2016$

PTS: 2
REF: 080930ge
STA: G.G. 13
TOP: Volume
334 ANS:
18. $V=\frac{1}{3} B h=\frac{1}{3} l w h$

$$
\begin{aligned}
288 & =\frac{1}{3} \cdot 8 \cdot 6 \cdot h \\
288 & =16 h \\
18 & =h
\end{aligned}
$$

PTS: 2
REF: 061034ge
STA: G.G. 13
TOP: Volume

335 ANS: 1

$$
\begin{aligned}
V & =\pi r^{2} h \\
1000 & =\pi r^{2} \cdot 8 \\
r^{2} & =\frac{1000}{8 \pi} \\
r & \approx 6.3
\end{aligned}
$$

PTS: 2 REF: 080926ge STA: G.G. 14 TOP: Volume
336 ANS: 3
$V=\pi r^{2} h=\pi \cdot 6^{2} \cdot 27=972 \pi$
PTS: 2 REF: 011027ge STA: G.G. 14 TOP: Volume
337 ANS: 4
$L=2 \pi r h=2 \pi \cdot 5 \cdot 11 \approx 345.6$
PTS: 2 REF: 061006ge STA: G.G. 14 TOP: Volume
338 ANS: 2
$V=\pi r^{2} h=\pi \cdot 6^{2} \cdot 15=540 \pi$
PTS: 2 REF: 011117ge STA: G.G. 14 TOP: Volume 339 ANS:

$$
\begin{aligned}
V & =\pi r^{2} h \quad . L=2 \pi r h=2 \pi \cdot 5 \sqrt{2} \cdot 12 \approx 533.1 \\
600 \pi & =\pi r^{2} \cdot 12 \\
50 & =r^{2} \\
\sqrt{25} \sqrt{2} & =r \\
5 \sqrt{2} & =r
\end{aligned}
$$

PTS: 4
REF: 011236ge
STA: G.G. 14
TOP: Volume
340 ANS:
$L=2 \pi r h=2 \pi \cdot 12 \cdot 22 \approx 1659 . \frac{1659}{600} \approx 2.8 .3$ cans are needed.
PTS: 2 REF: 061233ge STA: G.G. 14 TOP: Lateral Area
341 ANS:
$V=\pi r^{2} h=\pi(5)^{2} \cdot 7=175 \pi$
PTS: 2 REF: 081231ge STA: G.G. 14 TOP: Volume

342 ANS:
22.4. $\quad V=\pi r^{2} h$

$$
\begin{aligned}
12566.4 & =\pi r^{2} \cdot 8 \\
r^{2} & =\frac{12566.4}{8 \pi} \\
r & \approx 22.4
\end{aligned}
$$

PTS: 2
REF: fall0833ge
STA: G.G. 14
TOP: Volume
343 ANS: 1
$V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi \cdot 4^{2} \cdot 12 \approx 201$
PTS: 2
REF: 060921ge
STA: G.G. 15
TOP: Volume
344 ANS:
$375 \pi L=\pi r l=\pi(15)(25)=375 \pi$
PTS: 2
REF: 081030ge
STA: G.G. 15
TOP: Lateral Area
345 ANS: 4

$$
\begin{aligned}
\mathrm{SA} & =4 \pi r^{2} \quad V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot 6^{3}=288 \pi \\
144 \pi & =4 \pi r^{2} \\
36 & =r^{2} \\
6 & =r
\end{aligned}
$$

PTS: 2
REF: 081020ge
STA: G.G. 16
TOP: Surface Area
346 ANS: 2
$V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot 3^{3}=36 \pi$
PTS: 2
REF: 061112ge
STA: G.G. 16
TOP: Volume and Surface Area
ANS: 2
$V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot\left(\frac{15}{2}\right)^{3} \approx 1767.1$
PTS: 2
REF: 061207ge
STA: G.G. 16
TOP: Volume and Surface Area
ANS:
$V=\frac{4}{3} \pi \cdot 9^{3}=972 \pi$
PTS: 2
REF: 081131ge
STA: G.G. 16
TOP: Surface Area
349 ANS:
452. $S A=4 \pi r^{2}=4 \pi \cdot 6^{2}=144 \pi \approx 452$

