JMAP
 REGENTS AT RANDOM

The NY Algebra 2/Trigonometry Regents Exams Fall 2009-June 2013

www.jmap.org

Dear $^{\text {ofir }}$

Shave to acknofege the reciept of your favor of May 14. in which you mention that you have finished the 6. first bocks of E ucfid, phane trigonometry, surveying \& afgebra and ask whether \mathscr{I} thinnk a further pursuit of that branch of science would be useful to you. there are some proppositions in the fatter Fooks of
 them. trigonometry, sof far as thits, is most vafuable to every man, there is scarcely a day in which he wiff not resort to it for some of the purposes of common fife. the science of cafoufation a/so is indispensible as far as the extraction of the square \& cube roots; cot Igebra as far as the quadratic equation \& the use of fogaritims are often of vafue in ordinary cases: but aff beyond thése is but a fuxury; a deficious fuxury indeed; But not to be indufged in by one whio is to have a profession to foflo w for hits subsistence. in thits fighit \mathcal{I} view the conic sections, curves of thé figher orders, perhiaps even spheierical trigonometry, \mathscr{A} © Igefraical operations beyond the ad dimension, andffuxions.
Letter from Thomas Jefferson to William G. Munford, Monticello, June 18, 1799.

Algebra 2/Trigonometry Regents at Random

1 In the diagram below, the length of which line segment is equal to the exact value of $\sin \theta$?

1) $\overline{T O}$
2) $\overline{T S}$
3) $\overline{O R}$
4) $\overline{O S}$

2 Which graph represents the solution set of $|6 x-7| \leq 5$?
1)

2)
3)
4)

3 A circle has a radius of 4 inches. In inches, what is the length of the arc intercepted by a central angle of 2 radians?

1) 2π
2) 2
3) 8π
4) 8

4 Which expression represents the third term in the expansion of $\left(2 x^{4}-y\right)^{3}$?

1) $-y^{3}$
2) $-6 x^{4} y^{2}$
3) $6 x^{4} y^{2}$
4) $2 x^{4} y^{2}$

5 When $\frac{3}{2} x^{2}-\frac{1}{4} x-4$ is subtracted from
$\frac{5}{2} x^{2}-\frac{3}{4} x+1$, the difference is

1) $-x^{2}+\frac{1}{2} x-5$
2) $x^{2}-\frac{1}{2} x+5$
3) $-x^{2}-x-3$
4) $x^{2}-x-3$

6 Find the solution of the inequality $x^{2}-4 x>5$, algebraically.

Algebra 2/Trigonometry Regents Exam Questions at Random www.jmap.org

7 If $\mathrm{f}(x)=4 x-x^{2}$ and $\mathrm{g}(x)=\frac{1}{x}$, then $(\mathrm{f} \circ \mathrm{g})\left(\frac{1}{2}\right)$ is equal to

1) $\frac{4}{7}$
2) -2
3) $\frac{7}{2}$
4) 4

8 What are the sum and product of the roots of the equation $6 x^{2}-4 x-12=0$?

1) $\operatorname{sum}=-\frac{2}{3} ;$ product $=-2$
2) sum $=\frac{2}{3} ;$ product $=-2$
3) sum $=-2$; product $=\frac{2}{3}$
4) $\operatorname{sum}=-2 ;$ product $=-\frac{2}{3}$

9 The diagram below shows the plans for a cell phone tower. A guy wire attached to the top of the tower makes an angle of 65 degrees with the ground. From a point on the ground 100 feet from the end of the guy wire, the angle of elevation to the top of the tower is 32 degrees. Find the height of the tower, to the nearest foot.

10 In the diagram below of right triangle $J T M$, $J T=12, J M=6$, and $\mathrm{m} \angle J M T=90$.

What is the value of $\cot J$?

1) $\frac{\sqrt{3}}{3}$
2) 2
3) $\sqrt{3}$
4) $\frac{2 \sqrt{3}}{3}$

11 As shown in the diagram below, fire-tracking station A is 100 miles due west of fire-tracking station B. A forest fire is spotted at F, on a bearing 47° northeast of station A and 15° northeast of station B. Determine, to the nearest tenth of a mile, the distance the fire is from both station A and station B. [N represents due north.]

12 Written in simplest form, the expression $\frac{\frac{x}{4}-\frac{1}{x}}{\frac{1}{2 x}+\frac{1}{4}}$
is equivalent to

1) $x-1$
2) $x-2$
3) $\frac{x-2}{2}$
4) $\frac{x^{2}-4}{x+2}$

13 What is the domain of the function
$\mathrm{f}(x)=\sqrt{x-2}+3$?

1) $(-\infty, \infty)$
2) $(2, \infty)$
3) $[2, \infty)$
4) $[3, \infty)$

14 What is the solution set of the equation $-\sqrt{2} \sec x=2$ when $0^{\circ} \leq x<360^{\circ}$?

1) $\left\{45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ}\right\}$
2) $\left\{45^{\circ}, 315^{\circ}\right\}$
3) $\left\{135^{\circ}, 225^{\circ}\right\}$
4) $\left\{225^{\circ}, 315^{\circ}\right\}$

15 If $\log x^{2}-\log 2 a=\log 3 a$, then $\log x$ expressed in terms of $\log a$ is equivalent to

1) $\frac{1}{2} \log 5 a$
2) $\frac{1}{2} \log 6+\log a$
3) $\log 6+\log a$
4) $\log 6+2 \log a$

16 Which statement about the graph of the equation $y=e^{x}$ is not true?

1) It is asymptotic to the x-axis.
2) The domain is the set of all real numbers.
3) It lies in Quadrants I and II.
4) It passes through the point $(e, 1)$.

17 Express $\frac{\sqrt{108 x^{5} y^{8}}}{\sqrt{6 x y^{5}}}$ in simplest radical form.

18 The graph below represents the function $y=\mathrm{f}(x)$.

State the domain and range of this function.

19 Given $\triangle A B C$ with $a=9, b=10$, and $\mathrm{m} \angle B=70$, what type of triangle can be drawn?

1) an acute triangle, only
2) an obtuse triangle, only
3) both an acute triangle and an obtuse triangle
4) neither an acute triangle nor an obtuse triangle

20 How many distinct triangles can be formed if $\mathrm{m} \angle A=35, a=10$, and $b=13$?

1) 1
2) 2
3) 3
4) 0

21 Given the relation $\{(8,2),(3,6),(7,5),(k, 4)\}$, which value of k will result in the relation not being a function?

1) 1
2) 2
3) 3
4) 4

22 Write an equation of the circle shown in the diagram below.

23 The lengths of 100 pipes have a normal distribution with a mean of 102.4 inches and a standard deviation of 0.2 inch . If one of the pipes measures exactly 102.1 inches, its length lies

1) below the $16^{\text {th }}$ percentile
2) between the $50^{\text {th }}$ and $84^{\text {th }}$ percentiles
3) between the $16^{\text {th }}$ and $50^{\text {th }}$ percentiles
4) above the $84^{\text {th }}$ percentile

24 The temperature, T, of a given cup of hot chocolate after it has been cooling for t minutes can best be modeled by the function below, where T_{0} is the temperature of the room and k is a constant.

$$
\ln \left(T-T_{0}\right)=-k t+4.718
$$

A cup of hot chocolate is placed in a room that has a temperature of 68°. After 3 minutes, the temperature of the hot chocolate is 150°. Compute the value of k to the nearest thousandth. [Only an algebraic solution can receive full credit.] Using this value of k, find the temperature, T, of this cup of hot chocolate if it has been sitting in this room for a total of 10 minutes. Express your answer to the nearest degree. [Only an algebraic solution can receive full credit.]

25 On the axes below, for $-2 \leq x \leq 2$, graph $y=2^{x+1}-3$.

26 Three marbles are to be drawn at random, without replacement, from a bag containing 15 red marbles, 10 blue marbles, and 5 white marbles. Which expression can be used to calculate the probability of drawing 2 red marbles and 1 white marble from the bag?

1) $\frac{{ }_{15} C_{2} \cdot{ }_{5} C_{1}}{{ }_{30} C_{3}}$
2) $\frac{{ }_{15} P_{2} \cdot{ }_{5} P_{1}}{{ }_{30} C_{3}}$
3) $\frac{{ }_{15} C_{2} \cdot{ }_{5} C_{1}}{{ }_{30} P_{3}}$
4) $\frac{{ }_{15} P_{2} \cdot{ }_{5} P_{1}}{{ }_{30} P_{3}}$

27 There are eight people in a tennis club. Which expression can be used to find the number of different ways they can place first, second, and third in a tournament?

1) ${ }_{8} P_{3}$
2) ${ }_{8} C_{3}$
3) ${ }_{8} P_{5}$
4) ${ }_{8} C_{5}$

28 A blood bank needs twenty people to help with a blood drive. Twenty-five people have volunteered. Find how many different groups of twenty can be formed from the twenty-five volunteers.

29 For a given set of rectangles, the length is inversely proportional to the width. In one of these rectangles, the length is 12 and the width is 6 . For this set of rectangles, calculate the width of a rectangle whose length is 9 .

30 A four-digit serial number is to be created from the digits 0 through 9 . How many of these serial numbers can be created if 0 can not be the first digit, no digit may be repeated, and the last digit must be 5 ?

1) 448
2) 504
3) 2,240
4) 2,520

31 A sequence has the following terms: $a_{1}=4$, $a_{2}=10, a_{3}=25, a_{4}=62.5$. Which formula represents the nth term in the sequence?

1) $a_{n}=4+2.5 n$
2) $a_{n}=4+2.5(n-1)$
3) $a_{n}=4(2.5)^{n}$
4) $a_{n}=4(2.5)^{n-1}$

32 The expression $\frac{a^{2} b^{-3}}{a^{-4} b^{2}}$ is equivalent to

1) $\frac{a^{6}}{b^{5}}$
2) $\frac{b^{5}}{a^{6}}$
3) $\frac{a^{2}}{b}$
4) $a^{-2} b^{-1}$

33 Find, to the nearest minute, the angle whose measure is 3.45 radians.

34 What is the solution set of the equation $|4 a+6|-4 a=-10$?

1) \varnothing
2) $\{0\}$
3) $\left\{\frac{1}{2}\right\}$
4) $\left\{0, \frac{1}{2}\right\}$

35 What is the common ratio of the geometric sequence shown below?

$$
-2,4,-8,16, \ldots
$$

1) $-\frac{1}{2}$
2) 2
3) -2
4) -6

36 Which expression always equals 1 ?

1) $\cos ^{2} x-\sin ^{2} x$
2) $\cos ^{2} x+\sin ^{2} x$
3) $\cos x-\sin x$
4) $\cos x+\sin x$

37 In parallelogram $B F L O, O L=3.8, L F=7.4$, and $\mathrm{m} \angle O=126$. If diagonal $B L$ is drawn, what is the area of $\triangle B L F$?

1) 11.4
2) 14.1
3) 22.7
4) 28.1

38 What is the fourth term in the expansion of $(3 x-2)^{5}$?

1) $-720 x^{2}$
2) $-240 x$
3) $720 x^{2}$
4) $1,080 x^{3}$

39 The probability that the Stormville Sluggers will win a baseball game is $\frac{2}{3}$. Determine the probability, to the nearest thousandth, that the Stormville Sluggers will win at least 6 of their next 8 games.

40 How many different six-letter arrangements can be made using the letters of the word "TATTOO"?

1) 60
2) 90
3) 120
4) 720

41 The solution set of the inequality $x^{2}-3 x>10$ is

1) $\{x \mid-2<x<5\}$
2) $\{x \mid 0<x<3\}$
3) $\{x \mid x<-2$ or $x>5\}$
4) $\{x \mid x<-5$ or $x>2\}$

42 The expression $(3-7 i)^{2}$ is equivalent to

1) $-40+0 i$
2) $-40-42 i$
3) $58+0 i$
4) $58-42 i$

43 Determine the sum and the product of the roots of $3 x^{2}=11 x-6$.

44 Which graph does not represent a function?
4)

45 If $\log 2=a$ and $\log 3=b$, the expression $\log \frac{9}{20}$ is equivalent to

1) $2 b-a+1$
2) $2 b-a-1$
3) $b^{2}-a+10$
4) $\frac{2 b}{a+1}$

46 Which equation is graphed in the diagram below?

1) $y=3 \cos \left(\frac{\pi}{30} x\right)+8$
2) $y=3 \cos \left(\frac{\pi}{15} x\right)+5$
3) $y=-3 \cos \left(\frac{\pi}{30} x\right)+8$
4) $y=-3 \cos \left(\frac{\pi}{15} x\right)+5$

47 If $\sin A=\frac{2}{3}$ where $0^{\circ}<A<90^{\circ}$, what is the value of $\sin 2 A$?

1) $\frac{2 \sqrt{5}}{3}$
2) $\frac{2 \sqrt{5}}{9}$
3) $\frac{4 \sqrt{5}}{9}$
4) $-\frac{4 \sqrt{5}}{9}$

48 Solve algebraically for x :
$\sqrt{x^{2}+x-1}+11 x=7 x+3$

49 What is the fifteenth term of the sequence
$5,-10,20,-40,80, \ldots$?

1) $-163,840$
2) $-81,920$
3) 81,920
4) 327,680

50 The heights, in inches, of 10 high school varsity basketball players are $78,79,79,72,75,71,74,74$, 83 , and 71 . Find the interquartile range of this data set.

51 Which function is not one-to-one?

1) $\{(0,1),(1,2),(2,3),(3,4)\}$
2) $\{(0,0),(1,1),(2,2),(3,3)\}$
3) $\{(0,1),(1,0),(2,3),(3,2)\}$
4) $\{(0,1),(1,0),(2,0),(3,2)\}$

52 What are the values of θ in the interval $0^{\circ} \leq \theta<360^{\circ}$ that satisfy the equation $\tan \theta-\sqrt{3}=0$?

1) $60^{\circ}, 240^{\circ}$
2) $72^{\circ}, 252^{\circ}$
3) $72^{\circ}, 108^{\circ}, 252^{\circ}, 288^{\circ}$
4) $60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$

53 Which arithmetic sequence has a common difference of 4 ?

1) $\{0,4 n, 8 n, 12 n, \ldots\}$
2) $\{n, 4 n, 16 n, 64 n, \ldots\}$
3) $\{n+1, n+5, n+9, n+13, \ldots\}$
4) $\{n+4, n+16, n+64, n+256, \ldots\}$

54 Which is a graph of $y=\cot x$?
1)

2)

4)

55 The number of bacteria present in a Petri dish can be modeled by the function $N=50 e^{3 t}$, where N is the number of bacteria present in the Petri dish after t hours. Using this model, determine, to the nearest hundredth, the number of hours it will take for N to reach 30,700.

56 The yearbook staff has designed a survey to learn student opinions on how the yearbook could be improved for this year. If they want to distribute this survey to 100 students and obtain the most reliable data, they should survey

1) every third student sent to the office
2) every third student to enter the library
3) every third student to enter the gym for the basketball game
4) every third student arriving at school in the morning

57 The roots of the equation $x^{2}-10 x+25=0$ are

1) imaginary
2) real and irrational
3) real, rational, and equal
4) real, rational, and unequal

58 If $\sec (a+15)^{\circ}=\csc (2 a)^{\circ}$, find the smallest positive value of a, in degrees.

59 Convert 3 radians to degrees and express the answer to the nearest minute.

60 For which equation does the sum of the roots equal -3 and the product of the roots equal 2 ?

1) $x^{2}+2 x-3=0$
2) $x^{2}-3 x+2=0$
3) $2 x^{2}+6 x+4=0$
4) $2 x^{2}-6 x+4=0$

61 Evaluate: $\sum_{n=1}^{3}\left(-n^{4}-n\right)$

62 Express in simplest form: $\sqrt[3]{\frac{a^{6} b^{9}}{-64}}$

63 The expression $(x+i)^{2}-(x-i)^{2}$ is equivalent to 1) 0
2) -2
3) $-2+4 x i$
4) $4 x i$

64 A population of rabbits doubles every 60 days according to the formula $P=10(2)^{\frac{t}{60}}$, where P is the population of rabbits on day t. What is the value of t when the population is 320 ?

1) 240
2) 300
3) 660
4) 960

65 Which values of x are solutions of the equation $x^{3}+x^{2}-2 x=0$?

1) $0,1,2$
2) $0,1,-2$
3) $0,-1,2$
4) $0,-1,-2$

66 A population of single-celled organisms was grown in a Petri dish over a period of 16 hours. The number of organisms at a given time is recorded in the table below.

Time, hrs (x)	Number of Organisms (y)
0	25
2	36
4	52
6	68
8	85
10	104
12	142
16	260

Determine the exponential regression equation model for these data, rounding all values to the nearest ten-thousandth. Using this equation, predict the number of single-celled organisms, to the nearest whole number, at the end of the 18th hour.

67 What is the solution of the equation $2 \log _{4}(5 x)=3$?

1) 6.4
2) 2.56
3) $\frac{9}{5}$
4) $\frac{8}{5}$

68 Express the exact value of $\csc 60^{\circ}$, with a rational denominator.

69 The expression $\frac{2 x+4}{\sqrt{x+2}}$ is equivalent to

1) $\frac{(2 x+4) \sqrt{x-2}}{x-2}$
2) $\frac{(2 x+4) \sqrt{x-2}}{x-4}$
3) $2 \sqrt{x-2}$
4) $2 \sqrt{x+2}$

70 If the amount of time students work in any given week is normally distributed with a mean of 10 hours per week and a standard deviation of 2 hours, what is the probability a student works between 8 and 11 hours per week?

1) 34.1%
2) 38.2%
3) 53.2%
4) 68.2%

71 If $\sin ^{-1}\left(\frac{5}{8}\right)=A$, then

1) $\sin A=\frac{5}{8}$
2) $\sin A=\frac{8}{5}$
3) $\cos A=\frac{5}{8}$
4) $\cos A=\frac{8}{5}$

72 Find, to the nearest tenth of a degree, the angle whose measure is 2.5 radians.

73 A dartboard is shown in the diagram below. The two lines intersect at the center of the circle, and the central angle in sector 2 measures $\frac{2 \pi}{3}$.

If darts thrown at this board are equally likely to land anywhere on the board, what is the probability that a dart that hits the board will land in either sector 1 or sector 3 ?

1) $\frac{1}{6}$
2) $\frac{1}{3}$
3) $\frac{1}{2}$
4) $\frac{2}{3}$

74 If $x^{2}+2=6 x$ is solved by completing the square, an intermediate step would be

1) $(x+3)^{2}=7$
2) $(x-3)^{2}=7$
3) $(x-3)^{2}=11$
4) $(x-6)^{2}=34$

75 Solve $2 x^{2}-12 x+4=0$ by completing the square, expressing the result in simplest radical form.

76 Which expression is equivalent to $\left(9 x^{2} y^{6}\right)^{-\frac{1}{2}}$?

1) $\frac{1}{3 x y^{3}}$
2) $3 x y^{3}$
3) $\frac{3}{x y^{3}}$
4) $\frac{x y^{3}}{3}$

77 If p varies inversely as q, and $p=10$ when $q=\frac{3}{2}$, what is the value of p when $q=\frac{3}{5}$?

1) 25
2) 15
3) 9
4) 4

78 What is the product of $\left(\frac{x}{4}-\frac{1}{3}\right)$ and $\left(\frac{x}{4}+\frac{1}{3}\right)$?

1) $\frac{x^{2}}{8}-\frac{1}{9}$
2) $\frac{x^{2}}{16}-\frac{1}{9}$
3) $\frac{x^{2}}{8}-\frac{x}{6}-\frac{1}{9}$
4) $\frac{x^{2}}{16}-\frac{x}{6}-\frac{1}{9}$

79 What is the fourth term in the binomial expansion $(x-2)^{8}$?

1) $448 x^{5}$
2) $448 x^{4}$
3) $-448 x^{5}$
4) $-448 x^{4}$

80 Solve algebraically for all values of x :
$\log _{(x+4)}(17 x-4)=2$

81 In $\triangle A B C, \mathrm{~m} \angle A=120, b=10$, and $c=18$. What is the area of $\triangle A B C$ to the nearest square inch?

1) 52
2) 78
3) 90
4) 156

82 What is the number of degrees in an angle whose measure is 2 radians?

1) $\frac{360}{\pi}$
2) $\frac{\pi}{360}$
3) 360
4) 90

83 Determine the sum of the first twenty terms of the sequence whose first five terms are $5,14,23,32$, 41.

84 If a function is defined by the equation $\mathrm{f}(x)=4^{x}$, which graph represents the inverse of this function?
1)
2)
3)
4)

85 Which graph represents the equation $y=\cos ^{-1} x$?

86 If $\log _{4} x=2.5$ and $\log _{y} 125=-\frac{3}{2}$, find the numerical value of $\frac{x}{y}$, in simplest form.

87 The value of $\sin (180+x)$ is equivalent to

1) $-\sin x$
2) $-\sin (90-x)$
3) $\sin x$
4) $\sin (90-x)$

88 In a certain high school, a survey revealed the mean amount of bottled water consumed by students each day was 153 bottles with a standard deviation of 22 bottles. Assuming the survey represented a normal distribution, what is the range of the number of bottled waters that approximately 68.2% of the students drink?

1) 131-164
2) $131-175$
3) $142-164$
4) $142-175$

89 Which ordered pair is a solution of the system of equations shown below? $x+y=5$

$$
(x+3)^{2}+(y-3)^{2}=53
$$

1) $(2,3)$
2) $(5,0)$
3) $(-5,10)$
4) $(-4,9)$

90 The expression $\log _{8} 64$ is equivalent to

1) 8
2) 2
3) $\frac{1}{2}$
4) $\frac{1}{8}$

Algebra 2/Trigonometry Regents Exam Questions at Random www.jmap.org

91 Which function is one-to-one?

1) $\mathrm{f}(x)=|x|$
2) $\mathrm{f}(x)=2^{x}$
3) $\mathrm{f}(x)=x^{2}$
4) $\mathrm{f}(x)=\sin x$

92 Write the binomial expansion of $(2 x-1)^{5}$ as a polynomial in simplest form.

93 In the diagram below of a unit circle, the ordered pair $\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$ represents the point where the terminal side of θ intersects the unit circle.

