JMAP
 REGENTS AT RANDOM

The NY Geometry Regents Exams
Fall 2008-August 2012
www.jmap.org

Geometry Regents at Random

1 In the diagram below, $\overline{S Q}$ and $\overline{P R}$ intersect at $T, \overline{P Q}$ is drawn, and $\overline{P S} \| \overline{Q R}$.

What technique can be used to prove that
$\triangle P S T \sim \triangle R Q T$?

1) SAS
2) SSS
3) ASA
4) AA

2 Lines j and k intersect at point P. Line m is drawn so that it is perpendicular to lines j and k at point P. Which statement is correct?

1) Lines j and k are in perpendicular planes.
2) Line m is in the same plane as lines j and k.
3) Line m is parallel to the plane containing lines j and k.
4) Line m is perpendicular to the plane containing lines j and k.

3 In the diagram below, tangent $\overline{P A}$ and secant $\overline{P B C}$ are drawn to circle O from external point P.

If $P B=4$ and $B C=5$, what is the length of $\overline{P A}$?

1) 20
2) 9
3) 8
4) 6

4 In the diagram below, circle A and circle B are shown.

What is the total number of lines of tangency that are common to circle A and circle B ?

1) 1
2) 2
3) 3
4) 4

5 In the diagram below of circle O, chords $\overline{D F}, \overline{D E}$, $\overline{F G}$, and $\overline{E G}$ are drawn such that $\mathrm{m} \overparen{D F}: \mathrm{mFE}: \mathrm{m} \overparen{\mathrm{EG}}: \mathrm{m} \overparen{G D}=5: 2: 1: 7$. Identify one pair of inscribed angles that are congruent to each other and give their measure.

6 How many common tangent lines can be drawn to the two externally tangent circles shown below?

1) 1
2) 2
3) 3
4) 4

7 In right $\triangle D E F, \mathrm{~m} \angle D=90$ and $\mathrm{m} \angle F$ is 12 degrees less than twice $\mathrm{m} \angle E$. Find $\mathrm{m} \angle E$.

8 A polygon is transformed according to the rule: $(x, y) \rightarrow(x+2, y)$. Every point of the polygon moves two units in which direction?

1) $u p$
2) down
3) left
4) right

9 What is an equation of a circle with its center at $(-3,5)$ and a radius of 4 ?

1) $(x-3)^{2}+(y+5)^{2}=16$
2) $(x+3)^{2}+(y-5)^{2}=16$
3) $(x-3)^{2}+(y+5)^{2}=4$
4) $(x+3)^{2}+(y-5)^{2}=4$

10 In the diagram below, circles X and Y have two tangents drawn to them from external point T. The points of tangency are C, A, S, and E. The ratio of $T A$ to $A C$ is $1: 3$. If $T S=24$, find the length of $\overline{S E}$.

(Not drawn to scale)

11 In the diagram of trapezoid $A B C D$ below, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E and $\triangle A B C \cong \triangle D C B$.

Which statement is true based on the given information?

1) $\overline{A C} \cong \overline{B C}$
2) $\overline{C D} \cong \overline{A D}$
3) $\angle C D E \cong \angle B A D$
4) $\angle C D B \cong \angle B A C$

12 Which equation represents a line perpendicular to the line whose equation is $2 x+3 y=12$?

1) $6 y=-4 x+12$
2) $2 y=3 x+6$
3) $2 y=-3 x+6$
4) $3 y=-2 x+12$

13 Triangle $A B C$ has vertices $A(1,3), B(0,1)$, and $C(4,0)$. Under a translation, A^{\prime}, the image point of A, is located at $(4,4)$. Under this same translation, point C^{\prime} is located at

1) $(7,1)$
2) $(5,3)$
3) $(3,2)$
4) $(1,-1)$

14 In the diagram below of circle $C, \overline{Q R}$ is a diameter, and $Q(1,8)$ and $C(3.5,2)$ are points on a coordinate plane. Find and state the coordinates of point R.

15 In the diagram of circle O below, chord $\overline{A B}$ intersects chord $\overline{C D}$ at $E, D E=2 x+8, E C=3$, $A E=4 x-3$, and $E B=4$.

What is the value of x ?

1) 1
2) 3.6
3) 5
4) 10.25

16 One step in a construction uses the endpoints of $\overline{A B}$ to create arcs with the same radii. The arcs intersect above and below the segment. What is the relationship of $\overline{A B}$ and the line connecting the points of intersection of these arcs?

1) collinear
2) congruent
3) parallel
4) perpendicular

17 Given: Two is an even integer or three is an even integer.
Determine the truth value of this disjunction.
Justify your answer.

18 Point A is located at $(4,-7)$. The point is reflected in the x-axis. Its image is located at

1) $(-4,7)$
2) $(-4,-7)$
3) $(4,7)$
4) $(7,-4)$

19 If two different lines are perpendicular to the same plane, they are

1) collinear
2) coplanar
3) congruent
4) consecutive

20 The base of a pyramid is a rectangle with a width of 6 cm and a length of 8 cm . Find, in centimeters, the height of the pyramid if the volume is $288 \mathrm{~cm}^{3}$.

21 In the diagram of $\triangle A B C$ and $\triangle E D C$ below, $\overline{A E}$ and $\overline{B D}$ intersect at C, and $\angle C A B \cong \angle C E D$.

Which method can be used to show that $\triangle A B C$ must be similar to $\triangle E D C$?

1) SAS
2) AA
3) SSS
4) HL

22 Which statement is logically equivalent to "If it is warm, then I go swimming"

1) If I go swimming, then it is warm.
2) If it is warm, then I do not go swimming.
3) If I do not go swimming, then it is not warm.
4) If it is not warm, then I do not go swimming.

23 In the diagram of $\triangle A B C$ below, $A B=10, B C=14$, and $A C=16$. Find the perimeter of the triangle formed by connecting the midpoints of the sides of $\triangle A B C$.

24 What is the negation of the statement "The Sun is shining"?

1) It is cloudy.
2) It is daytime.
3) It is not raining.
4) The Sun is not shining.

25 In a coordinate plane, how many points are both 5 units from the origin and 2 units from the x-axis?

1) 1
2) 2
3) 3
4) 4

26 Two lines are represented by the equations $-\frac{1}{2} y=6 x+10$ and $y=m x$. For which value of m will the lines be parallel?

1) -12
2) -3
3) 3
4) 12

27 In three-dimensional space, two planes are parallel and a third plane intersects both of the parallel planes. The intersection of the planes is a

1) plane
2) point
3) pair of parallel lines
4) pair of intersecting lines

28 The endpoints of $\overline{A B}$ are $A(3,2)$ and $B(7,1)$. If $\overline{A^{\prime \prime} B^{\prime \prime}}$ is the result of the transformation of $\overline{A B}$ under $D_{2}{ }^{\circ} T_{-4,3}$ what are the coordinates of $A^{\prime \prime}$ and $B^{\prime \prime}$?

1) $A^{\prime \prime}(-2,10)$ and $B^{\prime \prime}(6,8)$
2) $A^{\prime \prime}(-1,5)$ and $B^{\prime \prime}(3,4)$
3) $A^{\prime \prime}(2,7)$ and $B^{\prime \prime}(10,5)$
4) $A^{\prime \prime}(14,-2)$ and $B^{\prime \prime}(22,-4)$

29 On the set of axes below, Geoff drew rectangle $A B C D$. He will transform the rectangle by using the translation $(x, y) \rightarrow(x+2, y+1)$ and then will reflect the translated rectangle over the x-axis.

What will be the area of the rectangle after these transformations?

1) exactly 28 square units
2) less than 28 square units
3) greater than 28 square units
4) It cannot be determined from the information given.

30 In the diagram below of $\triangle H Q P$, side $\overline{H P}$ is extended through P to $T, \mathrm{~m} \angle Q P T=6 x+20$, $\mathrm{m} \angle H Q P=x+40$, and $\mathrm{m} \angle P H Q=4 x-5$. Find $\mathrm{m} \angle Q P T$.

31 In the diagram below, tangent $\overline{A B}$ and secant $\overline{A C D}$ are drawn to circle O from an external point A, $A B=8$, and $A C=4$.

What is the length of $\overline{C D}$?

1) 16
2) 13
3) 12
4) 10

32 What is the contrapositive of the statement, "If I am tall, then I will bump my head"?

1) If I bump my head, then I am tall.
2) If I do not bump my head, then I am tall.
3) If I am tall, then I will not bump my head.
4) If I do not bump my head, then I am not tall.

33 The figure in the diagram below is a triangular prism.

Which statement must be true?

1) $\overline{D E} \cong \overline{A B}$
2) $\overline{A D} \cong \overline{B C}$
3) $\overline{A D} \| \overline{C E}$
4) $\overline{D E} \| \overline{B C}$

34 What are the center and the radius of the circle whose equation is $(x-3)^{2}+(y+3)^{2}=36$

1) center $=(3,-3)$; radius $=6$
2) center $=(-3,3)$; radius $=6$
3) center $=(3,-3)$; radius $=36$
4) center $=(-3,3)$; radius $=36$

Geometry Regents Exam Questions at Random www.jmap.org

35 Which diagram shows the construction of an equilateral triangle?
1)

2)

3)

4)

36 Isosceles trapezoid $A B C D$ has diagonals $\overline{A C}$ and $\overline{B D}$. If $A C=5 x+13$ and $B D=11 x-5$, what is the value of x ?

1) 28
2) $10 \frac{3}{4}$
3) 3
4) $\frac{1}{2}$

37 In which polygon does the sum of the measures of the interior angles equal the sum of the measures of the exterior angles?

1) triangle
2) hexagon
3) octagon
4) quadrilateral

38 The diagram below shows a pennant in the shape of an isosceles triangle. The equal sides each measure 13 , the altitude is $x+7$, and the base is $2 x$.

What is the length of the base?

1) 5
2) 10
3) 12
4) 24

39 What is an equation of the line that passes through the point $(-2,5)$ and is perpendicular to the line whose equation is $y=\frac{1}{2} x+5$?

1) $y=2 x+1$
2) $y=-2 x+1$
3) $y=2 x+9$
4) $y=-2 x-9$

40 What is the negation of the statement "Squares are parallelograms"?

1) Parallelograms are squares.
2) Parallelograms are not squares.
3) It is not the case that squares are parallelograms.
4) It is not the case that parallelograms are squares.

41 In the diagram of circle O below, chords $\overline{A B}$ and $\overline{C D}$ are parallel, and $\overline{B D}$ is a diameter of the circle.

If $\mathrm{m} \overparen{A D}=60$, what is $\mathrm{m} \angle C D B$?

1) 20
2) 30
3) 60
4) 120

42 In the diagram below, circle O has a radius of 5, and $C E=2$. Diameter $\overline{A C}$ is perpendicular to chord $\overline{B D}$ at E.

What is the length of $\overline{B D}$?

1) 12
2) 10
3) 8
4) 4

43 In the diagram below of parallelogram $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}, \mathrm{~m} \angle 1=45$ and $\mathrm{m} \angle D C B=120$.

What is the measure of $\angle 2$?

1) 15°
2) 30°
3) 45°
4) 60°

Geometry Regents Exam Questions at Random www.jmap.org

44 The diagram below illustrates the construction of $\overleftrightarrow{P S}$ parallel to $\overleftrightarrow{R Q}$ through point P

Which statement justifies this construction?

1) $\mathrm{m} \angle 1=\mathrm{m} \angle 2$
2) $\mathrm{m} \angle 1=\mathrm{m} \angle 3$
3) $\overline{P R} \cong \overline{R Q}$
4) $\overline{P S} \cong \overline{R Q}$

45 In the diagram below of $\triangle T E M$, medians $\overline{T B}, \overline{E C}$, and $\overline{M A}$ intersect at D, and $T B=9$. Find the length of $\overline{T D}$.

46 The diagram below shows a right pentagonal prism.

Which statement is always true?

1) $\overline{B C} \| \overline{E D}$
2) $\overline{F G} \| \overline{C D}$
3) $\overline{F J} \| \overline{I H}$
4) $\overline{G B} \| \overline{H C}$

47 Which transformation produces a figure similar but not congruent to the original figure?

1) $T_{1,3}$
2) $D_{\frac{1}{2}}$
3) $R_{90^{\circ}}$
4) $r_{y=x}$

48 The endpoints of $\overline{P Q}$ are $P(-3,1)$ and $Q(4,25)$.
Find the length of $\overline{P Q}$.

49 In $\triangle A B C$, point D is on $\overline{A B}$, and point E is on $\overline{B C}$ such that $\overline{D E} \| \overline{A C}$. If $D B=2, D A=7$, and $D E=3$, what is the length of $\overline{A C}$?

1) 8
2) 9
3) 10.5
4) 13.5

50 In $\triangle A B C, \mathrm{~m} \angle A=95, \mathrm{~m} \angle B=50$, and $\mathrm{m} \angle C=35$. Which expression correctly relates the lengths of the sides of this triangle?

1) $A B<B C<C A$
2) $A B<A C<B C$
3) $A C<B C<A B$
4) $B C<A C<A B$

51 What is the negation of the statement "I am not going to eat ice cream"?

1) I like ice cream.
2) I am going to eat ice cream.
3) If I eat ice cream, then I like ice cream.
4) If I don't like ice cream, then I don't eat ice cream.

52 A rectangular prism has a volume of $3 x^{2}+18 x+24$. Its base has a length of $x+2$ and a width of 3 . Which expression represents the height of the prism?

1) $x+4$
2) $x+2$
3) 3
4) $x^{2}+6 x+8$

53 In the diagram below of parallelogram STUV, $S V=x+3, V U=2 x-1$, and $T U=4 x-3$.

What is the length of $\overline{S V}$?

1) 5
2) 2
3) 7
4) 4

54 Through a given point, P, on a plane, how many lines can be drawn that are perpendicular to that plane?

1) 1
2) 2
3) more than 2
4) none

55 In the diagram below of trapezoid $R S U T, \overline{R S} \| \overline{T U}$, X is the midpoint of $\overline{R T}$, and V is the midpoint of $\overline{S U}$.

If $R S=30$ and $X V=44$, what is the length of $\overline{T U}$?

1) 37
2) 58
3) 74
4) 118

56 Triangle $A B C$ has coordinates $A(-6,2), B(-3,6)$, and $C(5,0)$. Find the perimeter of the triangle. Express your answer in simplest radical form. [The use of the grid below is optional.]

57 In the diagram below of circle O, chords $\overline{A D}$ and $\overline{B C}$ intersect at E.

Which relationship must be true?

1) $\triangle C A E \cong \triangle D B E$
2) $\triangle A E C \sim \triangle B E D$
3) $\angle A C B \cong \angle C B D$
4) $\overparen{C A} \cong \overparen{D B}$

58 Which transformation is not always an isometry?

1) rotation
2) dilation
3) reflection
4) translation

59 If the endpoints of $\overline{A B}$ are $A(-4,5)$ and $B(2,-5)$, what is the length of $\overline{A B}$?

1) $2 \sqrt{34}$
2) 2
3) $\sqrt{61}$
4) 8

60 Tim is going to paint a wooden sphere that has a diameter of 12 inches. Find the surface area of the sphere, to the nearest square inch.

Geometry Regents Exam Questions at Random www.jmap.org

61 After a composition of transformations, the coordinates $A(4,2), B(4,6)$, and $C(2,6)$ become $A^{\prime \prime}(-2,-1), B^{\prime \prime}(-2,-3)$, and $C^{\prime \prime}(-1,-3)$, as shown on the set of axes below.

Which composition of transformations was used?

1) $R_{180^{\circ}} \circ D_{2}$
2) $R_{90^{\circ}} \circ D_{2}$
3) $D \frac{1}{2} \circ R_{180^{\circ}}$
4) $D_{\frac{1}{2}}^{\circ} R_{90^{\circ}}$

62 What is the slope of a line that is perpendicular to the line whose equation is $3 x+4 y=12$?

1) $\frac{3}{4}$
2) $-\frac{3}{4}$
3) $\frac{4}{3}$
4) $-\frac{4}{3}$

63 On the line segment below, use a compass and straightedge to construct equilateral triangle $A B C$. [Leave all construction marks.]

64 In the diagram of circle O below, chord $\overline{C D}$ is parallel to diameter $\overline{A O B}$ and $\overline{\mathrm{m} C}=30$.

What is $\mathrm{m} \overparen{C D}$?

1) 150
2) 120
3) 100
4) 60

Geometry Regents Exam Questions at Random www.jmap.org

65 In the diagram below of $\triangle A C D, E$ is a point on $\overline{A D}$ and B is a point on $\overline{A C}$, such that $\overline{E B} \| \overline{D C}$. If $A E=3, E D=6$, and $D C=15$, find the length of $\overline{E B}$.

66 Using a compass and straightedge, and $A B$ below, construct an equilateral triangle with all sides congruent to $\overline{A B}$. [Leave all construction marks.]

67 What is the distance between the points $(-3,2)$ and $(1,0)$?

1) $2 \sqrt{2}$
2) $2 \sqrt{3}$
3) $5 \sqrt{2}$
4) $2 \sqrt{5}$

68 Given: $J K L M$ is a parallelogram.
$\overline{J M} \cong \overline{L N}$
$\angle L M N \cong \angle L N M$
Prove: $J K L M$ is a rhombus.

69 Given: Quadrilateral $A B C D$ has vertices $A(-5,6)$, $B(6,6), C(8,-3)$, and $D(-3,-3)$.
Prove: Quadrilateral $A B C D$ is a parallelogram but is neither a rhombus nor a rectangle. [The use of the grid below is optional.]

70 The diagram below shows the construction of a line through point P perpendicular to line m.

Which statement is demonstrated by this construction?

1) If a line is parallel to a line that is perpendicular to a third line, then the line is also perpendicular to the third line.
2) The set of points equidistant from the endpoints of a line segment is the perpendicular bisector of the segment.
3) Two lines are perpendicular if they are equidistant from a given point.
4) Two lines are perpendicular if they intersect to form a vertical line.

71 Line k is drawn so that it is perpendicular to two distinct planes, P and R. What must be true about planes P and R ?

1) Planes P and R are skew.
2) Planes P and R are parallel.
3) Planes P and R are perpendicular.
4) Plane P intersects plane R but is not perpendicular to plane R.

72 Which transformation of the line $x=3$ results in an image that is perpendicular to the given line?

1) $r_{x \text {-xis }}$
2) $r_{y \text {-xxis }}$
3) $r_{y=x}$
4) $r_{x=1}$

73 In $\triangle P Q R, P Q=8, Q R=12$, and $R P=13$. Which statement about the angles of $\triangle P Q R$ must be true?

1) $\mathrm{m} \angle Q>\mathrm{m} \angle P>\mathrm{m} \angle R$
2) $\mathrm{m} \angle Q>\mathrm{m} \angle R>\mathrm{m} \angle P$
3) $\mathrm{m} \angle R>\mathrm{m} \angle P>\mathrm{m} \angle Q$
4) $\mathrm{m} \angle P>\mathrm{m} \angle R>\mathrm{m} \angle Q$

74 If a line segment has endpoints $A(3 x+5,3 y)$ and $B(x-1,-y)$, what are the coordinates of the midpoint of $\overline{A B}$?

1) $(x+3,2 y)$
2) $(2 x+2, y)$
3) $(2 x+3, y)$
4) $(4 x+4,2 y)$

75 What is the equation of a line that passes through the point $(-3,-11)$ and is parallel to the line whose equation is $2 x-y=4$?

1) $y=2 x+5$
2) $y=2 x-5$
3) $y=\frac{1}{2} x+\frac{25}{2}$
4) $y=-\frac{1}{2} x-\frac{25}{2}$

76 In the diagram below of circle O, chord $\overline{A B} \|$ chord $\overline{C D}$, and chord $\overline{C D} \|$ chord $\overline{E F}$.

Which statement must be true?

1) $\overparen{C E} \cong \overparen{D F}$
2) $\overparen{A C} \cong \overparen{D F}$
3) $\overparen{A C} \cong \overparen{C E}$
4) $\overparen{E F} \cong \overparen{C D}$

77 Tim has a rectangular prism with a length of 10 centimeters, a width of 2 centimeters, and an unknown height. He needs to build another rectangular prism with a length of 5 centimeters and the same height as the original prism. The volume of the two prisms will be the same. Find the width, in centimeters, of the new prism.

78 What is the image of point $A(4,2)$ after the composition of transformations defined by $R_{90^{\circ}}{ }^{\circ} r_{y=x}$?

1) $(-4,2)$
2) $(4,-2)$
3) $(-4,-2)$
4) $(2,-4)$

79 The volume of a cylinder is $12,566.4 \mathrm{~cm}^{3}$. The height of the cylinder is 8 cm . Find the radius of the cylinder to the nearest tenth of a centimeter.

80 Which expression represents the volume, in cubic centimeters, of the cylinder represented in the diagram below?

1) 162π
2) 324π
3) 972π
4) $3,888 \pi$

81 Tangents $\overline{P A}$ and $\overline{P B}$ are drawn to circle O from an external point, P, and radii $\overline{O A}$ and $\overline{O B}$ are drawn. If $\mathrm{m} \angle A P B=40$, what is the measure of $\angle A O B$?

1) 140°
2) 100°
3) 70°
4) 50°

82 The endpoints of $\overline{C D}$ are $C(-2,-4)$ and $D(6,2)$.
What are the coordinates of the midpoint of $\overline{C D}$?

1) $(2,3)$
2) $(2,-1)$
3) $(4,-2)$
4) $(4,3)$

83 In the diagram below, which transformation was used to map $\triangle A B C$ to $\Delta A^{\prime} B^{\prime} C^{\prime}$?

1) dilation
2) rotation
3) reflection
4) glide reflection

84 In an equilateral triangle, what is the difference between the sum of the exterior angles and the sum of the interior angles?

1) 180°
2) 120°
3) 90°
4) 60°

85 The coordinates of the vertices of parallelogram $A B C D$ are $A(-2,2), B(3,5), C(4,2)$, and $D(-1,-1)$. State the coordinates of the vertices of parallelogram $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ that result from the transformation $r_{y-\text { axis }}{ }^{\circ} T_{2,-3}$. [The use of the set of axes below is optional.]

86 In plane \mathscr{P}, lines m and n intersect at point A. If line k is perpendicular to line m and line n at point A, then line k is

1) contained in plane \mathscr{P}
2) parallel to plane \mathscr{P}
3) perpendicular to plane \mathscr{P}
4) skew to plane \mathscr{P}

87 Find an equation of the line passing through the point $(5,4)$ and parallel to the line whose equation is $2 x+y=3$.

88 Write an equation of the perpendicular bisector of the line segment whose endpoints are $(-1,1)$ and $(7,-5)$. [The use of the grid below is optional]

89 In $\triangle A B C, \mathrm{~m} \angle A=x, \mathrm{~m} \angle B=2 x+2$, and $\mathrm{m} \angle C=3 x+4$. What is the value of x ?

1) 29
2) 31
3) 59
4) 61

90 In isosceles trapezoid $A B C D, \overline{A B} \cong \overline{C D}$. If $B C=20, A D=36$, and $A B=17$, what is the length of the altitude of the trapezoid?

1) 10
2) 12
3) 15
4) 16

91 In the diagram below of $\triangle A G E$ and $\triangle O L D$, $\angle G A E \cong \angle L O D$, and $\overline{A E} \cong \overline{O D}$.

To prove that $\triangle A G E$ and $\triangle O L D$ are congruent by SAS, what other information is needed?

1) $\overline{G E} \cong \overline{L D}$
2) $\overline{A G} \cong \overline{O L}$
3) $\angle A G E \cong \angle O L D$
4) $\angle A E G \cong \angle O D L$

92 The diagram below shows the construction of the center of the circle circumscribed about $\triangle A B C$.

This construction represents how to find the intersection of

1) the angle bisectors of $\triangle A B C$
2) the medians to the sides of $\triangle A B C$
3) the altitudes to the sides of $\triangle A B C$
4) the perpendicular bisectors of the sides of $\triangle A B C$

93 The rectangle $A B C D$ shown in the diagram below will be reflected across the x-axis.

What will not be preserved?

1) slope of $\overline{A B}$
2) parallelism of $\overline{A B}$ and $\overline{C D}$
3) length of $\overline{A B}$
4) measure of $\angle A$

94 In the diagram below of regular pentagon $A B C D E$, $\overline{E B}$ is drawn.

What is the measure of $\angle A E B$?