PTS: 2
REF: 061029ge
STA: G.G. 16
TOP: Surface Area

350 ANS: 2
$V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot\left(\frac{6}{2}\right)^{3} \approx 36 \pi$
PTS: 2
REF: 081215ge STA: G.G. 16
TOP: Volume and Surface Area
ANS: 4
Corresponding angles of similar triangles are congruent.
PTS: 2 REF: fall0826ge STA: G.G. 45 TOP: Similarity
KEY: perimeter and area
352 ANS: 2
Because the triangles are similar, $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle D}=1$
PTS: 2
REF: 011022ge
STA: G.G. 45
TOP: Similarity
KEY: perimeter and area
353 ANS: 4
TOP: Similarity
PTS: 2
REF: 081023ge
STA: G.G. 45
354 ANS: 3
KEY: perimeter and area
TOP: Similarity
355 ANS: 4
TOP: Similarity
PTS: 2 REF: 061224ge
KEY: basic
PTS: 2
KEY: basic
356 ANS:
20. $5 x+10=4 x+30$

$$
x=20
$$

PTS: 2
REF: 060934ge
STA: G.G. 45
TOP: Similarity
KEY: basic
357 ANS: 4
$180-(50+30)=100$
PTS: 2
REF: 081006ge
STA: G.G. 45
TOP: Similarity
358
KEY: basic
ANS: 3
$\frac{7 x}{4}=\frac{7}{x} .7(2)=14$
$7 x^{2}=28$
$x=2$
PTS: 2
REF: 061120ge
STA: G.G. 45
TOP: Similarity
KEY: basic

359 ANS:
$2 \quad \frac{x+2}{x}=\frac{x+6}{4}$

$$
\begin{aligned}
x^{2}+6 x & =4 x+8 \\
x^{2}+2 x-8 & =0 \\
(x+4)(x-2) & =0 \\
x & =2
\end{aligned}
$$

PTS: 4
REF: 081137ge
STA: G.G. 45
TOP: Similarity
KEY: basic
360 ANS: 1
$\overline{A B}=10$ since $\triangle A B C$ is a 6-8-10 triangle. $6^{2}=10 x$

$$
3.6=x
$$

PTS: 2
REF: 060915ge
STA: G.G. 47
TOP: Similarity
KEY: leg
361 ANS: 4
Let $\overline{A D}=x . \quad 36 x=12^{2}$

$$
x=4
$$

PTS: 2
REF: 080922ge
STA: G.G. 47
TOP: Similarity
KEY: leg
362 ANS: 4
$6^{2}=x(x+5)$
$36=x^{2}+5 x$
$0=x^{2}+5 x-36$
$0=(x+9)(x-4)$
$x=4$
PTS: 2
REF: 011123ge
STA: G.G. 47
TOP: Similarity
KEY: leg
ANS: 1
$x^{2}=7(16-7)$
$x^{2}=63$
$x=\sqrt{9} \sqrt{7}$
$x=3 \sqrt{7}$
PTS: 2
REF: 061128ge
STA: G.G. 47
TOP: Similarity
KEY: altitude

364 ANS: 4
$x \cdot 4 x=6^{2} . P Q=4 x+x=5 x=5(3)=15$
$4 x^{2}=36$

$$
x=3
$$

PTS: 2 REF: 011227ge STA: G.G. 47 TOP: Similarity
KEY: leg
365 ANS:
$2 \sqrt{3} . x^{2}=3 \cdot 4$

$$
x=\sqrt{12}=2 \sqrt{3}
$$

PTS: 2 REF: fall0829ge STA: G.G. 47 TOP: Similarity
KEY: altitude
366 ANS:
2.4. $5 a=4^{2} \quad 5 b=3^{2} \quad h^{2}=a b$

$$
\begin{array}{ll}
a=3.2 \quad b=1.8 & h^{2}=3.2 \cdot 1.8 \\
& h=\sqrt{5.76}=2.4
\end{array}
$$