What is $\mathrm{m} \angle \theta$?

1) 45
2) 135
3) 225
4) 240

94 The graph below shows the function $\mathrm{f}(x)$.

Which graph represents the function $\mathrm{f}(x+2)$?
1)

2)
3)
4)

95 The expression $\cos 4 x \cos 3 x+\sin 4 x \sin 3 x$ is equivalent to

1) $\sin x$
2) $\sin 7 x$
3) $\cos x$
4) $\cos 7 x$

96 Determine the solution of the inequality $|3-2 x| \geq 7$. [The use of the grid below is optional.]

98 The value of the expression $2 \sum_{n=0}^{2}\left(n^{2}+2^{n}\right)$ is

1) 12
2) 22
3) 24
4) 26

99 Which expression, when rounded to three decimal places, is equal to -1.155 ?

1) $\sec \left(\frac{5 \pi}{6}\right)$
2) $\tan \left(49^{\circ} 20^{\prime}\right)$
3) $\sin \left(-\frac{3 \pi}{5}\right)$
4) $\csc \left(-118^{\circ}\right)$

100 The table below shows the results of an experiment involving the growth of bacteria.

Time (x) (in minutes)	1	3	5	7	9	11
Number of Bacteria (\mathbf{y})	2	25	81	175	310	497

Write a power regression equation for this set of data, rounding all values to three decimal places. Using this equation, predict the bacteria's growth, to the nearest integer, after 15 minutes.

101 A committee of 5 members is to be randomly selected from a group of 9 teachers and 20 students. Determine how many different committees can be formed if 2 members must be teachers and 3 members must be students.

102 Write an equation of the circle shown in the graph below.

Assume that the ages of first-year college students are normally distributed with a mean of 19 years and standard deviation of 1 year. To the nearest integer, find the percentage of first-year college students who are between the ages of 18 years and 20 years, inclusive. To the nearest integer, find the percentage of first-year college students who are 20 years old or older.

Express $\frac{5}{3-\sqrt{2}}$ with a rational denominator, in simplest radical form.

105 The conjugate of $7-5 i$ is

1) $-7-5 i$
2) $-7+5 i$
3) $7-5 i$
4) $7+5 i$

106 Matt places \$1,200 in an investment account earning an annual rate of 6.5%, compounded continuously. Using the formula $V=P e^{r t}$, where V is the value of the account in t years, P is the principal initially invested, e is the base of a natural logarithm, and r is the rate of interest, determine the amount of money, to the nearest cent, that Matt will have in the account after 10 years.

107 The sum of $\sqrt[3]{6 a^{4} b^{2}}$ and $\sqrt[3]{162 a^{4} b^{2}}$, expressed in simplest radical form, is

1) $\sqrt[6]{168 a^{8} b^{4}}$
2) $2 a^{2} b \sqrt[3]{21 a^{2} b}$
3) $4 a \sqrt[3]{6 a b^{2}}$
4) $10 a^{2} b \sqrt[3]{8}$

108 The quantities p and q vary inversely. If $p=20$ when $q=-2$, and $p=x$ when $q=-2 x+2$, then x equals

1) -4 and 5
2) $\frac{20}{19}$
3) -5 and 4
4) $-\frac{1}{4}$

109 When factored completely, the expression $3 x^{3}-5 x^{2}-48 x+80$ is equivalent to

1) $\left(x^{2}-16\right)(3 x-5)$
2) $\left(x^{2}+16\right)(3 x-5)(3 x+5)$
3) $(x+4)(x-4)(3 x-5)$
4) $(x+4)(x-4)(3 x-5)(3 x-5)$

110 Which formula can be used to determine the total number of different eight-letter arrangements that can be formed using the letters in the word
DEADLINE?

1) $8!$
2) $\frac{8!}{4!}$
3) $\frac{8!}{2!+2!}$
4) $\frac{8!}{2!\cdot 2!}$

111 When $x^{2}+3 x-4$ is subtracted from $x^{3}+3 x^{2}-2 x$, the difference is

1) $x^{3}+2 x^{2}-5 x+4$
2) $x^{3}+2 x^{2}+x-4$
3) $-x^{3}+4 x^{2}+x-4$
4) $-x^{3}-2 x^{2}+5 x+4$

112 Solve for $x: \frac{4 x}{x-3}=2+\frac{12}{x-3}$

113 What is the equation of the graph shown below?

1) $y=2^{x}$
2) $y=2^{-x}$
3) $x=2^{y}$
4) $x=2^{-y}$

114 Expressed in simplest form, $\frac{3 y}{2 y-6}+\frac{9}{6-2 y}$ is equivalent to

1) $\frac{-6 y^{2}+36 y-54}{(2 y-6)(6-2 y)}$
2) $\frac{3 y-9}{2 y-6}$
3) $\frac{3}{2}$
4) $-\frac{3}{2}$

115 Which value of k satisfies the equation
$8^{3 k+4}=4^{2 k-1}$?

1) -1
2) $-\frac{9}{4}$
3) -2
4) $-\frac{14}{5}$

116 The equation $y-2 \sin \theta=3$ may be rewritten as

1) $\mathrm{f}(y)=2 \sin x+3$
2) $\mathrm{f}(y)=2 \sin \theta+3$
3) $\mathrm{f}(x)=2 \sin \theta+3$
4) $\mathrm{f}(\theta)=2 \sin \theta+3$

117 The data collected by a biologist showing the growth of a colony of bacteria at the end of each hour are displayed in the table below.

Time, hour, (x)	Population (y)
0	250
1	330
2	580
3	800
4	1650
5	3000

Write an exponential regression equation to model these data. Round all values to the nearest thousandth. Assuming this trend continues, use this equation to estimate, to the nearest ten, the number of bacteria in the colony at the end of 7 hours.

118 Solve the equation $8 x^{3}+4 x^{2}-18 x-9=0$ algebraically for all values of x.

119 Solve algebraically for $x: 16^{2 x+3}=64^{x+2}$

120 A survey completed at a large university asked 2,000 students to estimate the average number of hours they spend studying each week. Every tenth student entering the library was surveyed. The data showed that the mean number of hours that students spend studying was 15.7 per week. Which characteristic of the survey could create a bias in the results?

1) the size of the sample
2) the size of the population
3) the method of analyzing the data
4) the method of choosing the students who were surveyed

121 A spinner is divided into eight equal sections. Five sections are red and three are green. If the spinner is spun three times, what is the probability that it lands on red exactly twice?

1) $\frac{25}{64}$
2) $\frac{45}{512}$
3) $\frac{75}{512}$
4) $\frac{225}{512}$

122 Solve the equation $6 x^{2}-2 x-3=0$ and express the answer in simplest radical form.

123 If θ is an angle in standard position and its terminal side passes through the point $(-3,2)$, find the exact value of $\csc \theta$.

124 Which calculator output shows the strongest linear relationship between x and y ?

Lin Reg

$y=a+b x$
$a=59.026$
$b=6.767$

1) $r=.8643$

Lin Reg
$y=a+b x$
$a=.7$
$b=24.2$
2) $r=.8361$

Lin Reg
$y=a+b x$
$a=2.45$
$b=.95$
3) $r=.6022$

Lin Reg
$y=a+b x$
$a=-2.9$
$b=24.1$
4) $r=-.8924$

125 Which task is not a component of an observational study?

1) The researcher decides who will make up the sample.
2) The researcher analyzes the data received from the sample.
3) The researcher gathers data from the sample, using surveys or taking measurements.
4) The researcher divides the sample into two groups, with one group acting as a control group.

126 What is the range of $\mathrm{f}(x)=|x-3|+2$?

1) $\{x \mid x \geq 3\}$
2) $\{y \mid y \geq 2\}$
3) $\{x \mid x \in$ real numbers $\}$
4) $\{y \mid y \in$ real numbers $\}$

127 When $x^{-1}+1$ is divided by $x+1$, the quotient equals

1) 1
2) $\frac{1}{x}$
3) x
4) $-\frac{1}{x}$

128 Which equation is represented by the graph below?

1) $y=2 \cos 3 x$
2) $y=2 \sin 3 x$
3) $y=2 \cos \frac{2 \pi}{3} x$
4) $y=2 \sin \frac{2 \pi}{3} x$

129 What is the conjugate of $\frac{1}{2}+\frac{3}{2} i$?

1) $-\frac{1}{2}+\frac{3}{2} i$
2) $\frac{1}{2}-\frac{3}{2} i$
3) $\frac{3}{2}+\frac{1}{2} i$
4) $-\frac{1}{2}-\frac{3}{2} i$

Algebra 2/Trigonometry Regents Exam Questions at Random www.jmap.org

130 What is the solution set of the equation
$3 x^{5}-48 x=0$?

1) $\{0, \pm 2\}$
2) $\{0, \pm 2,3\}$
3) $\{0, \pm 2, \pm 2 i\}$
4) $\{ \pm 2, \pm 2 i\}$

131 Find the first four terms of the recursive sequence defined below.

$$
\begin{gathered}
a_{1}=-3 \\
a_{n}=a_{(n-1)}-n
\end{gathered}
$$

132 Which graph does not represent a function?
1)

2)
4)

133 Which equation represents the circle shown in the graph below that passes through the point $(0,-1)$?

1) $(x-3)^{2}+(y+4)^{2}=16$
2) $(x-3)^{2}+(y+4)^{2}=18$
3) $(x+3)^{2}+(y-4)^{2}=16$
4) $(x+3)^{2}+(y-4)^{2}=18$

134 The area of triangle $A B C$ is 42. If $A B=8$ and $\mathrm{m} \angle B=61$, the length of $\overline{B C}$ is approximately

1) 5.1
2) 9.2
3) 12.0
4) 21.7

135 Solve algebraically for x : $4-\sqrt{2 x-5}=1$

136 Two forces of 25 newtons and 85 newtons acting on a body form an angle of 55°. Find the magnitude of the resultant force, to the nearest hundredth of a newton. Find the measure, to the nearest degree, of the angle formed between the resultant and the larger force.

137 What is the sum of the first 19 terms of the sequence $3,10,17,24,31, \ldots$?

1) 1188
2) 1197
3) 1254
4) 1292

138 The expression $4 a b \sqrt{2 b}-3 a \sqrt{18 b^{3}}+7 a b \sqrt{6 b}$ is equivalent to

1) $2 a b \sqrt{6 b}$
2) $16 a b \sqrt{2 b}$
3) $-5 a b+7 a b \sqrt{6 b}$
4) $-5 a b \sqrt{2 b}+7 a b \sqrt{6 b}$

139 In $\triangle A B C, \mathrm{~m} \angle A=32, a=12$, and $b=10$. Find the measures of the missing angles and side of $\triangle A B C$. Round each measure to the nearest tenth.

140 If $\mathrm{f}(x)=\sqrt{9-x^{2}}$, what are its domain and range?

1) domain: $\{x \mid-3 \leq x \leq 3\}$; range: $\{y \mid 0 \leq y \leq 3\}$
2) domain: $\{x \mid x \neq \pm 3\}$; range: $\{y \mid 0 \leq y \leq 3\}$
3) domain: $\{x \mid x \leq-3$ or $x \geq 3\}$; range: $\{y \mid y \neq 0\}$
4) domain: $\{x \mid x \neq 3\}$; range: $\{y \mid y \geq 0\}$

141 If $\sin A=\frac{1}{3}$, what is the value of $\cos 2 A$?

1) $-\frac{2}{3}$
2) $\frac{2}{3}$
3) $-\frac{7}{9}$
4) $\frac{7}{9}$

142 In the interval $0^{\circ} \leq x<360^{\circ}, \tan x$ is undefined when x equals

1) 0° and 90°
2) 90° and 180°
3) 180° and 270°
4) 90° and 270°

143 Perform the indicated operations and simplify completely:

$$
\frac{x^{3}-3 x^{2}+6 x-18}{x^{2}-4 x} \cdot \frac{2 x-4}{x^{4}-3 x^{3}} \div \frac{x^{2}+2 x-8}{16-x^{2}}
$$

144 Given angle A in Quadrant I with $\sin A=\frac{12}{13}$ and angle B in Quadrant II with $\cos B=-\frac{3}{5}$, what is the value of $\cos (A-B)$?

1) $\frac{33}{65}$
2) $-\frac{33}{65}$
3) $\frac{63}{65}$
4) $-\frac{63}{65}$

145 On January 1, a share of a certain stock cost $\$ 180$. Each month thereafter, the cost of a share of this stock decreased by one-third. If x represents the time, in months, and y represents the cost of the stock, in dollars, which graph best represents the cost of a share over the following 5 months?
1)

2)

3)

4)

146 Starting with $\sin ^{2} A+\cos ^{2} A=1$, derive the formula $\tan ^{2} A+1=\sec ^{2} A$.

147 The table below shows the first-quarter averages for Mr. Harper's statistics class.

Statistics Class Averages

Quarter Averages	Frequency
99	1
97	5
95	4
92	4
90	7
87	2
84	6
81	2
75	1
70	2
65	1

What is the population variance for this set of data?

1) 8.2
2) 8.3
3) 67.3
4) 69.3

148 The expression $\log _{5}\left(\frac{1}{25}\right)$ is equivalent to

1) $\frac{1}{2}$
2) 2
3) $-\frac{1}{2}$
4) -2

149 Evaluate: $10+\sum_{n=1}^{5}\left(n^{3}-1\right)$

150 The relationship between t, a student's test scores, and d, the student's success in college, is modeled by the equation $d=0.48 t+75.2$. Based on this linear regression model, the correlation coefficient could be

1) between -1 and 0
2) between 0 and 1
3) equal to -1
4) equal to 0

151 Factored completely, the expression $6 x-x^{3}-x^{2}$ is equivalent to

1) $x(x+3)(x-2)$
2) $x(x-3)(x+2)$
3) $-x(x-3)(x+2)$
4) $-x(x+3)(x-2)$

152 If $\mathrm{f}(x)=\frac{1}{2} x-3$ and $\mathrm{g}(x)=2 x+5$, what is the value of $(g \circ f)(4)$?

1) -13
2) 3.5
3) 3
4) 6

153 For which equation does the sum of the roots equal $\frac{3}{4}$ and the product of the roots equal -2 ?

1) $4 x^{2}-8 x+3=0$
2) $4 x^{2}+8 x+3=0$
3) $4 x^{2}-3 x-8=0$
4) $4 x^{2}+3 x-2=0$

154 If $\mathrm{f}(x)=x^{2}-5$ and $\mathrm{g}(x)=6 x$, then $\mathrm{g}(\mathrm{f}(x))$ is equal to

1) $6 x^{3}-30 x$
2) $6 x^{2}-30$
3) $36 x^{2}-5$
4) $x^{2}+6 x-5$

155 Which equation is sketched in the diagram below?

1) $y=\csc x$
2) $y=\sec x$
3) $y=\cot x$
4) $y=\tan x$

156 The discriminant of a quadratic equation is 24 . The roots are

1) imaginary
2) real, rational, and equal
3) real, rational, and unequal
4) real, irrational, and unequal

Algebra 2/Trigonometry Regents at Random

157 Express $\frac{\cot x \sin x}{\sec x}$ as a single trigonometric function, in simplest form, for all values of x for which it is defined.

158 The points $(2,3),\left(4, \frac{3}{4}\right)$, and $(6, d)$ lie on the graph of a function. If y is inversely proportional to the square of x, what is the value of d ?

1) 1
2) $\frac{1}{3}$
3) 3
4) 27

159 What is the number of degrees in an angle whose radian measure is $\frac{11 \pi}{12}$?

1) 150
2) 165
3) 330
4) 518

160 Which expression is equivalent to $\frac{x^{-1} y^{4}}{3 x^{-5} y^{-1}}$?

1) $\frac{x^{4} y^{5}}{3}$
2) $\frac{x^{5} y^{4}}{3}$
3) $3 x^{4} y^{5}$
4) $\frac{y^{4}}{3 x^{5}}$

161 Which graph best represents the inequality $y+6 \geq x^{2}-x$?
1)

2)

3)

162 Find the third term in the recursive sequence $a_{k+1}=2 a_{k}-1$, where $a_{1}=3$.

163 Express the product of $\cos 30^{\circ}$ and $\sin 45^{\circ}$ in simplest radical form.

164 A circle is drawn to represent a pizza with a 12 inch diameter. The circle is cut into eight congruent pieces. What is the length of the outer edge of any one piece of this circle?

1) $\frac{3 \pi}{4}$
2) π
3) $\frac{3 \pi}{2}$
4) 3π

165 What is the solution set for the equation $\sqrt{5 x+29}=x+3$?

1) $\{4\}$
2) $\{-5\}$
3) $\{4,5\}$
4) $\{-5,4\}$

166 The expression $\frac{\sin ^{2} \theta+\cos ^{2} \theta}{1-\sin ^{2} \theta}$ is equivalent to

1) $\cos ^{2} \theta$
2) $\sin ^{2} \theta$
3) $\sec ^{2} \theta$
4) $\csc ^{2} \theta$

167 If $\mathrm{m} \angle \theta=-50$, which diagram represents θ drawn in standard position?

1)
2)

3)
4)

168 The solution set of the equation $\sqrt{x+3}=3-x$ is

1) $\{1\}$
2) $\{0\}$
3) $\{1,6\}$
4) $\{2,3\}$

169 In the right triangle shown below, what is the measure of angle S, to the nearest minute?

1) $28^{\circ} 1^{\prime}$
2) $28^{\circ} 4^{\prime}$
3) $61^{\circ} 56^{\prime}$
4) $61^{\circ} 93^{\prime}$

170 Expressed with a rational denominator and in simplest form, $\frac{x}{x-\sqrt{x}}$ is

1) $\frac{x^{2}+x \sqrt{x}}{x^{2}-x}$
2) $-\sqrt{x}$
3) $\frac{x+\sqrt{x}}{1-x}$
4) $\frac{x+\sqrt{x}}{x-1}$

171 If $\angle A$ is acute and $\tan A=\frac{2}{3}$, then

1) $\cot A=\frac{2}{3}$
2) $\cot A=\frac{1}{3}$
3) $\cot \left(90^{\circ}-A\right)=\frac{2}{3}$
4) $\cot \left(90^{\circ}-A\right)=\frac{1}{3}$

172 An auditorium has 21 rows of seats. The first row has 18 seats, and each succeeding row has two more seats than the previous row. How many seats are in the auditorium?

1) 540
2) 567
3) 760
4) 798

173 Express as a single fraction the exact value of $\sin 75^{\circ}$.

174 The measures of the angles between the resultant and two applied forces are 60° and 45°, and the magnitude of the resultant is 27 pounds. Find, to the nearest pound, the magnitude of each applied force.

175 Solve algebraically for $x: \log _{27}(2 x-1)=\frac{4}{3}$

176 In simplest form, $\sqrt{-300}$ is equivalent to

1) $3 i \sqrt{10}$
2) $5 i \sqrt{12}$
3) $10 i \sqrt{3}$
4) $12 i \sqrt{5}$

177 If $a=3$ and $b=-2$, what is the value of the expression $\frac{a^{-2}}{b^{-3}}$?

1) $-\frac{9}{8}$
2) -1
3) $-\frac{8}{9}$
4) $\frac{8}{9}$

178 The function $\mathrm{f}(x)=\tan x$ is defined in such a way that $\mathrm{f}^{-1}(x)$ is a function. What can be the domain of $\mathrm{f}(x)$?

1) $\{x \mid 0 \leq x \leq \pi\}$
2) $\{x \mid 0 \leq x \leq 2 \pi\}$
3) $\left\{x \left\lvert\,-\frac{\pi}{2}<x<\frac{\pi}{2}\right.\right\}$
4) $\left\{x \left\lvert\,-\frac{\pi}{2}<x<\frac{3 \pi}{2}\right.\right\}$

179 A cup of soup is left on a countertop to cool. The table below gives the temperatures, in degrees Fahrenheit, of the soup recorded over a 10 -minute period.

Time in Minutes (x)	Temperature in ${ }^{\mathbf{0}} \mathbf{F}(y)$
0	180.2
2	165.8
4	146.3
6	135.4
8	127.7
10	110.5

Write an exponential regression equation for the data, rounding all values to the nearest thousandth.

180 What is the domain of the function shown below?

1) $-1 \leq x \leq 6$
2) $-1 \leq y \leq 6$
3) $-2 \leq x \leq 5$
4) $-2 \leq y \leq 5$

181 What is the graph of the solution set of $|2 x-1|>5$?
1)

2)

182 The solution set of $\sqrt{3 x+16}=x+2$ is

1) $\{-3,4\}$
2) $\{-4,3\}$
3) $\{3\}$
4) $\{-4\}$

183 Find the number of possible different 10-letter arrangements using the letters of the word "STATISTICS."

184 Express the product of $\left(\frac{1}{2} y^{2}-\frac{1}{3} y\right)$ and $\left(12 y+\frac{3}{5}\right)$ as a trinomial.

185 The letters of any word can be rearranged. Carol believes that the number of different 9-letter arrangements of the word "TENNESSEE" is greater than the number of different 7-letter arrangements of the word "VERMONT." Is she correct? Justify your answer.

186 Mrs. Hill asked her students to express the sum $1+3+5+7+9+\ldots+39$ using sigma notation. Four different student answers were given. Which student answer is correct?