1) 36°
2) 54°
3) 72°
4) 108°

95 In the diagram below, line k is perpendicular to plane \mathscr{P} at point T.

Which statement is true?

1) Any point in plane \mathscr{P} also will be on line k.
2) Only one line in plane \mathscr{P} will intersect line k.
3) All planes that intersect plane \mathscr{P} will pass through T.
4) Any plane containing line k is perpendicular to plane \mathscr{P}.

96 In the diagram below, $\triangle A B C \sim \Delta E F G$, $\mathrm{m} \angle C=4 x+30$, and $\mathrm{m} \angle G=5 x+10$. Determine the value of x.

97 Which geometric principle is used in the construction shown below?

1) The intersection of the angle bisectors of a triangle is the center of the inscribed circle.
2) The intersection of the angle bisectors of a triangle is the center of the circumscribed circle.
3) The intersection of the perpendicular bisectors of the sides of a triangle is the center of the inscribed circle.
4) The intersection of the perpendicular bisectors of the sides of a triangle is the center of the circumscribed circle.

98 The vertices of $\triangle A B C$ are $A(-1,-2), B(-1,2)$ and $C(6,0)$. Which conclusion can be made about the angles of $\triangle A B C$?

1) $\mathrm{m} \angle A=\mathrm{m} \angle B$
2) $\mathrm{m} \angle A=\mathrm{m} \angle C$
3) $\mathrm{m} \angle A C B=90$
4) $\mathrm{m} \angle A B C=60$

99 Which equation represents a line parallel to the line whose equation is $2 y-5 x=10$?

1) $5 y-2 x=25$
2) $5 y+2 x=10$
3) $4 y-10 x=12$
4) $2 y+10 x=8$

100 In $\triangle A B C, \overline{A B} \cong \overline{B C}$. An altitude is drawn from B to $\overline{A C}$ and intersects $\overline{A C}$ at D. Which conclusion is not always true?

1) $\angle A B D \cong \angle C B D$
2) $\angle B D A \cong \angle B D C$
3) $\overline{A D} \cong \overline{B D}$
4) $\overline{A D} \cong \overline{D C}$

101 The diagram below shows the construction of the perpendicular bisector of $\overline{A B}$.

Which statement is not true?

1) $A C=C B$
2) $C B=\frac{1}{2} A B$
3) $A C=2 A B$
4) $A C+C B=A B$

102 In which triangle do the three altitudes intersect outside the triangle?

1) a right triangle
2) an acute triangle
3) an obtuse triangle
4) an equilateral triangle

103 In the diagram below of circle O, secant $\overline{A B}$ intersects circle O at D, secant $\overline{A O C}$ intersects circle O at $E, A E=4, A B=12$, and $D B=6$.

(Not drawn to scale)
What is the length of $\overline{O C}$?

1) 4.5
2) 7
3) 9
4) 14

104 Given $\triangle A B C$ with base $\overline{A F E D C}$, median $\overline{B F}$, altitude $\overline{B D}$, and $\overline{B E}$ bisects $\angle A B C$, which conclusion is valid?

1) $\angle F A B \cong \angle A B F$
2) $\angle A B F \cong \angle C B D$
3) $\overline{C E} \cong \overline{E A}$
4) $\overline{C F} \cong \overline{F A}$

105 Which graph could be used to find the solution to the following system of equations?
1)

$$
\begin{gathered}
y=-x+2 \\
y=x^{2}
\end{gathered}
$$

2)

106 Point P is on line m. What is the total number of planes that are perpendicular to line m and pass through point P ?

1) 1
2) 2
3) 0
4) infinite

107 A support beam between the floor and ceiling of a house forms a 90° angle with the floor. The builder wants to make sure that the floor and ceiling are parallel. Which angle should the support beam form with the ceiling?

1) 45°
2) 60°
3) 90°
4) 180°

108 What is the slope of a line perpendicular to the line whose equation is $y=-\frac{2}{3} x-5$?

1) $-\frac{3}{2}$
2) $-\frac{2}{3}$
3) $\frac{2}{3}$
4) $\frac{3}{2}$

109 If the diagonals of a quadrilateral do not bisect each other, then the quadrilateral could be a

1) rectangle
2) rhombus
3) square
4) trapezoid

110 Write an equation of the circle whose diameter $\overline{A B}$ has endpoints $A(-4,2)$ and $B(4,-4)$. [The use of the grid below is optional.]

111 In the diagram below, $\triangle A B C$ is shown with $\overline{A C}$ extended through point D.

If $\mathrm{m} \angle B C D=6 x+2, \mathrm{~m} \angle B A C=3 x+15$, and $\mathrm{m} \angle A B C=2 x-1$, what is the value of x ?

1) 12
2) $14 \frac{10}{11}$
3) 16
4) $18 \frac{1}{9}$

112 The diameter of a circle has endpoints at $(-2,3)$ and $(6,3)$. What is an equation of the circle?

1) $(x-2)^{2}+(y-3)^{2}=16$
2) $(x-2)^{2}+(y-3)^{2}=4$
3) $(x+2)^{2}+(y+3)^{2}=16$
4) $(x+2)^{2}+(y+3)^{2}=4$

113 Given: Quadrilateral $A B C D$ with $\overline{A B} \cong \overline{C D}$, $\overline{A D} \cong \overline{B C}$, and diagonal $\overline{B D}$ is drawn Prove: $\angle B D C \cong \angle A B D$

114 The diagram below shows the construction of the bisector of $\angle A B C$.

Which statement is not true?

1) $\mathrm{m} \angle E B F=\frac{1}{2} \mathrm{~m} \angle A B C$
2) $\mathrm{m} \angle D B F=\frac{1}{2} \mathrm{~m} \angle A B C$
3) $\mathrm{m} \angle E B F=\mathrm{m} \angle A B C$
4) $\mathrm{m} \angle D B F=\mathrm{m} \angle E B F$

115 In the diagram below, the length of the legs $\overline{A C}$ and $\overline{B C}$ of right triangle $A B C$ are 6 cm and 8 cm , respectively. Altitude $\overline{C D}$ is drawn to the hypotenuse of $\triangle A B C$.

What is the length of $\overline{A D}$ to the nearest tenth of a centimeter?

1) 3.6
2) 6.0
3) 6.4
4) 4.0

116 The equation of a circle is $x^{2}+(y-7)^{2}=16$. What are the center and radius of the circle?

1) center $=(0,7)$; radius $=4$
2) center $=(0,7)$; radius $=16$
3) center $=(0,-7)$; radius $=4$
4) center $=(0,-7)$; radius $=16$

117 Given $\triangle A B C \sim \triangle D E F$ such that $\frac{A B}{D E}=\frac{3}{2}$. Which statement is not true?

1) $\frac{B C}{E F}=\frac{3}{2}$
2) $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle D}=\frac{3}{2}$
3) $\frac{\text { area of } \triangle A B C}{\text { area of } \triangle D E F}=\frac{9}{4}$
4) $\frac{\text { perimeter of } \triangle A B C}{\text { perimeter of } \triangle D E F}=\frac{3}{2}$

118 A transversal intersects two lines. Which condition would always make the two lines parallel?

1) Vertical angles are congruent.
2) Alternate interior angles are congruent.
3) Corresponding angles are supplementary.
4) Same-side interior angles are complementary.

119 In $\triangle R S T, \mathrm{~m} \angle R S T=46$ and $\overline{R S} \cong \overline{S T}$. Find $\mathrm{m} \angle S T R$.

120 The degree measures of the angles of $\triangle A B C$ are represented by $x, 3 x$, and $5 x-54$. Find the value of x.

121 Based on the diagram below, which statement is true?

1) $a \| b$
2) $a \| c$
3) $b \| c$
4) $d \| e$

122 The equation of a circle is $(x-2)^{2}+(y+4)^{2}=4$. Which diagram is the graph of the circle?
1)

3)

4)

123 In the diagram below of quadrilateral $A B C D$ with diagonal $\overline{B D}, \mathrm{~m} \angle A=93, \mathrm{~m} \angle A D B=43$, $\mathrm{m} \angle C=3 x+5, \mathrm{~m} \angle B D C=x+19$, and $\mathrm{m} \angle D B C=2 x+6$. Determine if $\overline{A B}$ is parallel to $\overline{D C}$. Explain your reasoning.

124 Find an equation of the line passing through the point $(6,5)$ and perpendicular to the line whose equation is $2 y+3 x=6$.

125 The lines $3 y+1=6 x+4$ and $2 y+1=x-9$ are

1) parallel
2) perpendicular
3) the same line
4) neither parallel nor perpendicular

126 If the surface area of a sphere is represented by 144π, what is the volume in terms of π ?

1) 36π
2) 48π
3) 216π
4) 288π

127 In the diagram below of $\triangle A B C, \overline{C D}$ is the bisector of $\angle B C A, \overline{A E}$ is the bisector of $\angle C A B$, and $\overline{B G}$ is drawn.

Which statement must be true?

1) $D G=E G$
2) $A G=B G$
3) $\angle A E B \cong \angle A E C$
4) $\angle D B G \cong \angle E B G$

128 A transformation of a polygon that always preserves both length and orientation is

1) dilation
2) translation
3) line reflection
4) glide reflection

129 A right circular cone has a base with a radius of 15 cm , a vertical height of 20 cm , and a slant height of 25 cm . Find, in terms of π, the number of square centimeters in the lateral area of the cone.

130 A quadrilateral whose diagonals bisect each other and are perpendicular is a

1) rhombus
2) rectangle
3) trapezoid
4) parallelogram

131 Juliann plans on drawing $\triangle A B C$, where the measure of $\angle A$ can range from 50° to 60° and the measure of $\angle B$ can range from 90° to 100°. Given these conditions, what is the correct range of measures possible for $\angle C$?

1) 20° to 40°
2) 30° to 50°
3) 80° to 90°
4) 120° to 130°

132 Given: Quadrilateral $A B C D$, diagonal $\overline{A F E C}$, $\overline{A E} \cong \overline{F C}, \overline{B F} \perp \overline{A C}, \overline{D E} \perp \overline{A C}, \angle 1 \cong \angle 2$ Prove: $A B C D$ is a parallelogram.

133 In the diagram below of $\triangle A C T, \overleftrightarrow{B E} \| \overline{A T}$.

If $C B=3, C A=10$, and $C E=6$, what is the length of $\overline{E T}$?

1) 5
2) 14
3) 20
4) 26

134 Which illustration shows the correct construction of an angle bisector?
1)

3)

4)

135 What is the converse of the statement "If Bob does his homework, then George gets candy"?

1) If George gets candy, then Bob does his homework.
2) Bob does his homework if and only if George gets candy.
3) If George does not get candy, then Bob does not do his homework.
4) If Bob does not do his homework, then George does not get candy.

136 What is the slope of a line perpendicular to the line whose equation is $2 y=-6 x+8$?

1) -3
2) $\frac{1}{6}$
3) $\frac{1}{3}$
4) -6

Geometry Regents Exam Questions at Random www.jmap.org

137 Which equation represents circle K shown in the graph below?

1) $(x+5)^{2}+(y-1)^{2}=3$
2) $(x+5)^{2}+(y-1)^{2}=9$
3) $(x-5)^{2}+(y+1)^{2}=3$
4) $(x-5)^{2}+(y+1)^{2}=9$

138 A regular pyramid with a square base is shown in the diagram below.

A side, s, of the base of the pyramid is 12 meters, and the height, h, is 42 meters. What is the volume of the pyramid in cubic meters?

139 On the set of axes below, graph and label $\triangle D E F$ with vertices at $D(-4,-4), E(-2,2)$, and $F(8,-2)$. If G is the midpoint of $\overline{E F}$ and H is the midpoint of $\overline{D F}$, state the coordinates of G and H and label each point on your graph. Explain why $\overline{G H} \| \overline{D E}$.

140 In the diagram below, quadrilateral $A B C D$ is inscribed in circle $O, \overline{A B} \| \overline{D C}$, and diagonals $\overline{A C}$ and $\overline{B D}$ are drawn. Prove that $\triangle A C D \cong \triangle B D C$.

141 On the grid below, graph the points that are equidistant from both the x and y axes and the points that are 5 units from the origin. Label with an \mathbf{X} all points that satisfy both conditions.

142 What is the length of the line segment with endpoints $(-6,4)$ and $(2,-5)$?

1) $\sqrt{13}$
2) $\sqrt{17}$
3) $\sqrt{72}$
4) $\sqrt{145}$

143 What is an equation of the line that contains the point $(3,-1)$ and is perpendicular to the line whose equation is $y=-3 x+2$?

1) $y=-3 x+8$
2) $y=-3 x$
3) $y=\frac{1}{3} x$
4) $y=\frac{1}{3} x-2$

144 Point A is not contained in plane \mathcal{B}. How many lines can be drawn through point A that will be perpendicular to plane \mathfrak{B} ?

1) one
2) two
3) zero
4) infinite

145 What is the measure of an interior angle of a regular octagon?

1) 45°
2) 60°
3) 120°
4) 135°

146 In isosceles triangle $A B C, A B=B C$. Which statement will always be true?

1) $\mathrm{m} \angle B=\mathrm{m} \angle A$
2) $\mathrm{m} \angle A>\mathrm{m} \angle B$
3) $\mathrm{m} \angle A=\mathrm{m} \angle C$
4) $\mathrm{m} \angle C<\mathrm{m} \angle B$

147 Line segment $A B$ has endpoints $A(2,-3)$ and $B(-4,6)$. What are the coordinates of the midpoint of $\overline{A B}$?

1) $(-2,3)$
2) $\left(-1,1 \frac{1}{2}\right)$
3) $(-1,3)$
4) $\left(3,4 \frac{1}{2}\right)$

148 A right circular cylinder has a volume of 1,000 cubic inches and a height of 8 inches. What is the radius of the cylinder to the nearest tenth of an inch?

1) 6.3
2) 11.2
3) 19.8
4) 39.8

149 In the diagram of $\triangle A B C$ below, $\overline{A B} \cong \overline{A C}$. The measure of $\angle B$ is 40°.

What is the measure of $\angle A$?

1) 40°
2) 50°
3) 70°
4) 100°

150 What is the solution of the following system of equations?

$$
\begin{aligned}
& y=(x+3)^{2}-4 \\
& y=2 x+5
\end{aligned}
$$

1) $(0,-4)$
2) $(-4,0)$
3) $(-4,-3)$ and $(0,5)$
4) $(-3,-4)$ and $(5,0)$

151 On the set of axes below, sketch the points that are 5 units from the origin and sketch the points that are 2 units from the line $y=3$. Label with an \mathbf{X} all points that satisfy both conditions.

152 What is the inverse of the statement "If two triangles are not similar, their corresponding angles are not congruent"?

1) If two triangles are similar, their corresponding angles are not congruent.
2) If corresponding angles of two triangles are not congruent, the triangles are not similar.
3) If two triangles are similar, their corresponding angles are congruent.
4) If corresponding angles of two triangles are congruent, the triangles are similar.

153 In the diagram below of circle O, chords $\overline{A E}$ and $\overline{D C}$ intersect at point B, such that $\mathrm{m} \overparen{A C}=36$ and $\mathrm{m} \overparen{D E}=20$.

What is $\mathrm{m} \angle A B C$?

1) 56
2) 36
3) 28
4) 8

154 In the diagram below, quadrilateral $S T A R$ is a rhombus with diagonals $\overline{S A}$ and $\overline{T R}$ intersecting at E. $S T=3 x+30, S R=8 x-5, S E=3 z, T E=5 z+5$, $A E=4 z-8, \mathrm{~m} \angle R T A=5 y-2$, and $\mathrm{m} \angle T A S=9 y+8$. Find $S R, R T$, and $\mathrm{m} \angle T A S$.

155 Which expression best describes the transformation shown in the diagram below?

1) same orientation; reflection
2) opposite orientation; reflection
3) same orientation; translation
4) opposite orientation; translation

156 In the diagram below, $\triangle A B C \cong \triangle X Y Z$.

Which two statements identify corresponding congruent parts for these triangles?

1) $\overline{A B} \cong \overline{X Y}$ and $\angle C \cong \angle Y$
2) $\overline{A B} \cong \overline{Y Z}$ and $\angle C \cong \angle X$
3) $\overline{B C} \cong \overline{X Y}$ and $\angle A \cong \angle Y$
4) $\overline{B C} \cong \overline{Y Z}$ and $\angle A \cong \angle X$

Geometry Regents Exam Questions at Random www.jmap.org

157 Square $L M N O$ is shown in the diagram below.

What are the coordinates of the midpoint of diagonal $\overline{L N}$?

1) $\left(4 \frac{1}{2},-2 \frac{1}{2}\right)$
2) $\left(-3 \frac{1}{2}, 3 \frac{1}{2}\right)$
3) $\left(-2 \frac{1}{2}, 3 \frac{1}{2}\right)$
4) $\left(-2 \frac{1}{2}, 4 \frac{1}{2}\right)$

158 A right circular cylinder has an altitude of 11 feet and a radius of 5 feet. What is the lateral area, in square feet, of the cylinder, to the nearest tenth?

1) 172.7
2) 172.8
3) 345.4
4) 345.6

159 The diagonal $\overline{A C}$ is drawn in parallelogram $A B C D$. Which method can not be used to prove that $\triangle A B C \cong \triangle C D A$?

1) SSS
2) SAS
3) SSA
4) ASA

160 Using a compass and straightedge, construct the angle bisector of $\angle A B C$ shown below. [Leave all construction marks.]

161 In the diagram below of $\triangle A B C, \overline{D E}$ is a midsegment of $\triangle A B C, D E=7, A B=10$, and $B C=13$. Find the perimeter of $\triangle A B C$.

Geometry Regents Exam Questions at Random www.jmap.org

162 The vertices of $\triangle A B C$ are $A(3,2), B(6,1)$, and $C(4,6)$. Identify and graph a transformation of $\triangle A B C$ such that its image, $\Delta A^{\prime} B^{\prime} C^{\prime}$, results in $\overline{A B} \| \overline{A^{\prime} B^{\prime}}$.

163 In the diagram below of $\triangle A B C, D$ is a point on $\overline{A B}$, $A C=7, A D=6$, and $B C=18$.

The length of $\overline{D B}$ could be

1) 5
2) 12
3) 19
4) 25

164 The diagram below shows $\overline{A B}$ and $\overline{D E}$.

Which transformation will move $\overline{A B}$ onto $\overline{D E}$ such that point D is the image of point A and point E is the image of point B ?

1) $T_{3,-3}$
2) $D_{\frac{1}{2}}$
3) $R_{90^{\circ}}$
4) $r_{y=x}$

165 The diagram below shows isosceles trapezoid $A B C D$ with $\overline{A B} \| \overline{D C}$ and $\overline{A D} \cong \overline{B C}$. If $\mathrm{m} \angle B A D=2 x$ and $\mathrm{m} \angle B C D=3 x+5$, find $\mathrm{m} \angle B A D$.

166 In the diagram of $\triangle A B C$ below, Jose found centroid P by constructing the three medians. He measured $C F$ and found it to be 6 inches.

If $P F=x$, which equation can be used to find x ?

1) $x+x=6$
2) $2 x+x=6$
3) $3 x+2 x=6$
4) $x+\frac{2}{3} x=6$

167 In the diagram below of circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E.

If $C E=10, E D=6$, and $A E=4$, what is the length of $\overline{E B}$?

1) 15
2) 12
3) 6.7
4) 2.4

168 Lines k_{1} and k_{2} intersect at point E. Line m is perpendicular to lines k_{1} and k_{2} at point E.

Which statement is always true?

1) Lines k_{1} and k_{2} are perpendicular.
2) Line m is parallel to the plane determined by lines k_{1} and k_{2}.
3) Line m is perpendicular to the plane determined by lines k_{1} and k_{2}.
4) Line m is coplanar with lines k_{1} and k_{2}.

169 Which transformation can map the letter \mathbf{S} onto itself?

1) glide reflection
2) translation
3) line reflection
4) rotation

Geometry Regents Exam Questions at Random www.jmap.org

170 Given: $y=\frac{1}{4} x-3$

$$
y=x^{2}+8 x+12
$$

In which quadrant will the graphs of the given equations intersect?

1) I
2) II
3) III
4) IV

171 Triangle $X Y Z$, shown in the diagram below, is reflected over the line $x=2$. State the coordinates of $\Delta X^{\prime} Y^{\prime} Z^{\prime}$, the image of $\Delta X Y Z$.

172 Write a statement that is logically equivalent to the statement "If two sides of a triangle are congruent, the angles opposite those sides are congruent." Identify the new statement as the converse, inverse, or contrapositive of the original statement.

173 Using a compass and straightedge, construct a line that passes through point P and is perpendicular to line m. [Leave all construction marks.]

174 In the diagram below of $\triangle A D B, \mathrm{~m} \angle B D A=90$, $A D=5 \sqrt{2}$, and $A B=2 \sqrt{15}$.

What is the length of $\overline{B D}$?

1) $\sqrt{10}$
2) $\sqrt{20}$
3) $\sqrt{50}$
4) $\sqrt{110}$

175 In the diagram below, a right circular cone has a diameter of 8 inches and a height of 12 inches.

What is the volume of the cone to the nearest cubic inch?

1) 201
2) 481
3) 603
4) 804

176 In the diagram of $\triangle A B C$ and $\triangle D E F$ below, $\overline{A B} \cong \overline{D E}, \angle A \cong \angle D$, and $\angle B \cong \angle E$.

Which method can be used to prove
$\triangle A B C \cong \triangle D E F ?$

1) SSS
2) SAS
3) ASA
4) HL

177 What is an equation for the circle shown in the graph below?

1) $x^{2}+y^{2}=2$
2) $x^{2}+y^{2}=4$
3) $x^{2}+y^{2}=8$
4) $x^{2}+y^{2}=16$
$178 \triangle A B C$ is similar to $\triangle \underline{D E F}$. The ratio of the length of $\overline{A B}$ to the length of $\overline{D E}$ is 3:1. Which ratio is also equal to $3: 1$?
5) $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle D}$
6) $\frac{\mathrm{m} \angle B}{\mathrm{~m} \angle F}$
7) $\frac{\text { area of } \triangle A B C}{\text { area of } \triangle D E F}$
8) $\frac{\text { perimeter of } \triangle A B C}{\text { perimeter of } \triangle D E F}$

Geometry Regents Exam Questions at Random www.jmap.org

179 The coordinates of the vertices of parallelogram $A B C D$ are $A(-3,2), B(-2,-1), C(4,1)$, and $D(3,4)$. The slopes of which line segments could be calculated to show that $A B C D$ is a rectangle?

1) $\overline{A B}$ and $\overline{D C}$
2) $\overline{A B}$ and $\overline{B C}$
3) $\overline{A D}$ and $\overline{B C}$
4) $\overline{A C}$ and $\overline{B D}$

180 Write an equation for circle O shown on the graph below.

181 What is the slope of a line perpendicular to the line whose equation is $y=3 x+4$?

1) $\frac{1}{3}$
2) $-\frac{1}{3}$
3) 3
4) -3

182 Two lines, $\overleftrightarrow{A B}$ and $\overleftrightarrow{C R D}$, are parallel and 10 inches apart. Sketch the locus of all points that are equidistant from $\overleftrightarrow{A B}$ and $\overleftrightarrow{C R D}$ and 7 inches from point R. Label with an \mathbf{X} each point that satisfies both conditions.

183 The lateral faces of a regular pyramid are composed of

1) squares
2) rectangles
3) congruent right triangles
4) congruent isosceles triangles

184 Given the system of equations: $y=x^{2}-4 x$

$$
x=4
$$

The number of points of intersection is

1) 1
2) 2
3) 3
4) 0

Geometry Regents Exam Questions at Random www.jmap.org

185 Which graph represents a circle with the equation $(x-5)^{2}+(y+1)^{2}=9$?
1)

2)

3)

4) S is a point on $\overline{T R}, \overline{Q S}$ is drawn, and $\angle R P T \cong \angle R S Q$.

Which reason justifies the conclusion that $\Delta P R T \sim \Delta S R Q$?

1) AA
2) $A S A$
3) SAS
4) SSS

187 In the diagram below, the vertices of $\triangle D E F$ are the midpoints of the sides of equilateral triangle $A B C$, and the perimeter of $\triangle A B C$ is 36 cm .

What is the length, in centimeters, of $\overline{E F}$?

1) 6
2) 12
3) 18
4) 4

188 Line segment $A B$ is tangent to circle O at A. Which type of triangle is always formed when points A, B, and O are connected?