PTS: 4 REF: 081037ge STA: G.G. 47 TOP: Similarity KEY: altitude
367 ANS:
$R^{\prime}(-3,-2), S^{\prime}(-4,4)$, and $T^{\prime}(2,2)$.
PTS: 2 REF: 011232ge STA: G.G. 54 TOP: Rotations
368 ANS:

$$
A^{\prime}(-2,1), B^{\prime}(-3,-4) \text {, and } C^{\prime}(5,-3)
$$

PTS: 2
ANS: 3
TOP: Reflections
370 ANS: 2
TOP: Reflections
371 ANS: 1 TOP: Reflections

REF: 081230ge
PTS: 2
KEY: basic PTS: 2
KEY: basic
PTS: 2 KEY: basic

STA: G.G. 54 TOP: Rotations
REF: 060905ge STA: G.G. 54
REF: 081108ge STA: G.G. 54
REF: 081113ge STA: G.G. 54

372 ANS:

PTS: 2
REF: 061032ge
STA: G.G. 54
TOP: Reflections KEY: grids
373 ANS:

PTS: 2
REF: 011130ge
STA: G.G. 54
TOP: Reflections
KEY: grids
374 ANS: 1
$(x, y) \rightarrow(x+3, y+1)$
PTS: 2 REF: fall0803ge STA: G.G. 54 TOP: Translations
375 ANS: 3
$-5+3=-2 \quad 2+-4=-2$
PTS: 2 REF: 011107ge STA: G.G. 54 TOP: Translations
ANS:

PTS: 2
REF: 061229ge STA: G.G. 54
TOP: Translations

377 ANS: 1
$A^{\prime}(2,4)$
PTS: 2 REF: 011023ge STA: G.G. 54 TOP: Compositions of Transformations KEY: basic
378 ANS: 3
$(3,-2) \rightarrow(2,3) \rightarrow(8,12)$
PTS: 2 REF: 011126ge STA: G.G. 54 TOP: Compositions of Transformations KEY: basic
379 ANS:

PTS: 4
KEY: grids
380 ANS: 1
After the translation, the coordinates are $A^{\prime}(-1,5)$ and $B^{\prime}(3,4)$. After the dilation, the coordinates are $A^{\prime \prime}(-2,10)$ and $B^{\prime \prime}(6,8)$.

PTS: 2 REF: fall0823ge STA: G.G. 58 TOP: Compositions of Transformations
381 ANS:

PTS: 4

$$
A^{\prime \prime}(8,2), B^{\prime \prime}(2,0), C^{\prime \prime}(6,-8)
$$

REF: 081036ge
STA: G.G. 58
TOP: Compositions of Transformations

ANS:

$$
G^{\prime \prime}(3,3), H^{\prime \prime}(7,7), S^{\prime \prime}(-1,9)
$$

PTS: 4
REF: 081136ge
STA: G.G. 58
TOP: Compositions of Transformations
383 ANS:

$$
A^{\prime}(5,-4), B^{\prime}(5,1), C^{\prime}(2,1), D^{\prime}(2,-6) ; A^{\prime \prime}(5,4), B^{\prime \prime}(5,-1), C^{\prime \prime}(2,-1), D^{\prime \prime}(2,6)
$$

PTS: 4
REF: 061236ge
STA: G.G. 58
TOP: Compositions of Transformations
KEY: grids
384 ANS:

PTS: 4
KEY: grids
385 ANS: 2
PTS: 2
TOP: Properties of Transformations
386 ANS: 1
PTS: 2
TOP: Properties of Transformations
387 ANS: 2
PTS: 2
TOP: Properties of Transformations
388 ANS: 1

PTS: 2 TOP: Properties of Transformations

REF: 081236ge

STA: G.G. 58
REF: 011003ge
REF: 061005ge
STA: G.G. 55
REF: 081015ge STA: G.G. 55
REF: 011102ge STA: G.G. 55
REF: 081104ge STA: G.G. 55
TOP: Properties of Transformations

ANS: 2 PTS: 2
REF: 011211ge
STA: G.G. 55
TOP: Properties of Transformations
391 ANS: 2
PTS: 2
TOP: Properties of Transformations
392 ANS:

PTS: 2
REF: fall0830ge
STA: G.G. 55
TOP: Properties of Transformations
ANS:

PTS: 4
REF: 080937ge
STA: G.G. 55
TOP: Properties of Transformations
394 ANS:
$A^{\prime}(7,-4), B^{\prime}(7,-1) \cdot C^{\prime}(9,-4)$. The areas are equal because translations preserve distance.