1) $\sum_{k=1}^{20}(2 k-1)$
2) $\sum_{k=2}^{40}(k-1)$
3) $\sum_{k=-1}^{37}(k+2)$
4) $\sum_{k=1}^{39}(2 k-1)$

187 What is the range of the function shown below?

1) $x \leq 0$
2) $x \geq 0$
3) $y \leq 0$
4) $y \geq 0$

188 Write an equation for the graph of the trigonometric function shown below.

189 In which interval of $\mathrm{f}(x)=\cos (x)$ is the inverse also a function?

1) $-\frac{\pi}{2}<x<\frac{\pi}{2}$
2) $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$
3) $0 \leq x \leq \pi$
4) $\frac{\pi}{2} \leq x \leq \frac{3 \pi}{2}$

190 On the unit circle shown in the diagram below, sketch an angle, in standard position, whose degree measure is 240 and find the exact value of $\sin 240^{\circ}$.

191 Which relation is not a function?

1) $(x-2)^{2}+y^{2}=4$
2) $x^{2}+4 x+y=4$
3) $x+y=4$
4) $x y=4$

192 The expression $\cos ^{2} \theta-\cos 2 \theta$ is equivalent to

1) $\sin ^{2} \theta$
2) $-\sin ^{2} \theta$
3) $\cos ^{2} \theta+1$
4) $-\cos ^{2} \theta-1$

193 If $\mathrm{g}(x)=(a x \sqrt{1-x})^{2}$, express $\mathrm{g}(10)$ in simplest form.

194 What is the formula for the nth term of the sequence $54,18,6, \ldots$?

1) $a_{n}=6\left(\frac{1}{3}\right)^{n}$
2) $a_{n}=6\left(\frac{1}{3}\right)^{n-1}$
3) $a_{n}=54\left(\frac{1}{3}\right)^{n}$
4) $a_{n}=54\left(\frac{1}{3}\right)^{n-1}$

195 If n is a negative integer, then which statement is always true?

1) $6 n^{-2}<4 n^{-1}$
2) $\frac{n}{4}>-6 n^{-1}$
3) $6 n^{-1}<4 n^{-1}$
4) $4 n^{-1}>(6 n)^{-1}$

196 What is the value of x in the equation $\log _{5} x=4$?

1) 1.16
2) 20
3) 625
4) 1,024

197 What is a positive value of $\tan \frac{1}{2} x$, when $\sin x=0.8 ?$

1) 0.5
2) 0.4
3) 0.33
4) 0.25

198 What is the principal value of $\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$?

1) -30°
2) 60°
3) 150°
4) 240°

199 Find the sum and product of the roots of the equation $5 x^{2}+11 x-3=0$.

200 Evaluate $e^{x \ln y}$ when $x=3$ and $y=2$.

201 The equation $x^{2}+y^{2}-2 x+6 y+3=0$ is equivalent to

1) $(x-1)^{2}+(y+3)^{2}=-3$
2) $(x-1)^{2}+(y+3)^{2}=7$
3) $(x+1)^{2}+(y+3)^{2}=7$
4) $(x+1)^{2}+(y+3)^{2}=10$

202 Which two functions are inverse functions of each other?

1) $\mathrm{f}(x)=\sin x$ and $\mathrm{g}(x)=\cos (x)$
2) $\mathrm{f}(x)=3+8 x$ and $\mathrm{g}(x)=3-8 x$
3) $\mathrm{f}(x)=e^{x}$ and $\mathrm{g}(x)=\ln x$
4) $\mathrm{f}(x)=2 x-4$ and $\mathrm{g}(x)=-\frac{1}{2} x+4$

203 Which graph shows $y=\cos ^{-1} x$?
1)

2)

3)

Algebra 2/Trigonometry Regents Exam Questions at Random www.jmap.org

204 The expression $2 \log x-(3 \log y+\log z)$ is equivalent to

1) $\log \frac{x^{2}}{y^{3} z}$
2) $\log \frac{x^{2} z}{y^{3}}$
3) $\log \frac{2 x}{3 y z}$
4) $\log \frac{2 x z}{3 y}$

205 Which equation represents the graph below?

1) $y=-2 \sin 2 x$
2) $y=-2 \sin \frac{1}{2} x$
3) $y=-2 \cos 2 x$
4) $y=-2 \cos \frac{1}{2} x$

206 In $\triangle A B C, \mathrm{~m} \angle A=74, a=59.2$, and $c=60.3$. What are the two possible values for $\mathrm{m} \angle C$, to the nearest tenth?

1) 73.7 and 106.3
2) 73.7 and 163.7
3) 78.3 and 101.7
4) 78.3 and 168.3

207 The table below shows the number of new stores in a coffee shop chain that opened during the years 1986 through 1994.

Year	Number of New Stores
1986	14
1987	27
1988	48
1989	80
1990	110
1991	153
1992	261
1993	403
1994	681

Using $x=1$ to represent the year 1986 and y to represent the number of new stores, write the exponential regression equation for these data. Round all values to the nearest thousandth.

208 If $\tan A=\frac{2}{3}$ and $\sin B=\frac{5}{\sqrt{41}}$ and angles A and B are in Quadrant I, find the value of $\tan (A+B)$.

209 The roots of the equation $9 x^{2}+3 x-4=0$ are

1) imaginary
2) real, rational, and equal
3) real, rational, and unequal
4) real, irrational, and unequal

Algebra 2/Trigonometry Regents Exam Questions at Random www.jmap.org

210 What is the common ratio of the geometric sequence whose first term is 27 and fourth term is 64 ?

1) $\frac{3}{4}$
2) $\frac{64}{81}$
3) $\frac{4}{3}$
4) $\frac{37}{3}$

211 The two sides and included angle of a parallelogram are 18,22 , and 60°. Find its exact area in simplest form.

212 The sides of a parallelogram measure 10 cm and 18 cm . One angle of the parallelogram measures 46 degrees. What is the area of the parallelogram, to the nearest square centimeter?

1) 65
2) 125
3) 129
4) 162

213 Which expression is equivalent to $\frac{\sqrt{3}+5}{\sqrt{3}-5}$?

1) $-\frac{14+5 \sqrt{3}}{11}$
2) $-\frac{17+5 \sqrt{3}}{11}$
3) $\frac{14+5 \sqrt{3}}{14}$
4) $\frac{17+5 \sqrt{3}}{14}$

214 Which summation represents
$5+7+9+11+\ldots+43$?

1) $\sum_{n=5}^{43} n$
2) $\sum_{n=1}^{20}(2 n+3)$
3) $\sum_{n=4}^{24}(2 n-3)$
4) $\sum_{n=3}^{23}(3 n-4)$

215 Which diagram represents a relation that is both one-to-one and onto?
1)

2)

3)
4)

216 Express $5 \sqrt{3 x^{3}}-2 \sqrt{27 x^{3}}$ in simplest radical form.

217 Which problem involves evaluating ${ }_{6} P_{4}$?

1) How many different four-digit ID numbers can be formed using $1,2,3,4,5$, and 6 without repetition?
2) How many different subcommittees of four can be chosen from a committee having six members?
3) How many different outfits can be made using six shirts and four pairs of pants?
4) How many different ways can one boy and one girl be selected from a group of four boys and six girls?

218 What is the common ratio of the sequence $\frac{1}{64} a^{5} b^{3},-\frac{3}{32} a^{3} b^{4}, \frac{9}{16} a b^{5}, \ldots$?

1) $-\frac{3 b}{2 a^{2}}$
2) $-\frac{6 b}{a^{2}}$
3) $-\frac{3 a^{2}}{b}$
4) $-\frac{6 a^{2}}{b}$

219 Howard collected fish eggs from a pond behind his house so he could determine whether sunlight had an effect on how many of the eggs hatched. After he collected the eggs, he divided them into two tanks. He put both tanks outside near the pond, and he covered one of the tanks with a box to block out all sunlight. State whether Howard's investigation was an example of a controlled experiment, an observation, or a survey. Justify your response.

220 Which graph represents a one-to-one function?

221 How many negative solutions to the equation $2 x^{3}-4 x^{2}+3 x-1=0$ exist?

1) 1
2) 2
3) 3
4) 0

222 What is the coefficient of the fourth term in the expansion of $(a-4 b)^{9}$?

1) $-5,376$
2) -336
3) 336
4) 5,376

223 If $r=\sqrt[3]{\frac{A^{2} B}{C}}$, then $\log r$ can be represented by

1) $\frac{1}{6} \log A+\frac{1}{3} \log B-\log C$
2) $3\left(\log A^{2}+\log B-\log C\right)$
3) $\frac{1}{3} \log \left(A^{2}+B\right)-C$
4) $\frac{2}{3} \log A+\frac{1}{3} \log B-\frac{1}{3} \log C$

224 When $x^{-1}-1$ is divided by $x-1$, the quotient is

1) -1
2) $-\frac{1}{x}$
3) $\frac{1}{x^{2}}$
4) $\frac{1}{(x-1)^{2}}$

225 A ranch in the Australian Outback is shaped like triangle $A C E$, with $\mathrm{m} \angle A=42, \mathrm{~m} \angle E=103$, and $A C=15$ miles. Find the area of the ranch, to the nearest square mile.

226 Simplify the expression $\frac{3 x^{-4} y^{5}}{\left(2 x^{3} y^{-7}\right)^{-2}}$ and write the answer using only positive exponents.

227 A circle shown in the diagram below has a center of $(-5,3)$ and passes through point $(-1,7)$.

Write an equation that represents the circle.

228 If $\log _{b} x=3 \log _{b} p-\left(2 \log _{b} t+\frac{1}{2} \log _{b} r\right)$, then the value of x is

1) $\frac{p^{3}}{\sqrt{t^{2} r}}$
2) $p^{3} t^{2} r^{\frac{1}{2}}$
3) $\frac{p^{3} t^{2}}{\sqrt{r}}$
4) $\frac{p^{3}}{t^{2} \sqrt{r}}$

Algebra 2/Trigonometry Regents Exam Questions at Random www.jmap.org

229 The value of the expression $\sum_{r=3}^{5}\left(-r^{2}+r\right)$ is

1) -38
2) -12
3) 26
4) 62

230 Determine the sum and the product of the roots of the equation $12 x^{2}+x-6=0$.

231 What is the fifteenth term of the geometric sequence $-\sqrt{5}, \sqrt{10},-2 \sqrt{5}, \ldots$?

1) $-128 \sqrt{5}$
2) $128 \sqrt{10}$
3) $-16384 \sqrt{5}$
4) $16384 \sqrt{10}$

232 The number of minutes students took to complete a quiz is summarized in the table below.

Minutes	14	15	16	17	18	19	20
Number of Students	5	3	x	5	2	10	1

If the mean number of minutes was 17 , which equation could be used to calculate the value of x ?

1) $17=\frac{119+x}{x}$
2) $17=\frac{119+16 x}{x}$
3) $17=\frac{446+x}{26+x}$
4) $17=\frac{446+16 x}{26+x}$

233 The expression $\left(x^{2}-1\right)^{-\frac{2}{3}}$ is equivalent to

1) $\sqrt[3]{\left(x^{2}-1\right)^{2}}$
2) $\frac{1}{\sqrt[3]{\left(x^{2}-1\right)^{2}}}$
3) $\sqrt{\left(x^{2}-1\right)^{3}}$
4) $\frac{1}{\sqrt{\left(x^{2}-1\right)^{3}}}$

234 In a study of 82 video game players, the researchers found that the ages of these players were normally distributed, with a mean age of 17 years and a standard deviation of 3 years. Determine if there were 15 video game players in this study over the age of 20 . Justify your answer.

235 A doctor wants to test the effectiveness of a new drug on her patients. She separates her sample of patients into two groups and administers the drug to only one of these groups. She then compares the results. Which type of study best describes this situation?

1) census
2) survey
3) observation
4) controlled experiment

236 On a multiple-choice test, Abby randomly guesses on all seven questions. Each question has four choices. Find the probability, to the nearest thousandth, that Abby gets exactly three questions correct.

237 Two sides of a parallelogram are 24 feet and 30 feet. The measure of the angle between these sides is 57°. Find the area of the parallelogram, to the nearest square foot.

238 In $\triangle M N P, m=6$ and $n=10$. Two distinct triangles can be constructed if the measure of angle M is

1) 35
2) 40
3) 45
4) 50

239 The probability that a professional baseball player will get a hit is $\frac{1}{3}$. Calculate the exact probability that he will get at least 3 hits in 5 attempts.

240 What is the product of $\left(\frac{2}{5} x-\frac{3}{4} y^{2}\right)$ and $\left(\frac{2}{5} x+\frac{3}{4} y^{2}\right) ?$

1) $\frac{4}{25} x^{2}-\frac{9}{16} y^{4}$
2) $\frac{4}{25} x-\frac{9}{16} y^{2}$
3) $\frac{2}{5} x^{2}-\frac{3}{4} y^{4}$
4) $\frac{4}{5} x$

241 What is the number of degrees in an angle whose radian measure is $\frac{8 \pi}{5}$?

1) 576
2) 288
3) 225
4) 113

242 The graph of $y=x^{3}-4 x^{2}+x+6$ is shown below.

What is the product of the roots of the equation
$x^{3}-4 x^{2}+x+6=0$?

1) -36
2) -6
3) 6
4) 4

Algebra 2/Trigonometry Regents Exam Questions at Random www.jmap.org

243 Which graph represents a relation that is not a function?
1)

2)

3)

244 Twenty different cameras will be assigned to several boxes. Three cameras will be randomly selected and assigned to box A . Which expression can be used to calculate the number of ways that three cameras can be assigned to box A?

1) 20 !
2) $\frac{20!}{3!}$
3) ${ }_{20} C_{3}$
4) ${ }_{20} P_{3}$

245 The expression $\sin (\theta+90)^{\circ}$ is equivalent to

1) $-\sin \theta$
2) $-\cos \theta$
3) $\sin \theta$
4) $\cos \theta$

246 Which function is one-to-one?

1) $\mathrm{k}(x)=x^{2}+2$
2) $\mathrm{g}(x)=x^{3}+2$
3) $\mathrm{f}(x)=|x|+2$
4) $\mathrm{j}(x)=x^{4}+2$

247 The principal would like to assemble a committee of 8 students from the 15 -member student council. How many different committees can be chosen?

1) 120
2) 6,435
3) $32,432,400$
4) $259,459,200$

248 Express the sum $7+14+21+28+\ldots+105$ using sigma notation.

249 The formula for continuously compounded interest is $A=P e^{r t}$, where A is the amount of money in the account, P is the initial investment, r is the interest rate, and t is the time in years. Using the formula, determine, to the nearest dollar, the amount in the account after 8 years if $\$ 750$ is invested at an annual rate of 3%.

250 The expression $\sqrt[4]{16 x^{2} y^{7}}$ is equivalent to

1) $2 x^{\frac{1}{2}} y^{\frac{7}{4}}$
2) $2 x^{8} y^{28}$
3) $4 x^{\frac{1}{2}} y^{\frac{7}{4}}$
4) $4 x^{8} y^{28}$

251 In a triangle, two sides that measure 6 cm and 10 cm form an angle that measures 80°. Find, to the nearest degree, the measure of the smallest angle in the triangle.

252 Express $\left(\frac{2}{3} x-1\right)^{2}$ as a trinomial.

253 Solve the equation below algebraically, and express the result in simplest radical form:

$$
\frac{13}{x}=10-x
$$

254 What is the period of the function $\mathrm{f}(\theta)=-2 \cos 3 \theta$?

1) π
2) $\frac{2 \pi}{3}$
3) $\frac{3 \pi}{2}$
4) 2π

255 Which values of x are in the solution set of the following system of equations?

$$
\begin{aligned}
& y=3 x-6 \\
& y=x^{2}-x-6
\end{aligned}
$$

1) $0,-4$
2) 0,4
3) $6,-2$
4) $-6,2$

256 Which expression is equivalent to $\frac{2 x^{-2} y^{-2}}{4 y^{-5}}$?

1) $\frac{y^{3}}{2 x^{2}}$
2) $\frac{2 y^{3}}{x^{2}}$
3) $\frac{2 x^{2}}{y^{3}}$
4) $\frac{x^{2}}{2 y^{3}}$

Algebra 2/Trigonometry Regents Exam Questions at Random www.jmap.org

257 If $x=3 i, y=2 i$, and $z=m+i$, the expression $x y^{2} z$ equals

1) $-12-12 m i$
2) $-6-6 m i$
3) $12-12 m i$
4) $6-6 m i$

258 The expression $\frac{4}{5-\sqrt{13}}$ is equivalent to

1) $\frac{4 \sqrt{13}}{5 \sqrt{13}-13}$
2) $\frac{4(5-\sqrt{13})}{38}$
3) $\frac{5+\sqrt{13}}{3}$
4) $\frac{4(5+\sqrt{13})}{38}$

259 If $\tan \left(\operatorname{Arccos} \frac{\sqrt{3}}{k}\right)=\frac{\sqrt{3}}{3}$, then k is

1) 1
2) 2
3) $\sqrt{2}$
4) $3 \sqrt{2}$

260 A market research firm needs to collect data on viewer preferences for local news programming in Buffalo. Which method of data collection is most appropriate?

1) census
2) survey
3) observation
4) controlled experiment

261 The graph of the equation $y=\left(\frac{1}{2}\right)^{x}$ has an asymptote. On the grid below, sketch the graph of $y=\left(\frac{1}{2}\right)^{x}$ and write the equation of this asymptote.

262 The conjugate of the complex expression $-5 x+4 i$ is

1) $5 x-4 i$
2) $5 x+4 i$
3) $-5 x-4 i$
4) $-5 x+4 i$

263 Use the discriminant to determine all values of k that would result in the equation $x^{2}-k x+4=0$ having equal roots.

264 Solve the equation $2 \tan C-3=3 \tan C-4$ algebraically for all values of C in the interval $0^{\circ} \leq C<360^{\circ}$.

265 The product of $(3+\sqrt{5})$ and $(3-\sqrt{5})$ is

1) $4-6 \sqrt{5}$
2) $14-6 \sqrt{5}$
3) 14
4) 4

266 Which expression is equivalent to $(\mathrm{n} \circ \mathrm{m} \circ \mathrm{p})(x)$, given $\mathrm{m}(x)=\sin x, \mathrm{n}(x)=3 x$, and $\mathrm{p}(x)=x^{2}$?

1) $\sin (3 x)^{2}$
2) $3 \sin x^{2}$
3) $\sin ^{2}(3 x)$
4) $3 \sin ^{2} x$

267 Factored completely, the expression $12 x^{4}+10 x^{3}-12 x^{2}$ is equivalent to

1) $x^{2}(4 x+6)(3 x-2)$
2) $2\left(2 x^{2}+3 x\right)\left(3 x^{2}-2 x\right)$
3) $2 x^{2}(2 x-3)(3 x+2)$
4) $2 x^{2}(2 x+3)(3 x-2)$

The minimum point on the graph of the equation $y=\mathrm{f}(x)$ is $(-1,-3)$. What is the minimum point on the graph of the equation $y=\mathrm{f}(x)+5$?

1) $(-1,2)$
2) $(-1,-8)$
3) $(4,-3)$
4) $(-6,-3)$

269 Solve algebraically for $x: \log _{x+3} \frac{x^{3}+x-2}{x}=2$

270 Expressed as a function of a positive acute angle, $\cos \left(-305^{\circ}\right)$ is equal to

1) $-\cos 55^{\circ}$
2) $\cos 55^{\circ}$
3) $-\sin 55^{\circ}$
4) $\sin 55^{\circ}$

271 Factor completely: $10 a x^{2}-23 a x-5 a$

272 Samantha constructs the scatter plot below from a set of data.

Based on her scatter plot, which regression model would be most appropriate?

1) exponential
2) linear
3) logarithmic
4) power

273 Find the total number of different twelve-letter arrangements that can be formed using the letters in the word PENNSYLVANIA.

274 What is the value of x in the equation
$9^{3 x+1}=27^{x+2}$?

1) 1
2) $\frac{1}{3}$
3) $\frac{1}{2}$
4) $\frac{4}{3}$

275 Find all values of θ in the interval $0^{\circ} \leq \theta<360^{\circ}$ that satisfy the equation $\sin 2 \theta=\sin \theta$.

276 A study finds that 80% of the local high school students text while doing homework. Ten students are selected at random from the local high school. Which expression would be part of the process used to determine the probability that, at most, 7 of the 10 students text while doing homework?

1) ${ }_{10} C_{6}\left(\frac{4}{5}\right)^{6}\left(\frac{1}{5}\right)^{4}$
2) ${ }_{10} C_{7}\left(\frac{4}{5}\right)^{10}\left(\frac{1}{5}\right)^{7}$
3) ${ }_{10} C_{8}\left(\frac{7}{10}\right)^{10}\left(\frac{3}{10}\right)^{2}$
4) ${ }_{10} C_{9}\left(\frac{7}{10}\right)^{9}\left(\frac{3}{10}\right)^{1}$

277 When simplified, the expression $\left(\frac{w^{-5}}{w^{-9}}\right)^{\frac{1}{2}}$ is equivalent to

1) w^{-7}
2) w^{2}
3) w^{7}
4) w^{14}

278 What is the conjugate of $-2+3 i$?

1) $-3+2 i$
2) $-2-3 i$
3) $2-3 i$
4) $3+2 i$

279 Which ordered pair is in the solution set of the system of equations shown below?

$$
\begin{array}{r}
y^{2}-x^{2}+32=0 \\
3 y-x=0
\end{array}
$$

1) $(2,6)$
2) $(3,1)$
3) $(-1,-3)$
4) $(-6,-2)$

280 Determine the value of n in simplest form:
$i^{13}+i^{18}+i^{31}+n=0$

281 Find, to the nearest tenth, the radian measure of 216°.

Algebra 2/Trigonometry Regents Exam Questions at Random www.jmap.org

282 Which graph represents the function $\log _{2} x=y$?

283 When factored completely, $x^{3}+3 x^{2}-4 x-12$ equals

1) $(x+2)(x-2)(x-3)$
2) $(x+2)(x-2)(x+3)$
3) $\left(x^{2}-4\right)(x+3)$
4) $\left(x^{2}-4\right)(x-3)$

284 Susie invests $\$ 500$ in an account that is compounded continuously at an annual interest rate of 5%, according to the formula $A=P e^{r t}$, where A is the amount accrued, P is the principal, r is the rate of interest, and t is the time, in years.
Approximately how many years will it take for Susie's money to double?