1) right
2) obtuse
3) scalene
4) isosceles

189 In the diagram below, $\triangle A B C$ is inscribed in circle P. The distances from the center of circle P to each side of the triangle are shown.

Which statement about the sides of the triangle is true?

1) $A B>A C>B C$
2) $A B<A C$ and $A C>B C$
3) $A C>A B>B C$
4) $A C=A B$ and $A B>B C$

190 Which geometric principle is used to justify the construction below?

1) A line perpendicular to one of two parallel lines is perpendicular to the other.
2) Two lines are perpendicular if they intersect to form congruent adjacent angles.
3) When two lines are intersected by a transversal and alternate interior angles are congruent, the lines are parallel.
4) When two lines are intersected by a transversal and the corresponding angles are congruent, the lines are parallel.

191 In the diagram below, car A is parked 7 miles from car B. Sketch the points that are 4 miles from car A and sketch the points that are 4 miles from car B. Label with an \mathbf{X} all points that satisfy both conditions.

Car B

192 A city is planning to build a new park. The park must be equidistant from school A at $(3,3)$ and school B at $(3,-5)$. The park also must be exactly 5 miles from the center of town, which is located at the origin on the coordinate graph. Each unit on the graph represents 1 mile. On the set of axes below, sketch the compound loci and label with an \mathbf{X} all possible locations for the new park.

193 If $\triangle A B C \sim \triangle Z X Y, \mathrm{~m} \angle A=50$, and $\mathrm{m} \angle C=30$, what is $\mathrm{m} \angle X$?

1) 30
2) 50
3) 80
4) 100

194 The coordinates of the vertices of $\triangle A B C A(1,3)$, $B(-2,2)$ and $C(0,-2)$. On the grid below, graph and label $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the result of the composite transformation $D_{2}{ }^{\circ} T_{3,-2}$. State the coordinates of $A^{\prime \prime}, B^{\prime \prime}$, and $C^{\prime \prime}$.

195 In the diagram below of right triangle $A C B$, altitude $\overline{C D}$ is drawn to hypotenuse $\overline{A B}$.

If $A B=36$ and $A C=12$, what is the length of $\overline{A D}$?

1) 32
2) 6
3) 3
4) 4

196 What is the slope of a line perpendicular to the line whose equation is $5 x+3 y=8$?

1) $\frac{5}{3}$
2) $\frac{3}{5}$
3) $-\frac{3}{5}$
4) $-\frac{5}{3}$

197 In $\triangle K L M, \mathrm{~m} \angle K=36$ and $K M=5$. The transformation D_{2} is performed on $\triangle K L M$ to form $\Delta K^{\prime} L^{\prime} M^{\prime}$. Find $\mathrm{m} \angle K^{\prime}$. Justify your answer. Find the length of $\overline{K^{\prime} M^{\prime}}$. Justify your answer.

198 What are the center and radius of a circle whose equation is $(x-A)^{2}+(y-B)^{2}=C$?

1) center $=(A, B)$; radius $=C$
2) center $=(-A,-B)$; radius $=C$
3) center $=(A, B)$; radius $=\sqrt{C}$
4) center $=(-A,-B)$; radius $=\sqrt{C}$

199 Towns A and B are 16 miles apart. How many points are 10 miles from town A and 12 miles from town B ?

1) 1
2) 2
3) 3
4) 0

200 What is an equation of the line that passes through the point $(7,3)$ and is parallel to the line $4 x+2 y=10$?

1) $y=\frac{1}{2} x-\frac{1}{2}$
2) $y=-\frac{1}{2} x+\frac{13}{2}$
3) $y=2 x-11$
4) $y=-2 x+17$

201 Which equation represents the circle whose center is $(-2,3)$ and whose radius is 5 ?

1) $(x-2)^{2}+(y+3)^{2}=5$
2) $(x+2)^{2}+(y-3)^{2}=5$
3) $(x+2)^{2}+(y-3)^{2}=25$
4) $(x-2)^{2}+(y+3)^{2}=25$

202 Given: $\triangle A B C$ and $\triangle E D C, C$ is the midpoint of $\overline{B D}$ and $\overline{A E}$
Prove: $\overline{A B} \| \overline{D E}$

203 In the diagram below of isosceles trapezoid $D E F G$, $\overline{D E} \| \overline{G F}, D E=4 x-2, E F=3 x+2, F G=5 x-3$, and $G D=2 x+5$. Find the value of x.

204 In the diagram below, $\Delta R S T$ is a $3-4-5$ right triangle. The altitude, h, to the hypotenuse has been drawn. Determine the length of h.

205 The lines represented by the equations $y+\frac{1}{2} x=4$
and $3 x+6 y=12$ are

1) the same line
2) parallel
3) perpendicular
4) neither parallel nor perpendicular

206 Based on the construction below, which statement must be true?

1) $\mathrm{m} \angle A B D=\frac{1}{2} \mathrm{~m} \angle C B D$
2) $\mathrm{m} \angle A B D=\mathrm{m} \angle C B D$
3) $\mathrm{m} \angle A B D=\mathrm{m} \angle A B C$
4) $\mathrm{m} \angle C B D=\frac{1}{2} \mathrm{~m} \angle A B D$

207 In the diagram below, under which transformation will $\Delta A^{\prime} B^{\prime} C^{\prime}$ be the image of $\triangle A B C$?

1) rotation
2) dilation
3) translation
4) glide reflection

Geometry Regents Exam Questions at Random www.jmap.org

208 On the set of axes below, solve the following system of equations graphically for all values of x and y.

$$
\begin{gathered}
y=(x-2)^{2}+4 \\
4 x+2 y=14
\end{gathered}
$$

209 In the diagram below of circle $C, \mathrm{~m} \overparen{Q T}=140$, and $\mathrm{m} \angle P=40$.

What is $\mathrm{m} \overparen{R S}$?

1) 50
2) 60
3) 90
4) 110

210 Triangle $D E G$ has the coordinates $D(1,1), E(5,1)$, and $G(5,4)$. Triangle $D E G$ is rotated 90° about the origin to form $\Delta D^{\prime} E^{\prime} G^{\prime}$. On the grid below, graph and label $\triangle D E G$ and $\Delta D^{\prime} E^{\prime} G^{\prime}$. State the coordinates of the vertices D^{\prime}, E^{\prime}, and G^{\prime}. Justify that this transformation preserves distance.

211 In the diagram below of right triangle $A C B$, altitude $\overline{C D}$ intersects $\overline{A B}$ at D. If $A D=3$ and $D B=4$, find the length of $\overline{C D}$ in simplest radical form.

212 What is the equation of a line that is parallel to the line whose equation is $y=x+2$?

1) $x+y=5$
2) $2 x+y=-2$
3) $y-x=-1$
4) $y-2 x=3$

213 In the diagram below of $\triangle A B C$ with side $\overline{A C}$ extended through $D, \mathrm{~m} \angle A=37$ and $\mathrm{m} \angle B C D=117$. Which side of $\triangle A B C$ is the longest side? Justify your answer.

(Not drawn to scale)

214 Two triangles are similar, and the ratio of each pair of corresponding sides is $2: 1$. Which statement regarding the two triangles is not true?

1) Their areas have a ratio of $4: 1$.
2) Their altitudes have a ratio of $2: 1$.
3) Their perimeters have a ratio of $2: 1$.
4) Their corresponding angles have a ratio of $2: 1$.

215 A circle is represented by the equation $x^{2}+(y+3)^{2}=13$. What are the coordinates of the center of the circle and the length of the radius?

1) $(0,3)$ and 13
2) $(0,3)$ and $\sqrt{13}$
3) $(0,-3)$ and 13
4) $(0,-3)$ and $\sqrt{13}$

216 The pentagon in the diagram below is formed by five rays.

What is the degree measure of angle x ?

1) 72
2) 96
3) 108
4) 112

217 Which set of numbers represents the lengths of the sides of a triangle?

1) $\{5,18,13\}$
2) $\{6,17,22\}$
3) $\{16,24,7\}$
4) $\{26,8,15\}$

218 What is the length, to the nearest tenth, of the line segment joining the points $(-4,2)$ and $(146,52)$?

1) 141.4
2) 150.5
3) 151.9
4) 158.1

219 In $\triangle A B C, A B=7, B C=8$, and $A C=9$. Which list has the angles of $\triangle A B C$ in order from smallest to largest?

1) $\angle A, \angle B, \angle C$
2) $\angle B, \angle A, \angle C$
3) $\angle C, \angle B, \angle A$
4) $\angle C, \angle A, \angle B$

220 Write an equation of the line that passes through the point $(6,-5)$ and is parallel to the line whose equation is $2 x-3 y=11$.

221 Using a compass and straightedge, construct the bisector of the angle shown below. [Leave all construction marks.]

222 Side $\overline{P Q}$ of $\triangle P Q R$ is extended through Q to point
T. Which statement is not always true?

1) $\mathrm{m} \angle R Q T>\mathrm{m} \angle R$
2) $\mathrm{m} \angle R Q T>\mathrm{m} \angle P$
3) $\mathrm{m} \angle R Q T=\mathrm{m} \angle P+\mathrm{m} \angle R$
4) $\mathrm{m} \angle R Q T>\mathrm{m} \angle P Q R$

223 In the diagram below of circle O, chords $\overline{A D}$ and $\overline{B C}$ intersect at $E, \mathrm{~m} \overparen{A C}=87$, and $\mathrm{m} \overparen{B D}=35$.

What is the degree measure of $\angle C E A$?

1) 87
2) 61
3) 43.5
4) 26

224 In the diagram below of $\triangle A B C$, medians $\overline{A D}, \overline{B E}$, and $\overline{C F}$ intersect at G.

If $C F=24$, what is the length of $\overline{F G}$?

1) 8
2) 10
3) 12
4) 16

Geometry Regents Exam Questions at Random
www.jmap.org
225 The length of $\overline{A B}$ is 3 inches. On the diagram below, sketch the points that are equidistant from A and B and sketch the points that are 2 inches from A. Label with an \mathbf{X} all points that satisfy both conditions.

226 Given the equations: $y=x^{2}-6 x+10$

$$
y+x=4
$$

What is the solution to the given system of equations?

1) $(2,3)$
2) $(3,2)$
3) $(2,2)$ and $(1,3)$
4) $(2,2)$ and $(3,1)$

227 Quadrilateral $M N O P$ is a trapezoid with $\overline{M N} \| \overline{O P}$. If $M^{\prime} N^{\prime} O^{\prime} P^{\prime}$ is the image of $M N O P$ after a reflection over the x-axis, which two sides of quadrilateral $M^{\prime} N^{\prime} O^{\prime} P^{\prime}$ are parallel?

1) $\overline{M^{\prime} N^{\prime}}$ and $\overline{O^{\prime} P^{\prime}}$
2) $\overline{M^{\prime} N^{\prime}}$ and $\overline{N^{\prime} O^{\prime}}$
3) $\overline{P^{\prime} M^{\prime}}$ and $\overline{O^{\prime} P^{\prime}}$
4) $\overline{P^{\prime} M^{\prime}}$ and $\overline{N^{\prime} O^{\prime}}$

228 In the diagram below of $\triangle A C T, D$ is the midpoint of $\overline{A C}, O$ is the midpoint of $\overline{A T}$, and G is the midpoint of $\overline{C T}$.

If $A C=10, A T=18$, and $C T=22$, what is the perimeter of parallelogram $C D O G$?

1) 21
2) 25
3) 32
4) 40

Geometry Regents Exam Questions at Random www.jmap.org

Geometry Regents at Random

229 In the diagram below, $\overline{E F}$ is the median of trapezoid $A B C D$.

If $A B=5 x-9, D C=x+3$, and $E F=2 x+2$, what is the value of x ?

1) 5
2) 2
3) 7
4) 8

230 In $\triangle A B C$ and $\triangle D E F, \frac{A C}{D F}=\frac{C B}{F E}$. Which additional information would prove
$\triangle A B C \sim \triangle D E F ?$

1) $A C=D F$
2) $C B=F E$
3) $\angle A C B \cong \angle D F E$
4) $\angle B A C \cong \angle E D F$

231 Pentagon $P Q R S T$ has $\overline{P Q}$ parallel to $\overline{T S}$. After a translation of $T_{2,-5}$, which line segment is parallel
to $\overline{P^{\prime} Q^{\prime}}$?

1) $\overline{R^{\prime} Q^{\prime}}$
2) $\overline{R^{\prime} S^{\prime}}$
3) $\overline{T^{\prime} S^{\prime}}$
4) $\overline{T^{\prime} P^{\prime}}$

232 Triangle TAP has coordinates $T(-1,4), A(2,4)$, and $P(2,0)$. On the set of axes below, graph and label $\Delta T^{\prime} A^{\prime} P^{\prime}$, the image of $\Delta T A P$ after the translation $(x, y) \rightarrow(x-5, y-1)$.

233 Which statement is true about every parallelogram?

1) All four sides are congruent.
2) The interior angles are all congruent.
3) Two pairs of opposite sides are congruent.
4) The diagonals are perpendicular to each other.

234 If $\triangle J K L \cong \triangle M N O$, which statement is always true?

1) $\angle K L J \cong \angle N M O$
2) $\angle K J L \cong \angle M O N$
3) $\overline{J L} \cong \overline{M O}$
4) $\overline{J K} \cong \overline{O N}$

235 On the set of axes below, solve the following system of equations graphically and state the coordinates of all points in the solution.

$$
\begin{gathered}
(x+3)^{2}+(y-2)^{2}=25 \\
2 y+4=-x
\end{gathered}
$$

236 What is the slope of a line that is perpendicular to the line whose equation is $3 x+5 y=4$?

1) $-\frac{3}{5}$
2) $\frac{3}{5}$
3) $-\frac{5}{3}$
4) $\frac{5}{3}$

237 The graph below shows $\overline{J T}$ and its image, $\overline{J^{\prime} T^{\prime}}$, after a transformation.

Which transformation would map $\overline{J T}$ onto $\overline{J^{\prime} T^{\prime}}$?

1) translation
2) glide reflection
3) rotation centered at the origin
4) reflection through the origin

238 On the diagram below, use a compass and straightedge to construct the bisector of $\angle X Y Z$. [Leave all construction marks.]

Geometry Regents Exam Questions at Random www.jmap.org

239 On the diagram below, use a compass and straightedge to construct the bisector of $\angle A B C$. [Leave all construction marks.]

240 As shown in the diagram of $\triangle A C D$ below, B is a point on $\overline{A C}$ and $\overline{D B}$ is drawn.

If $\mathrm{m} \angle A=66, \mathrm{~m} \angle C D B=18$, and $\mathrm{m} \angle C=24$, what is the longest side of $\triangle A B D$?

1) $\overline{A B}$
2) $\overline{D C}$
3) $\overline{A D}$
4) $\overline{B D}$

241 The number of degrees in the sum of the interior angles of a pentagon is

1) 72
2) 360
3) 540
4) 720

242 Using a compass and straightedge, construct a line perpendicular to $\overline{A B}$ through point P. [Leave all construction marks.]

243 For which polygon does the sum of the measures of the interior angles equal the sum of the measures of the exterior angles?

1) hexagon
2) pentagon
3) quadrilateral
4) triangle

244 In the diagram below, $\overline{P A}$ and $\overline{P B}$ are tangent to circle $O, \overline{O A}$ and $\overline{O B}$ are radii, and $\overline{O P}$ intersects the circle at C. Prove: $\angle A O P \cong \angle B O P$

245 On the set of axes below, graph the locus of points that are 4 units from the line $x=3$ and the locus of points that are 5 units from the point $(0,2)$. Label with an \mathbf{X} all points that satisfy both conditions.

What are the center and the radius of the circle whose equation is $(x-5)^{2}+(y+3)^{2}=16$?

1) $(-5,3)$ and 16
2) $(5,-3)$ and 16
3) $(-5,3)$ and 4
4) $(5,-3)$ and 4

247 The Parkside Packing Company needs a rectangular shipping box. The box must have a length of 11 inches and a width of 8 inches. Find, to the nearest tenth of an inch, the minimum height of the box such that the volume is at least 800 cubic inches.

248 The diagram below shows the construction of $\overleftrightarrow{A B}$ through point P parallel to $\overleftrightarrow{C D}$

Which theorem justifies this method of construction?

1) If two lines in a plane are perpendicular to a transversal at different points, then the lines are parallel.
2) If two lines in a plane are cut by a transversal to form congruent corresponding angles, then the lines are parallel.
3) If two lines in a plane are cut by a transversal to form congruent alternate interior angles, then the lines are parallel.
4) If two lines in a plane are cut by a transversal to form congruent alternate exterior angles, then the lines are parallel.

249 The statement " x is a multiple of 3 , and x is an even integer" is true when x is equal to

1) 9
2) 8
3) 3
4) 6

Geometry Regents Exam Questions at Random www.jmap.org

250 In the diagram below, $\triangle A B C \sim \triangle R S T$.

Which statement is not true?

1) $\angle A \cong \angle R$
2) $\frac{A B}{R S}=\frac{B C}{S T}$
3) $\frac{A B}{B C}=\frac{S T}{R S}$
4) $\frac{A B+B C+A C}{R S+S T+R T}=\frac{A B}{R S}$

251 Using a compass and straightedge, on the diagram below of $\overleftrightarrow{R S}$, construct an equilateral triangle with $\overline{R S}$ as one side. [Leave all construction marks.]

252 In the diagram below of $\triangle A D E, B$ is a point on $\overline{A E}$ and C is a point on $\overline{A D}$ such that $\overline{B C} \| \overline{E D}$, $A C=x-3, B E=20, A B=16$, and $A D=2 x+2$. Find the length of $\overline{A C}$.

253 What is the volume, in cubic centimeters, of a cylinder that has a height of 15 cm and a diameter of 12 cm ?

1) 180π
2) 540π
3) 675π
4) $2,160 \pi$

254 Which equation of a circle will have a graph that lies entirely in the first quadrant?

1) $(x-4)^{2}+(y-5)^{2}=9$
2) $(x+4)^{2}+(y+5)^{2}=9$
3) $(x+4)^{2}+(y+5)^{2}=25$
4) $(x-5)^{2}+(y-4)^{2}=25$

Geometry Regents Exam Questions at Random www.jmap.org

255 What is an equation of the circle shown in the graph below?

1) $(x-3)^{2}+(y-4)^{2}=25$
2) $(x+3)^{2}+(y+4)^{2}=25$
3) $(x-3)^{2}+(y-4)^{2}=10$
4) $(x+3)^{2}+(y+4)^{2}=10$

256 In the diagram below of right triangle $A B C, \overline{C D}$ is the altitude to hypotenuse $\overline{A B}, C B=6$, and $A D=5$.

What is the length of $\overline{B D}$?

1) 5
2) 9
3) 3
4) 4

257 The equation of line k is $y=\frac{1}{3} x-2$. The equation of line m is $-2 x+6 y=18$. Lines k and m are

1) parallel
2) perpendicular
3) the same line
4) neither parallel nor perpendicular

258 In circle O shown below, diameter $\overline{D B}$ is perpendicular to chord $\overline{A C}$ at E.

If $D B=34, A C=30$, and $D E>B E$, what is the length of $\overline{B E}$?

1) 8
2) 9
3) 16
4) 25

259 Parallelogram $A B C D$ has coordinates $A(1,5)$, $B(6,3), C(3,-1)$, and $D(-2,1)$. What are the coordinates of E, the intersection of diagonals $\overline{A C}$ and $\overline{B D}$?

1) $(2,2)$
2) $(4.5,1)$
3) $(3.5,2)$
4) $(-1,3)$

260 In the diagram of $\triangle A B C$ shown below, D is the midpoint of $\overline{A B}, E$ is the midpoint of $\overline{B C}$, and F is the midpoint of $\overline{A C}$.

If $A B=20, B C=12$, and $A C=16$, what is the perimeter of trapezoid $A B E F$?

1) 24
2) 36
3) 40
4) 44

261 In the diagram below of rhombus $A B C D$, $\mathrm{m} \angle C=100$.

What is $\mathrm{m} \angle D B C$?

1) 40
2) 45
3) 50
4) 80

262 As shown in the diagram below, $\overline{F J}$ is contained in plane $\mathrm{R}, \overline{B C}$ and $\overline{D E}$ are contained in plane S , and $\overline{F J}, \overline{B C}$, and $\overline{D E}$ intersect at A.

Which fact is not sufficient to show that planes R and S are perpendicular?

1) $\overline{F A} \perp \overline{D E}$
2) $\overline{A D} \perp \overline{A F}$
3) $\overline{B C} \perp \overline{F J}$
4) $\overline{D E} \perp \overline{B C}$

263 As shown in the diagram below, lines m and n are cut by transversal p.

If $\mathrm{m} \angle 1=4 x+14$ and $\mathrm{m} \angle 2=8 x+10$, lines m and n are parallel when x equals

1) 1
2) 6
3) 13
4) 17

264 The point $(3,-2)$ is rotated 90° about the origin and then dilated by a scale factor of 4 . What are the coordinates of the resulting image?

1) $(-12,8)$
2) $(12,-8)$
3) $(8,12)$
4) $(-8,-12)$

265 Given three distinct quadrilaterals, a square, a rectangle, and a rhombus, which quadrilaterals must have perpendicular diagonals?

1) the rhombus, only
2) the rectangle and the square
3) the rhombus and the square
4) the rectangle, the rhombus, and the square

266 In the diagram below of isosceles trapezoid $A B C D$, $A B=C D=25, A D=26$, and $B C=12$.

What is the length of an altitude of the trapezoid?

1) 7
2) 14
3) 19
4) 24

268 The diagram below shows a pair of congruent triangles, with $\angle A D B \cong \angle C D B$ and $\angle A B D \cong \angle C B D$.

Which statement must be true?

1) $\angle A D B \cong \angle C B D$
2) $\angle A B C \cong \angle A D C$
3) $\overline{A B} \cong \overline{C D}$
4) $\overline{A D} \cong \overline{C D}$

269 In the diagram below of $\triangle A B C$, side $\overline{B C}$ is extended to point $D, \mathrm{~m} \angle A=x, \mathrm{~m} \angle B=2 x+15$, and $\mathrm{m} \angle A C D=5 x+5$.

What is $\mathrm{m} \angle B$?

1) 5
2) 20
3) 25
4) 55

267 Find the slope of a line perpendicular to the line whose equation is $2 y-6 x=4$.

Geometry Regents Exam Questions at Random www.jmap.org

270 In the diagram below of circle O, diameter $\overline{A O B}$ is perpendicular to chord $\overline{C D}$ at point $E, O A=6$, and $O E=2$.

What is the length of $\overline{C E}$?

1) $4 \sqrt{3}$
2) $2 \sqrt{3}$
3) $8 \sqrt{2}$
4) $4 \sqrt{2}$

271 Using a compass and straightedge, construct the bisector of $\angle C B A$. [Leave all construction marks.]

272 What is an equation of a circle with center $(7,-3)$ and radius 4 ?

1) $(x-7)^{2}+(y+3)^{2}=4$
2) $(x+7)^{2}+(y-3)^{2}=4$
3) $(x-7)^{2}+(y+3)^{2}=16$
4) $(x+7)^{2}+(y-3)^{2}=16$

273 In the diagram below, trapezoid $A B C D$, with bases $\overline{A B}$ and $\overline{D C}$, is inscribed in circle O, with diameter $\overline{D C}$. If $\mathrm{m} \overparen{A B}=80$, find $\mathrm{m} \overparen{B C}$.

274 Which equation represents the perpendicular bisector of $\overline{A B}$ whose endpoints are $A(8,2)$ and $B(0,6)$?

1) $y=2 x-4$
2) $y=-\frac{1}{2} x+2$
3) $y=-\frac{1}{2} x+6$
4) $y=2 x-12$

275 In the diagram below, MATH is a rhombus with diagonals $\overline{A H}$ and $\overline{M T}$.

If $\mathrm{m} \angle H A M=12$, what is $\mathrm{m} \angle A M T$?

1) 12
2) 78
3) 84
4) 156

276
As shown in the diagram below, the diagonals of parallelogram $Q R S T$ intersect at E. If $Q E=x^{2}+6 x$, $S E=x+14$, and $T E=6 x-1$, determine $T E$ algebraically.

277 A sphere is inscribed inside a cube with edges of 6 cm . In cubic centimeters, what is the volume of the sphere, in terms of π ?