PTS: 4
395 ANS: 3 TOP: Properties of Transformations
396
REF: 011235ge
PTS: 2

PTS: 2

TOP: Properties of Transformations

STA: G.G. 55
REF: 081021ge

REF: 061126ge

TOP: Properties of Transformations
STA: G.G. 57
STA: G.G. 59

| 397 | ANS: 2 | PTS: 2 | REF: 061201ge | STA: G.G. 59 |
| :--- | :--- | :---: | :--- | :--- | :--- |
| | TOP: Properties of Transformations | | | |
| 398 | ANS: 3 PTS: 2 | REF: 081204ge | STA: G.G. 59 | |
| | TOP: Properties of Transformations | | | |
| 399 | ANS: | | | |
| | 36, because a dilation does not affect angle measure. 10, because a dilation does affect distance. | | | |

	PTS: 4 REF: 011035ge	STA:	G.G. 59	TOP:	Properties of Transformations
400	ANS: 1 PTS: 2	REF:	060903ge	STA:	G.G. 56
	TOP: Identifying Transformations				
401	ANS: 4 PTS: 2	REF:	080915ge	STA:	G.G. 56
	TOP: Identifying Transformations				
402	ANS: 2 PTS: 2	REF:	011006ge	STA:	G.G. 56
	TOP: Identifying Transformations				
403	ANS: 4 PTS: 2	REF:	061015ge	STA:	G.G. 56
	TOP: Identifying Transformations				
404	ANS: 4 PTS: 2	REF:	061018ge	STA:	G.G. 56
	TOP: Identifying Transformations				
405	ANS: 3 PTS: 2	REF:	061122ge	STA:	G.G. 56
	TOP: Identifying Transformations				
406	ANS: 2 PTS: 2	REF:	061227ge	STA:	G.G. 56
	TOP: Identifying Transformations				
407	ANS:				
	Yes. A reflection is an isometry.				

	PTS: 2	REF: 061132ge	STA:	G.G. 56	TOP: Identifying Transformations
408	ANS: 3	PTS: 2	REF: 060908ge	STA:	G.G. 60
TOP: Identifying Transformations					
409	ANS: 2				
	A dilation affects distance, not angle measure.				

	PTS: 2	REF: 080906ge	STA:	G.G. 60	TOP:
410	ANS: 4	PTS: 2	REF: $061103 g e$	STA:	G.G. 60

PTS: 2 REF: 080908ge STA: G.G. 61
TOP: Analytical Representations of Transformations
413 ANS: 4
Median $\overline{B F}$ bisects $\overline{A C}$ so that $\overline{C F} \cong \overline{F A}$.
PTS: 2 REF: fall0810ge STA: G.G. 24 TOP: Statements
414 ANS: 4 PTS: 2 REF: fall0802ge STA: G.G. 24
TOP: Negations

415	ANS: 3	PTS: 2	REF: 080924ge	STA: G.G. 24	
	TOP: Negations				
416	ANS: 2	PTS: 2	REF: 061002ge	STA: G.G. 24	
	TOP: Negations				
417	ANS: 1	PTS: 2	REF: 011213ge	STA: G.G. 24	
	TOP: Negations				
418	ANS: 2	PTS: 2	REF: 061202ge	STA: G.G. 24	

419 ANS:
The medians of a triangle are not concurrent. False.
PTS: 2 REF: 061129ge STA: G.G. 24 TOP: Negations
420 ANS:
2 is not a prime number, false.
PTS: 2 REF: 081229ge STA: G.G. 24 TOP: Negations
421 ANS: 4 PTS: 2
TOP: Compound Statements
REF: 011118ge
STA: G.G. 25
KEY: general
422 ANS: 4 PTS: 2
REF: 081101ge
STA: G.G. 25
TOP: Compound Statements
KEY: conjunction
423 ANS:
True. The first statement is true and the second statement is false. In a disjunction, if either statement is true, the disjunction is true.