1) 1.4
2) 6.0
3) 13.9
4) 14.7

285 Which ratio represents $\csc A$ in the diagram below?

1) $\frac{25}{24}$
2) $\frac{25}{7}$
3) $\frac{24}{7}$
4) $\frac{7}{24}$

Algebra 2/Trigonometry Regents Exam Questions at Random www.jmap.org

286 The graph of $y=\mathrm{f}(x)$ is shown below.

Which set lists all the real solutions of $\mathrm{f}(x)=0$?

1) $\{-3,2\}$
2) $\{-2,3\}$
3) $\{-3,0,2\}$
4) $\{-2,0,3\}$

287 If order does not matter, which selection of students would produce the most possible committees?

1) 5 out of 15
2) 5 out of 25
3) 20 out of 25
4) 15 out of 25

288 Solve algebraically for all values of x :
$x^{4}+4 x^{3}+4 x^{2}=-16 x$

289 Brian correctly used a method of completing the square to solve the equation $x^{2}+7 x-11=0$. Brian's first step was to rewrite the equation as $x^{2}+7 x=11$. He then added a number to both sides of the equation. Which number did he add?

1) $\frac{7}{2}$
2) $\frac{49}{4}$
3) $\frac{49}{2}$
4) 49

290 Akeem invests $\$ 25,000$ in an account that pays 4.75\% annual interest compounded continuously.

Using the formula $A=P e^{r t}$, where $A=$ the amount in the account after t years, $P=$ principal invested, and $r=$ the annual interest rate, how many years, to the nearest tenth, will it take for Akeem's investment to triple?

1) 10.0
2) 14.6
3) 23.1
4) 24.0

291 Which value of r represents data with a strong negative linear correlation between two variables?

1) -1.07
2) -0.89
3) -0.14
4) 0.92

292 Solve algebraically for $x: \frac{1}{x+3}-\frac{2}{3-x}=\frac{4}{x^{2}-9}$

Algebra 2/Trigonometry Regents Exam Questions at Random www.jmap.org

293 Express in simplest form: $\frac{\frac{4-x^{2}}{x^{2}+7 x+12}}{\frac{2 x-4}{x+3}}$
298 An angle, P, drawn in standard position, terminates in Quadrant II if

1) $\cos P<0$ and $\csc P<0$
2) $\sin P>0$ and $\cos P>0$
3) $\csc P>0$ and $\cot P<0$
4) $\tan P<0$ and $\sec P>0$

299 Which equation is represented by the graph below?

1) -1.3407
2) -1.3408
3) -1.3548
4) -1.3549

295 The expression $\log 4 m^{2}$ is equivalent to

1) $2(\log 4+\log m)$
2) $2 \log 4+\log m$
3) $\log 4+2 \log n$
4) $\log 16+2 \log m$

296 If $\mathrm{f}(x)=\frac{x}{x^{2}-16}$, what is the value of $\mathrm{f}(-10)$?

1) $-\frac{5}{2}$
2) $-\frac{5}{42}$
3) $\frac{5}{58}$
4) $\frac{5}{18}$

297 Express $\cos \theta(\sec \theta-\cos \theta)$, in terms of $\sin \theta$.

301 In $\triangle A B C, a=15, b=14$, and $c=13$, as shown in the diagram below. What is the $\mathrm{m} \angle C$, to the nearest degree?

1) 53
2) 59
3) 67
4) 127

302 The sum of the first eight terms of the series
$3-12+48-192+\ldots$ is

1) $-13,107$
2) $-21,845$
3) $-39,321$
4) $-65,535$

303 Express in simplest form: $\frac{\frac{1}{2}-\frac{4}{d}}{\frac{1}{d}+\frac{3}{2 d}}$

304 If $\mathrm{f}(x)=x^{2}-6$ and $\mathrm{g}(x)=2^{x}-1$, determine the value of $(g \circ f)(-3)$.

305 Solve algebraically for all values of x :

$$
81^{x^{3}+2 x^{2}}=27^{\frac{5 x}{3}}
$$

306 What is the range of $\mathrm{f}(x)=(x+4)^{2}+7$?

1) $y \geq-4$
2) $y \geq 4$
3) $y=7$
4) $y \geq 7$

307 What is a formula for the nth term of sequence B shown below?

$$
B=10,12,14,16, \ldots
$$

1) $b_{n}=8+2 n$
2) $b_{n}=10+2 n$
3) $b_{n}=10(2)^{n}$
4) $b_{n}=10(2)^{n-1}$

308 Write a quadratic equation such that the sum of its roots is 6 and the product of its roots is -27 .

309 Which equation has roots with the sum equal to $\frac{9}{4}$ and the product equal to $\frac{3}{4}$?

1) $4 x^{2}+9 x+3=0$
2) $4 x^{2}+9 x-3=0$
3) $4 x^{2}-9 x+3=0$
4) $4 x^{2}-9 x-3=0$

Algebra 2/Trigonometry Regents Exam Questions at Random www.jmap.org

310 Which graph represents one complete cycle of the equation $y=\sin 3 \pi x$?
1)

3)

4)

311 Find, algebraically, the measure of the obtuse angle, to the nearest degree, that satisfies the equation $5 \csc \theta=8$.

312 Which equation is represented by the graph below?

1) $y=\cot x$
2) $y=\csc x$
3) $y=\sec x$
4) $y=\tan x$

313 The fraction $\frac{3}{\sqrt{3 a^{2} b}}$ is equivalent to

1) $\frac{1}{a \sqrt{b}}$
2) $\frac{\sqrt{b}}{a b}$
3) $\frac{\sqrt{3 b}}{a b}$
4) $\frac{\sqrt{3}}{a}$

Algebra 2/Trigonometry Regents Exam Questions at Random www.jmap.org

314 In the diagram below of right triangle $K T W$, $K W=6, K T=5$, and $\mathrm{m} \angle K T W=90$.

What is the measure of $\angle K$, to the nearest minute?

1) $33^{\circ} 33^{\prime}$
2) $33^{\circ} 34^{\prime}$
3) $33^{\circ} 55^{\prime}$
4) $33^{\circ} 56^{\prime}$

315 What is the middle term in the expansion of $\left(\frac{x}{2}-2 y\right)^{6}$?

1) $20 x^{3} y^{3}$
2) $-\frac{15}{4} x^{4} y^{2}$
3) $-20 x^{3} y^{3}$
4) $\frac{15}{4} x^{4} y^{2}$

316 Four points on the graph of the function $\mathrm{f}(x)$ are shown below.

$$
\{(0,1),(1,2),(2,4),(3,8)\}
$$

Which equation represents $\mathrm{f}(x)$?

1) $\mathrm{f}(x)=2^{x}$
2) $\mathrm{f}(x)=2 x$
3) $\mathrm{f}(x)=x+1$
4) $\mathrm{f}(x)=\log _{2} x$

317 Which value of r represents data with a strong positive linear correlation between two variables?

1) 0.89
2) 0.34
3) 1.04
4) 0.01

318 In which graph is θ coterminal with an angle of -70° ?
1)
2)
3)

319 The roots of the equation $2 x^{2}+7 x-3=0$ are

1) $-\frac{1}{2}$ and -3
2) $\frac{1}{2}$ and 3
3) $\frac{-7 \pm \sqrt{73}}{4}$
4) $\frac{7 \pm \sqrt{73}}{4}$

320 The value of x in the equation $4^{2 x+5}=8^{3 x}$ is

1) 1
2) 2
3) 5
4) -10

321 During a particular month, a local company surveyed all its employees to determine their travel times to work, in minutes. The data for all 15 employees are shown below.

$$
\begin{array}{rrrrr}
25 & 55 & 40 & 65 & 29 \\
45 & 59 & 35 & 25 & 37 \\
52 & 30 & 8 & 40 & 55
\end{array}
$$

Determine the number of employees whose travel time is within one standard deviation of the mean.

322 The members of a men's club have a choice of wearing black or red vests to their club meetings. A study done over a period of many years determined that the percentage of black vests worn is 60%. If there are 10 men at a club meeting on a given night, what is the probability, to the nearest thousandth, that at least 8 of the vests worn will be black?

323 Solve the following systems of equations algebraically: $5=y-x$

$$
4 x^{2}=-17 x+y+4
$$

324 A study shows that 35% of the fish caught in a local lake had high levels of mercury. Suppose that 10 fish were caught from this lake. Find, to the nearest tenth of a percent, the probability that at least 8 of the 10 fish caught did not contain high levels of mercury.

325 Ten teams competed in a cheerleading competition at a local high school. Their scores were 29, 28, $39,37,45,40,41,38,37$, and 48 . How many scores are within one population standard deviation from the mean? For these data, what is the interquartile range?

326 Ms. Bell's mathematics class consists of 4 sophomores, 10 juniors, and 5 seniors. How many different ways can Ms. Bell create a four-member committee of juniors if each junior has an equal chance of being selected?

1) 210
2) 3,876
3) 5,040
4) 93,024

Algebra 2/Trigonometry Regents Exam Questions at Random www.jmap.org

327 What are the domain and the range of the function shown in the graph below?

1) $\{x \mid x>-4\} ;\{y \mid y>2\}$
2) $\{x \mid x \geq-4\} ;\{y \mid y \geq 2\}$
3) $\{x \mid x>2\} ;\{y \mid y>-4\}$
4) $\{x \mid x \geq 2\} ;\{y \mid y \geq-4\}$

328 If $\mathrm{f}(x)=x^{2}-6$, find $\mathrm{f}^{-1}(x)$.

329 The simplest form of $\frac{1-\frac{4}{x}}{1-\frac{2}{x}-\frac{8}{x^{2}}}$ is

1) $\frac{1}{2}$
2) $\frac{x}{x+2}$
3) $\frac{x}{3}$
4) $-\frac{x}{x-2}$

330 The solutions of the equation $y^{2}-3 y=9$ are

1) $\frac{3 \pm 3 i \sqrt{3}}{2}$
2) $\frac{3 \pm 3 i \sqrt{5}}{2}$
3) $\frac{-3 \pm 3 \sqrt{5}}{2}$
4) $\frac{3 \pm 3 \sqrt{5}}{2}$

331 The product of i^{7} and i^{5} is equivalent to

1) 1
2) -1
3) i
4) $-i$

332 Graph the inequality $-3|6-x|<-15$ for x. Graph the solution on the line below.

333 An amateur bowler calculated his bowling average for the season. If the data are normally distributed, about how many of his 50 games were within one standard deviation of the mean?

1) 14
2) 17
3) 34
4) 48

Algebra 2/Trigonometry Regents Exam Questions at Random www.jmap.org

334 The expression $\sqrt[3]{64 a^{16}}$ is equivalent to

1) $8 a^{4}$
2) $8 a^{8}$
3) $4 a^{5} \sqrt[3]{a}$
4) $4 a \sqrt[3]{a^{5}}$

335 In $\triangle P Q R, p$ equals

1) $\frac{r \sin P}{\sin Q}$
2) $\frac{r \sin P}{\sin R}$
3) $\frac{r \sin R}{\sin P}$
4) $\frac{q \sin R}{\sin Q}$

336 Which equation is represented by the graph below?

1) $y=5^{x}$
2) $y=0.5^{x}$
3) $y=5^{-x}$
4) $y=0.5^{-x}$

337 As shown in the table below, a person's target heart rate during exercise changes as the person gets older.

Age (years)	Target Heart Rate (beats per minute)
20	135
25	132
30	129
35	125
40	122
45	119
50	115

Which value represents the linear correlation coefficient, rounded to the nearest thousandth, between a person's age, in years, and that person's target heart rate, in beats per minute?

1) -0.999
2) -0.664
3) 0.998
4) 1.503

338 What is the radian measure of an angle whose measure is -420° ?

1) $-\frac{7 \pi}{3}$
2) $-\frac{7 \pi}{6}$
3) $\frac{7 \pi}{6}$
4) $\frac{7 \pi}{3}$

339 What is the solution set for $2 \cos \theta-1=0$ in the interval $0^{\circ} \leq \theta<360^{\circ}$?

1) $\left\{30^{\circ}, 150^{\circ}\right\}$
2) $\left\{60^{\circ}, 120^{\circ}\right\}$
3) $\left\{30^{\circ}, 330^{\circ}\right\}$
4) $\left\{60^{\circ}, 300^{\circ}\right\}$

340 The value of $\csc 138^{\circ} 23^{\prime}$ rounded to four decimal places is

1) -1.3376
2) -1.3408
3) 1.5012
4) 1.5057

341 The table below displays the results of a survey regarding the number of pets each student in a class has. The average number of pets per student in this class is 2 .

Number of Pets	0	1	2	3	4	5
Number of Students	4	6	10	0	k	2

What is the value of k for this table?

1) 9
2) 2
3) 8
4) 4

343 The scores of one class on the Unit 2 mathematics test are shown in the table below.
Unit 2 Mathematics Test

Test Score	Frequency
96	1
92	2
84	5
80	3
76	6
72	3
68	2

Find the population standard deviation of these scores, to the nearest tenth.

344 The solution set of $4^{x^{2}+4 x}=2^{-6}$ is

1) $\{1,3\}$
2) $\{-1,3\}$
3) $\{-1,-3\}$
4) $\{1,-3\}$

345 In $\triangle A B C, a=3, b=5$, and $c=7$. What is $\mathrm{m} \angle C$?

1) 22
2) 38
3) 60
4) 120

342 The expression $2 i^{2}+3 i^{3}$ is equivalent to

1) $-2-3 i$
2) $2-3 i$
3) $-2+3 i$
4) $2+3 i$

346 The expression $4+\sum_{k=2}^{5} 3(k-x)$ is equal to

1) $58-4 x$
2) $46-4 x$
3) $58-12 x$
4) $46-12 x$

Algebra 2/Trigonometry Regents Exam Questions at Random www.jmap.org

347 In $\triangle K L M, K L=20, L M=13$, and $\mathrm{m} \angle K=40$. The measure of $\angle M$?

1) must be between 0° and 90°
2) must equal 90°
3) must be between 90° and 180°
4) is ambiguous

348 What is the period of the function
$y=\frac{1}{2} \sin \left(\frac{x}{3}-\pi\right)$?

1) $\frac{1}{2}$
2) $\frac{1}{3}$
3) $\frac{2}{3} \pi$
4) 6π

349 What is the radian measure of the smaller angle formed by the hands of a clock at 7 o'clock?

1) $\frac{\pi}{2}$
2) $\frac{2 \pi}{3}$
3) $\frac{5 \pi}{6}$
4) $\frac{7 \pi}{6}$

350 Factor the expression $12 t^{8}-75 t^{4}$ completely.

351 Which graph represents the solution set of $\left|\frac{4 x-5}{3}\right|>1$?
1)

Algebra 2/Trigonometry Regents at Random

Answer Section

1 ANS: 2
PTS: 2
REF: 011315a2
STA: A2.A. 55
TOP: Trigonometric Ratios
2 ANS: 1

$$
\begin{array}{rlrl}
6 x-7 & \leq 5 & 6 x-7 & \geq-5 \\
6 x & \leq 12 & 6 x & \geq 2 \\
x & \leq 2 & x & \geq \frac{1}{3}
\end{array}
$$

PTS: 2 REF: fall0905a2 STA: A2.A. 1 TOP: Absolute Value Inequalities KEY: graph
3 ANS: 4
$s=\theta r=2 \cdot 4=8$
PTS: 2 REF: fall0922a2 STA: A2.A. 61 TOP: Arc Length
KEY: arc length
4 ANS: 3
${ }_{3} C_{2}\left(2 x^{4}\right)^{1}(-y)^{2}=6 x^{4} y^{2}$
PTS: 2 REF: 011215a2
STA: A2.A. 36
REF: 011114a2 STA: A2.N. 3
5 ANS: 2
PTS: 2
TOP: Operations with Polynomials
6 ANS:
$x<-1$ or $x>5 . \quad x^{2}-4 x-5>0 . \quad x-5>0$ and $x+1>0$ or $x-5<0$ and $x+1<0$

$$
(x-5)(x+1)>0 \quad x>5 \text { and } x>-1 \quad x<5 \text { and } x<-1
$$

$$
x>5
$$

$$
x<-1
$$

PTS: 2
REF: 011228a2 STA: A2.A. 4
TOP: Quadratic Inequalities
KEY: one variable
7 ANS: 4
$g\left(\frac{1}{2}\right)=\frac{1}{\frac{1}{2}}=2$. $f(2)=4(2)-2^{2}=4$
PTS: 2 REF: 011204a2 STA: A2.A. 42 TOP: Compositions of Functions
KEY: numbers
8 ANS: 2
sum: $\frac{-b}{a}=\frac{4}{6}=\frac{2}{3}$. product: $\frac{c}{a}=\frac{-12}{6}=-2$
PTS: 2
REF: 011209a2 STA: A2.A. 20
TOP: Roots of Quadratics

9 ANS:
88. $\frac{100}{\sin 33}=\frac{x}{\sin 32} \cdot \sin 66 \approx \frac{T}{97.3}$

$$
x \approx 97.3 \quad t \approx 88
$$

PTS: 4
REF: 011236a2
STA: A2.A. 73
TOP: Law of Sines
KEY: advanced
10 ANS: 1
$\sqrt{12^{2}-6^{2}}=\sqrt{108}=\sqrt{36} \sqrt{3}=6 \sqrt{3} . \cot J=\frac{A}{O}=\frac{6}{6 \sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3}$

PTS: 2 REF: 011120a2 STA: A2.A. 55 TOP: Trigonometric Ratios
11 ANS:
$\frac{100}{\sin 32}=\frac{b}{\sin 105} \cdot \frac{100}{\sin 32}=\frac{a}{\sin 43}$
$b \approx 182.3 \quad a \approx 128.7$
PTS: 4 REF: 011338a2 STA: A2.A. 73 TOP: Law of Sines
KEY: basic
12 ANS: 2
$\frac{\frac{x}{4}-\frac{1}{x}}{\frac{1}{2 x}+\frac{1}{4}}=\frac{\frac{x^{2}-4}{4 x}}{\frac{2 x+4}{8 x}}=\frac{(x+2)(x-2)}{4 x} \times \frac{8 x}{2(x+2)}=x-2$
PTS: 2 REF: fall0920a2 STA: A2.A. 17 TOP: Complex Fractions
13 ANS: 3
PTS: 2
TOP: Domain and Range
REF: fall0923a2
STA: A2.A. 39
KEY: real domain
14 ANS: 3
$-\sqrt{2} \sec x=2$
$\sec x=-\frac{2}{\sqrt{2}}$
$\cos x=-\frac{\sqrt{2}}{2}$
$x=135,225$
PTS: 2
REF: 011322a2
STA: A2.A. 68
TOP: Trigonometric Equations
KEY: reciprocal functions

15 ANS: 2

$$
\begin{aligned}
\log x^{2} & =\log 3 a+\log 2 a \\
2 \log x & =\log 6 a^{2} \\
\log x & =\frac{\log 6}{2}+\frac{\log a^{2}}{2} \\
\log x & =\frac{1}{2} \log 6+\frac{2 \log a}{2} \\
\log x & =\frac{1}{2} \log 6+\log a
\end{aligned}
$$

PTS: 2 REF: 011224a2 STA: A2.A. 19 TOP: Properties of Logarithms
KEY: splitting logs
16 ANS: 4 PTS: 2
REF: 011219a2 STA: A2.A.52
TOP: Properties of Graphs of Functions and Relations
17 ANS:
$\frac{\sqrt{108 x^{5} y^{8}}}{\sqrt{6 x y^{5}}}=\sqrt{18 x^{4} y^{3}}=3 x^{2} y \sqrt{2 y}$
PTS: 2 REF: 011133a2 STA: A2.A. 14 TOP: Operations with Radicals
KEY: with variables | index $=2$
18 ANS:
D: $-5 \leq x \leq 8 . \mathrm{R}:-3 \leq y \leq 2$
PTS: 2 REF: 011132a2 STA: A2.A.51 TOP: Domain and Range
19 ANS: 1
$\frac{9}{\sin A}=\frac{10}{\sin 70} .58^{\circ}+70^{\circ}$ is possible. $122^{\circ}+70^{\circ}$ is not possible.
$A=58$
PTS: 2 REF: 011210a2 STA: A2.A. 75 TOP: Law of Sines - The Ambiguous Case
20 ANS: 2
$\frac{10}{\sin 35}=\frac{13}{\sin B} . \quad 35+48<180$

$$
B \approx 48,132 \quad 35+132<180
$$

PTS: 2 REF: 011113a2 STA: A2.A. 75 TOP: Law of Sines - The Ambiguous Case
21 ANS: 3
PTS: 2
REF: 011305a2
STA: A2.A. 38
TOP: Defining Functions KEY: graphs
22 ANS:
$r=\sqrt{2^{2}+3^{2}}=\sqrt{13} \cdot(x+5)^{2}+(y-2)^{2}=13$
PTS: 2
REF: 011234a2
STA: A2.A. 49
TOP: Writing Equations of Circles

23 ANS: 1

PTS: 2
REF: fall0915a2 STA: A2.S. 5
TOP: Normal Distributions
KEY: interval
24 ANS:

$$
\begin{array}{rlrl}
\ln \left(T-T_{0}\right) & =-k t+4.718 & \cdot \ln (T-68) & =-0.104(10)+4.718 . \\
\ln (150-68) & =-k(3)+4.718 & \ln (T-68) & =3.678 \\
4.407 & \approx-3 k+4.718 & T-68 & \approx 39.6 \\
k & \approx 0.104 & T & \approx 108
\end{array}
$$

PTS: 6
REF: 011139a2 STA: A2.A. 28
TOP: Logarithmic Equations
KEY: advanced
25 ANS:

PTS: 2
REF: 011234a2
STA: A2.A. 53
REF: 011117a2
TOP: Differentiating Permutations and Combinations
27 ANS: 1
TOP: Differentiating Permutations and Combinations
28 ANS:
${ }_{25} C_{20}=53,130$
PTS: 2
REF: 011232a2
STA:
A2.S. 11
29 ANS:
$12 \cdot 6=9 w$

$$
8=w
$$

PTS: 2
STA: A2.A. 5

REF: 011130a2 ,

TOP: Inverse Variation

TOP: Combinations
TOP: Graphing Exponential Functions
STA: A2.S. 9
STA: A2.S. 9
x_{1}

30 ANS: 1
$8 \times 8 \times 7 \times 1=448$. The first digit cannot be 0 or 5 . The second digit cannot be 5 or the same as the first digit. The third digit cannot be 5 or the same as the first or second digit.