1) 12π
2) 36π
3) 48π
4) 288π

278 A pentagon is drawn on the set of axes below. If the pentagon is reflected over the y-axis, determine if this transformation is an isometry. Justify your answer. [The use of the set of axes is optional.]

279 In the diagram below of $\overline{A B C D}, \overline{A C} \cong \overline{B D}$.

Using this information, it could be proven that

1) $B C=A B$
2) $A B=C D$
3) $A D-B C=C D$
4) $A B+C D=A D$

280 Which graph represents a circle with the equation $(x-3)^{2}+(y+1)^{2}=4$?
1)

3)
4)

281 Given the true statement, "The medians of a triangle are concurrent," write the negation of the statement and give the truth value for the negation.

282 In the diagram below, $\triangle L M O$ is isosceles with $L O=M O$.

If $\mathrm{m} \angle L=55$ and $\mathrm{m} \angle N O M=28$, what is $\mathrm{m} \angle N$?

1) 27
2) 28
3) 42
4) 70

283 Which compound statement is true?

1) A triangle has three sides and a quadrilateral has five sides.
2) A triangle has three sides if and only if a quadrilateral has five sides.
3) If a triangle has three sides, then a quadrilateral has five sides.
4) A triangle has three sides or a quadrilateral has five sides.

284 The diagram below shows $\triangle A B C$, with $\overline{A E B}, \overline{A D C}$, and $\angle A C B \cong \angle A E D$. Prove that $\triangle A B C$ is similar to $\triangle A D E$.

285 What is an equation of circle O shown in the graph below?

1) $(x+2)^{2}+(y-2)^{2}=9$
2) $(x+2)^{2}+(y-2)^{2}=3$
3) $(x-2)^{2}+(y+2)^{2}=9$
4) $(x-2)^{2}+(y+2)^{2}=3$

286 Plane \mathcal{A} is parallel to plane \mathcal{B}. Plane C intersects plane \mathcal{A} in line m and intersects plane \mathcal{B} in line n. Lines m and n are

1) intersecting
2) parallel
3) perpendicular
4) skew

287 Plane \mathbb{R} is perpendicular to line k and plane \mathscr{D} is perpendicular to line k. Which statement is correct?

1) Plane R is perpendicular to plane \mathcal{D}.
2) Plane \mathbb{R} is parallel to plane \mathscr{D}.
3) Plane \mathcal{R} intersects plane \mathcal{D}.
4) Plane \mathcal{R} bisects plane \mathscr{D}.

288 In the diagram below, $\triangle A B C \sim \triangle D E F, D E=4$, $A B=x, A C=x+2$, and $D F=x+6$. Determine the length of $\overline{A B}$. [Only an algebraic solution can receive full credit.]

289 The vertices of $\triangle R S T$ are $R(-6,5), S(-7,-2)$, and $T(1,4)$. The image of $\triangle R S T$ after the composition $T_{-2,3}{ }^{\circ} r_{y=x}$ is $\Delta R " S " T^{\prime \prime}$. State the coordinates of $\Delta R " S " T$. [The use of the set of axes below is optional.]

290 As shown in the diagram below, $\triangle A B C \sim \triangle D E F$, $A B=7 x, B C=4, D E=7$, and $E F=x$.

What is the length of $\overline{A B}$?

1) 28
2) 2
3) 14
4) 4

291 A man wants to place a new bird bath in his yard so that it is 30 feet from a fence, f, and also 10 feet from a light pole, P. As shown in the diagram below, the light pole is 35 feet away from the fence.

How many locations are possible for the bird bath?

1) 1
2) 2
3) 3
4) 0

292 A packing carton in the shape of a triangular prism is shown in the diagram below.

What is the volume, in cubic inches, of this carton?

1) 20
2) 60
3) 120
4) 240

293 Which equation represents the line that is perpendicular to $2 y=x+2$ and passes through the point (4,3)?

1) $y=\frac{1}{2} x-5$
2) $y=\frac{1}{2} x+1$
3) $y=-2 x+11$
4) $y=-2 x-5$

294 The slope of line ℓ is $-\frac{1}{3}$. What is an equation of a line that is perpendicular to line ℓ ?

1) $y+2=\frac{1}{3} x$
2) $-2 x+6=6 y$
3) $9 x-3 y=27$
4) $3 x+y=0$

Geometry Regents Exam Questions at Random www.jmap.org

295 In rhombus $A B C D$, the diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E. If $A E=5$ and $B E=12$, what is the length of $\overline{A B}$?

1) 7
2) 10
3) 13
4) 17

296 In $\triangle A B C, A B=5$ feet and $B C=3$ feet. Which inequality represents all possible values for the length of $\overline{A C}$, in feet?

1) $2 \leq A C \leq 8$
2) $2<A C<8$
3) $3 \leq A C \leq 7$
4) $3<A C<7$

297 In the diagram below, $\overline{D E}$ joins the midpoints of two sides of $\triangle A B C$.

Which statement is not true?

1) $C E=\frac{1}{2} C B$
2) $D E=\frac{1}{2} A B$
3) area of $\triangle C D E=\frac{1}{2}$ area of $\triangle C A B$
4) perimeter of $\triangle C D E=\frac{1}{2}$ perimeter of $\triangle C A B$

298 In the diagram below, lines n and m are cut by transversals p and q.

What value of x would make lines n and m parallel?

1) 110
2) 80
3) 70
4) 50

299 In the diagram below of circle O, diameter $\overline{A B}$ is perpendicular to chord $\overline{C D}$ at E. If $A O=10$ and $B E=4$, find the length of $\overline{C E}$.

Geometry Regents Exam Questions at Random www.jmap.org

300 In the diagram below, $\ell \| m$ and $\overline{Q R} \perp \overline{S T}$ at R.

If $\mathrm{m} \angle 1=63$, find $\mathrm{m} \angle 2$.

301 In $\triangle A E D$ with $\overline{A B C D}$ shown in the diagram below, $\overline{E B}$ and $\overline{E C}$ are drawn.

If $\overline{A B} \cong \overline{C D}$, which statement could always be proven?

1) $\overline{A C} \cong \overline{D B}$
2) $\overline{A E} \cong \overline{E D}$
3) $\overline{A B} \cong \overline{B C}$
4) $\overline{E C} \cong \overline{E A}$

302 Which set of numbers does not represent the sides of a right triangle?

1) $\{6,8,10\}$
2) $\{8,15,17\}$
3) $\{8,24,25\}$
4) $\{15,36,39\}$

303 Line segment $A B$ is shown in the diagram below.

Which two sets of construction marks, labeled I, II, III, and IV, are part of the construction of the perpendicular bisector of line segment $A B$?

1) I and II
2) I and III
3) II and III
4) II and IV

304 What is the equation of the line that passes through the point $(-9,6)$ and is perpendicular to the line $y=3 x-5$?

1) $y=3 x+21$
2) $y=-\frac{1}{3} x-3$
3) $y=3 x+33$
4) $y=-\frac{1}{3} x+3$

305 What is the length of the line segment whose endpoints are $(1,-4)$ and $(9,2)$?

1) 5
2) $2 \sqrt{17}$
3) 10
4) $2 \sqrt{26}$

306 When solved graphically, what is the solution to the following system of equations?

$$
\begin{gathered}
y=x^{2}-4 x+6 \\
y=x+2
\end{gathered}
$$

1) $(1,4)$
2) $(4,6)$
3) $(1,3)$ and $(4,6)$
4) $(3,1)$ and $(6,4)$

307 A paint can is in the shape of a right circular cylinder. The volume of the paint can is 600π cubic inches and its altitude is 12 inches. Find the radius, in inches, of the base of the paint can.
Express the answer in simplest radical form. Find, to the nearest tenth of a square inch, the lateral area of the paint can.

308 In the diagram below of $\triangle A B C, \overline{A E} \cong \overline{B E}$, $\overline{A F} \cong \overline{C F}$, and $\overline{C D} \cong \overline{B D}$.

Point P must be the

1) centroid
2) circumcenter
3) Incenter
4) orthocenter

309 What is an equation of the circle with a radius of 5 and center at $(1,-4)$?

1) $(x+1)^{2}+(y-4)^{2}=5$
2) $(x-1)^{2}+(y+4)^{2}=5$
3) $(x+1)^{2}+(y-4)^{2}=25$
4) $(x-1)^{2}+(y+4)^{2}=25$

310 In the diagram below of $\triangle A B C, \overleftrightarrow{T V} \| \overline{B C}, A T=5$, $T B=7$, and $A V=10$.

What is the length of $\overline{V C}$?

1) $3 \frac{1}{2}$
2) $7 \frac{1}{7}$
3) 14
4) 24

311 The sum of the interior angles of a polygon of n sides is

1) 360
2) $\frac{360}{n}$
3) $(n-2) \cdot 180$
4) $\frac{(n-2) \cdot 180}{n}$

312 In the diagram below, tangent $\overline{M L}$ and secant $\overline{M N K}$ are drawn to circle O. The ratio $\mathrm{m} \overparen{\mathrm{LN}}: \mathrm{m} \overparen{\mathrm{NK}}: \mathrm{m} \overparen{\mathrm{KL}}$ is 3:4:5. Find $\mathrm{m} \angle L M K$.

313 What is the image of the point $(2,-3)$ after the transformation $r_{y-\text { axis }}$?

1) $(2,3)$
2) $(-2,-3)$
3) $(-2,3)$
4) $(-3,2)$

314 In the diagram below, $\overline{B F C E}, \overline{A B} \perp \overline{B E}, \overline{D E} \perp \overline{B E}$, and $\angle B F D \cong \angle E C A$. Prove that $\triangle A B C \sim \triangle D E F$.

315 Given: $\triangle A B C$ with vertices $A(-6,-2), B(2,8)$, and $C(6,-2) . \overline{A B}$ has midpoint $D, \overline{B C}$ has midpoint E, and $\overline{A C}$ has midpoint F.
Prove: $A D E F$ is a parallelogram $A D E F$ is not a rhombus
[The use of the grid is optional.]

316 Line n intersects lines l and m, forming the angles shown in the diagram below.

Which value of x would prove $l \| m$?

1) 2.5
2) 4.5
3) 6.25
4) 8.75

317 The graph below shows the locus of points equidistant from the x-axis and y-axis. On the same set of axes, graph the locus of points 3 units from the line $x=0$. Label with an \mathbf{X} all points that satisfy both conditions.

318 Which type of triangle can be drawn using the points $(-2,3),(-2,-7)$, and $(4,-5)$?

1) scalene
2) isosceles
3) equilateral
4) no triangle can be drawn

319 What is the length of $\overline{A B}$ with endpoints $A(-1,0)$ and $B(4,-3)$?

1) $\sqrt{6}$
2) $\sqrt{18}$
3) $\sqrt{34}$
4) $\sqrt{50}$

320 As shown on the graph below, $\Delta R^{\prime} S^{\prime} T^{\prime}$ is the image of $\triangle R S T$ under a single transformation.

Which transformation does this graph represent?

1) glide reflection
2) line reflection
3) rotation
4) translation

321 The two lines represented by the equations below are graphed on a coordinate plane.

$$
\begin{gathered}
x+6 y=12 \\
3(x-2)=-y-4
\end{gathered}
$$

Which statement best describes the two lines?

1) The lines are parallel.
2) The lines are the same line.
3) The lines are perpendicular.
4) The lines intersect at an angle other than 90°.

322 In $\triangle F G H, \mathrm{~m} \angle F=42$ and an exterior angle at vertex H has a measure of 104 . What is $\mathrm{m} \angle G$?

1) 34
2) 62
3) 76
4) 146

Geometry Regents Exam Questions at Random www.jmap.org

323 On the diagram of $\triangle A B C$ shown below, use a compass and straightedge to construct the perpendicular bisector of $\overline{A C}$. [Leave all construction marks.]

324 In the diagram below of $\triangle A B C, \overline{B C}$ is extended to D.

If $\mathrm{m} \angle A=x^{2}-6 x, \mathrm{~m} \angle B=2 x-3$, and $\mathrm{m} \angle A C D=9 x+27$, what is the value of x ?

1) 10
2) 2
3) 3
4) 15

325 A sphere has a diameter of 18 meters. Find the
volume of the sphere, in cubic meters, in terms of π.

326 Which diagram shows the construction of the perpendicular bisector of $\overline{A B}$?
1)
2)
3)

4)

327 Point P lies on line m. Point P is also included in distinct planes Q, R, S, and \mathcal{T}. At most, how many of these planes could be perpendicular to line m ?

1) 1
2) 2
3) 3
4) 4

328 Determine whether the two lines represented by the equations $y=2 x+3$ and $2 y+x=6$ are parallel, perpendicular, or neither. Justify your response.

329 As shown in the diagram below, $\overleftrightarrow{E F}$ intersects planes \mathscr{P}, Q, and \mathcal{R}.

If $\overleftrightarrow{E F}$ is perpendicular to planes \mathscr{P} and \mathcal{R}, which statement must be true?

1) Plane \mathscr{P} is perpendicular to plane Q.
2) Plane R is perpendicular to plane P.
3) Plane \mathscr{P} is parallel to plane Q.
4) Plane \mathcal{R} is parallel to plane \mathscr{P}.

330 What is the measure of each interior angle of a regular hexagon?

1) 60°
2) 120°
3) 135°
4) 270°

331 As shown on the set of axes below, $\Delta G H S$ has vertices $G(3,1), H(5,3)$, and $S(1,4)$. Graph and state the coordinates of $\Delta G^{\prime \prime} H^{\prime \prime} S^{\prime \prime}$, the image of $\Delta G H S$ after the transformation $T_{-3,1} \circ D_{2}$.

332 How many points are both 4 units from the origin and also 2 units from the line $y=4$?

1) 1
2) 2
3) 3
4) 4

333 Triangle $P Q R$ has angles in the ratio of 2:3:5. Which type of triangle is $\triangle P Q R$?

1) acute
2) isosceles
3) obtuse
4) right

Geometry Regents Exam Questions at Random www.jmap.org

334 In $\triangle A B C$ shown below, P is the centroid and $B F=18$.

What is the length of $\overline{B P}$?

1) 6
2) 9
3) 3
4) 12

335 In the diagram of $\triangle A B C$ shown below, $\overline{D E} \| \overline{B C}$.

If $A B=10, A D=8$, and $A E=12$, what is the length of $\overline{E C}$?

1) 6
2) 2
3) 3
4) 15

336 In the diagram below of $\triangle B C D$, side $\overline{D B}$ is extended to point A.

Which statement must be true?

1) $\mathrm{m} \angle C>\mathrm{m} \angle D$
2) $\mathrm{m} \angle A B C<\mathrm{m} \angle D$
3) $\mathrm{m} \angle A B C>\mathrm{m} \angle C$
4) $\mathrm{m} \angle A B C>\mathrm{m} \angle C+\mathrm{m} \angle D$

337 In the diagram below of $\triangle A C E$, medians $\overline{A D}, \overline{E B}$, and $\overline{C F}$ intersect at G. The length of $\overline{F G}$ is 12 cm .

What is the length, in centimeters, of $\overline{G C}$?

1) 24
2) 12
3) 6
4) 4

338 On the set of coordinate axes below, graph the locus of points that are equidistant from the lines $y=6$ and $y=2$ and also graph the locus of points that are 3 units from the y-axis. State the coordinates of all points that satisfy both conditions.

In the diagram below of circle O, chord $\overline{A B}$ bisects chord $\overline{C D}$ at E. If $A E=8$ and $B E=9$, find the length of $\overline{C E}$ in simplest radical form.

340 The equation of a circle with its center at $(-3,5)$ and a radius of 4 is

1) $(x+3)^{2}+(y-5)^{2}=4$
2) $(x-3)^{2}+(y+5)^{2}=4$
3) $(x+3)^{2}+(y-5)^{2}=16$
4) $(x-3)^{2}+(y+5)^{2}=16$

341 Which statement is the negation of "Two is a prime number" and what is the truth value of the negation?

1) Two is not a prime number; false
2) Two is not a prime number; true
3) A prime number is two; false
4) A prime number is two; true

342 Segment $A B$ is the diameter of circle M. The coordinates of A are $(-4,3)$. The coordinates of M are $(1,5)$. What are the coordinates of B ?

1) $(6,7)$
2) $(5,8)$
3) $(-3,8)$
4) $(-5,2)$

343 Triangle $A B C$ has vertices $A(0,0), B(3,2)$, and $C(0,4)$. The triangle may be classified as

1) equilateral
2) isosceles
3) right
4) scalene

Geometry Regents Exam Questions at Random www.jmap.org

344 The diameter of a sphere is 15 inches. What is the volume of the sphere, to the nearest tenth of a cubic inch?

1) 706.9
2) 1767.1
3) 2827.4
4) $14,137.2$

345 Quadrilateral MATH has coordinates $M(1,1)$, $A(-2,5), T(3,5)$, and $H(6,1)$. Prove that quadrilateral $M A T H$ is a rhombus and prove that it is not a square. [The use of the grid is optional.]

346 In $\triangle P Q R, \angle P R Q$ is a right angle and $\overline{R T}$ is drawn perpendicular to hypotenuse $\overline{P Q}$. If $P T=x$, $R T=6$, and $T Q=4 x$, what is the length of $\overline{P Q}$?

1) 9
2) 12
3) 3
4) 15

347 In the diagram below of quadrilateral $A B C D$, $\overline{A D} \cong B C$ and $\angle D A E \cong \angle B C E$. Line segments $A C$, $D B$, and $F G$ intersect at E.
Prove: $\triangle A E F \cong \triangle C E G$

348 The cylindrical tank shown in the diagram below is to be painted. The tank is open at the top, and the bottom does not need to be painted. Only the outside needs to be painted. Each can of paint covers 600 square feet. How many cans of paint must be purchased to complete the job?

349 When $\triangle A B C$ is dilated by a scale factor of 2 , its image is $\Delta A^{\prime} B^{\prime} C^{\prime}$. Which statement is true?

1) $\overline{A C} \cong \overline{A^{\prime} C^{\prime}}$
2) $\angle A \cong \angle A^{\prime}$
3) perimeter of $\triangle A B C=$ perimeter of $\triangle A^{\prime} B^{\prime} C^{\prime}$
4) $2($ area of $\triangle A B C)=$ area of $\Delta A^{\prime} B^{\prime} C^{\prime}$

350 For a triangle, which two points of concurrence could be located outside the triangle?

1) incenter and centroid
2) centroid and orthocenter
3) incenter and circumcenter
4) circumcenter and orthocenter

351 The volume, in cubic centimeters, of a sphere whose diameter is 6 centimeters is

1) 12π
2) 36π
3) 48π
4) 288π

352 What is an equation of the line that is perpendicular to the line whose equation is $y=\frac{3}{5} x-2$ and that passes through the point $(3,-6)$?

1) $y=\frac{5}{3} x-11$
2) $y=-\frac{5}{3} x+11$
3) $y=-\frac{5}{3} x-1$
4) $y=\frac{5}{3} x+1$

353 In scalene triangle $A B C, \mathrm{~m} \angle B=45$ and $\mathrm{m} \angle C=55$. What is the order of the sides in length, from longest to shortest?

1) $\overline{A B}, \overline{B C}, \overline{A C}$
2) $\overline{B C}, \overline{A C}, \overline{A B}$
3) $A C, B C, A B$
4) $\overline{B C}, \overline{A B}, \overline{A C}$

354 If the vertex angles of two isosceles triangles are congruent, then the triangles must be

1) acute
2) congruent
3) right
4) similar

355 Write an equation of the circle graphed in the diagram below.

356 The diagonals of a quadrilateral are congruent but do not bisect each other. This quadrilateral is

1) an isosceles trapezoid
2) a parallelogram
3) a rectangle
4) a rhombus

357 In the diagram below of $\triangle D A E$ and $\triangle B C E, \overline{A B}$ and $\overline{C D}$ intersect at E, such that $\overline{A E} \cong \overline{C E}$ and $\angle B C E \cong \angle D A E$.

Triangle $D A E$ can be proved congruent to triangle $B C E$ by

1) ASA
2) SAS
3) SSS
4) HL

358 Which equation represents the line parallel to the line whose equation is $4 x+2 y=14$ and passing through the point $(2,2)$?

1) $y=-2 x$
2) $y=-2 x+6$
3) $y=\frac{1}{2} x$
4) $y=\frac{1}{2} x+1$

359 In circle O, diameter $\overline{R S}$ has endpoints $R(3 a, 2 b-1)$ and $S(a-6,4 b+5)$. Find the coordinates of point O, in terms of a and b. Express your answer in simplest form.

360 In the diagram below of $\triangle A B C, \overline{A B} \cong \overline{A C}$, $\mathrm{m} \angle A=3 x$, and $\mathrm{m} \angle B=x+20$.

What is the value of x ?

1) 10
2) 28
3) 32
4) 40

361 As shown in the diagram below, $\overline{A C}$ bisects $\angle B A D$ and $\angle B \cong \angle D$.

Which method could be used to prove
$\triangle A B C \cong \triangle A D C$?

1) SSS
2) AAA
3) SAS
4) AAS

362 Which quadrilateral has diagonals that always bisect its angles and also bisect each other?

1) rhombus
2) rectangle
3) parallelogram
4) isosceles trapezoid

363 What is the length of the line segment whose endpoints are $A(-1,9)$ and $B(7,4)$?

1) $\sqrt{61}$
2) $\sqrt{89}$
3) $\sqrt{205}$
4) $\sqrt{233}$

364 On the set of axes below, solve the system of equations graphically and state the coordinates of all points in the solution.

$$
\begin{gathered}
y=(x-2)^{2}-3 \\
2 y+16=4 x
\end{gathered}
$$

365 The angles of triangle $A B C$ are in the ratio of
$8: 3: 4$. What is the measure of the smallest angle?

1) 12°
2) 24°
3) 36°
4) 72°

366 The diagram below shows a rectangular prism.

Which pair of edges are segments of lines that are coplanar?

1) $\overline{A B}$ and $\overline{D H}$
2) $\overline{A E}$ and $\overline{D C}$
3) $\overline{B C}$ and $\overline{E H}$
4) $\overline{C G}$ and $\overline{E F}$

367 What is an equation of circle O shown in the graph below?

1) $(x+1)^{2}+(y-3)^{2}=25$
2) $(x-1)^{2}+(y+3)^{2}=25$
3) $(x-5)^{2}+(y+6)^{2}=25$
4) $(x+5)^{2}+(y-6)^{2}=25$

368 Chords $\overline{A B}$ and $\overline{C D}$ intersect at E in circle O, as shown in the diagram below. Secant $\overline{F D A}$ and tangent $\overline{F B}$ are drawn to circle O from external point F and chord $\overline{A C}$ is drawn. The $\mathrm{m} \overparen{D A}=56$, $\mathrm{m} \overparen{D B}=112$, and the ratio of $\mathrm{m} \overparen{A C}: \stackrel{\mathrm{m} C B}{ }=3: 1$.

Determine $\mathrm{m} \angle C E B$. Determine $\mathrm{m} \angle F$. Determine $\mathrm{m} \angle D A C$.

An equation of the line that passes through $(2,-1)$ and is parallel to the line $2 y+3 x=8$ is

1) $y=\frac{3}{2} x-4$
2) $y=\frac{3}{2} x+4$
3) $y=-\frac{3}{2} x-2$
4) $y=-\frac{3}{2} x+2$

370 The coordinates of point A are $(-3 a, 4 b)$. If point A^{\prime} is the image of point A reflected over the line $y=x$, the coordinates of A^{\prime} are

1) $(4 b,-3 a)$
2) $(3 a, 4 b)$
3) $(-3 a,-4 b)$
4) $(-4 b,-3 a)$

371 Given that $A B C D$ is a parallelogram, a student wrote the proof below to show that a pair of its opposite angles are congruent.

What is the reason justifying that $\angle B \cong \angle D$?

1) Opposite angles in a quadrilateral are congruent.
2) Parallel lines have congruent corresponding angles.
3) Corresponding parts of congruent triangles are congruent.
4) Alternate interior angles in congruent triangles are congruent.

372 In the diagram below, parallelogram $A B C D$ has diagonals $\overline{A C}$ and $\overline{B D}$ that intersect at point E.

Which expression is not always true?

1) $\angle D A E \cong \angle B C E$
2) $\angle D E C \cong \angle B E A$
3) $\overline{A C} \cong \overline{D B}$
4) $\overline{D E} \cong \overline{E B}$

373 The diagram below represents a rectangular solid.

Which statement must be true?