PTS: 2 REF: 060933ge STA: G.G. 25 TOP: Compound Statements
KEY: disjunction
424 ANS: 3
PTS: 2
REF: 011028ge
STA: G.G. 26
TOP: Conditional Statements
425 ANS: $1 \quad$ PTS: 2
REF: 061009ge STA: G.G. 26
TOP: Converse and Biconditional
426 ANS: 4 PTS: 2
TOP: Conditional Statements
427 ANS: $3 \quad$ PTS: 2
TOP: Contrapositive
428 ANS:
Contrapositive-If two angles of a triangle are not congruent, the sides opposite those angles are not congruent.
PTS: 2 REF: fall0834ge STA: G.G. 26 TOP: Conditional Statements
429 ANS: 3

PTS: 2
REF: 060902ge
STA: G.G. 28
TOP: Triangle Congruency

430 ANS: 3
PTS: 2
REF: 080913ge
STA: G.G. 28
TOP: Triangle Congruency
431 ANS: 2

PTS: 2
REF: 081007ge
STA: G.G. 28
432 ANS: 1
PTS: 2
REF: 011122ge
TOP: Triangle Congruency
STA: G.G. 28
TOP: Triangle Congruency
433 ANS: 4

PTS: 2 REF: 081114ge STA: G.G. 28 TOP: Triangle Congruency
434 ANS: 3

. Opposite sides of a parallelogram are congruent and the diagonals of a parallelogram bisect each other.

PTS: 2 REF: 061222ge STA: G.G. 28 TOP: Triangle Congruency
435 ANS: 1

PTS: 2
REF: 081210ge
STA: G.G. 28
REF: 080905ge
TOP: Triangle Congruency
STA: G.G. 29
436 ANS: 4
PTS: 2
TOP: Triangle Congruency

437 ANS: 4

PTS: 2
REF: 081001ge
STA: G.G. 29 TOP: Triangle Congruency
438 ANS: 3
PTS: 2
REF: 061102ge
STA: G.G. 29
TOP: Triangle Congruency
439 ANS: $2 \quad$ PTS: 2
TOP: Triangle Congruency
440 ANS: 4 PTS: 2
TOP: Triangle Congruency
441 ANS: 2

$$
A C=B D
$$

$A C-B C=B D-B C$
$A B=C D$
PTS: 2
442 ANS: 4
REF: 061206ge
STA: G.G. 27
TOP: Angle Proofs
443 ANS: 1
$A B=C D$
$A B+B C=C D+B C$
$A C=B D$
PTS: 2
REF: 081207ge
STA: G.G. 27
TOP: Triangle Proofs
444 ANS:
$\overline{A C} \cong \overline{E C}$ and $\overline{D C} \cong \overline{B C}$ because of the definition of midpoint. $\angle A C B \cong \angle E C D$ because of vertical angles. $\triangle A B C \cong \triangle E D C$ because of SAS. $\angle C D E \cong \angle C B A$ because of CPCTC. $\overline{B D}$ is a transversal intersecting $\overline{A B}$ and
$\overline{E D}$. Therefore $\overline{A B} \| \overline{D E}$ because $\angle C D E$ and $\angle C B A$ are congruent alternate interior angles.

PTS: 6 REF: 060938ge STA: G.G. 27 TOP: Triangle Proofs
445 ANS:
$\angle B$ and $\angle C$ are right angles because perpendicular lines form right angles. $\angle B \cong \angle C$ because all right angles are congruent. $\angle A E B \cong \angle D E C$ because vertical angles are congruent. $\triangle A B E \cong \triangle D C E$ because of ASA. $\overline{A B} \cong \overline{D C}$ because СРСТС.
$\begin{array}{lllll}\text { PTS: } 4 & \text { REF: 061235ge } & \text { STA: G.G. } 27 & \text { TOP: Triangle Proofs } \\ \text { ANS: } 3 & \text { PTS: } 2 & \text { REF: } 081208 g e & \text { STA: } & \text { G.G. } 27\end{array}$
446 ANS: 3
PTS: 2
TOP: Quadrilateral Proofs