PTS: 2 REF: 011125a2 STA: A2.S. 10 TOP: Permutations
31 ANS: 4
$\frac{10}{4}=2.5$
PTS: 2 REF: 011217a2 STA: A2.A. 29 TOP: Sequences
32 ANS: 1
PTS: 2
REF: fall0914a2 STA: A2.A. 9
TOP: Negative and Fractional Exponents
33 ANS:

$197^{\circ} 40^{\prime} .3 .45 \times \frac{180}{\pi} \approx 197^{\circ} 40^{\prime}$.

PTS: 2
REF: fall0931a2 STA: A2.M.2
TOP: Radian Measure
KEY: degrees
34 ANS: 1

$$
\begin{array}{rlrl}
4 a+6=4 a-10.4 a+6 & =-4 a+10 . & \left|4\left(\frac{1}{2}\right)+6\right|-4\left(\frac{1}{2}\right) & =-10 \\
6 \neq-10 & 8 a & =4 & 8-2 \neq-10 \\
a & =\frac{4}{8}=\frac{1}{2} &
\end{array}
$$

PTS: 2
REF: 011106a2
STA: A2.A. 1
TOP: Absolute Value Equations
35 ANS: 3
$\frac{4}{-2}=-2$
PTS: 2
REF: 011304a2
STA: A2.A. 31
REF: 011208a2
TOP: Sequences
ANS: 2
PTS: 2
TOP: Proving Trigonometric Identities
37 ANS: 1
$\frac{1}{2}(7.4)(3.8) \sin 126 \approx 11.4$
PTS: 2
REF: 011218a2
STA: A2.A. 74
TOP: Using Trigonometry to Find Area
KEY: basic

38 ANS: 1
${ }_{5} C_{3}(3 x)^{2}(-2)^{3}=10 \cdot 9 x^{2} \cdot-8=-720 x^{2}$
PTS: 2 REF: fall0919a2 STA: A2.A. 36 TOP: Binomial Expansions
39 ANS:
0.468. ${ }_{8} C_{6}\left(\frac{2}{3}\right)^{6}\left(\frac{1}{3}\right)^{2} \approx 0.27313 .{ }_{8} C_{7}\left(\frac{2}{3}\right)^{7}\left(\frac{1}{3}\right)^{1} \approx 0.15607 .{ }_{8} C_{8}\left(\frac{2}{3}\right)^{8}\left(\frac{1}{3}\right)^{0} \approx 0.03902$.

PTS: 4 REF: 011138a2 STA: A2.S. 15 TOP: Binomial Probability
KEY: at least or at most
40 ANS: 1
$\frac{{ }_{6} P_{6}}{3!2!}=\frac{720}{12}=60$
PTS: 2 REF: 011324a2 STA: A2.S. 10 TOP: Permutations
41 ANS: 3

$$
\begin{array}{cc}
x^{2}-3 x-10>0 & \text { or } \\
(x-5)(x+2)>0 & x-5<0 \text { and } x+2<0 \\
x-5>0 \text { and } x+2>0 & x<5 \text { and } x<-2 \\
x>5 \text { and } x>-2 & x<-2 \\
x>5 &
\end{array}
$$

PTS: 2 REF: 011115a2 STA: A2.A. 4 TOP: Quadratic Inequalities
KEY: one variable
42 ANS: 2
$(3-7 i)(3-7 i)=9-21 i-21 i+49 i^{2}=9-42 i-49=-40-42 i$
PTS: 2 REF: fall0901a2 STA: A2.N.9
TOP: Multiplication and Division of Complex Numbers
43 ANS:
$3 x^{2}-11 x+6=0 . \operatorname{Sum} \frac{-b}{a}=\frac{11}{3}$. Product $\frac{c}{a}=\frac{6}{3}=2$
PTS: 2 REF: 011329a2 STA: A2.A. 20 TOP: Roots of Quadratics
44 ANS: 4
PTS: 2
REF: 011101a2 STA: A2.A. 38
TOP: Defining Functions
KEY: graphs

45 ANS: 2

$$
\begin{gathered}
\log 9-\log 20 \\
\log 3^{2}-\log (10 \cdot 2) \\
2 \log 3-(\log 10+\log 2) \\
2 b-(1+a) \\
2 b-a-1
\end{gathered}
$$

PTS: 2 REF: 011326a2 STA: A2.A. 19 TOP: Properties of Logarithms KEY: expressing logs algebraically
46 ANS: 4
$\frac{2 \pi}{b}=30$
$b=\frac{\pi}{15}$
PTS: 2
REF: 011227a2 STA: A2.A. 72
TOP: Identifying the Equation of a Trigonometric Graph
47 ANS: 3
$\left(\frac{2}{3}\right)^{2}+\cos ^{2} A=1$
$\sin 2 A=2 \sin A \cos A$
$\cos ^{2} A=\frac{5}{9}$
$=2\left(\frac{2}{3}\right)\left(\frac{\sqrt{5}}{3}\right)$
$\cos A=+\frac{\sqrt{5}}{3}, \sin \mathrm{~A}$ is acute. $\quad=\frac{4 \sqrt{5}}{9}$
PTS: 2
REF: 011107a2 STA: A2.A. 77
TOP: Double Angle Identities
KEY: evaluating
48

$$
\begin{array}{rlrl}
\sqrt{x^{2}+x-1} & =-4 x+3 & -4\left(\frac{2}{3}\right)+3 \geq 0 \\
x^{2}+x-1 & =16 x^{2}-24 x+9 & & \\
0 & =15 x^{2}-25 x+10 & & \frac{1}{3} \geq 0 \\
0 & =3 x^{2}-5 x+2 & -4(1)+3<0 \\
0 & =(3 x-2)(x-1) & & 1 \text { is extraneous } \\
x & =\frac{2}{3}, x \neq 1 &
\end{array}
$$

PTS: 6 REF: 011339a2 STA: A2.A. 22 TOP: Solving Radicals KEY: extraneous solutions

49 ANS: 3
$a_{n}=5(-2)^{n-1}$
$a_{15}=5(-2)^{15-1}=81,920$
PTS: 2 REF: 011105a2 STA: A2.A. 32 TOP: Sequences
50 ANS:
Ordered, the heights are $71,71,72,74,74,75,78,79,79,83 . Q_{1}=72$ and $Q_{3}=79.79-72=7$.
PTS: 2
REF: 011331a2 STA: A2.S. 4 TOP: Dispersion
KEY: range, quartiles, interquartile range, variance
51 ANS: 4
(4) fails the horizontal line test. Not every element of the range corresponds to only one element of the domain.

PTS: 2 REF: fall0906a2 STA: A2.A. 43 TOP: Defining Functions
52 ANS: 1

$$
\begin{aligned}
\tan \theta-\sqrt{3} & =0 \\
\tan \theta & =\sqrt{3} \\
\theta & =\tan ^{-1} \sqrt{3} \\
\theta & =60,240
\end{aligned}
$$

PTS: 2
REF: fall0903a2 STA: A2.A. 68
TOP: Trigonometric Equations
KEY: basic
53 ANS: 3
PTS: 2
REF: 011110a2 STA: A2.A. 30
TOP: Sequences
54 ANS: 3

	Floty Plot2 F-70t3
	$\therefore Y^{\prime}+E \frac{1}{\operatorname{sn}(x)}$
	$\begin{aligned} & y z= \\ & y z= \\ & y y= \\ & y 5= \end{aligned}$

PTS: 2
REF: 011207a2 STA: A2.A.71
TOP: Graphing Trigonometric Functions

55 ANS:

$$
\begin{aligned}
30700 & =50 e^{3 t} \\
614 & =e^{3 t} \\
\ln 614 & =\ln e^{3 t} \\
\ln 614 & =3 t \ln e \\
\ln 614 & =3 t \\
2.14 & \approx t
\end{aligned}
$$

PTS: 2 REF: 011333a2 STA: A2.A. 6 TOP: Exponential Growth
56 ANS: 4
PTS: 2
REF: 011201a2 STA: A2.S. 2
TOP: Analysis of Data
57 ANS: 3
$b^{2}-4 a c=(-10)^{2}-4(1)(25)=100-100=0$
PTS: 2 REF: 011102a2 STA: A2.A. 2 TOP: Using the Discriminant
KEY: determine nature of roots given equation
58 ANS:
$a+15+2 a=90$

$$
\begin{aligned}
3 a+15 & =90 \\
3 a & =75 \\
a & =25
\end{aligned}
$$

PTS: 2
REF: 011330a2
STA: A2.A. 58
TOP: Cofunction Trigonometric Relationships
59 ANS:

$\left(\begin{array}{c}\left.3 * \frac{180}{\pi}\right)+\square^{\prime} 5 \\ 171^{5} 5 \cdot 14.419 " 1\end{array}\right.$
$3 \times \frac{180}{\pi} \approx 171.89^{\circ} \approx 171^{\circ} 53^{\prime}$.

PTS: 2 REF: 011335a2 STA: A2.M. 2 TOP: Radian Measure
KEY: degrees
60
$\frac{-b}{a}=\frac{-6}{2}=-3 . \frac{c}{a}=\frac{4}{2}=2$
PTS: 2
REF: 011121a2
STA: A2.A. 21
TOP: Roots of Quadratics
KEY: basic

61 ANS:
-104.

$\sum_{x=1}^{2}\left(-x^{4}-x\right)$	
	-104

PTS: 2 REF: 011230a2 STA: A2.N. 10 TOP: Sigma Notation
KEY: basic
62 ANS:
$-\frac{a^{2} b^{3}}{4}$

PTS: 2
REF: 011231a2 STA: A2.A. 13
TOP: Simplifying Radicals
KEY: index >2
63 ANS: 4
$(x+i)^{2}-(x-i)^{2}=x^{2}+2 x i+i^{2}-\left(x^{2}-2 x i+i^{2}\right)=4 x i$
PTS: 2
REF: 011327a2 STA: A2.N.9
TOP: Multiplication and Division of Complex Numbers
64 ANS: 2

$$
\begin{aligned}
320 & =10(2)^{\frac{t}{60}} \\
32 & =(2)^{\frac{t}{60}} \\
\log 32 & =\log (2)^{\frac{t}{60}} \\
\log 32 & =\frac{t \log 2}{60} \\
\frac{60 \log 32}{\log 2} & =t \\
300 & =t
\end{aligned}
$$

PTS: 2

$$
\begin{gathered}
x^{3}+x^{2}-2 x=0 \\
x\left(x^{2}+x-2\right)=0 \\
x(x+2)(x-1)=0 \\
x=0,-2,1
\end{gathered}
$$

PTS: 2
REF: 011103a2
STA: A2.A. 26
TOP: Solving Polynomial Equations

66 ANS:
$y=27.2025(1.1509)^{x} . y=27.2025(1.1509)^{18} \approx 341$
PTS: 4
REF: 011238a2
STA: A2.S. 7
TOP: Exponential Regression
67 ANS: 4
$2 \log _{4}(5 x)=3$
$\log _{4}(5 x)=\frac{3}{2}$

$$
\begin{aligned}
5 x & =4^{\frac{3}{2}} \\
5 x & =8 \\
x & =\frac{8}{5}
\end{aligned}
$$

PTS: 2
REF: fall0921a2 STA: A2 A 28
KEY: advanced
68
$\frac{2 \sqrt{3}}{3}$. If $\sin 60=\frac{\sqrt{3}}{2}$, then $\csc 60=\frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}$
PTS: 2 REF: 011235a2 STA: A2.A. 59 TOP: Reciprocal Trigonometric Relationships
69 ANS: 4
$\frac{2 x+4}{\sqrt{x+2}} \cdot \frac{\sqrt{x+2}}{\sqrt{x+2}}=\frac{2(x+2) \sqrt{x+2}}{x+2}=2 \sqrt{x+2}$
PTS: 2
REF: 011122a2 STA: A2.A. 15
TOP: Rationalizing Denominators
KEY: index $=2$
70 ANS: 3
$34.1 \%+19.1 \%=53.2 \%$
PTS: 2
REF: 011212a2
STA: A2.S. 5
TOP: Normal Distributions
KEY: probability
71 ANS: 1
PTS: 2
REF: 011112a2
STA: A2.A. 64
TOP: Using Inverse Trigonometric Functions
KEY: advanced
72 ANS:
$2.5 \cdot \frac{180}{\pi} \approx 143.2^{\circ}$
PTS: 2
REF: 011129a2
STA: A2.M. 2
TOP: Radian Measure
KEY: degrees

73 ANS: 2

$$
\frac{\frac{\pi}{3}+\frac{\pi}{3}}{2 \pi}=\frac{\frac{2 \pi}{3}}{2 \pi}=\frac{1}{3}
$$

PTS: 2
REF: 011108a2
STA: A2.S. 13
TOP: Geometric Probability
74 ANS: 2

$$
\begin{aligned}
x^{2}+2 & =6 x \\
x^{2}-6 x & =-2 \\
x^{2}-6 x+9 & =-2+9 \\
(x-3)^{2} & =7
\end{aligned}
$$

PTS: 2
REF: 011116a2
STA: A2.A. 24
TOP: Completing the Square
75 ANS:
$3 \pm \sqrt{7} \cdot 2 x^{2}-12 x+4=0$

$$
\begin{aligned}
x^{2}-6 x+2 & =0 \\
x^{2}-6 x & =-2 \\
x^{2}-6 x+9 & =-2+9 \\
(x-3)^{2} & =7 \\
x-3 & = \pm \sqrt{7} \\
x & =3 \pm \sqrt{7}
\end{aligned}
$$

PTS: 4
REF: fall0936a2
STA: A2.A. 24
REF: 011306a2
TOP: Complete
STA: A2.A. 8
TOP: Negative and Fractional Exponents
ANS: 1
$10 \cdot \frac{3}{2}=\frac{3}{5} p$

$$
15=\frac{3}{5} p
$$

$$
25=p
$$

PTS: 2
REF: 011226a2
STA: A2.A. 5
TOP: Inverse Variation

78 ANS: 2
The binomials are conjugates, so use FL.
PTS: 2 REF: 011206a2 STA: A2.N. 3 TOP: Operations with Polynomials
79 ANS: 3
${ }_{8} C_{3} \cdot x^{8-3} \cdot(-2)^{3}=56 x^{5} \cdot(-8)=-448 x^{5}$
PTS: 2
REF: 011308a2
STA: A2.A. 36
80 ANS:

$$
\begin{aligned}
(x+4)^{2} & =17 x-4 \\
x^{2}+8 x+16 & =17 x-4 \\
x^{2}-9 x+20 & =0 \\
(x-4)(x-5) & =0 \\
x & =4,5
\end{aligned}
$$

PTS: 4
REF: 011336a2
STA: A2.A. 28
TOP: Logarithmic Equations
KEY: basic
81 ANS: 2
$K=\frac{1}{2}(10)(18) \sin 120=45 \sqrt{3} \approx 78$
PTS: 2 REF: fall0907a2 STA: A2.A. 74 TOP: Using Trigonometry to Find Area
KEY: basic
82 ANS: 1
$2 \cdot \frac{180}{\pi}=\frac{360}{\pi}$
PTS: 2 REF: 011220a2 STA: A2.M. 2 TOP: Radian Measure
KEY: degrees
83 ANS:
$a_{n}=9 n-4 \quad . S_{n}=\frac{20(5+176)}{2}=1810$
$a_{1}=9(1)-4=5$
$a_{20}=9(20)-4=176$
PTS: 2
REF: 011328a2
STA: A2.A. 35
KEY: arithmetic
84
$\mathrm{f}^{-1}(x)=\log _{4} x$
PTS: 2
85 ANS: 3
REF: fall0916a2
PTS: 2
STA: A2.A. 54
TOP: Graphing Logarithmic Functions
TOP: Graphing Trigonometric Functions

86 ANS:
800. $x=4^{2.5}=32 . y^{-\frac{3}{2}}=125 \quad \cdot \frac{x}{y}=\frac{32}{\frac{1}{25}}=800$

$$
y=125^{-\frac{2}{3}}=\frac{1}{25}
$$

PTS: 4 REF: 011237a2 STA: A2.A. 28 TOP: Logarithmic Equations
KEY: advanced
87 ANS: 1
$\sin (180+x)=(\sin 180)(\cos x)+(\cos 180)(\sin x)=0+(-\sin x)=-\sin x$
PTS: 2 REF: 011318a2 STA: A2.A. 76 TOP: Angle Sum and Difference Identities
KEY: identities
88 ANS: 2
$\bar{x} \pm \sigma$
153 ± 22
131-175
PTS: 2
REF: 011307a2 STA: A2.S. 5
TOP: Normal Distributions
KEY: interval
89 ANS: 3

$$
\begin{aligned}
x+y & =5 \quad .-5+y \\
y & =5 \\
& =-x+5 \quad y=10 \\
(x+3)^{2}+(-x+5-3)^{2} & =53 \\
x^{2}+6 x+9+x^{2}-4 x+4 & =53 \\
2 x^{2}+2 x-40 & =0 \\
x^{2}+x-20 & =0 \\
(x+5)(x-4) & =0 \\
x & =-5,4
\end{aligned}
$$

PTS: 2
REF: 011302a2 STA: A2.A. 3
TOP: Quadratic-Linear Systems
KEY: equations
90 ANS: 2
$8^{2}=64$
PTS: 2
REF: fall0909a2
STA: A2.A. 18
TOP: Evaluating Logarithmic Expressions
91 ANS: 2
PTS: 2
REF: 011225a2
STA: A2.A. 43
TOP: Defining Functions

92 ANS:
$32 x^{5}-80 x^{4}+80 x^{3}-40 x^{2}+10 x-1 .{ }_{5} C_{0}(2 x)^{5}(-1)^{0}=32 x^{5} .{ }_{5} C_{1}(2 x)^{4}(-1)^{1}=-80 x^{4} .{ }_{5} C_{2}(2 x)^{3}(-1)^{2}=80 x^{3}$.
${ }_{5} C_{3}(2 x)^{2}(-1)^{3}=-40 x^{2} \cdot{ }_{5} C_{4}(2 x)^{1}(-1)^{4}=10 x \cdot{ }_{5} C_{5}(2 x)^{0}(-1)^{5}=-1$
PTS: 4
REF: 011136a2
STA: A2.A. 36
TOP: Binomial Expansions
93 ANS: 3
PTS: 2
REF: 011104a2
STA: A2.A. 64
TOP: Using Inverse Trigonometric Functions
KEY: unit circle
94 ANS: 2
PTS: 2
REF: fall0926a2
TOP: Transformations with Functions and Relations
95 ANS: 3
PTS: 2
REF: fall0910a2
STA: A2.A. 76
TOP: Angle Sum and Difference Identities
KEY: simplifying
96 ANS:
$3-2 x \geq 7$ or $3-2 x \leq-7$

$$
\begin{array}{rlrl}
-2 x & \geq 4 & -2 x & \leq-10 \\
x & \leq-2 & x & \geq 5
\end{array}
$$

PTS: 2
REF: 011334a2
STA: A2.A. 1
KEY: graph
97 ANS: 4
$x^{-\frac{2}{5}}=\frac{1}{x^{\frac{2}{5}}}=\frac{1}{\sqrt[5]{x^{2}}}$
PTS: 2
REF: 011118a2 STA: A2.A. 10
8 ANS: 3

n	0	1	2	Σ
$n^{2}+2^{n}$	$0^{2}+2^{0}=1$	$1^{2}+2^{2}=3$	$2^{2}+2^{2}=8$	12

PTS: 2
REF: fall0911a2 STA: A2.N. 10
TOP: Sigma Notation
KEY: basic
99 ANS: 1

PTS: 2
REF: 011203a2
STA: A2.A. 66
TOP: Determining Trigonometric Functions
100 ANS:
$y=2.001 x^{2.298}, 1,009 . y=2.001(15)^{2.298} \approx 1009$
PTS: 4 REF: fall0938a2 STA: A2.S. 7 TOP: Power Regression

101
ANS:

41,040.

9 nCr	$2 * 20 \mathrm{nCr} 3$
	41040

PTS: 2 REF: fall0935a2 STA: A2.S. 12 TOP: Sample Space
102 ANS:
$(x+3)^{2}+(y-4)^{2}=25$
PTS: 2 REF: fall0929a2 STA: A2.A. 49 TOP: Writing Equations of Circles
ANS:
68% of the students are within one standard deviation of the mean. 16% of the students are more than one standard deviation above the mean.