1) $\overline{E H}$ and $\overline{B C}$ are coplanar
2) $\overline{F G}$ and $\overline{A B}$ are coplanar
3) $\overline{E H}$ and $\overline{A D}$ are skew
4) $\overline{F G}$ and $\overline{C G}$ are skew

374 The coordinates of the endpoints of $\overline{F G}$ are $(-4,3)$ and $(2,5)$. Find the length of $\overline{F G}$ in simplest radical form.

375 Point A lies in plane \mathscr{B}. How many lines can be drawn perpendicular to plane \mathcal{B} through point A ?

1) one
2) two
3) zero
4) infinite

376 The coordinates of the endpoints of $\overline{A B}$ are $A(0,0)$ and $B(0,6)$. The equation of the perpendicular bisector of $\overline{A B}$ is

1) $x=0$
2) $x=3$
3) $y=0$
4) $y=3$

377 In the diagram below of circle $O, \overline{P A}$ is tangent to circle O at A, and $\overline{P B C}$ is a secant with points B and C on the circle.

If $P A=8$ and $P B=4$, what is the length of $\overline{B C}$?

1) 20
2) 16
3) 15
4) 12

378 In parallelogram $A B C D$ shown below, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E.

Which statement must be true?

1) $\overline{A C} \cong \overline{D B}$
2) $\angle A B D \cong \angle C B D$
3) $\triangle A E D \cong \triangle C E B$
4) $\triangle D C E \cong \triangle B C E$

379 What is the equation of a line passing through $(2,-1)$ and parallel to the line represented by the equation $y=2 x+1$?

1) $y=-\frac{1}{2} x$
2) $y=-\frac{1}{2} x+1$
3) $y=2 x-5$
4) $y=2 x-1$

380 In the diagram below of right triangle $A B C$, altitude $\overline{B D}$ is drawn to hypotenuse $\overline{A C}, A C=16$, and $C D=7$.

What is the length of $\overline{B D}$?

1) $3 \sqrt{7}$
2) $4 \sqrt{7}$
3) $7 \sqrt{3}$
4) 12

381 Lines m and n intersect at point A. Line k is perpendicular to both lines m and n at point A. Which statement must be true?

1) Lines m, n, and k are in the same plane.
2) Lines m and n are in two different planes.
3) Lines m and n are perpendicular to each other.
4) Line k is perpendicular to the plane containing lines m and n.

382 In the diagram below of circle O, radius $\overline{O C}$ is 5 cm . Chord $\overline{A B}$ is 8 cm and is perpendicular to $\overline{O C}$ at point P.

What is the length of $\overline{O P}$, in centimeters?

1) 8
2) 2
3) 3
4) 4

383 A circle has the equation $(x-2)^{2}+(y+3)^{2}=36$. What are the coordinates of its center and the length of its radius?

1) $(-2,3)$ and 6
2) $(2,-3)$ and 6
3) $(-2,3)$ and 36
4) $(2,-3)$ and 36

384 A student wrote the sentence " 4 is an odd integer." What is the negation of this sentence and the truth value of the negation?

1) 3 is an odd integer, true
2) 4 is not an odd integer; true
3) 4 is not an even integer; false
4) 4 is an even integer; false

385 Which line is parallel to the line whose equation is $4 x+3 y=7$ and also passes through the point $(-5,2)$?

1) $4 x+3 y=-26$
2) $4 x+3 y=-14$
3) $3 x+4 y=-7$
4) $3 x+4 y=14$

386 In the diagram below, $\triangle A B C$ is circumscribed about circle O and the sides of $\triangle A B C$ are tangent to the circle at points D, E, and F.

If $A B=20, A E=12$, and $C F=15$, what is the length of $\overline{A C}$?

1) 8
2) 15
3) 23
4) 27

387 Point M is the midpoint of $\overline{A B}$. If the coordinates of A are $(-3,6)$ and the coordinates of M are $(-5,2)$, what are the coordinates of B ?

1) $(1,2)$
2) $(7,10)$
3) $(-4,4)$
4) $(-7,-2)$

388 In the diagram below of $\triangle P A O, \overline{A P}$ is tangent to circle O at point $A, O B=7$, and $B P=18$.

What is the length of $\overline{A P}$?

1) 10
2) 12
3) 17
4) 24

389 In the diagram below of circle O, chord $A B$ is parallel to chord $\overline{G H}$. Chord $\overline{C D}$ intersects $\overline{A B}$ at E and $\overline{G H}$ at F.

Which statement must always be true?

1) $\overparen{A C} \cong \overparen{C B}$
2) $\overparen{D H} \cong \overparen{B H}$
3) $\overparen{A B} \cong \overparen{G H}$
4) $\overparen{A G} \cong \overparen{B H}$

Geometry Regents Exam Questions at Random www.jmap.org

390 In the diagram below, line p intersects line m and line n.

If $\mathrm{m} \angle 1=7 x$ and $\mathrm{m} \angle 2=5 x+30$, lines m and n are parallel when x equals

1) 12.5
2) 15
3) 87.5
4) 105

391 In the diagram of $\triangle J E A$ below, $\mathrm{m} \angle J E A=90$ and $\mathrm{m} \angle E A J=48$. Line segment $M S$ connects points M and S on the triangle, such that $\mathrm{m} \angle E M S=59$.

What is $\mathrm{m} \angle J S M$?

1) 163
2) 121
3) 42
4) 17

392 In the diagram of $\triangle K L M$ below, $\mathrm{m} \angle L=70$, $\mathrm{m} \angle M=50$, and $\overline{M K}$ is extended through N.

What is the measure of $\angle L K N$?

1) 60°
2) 120°
3) 180°
4) 300°

393 The vertices of the triangle in the diagram below are $A(7,9), B(3,3)$, and $C(11,3)$.

What are the coordinates of the centroid of $\triangle A B C$?

1) $(5,6)$
2) $(7,3)$
3) $(7,5)$
4) $(9,6)$

Geometry Regents Exam Questions at Random www.jmap.org

394 What is an equation of the line that passes through the point $(-2,3)$ and is parallel to the line whose equation is $y=\frac{3}{2} x-4$?

1) $y=\frac{-2}{3} x$
2) $y=\frac{-2}{3} x+\frac{5}{3}$
3) $y=\frac{3}{2} x$
4) $y=\frac{3}{2} x+6$

Triangle $A B C$ has vertices $A(-2,2), B(-1,-3)$, and $C(4,0)$. Find the coordinates of the vertices of $\Delta A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after the transformation $r_{\mathrm{x} \text {-axis }}$. [The use of the grid is optional.]

Geometry Regents Exam Questions at Random www.jmap.org

398 In the diagram below, $L A T E$ is an isosceles trapezoid with $\overline{L E} \cong \overline{A T}, L A=24, E T=40$, and $A T=10$. Altitudes $\overline{L F}$ and $\overline{A G}$ are drawn.

What is the length of $\overline{L F}$?

1) 6
2) 8
3) 3
4) 4

Triangle $H K L$ has vertices $H(-7,2), K(3,-4)$, and $L(5,4)$. The midpoint of $\overline{H L}$ is M and the midpoint of $\overline{L K}$ is N. Determine and state the coordinates of points M and N. Justify the statement: $\overline{M N}$ is parallel to $\overline{H K}$. [The use of the set of axes below is optional.]

400 The angle formed by the radius of a circle and a tangent to that circle has a measure of

1) 45°
2) 90°
3) 135°
4) 180°

401 The coordinates of the vertices of $\triangle R S T$ are $R(-2,3), S(4,4)$, and $T(2,-2)$. Triangle $R^{\prime} S^{\prime} T^{\prime}$ is the image of $\triangle R S T$ after a rotation of 90° about the origin. State the coordinates of the vertices of $\Delta R^{\prime} S^{\prime} T^{\prime}$. [The use of the set of axes below is optional.]

402 Which reason could be used to prove that a parallelogram is a rhombus?

1) Diagonals are congruent.
2) Opposite sides are parallel.
3) Diagonals are perpendicular.
4) Opposite angles are congruent.

Geometry Regents Exam Questions at Random www.jmap.org

403 A line segment has endpoints $(4,7)$ and $(1,11)$.
What is the length of the segment?

1) 5
2) 7
3) 16
4) 25

Two lines are represented by the equations $x+2 y=4$ and $4 y-2 x=12$. Determine whether these lines are parallel, perpendicular, or neither. Justify your answer.

405 In the diagram below, $\overline{A B}, \overline{B C}$, and $\overline{A C}$ are tangents to circle O at points F, E, and D, respectively, $A F=6, C D=5$, and $B E=4$.

What is the perimeter of $\triangle A B C$?

1) 15
2) 25
3) 30
4) 60

406 Triangle $A B C$ has vertices $A(3,3), B(7,9)$, and $C(11,3)$. Determine the point of intersection of the medians, and state its coordinates. [The use of the set of axes below is optional.]

407 In the diagram below, point P is the centroid of $\triangle A B C$.

If $P M=2 x+5$ and $B P=7 x+4$, what is the length of $\overline{P M}$?

1) 9
2) 2
3) 18
4) 27

Geometry Regents Exam Questions at Random www.jmap.org

408 In the diagram of quadrilateral $A B C D, \overline{A B} \| \overline{C D}$, $\angle A B C \cong \angle C D A$, and diagonal $\overline{A C}$ is drawn.

Which method can be used to prove $\triangle A B C$ is congruent to $\triangle C D A$?

1) AAS
2) SSA
3) SAS
4) SSS

In the diagram below of $\triangle A C D, B$ is a point on $\overline{A C}$ such that $\triangle A D B$ is an equilateral triangle, and $\triangle D B C$ is an isosceles triangle with $\overline{D B} \cong \overline{B C}$. Find $\mathrm{m} \angle C$.

410 Triangle $A B C$ has coordinates $A(2,-2), B(2,1)$, and $C(4,-2)$. Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ under $T_{5,-2}$. On the set of axes below, graph and label $\triangle A B C$ and its image, $\Delta A^{\prime} B^{\prime} C^{\prime}$. Determine the relationship between the area of $\triangle A B C$ and the area of $\Delta A^{\prime} B^{\prime} C^{\prime}$. Justify your response.

411 If two distinct planes, \mathcal{A} and \mathscr{B}, are perpendicular to line c, then which statement is true?

1) Planes \mathcal{A} and \mathscr{B} are parallel to each other.
2) Planes \mathcal{A} and \mathscr{B} are perpendicular to each other.
3) The intersection of planes \mathcal{A} and \mathscr{B} is a line parallel to line c.
4) The intersection of planes \mathcal{A} and \mathscr{B} is a line perpendicular to line c.

Geometry Regents Exam Questions at Random www.jmap.org

412 The volume of a rectangular prism is 144 cubic inches. The height of the prism is 8 inches. Which measurements, in inches, could be the dimensions of the base?

1) 3.3 by 5.5
2) 2.5 by 7.2
3) 12 by 8
4) 9 by 9

413 Given: $\overline{A D}$ bisects $\overline{B C}$ at E. $\overline{A B} \perp \overline{B C}$ $\overline{D C} \perp \overline{B C}$
Prove: $\overline{A B} \cong \overline{D C}$

414 What is the slope of a line that is perpendicular to the line represented by the equation $x+2 y=3$?

1) -2
2) 2
3) $-\frac{1}{2}$
4) $\frac{1}{2}$

415 Which diagram represents a correct construction of equilateral $\triangle A B C$, given side $\overline{A B}$?
1)

3)

4)

416 If $\overleftrightarrow{A B}$ is contained in plane P, and $\overleftrightarrow{A B}$ is perpendicular to plane \mathbb{R}, which statement is true?

1) $\overleftrightarrow{A B}$ is parallel to plane R
2) Plane P is parallel to plane R.
3) $\overleftrightarrow{A B}$ is perpendicular to plane \mathscr{P}.
4) Plane \mathscr{P} is perpendicular to plane \mathcal{R}.

417 In the diagram below of $\triangle A B C, D$ is a point on $\overline{A B}$, E is a point on $\overline{B C}, \overline{A C} \| \overline{D E}, C E=25$ inches, $A D=18$ inches, and $D B=12$ inches. Find, to the nearest tenth of an inch, the length of $\overline{E B}$.

418 A line segment has endpoints $A(7,-1)$ and $B(-3,3)$.
What are the coordinates of the midpoint of $\overline{A B}$?

1) $(1,2)$
2) $(2,1)$
3) $(-5,2)$
4) $(5,-2)$

419 Find, in degrees, the measures of both an interior angle and an exterior angle of a regular pentagon.

420 When a dilation is performed on a hexagon, which property of the hexagon will not be preserved in its image?

1) parallelism
2) orientation
3) length of sides
4) measure of angles

421 .A straightedge and compass were used to create the construction below. Arc $E F$ was drawn from point B, and arcs with equal radii were drawn from E and F.

Which statement is false?

1) $\mathrm{m} \angle A B D=\mathrm{m} \angle D B C$
2) $\frac{1}{2}(\mathrm{~m} \angle A B C)=\mathrm{m} \angle A B D$
3) $2(\mathrm{~m} \angle D B C)=\mathrm{m} \angle A B C$
4) $2(\mathrm{~m} \angle A B C)=\mathrm{m} \angle C B D$

422 What is the image of the point $(-5,2)$ under the translation $T_{3,-4}$?

1) $(-9,5)$
2) $(-8,6)$
3) $(-2,-2)$
4) $(-15,-8)$

423 A cylinder has a height of 7 cm and a base with a diameter of 10 cm . Determine the volume, in cubic centimeters, of the cylinder in terms of π.

424 In the diagram below of $\triangle G J K, H$ is a point on $\overline{G J}$, $\overline{H J} \cong \overline{J K}, \mathrm{~m} \angle G=28$, and $\mathrm{m} \angle G J K=70$.
Determine whether $\triangle G H K$ is an isosceles triangle and justify your answer.

425 In the diagram below of circle O, diameter $\overline{A B}$ is parallel to chord $\overline{C D}$.

If $\mathrm{mCD}=70$, what is $\mathrm{m} \overparen{A C}$?

1) 110
2) 70
3) 55
4) 35

426 In the diagram below, point M is located on $\overleftrightarrow{A B}$ Sketch the locus of points that are 1 unit from $\overleftrightarrow{A B}$ and the locus of points 2 units from point M. Label with an \mathbf{X} all points that satisfy both conditions.

427 In the diagram below, quadrilateral $J U M P$ is inscribed in a circle..

Opposite angles J and M must be

1) right
2) complementary
3) congruent
4) supplementary

Geometry Regents Exam Questions at Random www.jmap.org

428 In the diagram below of $\triangle A B C, D$ is the midpoint of $\overline{A B}$, and E is the midpoint of $\overline{B C}$.

If $A C=4 x+10$, which expression represents $D E$?

1) $x+2.5$
2) $2 x+5$
3) $2 x+10$
4) $8 x+20$

429 In a given triangle, the point of intersection of the three medians is the same as the point of intersection of the three altitudes. Which classification of the triangle is correct?

1) scalene triangle
2) isosceles triangle
3) equilateral triangle
4) right isosceles triangle

430 Solve the following system of equations graphically.

$$
\begin{aligned}
2 x^{2}-4 x & =y+1 \\
x+y & =1
\end{aligned}
$$

431 Which equation represents a line that is parallel to the line whose equation is $y=\frac{3}{2} x-3$ and passes through the point $(1,2)$?

1) $y=\frac{3}{2} x+\frac{1}{2}$
2) $y=\frac{2}{3} x+\frac{4}{3}$
3) $y=\frac{3}{2} x-2$
4) $y=-\frac{2}{3} x+\frac{8}{3}$

Geometry Regents Exam Questions at Random www.jmap.org

432 When writing a geometric proof, which angle relationship could be used alone to justify that two angles are congruent?

1) supplementary angles
2) linear pair of angles
3) adjacent angles
4) vertical angles

433 In the diagram below, $\overline{P S}$ is a tangent to circle O at point $S, \overline{P Q R}$ is a secant, $P S=x, P Q=3$, and $P R=x+18$.

(Not drawn to scale)
What is the length of $\overline{P S}$?

1) 6
2) 9
3) 3
4) 27

435 In $\triangle D E F, \mathrm{~m} \angle D=3 x+5, \mathrm{~m} \angle E=4 x-15$, and $\mathrm{m} \angle F=2 x+10$. Which statement is true?

1) $D F=F E$
2) $D E=F E$
3) $\mathrm{m} \angle E=\mathrm{m} \angle F$
4) $\mathrm{m} \angle D=\mathrm{m} \angle F$

436 In the diagram below, $\Delta A^{\prime} B^{\prime} C^{\prime}$ is a transformation of $\triangle A B C$, and $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is a transformation of $\Delta A^{\prime} B^{\prime} C^{\prime}$.

The composite transformation of $\triangle A B C$ to $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is an example of a

1) reflection followed by a rotation
2) reflection followed by a translation
3) translation followed by a rotation
4) translation followed by a reflection

434 In $\triangle R S T, \mathrm{~m} \angle R=58$ and $\mathrm{m} \angle S=73$. Which inequality is true?

1) $R T<T S<R S$
2) $R S<R T<T S$
3) $R T<R S<T S$
4) $R S<T S<R T$

437 As shown in the diagram below of $\triangle A B C$, a compass is used to find points D and E, equidistant from point A. Next, the compass is used to find point F, equidistant from points D and E. Finally, a straightedge is used to draw $\overrightarrow{A F}$. Then, point G, the intersection of $\overrightarrow{A F}$ and side $\overline{B C}$ of $\triangle A B C$, is labeled.

Which statement must be true?

1) $\overrightarrow{A F}$ bisects side $\overline{B C}$
2) $\overrightarrow{A F}$ bisects $\angle B A C$
3) $\overrightarrow{A F} \perp \overrightarrow{B C}$
4) $\triangle A B G \sim \triangle A C G$

In the diagram below, two parallel lines intersect circle O at points A, B, C, and D, with $\mathrm{m} \overparen{A B}=x+20$ and $\mathrm{m} \overparen{D C}=2 x-20$. Find $\breve{\mathrm{m}} \stackrel{\breve{A B}}{ }$.

439 On the set of axes below, graph the locus of points that are four units from the point $(2,1)$. On the same set of axes, graph the locus of points that are two units from the line $x=4$. State the coordinates of all points that satisfy both conditions.

440 When a quadrilateral is reflected over the line $y=x$, which geometric relationship is not preserved?

1) congruence
2) orientation
3) parallelism
4) perpendicularity

441 What is the slope of a line perpendicular to the line whose equation is $20 x-2 y=6$?

1) -10
2) $-\frac{1}{10}$
3) 10
4) $\frac{1}{10}$

442 The coordinates of trapezoid $A B C D$ are $A(-4,5)$, $B(1,5), C(1,2)$, and $D(-6,2)$. Trapezoid $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ is the image after the composition $r_{x-\text { axis }}{ }^{\circ} r_{y=x}$ is performed on trapezoid $A B C D$.
State the coordinates of trapezoid $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$. [The use of the set of axes below is optional.]

443 Write the negation of the statement " 2 is a prime number," and determine the truth value of the negation.

444 Scalene triangle $A B C$ is similar to triangle $D E F$. Which statement is false?

1) $A B: B C=D E: E F$
2) $A C: D F=B C: E F$
3) $\angle A C B \cong \angle D F E$
4) $\angle A B C \cong \angle E D F$

445 In the diagram below of circle O, chord $\overline{A B}$ is parallel to chord $\overline{C D}$.

Which statement must be true?

1) $\overparen{A C} \cong \overparen{B D}$
2) $\overparen{A B} \cong \overparen{C D}$
3) $\overline{A B} \cong \overline{C D}$
4) $\overparen{A B D} \cong \overparen{C D B}$

446 Lines a and b intersect at point P. Line c passes through P and is perpendicular to the plane containing lines a and b. Which statement must be true?

1) Lines a, b, and c are coplanar.
2) Line a is perpendicular to line b.
3) Line c is perpendicular to both line a and line b.
4) Line c is perpendicular to line a or line b, but not both.

Geometry Regents Exam Questions at Random www.jmap.org

447 In circle O, a diameter has endpoints $(-5,4)$ and $(3,-6)$. What is the length of the diameter?

1) $\sqrt{2}$
2) $2 \sqrt{2}$
3) $\sqrt{10}$
4) $2 \sqrt{41}$

448 In the diagram below of circle O, chords $\overline{R T}$ and $\overline{Q S}$ intersect at M. Secant $\overline{P T R}$ and tangent $\overline{P S}$ are drawn to circle O. The length of $\overline{R M}$ is two more than the length of $\overline{T M}, Q M=2, S M=12$, and $P T=8$.

Find the length of $\overline{R T}$. Find the length of $\overline{P S}$.

449 As shown in the diagram below, a kite needs a vertical and a horizontal support bar attached at opposite corners. The upper edges of the kite are 7 inches, the side edges are x inches, and the vertical support bar is $(x+1)$ inches.

What is the measure, in inches, of the vertical support bar?

1) 23
2) 24
3) 25
4) 26

Geometry Regents Exam Questions at Random www.jmap.org

450 Triangle $A B C$ is graphed on the set of axes below.

Which transformation produces an image that is similar to, but not congruent to, $\triangle A B C$?

1) $T_{2,3}$
2) D_{2}
3) $r_{y=x}$
4) R_{90}

451 The vertices of parallelogram $A B C D$ are $A(2,0)$, $B(0,-3), C(3,-3)$, and $D(5,0)$. If $A B C D$ is reflected over the x-axis, how many vertices remain invariant?

1) 1
2) 2
3) 3
4) 0

452 What is the equation of a circle whose center is 4 units above the origin in the coordinate plane and whose radius is 6 ?

1) $x^{2}+(y-6)^{2}=16$
2) $(x-6)^{2}+y^{2}=16$
3) $x^{2}+(y-4)^{2}=36$
4) $(x-4)^{2}+y^{2}=36$

453 In the diagram below, $\overleftrightarrow{A B}$ is perpendicular to plane $A E F G$.

Which plane must be perpendicular to plane $A E F G$?

1) $A B C E$
2) $B C D H$
3) $C D F E$
4) $H D F G$

454 In the diagram below of circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E.

If $\mathrm{m} \angle A E C=34$ and $\mathrm{m} \overparen{A C}=50$, what is $\mathrm{m} \overparen{D B}$?

1) 16
2) 18
3) 68
4) 118

Geometry Regents Exam Questions at Random www.jmap.org

Geometry Regents at Random

455 Which equation represents a line that is parallel to the line whose equation is $3 x-2 y=7$?

1) $y=-\frac{3}{2} x+5$
2) $y=-\frac{2}{3} x+4$
3) $y=\frac{3}{2} x-5$
4) $y=\frac{2}{3} x-4$

456 Given: $\triangle A B D, \overline{B C}$ is the perpendicular bisector of

Which statement can not always be proven?

1) $\overline{A C} \cong \overline{D C}$
2) $\overline{B C} \cong \overline{C D}$
3) $\angle A C B \cong \angle D C B$
4) $\triangle A B C \cong \triangle D B C$

457 Triangle $A B C$ is similar to triangle $D E F$. The lengths of the sides of $\triangle A B C$ are 5,8 , and 11 . What is the length of the shortest side of $\triangle D E F$ if its perimeter is 60 ?

1) 10
2) 12.5
3) 20
4) 27.5

458 Trapezoid TRAP, with median $M Q$, is shown in the diagram below. Solve algebraically for x and y.

459 In the diagram below of circle $O, \overline{P A C}$ and $\overline{P B D}$ are secants.

If $\mathrm{m} \overparen{C D}=70$ and $\mathrm{m} \overparen{A B}=20$, what is the degree measure of $\angle P$?

1) 25
2) 35
3) 45
4) 50

460 What is the perimeter of a rhombus whose diagonals are 16 and 30 ?

1) 92
2) 68
3) 60
4) 17

461 In $\triangle A B C, \mathrm{~m} \angle A=3 x+1, \mathrm{~m} \angle B=4 x-17$, and $\mathrm{m} \angle C=5 x-20$. Which type of triangle is $\triangle A B C$?

1) right
2) scalene
3) isosceles
4) equilateral

462 The diagram below shows the construction of line m, parallel to line ℓ, through point P.

Which theorem was used to justify this construction?