447
ANS:
Quadrilateral $A B C D, \overline{A D} \cong \overline{B C}$ and $\angle D A E \cong \angle B C E$ are given. $\overline{A D} \| \overline{B C}$ because if two lines are cut by a transversal so that a pair of alternate interior angles are congruent, the lines are parallel. $A B C D$ is a parallelogram because if one pair of opposite sides of a quadrilateral are both congruent and parallel, the quadrilateral is a parallelogram. $\overline{A E} \cong \overline{C E}$ because the diagonals of a parallelogram bisect each other. $\angle F E A \cong \angle G E C$ as vertical angles. $\triangle A E F \cong \triangle C E G$ by ASA.

PTS: 6 REF: 011238ge STA: G.G. 27 TOP: Quadrilateral Proofs
448 ANS:
$\overline{B D} \cong \overline{D B}$ (Reflexive Property); $\triangle A B D \cong \triangle C D B$ (SSS); $\angle B D C \cong \angle A B D$ (СРСТС).

PTS: 4 REF: 061035ge STA: G.G. 27 TOP: Quadrilateral Proofs
449 ANS:
Because $\overline{A B} \| \overline{D C}, \overparen{A D} \cong \overparen{B C}$ since parallel chords intersect congruent arcs. $\angle B D C \cong \angle A C D$ because inscribed angles that intercept congruent arcs are congruent. $\overline{A D} \cong \overline{B C}$ since congruent chords intersect congruent arcs. $\overline{D C} \cong \overline{C D}$ because of the reflexive property. Therefore, $\triangle A C D \cong \triangle B D C$ because of SAS.

PTS: 6 REF: fall0838ge STA: G.G. 27 TOP: Circle Proofs
450 ANS:
$\overline{O A} \cong \overline{O B}$ because all radii are equal. $\overline{O P} \cong \overline{O P}$ because of the reflexive property. $\overline{O A} \perp \overline{P A}$ and $\overline{O B} \perp \overline{P B}$ because tangents to a circle are perpendicular to a radius at a point on a circle. $\angle P A O$ and $\angle P B O$ are right angles because of the definition of perpendicular. $\angle P A O \cong \angle P B O$ because all right angles are congruent. $\triangle A O P \cong \triangle B O P$ because of HL. $\angle A O P \cong \angle B O P$ because of CPCTC.

PTS: 6 REF: 061138ge STA: G.G. 27 TOP: Circle Proofs
451 ANS: 1
$\triangle P R T$ and $\triangle S R Q$ share $\angle R$ and it is given that $\angle R P T \cong \angle R S Q$.
PTS: 2 REF: fall0821ge STA: G.G. 44 TOP: Similarity Proofs
452 ANS: 2
$\angle A C B$ and $\angle E C D$ are congruent vertical angles and $\angle C A B \cong \angle C E D$.

PTS: 2 REF: 060917ge STA: G.G. 44 TOP: Similarity Proofs
453 ANS: 4
PTS: 2
REF: 011019ge
STA: G.G. 44
TOP: Similarity Proofs

STA: G.G. 44
TOP: Similarity Proofs
455 ANS:
$\angle B$ and $\angle E$ are right angles because of the definition of perpendicular lines. $\angle B \cong \angle E$ because all right angles are congruent. $\angle B F D$ and $\angle D F E$ are supplementary and $\angle E C A$ and $\angle A C B$ are supplementary because of the definition of supplementary angles. $\angle D F E \cong \angle A C B$ because angles supplementary to congruent angles are congruent. $\triangle A B C \sim \triangle D E F$ because of AA.

PTS: 4
REF: 011136ge STA: G.G. 44 TOP: Similarity Proofs
456 ANS:
$\angle A C B \cong \angle A E D$ is given. $\angle A \cong \angle A$ because of the reflexive property. Therefore $\triangle A B C \sim \triangle A D E$ because of AA.
PTS: 2 REF: 081133ge STA: G.G. 44 TOP: Similarity Proofs

[^0]: 19
 28
 33
 46