PTS: 2 REF: 011134a2 STA: A2.S. 5 TOP: Normal Distributions
KEY: percent
104 ANS:
$\frac{5(3+\sqrt{2})}{7} \cdot \frac{5}{3-\sqrt{2}} \times \frac{3+\sqrt{2}}{3+\sqrt{2}}=\frac{5(3+\sqrt{2})}{9-2}=\frac{5(3+\sqrt{2})}{7}$
PTS: 2
REF: fall0928a2
STA: A2.N. 5
REF: 011111a2
TOP: Rationalizing Denominators
ANS: 4
PTS: 2
TOP: Conjugates of Complex Numbers
ANS:

2,298.65.
REF: fall0932a2 STA: A2.A. 12
TOP: Evaluating Exponential Expressions
107
PTS: 2
ANS: 3
$\sqrt[3]{6 a^{4} b^{2}}+\sqrt[3]{(27 \cdot 6) a^{4} b^{2}}$

$$
\begin{gathered}
a \sqrt[3]{6 a b^{2}}+3 a \sqrt[3]{6 a b^{2}} \\
4 a \sqrt[3]{6 a b^{2}}
\end{gathered}
$$

PTS: 2
REF: 011319a2
STA: A2.N. 2
TOP: Operations with Radicals

108 ANS: 1

$$
\begin{aligned}
20(-2) & =x(-2 x+2) \\
-40 & =-2 x^{2}+2 x \\
2 x^{2}-2 x-40 & =0 \\
x^{2}-x-20 & =0 \\
(x+4)(x-5) & =0 \\
x & =-4,5
\end{aligned}
$$

PTS: 2
REF: 011321a2
STA: A2.A. 5
TOP: Inverse Variation
109 ANS: 3

$$
\begin{gathered}
3 x^{3}-5 x^{2}-48 x+80 \\
x^{2}(3 x-5)-16(3 x-5) \\
\left(x^{2}-16\right)(3 x-5) \\
(x+4)(x-4)(3 x-5)
\end{gathered}
$$

PTS: 2
REF: 011317a2
STA: A2.A. 7
PTS: 2 REF: fall0925a2
TOP: Factoring by Grouping
110 ANS: 4
STA: A2.S. 10
TOP: Permutations
111 ANS: 1
PTS: 2
TOP: Operations with Polynomials
112 ANS:
no solution. $\quad \frac{4 x}{x-3}=2+\frac{12}{x-3}$

$$
\begin{aligned}
\frac{4 x-12}{x-3} & =2 \\
\frac{4(x-3)}{x-3} & =2 \\
4 & \neq 2
\end{aligned}
$$

PTS: 2
REF: fall0930a2
STA: A2.A. 23
TOP: Solving Rationals
KEY: rational solutions
113 ANS: 2
PTS: 2
REF: 011301a2
STA: A2.A. 53
TOP: Graphing Exponential Functions
114 ANS: 3

$$
\frac{3 y}{2 y-6}+\frac{9}{6-2 y}=\frac{3 y}{2 y-6}-\frac{9}{2 y-6}=\frac{3 y-9}{2 y-6}=\frac{3(y-3)}{2(y-3)}=\frac{3}{2}
$$

PTS: 2
REF: 011325a2
STA: A2.A. 16
TOP: Addition and Subtraction of Rationals

115 ANS: 4

$$
\begin{aligned}
8^{3 k+4} & =4^{2 k-1} . \\
\left(2^{3}\right)^{3 k+4} & =\left(2^{2}\right)^{2 k-1} \\
2^{9 k+12} & =2^{4 k-2} \\
9 k+12 & =4 k-2 \\
5 k & =-14 \\
k & =-\frac{14}{5}
\end{aligned}
$$

PTS: 2
REF: 011309a2
STA: A2.A. 27
TOP: Exponential Equations
KEY: common base not shown
116 ANS: 4
$y-2 \sin \theta=3$

$$
y=2 \sin \theta+3
$$

$$
\mathrm{f}(\theta)=2 \sin \theta+3
$$

PTS: 2
REF: fall0927a2
STA: A2.A. 40
TOP: Functional Notation
117 ANS:
$y=215.983(1.652)^{x} .215 .983(1.652)^{7} \approx 7250$
PTS: 4
REF: 011337a2
STA: A2.S. 7
TOP: Exponential Regression
118 ANS:
$\pm \frac{3}{2},-\frac{1}{2} . \quad 8 x^{3}+4 x^{2}-18 x-9=0$

$$
\begin{aligned}
4 x^{2}(2 x+1)-9(2 x+1) & =0 \\
\left(4 x^{2}-9\right)(2 x+1) & =0 \\
4 x^{2}-9 & =0 \text { or } 2 x+1=0 \\
(2 x+3)(2 x-3) & =0 \quad x=-\frac{1}{2} \\
x & = \pm \frac{3}{2}
\end{aligned}
$$

PTS: 4 REF: fall0937a2 STA: A2.A. 26 TOP: Solving Polynomial Equations
119 ANS:

$$
\begin{aligned}
16^{2 x+3} & =64^{x+2} \\
\left(4^{2}\right)^{2 x+3} & =\left(4^{3}\right)^{x+2} \\
4 x+6 & =3 x+6 \\
x & =0
\end{aligned}
$$

PTS: 2
REF: 011128a2 STA: A2.A. 27
TOP: Exponential Equations
KEY: common base not shown

120 ANS: 4
Students entering the library are more likely to spend more time studying, creating bias.
PTS: 2 REF: fall0904a2 STA: A2.S. 2 TOP: Analysis of Data
121 ANS: 4
${ }_{3} C_{2}\left(\frac{5}{8}\right)^{2}\left(\frac{3}{8}\right)^{1}=\frac{225}{512}$
PTS: 2
REF: 011221a2
STA: A2.S. 15
TOP: Binomial Probability
KEY: spinner
122 ANS:
$\frac{2 \pm \sqrt{(-2)^{2}-4(6)(-3)}}{2(6)}=\frac{2 \pm \sqrt{76}}{12}=\frac{2 \pm \sqrt{4} \sqrt{19}}{12}=\frac{2 \pm 2 \sqrt{19}}{12}=\frac{1 \pm \sqrt{19}}{6}$

PTS: 2 REF: 011332a2 STA: A2.A. 25 TOP: Quadratics with Irrational Solutions
123 ANS:
$\frac{\sqrt{13}}{2} \cdot \sin \theta=\frac{y}{\sqrt{x^{2}+y^{2}}}=\frac{2}{\sqrt{(-3)^{2}+2^{2}}}=\frac{2}{\sqrt{13}} . \csc \theta=\frac{\sqrt{13}}{2}$.
PTS: 2 REF: fall0933a2 STA: A2.A. 62 TOP: Determining Trigonometric Functions
124 ANS: 1
(4) shows the strongest linear relationship, but if $r<0, b<0$. The Regents announced that a correct solution was not provided for this question and all students should be awarded credit.

PTS: 2 REF: 011223a2 STA: A2.S. 8 TOP: Correlation Coefficient
125 ANS: 4
PTS: 2 REF: 011127a2
TOP: Analysis of Data
126 ANS: 2 PTS: 2 REF: 011222a2 STA: A2.A. 39
TOP: Domain and Range KEY: real domain
127 ANS: 2
$\frac{x^{-1}+1}{x+1}=\frac{\frac{1}{x}+1}{x+1}=\frac{\frac{1+x}{x}}{x+1}=\frac{1}{x}$
PTS: 2 REF: 011211a2 STA: A2.A. 9 TOP: Negative Exponents
128 ANS: 1
PTS: 2
REF: 011320a2 STA: A2.A. 72
TOP: Identifying the Equation of a Trigonometric Graph
129

130 ANS: 3

$$
\begin{aligned}
3 x^{5}-48 x & =0 \\
3 x\left(x^{4}-16\right) & =0 \\
3 x\left(x^{2}+4\right)\left(x^{2}-4\right) & =0 \\
3 x\left(x^{2}+4\right)(x+2)(x-2) & =0
\end{aligned}
$$

PTS: 2 REF: 011216a2 STA: A2.A. 26 TOP: Solving Polynomial Equations
131 ANS:
$-3,-5,-8,-12$
PTS: 2
132 ANS: 4
REF: fall0934a2
STA: A2.A. 33 TOP: Recursive Sequences
TOP: Defining Functions
133 ANS: 2
PTS: 2
REF: fall0908a2
STA: A2.A. 38
KEY: graphs
REF: 011126a2 STA: A2.A. 49
TOP: Equations of Circles
134 ANS: 3
$42=\frac{1}{2}(a)(8) \sin 61$
$42 \approx 3.5 a$
$12 \approx a$
PTS: 2
REF: 011316a2
STA: A2.A. 74
TOP: Using Trigonometry to Find Area
KEY: basic
135 ANS:
7. $4-\sqrt{2 x-5}=1$

$$
\begin{aligned}
-\sqrt{2 x-5} & =-3 \\
2 x-5 & =9 \\
2 x & =14 \\
x & =7
\end{aligned}
$$

PTS: 2
REF: 011229a2
STA: A2.A. 22
TOP: Solving Radicals
KEY: basic

ANS:
101.43, 12.

$$
r^{2} \approx 10287.7
$$

$$
r \approx 101.43
$$

$\frac{2.5}{\sin x}=\frac{101.43}{\sin 125}$

$$
x \approx 12
$$

PTS: 6 REF: fall0939a2 STA: A2.A. 73 TOP: Vectors

ANS: 3
$S_{n}=\frac{n}{2}[2 a+(n-1) d]=\frac{19}{2}[2(3)+(19-1) 7]=1254$
PTS: 2
KEY: arithmetic
138
$4 a b \sqrt{2 b}-3 a \sqrt{9 b^{2}} \sqrt{2 b}+7 a b \sqrt{6 b}=4 a b \sqrt{2 b}-9 a b \sqrt{2 b}+7 a b \sqrt{6 b}=-5 a b \sqrt{2 b}+7 a b \sqrt{6 b}$
PTS: 2 REF: fall0918a2 STA: A2.A. 14 TOP: Operations with Radicals KEY: with variables \mid index $=2$
ANS:
$\frac{12}{\sin 32}=\frac{10}{\sin B} \quad . C \approx 180-(32+26.2) \approx 121.8 \cdot \frac{12}{\sin 32}=\frac{c}{\sin 121.8}$ $B=\sin ^{-1} \frac{10 \sin 32}{12} \approx 26.2 \quad c=\frac{12 \sin 121.8}{\sin 32} \approx 19.2$

PTS: 4 REF: 011137a2 STA: A2.A. 73 TOP: Law of Sines
KEY: basic
ANS: 1
REF: 011202a2
STA: A2.A. 35
TOP: Summations
ANS: 4
,

TOP: Do
ANS: 4
$\cos 2 A=1-2 \sin ^{2} A=1-2\left(\frac{1}{3}\right)^{2}=1-\frac{2}{9}=\frac{7}{9}$
PTS: 2
REF: 011311a2
STA: A2.A. 77
TOP: Double Angle Identities
KEY: evaluating
ANS: 4
PTS: 1
REF: 011312a2
STA: A2.A. 56

TOP: Determining Trigonometric Functions KEY: degrees, common angles

143 ANS:

$$
\begin{gathered}
\frac{-2\left(x^{2}+6\right)}{x^{4}} \cdot \frac{x^{2}(x-3)+6(x-3)}{x^{2}-4 x} \cdot \frac{2 x-4}{x^{4}-3 x^{3}} \div \frac{x^{2}+2 x-8}{16-x^{2}} \\
\frac{\left(x^{2}+6\right)(x-3)}{x(x-4)} \cdot \frac{2(x-2)}{x^{3}(x-3)} \cdot \frac{(4+x)(4-x)}{(x+4)(x-2)} \\
\frac{-2\left(x^{2}+6\right)}{x^{4}}
\end{gathered}
$$

PTS: 6 REF: 011239a2 STA: A2.A. 16 TOP: Multiplication and Division of Rationals KEY: division
ANS: 1
$\cos (A-B)=\left(\frac{5}{13}\right)\left(-\frac{3}{5}\right)+\left(\frac{12}{13}\right)\left(\frac{4}{5}\right)=-\frac{15}{65}+\frac{48}{65}=\frac{33}{65}$
PTS: 2 REF: 011214a2 STA: A2.A.76 TOP: Angle Sum and Difference Identities
KEY: evaluating
145 ANS: 3 PTS: 2
REF: 011119a2 STA: A2.A. 52
TOP: Families of Functions
146 ANS:

$$
\begin{array}{r}
\frac{\sin ^{2} A}{\cos ^{2} A}+\frac{\cos ^{2} A}{\cos ^{2} A}=\frac{1}{\cos ^{2} A} \\
\tan ^{2} A+1=\sec ^{2} A
\end{array}
$$

PTS: 2 REF: 011135a2 STA: A2.A. 67 TOP: Proving Trigonometric Identities
147 ANS: 3

PTS: 2
REF: fall0924a2 STA: A2.S. 4
KEY: range, quartiles, interquartile range, variance
148
ANS:
PTS: 2 REF: 011124a2
TOP: Dispersion

TOP: Evaluating Logarithmic Expressions
149 ANS:
230. $10+\left(1^{3}-1\right)+\left(2^{3}-1\right)+\left(3^{3}-1\right)+\left(4^{3}-1\right)+\left(5^{3}-1\right)=10+0+7+26+63+124=230$

PTS: 2
REF: 011131a2 STA: A2.N. 10
TOP: Sigma Notation
KEY: basic

150 ANS: 2
Since the coefficient of t is greater than $0, r>0$.
PTS: 2 REF: 011303a2 STA: A2.S. 8 TOP: Correlation Coefficient
151 ANS: 4
$6 x-x^{3}-x^{2}=-x\left(x^{2}+x-6\right)=-x(x+3)(x-2)$
PTS: 2 REF: fall0917a2 STA: A2.A. 7 TOP: Factoring Polynomials
KEY: single variable
152
ANS: 3
$f(4)=\frac{1}{2}(4)-3=-1 . g(-1)=2(-1)+5=3$
PTS: 2 REF: fall0902a2 STA: A2.A. 42 TOP: Compositions of Functions
KEY: numbers
153 ANS: 3
$S=\frac{-b}{a}=\frac{-(-3)}{4}=\frac{3}{4} . P=\frac{c}{a}=\frac{-8}{4}=-2$
PTS: 2 REF: fall0912a2 STA: A2.A. 21 TOP: Roots of Quadratics
KEY: basic
154 ANS: 2
$6\left(x^{2}-5\right)=6 x^{2}-30$
PTS: 2
REF: 011109a2
STA: A2.A. 42
TOP: Compositions of Functions
KEY: variables
155

PTS: 2 REF: 011123a2 STA: A2.A. 71 TOP: Graphing Trigonometric Functions
156 ANS: 4
PTS: 2
TOP: Using the Discriminant

REF: 011323a2 STA: A2.A. 2
KEY: determine nature of roots given equation

Algebra 2/Trigonometry Regents at Random

Answer Section

157 ANS:
$\frac{\cot x \sin x}{\sec x}=\frac{\frac{\cos x}{\sin x} \sin x}{\frac{1}{\cos x}}=\cos ^{2} x$
PTS: 2
REF: 061334a2
STA: A2.A. 58
TOP: Reciprocal Trigonometric Relationships
158 ANS: 2
$2^{2} \cdot 3=12 \cdot 6^{2} d=12$
$4^{2} \cdot \frac{3}{4}=12 \quad 36 d=12$

$$
d=\frac{1}{3}
$$

PTS: 2
REF: 061310a2
STA: A2.A. 5
TOP: Inverse Variation
159 ANS: 2
$\frac{11 \pi}{12} \cdot \frac{180}{\pi}=165$
PTS: 2
REF: 061002a2
STA: A2.M. 2
TOP: Radian Measure
KEY: degrees
160 ANS: 1
PTS: 2
REF: 061210a2 STA: A2.A. 9
TOP: Negative Exponents
161 ANS: 1
$y \geq x^{2}-x-6$
$y \geq(x-3)(x+2)$
PTS: 2
REF: 061017a2
STA: A2.A. 4
TOP: Quadratic Inequalities
KEY: two variables
162 ANS:
$a_{1}=3 . a_{2}=2(3)-1=5 . a_{3}=2(5)-1=9$.
PTS: 2 REF: 061233a2 STA: A2.A. 33 TOP: Recursive Sequences
163 ANS:
$\frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2}=\frac{\sqrt{6}}{4}$
PTS: 2
REF: 061331a2
STA: A2.A. 56
TOP: Determining Trigonometric Functions
KEY: degrees, common angles

164 ANS: 3
$s=\theta r=\frac{2 \pi}{8} \cdot 6=\frac{3 \pi}{2}$
PTS: 2 REF: 061212a2 STA: A2.A. 61 TOP: Arc Length
KEY: arc length
165 ANS: 1
$5 x+29=(x+3)^{2} \quad .(-5)+3$ shows an extraneous solution.
$5 x+29=x^{2}+6 x+9$
$0=x^{2}+x-20$
$0=(x+5)(x-4)$
$x=-5,4$
PTS: 2 REF: 061213a2 STA: A2.A. 22 TOP: Solving Radicals
KEY: extraneous solutions
166 ANS: 3
$\frac{\sin ^{2} \theta+\cos ^{2} \theta}{1-\sin ^{2} \theta}=\frac{1}{\cos ^{2} \theta}=\sec ^{2} \theta$

PTS: 2
ANS: 4
TOP: Unit Circle
168 ANS: 1
TOP: Solving Radicals

STA: A2.A. 58 TOP: Reciprocal Trigonometric Relationships
REF: 061206a2 STA: A2.A. 60
REF: 061018a2 STA: A2.A. 22
KEY: extraneous solutions

ANS: 2

$\sin S=\frac{8}{17} \quad$| sin |
| :--- |

$$
\begin{aligned}
& S=\sin ^{-1} \frac{8}{17} \\
& S \approx 28^{\circ} 4^{\prime}
\end{aligned}
$$

PTS: 2
REF: 061311a2 STA: A2.A. 55
TOP: Trigonometric Ratios
170
ANS: 4
$\frac{x}{x-\sqrt{x}} \times \frac{x+\sqrt{x}}{x+\sqrt{x}}=\frac{x^{2}+x \sqrt{x}}{x^{2}-x}=\frac{x(x+\sqrt{x})}{x(x-1)}=\frac{x+\sqrt{x}}{x-1}$
PTS: 2
REF: 061325a2 STA: A2.A. 15 TOP: Rationalizing Denominators
KEY: index $=2$

171 ANS: 3

Cofunctions tangent and cotangent are complementary
PTS: 2 REF: 061014a2 STA: A2.A. 58 TOP: Cofunction Trigonometric Relationships
172 ANS: 4
$S_{n}=\frac{n}{2}[2 a+(n-1) d]=\frac{21}{2}[2(18)+(21-1) 2]=798$

PTS: 2 REF: 061103a2 STA: A2.A. 35 TOP: Series
KEY: arithmetic
173 ANS:

$$
\sin (45+30)=\sin 45 \cos 30+\cos 45 \sin 30
$$

$$
=\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2} \cdot \frac{1}{2}=\frac{\sqrt{6}}{4}+\frac{\sqrt{2}}{4}=\frac{\sqrt{6}+\sqrt{2}}{4}
$$

PTS: 4 REF: 061136a2 STA: A2.A. 76 TOP: Angle Sum and Difference Identities
KEY: evaluating
174 ANS:

PTS: 4 REF: 061238a2 STA: A2.A. 73 TOP: Vectors
175 ANS:
$2 x-1=27^{\frac{4}{3}}$
$2 x-1=81$
$2 x=82$

$$
x=41
$$

PTS: 2 REF: 061329a2 STA: A2.A. 28 TOP: Logarithmic Equations
KEY: advanced
176
ANS: 3
$\sqrt{-300}=\sqrt{100} \sqrt{-1} \sqrt{3}$
PTS: 2
REF: 061006a2 STA: A2.N. 6
TOP: Square Roots of Negative Numbers

177 ANS: 3
$\frac{3^{-2}}{(-2)^{-3}}=\frac{\frac{1}{9}}{-\frac{1}{8}}=-\frac{8}{9}$
PTS: 2 REF: 061003a
178 ANS: 3
PTS: 2
STA: A2.N. 1
REF: 061022a2
TOP: Domain and Range
179 ANS:
$y=180.377(0.954)^{x}$
PTS: 2
REF: 061231a2
PTS: 2
TOP: Domain and Range
181
ANS: 1
$2 x-1>5.2 x-1<-5$

$$
\begin{array}{rlrl}
2 x & >6 & 2 x & >-4 \\
x & >3 & x & <-2
\end{array}
$$

PTS: 2
REF: 061307a2 STA: A2.A. 1
KEY: graph
182

$$
\begin{aligned}
3 x+16 & =(x+2)^{2} \quad .-4 \text { is an extraneous solution. } \\
3 x+16 & =x^{2}+4 x+4 \\
0 & =x^{2}+x-12 \\
0 & =(x+4)(x-3) \\
x & =-4 x=3
\end{aligned}
$$

PTS: 2 REF: 061121a2 STA: A2.A. 22 TOP: Solving Radicals
KEY: extraneous solutions
183 ANS:
$\frac{{ }_{10} P_{10}}{3!\cdot 3!\cdot 2!}=\frac{3,628,800}{72}=50,400$
PTS: 2 REF: 061330a2 STA: A2.S. 10 TOP: Permutations
184
ANS:
$6 y^{3}-\frac{37}{10} y^{2}-\frac{1}{5} y \cdot\left(\frac{1}{2} y^{2}-\frac{1}{3} y\right)\left(12 y+\frac{3}{5}\right)=6 y^{3}+\frac{3}{10} y^{2}-4 y^{2}-\frac{1}{5} y=6 y^{3}-\frac{37}{10} y^{2}-\frac{1}{5} y$
PTS: 2 REF: 061128a2 STA: A2.N. 3 TOP: Operations with Polynomials

No. TENNESSEE: $\frac{{ }_{9} P_{9}}{4!\cdot 2!\cdot 2!}=\frac{362,880}{96}=3,780$. VERMONT: ${ }_{7} P_{7}=5,040$