1) If two lines are cut by a transversal and the alternate interior angles are congruent, the lines are parallel.
2) If two lines are cut by a transversal and the interior angles on the same side are supplementary, the lines are parallel.
3) If two lines are perpendicular to the same line, they are parallel.
4) If two lines are cut by a transversal and the corresponding angles are congruent, they are parallel.

463 Two intersecting lines are shown in the diagram below. Sketch the locus of points that are equidistant from the two lines. Sketch the locus of points that are a given distance, d, from the point of intersection of the given lines. State the number of points that satisfy both conditions.

464 In $\triangle A B C, \mathrm{~m} \angle A=60, \mathrm{~m} \angle B=80$, and $\mathrm{m} \angle C=40$. Which inequality is true?

1) $A B>B C$
2) $A C>B C$
3) $A C<B A$
4) $B C<B A$

465 Which set of numbers could not represent the lengths of the sides of a right triangle?

1) $\{1,3, \sqrt{10}\}$
2) $\{2,3,4\}$
3) $\{3,4,5\}$
4) $\{8,15,17\}$

466 A circle has the equation $(x-3)^{2}+(y+4)^{2}=10$.
Find the coordinates of the center of the circle and the length of the circle's radius.

The coordinates of two vertices of square $A B C D$ are $A(2,1)$ and $B(4,4)$. Determine the slope of side $\overline{B C}$.

In circle R shown below, diameter $\overline{D E}$ is perpendicular to chord $\overline{S T}$ at point L.

Which statement is not always true?

1) $\overline{S L} \cong \overline{T L}$
2) $R S=D R$
3) $\overline{R L} \cong \overline{L E}$
4) $(D L)(L E)=(S L)(L T)$

469 Given the statement: One is a prime number. What is the negation and the truth value of the negation?

1) One is not a prime number; true
2) One is not a prime number; false
3) One is a composite number; true
4) One is a composite number; false

470 On the set of axes below, graph the locus of points 4 units from $(0,1)$ and the locus of points 3 units from the origin. Label with an \mathbf{X} any points that satisfy both conditions.

471 In $\triangle A B C, \angle A \cong \angle B$ and $\angle C$ is an obtuse angle. Which statement is true?

1) $\overline{A C} \cong \overline{A B}$ and $\overline{B C}$ is the longest side.
2) $\overline{A C} \cong \overline{B C}$ and $\overline{A B}$ is the longest side.
3) $\overline{A C} \cong \overline{A B}$ and $\overline{B C}$ is the shortest side.
4) $\overline{A C} \cong \overline{B C}$ and $\overline{A B}$ is the shortest side.

472 Line segment $A B$ is a diameter of circle O whose center has coordinates $(6,8)$. What are the coordinates of point B if the coordinates of point A are $(4,2)$?

1) $(1,3)$
2) $(5,5)$
3) $(8,14)$
4) $(10,10)$

473 The coordinates of the vertices of parallelogram $S W A N$ are $S(2,-2), W(-2,-4), A(-4,6)$, and $N(0,8)$. State and label the coordinates of parallelogram $S^{\prime \prime} W^{\prime \prime} A^{\prime \prime} N^{\prime \prime}$, the image of $S W A N$ after the transformation $T_{4,-2}{ }^{\circ} D_{\frac{1}{2}}$. [The use of the set of axes below is optional.]

474 As shown in the diagram of rectangle $A B C D$ below, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E.

If $A E=x+2$ and $B D=4 x-16$, then the length of $\overline{A C}$ is

1) 6
2) 10
3) 12
4) 24

475 In circle O shown below, chords $\overline{A B}$ and $\overline{C D}$ and radius $\overline{O A}$ are drawn, such that $\overline{A B} \cong \overline{C D}$, $\overline{O E} \perp \overline{A B}, \overline{O F} \perp \overline{C D}, O F=16, C F=y+10$, and $C D=4 y-20$.

Determine the length of $\overline{D F}$. Determine the length of $\overline{O A}$.

476 Given: $\triangle A B C, \overline{B D}$ bisects $\angle A B C, \overline{B D} \perp \overline{A C}$
Prove: $\overline{A B} \cong \overline{C B}$

477 Chords $\overline{A B}$ and $\overline{C D}$ intersect at point E in a circle with center at O. If $A E=8, A B=20$, and $D E=16$, what is the length of $\overline{C E}$?

1) 6
2) 9
3) 10
4) 12

478 Which graph represents a circle whose equation is $x^{2}+(y-2)^{2}=4$?
1)

2)

3)

479 Triangle $A B C$ has the coordinates $A(1,2), B(5,2)$, and $C(5,5)$. Triangle $A B C$ is rotated 180° about the origin to form triangle $A^{\prime} B^{\prime} C^{\prime}$. Triangle $A^{\prime} B^{\prime} C^{\prime}$ is

1) acute
2) isosceles
3) obtuse
4) right

480 Two prisms have equal heights and equal volumes. The base of one is a pentagon and the base of the other is a square. If the area of the pentagonal base is 36 square inches, how many inches are in the length of each side of the square base?

1) 6
2) 9
3) 24
4) 36

481 In the diagram of $\Delta U V W$ below, A is the midpoint of $\overline{U V}, B$ is the midpoint of $\overline{U W}, C$ is the midpoint of $\overline{V W}$, and $\overline{A B}$ and $\overline{A C}$ are drawn.

If $V W=7 x-3$ and $A B=3 x+1$, what is the length of $\overline{V C}$?

1) 5
2) 13
3) 16
4) 32

482 The sides of a triangle are 8,12 , and 15 . The longest side of a similar triangle is 18 . What is the ratio of the perimeter of the smaller triangle to the perimeter of the larger triangle?

1) $2: 3$
2) $4: 9$
3) $5: 6$
4) $25: 36$

483 In circle O shown in the diagram below, chords $\overline{A B}$ and $\overline{C D}$ are parallel.

If $\mathrm{m} \overparen{A B}=104$ and $\mathrm{m} \overparen{C D}=168$, what is $\mathrm{m} \overparen{B D}$?

1) 38
2) 44
3) 88
4) 96

484 Square $A B C D$ has vertices $A(-2,-3), B(4,-1)$, $C(2,5)$, and $D(-4,3)$. What is the length of a side of the square?

1) $2 \sqrt{5}$
2) $2 \sqrt{10}$
3) $4 \sqrt{5}$
4) $10 \sqrt{2}$

485 Which graph represents a circle whose equation is $(x+2)^{2}+y^{2}=16$?
1)

Geometry Regents Exam Questions at Random www.jmap.org

486 Triangle $A B C$ shown below is a right triangle with altitude $\overline{A D}$ drawn to the hypotenuse $\overline{B C}$.

If $B D=2$ and $D C=10$, what is the length of $\overline{A B}$?

1) $2 \sqrt{2}$
2) $2 \sqrt{5}$
3) $2 \sqrt{6}$
4) $2 \sqrt{30}$

487 Points $A(5,3)$ and $B(7,6)$ lie on $\overleftrightarrow{A B}$. Points $C(6,4)$ and $D(9,0)$ lie on $\overleftrightarrow{C D}$. Which statement is true?

1) $\overleftrightarrow{A B} \| \overleftrightarrow{C D}$
2) $\overleftrightarrow{A B} \perp \overleftrightarrow{C D}$
3) $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ are the same line.
4) $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ intersect, but are not perpendicular.

488 When the system of equations $y+2=(x-4)^{2}$ and $2 x+y-6=0$ is solved graphically, the solution is

1) $(-4,-2)$ and $(-2,2)$
2) $(4,-2)$ and $(2,2)$
3) $(-4,2)$ and $(-6,6)$
4) $(4,2)$ and $(6,6)$

489 If $\triangle R S T \sim \triangle A B C, \mathrm{~m} \angle A=x^{2}-8 x, \mathrm{~m} \angle C=4 x-5$, and $\mathrm{m} \angle R=5 x+30$, find $\mathrm{m} \angle C$. [Only an algebraic solution can receive full credit.]

490 The bases of a right triangular prism are $\triangle A B C$ and $\triangle D E F$. Angles A and D are right angles, $A B=6$, $\frac{A C}{B E}=8$, and $A D=12$. What is the length of edge

1) 10
2) 12
3) 14
4) 16

491 What are the coordinates of A^{\prime}, the image of $A(-3,4)$, after a rotation of 180° about the origin?

1) $(4,-3)$
2) $(-4,-3)$
3) $(3,4)$
4) $(3,-4)$

492 In circle O, diameter $\overline{A B}$ intersects chord $\overline{C D}$ at E. If $C E=E D$, then $\angle C E A$ is which type of angle?

1) straight
2) obtuse
3) acute
4) right

493 Triangle $A B C$ has vertices $A(6,6), B(9,0)$, and $C(3,-3)$. State and label the coordinates of $\Delta A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a dilation of $D \frac{1}{3}$.

494 What is the slope of the line perpendicular to the line represented by the equation $2 x+4 y=12$?

1) -2
2) 2
3) $-\frac{1}{2}$
4) $\frac{1}{2}$

495 In a park, two straight paths intersect. The city wants to install lampposts that are both equidistant from each path and also 15 feet from the intersection of the paths. How many lampposts are needed?

1) 1
2) 2
3) 3
4) 4

496 The volume of a sphere is approximately 44.6022 cubic centimeters. What is the radius of the sphere, to the nearest tenth of a centimeter?

1) 2.2
2) 3.3
3) 4.4
4) 4.7

497 The equation of a circle is $(x-2)^{2}+(y+5)^{2}=32$. What are the coordinates of the center of this circle and the length of its radius?

1) $(-2,5)$ and 16
2) $(2,-5)$ and 16
3) $(-2,5)$ and $4 \sqrt{2}$
4) $(2,-5)$ and $4 \sqrt{2}$

498 Which graph could be used to find the solution to the following system of equations?

$$
y=(x+3)^{2}-1
$$

$$
x+y=2
$$

1)

2)

4)

Geometry Regents Exam Questions at Random www.jmap.org

499 The diagram below shows $\triangle A B D$, with $\overrightarrow{A B C}$, $\overline{B E} \perp \overline{A D}$, and $\angle E B D \cong \angle C B D$.

If $\mathrm{m} \angle A B E=52$, what is $\mathrm{m} \angle D$?

1) 26
2) 38
3) 52
4) 64

500 As shown in the diagram below, a right pyramid has a square base, $A B C D$, and $\overline{E F}$ is the slant height.

Which statement is not true?

1) $\overline{E A} \cong \overline{E C}$
2) $\overline{E B} \cong \overline{E F}$
3) $\triangle A E B \cong \triangle B E C$
4) $\triangle C E D$ is isosceles

501 What is the difference between the sum of the measures of the interior angles of a regular pentagon and the sum of the measures of the exterior angles of a regular pentagon?

1) 36
2) 72
3) 108
4) 180

502 The lateral area of a right circular cone is equal to $120 \pi \mathrm{~cm}^{2}$. If the base of the cone has a diameter of 24 cm , what is the length of the slant height, in centimeters?

1) 2.5
2) 5
3) 10
4) 15.7

503 What are the coordinates of the center of a circle if the endpoints of its diameter are $A(8,-4)$ and $B(-3,2)$?

1) $(2.5,1)$
2) $(2.5,-1)$
3) $(5.5,-3)$
4) $(5.5,3)$

504 Secants $\overline{J K L}$ and $\overline{J M N}$ are drawn to circle O from an external point, J. If $J K=8, L K=4$, and $J M=6$, what is the length of $\overline{J N}$?

1) 16
2) 12
3) 10
4) 8

505 Triangle $A B C$ has vertices $A(5,1), B(1,4)$ and $C(1,1)$. State and label the coordinates of the vertices of $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the image of $\triangle A B C$, following the composite transformation $T_{1,-1} \circ D_{2}$. [The use of the set of axes below is optional.]

506 In $\triangle A B C, \mathrm{~m} \angle A=x^{2}+12, \mathrm{~m} \angle B=11 x+5$, and $\mathrm{m} \angle C=13 x-17$. Determine the longest side of $\triangle A B C$.

Triangle $A B C$ has vertices $A(0,0), B(6,8)$, and $C(8,4)$. Which equation represents the perpendicular bisector of $\overline{B C}$?

1) $y=2 x-6$
2) $y=-2 x+4$
3) $y=\frac{1}{2} x+\frac{5}{2}$
4) $y=-\frac{1}{2} x+\frac{19}{2}$

508 A right circular cylinder has a height of 7 inches and the base has a diameter of 6 inches. Determine the lateral area, in square inches, of the cylinder in terms of π.

509 In a coordinate plane, the locus of points 5 units from the x-axis is the

1) lines $x=5$ and $x=-5$
2) lines $y=5$ and $y=-5$
3) line $x=5$, only
4) line $y=5$, only

510 How many points are 5 units from a line and also equidistant from two points on the line?

1) 1
2) 2
3) 3
4) 0

511 Using a compass and straightedge, construct the bisector of $\angle M J H$. [Leave all construction marks.]

Geometry Regents Exam Questions at Random www.jmap.org

512 In the diagram below, under which transformation is $\triangle A^{\prime} B^{\prime} C^{\prime}$ the image of $\triangle A B C$?

1) D_{2}
2) $r_{x \text {-axis }}$
3) $r_{y \text {-axis }}$
4) $(x, y) \rightarrow(x-2, y)$

513 Based on the construction below, which conclusion is not always true?

1) $\overline{A B} \perp \overline{C D}$
2) $A B=C D$
3) $A E=E B$
4) $C E=D E$

514 If the vertices of $\triangle A B C$ are $A(-2,4), B(-2,8)$, and $C(-5,6)$, then $\triangle A B C$ is classified as

1) right
2) scalene
3) isosceles
4) equilateral

515 Write an equation of the line that is the perpendicular bisector of the line segment having endpoints $(3,-1)$ and $(3,5)$. [The use of the grid below is optional]

516 If $\triangle A B C \cong \triangle J K L \cong \triangle R S T$, then $\overline{B C}$ must be congruent to

1) $\overline{J L}$
2) $J K$
3) $S T$
4) $\overline{R S}$

Geometry Regents Exam Questions at Random www.jmap.org

517 Which graph represents a circle whose equation is $x^{2}+(y-1)^{2}=9$?
1)

2)

518 The diagram below shows rectangle $A B C D$ with points E and F on side $\overline{A B}$. Segments $C E$ and $D F$ intersect at G, and $\angle A D G \cong \angle B C G$. Prove:
$\overline{A E} \cong \overline{B F}$

519 Transversal $\overleftrightarrow{E F}$ intersects $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$, as shown in the diagram below.

Which statement could always be used to prove $\overleftrightarrow{A B} \| \overleftrightarrow{C D}$?

1) $\angle 2 \cong \angle 4$
2) $\angle 7 \cong \angle 8$
3) $\angle 3$ and $\angle 6$ are supplementary
4) $\angle 1$ and $\angle 5$ are supplementary

520 In $\triangle A B C, D$ is the midpoint of $\overline{A B}$ and E is the midpoint of $\overline{B C}$. If $A C=3 x-15$ and $D E=6$, what is the value of x ?

1) 6
2) 7
3) 9
4) 12

521 Determine, in degrees, the measure of each interior angle of a regular octagon.

522 The diagram below shows the construction of an equilateral triangle.

Which statement justifies this construction?

1) $\angle A+\angle B+\angle C=180$
2) $\mathrm{m} \angle A=\mathrm{m} \angle B=\mathrm{m} \angle C$
3) $A B=A C=B C$
4) $A B+B C>A C$

523 Which equation represents the circle whose center is $(-5,3)$ and that passes through the point $(-1,3)$?

1) $(x+1)^{2}+(y-3)^{2}=16$
2) $(x-1)^{2}+(y+3)^{2}=16$
3) $(x+5)^{2}+(y-3)^{2}=16$
4) $(x-5)^{2}+(y+3)^{2}=16$

524 In the diagram below, $\overline{A C}$ and $\overline{A D}$ are tangent to circle B at points C and D, respectively, and $\overline{B C}$, $\overline{B D}$, and $\overline{B A}$ are drawn.

If $A C=12$ and $A B=15$, what is the length of $\overline{B D}$?

1) 5.5
2) 9
3) 12
4) 18

525 The equation of a line is $y=\frac{2}{3} x+5$. What is an equation of the line that is perpendicular to the given line and that passes through the point $(4,2)$?

1) $y=\frac{2}{3} x-\frac{2}{3}$
2) $y=\frac{3}{2} x-4$
3) $y=-\frac{3}{2} x+7$
4) $y=-\frac{3}{2} x+8$

526 In the diagram of $\triangle A B C$ below, medians $\overline{A D}$ and $B E$ intersect at point F.

If $A F=6$, what is the length of $\overline{F D}$?

1) 6
2) 2
3) 3
4) 9

527 What is an equation of the circle with center $(-5,4)$ and a radius of 7 ?

1) $(x-5)^{2}+(y+4)^{2}=14$
2) $(x-5)^{2}+(y+4)^{2}=49$
3) $(x+5)^{2}+(y-4)^{2}=14$
4) $(x+5)^{2}+(y-4)^{2}=49$

528 What is the converse of "If an angle measures 90 degrees, then it is a right angle"?

1) If an angle is a right angle, then it measures 90 degrees.
2) An angle is a right angle if it measures 90 degrees.
3) If an angle is not a right angle, then it does not measure 90 degrees.
4) If an angle does not measure 90 degrees, then it is not a right angle.

529 Find, in simplest radical form, the length of the line segment with endpoints whose coordinates are $(-1,4)$ and $(3,-2)$.

530 Quadrilateral $A B C D$ with vertices $A(-7,4)$, $B(-3,6), C(3,0)$, and $D(1,-8)$ is graphed on the set of axes below. Quadrilateral $M N P Q$ is formed by joining M, N, P, and Q, the midpoints of $\overline{A B}, \overline{B C}$, $\overline{C D}$, and $\overline{A D}$, respectively. Prove that quadrilateral $M N P Q$ is a parallelogram. Prove that quadrilateral $M N P Q$ is not a rhombus.

531 What is the equation of a line passing through the point $(6,1)$ and parallel to the line whose equation is $3 x=2 y+4$?

1) $y=-\frac{2}{3} x+5$
2) $y=-\frac{2}{3} x-3$
3) $y=\frac{3}{2} x-8$
4) $y=\frac{3}{2} x-5$

532 After the transformation $r_{y=x}$, the image of $\triangle A B C$ is $\Delta A^{\prime} B^{\prime} C^{\prime}$. If $A B=2 x+13$ and $A^{\prime} B^{\prime}=9 x-8$, find the value of x.

533 In the diagram below of right triangle $A B C$, altitude $\overline{C D}$ is drawn to hypotenuse $\overline{A B}$.

If $A D=3$ and $D B=12$, what is the length of altitude $\overline{C D}$?

1) 6
2) $6 \sqrt{5}$
3) 3
4) $3 \sqrt{5}$

534 In the diagram below, $\triangle A B C \cong \triangle X Y Z$.

Which statement must be true?

1) $\angle C \cong \angle Y$
2) $\angle A \cong \angle X$
3) $\overline{A C} \cong \overline{Y Z}$
4) $\overline{C B} \cong \overline{X Z}$

A right circular cylinder with a height of 5 cm has a base with a diameter of 6 cm . Find the lateral area of the cylinder to the nearest hundredth of a square centimeter. Find the volume of the cylinder to the nearest hundredth of a cubic centimeter.

536 The measure of an interior angle of a regular polygon is 120°. How many sides does the polygon have?

1) 5
2) 6
3) 3
4) 4

537 What is the equation for circle O shown in the graph below?

1) $(x-3)^{2}+(y+1)^{2}=6$
2) $(x+3)^{2}+(y-1)^{2}=6$
3) $(x-3)^{2}+(y+1)^{2}=9$
4) $(x+3)^{2}+(y-1)^{2}=9$

538 If $\triangle M N P \cong \triangle V W X$ and $\overline{P M}$ is the shortest side of $\triangle M N P$, what is the shortest side of $\triangle V W X$?

1) $\overline{X V}$
2) $\overline{W X}$
3) $\overline{V W}$
4) $\overline{N P}$

Geometry Regents Exam Questions at Random www.jmap.org

539 Which equation represents circle A shown in the diagram below?

1) $(x-4)^{2}+(y-1)^{2}=3$
2) $(x+4)^{2}+(y+1)^{2}=3$
3) $(x-4)^{2}+(y-1)^{2}=9$
4) $(x+4)^{2}+(y+1)^{2}=9$

540 In right triangle $A B C$ shown in the diagram below, altitude $\overline{B D}$ is drawn to hypotenuse $\overline{A C}, C D=12$, and $A D=3$.

What is the length of $\overline{A B}$?

1) $5 \sqrt{3}$
2) 6
3) $3 \sqrt{5}$
4) 9

541 Circle O with $\angle A O C$ and $\angle A B C$ is shown in the diagram below.

What is the ratio of $\mathrm{m} \angle A O C$ to $\mathrm{m} \angle A B C$?

1) $1: 1$
2) $2: 1$
3) $3: 1$
4) $1: 2$

542 Triangle $A B C$ is shown in the diagram below.

If $\overline{D E}$ joins the midpoints of $\overline{A D C}$ and $\overline{A E B}$, which statement is not true?

1) $D E=\frac{1}{2} C B$
2) $\overline{D E} \| \overline{C B}$
3) $\frac{A D}{D C}=\frac{D E}{C B}$
4) $\triangle A B C \sim \triangle A E D$

543 Which set of equations represents two circles that have the same center?

1) $x^{2}+(y+4)^{2}=16$ and $(x+4)^{2}+y^{2}=16$
2) $(x+3)^{2}+(y-3)^{2}=16$ and
$(x-3)^{2}+(y+3)^{2}=25$
3) $(x-7)^{2}+(y-2)^{2}=16$ and
$(x+7)^{2}+(y+2)^{2}=25$
4) $(x-2)^{2}+(y-5)^{2}=16$ and
$(x-2)^{2}+(y-5)^{2}=25$

544 In the diagram of trapezoid $A B C D$ below, $\overline{A B} \| \overline{D C}$, $\overline{A D} \cong \overline{B C}, \mathrm{~m} \angle A=4 x+20$, and $\mathrm{m} \angle C=3 x-15$.

What is $\mathrm{m} \angle D$?

1) 25
2) 35
3) 60
4) 90

545 Point A is on line m. How many distinct planes will be perpendicular to line m and pass through point A ?

1) one
2) two
3) zero
4) infinite

546 Consider the relationship between the two statements below.

$$
\begin{aligned}
& \text { If } \sqrt{16+9} \neq 4+3 \text {, then } 5 \neq 4+3 \\
& \text { If } \sqrt{16+9}=4+3 \text {, then } 5=4+3
\end{aligned}
$$

These statements are

1) inverses
2) converses
3) contrapositives
4) biconditionals

547 In the diagram of $\triangle M A H$ below, $\overline{M H} \cong \overline{A H}$ and medians $\overline{A B}$ and $\overline{M T}$ are drawn.
Prove: $\angle M B A \cong \angle A T M$

548 If line ℓ is perpendicular to distinct planes \mathscr{P} and Q, then planes P and Q

1) are parallel
2) contain line ℓ
3) are perpendicular
4) intersect, but are not perpendicular

Geometry Regents Exam Questions at Random www.jmap.org

549 As shown in the diagram below, $\overline{F D}$ and $\overline{C B}$ intersect at point A and $\overline{E T}$ is perpendicular to both $\overline{F D}$ and $\overline{C B}$ at A.

Which statement is not true?

1) $\overline{E T}$ is perpendicular to plane $B A D$.
2) $\overline{E T}$ is perpendicular to plane $F A B$.
3) $\overline{E T}$ is perpendicular to plane $C A D$.
4) $E T$ is perpendicular to plane $B A T$.

550 Using a compass and straightedge, construct a line perpendicular to line ℓ through point P. [Leave all construction marks.]

551 What is the equation of circle O shown in the diagram below?

1) $(x+4)^{2}+(y-1)^{2}=3$
2) $(x-4)^{2}+(y+1)^{2}=3$
3) $(x+4)^{2}+(y-1)^{2}=9$
4) $(x-4)^{2}+(y+1)^{2}=9$

552 In trapezoid $R S T V$ with bases $\overline{R S}$ and $\overline{V T}$, diagonals $\overline{R T}$ and $\overline{S V}$ intersect at Q.

If trapezoid $R S T V$ is not isosceles, which triangle is equal in area to $\triangle R S V$?

1) $\Delta R Q V$
2) $\Delta R S T$
3) $\triangle R V T$
4) $\Delta S V T$

Quadrilateral MATH has coordinates $M(-6,-3)$, $A(-1,-3), T(-2,-1)$, and $H(-4,-1)$. The image of quadrilateral MATH after the composition $r_{x \text {-xxis }}{ }^{\circ} T_{7,5}$ is quadrilateral $M^{\prime \prime} A^{\prime \prime} T^{\prime \prime} H^{\prime \prime}$. State and label the coordinates of $M^{\prime \prime} A^{\prime \prime} T^{\prime \prime} H^{\prime \prime}$. [The use of the set of axes below is optional.]

555 A rectangular prism has a base with a length of 25, a width of 9 , and a height of 12 . A second prism has a square base with a side of 15 . If the volumes of the two prisms are equal, what is the height of the second prism?

1) 6
2) 8
3) 12
4) 15

556 As shown in the diagram below, $\overline{C D}$ is a median of $\triangle A B C$.

Which statement is always true?

1) $\overline{A D} \cong \overline{D B}$
2) $\overline{A C} \cong \overline{A D}$
3) $\angle A C D \cong \angle C D B$
4) $\angle B C D \cong \angle A C D$

557 A student wrote the following equations:

$$
\begin{aligned}
& 3 y+6=2 x \\
& 2 y-3 x=6
\end{aligned}
$$

The lines represented by these equations are

1) parallel
2) the same line
3) perpendicular
4) intersecting, but not perpendicular

Which statement can not be proven?

1) $\angle X V Y \cong \angle T V S$
2) $\angle V Y X \cong \angle V U T$
3) $\overline{X Y} \cong \overline{T S}$
4) $\overline{Y V} \cong \overline{S V}$

In the diagram below, circles A and B are tangent at point C and $\overline{A B}$ is drawn. Sketch all common tangent lines.

In the diagram of circle O below, chord $\overline{C D}$ is parallel to diameter $\overline{A O B}$ and $\mathrm{mCD}=110$.

What is $\mathrm{m} \overparen{D B}$?

1) 35
2) 55
3) 70
4) 110

Write an equation of a circle whose center is $(-3,2)$ and whose diameter is 10 .

561 In the diagram of $\triangle A B C$ below, $\overline{A B}$ is extended to point D.

If $\mathrm{m} \angle C A B=x+40, \mathrm{~m} \angle A C B=3 x+10$, $\mathrm{m} \angle C B D=6 x$, what is $\mathrm{m} \angle C A B$?

1) 13
2) 25
3) 53
4) 65

562 On the set of axes below, graph the locus of points 4 units from the x-axis and equidistant from the points whose coordinates are $(-2,0)$ and $(8,0)$. Mark with an \mathbf{X} all points that satisfy both conditions.

563 On the ray drawn below, using a compass and straightedge, construct an equilateral triangle with a vertex at R. The length of a side of the triangle must be equal to a length of the diagonal of rectangle $A B C D$.

564 The equations $x^{2}+y^{2}=25$ and $y=5$ are graphed on a set of axes. What is the solution of this system?

1) $(0,0)$
2) $(5,0)$
3) $(0,5)$
4) $(5,5)$

565 Triangle $A B C$ has vertices at $A(3,0), B(9,-5)$, and $C(7,-8)$. Find the length of $\overline{A C}$ in simplest radical form.

566 In triangles $A B C$ and $D E F, A B=4, A C=5$, $D E=8, D F=10$, and $\angle A \cong \angle D$. Which method could be used to prove $\triangle A B C \sim \triangle D E F$?

1) AA
2) SAS
3) SSS
4) ASA

567 As shown in the diagram below, when right triangle $D A B$ is reflected over the x-axis, its image is triangle $D C B$.

Which statement justifies why $\overline{A B} \cong \overline{C B}$?

1) Distance is preserved under reflection.
2) Orientation is preserved under reflection.
3) Points on the line of reflection remain invariant.
4) Right angles remain congruent under reflection.

568 In $\triangle A B C$, the measure of angle A is fifteen less than twice the measure of angle B. The measure of angle C equals the sum of the measures of angle A and angle B. Determine the measure of angle B.

Geometry Regents Exam Questions at Random www.jmap.org

569 Lines m and n are in plane \mathcal{A}. What is the converse of the statement "If lines m and n are parallel, then lines m and n do not intersect"?

1) If lines m and n are not parallel, then lines m and n intersect.
2) If lines m and n are not parallel, then lines m and n do not intersect
3) If lines m and n intersect, then lines m and n are not parallel.
4) If lines m and n do not intersect, then lines m and n are parallel.

570 Plane \mathcal{A} and plane \mathcal{B} are two distinct planes that are both perpendicular to line ℓ. Which statement about planes \mathcal{A} and \mathscr{B} is true?

1) Planes \mathcal{A} and \mathscr{B} have a common edge, which forms a line.
2) Planes \mathcal{A} and \mathscr{B} are perpendicular to each other.
3) Planes \mathcal{A} and \mathscr{B} intersect each other at exactly one point.
4) Planes \mathcal{A} and \mathscr{B} are parallel to each other.

Geometry Regents at Random
 Answer Section

1	ANS: 4	PTS: 2	REF: 011019ge	STA: G.G. 44
TOP: Similarity Proofs				
2	ANS: 4	REF: 011012ge	STA: G.G. 1	
	TOP: Planes			
3	ANS: 4			
	$x^{2}=(4+5) \times 4$			
	$x^{2}=36$			
	$x=6$			

PTS: 2
REF: 011008ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: tangent and secant
4 ANS: 4
PTS: 2
REF: fall0824ge STA: G.G. 50
TOP: Tangents
KEY: common tangency
5 ANS:
$\angle D, \angle G$ and 24° or $\angle E, \angle F$ and $84^{\circ} . \mathrm{m} \overparen{F E}=\frac{2}{15} \times 360=48$. Since the chords forming $\angle D$ and $\angle G$ are intercepted by $\overparen{F E}$, their measure is $24^{\circ} . \mathrm{m} \overparen{G D}=\frac{7}{15} \times 360=168$. Since the chords forming $\angle E$ and $\angle F$ are intercepted by $\overparen{G D}$, their measure is 84°.

PTS: 4 REF: fall0836ge STA: G.G. 51 TOP: Arcs Determined by Angles
KEY: inscribed
6 ANS: 3 PTS: 2 REF: 080928ge STA: G.G. 50
TOP: Tangents KEY: common tangency
7 ANS:

$$
\text { 34. } \begin{aligned}
2 x-12+x+90 & =180 \\
3 x+78 & =90 \\
3 x & =102 \\
x & =34
\end{aligned}
$$

PTS: 2 REF: 061031ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
PTS: 2
REF: fall0818ge
STA: G.G. 61
TOP: Analytical Representations of Transformations
9 ANS: 2 PTS: 2 REF: 060910ge STA: G.G. 71
TOP: Equations of Circles
10 ANS:
18. If the ratio of $T A$ to $A C$ is $1: 3$, the ratio of $T E$ to $E S$ is also $1: 3 . \quad x+3 x=24.3(6)=18$.

$$
x=6
$$

PTS: 4
REF: 060935ge
STA: G.G. 50
TOP: Tangents
KEY: common tangency

11 ANS: 4
PTS: 2
REF: 080905ge
STA: G.G. 29
TOP: Triangle Congruency
12 ANS: 2
The slope of $2 x+3 y=12$ is $-\frac{A}{B}=-\frac{2}{3}$. The slope of a perpendicular line is $\frac{3}{2}$. Rewritten in slope intercept form, (2) becomes $y=\frac{3}{2} x+3$.

PTS: 2 REF: 060926ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
13 ANS: 1
$(x, y) \rightarrow(x+3, y+1)$
PTS: 2
REF: fall0803
STA: G.G. 54
TOP: Translations
14 ANS:
$(6,-4) . \quad C_{x}=\frac{Q_{x}+R_{x}}{2} . C_{y}=\frac{Q_{y}+R_{y}}{2}$.

$$
\begin{array}{rlrl}
3.5 & =\frac{1+R_{x}}{2} & 2 & =\frac{8+R_{y}}{2} \\
7 & =1+R_{x} & 4 & =8+R_{y} \\
6 & =R_{x} & -4 & =R_{y}
\end{array}
$$

PTS: 2 REF: 011031ge STA: G.G. 66 TOP: Midpoint
KEY: graph
15 ANS: 2
$4(4 x-3)=3(2 x+8)$
$16 x-12=6 x+24$

$$
10 x=36
$$

$$
x=3.6
$$

PTS: 2 REF: 080923ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: two chords
TOP: Constructions
17 ANS:
True. The first statement is true and the second statement is false. In a disjunction, if either statement is true, the disjunction is true.

PTS: 2
KEY: disjunction
18 ANS: 3
TOP: Reflections
19

REF: 060933ge
PTS: 2
KEY: basic
PTS: 2
TOP: Planes

[^0]16 ANS: 4 PTS: 2 REF: 081005ge STA: G.G. 18

STA: G.G. 25
TOP: Compound Statements
REF: 060905ge STA: G.G. 54
REF: 080927ge STA: G.G. 4

20 ANS:
18. $V=\frac{1}{3} B h=\frac{1}{3} l w h$
$288=\frac{1}{3} \cdot 8 \cdot 6 \cdot h$
$288=16 h$
$18=h$
PTS: 2 REF: 061034ge STA: G.G. 13 TOP: Volume
21 ANS: 2
$\angle A C B$ and $\angle E C D$ are congruent vertical angles and $\angle C A B \cong \angle C E D$.

PTS: 2
REF: 060917ge
STA: G.G. 44
TOP: Similarity Proofs
22 ANS: 3
PTS: 2
REF: 081026ge
STA: G.G. 26
TOP: Contrapositive
23 ANS:
20. The sides of the triangle formed by connecting the midpoints are half the sides of the original triangle.
$5+7+8=20$.

PTS: 2
24 ANS: 4
REF: 060929ge
STA: G.G. 42
TOP: Midsegments

TOP: Negations
25 ANS: 4
PTS: 2
REF: fall0802ge
STA: G.G. 24

TOP: Locus
26 ANS: 1
$-2\left(-\frac{1}{2} y=6 x+10\right)$

$$
y=-12 x-20
$$

PTS: 2
27 ANS: 3
REF: 061027ge
STA: G.G. 63
REF: 060928ge
TOP: Parallel and Perpendicular Lines

TOP: Planes
PTS: 2
STA: G.G. 8
ANS: 1
After the translation, the coordinates are $A^{\prime}(-1,5)$ and $B^{\prime}(3,4)$. After the dilation, the coordinates are $A^{\prime \prime}(-2,10)$ and $B^{\prime \prime}(6,8)$.

PTS: 2 REF: fall0823ge STA: G.G. 58 TOP: Compositions of Transformations

29 ANS: 1
Translations and reflections do not affect distance.
PTS: 2 REF: 080908ge STA: G.G. 61
TOP: Analytical Representations of Transformations
30 ANS:
110. $6 x+20=x+40+4 x-5$

$$
6 x+20=5 x+35
$$

$x=15$
$6((15)+20=110$
PTS: 2
REF: 081031ge
STA: G.G. 32
TOP: Exterior Angle Theorem
31 ANS: 3
$4(x+4)=8^{2}$
$4 x+16=64$
$x=12$
PTS: 2 REF: 060916ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: tangent and secant
32 ANS: $4 \quad$ PTS: 2
TOP: Conditional Statements
33 ANS: 3
The lateral edges of a prism are parallel.
$\begin{array}{lllll}\text { PTS: } 2 & \text { REF: fall0808ge } & \text { STA: G.G. } 10 & \text { TOP: Solids } \\ \text { ANS: } 1 & \text { PTS: } 2 & \text { REF: 080911ge } & \text { STA: G.G. } 73\end{array}$
TOP: Equations of Circles
35 ANS: $1 \quad$ PTS: 2
TOP: Constructions
36 ANS: 3
The diagonals of an isosceles trapezoid are congruent. $5 x+3=11 x-5$.

$$
\begin{aligned}
6 x & =18 \\
x & =3
\end{aligned}
$$

PTS: 2
REF: fall0801ge STA: G.G. 40 TOP: Trapezoids

37 ANS: 4
sum of interior $\angle \mathrm{s}=$ sum of exterior $\angle \mathrm{s}$

$$
\begin{aligned}
(n-2) 180 & =n\left(180-\frac{(n-2) 180}{n}\right) \\
180 n-360 & =180 n-180 n+360 \\
180 n & =720 \\
n & =4
\end{aligned}
$$

PTS: 2 REF: 081016ge STA: G.G. 36 TOP: Interior and Exterior Angles of Polygons
38 ANS: 2

$$
\begin{aligned}
x^{2}+(x+7)^{2} & =13^{2} \\
x^{2}+x^{2}+7 x+7 x+49 & =169 \\
2 x^{2}+14 x-120 & =0 \\
x^{2}+7 x-60 & =0 \\
(x+12)(x-5) & =0 \\
x & =5 \\
2 x & =10
\end{aligned}
$$

PTS: 2 REF: 061024ge STA: G.G. 48 TOP: Pythagorean Theorem
39 ANS: 2
The slope of $y=\frac{1}{2} x+5$ is $\frac{1}{2}$. The slope of a perpendicular line is $-2 . y=m x+b$

$$
\begin{aligned}
& 5=(-2)(-2)+b \\
& b=1
\end{aligned}
$$

PTS: 2
40 ANS: 3
TOP: Negations
41 ANS: 2
Parallel chords intercept congruent arcs. $\mathrm{m} \overparen{A D}=\mathrm{m} \overparen{B C}=60 . \mathrm{m} \angle C D B=\frac{1}{2} \mathrm{~m} \overparen{B C}=30$.
PTS: 2
REF: 060906ge STA: G.G. 52 TOP: Chords
42 ANS: 3
Because $\overline{O C}$ is a radius, its length is 5. Since $C E=2 O E=3 . \triangle E D O$ is a 3-4-5 triangle. If $E D=4, B D=8$.
PTS: 2
REF: fall0811ge
STA: G.G. 49
TOP: Chords
43 ANS: 1
$\angle D C B$ and $\angle A D C$ are supplementary adjacent angles of a parallelogram. $180-120=60 . \angle 2=60-45=15$.
PTS: 2
REF: 080907ge
STA: G.G. 38
TOP: Parallelograms

44 PNS: 1 RTS: 2 REF: fall0807ge STA: G.G. 19
TOP: Constructions
45 ANS:
6. The centroid divides each median into segments whose lengths are in the ratio $2: 1 . \overline{T D}=6$ and $\overline{D B}=3$

PTS: 2 REF: 011034ge STA: G.G. 43 TOP: Centroid
46 PTS: 2 REF: 061003ge STA: G.G. 10
TOP: Solids
47 ANS: 2
A dilation affects distance, not angle measure.
PTS: 2 REF: 080906ge STA: G.G. 60 TOP: Identifying Transformations
48 ANS:
25. $d=\sqrt{(-3-4)^{2}+(1-25)^{2}}=\sqrt{49+576}=\sqrt{625}=25$.

PTS: 2 REF: fall0831ge STA: G.G. 67 TOP: Distance
KEY: general
49 ANS: 4
$\triangle A B C \sim \triangle D B E . \frac{\overline{A B}}{\overline{D B}}=\frac{\overline{A C}}{\overline{D E}}$

$$
\begin{aligned}
\frac{9}{2} & =\frac{x}{3} \\
x & =13.5
\end{aligned}
$$

PTS: 2
REF: 060927ge
STA: G.G. 46
TOP: Side Splitter Theorem
50 ANS: 2
Longest side of a triangle is opposite the largest angle. Shortest side is opposite the smallest angle.
PTS: 2 REF: 060911ge STA: G.G. 34 TOP: Angle Side Relationship
51 ANS: 2
PTS: 2
REF: 061002ge STA: G.G. 24
TOP: Negations
52 ANS: 1
$3 x^{2}+18 x+24$
$3\left(x^{2}+6 x+8\right)$
$3(x+4)(x+2)$
PTS: 2 REF: fall0815ge STA: G.G. 12 TOP: Volume
53 ANS: 1
Opposite sides of a parallelogram are congruent. $4 x-3=x+3 . S V=(2)+3=5$.

$$
\begin{aligned}
3 x & =6 \\
x & =2
\end{aligned}
$$

PTS: 2
REF: 011013ge STA: G.G. 38
TOP: Parallelograms

54 ANS: 1
TOP: Planes
55 ANS: 2
The length of the midsegment of a trapezoid is the average of the lengths of its bases. $\frac{x+30}{2}=44$.

$$
\begin{aligned}
x+30 & =88 \\
x & =58
\end{aligned}
$$

PTS: 2
REF: 011001ge
STA: G.G. 40
TOP: Trapezoids
56 ANS:

PTS: 4
REF: 060936ge
STA: G.G. 69
TOP: Triangles in the Coordinate Plane
57 ANS: 2

PTS: 2
REF: 061026GE
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inscribed
58 ANS: 2
PTS: 2
REF: 011006ge
STA: G.G. 56
TOP: Identifying Transformations
59 ANS: 1
$d=\sqrt{(-4-2)^{2}+(5-(-5))^{2}}=\sqrt{36+100}=\sqrt{136}=\sqrt{4} \cdot \sqrt{34}=2 \sqrt{34}$.
PTS: 2 REF: 080919ge STA: G.G. 67 TOP: Distance
KEY: general
60 ANS:
452. $S A=4 \pi r^{2}=4 \pi \cdot 6^{2}=144 \pi \approx 452$

PTS: 2
REF: 061029ge
STA: G.G. 16
61 ANS: 3
PTS: 2
TOP: Identifying Transformations

62 ANS: 3
$m=\frac{-A}{B}=-\frac{3}{4}$
PTS: 2 REF: 011025ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
63 ANS:

PTS: 2 REF: 081032ge STA: G.G. 20 TOP: Constructions
64
ANS: 2
Parallel chords intercept congruent arcs. $\mathrm{m} \overparen{A C}=\mathrm{m} \overparen{B D}=30.180-30-30=120$.
PTS: 2
REF: 080904ge
STA: G.G. 52
TOP: Chords
65 ANS:
5. $\frac{3}{x}=\frac{6+3}{15}$
$9 x=45$
$x=5$
PTS: 2
REF: 011033ge
STA: G.G. 46
TOP: Side Splitter Theorem
66 ANS:

PTS: 2
REF: 011032ge
STA: G.G. 20
TOP: Constructions
67 ANS: 4
$d=\sqrt{(-3-1)^{2}+(2-0)^{2}}=\sqrt{16+4}=\sqrt{20}=\sqrt{4} \cdot \sqrt{5}=2 \sqrt{5}$
PTS: 2
REF: 011017ge STA: G.G. 67 TOP: Distance
KEY: general

68 ANS:
$\overline{J K} \cong \overline{L M}$ because opposite sides of a parallelogram are congruent. $\overline{L M} \cong \overline{L N}$ because of the Isosceles Triangle Theorem. $\overline{L M} \cong \overline{J M}$ because of the transitive property. $J K L M$ is a rhombus because all sides are congruent.

PTS: 4 REF: 011036ge STA: G.G. 41 TOP: Special Quadrilaterals
69 ANS:

$\overline{A B} \| \overline{C D}$ and $\overline{A D} \| \overline{C B}$ because their slopes are equal. $A B C D$ is a parallelogram
because opposite side are parallel. $\overline{A B} \neq \overline{B C} . A B C D$ is not a rhombus because all sides are not equal. $\overline{A B} \sim \perp \overline{B C}$ because their slopes are not opposite reciprocals. $A B C D$ is not a rectangle because $\angle A B C$ is not a right angle.

PTS: 4 REF: 081038ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane
70 ANS: 2
PTS: 2
REF: 061020ge
STA: G.G. 19
TOP: Constructions
71 ANS: 2
PTS: 2
REF: fall0806ge
STA: G.G. 9
TOP: Planes
72 ANS: 3
PTS: 2
REF: 081021ge
STA: G.G. 57
TOP: Properties of Transformations
73 ANS: $1 \quad$ PTS: 2
TOP: Angle Side Relationship
74 ANS: 2
$M_{x}=\frac{3 x+5+x-1}{2}=\frac{4 x+4}{2}=2 x+2 . M_{Y}=\frac{3 y+(-y)}{2}=\frac{2 y}{2}=y$.
PTS: 2 REF: 081019ge STA: G.G. 66 TOP: Midpoint
KEY: general
75 ANS: 2
The slope of a line in standard form is $-\frac{A}{B}$, so the slope of this line is $\frac{-2}{-1}=2$. A parallel line would also have a slope of 2. Since the answers are in slope intercept form, find the y-intercept: $\quad y=m x+b$

$$
\begin{aligned}
-11 & =2(-3)+b \\
-5 & =b
\end{aligned}
$$

PTS: 2 REF: fall0812ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines 76 ANS: 1

Parallel lines intercept congruent arcs.
PTS: 2
REF: 061001ge
STA: G.G. 52
TOP: Chords

77 ANS:
4. $l_{1} w_{1} h_{1}=l_{2} w_{2} h_{2}$

$$
10 \times 2 \times h=5 \times w_{2} \times h
$$

$$
20=5 w_{2}
$$

$$
w_{2}=4
$$

PTS: 2 REF: 011030ge STA: G.G. 11 TOP: Volume
78 ANS: 1
$A^{\prime}(2,4)$
PTS: 2
REF: 011023ge
STA: G.G. 54
TOP: Compositions of Transformations
KEY: basic
79 ANS:
22.4 .

$$
\begin{aligned}
V & =\pi r^{2} h \\
12566.4 & =\pi r^{2} \cdot 8 \\
r^{2} & =\frac{12566.4}{8 \pi} \\
r & \approx 22.4
\end{aligned}
$$

PTS: 2
REF: fall0833ge
STA: G.G. 14
TOP: Volume
80 ANS: 3
$V=\pi r^{2} h=\pi \cdot 6^{2} \cdot 27=972 \pi$
PTS: 2
REF: 011027ge
STA: G.G. 14
REF: 081012ge STA: G.G. 50
TOP: Volume
81 ANS: 1
PTS: 2
TOP: Tangents
KEY: two tangents
82 ANS: 2
$M_{x}=\frac{-2+6}{2}=2 . M_{y}=\frac{-4+2}{2}=-1$
PTS: 2
REF: 080910ge
STA: G.G. 66
TOP: Midpoint
KEY: general
83 ANS: 4
PTS: 2
REF: 080915ge
STA: G.G. 56
TOP: Identifying Transformations
84 ANS: 1
In an equilateral triangle, each interior angle is 60° and each exterior angle is $120^{\circ}\left(180^{\circ}-120^{\circ}\right)$. The sum of the three interior angles is 180° and the sum of the three exterior angles is 360°.

PTS: 2
REF: 060909ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles

85 ANS:

PTS: 4
KEY: grids
86 ANS: 3 TOP: Planes
87 ANS:
$y=-2 x+14$. The slope of $2 x+y=3$ is $\frac{-A}{B}=\frac{-2}{1}=-2 . \quad y=m x+b$

$$
\begin{aligned}
& 4=(-2)(5)+b \\
& b=14
\end{aligned}
$$

PTS: 2 REF: 060931ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
88 ANS:
$y=\frac{4}{3} x-6 . M_{x}=\frac{-1+7}{2}=3 \quad$ The perpendicular bisector goes through $(3,-2)$ and has a slope of $\frac{4}{3}$.

$$
\begin{aligned}
& M_{y}=\frac{1+(-5)}{2}=-2 \\
& m=\frac{1-(-5)}{-1-7}=-\frac{3}{4}
\end{aligned}
$$

$y-y_{M}=m\left(x-x_{M}\right)$.

$$
y-1=\frac{4}{3}(x-2)
$$

PTS: 4
REF: 080935ge
STA: G.G. 68
TOP: Perpendicular Bisector

89 ANS: 1

$$
\begin{aligned}
x+2 x+2+3 x+4 & =180 \\
6 x+6 & =180 \\
x & =29
\end{aligned}
$$

PTS: 2 REF: 011002ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
90 ANS: 3

PTS: 2
REF: 061016ge
STA: G.G. 40
TOP: Trapezoids
91 ANS: 2

PTS: 2
92 ANS: 4
REF: 081007ge
STA: G.G. 28
REF: 080925ge
TOP: Triangle Congruency
TOP: Centroid, Orthocenter, Incenter and Circumcenter
93 ANS: 1
PTS: 2
REF: 061005ge
STA: G.G. 55
TOP: Properties of Transformations
94 ANS: 1
$\angle A=\frac{(n-2) 180}{n}=\frac{(5-2) 180}{5}=108 \angle A E B=\frac{180-108}{2}=36$

PTS: 2
95 ANS: 4
TOP: Planes
96 ANS:
20. $5 x+10=4 x+30$

$$
x=20
$$

PTS: 2
KEY: basic
97 ANS: 1
REF: 060934ge
STA: G.G. 45
REF: 081028ge
STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter

STA: G.G. 37
REF: 080914ge
PTS: 2

22ge
TOP: Interior and Exterior Angles of Polygons
STA: G.G. 7
S.