PTS: 4
REF: 061038a2
PTS: 2
STA: A2.S. 10
REF: 061025a2
REF: 061308ge STA: A2.A.51
ANS: 3 PTS: 2
TOP: Domain and Range
ANS:
$y=-3 \sin 2 x$. The period of the function is π, the amplitude is 3 and it is reflected over the x-axis.
PTS: 2
REF: 061235a2 STA: A2.A.72
TOP: Identifying the Equation of a Trigonometric Graph
189 ANS: 3 PTS: 2 REF: 061224a2
TOP: Domain and Range
ANS:

$$
-\frac{\sqrt{3}}{2}
$$

PTS: 2 REF: 061033a2 STA: A2.A. 60 TOP: Unit Circle
ANS: 1 PTS: 2 REF: 061013a2 STA: A2.A. 38
TOP: Defining Functions
ANS: 1
$\cos ^{2} \theta-\cos 2 \theta=\cos ^{2} \theta-\left(\cos ^{2} \theta-\sin ^{2} \theta\right)=\sin ^{2} \theta$
PTS: 2 REF: 061024a2 STA: A2.A. 77 TOP: Double Angle Identities
KEY: simplifying
$\mathrm{g}(10)=(a(10) \sqrt{1-x})^{2}=100 a^{2}(-9)=-900 a^{2}$
PTS: 2
REF: 061333a2
STA: A2.A. 41
TOP: Functional Notation
194 ANS: 4
PTS: 2
REF: 061026a2
STA: A2.A. 29

195 ANS: 3
$6 n^{-1}<4 n^{-1}$. Flip sign when multiplying each side of the inequality by n, since a negative number.
$\frac{6}{n}<\frac{4}{n}$
$6>4$
PTS: 2 REF: 061314a2 STA: A2.N. 1 TOP: Negative and Fractional Exponents
196 ANS: 3
$x=5^{4}=625$
PTS: 2 REF: 061106a2 STA: A2.A. 28 TOP: Logarithmic Equations
KEY: basic
197 ANS: 1
If $\sin x=0.8$, then $\cos x=0.6 . \tan \frac{1}{2} x=\sqrt{\frac{1-0.6}{1+0.6}}=\sqrt{\frac{0.4}{1.6}}=0.5$.
PTS: 2 REF: 061220a2 STA: A2.A. 77 TOP: Half Angle Identities
ANS: 3 PTS: 2 REF: 081007a2 STA: A2.A. 64
TOP: Using Inverse Trigonometric Functions KEY: basic
199 ANS:
Sum $\frac{-b}{a}=-\frac{11}{5}$. Product $\frac{c}{a}=-\frac{3}{5}$
PTS: 2 REF: 061030a2 STA: A2.A. 20 TOP: Roots of Quadratics
ANS:
$e^{3 \ln 2}=e^{\ln 2^{3}}=e^{\ln 8}=8$
PTS: 2 REF: 061131a2 STA: A2.A. 12 TOP: Evaluating Exponential Expressions
ANS: 2
$x^{2}-2 x+y^{2}+6 y=-3$
$x^{2}-2 x+1+y^{2}+6 y+9=-3+1+9$
$(x-1)^{2}+(y+3)^{2}=7$
PTS: 2 REF: 061016a2 STA: A2.A. 47 TOP: Equations of Circles
202 ANS: 3
PTS: 2
REF: 081027a2 STA: A2.A. 44
TOP: Inverse of Functions KEY: equations
ANS: $3 \quad$ PTS: 2
REF: 061119a2 STA: A2.A. 65
TOP: Graphing Trigonometric Functions
ANS: 1
$2 \log x-(3 \log y+\log z)=\log x^{2}-\log y^{3}-\log z=\log \frac{x^{2}}{y^{3} z}$
PTS: 2 REF: 061010a2 STA: A2.A. 19 TOP: Properties of Logarithms

ANS: 3
PTS: 2
REF: 061306a2
STA: A2.A. 72
TOP: Identifying the Equation of a Trigonometric Graph
ANS: 3
$\frac{59.2}{\sin 74}=\frac{60.3}{\sin C} \quad 180-78.3=101.7$

$$
C \approx 78.3
$$

PTS: 2 REF: 081006a2 STA: A2.A. 75 TOP: Law of Sines - The Ambiguous Case

PTS: 4
REF: 081037a2 STA: A2.A.76
TOP: Angle Sum and Difference Identities
KEY: evaluating
ANS: 4
$b^{2}-4 a c=3^{2}-4(9)(-4)=9+144=153$

PTS: 2
REF: 081016a2 STA: A2.A. 2
KEY: determine nature of roots given equation
210 ANS: 3
$27 r^{4-1}=64$

$$
\begin{aligned}
r^{3} & =\frac{64}{27} \\
r & =\frac{4}{3}
\end{aligned}
$$

PTS: 2
REF: 081025a2
STA: A2.A. 31
TOP: Sequences

211 ANS:
$K=a b \sin C=18 \cdot 22 \sin 60=396 \frac{\sqrt{3}}{2}=198 \sqrt{3}$
PTS: 2 REF: 061234a2 STA: A2.A. 74 TOP: Using Trigonometry to Find Area
KEY: Parallelograms
212 ANS: 3
$K=(10)(18) \sin 46 \approx 129$
PTS: 2 REF: 081021a2 STA: A2.A. 74 TOP: Using Trigonometry to Find Area
KEY: parallelograms
213 ANS: 1
$\frac{\sqrt{3}+5}{\sqrt{3}-5} \cdot \frac{\sqrt{3}+5}{\sqrt{3}+5}=\frac{3+5 \sqrt{3}+5 \sqrt{3}+25}{3-25}=\frac{28+10 \sqrt{3}}{-22}=-\frac{14+5 \sqrt{3}}{11}$
PTS: 2 REF: 061012a2 STA: A2.N. 5 TOP: Rationalizing Denominators
214 ANS: $2 \quad$ PTS: 2
REF: 061205 a 2 STA: A2.A. 34
TOP: Sigma Notation
215 ANS: 4 PTS: 2 REF: 061303a2 STA: A2.A. 43
TOP: Defining Functions
216 ANS:
$5 \sqrt{3 x^{3}}-2 \sqrt{27 x^{3}}=5 \sqrt{x^{2}} \sqrt{3 x}-2 \sqrt{9 x^{2}} \sqrt{3 x}=5 x \sqrt{3 x}-6 x \sqrt{3 x}=-x \sqrt{3 x}$
PTS: 2 REF: 061032a2 STA: A2.N. 2 TOP: Operations with Radicals
217 ANS: 1 PTS: 2 REF: 061317a2 STA: A2.S.9
TOP: Differentiating Permutations and Combinations
218 ANS: 2
$\frac{-\frac{3}{32} a^{3} b^{4}}{\frac{1}{64} a^{5} b^{3}}=-\frac{6 b}{a^{2}}$
PTS: 2 REF: 061326a2 STA: A2.A.31 TOP: Sequences
219 ANS:
Controlled experiment because Howard is comparing the results obtained from an experimental sample against a control sample.

PTS: 2 REF: 081030a2 STA: A2.S. 1 TOP: Analysis of Data
220 ANS: 3
(1) and (4) fail the horizontal line test and are not one-to-one. Not every element of the range corresponds to only one element of the domain. (2) fails the vertical line test and is not a function. Not every element of the domain corresponds to only one element of the range.

PTS: 2 REF: 081020a2 STA: A2.A. 43 TOP: Defining Functions

221 ANS: 4

PTS: 2 REF: 061222a2 STA: A2.A. 50 TOP: Solving Polynomial Equations ANS: 1
${ }_{9} C_{3} a^{6}(-4 b)^{3}=-5376 a^{6} b^{3}$
PTS: 2 REF: 061126a2
STA: A2.A. 36
REF: 061120a2 STA: A2.A. 19
TOP: Properties of Logarithms
KEY: splitting logs
224 ANS: 2
$\frac{x^{-1}-1}{x-1}=\frac{\frac{1}{x}-1}{x-1}=\frac{\frac{1-x}{x}}{x-1}=\frac{\frac{-(x-1)}{x}}{x-1}=-\frac{1}{x}$
PTS: 2 REF: 081018a2 STA: A2.A. 9 TOP: Negative Exponents
225 ANS:

$$
\begin{aligned}
\frac{15}{\sin 103} & =\frac{a}{\sin 42} \cdot \frac{1}{2}(15)(10.3) \sin 35 \approx 44 \\
a & \approx 10.3
\end{aligned}
$$

PTS: 4 REF: 061337a2 STA: A2.A. 74 TOP: Using Trigonometry to Find Area
KEY: advanced
226
ANS:
$\frac{12 x^{2}}{y^{9}} \cdot \frac{3 x^{-4} y^{5}}{\left(2 x^{3} y^{-7}\right)^{-2}}=\frac{3 y^{5}\left(2 x^{3} y^{-7}\right)^{2}}{x^{4}}=\frac{3 y^{5}\left(4 x^{6} y^{-14}\right)}{x^{4}}=\frac{12 x^{6} y^{-9}}{x^{4}}=\frac{12 x^{2}}{y^{9}}$
PTS: 2 REF: 061134a2 STA: A2.A. 9 TOP: Negative Exponents
227 ANS:
$(x+5)^{2}+(y-3)^{2}=32$
PTS: 2 REF: 081033a2 STA: A2.A. 49 TOP: Writing Equations of Circles
228 ANS: 4
PTS: 2
TOP: Properties of Logarithms
REF: 061207a2 STA: A2.A. 19
KEY: antilogarithms
229
ANS: 1

n	3	4	5	Σ
$-r^{2}+r$	$-3^{2}+3=-6$	$-4^{2}+4=-12$	$-5^{2}+5=-20$	-38

PTS: 2 REF: 061118a2 STA: A2.N. 10 TOP: Sigma Notation
KEY: basic

230 ANS:
Sum $\frac{-b}{a}=-\frac{1}{12}$. Product $\frac{c}{a}=-\frac{1}{2}$
PTS: 2 REF: 061328a2 STA: A2.A. 20 TOP: Roots of Quadratics
231 ANS: 1
$a_{n}=-\sqrt{5}(-\sqrt{2})^{n-1}$
$a_{15}=-\sqrt{5}(-\sqrt{2})^{15-1}=-\sqrt{5}(-\sqrt{2})^{14}=-\sqrt{5} \cdot 2^{7}=-128 \sqrt{5}$
PTS: 2 REF: 061109a2 STA: A2.A. 32 TOP: Sequences
232 ANS: 4
PTS: 2
REF: 061124a2 STA: A2.S. 3
TOP: Average Known with Missing Data
233 ANS: 2 PTS: 2 REF: 061011a2 STA: A2.A. 10
TOP: Fractional Exponents as Radicals
234 ANS:
no. over 20 is more than 1 standard deviation above the mean. $0.159 \cdot 82 \approx 13.038$
PTS: 2
REF: 061129a2 STA: A2.S. 5
PTS: 2
REF: 061101a2
STA: A2.S. 1
TOP: Analysis of Data
236 ANS:
${ }_{7} C_{3}\left(\frac{1}{4}\right)^{3}\left(\frac{3}{4}\right)^{4}=35\left(\frac{1}{64}\right)\left(\frac{81}{256}\right)=\frac{2835}{16384} \approx 0.173$
PTS: 2 REF: 061335a2 STA: A2.S. 15 TOP: Binomial Probability
KEY: exactly
237
ANS:
$K=a b \sin C=24 \cdot 30 \sin 57 \approx 604$
PTS: 2 REF: 061034a2 STA: A2.A. 74 TOP: Using Trigonometry to Find Area
KEY: parallelograms
238 ANS: 1

$$
\begin{aligned}
\frac{6}{\sin 35} & =\frac{10}{\sin N} \\
N & \approx 73 \\
73+35 & <180 \\
(180-73)+35 & <180
\end{aligned}
$$

PTS: 2
REF: 061226a2
STA: A2.A. 75
TOP: Law of Sines - The Ambiguous Case

239 ANS:
$\frac{51}{243} \cdot{ }_{5} C_{3}\left(\frac{1}{3}\right)^{3}\left(\frac{2}{3}\right)^{2}=\frac{40}{243}$

$$
{ }_{5} C_{4}\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)^{1}=\frac{10}{243}
$$

$$
{ }_{5} C_{3}\left(\frac{1}{3}\right)^{5}\left(\frac{2}{3}\right)^{0}=\frac{1}{243}
$$

PTS: 4 REF: 061138a2 STA: A2.S. 15 TOP: Binomial Probability
KEY: at least or at most
240 ANS: 1
The binomials are conjugates, so use FL.
PTS: 2 REF: 061201a2 STA: A2.N. 3 TOP: Operations with Polynomials
241 ANS: 2
$\frac{8 \pi}{5} \cdot \frac{180}{\pi}=288$
PTS: 2
REF: 061302a2
STA: A2.M. 2
TOP: Radian Measure
KEY: degrees
242 ANS: 2
The roots are $-1,2,3$.
PTS: 2 REF: 081023a2 STA: A2.A. 50 TOP: Solving Polynomial Equations
243 ANS: 3
PTS: 2
REF: 061114a2
STA: A2.A. 38
TOP: Defining Functions
KEY: graphs
244 ANS: 3 PTS: 2 REF: 061007a2 STA: A2.S.9
TOP: Differentiating Permutations and Combinations
245 ANS: 4
$\sin (\theta+90)=\sin \theta \cdot \cos 90+\cos \theta \cdot \sin 90=\sin \theta \cdot(0)+\cos \theta \cdot(1)=\cos \theta$
PTS: 2 REF: 061309a2 STA: A2.A.76 TOP: Angle Sum and Difference Identities
KEY: identities
246 ANS: 2
PTS: 2
REF: 061218a2 STA: A2.A. 43
TOP: Defining Functions
247 ANS: 2
${ }_{15} C_{8}=6,435$
PTS: 2
REF: 081012a2
STA: A2.S. 11
TOP: Combinations
248 ANS:
$\sum_{n=1}^{15} 7 n$
PTS: 2
REF: 081029a2
STA: A2.A. 34
TOP: Sigma Notation

249 ANS:
$A=750 e^{(0.03)(8)} \approx 953$
PTS: 2 REF: 061229a2 STA: A2.A. 12 TOP: Evaluating Exponential Expressions
ANS: 1
$\sqrt[4]{16 x^{2} y^{7}}=16^{\frac{1}{4}} x^{\frac{2}{4}} y^{\frac{7}{4}}=2 x^{\frac{1}{2}} y^{\frac{7}{4}}$
PTS: 2 REF: 061107a2 STA: A2.A. 11 TOP: Radicals as Fractional Exponents 251 ANS:
33. $a=\sqrt{10^{2}+6^{2}-2(10)(6) \cos 80} \approx 10.7 . \angle C$ is opposite the shortest side. $\frac{6}{\sin C}=\frac{10.7}{\sin 80}$

$$
C \approx 33
$$

PTS: 6
REF: 061039a2 STA: A2.A. 73
TOP: Law of Cosines
KEY: advanced
ANS:
$\frac{4}{9} x^{2}-\frac{4}{3} x+1 .\left(\frac{2}{3} x-1\right)^{2}=\left(\frac{2}{3} x-1\right)\left(\frac{2}{3} x-1\right)=\frac{4}{9} x^{2}-\frac{2}{3} x-\frac{2}{3} x+1=\frac{4}{9} x^{2}-\frac{4}{3} x+1$
PTS: 2 REF: 081034a2 STA: A2.N. 3 TOP: Operations with Polynomials
ANS:
$\frac{13}{x}=10-x \quad . x=\frac{10 \pm \sqrt{100-4(1)(13)}}{2(1)}=\frac{10 \pm \sqrt{48}}{2}=\frac{10 \pm 4 \sqrt{3}}{2}=5 \pm 2 \sqrt{3}$
$13=10 x-x^{2}$
$x^{2}-10 x+13=0$
PTS: 4 REF: 061336a2 STA: A2.A. 23 TOP: Solving Rationals
KEY: irrational and complex solutions
ANS: 2
$\frac{2 \pi}{b}=\frac{2 \pi}{3}$
PTS: 2
REF: 061111a2 STA: A2.A. 69
TOP: Properties of Graphs of Trigonometric Functions
KEY: period
$x^{2}-x-6=3 x-6$

$$
\begin{aligned}
x^{2}-4 x & =0 \\
x(x-4) & =0 \\
x & =0,4
\end{aligned}
$$

PTS: 2 REF: 081015a2 STA: A2.A. 3 TOP: Quadratic-Linear Systems
KEY: equations

ANS: 1
PTS: 2
REF: 061324a2
STA: A2.A. 9
TOP: Negative Exponents
ANS: 3
(3i) $(2 i)^{2}(m+i)$
(3i) $\left(4 i^{2}\right)(m+i)$
$(3 i)(-4)(m+i)$
$(-12 i)(m+i)$
$-12 m i-12 i^{2}$
$-12 m i+12$
PTS: 2
REF: 061319a2
STA: A2.N. 9
TOP: Multiplication and Division of Complex Numbers
ANS: 3
$\frac{4}{5-\sqrt{13}} \cdot \frac{5+\sqrt{13}}{5+\sqrt{13}}=\frac{4(5+\sqrt{13})}{25-13}=\frac{5+\sqrt{13}}{3}$
PTS: 2 REF: 061116a2 STA: A2.N. 5 TOP: Rationalizing Denominators
ANS: 2
$\tan 30=\frac{\sqrt{3}}{3} . \operatorname{Arccos} \frac{\sqrt{3}}{k}=30$

$$
\begin{aligned}
\frac{\sqrt{3}}{k} & =\cos 30 \\
k & =2
\end{aligned}
$$

PTS: 2
REF: 061323a2
STA: A2.A. 64
KEY: advanced
ANS: 2 PTS: 2
REF: 061301a2
TOP: Using Inverse Trigonometric Functions

TOP: Analysis of Data

ANS:

$$
y=0
$$

PTS: 2
REF: 061031a2
ANS: 3
PTS: 2
TOP: Conjugates of Complex Numbers
ANS:

$$
\begin{aligned}
b^{2}-4 a c & =0 \\
k^{2}-4(1)(4) & =0 \\
k^{2}-16 & =0 \\
(k+4)(k-4) & =0 \\
k & = \pm 4
\end{aligned}
$$

PTS: 2
REF: 061028a2 STA: A2.A. 2
KEY: determine equation given nature of roots
45, $2252 \tan C-3=3 \tan C-4$

$$
\begin{aligned}
1 & =\tan C \\
\tan ^{-1} 1 & =C \\
C & =45,225
\end{aligned}
$$

PTS: 2
REF: 081032a2
STA: A2.A. 68
KEY: basic
265 ANS: 4
$(3+\sqrt{5})(3-\sqrt{5})=9-\sqrt{25}=4$
PTS: 2
REF: 081001a2
KEY: without variables | index $=2$

STA: A2.N. 4
REF: 061216a2

PTS: 2
TOP: Compositions of Functions

STA: A2.A. 53
REF: 061219a2
TOP: Graphing Exponential Functions
STA: A2.N. 8

TOP: Using the Discriminant

TOP: Trigonometric Equations

TOP: Operations with Irrational Expressions
STA: A2.A. 42

267 ANS: 4
$12 x^{4}+10 x^{3}-12 x^{2}=2 x^{2}\left(6 x^{2}+5 x-6\right)=2 x^{2}(2 x+3)(3 x-2)$
PTS: 2 REF: 061008a2 STA: A2.A. 7 TOP: Factoring Polynomials
KEY: single variable
268 ANS: 1
PTS: 2
REF: 081022a2
STA: A2.A. 46
TOP: Transformations with Functions and Relations
269 ANS:
$x=-\frac{1}{3},-1 \log _{x+3} \frac{x^{3}+x-2}{x}=2$

$$
\begin{aligned}
\frac{x^{3}+x-2}{x} & =(x+3)^{2} \\
\frac{x^{3}+x-2}{x} & =x^{2}+6 x+9 \\
x^{3}+x-2 & =x^{3}+6 x^{2}+9 x \\
0 & =6 x^{2}+8 x+2 \\
0 & =3 x^{2}+4 x+1 \\
0 & =(3 x+1)(x+1) \\
x & =-\frac{1}{3},-1
\end{aligned}
$$

PTS: 6
REF: 081039a2 STA: A2.A. 28
KEY: basic
270
ANS: 2
$\cos \left(-305^{\circ}+360^{\circ}\right)=\cos \left(55^{\circ}\right)$
PTS: 2 REF: 061104a2 STA: A2.A. 57 TOP: Reference Angles
271 ANS:
$10 a x^{2}-23 a x-5 a=a\left(10 x^{2}-23 x-5\right)=a(5 x+1)(2 x-5)$
PTS: 2
REF: 081028a2 STA: A2.A. 7
KEY: multiple variables
272 ANS: 3
PTS: 2
REF: 061127a2
STA: A2.S. 6
TOP: Regression
273
ANS:
$39,916,800 \cdot \frac{{ }_{12} P_{12}}{3!\cdot 2!}=\frac{479,001,600}{12}=39,916,800$
PTS: 2
REF: 081035a2
STA: A2.S. 10
TOP: Permutations

274 ANS: 4

$$
\begin{aligned}
9^{3 x+1} & =27^{x+2} . \\
\left(3^{2}\right)^{3 x+1} & =\left(3^{3}\right)^{x+2} \\
3^{6 x+2} & =3^{3 x+6} \\
6 x+2 & =3 x+6 \\
3 x & =4 \\
x & =\frac{4}{3}
\end{aligned}
$$

PTS: 2
REF: 081008a2
STA: A2.A. 27
TOP: Exponential Equations
KEY: common base not shown
ANS:
$0,60,180,300$.

$$
\begin{gathered}
\sin 2 \theta=\sin \theta \\
\sin 2 \theta-\sin \theta=0 \\
2 \sin \theta \cos \theta-\sin \theta=0 \\
\sin \theta(2 \cos \theta-1)=0 \\
\sin \theta=0 \quad 2 \cos \theta-1=0 \\
\theta=0,180 \cos \theta=\frac{1}{2} \\
\theta=60,300
\end{gathered}
$$

PTS: 4
REF: 061037a2
STA: A2.A. 68
TOP: Trigonometric Equations
KEY: double angle identities
ANS: 1
PTS: 2
REF: 061223a2
TOP: Binomial Probability
KEY: modeling
ANS: 2
$\left(\frac{w^{-5}}{w^{-9}}\right)^{\frac{1}{2}}=\left(w^{4}\right)^{\frac{1}{2}}=w^{2}$
PTS: 2
REF: 081011a2
ANS: 2
PTS: 2
TOP: Conjugates of Complex Numbers

STA: A2.A. 8
REF: 081024a2

TOP: Negative and Fractional Exponents STA: A2.N. 8

279
ANS: 4
$x=2 y . y^{2}-(3 y)^{2}+32=0 \quad . \quad x=3(-2)=-6$

$$
y^{2}-9 y^{2}=-32
$$

$$
-8 y^{2}=-32
$$

$$
y^{2}=4
$$

$$
y= \pm 2
$$

PTS: 2
KEY: equations

$$
\begin{aligned}
& \text { ANS: } \\
& \begin{aligned}
i^{13}+i^{18}+i^{31}+n & =0 \\
i+(-1)-i+n & =0 \\
-1+n & =0 \\
n & =1
\end{aligned}
\end{aligned}
$$

PTS: 2
ANS:
$216\left(\frac{\pi}{180}\right) \approx 3.8$
PTS: 2
KEY: radians
ANS: 1
TOP: Graphing Logarithmic Functions
ANS: 2

$$
\begin{gathered}
x^{3}+3 x^{2}-4 x-12 \\
x^{2}(x+3)-4(x+3) \\
\left(x^{2}-4\right)(x+3) \\
(x+2)(x-2)(x+3)
\end{gathered}
$$

PTS: 2
ANS: 3

$$
\begin{aligned}
1000 & =500 e^{.05 t} \\
2 & =e^{.05 t} \\
\ln 2 & =\ln e^{.05 t} \\
\frac{\ln 2}{.05} & =\frac{.05 t \cdot \ln e}{.05} \\
13.9 & \approx t
\end{aligned}
$$

PTS: 2
REF: 061313a2
STA: A2.A. 6

REF: 061228a2
STA: A2.N. 7
TOP: Imaginary Numbers

REF: 061232a2
STA: A2.M. 2
TOP: Radian Measure
PTS: 2
TOP: Quadratic-Linear Systems
STA: A2.A. 3
REF: 061312a2
-
(

STA: A2.A. 54
REF: 061211a2

285 ANS: $2 \quad$ PTS: 2
TOP: Trigonometric Ratios
286 ANS: 4
PTS: 2
TOP: Solving Polynomial Equations
287 ANS: 4
${ }_{15} C_{5}=3,003 .{ }_{25} C_{5}={ }_{25} C_{20}=53,130 .{ }_{25} C_{15}=3,268,760$.
PTS: 2 REF: 061227a2 STA: A2.S. 11 TOP: Combinations
288 ANS:

$$
\begin{aligned}
x^{4}+4 x^{3}+4 x^{2}+16 x & =0 \\
x\left(x^{3}+4 x^{2}+4 x+16\right) & =0 \\
x\left(x^{2}(x+4)+4(x+4)\right) & =0 \\
x\left(x^{2}+4\right)(x+4) & =0 \\
x & =0, \pm 2 i,-4
\end{aligned}
$$

PTS: 6
REF: 061339a2
ANS: 2
PTS: 2
TOP: Completing the Square
290 ANS: 3

$$
\begin{aligned}
75000 & =25000 e^{.0475 t} \\
3 & =e^{.0475 t} \\
\ln 3 & =\ln e^{.0475 t} \\
\frac{\ln 3}{.0475} & =\frac{.0475 t \cdot \ln e}{.0475} \\
23.1 & \approx t
\end{aligned}
$$

PTS: 2
291 ANS: 2
R. 061117a2

TOP: Correlation Coefficient

REF: 081010a2
STA: A2.A. 55
REF: 061005a2 STA: A2.A. 50

292
ANS:

$$
\begin{aligned}
\frac{1}{3} \quad \frac{1}{x+3}-\frac{2}{3-x} & =\frac{4}{x^{2}-9} \\
\frac{1}{x+3}+\frac{2}{x-3} & =\frac{4}{x^{2}-9} \\
\frac{x-3+2(x+3)}{(x+3)(x-3)} & =\frac{4}{(x+3)(x-3)} \\
x-3+2 x+6 & =4 \\
3 x & =1 \\
x & =\frac{1}{3}
\end{aligned}
$$

PTS: 4 REF: 081036a2 STA: A2.A. 23 TOP: Solving Rationals
KEY: rational solutions
293
$\frac{-\left(x^{2}-4\right)}{(x+4)(x+3)} \times \frac{x+3}{2(x-2)}=\frac{-(x+2)(x-2)}{x+4} \times \frac{1}{2(x-2)}=\frac{-(x+2)}{2(x+4)}$
PTS: 4
REF: 061236a2 STA: A2.A. 16
TOP: Multiplication and Division of Rationals
KEY: division
294 ANS: 2
$\begin{array}{r}\tan \left\langle 126^{\circ} 43^{1}\right) \\ -1.349788784 \\ \hline\end{array}$

PTS: 2
REF: 061115a2 STA: A2.A. 66
TOP: Determining Trigonometric Functions
295 ANS: 3
$\log 4 m^{2}=\log 4+\log m^{2}=\log 4+2 \log m$
PTS: 2
REF: 061321a2
STA: A2.A. 19
TOP: Properties of Logarithms
KEY: splitting logs
ANS: 2
$f(10)=\frac{-10}{(-10)^{2}-16}=\frac{-10}{84}=-\frac{5}{42}$
PTS: 2 REF: 061102a2 STA: A2.A. 41 TOP: Functional Notation
297
ANS.
$\cos \theta \cdot \frac{1}{\cos \theta}-\cos ^{2} \theta=1-\cos ^{2} \theta=\sin ^{2} \theta$
PTS: 2
REF: 061230a2
STA: A2.A. 58
TOP: Reciprocal Trigonometric Relationships

ANS: 3
If $\csc P>0, \sin P>0$. If $\cot P<0$ and $\sin P>0, \cos P<0$

PTS: 2

ANS: 1

$$
\begin{aligned}
13^{2} & =15^{2}+14^{2}-2(15)(14) \cos C \\
169 & =421-420 \cos C \\
-252 & =-420 \cos C \\
\frac{252}{420} & =\cos C \\
53 & \approx C
\end{aligned}
$$

PTS: 2
REF: 061110a2 STA: A2.A. 73
TOP: Law of Cosines
KEY: find angle
ANS: 3
$S_{8}=\frac{3\left(1-(-4)^{8}\right)}{1-(-4)}=\frac{196,605}{5}=-39,321$
PTS: 2
REF: 061304a2 STA: A2.A. 35
KEY: geometric
ANS:
$\frac{\frac{1}{2}-\frac{4}{d}}{\frac{1}{d}+\frac{3}{2 d}}=\frac{\frac{d-8}{2 d}}{\frac{2 d+3 d}{2 d^{2}}}=\frac{d-8}{2 d} \times \frac{2 d^{2}}{5 d}=\frac{d-8}{5}$

PTS: 2 REF: 061035a2 STA: A2.A. 17 TOP: Complex Fractions
304
7. $\mathrm{f}(-3)=(-3)^{2}-6=3$. $\mathrm{g}(x)=2^{3}-1=7$.

PTS: 2 REF: 061135a2 STA: A2.A. 42 TOP: Compositions of Functions
KEY: numbers

305
ANS:

$$
\begin{aligned}
81^{x^{3}+2 x^{2}} & =27^{\frac{5 x}{3}} \\
\left(3^{4}\right)^{x^{3}+2 x^{2}} & =\left(3^{3}\right)^{\frac{5 x}{3}} \\
3^{4 x^{3}+8 x^{2}} & =3^{5 x} \\
4 x^{3}+8 x^{2}-5 x & =0 \\
x\left(4 x^{2}+8 x-5\right) & =0 \\
x(2 x-1)(2 x+5) & =0 \\
x & =0, \frac{1}{2},-\frac{5}{2}
\end{aligned}
$$

PTS: 6 REF: 061239a2
KEY: common base not shown
ANS: 4 PTS: 2
TOP: Domain and Range
STA: A2.A. 27
TOP: Exponential Equations
REF: 061112a2 STA: A2.A. 39
KEY: real domain
307 ANS: 1
common difference is $2 . b_{n}=x+2 n$

$$
\begin{aligned}
10 & =x+2(1) \\
8 & =x
\end{aligned}
$$

PTS: 2 REF: 081014a2 STA: A2.A. 29 TOP: Sequences
308 ANS:
$x^{2}-6 x-27=0, \frac{-b}{a}=6 . \frac{c}{a}=-27$. If $a=1$ then $b=-6$ and $c=-27$
PTS: 4 REF: 061130a2 STA: A2.A. 21 TOP: Roots of Quadratics KEY: basic
ANS: 3
sum of the roots, $\frac{-b}{a}=\frac{-(-9)}{4}=\frac{9}{4}$. product of the roots, $\frac{c}{a}=\frac{3}{4}$
PTS: 2
REF: 061208a2
STA: A2.A. 21
TOP: Roots of Quadratics
KEY: basic
310
ANS: 3
period $=\frac{2 \pi}{b}=\frac{2 \pi}{3 \pi}=\frac{2}{3}$
PTS: 2
REF: 081026a2 STA: A2.A.70
TOP: Graphing Trigonometric Functions
KEY: recognize

ANS:

$$
\begin{aligned}
5 \csc \theta & =8 \\
\csc \theta & =\frac{8}{5} \\
\sin \theta & =\frac{5}{8} \\
\theta & \approx 141
\end{aligned}
$$

PTS: 2 REF: 061332a2 STA: A2.A. 68 TOP: Trigonometric Equations
KEY: reciprocal functions

PTS: 2
REF: 061020a2 STA: A2.A. 71
TOP: Graphing Trigonometric Functions
ANS: 3
$\frac{3}{\sqrt{3 a^{2} b}}=\frac{3}{a \sqrt{3 b}} \cdot \frac{\sqrt{3 b}}{\sqrt{3 b}}=\frac{3 \sqrt{3 b}}{3 a b}=\frac{\sqrt{3 b}}{a b}$

PTS: 2
REF: 081019a2
STA: A2.A. 15
TOP: Rationalizing Denominators
KEY: index $=2$
314 ANS: 1

$\cos K=\frac{5}{6}$

$$
\begin{aligned}
& K=\cos ^{-1} \frac{5}{6} \\
& K \approx 33^{\circ} 33^{\prime}
\end{aligned}
$$

PTS: 2 REF: 061023a2 STA: A2.A. 55 TOP: Trigonometric Ratios
${ }_{6} C_{3}\left(\frac{x}{2}\right)^{3}(-2 y)^{3}=20 \cdot \frac{x^{3}}{8} \cdot-8 y^{3}=-20 x^{3} y^{3}$
PTS: 2
REF: 061215a2
PTS: 2
STA: A2.A. 36
TOP: Binomial Expansions
316 ANS: 1
REF: 061004a2
STA: A2.A. 52
TOP: Identifying the Equation of a Graph

ANS: $1 \quad$ PTS: 2
TOP: Correlation Coefficient
PTS: 2
REF: 061316a2
STA: A2.S. 8

TOP: Unit Circle
319 ANS: 3
$\frac{-7 \pm \sqrt{7^{2}-4(2)(-3)}}{2(2)}=\frac{-7 \pm \sqrt{73}}{4}$

PTS: 2
REF: 081009a2
STA: A2.A. 25
TOP: Quadratic Formula
320 ANS: 2

$$
4^{2 x+5}=8^{3 x}
$$

$\left(2^{2}\right)^{2 x+5}=\left(2^{3}\right)^{3 x}$

$$
\begin{aligned}
2^{4 x+10} & =2^{9 x} \\
4 x+10 & =9 x \\
10 & =5 x \\
2 & =x
\end{aligned}
$$

PTS: 2 REF: 061105a2 STA: A2.A. 27 TOP: Exponential Equations
KEY: common base not shown
321 ANS:
$\sigma_{x}=14.9 . \quad \bar{x}=40$. There are 8 scores between 25.1 and 54.9.

PTS: 4 REF: 061237a2 STA: A2.S.4 TOP: Dispersion
KEY: advanced
ANS:
0.167. ${ }_{10} C_{8} \cdot 0.6^{8} \cdot 0.4^{2}+{ }_{10} C_{9} \cdot 0.6^{9} \cdot 0.4^{1}+{ }_{10} C_{10} \cdot 0.6^{10} \cdot 0.4^{0} \approx 0.167$

PTS: 4 REF: 061036a2 STA: A2.S. 15 TOP: Binomial Probability
KEY: at least or at most
323 ANS:

$$
\begin{aligned}
\left(-\frac{9}{2}, \frac{1}{2}\right) \text { and }\left(\frac{1}{2}, \frac{11}{2}\right) \cdot \begin{array}{ll}
y=x+5 & 4 x^{2}+17 x-4=x+5 \\
y=4 x^{2}+17 x-4 & 4 x^{2}+16 x-9=0 \\
& (2 x+9)(2 x-1)=0 \\
& x=-\frac{9}{2} \text { and } x=\frac{1}{2} \\
& y=-\frac{9}{2}+5=\frac{1}{2} \text { and } y=\frac{1}{2}+5=\frac{11}{2}
\end{array}, \begin{array}{l}
\\
\\
\end{array} & \begin{array}{l}
\text { a }
\end{array} \\
&
\end{aligned}
$$

PTS: 6
REF: 061139a2 STA: A2.A. 3 TOP: Quadratic-Linear Systems
KEY: equations

ANS:
$26.2 \% .{ }_{10} C_{8} \cdot 0.65^{8} \cdot 0.35^{2}+{ }_{10} C_{9} \cdot 0.65^{9} \cdot 0.35^{1}+{ }_{10} C_{10} \cdot 0.65^{10} \cdot 0.35^{0} \approx 0.262$
PTS: 4 REF: 081038a2 STA: A2.S. 15 TOP: Binomial Probability
KEY: at least or at most
325 ANS:
$\sigma_{x} \approx 6.2$. 6 scores are within a population standard deviation of the mean. $Q_{3}-Q_{1}=41-37=4$
$\bar{x} \approx 38.2$
PTS: 4
REF: 061338a2 STA: A2.S. 4
TOP: Dispersion
KEY: advanced
ANS: 1
${ }_{10} C_{4}=210$
PTS: 2
REF: 061113a2
STA: A2.S. 11
REF: 081003a2
TOP: Domain and Range
ANS:

$$
\begin{aligned}
y & =x^{2}-6 . \mathrm{f}^{-1}(x) \text { is not a function. } \\
x & =y^{2}-6 \\
x+6 & =y^{2} \\
\pm \sqrt{x+6} & =y
\end{aligned}
$$

PTS: 2 REF: 061132a2 STA: A2.A. 44 TOP: Inverse of Functions
KEY: equations
329 ANS: 2
$\frac{1-\frac{4}{x}}{1-\frac{2}{x}-\frac{8}{x^{2}}} \times \frac{x^{2}}{x^{2}}=\frac{x^{2}-4 x}{x^{2}-2 x-8}=\frac{x(x-4)}{(x-4)(x+2)}=\frac{x}{x+2}$

PTS: 2 REF: 061305a2 STA: A2.A. 17 TOP: Complex Fractions
ANS: 4
$\frac{3 \pm \sqrt{(-3)^{2}-4(1)(-9)}}{2(1)}=\frac{3 \pm \sqrt{45}}{2}=\frac{3 \pm 3 \sqrt{5}}{2}$
PTS: 2
REF: 061009a2
PTS: 2
ANS: 1
PTS.
TOP: Imaginary Numbers

332 ANS:

$$
\begin{gathered}
-3|6-x|<-15 \\
|6-x|>5
\end{gathered}
$$

$$
6-x>5 \text { or } 6-x<-5
$$

$$
1>x \text { or } 11<x
$$

PTS: 2
REF: 061137a2 STA: A2.A. 1
TOP: Absolute Value Inequalities
KEY: graph
333 ANS: 3
$68 \% \times 50=34$
PTS: 2 REF: 081013a2 STA: A2.S. 5 TOP: Normal Distributions
KEY: predict
334 ANS: 3
$\sqrt[3]{4^{3} a^{15} a}=4 a^{5} \sqrt[3]{a}$

PTS: 2
KEY: index >2
ANS: 2
TOP: Law of Sines
336 ANS: 2
TOP: Identifying the Equation of a Graph
337 ANS: 1

Li	LE	123
$2{ }^{2}$	125	-
39	$1{ }^{15}$	
$\begin{array}{\|l\|l\|} \hline \end{array}$	(125	

PTS: 2 REF: 061225a2 STA: A2.S. 8 TOP: Correlation Coefficient
338 ANS: 1
$-420\left(\frac{\pi}{180}\right)=-\frac{7 \pi}{3}$
PTS: 2
REF: 081002a2 STA: A2.M. 2 TOP: Radian Measure
KEY: radians

REF: 061204a2 STA: A2.A. 13 TOP: Simplifying Radicals
PTS: 2 REF: 061322a2 STA: A2.A. 73
KEY: side, without calculator
REF: 061108a2 STA: A2.A.52

ANS: 4

$$
2 \cos \theta=1
$$

$\cos \theta=\frac{1}{2}$

$$
\theta=\cos ^{-1} \frac{1}{2}=60,300
$$

PTS: 2
REF: 061203a2
STA: A2.A. 68
TOP: Trigonometric Equations
KEY: basic
ANS: 4

PTS: 2
REF: 061217a2
STA: A2.A. 66
TOP: Determining Trigonometric Functions
341 ANS: 4

$$
\begin{aligned}
\frac{4 \cdot 0+6 \cdot 1+10 \cdot 2+0 \cdot 3+4 k+2 \cdot 5}{4+6+10+0+k+2} & =2 \\
\frac{4 k+36}{k+22} & =2 \\
4 k+36 & =2 k+44 \\
2 k & =8 \\
k & =4
\end{aligned}
$$

PTS: 2
REF: 061221a2
STA: A2.S. 3
TOP: Average Known with Missing Data
342 ANS: 1
$2 i^{2}+3 i^{3}=2(-1)+3(-i)=-2-3 i$
PTS: 2
REF: 081004a2
STA: A2.N. 7
TOP: Imaginary Numbers
343 ANS:
7.4

PTS: 2
REF: 061029a2
STA: A2.S. 4
TOP: Dispersion
KEY: basic, group frequency distributions

344 ANS: 3

$$
\begin{array}{rlrl}
4^{x^{2}+4 x} & =2^{-6} . & 2 x^{2}+8 x & =-6 \\
\left(2^{2}\right)^{x^{2}+4 x} & =2^{-6} & 2 x^{2}+8 x+6 & =0 \\
2^{2 x^{2}+8 x} & =2^{-6} & x^{2}+4 x+3 & =0 \\
(x+3)(x+1) & =0 \\
x & =-3 x=-1
\end{array}
$$

PTS: 2 REF: 061015a2 STA: A2.A. 27 TOP: Exponential Equations
KEY: common base shown
345 ANS: 4

$$
7^{2}=3^{2}+5^{2}-2(3)(5) \cos A
$$

$$
49=34-30 \cos A
$$

$$
15=-30 \cos A
$$

$-\frac{1}{2}=\cos A$
$120=\cos A$
PTS: 2 REF: 081017a2 STA: A2.A. 73 TOP: Law of Cosines
KEY: angle, without calculator
346 ANS: 4

$$
\begin{gathered}
4+3(2-x)+3(3-x)+3(4-x)+3(5-x) \\
4+6-3 x+9-3 x+12-3 x+15-3 x \\
46-12 x
\end{gathered}
$$

PTS: 2
REF: 061315a2 STA: A2.N. 10
TOP: Sigma Notation
KEY: basic
347 ANS: 4
$\frac{13}{\sin 40}=\frac{20}{\sin M} .81+40<180 .(180-81)+40<180$

$$
M \approx 81
$$

PTS: 2
REF: 061327a2
STA: A2.A. 75
TOP: Law of Sines - The Ambiguous Case
ANS: 4
$\frac{2 \pi}{b}=\frac{2 \pi}{\frac{1}{3}}=6 \pi$
PTS: 2
REF: 061027a2 STA: A2.A. 69
TOP: Properties of Graphs of Trigonometric Functions
KEY: period

349 ANS: 3
$2 \pi \cdot \frac{5}{12}=\frac{10 \pi}{12}=\frac{5 \pi}{6}$
PTS: 2 REF: 061125a2 STA: A2.M. 1 TOP: Radian Measure
350 ANS:
$12 t^{8}-75 t^{4}=3 t^{4}\left(4 t^{4}-25\right)=3 t^{4}\left(2 t^{2}+5\right)\left(2 t^{2}-5\right)$
PTS: 2
REF: 061133a2 STA: A2.A. 7
TOP: Factoring the Difference of Perfect Squares
KEY: binomial
351

$$
\begin{array}{rlrl}
\frac{4 x-5}{3} & >1 \text { or } & \frac{4 x-5}{3} & <-1 \\
4 x-5 & >3 & 4 x-5 & <-3 \\
4 x & >8 & 4 x & <2 \\
x & >2 & x & <\frac{1}{2}
\end{array}
$$

PTS: 2
REF: 061209a2 STA: A2.A. 1 TOP: Absolute Value Inequalities
KEY: graph