98 ANS: 1
Since $\overline{A C} \cong \overline{B C}, \mathrm{~m} \angle A=\mathrm{m} \angle B$ under the Isosceles Triangle Theorem.
PTS: 2 REF: fall0809ge STA: G.G. 69 TOP: Triangles in the Coordinate Plane
99 ANS: 3
$m=\frac{-A}{B}=\frac{5}{2} . m=\frac{-A}{B}=\frac{10}{4}=\frac{5}{2}$
PTS: 2 REF: 011014ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
100 ANS: 3
PTS: 2
REF: 011007ge
TOP: Isosceles Triangle Theorem
101 ANS: $3 \quad$ PTS: 2
REF: fall0804ge
STA: G.G. 18
TOP: Constructions
102
ANS: 3 PTS: 2
TOP: Centroid, Orthocenter, Incenter and Circumcenter
103 ANS: 2
$(d+4) 4=12(6)$
$4 d+16=72$
$d=14$
$r=7$
PTS: 2 REF: 061023ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: two secants
104 ANS: 4
Median $\overline{B F}$ bisects $\overline{A C}$ so that $\overline{C F} \cong \overline{F A}$.

PTS: 2	REF: fall0805ge	STA: G.G. 70	TOP: Quadratic-Linear Systems		
06	ANS: 1	PTS: 2	REF: 060918ge	STA: G.G. 2	
TOP: Planes					
07	ANS: 3	PTS: 2	REF: 081002ge	STA: G.G. 9	
TOP: Planes					

108 ANS: 4
The slope of $y=-\frac{2}{3} x-5$ is $-\frac{2}{3}$. Perpendicular lines have slope that are opposite reciprocals.
PTS: 2 REF: 080917ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines

109 ANS: 4
PTS: 2
REF: 061008ge STA: G.G. 40
TOP: Trapezoids
110 ANS:
Midpoint: $\left(\frac{-4+4}{2}, \frac{2+(-4)}{2}\right)=(0,-1)$. Distance: $d=\sqrt{(-4-4)^{2}+(2-(-4))^{2}}=\sqrt{100}=10$
$r=5$
$r^{2}=25$
$x^{2}+(y+1)^{2}=25$
PTS: 4 REF: 061037ge STA: G.G. 71 TOP: Equations of Circles
111 ANS: 1

PTS: 2 REF: 011021ge STA: G.G. 32 TOP: Exterior Angle Theorem
112 ANS: 1
$M_{x}=\frac{-2+6}{2}=2 . M_{y}=\frac{3+3}{2}=3$. The center is $(2,3) . d=\sqrt{(-2-6)^{2}+(3-3)^{2}}=\sqrt{64+0}=8$. If the diameter is 8 , the radius is 4 and $r^{2}=16$.

PTS: 2 REF: fall0820ge STA: G.G. 71 TOP: Equations of Circles
113 ANS:
$\overline{B D} \cong \overline{D B}$ (Reflexive Property); $\triangle A B D \cong \triangle C D B$ (SSS); $\angle B D C \cong \angle A B D$ (CPCTC).

PTS: 4
114 ANS: 3
REF: 061035ge
PTS: 2
TOP: Constructions

STA: G.G. 27
REF: 080902ge

TOP: Quadrilateral Proofs
STA: G.G. 17

115 ANS: 1
$\overline{A B}=10$ since $\triangle A B C$ is a 6-8-10 triangle. $6^{2}=10 x$

$$
3.6=x
$$

PTS: 2 REF: 060915ge STA: G.G. 47 TOP: Similarity
KEY: leg
116 ANS: 1 PTS: 2 REF: 081009ge STA: G.G. 73
TOP: Equations of Circles
117 ANS: 2
Because the triangles are similar, $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle D}=1$
PTS: 2 REF: 011022ge STA: G.G. 45 TOP: Similarity
KEY: perimeter and area
118 ANS: 2 PTS: 2 REF: 061007ge STA: G.G. 35
TOP: Parallel Lines and Transversals
119 ANS:
67. $\frac{180-46}{2}=67$

PTS: 2 REF: 011029ge STA: G.G. 31 TOP: Isosceles Triangle Theorem
120 ANS:
26. $x+3 x+5 x-54=180$

$$
\begin{aligned}
9 x & =234 \\
x & =26
\end{aligned}
$$

PTS: 2 REF: 080933ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
121 ANS: 4
The marked 60° angle and the angle above it are on the same straight line and supplementary. This unmarked supplementary angle is 120°. Because the unmarked 120° angle and the marked 120° angle are alternate exterior angles and congruent, $d \| e$.

PTS: 2 REF: 080901ge STA: G.G. 35 TOP: Parallel Lines and Transversals
122 ANS: 2
PTS: 2 REF: 011020ge
STA: G.G. 74
TOP: Graphing Circles
123 ANS:
Yes, $\mathrm{m} \angle A B D=\mathrm{m} \angle B D C=44180-(93+43)=44 x+19+2 x+6+3 x+5=180$. Because alternate interior

$$
\begin{aligned}
6 x+30 & =180 \\
6 x & =150 \\
x & =25 \\
x+19 & =44
\end{aligned}
$$

angles $\angle A B D$ and $\angle C D B$ are congruent, $\overline{A B}$ is parallel to $\overline{D C}$.
PTS: 4 REF: 081035ge STA: G.G. 35 TOP: Parallel Lines and Transversals

124 ANS:

$$
\begin{aligned}
& y=\frac{2}{3} x+1.2 y+3 x=6 \quad . y=m x+b \\
& 2 y=-3 x+6 \quad 5=\frac{2}{3}(6)+b \\
& y=-\frac{3}{2} x+3 \quad 5=4+b \\
& m=-\frac{3}{2} \quad 1=b \\
& m_{\perp}=\frac{2}{3} \quad y=\frac{2}{3} x+1
\end{aligned}
$$

PTS: 4 REF: 061036ge STA: G.G. 64 TOP: Parallel and Perpendicular Lines
125 ANS: 4
$3 y+1=6 x+4.2 y+1=x-9$

$$
\begin{array}{rlrl}
3 y & =6 x+3 & 2 y & =x-10 \\
y & =2 x+1 & y & =\frac{1}{2} x-5
\end{array}
$$

PTS: 2 REF: fall0822ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
126 ANS: 4

$$
\begin{aligned}
\mathrm{SA} & =4 \pi r^{2} \quad V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot 6^{3}=288 \pi \\
144 \pi & =4 \pi r^{2} \\
36 & =r^{2} \\
6 & =r
\end{aligned}
$$

PTS: 2 REF: 081020ge STA: G.G. 16 TOP: Surface Area
127 ANS: 4
$\overline{B G}$ is also an angle bisector since it intersects the concurrence of $\overline{C D}$ and $\overline{A E}$
PTS: 2
REF: 061025ge STA: G.G. 21
KEY: Centroid, Orthocenter, Incenter and Circumcenter
128 ANS: 2 PTS: 2 REF: 081015ge STA: G.G. 55
TOP: Properties of Transformations
129 ANS:
$375 \pi L=\pi r l=\pi(15)(25)=375 \pi$
PTS: 2
REF: 081030ge
STA: G.G. 15
REF: 080918ge
TOP: Lateral Area
130 ANS: 1
PTS: 2
TOP: Special Quadrilaterals
131 ANS: 1
If $\angle A$ is at minimum $\left(50^{\circ}\right)$ and $\angle B$ is at minimum $\left(90^{\circ}\right), \angle C$ is at maximum of $40^{\circ}\left(180^{\circ}-\left(50^{\circ}+90^{\circ}\right)\right.$). If $\angle A$ is at maximum $\left(60^{\circ}\right)$ and $\angle B$ is at maximum $\left(100^{\circ}\right), \angle C$ is at minimum of $20^{\circ}\left(180^{\circ}-\left(60^{\circ}+100^{\circ}\right)\right.$).

PTS: 2 REF: 060901ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles

132 ANS:

$$
\overline{F E} \cong \overline{F E} \text { (Reflexive Property); } \overline{A E}-\overline{F E} \cong \overline{F C}-\overline{E F} \text { (Line Segment Subtraction }
$$

Theorem); $\overline{A F} \cong \overline{C E}$ (Substitution); $\angle B F A \cong \angle D E C$ (All right angles are congruent); $\triangle B F A \cong \triangle D E C$ (AAS); $\overline{A B} \cong \overline{C D}$ and $\overline{B F} \cong \overline{D E}$ (CPCTC); $\angle B F C \cong \angle D E A$ (All right angles are congruent); $\triangle B F C \cong \triangle D E A$ (SAS); $\overline{A D} \cong \overline{C B}$ (CPCTC); $A B C D$ is a parallelogram (opposite sides of quadrilateral $A B C D$ are congruent)

PTS: 6 REF: 080938ge STA: G.G. 41 TOP: Special Quadrilaterals
133 ANS: 2
$\frac{3}{7}=\frac{6}{x}$
$3 x=42$
$x=14$
PTS: 2
134 ANS: 3
REF: 081027ge
TOP: Constructions
135 ANS: 1
PTS: 2

STA: G.G. 46
REF: 060925ge
REF: 061009ge

TOP: Side Splitter Theorem STA: G.G. 17

STA: G.G. 26

TOP: Converse and Biconditional
136 ANS: 3
$2 y=-6 x+8$ Perpendicular lines have slope the opposite and reciprocal of each other.
$y=-3 x+4$
$m=-3$
$m_{\perp}=\frac{1}{3}$
PTS: 2
ANS: 2
REF: 081024ge
TOP: Equations of Circles
138 ANS:
2016. $V=\frac{1}{3} B h=\frac{1}{3} s^{2} h=\frac{1}{3} 12^{2} \cdot 42=2016$

PTS: 2
REF: 080930ge
STA: G.G. 13
TOP: Volume

139
ANS:

PTS: 4 REF: fall0835ge STA: G.G. 42 TOP: Midsegments
140 ANS:
Because $\overline{A B} \| \overline{D C}, \overparen{A D} \cong \overparen{B C}$ since parallel chords intersect congruent arcs. $\angle B D C \cong \angle A C D$ because inscribed angles that intercept congruent arcs are congruent. $\overline{A D} \cong \overline{B C}$ since congruent chords intersect congruent arcs. $\overline{D C} \cong \overline{C D}$ because of the reflexive property. Therefore, $\triangle A C D \cong \triangle B D C$ because of SAS.

PTS: 6 REF: fall0838ge STA: G.G. 27 TOP: Circle Proofs
ANS:

PTS: 4
REF: 011037ge
STA: G.G. 23
TOP: Locus
142
ANS: 4
$d=\sqrt{(-6-2)^{2}+(4-(-5))^{2}}=\sqrt{64+81}=\sqrt{145}$
PTS: 2 REF: 081013ge STA: G.G. 67 TOP: Distance
KEY: general
143
ANS: 4
The slope of $y=-3 x+2$ is -3 . The perpendicular slope is $\frac{1}{3} \cdot-1=\frac{1}{3}(3)+b$

$$
\begin{aligned}
-1 & =1+b \\
b & =-2
\end{aligned}
$$

PTS: 2
REF: 011018ge
STA: G.G. 64
TOP: Parallel and Perpendicular Lines

144 ANS: 1 PTS: 2 REF: 081008ge STA: G.G. 3
TOP: Planes
145 ANS: 4
$(n-2) 180=(8-2) 180=1080 . \frac{1080}{8}=135$.
PTS: 2 REF: fall0827ge STA: G.G. 37
ANS: 3
PTS: 2
REF: 061004ge
TOP: Interior and Exterior Angles of Polygons
TOP: Isosceles Triangle Theorem
147
ANS: 2
$M_{x}=\frac{2+(-4)}{2}=-1 . M_{Y}=\frac{-3+6}{2}=\frac{3}{2}$.

PTS: 2
REF: fall0813ge
STA: G.G. 66
TOP: Midpoint
KEY: general
148 ANS: 1

$$
\begin{aligned}
V & =\pi r^{2} h \\
1000 & =\pi r^{2} \cdot 8 \\
r^{2} & =\frac{1000}{8 \pi} \\
r & \approx 6.3
\end{aligned}
$$

PTS: 2 REF: 080926ge STA: G.G. 14 TOP: Volume
149 ANS: 4
$180-(40+40)=100$
PTS: 2
REF: 080903ge STA: G.G. 31
TOP: Isosceles Triangle Theorem
150 ANS: 3

$$
\begin{aligned}
(x+3)^{2}-4 & =2 x+5 \\
x^{2}+6 x+9-4 & =2 x+5 \\
x^{2}+4 x & =0 \\
x(x+4) & =0 \\
x & =0,-4
\end{aligned}
$$

PTS: 2
REF: 081004ge
STA: G.G. 70
TOP: Quadratic-Linear Systems

151
ANS:

PTS: 4
REF: 080936ge
ANS: 3
PTS: 2
STA: G.G. 23
TOP: Locus
TOP: Conditional Statements
ANS: 3
$\frac{36+20}{2}=28$
PTS: 2
REF: 061019ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inside circle

$$
\begin{aligned}
8 x-5 & =3 x+30 . \\
5 x & =35 \\
x & =7
\end{aligned}
$$

$$
4 z-8=3 z .9 y+8+5 y-2=90 .
$$

$$
z=8
$$

$$
14 y+6=90
$$

$$
\begin{aligned}
14 y & =84 \\
y & =6
\end{aligned}
$$

PTS: 6
REF: 061038ge
STA: G.G. 39
ANS: 2
PTS: 2
REF: 011003ge
TOP: Special Parallelograms
TOP: Properties of Transformations
156
ANS: 4

PTS: 2
REF: 081001ge
STA: G.G. 29
TOP: Triangle Congruency

157
ANS: 4
$M_{x}=\frac{-6+1}{2}=-\frac{5}{2} . M_{y}=\frac{1+8}{2}=\frac{9}{2}$.
PTS: 2
REF: 060919ge
STA: G.G. 66
TOP: Midpoint
KEY: graph
158 ANS: 4
$L=2 \pi r h=2 \pi \cdot 5 \cdot 11 \approx 345.6$

159
PTS: 2
REF: 061006ge
ANS: 3
PTS: 2
TOP: Triangle Congruency
160
ANS:

PTS: 2
REF: 080932ge
STA: G.G. 17
TOP: Constructions
161 ANS:
37. Since $\overline{D E}$ is a midsegment, $A C=14.10+13+14=37$

PTS: 2
REF: 061030ge STA: G.G. 42
TOP: Midsegments
162 ANS:

PTS: 2
163 ANS: 2
$7+18>6+12$
PTS: 2

REF: fall0819ge
STA: G.G. 33
TOP: Properties of Transformations
STA: G.G. 55
REF: fall0830ge
\qquad

STA: G.G. 14
REF: 080913ge
TOP: Volume
STA: G.G. 28

ANS: 4 PTS: 2
REF: 061018ge STA: G.G. 56
TOP: Identifying Transformations
165 ANS:
70. $3 x+5+3 x+5+2 x+2 x=180$

$$
\begin{aligned}
10 x+10 & =360 \\
10 x & =350 \\
x & =35 \\
2 x & =70
\end{aligned}
$$

PTS: 2 REF: 081029ge STA: G.G. 40 TOP: Trapezoids
166 ANS: 2
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.
PTS: 2 REF: 060914ge STA: G.G. 43 TOP: Centroid
167 ANS: 1
$4 x=6 \cdot 10$

$x=15$
PTS: 2
REF: 081017ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: two chords
ANS: 3
PTS: 2
REF: fall0816ge
STA: G.G. 1
TOP: Planes
ANS: 4
PTS: 2
TOP: Identifying Transformations
170

PTS: 2
REF: 061011ge
STA: G.G. 70
TOP: Quadratic-Linear Systems

171 ANS:

PTS: 2
REF: 061032ge
STA: G.G. 54
TOP: Reflections
KEY: grids
172 ANS:
Contrapositive-If two angles of a triangle are not congruent, the sides opposite those angles are not congruent.
PTS: 2 REF: fall0834ge STA: G.G. 26 TOP: Conditional Statements
173 ANS:

PTS: 2
REF: 060930ge
STA: G.G. 19
TOP: Constructions
174
ANS: 1
$a^{2}+(5 \sqrt{2})^{2}=(2 \sqrt{15})^{2}$
$a^{2}+(25 \times 2)=4 \times 15$
$a^{2}+50=60$

$$
a^{2}=10
$$

$$
a=\sqrt{10}
$$

PTS: 2
REF: 011016ge
STA: G.G. 48
TOP: Pythagorean Theorem

175 ANS: 1
$V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi \cdot 4^{2} \cdot 12 \approx 201$
PTS: 2 REF: 060921ge STA: G.G. 15 TOP: Volume
176 ANS: 3

PTS: 2 REF: 060902ge STA: G.G. 28 TOP: Triangle Congruency
177 ANS: 4
The radius is 4. $r^{2}=16$.

PTS: 2
178 ANS: 4
TOP: Similarity
REF: 061014ge
STA: G.G. 72
PTS: 2
KEY: perimeter and area

179 ANS: 2
Adjacent sides of a rectangle are perpendicular and have opposite and reciprocal slopes.
PTS: 2 REF: 061028ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane
180 ANS:
$(x+1)^{2}+(y-2)^{2}=36$
PTS: 2
REF: 081034ge
STA: G.G. 72
REF: 061022ge STA: G.G. 62
TOP: Equations of Circles
181 ANS: 2
PTS: 2
TOP: Parallel and Perpendicular Lines
182 ANS:

PTS: 2
183

REF: 061033ge
PTS: 2

STA: G.G. 22
REF: 060904ge

TOP: Locus
STA: G.G. 13

TOP: Solids

184 ANS: 1
$y=x^{2}-4 x=(4)^{2}-4(4)=0 .(4,0)$ is the only intersection.
PTS: 2
185 ANS: 1
REF: 060923ge
STA: G.G. 70
REF: 060920ge
TOP: Quadratic-Linear Systems
TOP: Graphing Circles
186 ANS: 1
$\triangle P R T$ and $\triangle S R Q$ share $\angle R$ and it is given that $\angle R P T \cong \angle R S Q$.
PTS: 2 REF: fall0821ge STA: G.G. 44 TOP: Similarity Proofs
187 ANS: 1

PTS: 2
REF: 081003ge
STA: G.G. 42
TOP: Midsegments
188 ANS: 1
PTS: 2
REF: 061013ge
STA: G.G. 50
TOP: Tangents
KEY: point of tangency
189
: 1
The closer a chord is to the center of a circle, the longer the chord.
PTS: 2
190 ANS: 4
REF: 011005ge
STA: G.G. 49
REF: 011009ge
TOP: Chords
TOP: Constructions

191 ANS:

PTS: 2
REF: 081033ge
STA: G.G. 22
TOP: Locus
192 ANS:

PTS: 4
REF: fall0837ge
STA: G.G. 23
TOP: Locus
193 ANS: 4
$180-(50+30)=100$
PTS: 2
REF: 081006ge
STA: G.G. 45
TOP: Similarity
KEY: basic
194 ANS:

$A^{\prime \prime}(8,2), B^{\prime \prime}(2,0), C^{\prime \prime}(6,-8)$
PTS: 4
REF: 081036ge
STA: G.G. 58
TOP: Compositions of Transformations
195 ANS: 4
Let $\overline{A D}=x . \quad 36 x=12^{2}$
$x=4$
PTS: 2
REF: 080922ge
STA: G.G. 47
TOP: Similarity
KEY: leg

ANS: 2
The slope of a line in standard form is $-\frac{A}{B}$ so the slope of this line is $-\frac{5}{3}$ Perpendicular lines have slope that are the opposite and reciprocal of each other.

PTS: 2 REF: fall0828ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
197 ANS:
36, because a dilation does not affect angle measure. 10 , because a dilation does affect distance.
PTS: 4 REF: 011035ge STA: G.G. 59 TOP: Properties of Transformations
ANS: 3 PTS: 2
REF: fall0814ge
STA: G.G. 73
TOP: Equations of Circles
ANS: 2 PTS:
TOP: Locus
ANS: 4
The slope of a line in standard form is $-\frac{A}{B}$, so the slope of this line is $\frac{-4}{2}=-2$. A parallel line would also have a slope of -2 . Since the answers are in slope intercept form, find the y-intercept: $y=m x+b$

$$
\begin{aligned}
3 & =-2(7)+b \\
17 & =b
\end{aligned}
$$

PTS: 2	REF: 081010ge	STA: G.G.65	TOP: Parallel and Perpendicular Lines
ANS: 3	PTS: 2	REF: 011010 ge	STA: G.G. 71
TOP: Equations of Circles			

$\overline{A C} \cong \overline{E C}$ and $\overline{D C} \cong \overline{B C}$ because of the definition of midpoint. $\angle A C B \cong \angle E C D$ because of vertical angles. $\triangle A B C \cong \triangle E D C$ because of SAS. $\angle C D E \cong \angle C B A$ because of CPCTC. $\overline{B D}$ is a transversal intersecting $\overline{A B}$ and
$\overline{E D}$. Therefore $\overline{A B} \| \overline{D E}$ because $\angle C D E$ and $\angle C B A$ are congruent alternate interior angles.

PTS: 6 REF: 060938ge STA: G.G. 27 TOP: Triangle Proofs
203 ANS:
3. The non-parallel sides of an isosceles trapezoid are congruent. $2 x+5=3 x+2$

$$
x=3
$$

PTS: 2
REF: 080929ge
STA: G.G. 40
TOP: Trapezoids
ANS:

$$
\text { 2.4. } \begin{array}{rrl}
5 a=4^{2} & 5 b=3^{2} & \\
h^{2}=a b \\
a=3.2 & b=1.8 & \\
h^{2}=3.2 \cdot 1.8 \\
& & h=\sqrt{5.76}=2.4
\end{array}
$$

PTS: 4
REF: 081037ge
STA: G.G. 47
TOP: Similarity
KEY: altitude

205
ANS: 2
$y+\frac{1}{2} x=4 \quad 3 x+6 y=12$
$y=-\frac{1}{2} x+4$

$$
6 y=-3 x+12
$$

$m=-\frac{1}{2}$

$$
y=-\frac{3}{6} x+2
$$

$$
y=-\frac{1}{2} x+2
$$

PTS: 2
206
ANS: 2
TOP: Constructions
207 ANS: 1
TOP: Identifying Transformations
208
ANS:

209 ANS: 2

$$
\frac{140-\overline{R S}}{2}=40
$$

$$
140-\overline{R S}=80
$$

$$
\overline{R S}=60
$$

PTS: 2
KEY: outside circle

REF: 081014ge
PTS: 2

REF: 011038ge STA: G.G. 70
STA: G.G. 63
REF: 011004ge
REF: 060903ge

STA: G.G. 56
TOP: Parallel and Perpendicular Lines
STA: G.G. 17

210 ANS:

PTS: 4 REF: 080937ge STA: G.G. 55 TOP: Properties of Transformations
211 ANS:
$2 \sqrt{3} . x^{2}=3 \cdot 4$
$x=\sqrt{12}=2 \sqrt{3}$
PTS: 2 REF: fall0829ge STA: G.G. 47 TOP: Similarity
KEY: altitude
212 ANS: 3
The slope of $y=x+2$ is 1 . The slope of $y-x=-1$ is $\frac{-A}{B}=\frac{-(-1)}{1}=1$.
PTS: 2 REF: 080909ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
213 ANS:
$\overline{A C} . \mathrm{m} \angle B C A=63$ and $\mathrm{m} \angle A B C=80 . \overline{A C}$ is the longest side as it is opposite the largest angle.
PTS: 2 REF: 080934ge STA: G.G. 34 TOP: Angle Side Relationship
214 ANS: 4
Corresponding angles of similar triangles are congruent.
PTS: 2 REF: fall0826ge STA: G.G. 45 TOP: Similarity
KEY: perimeter and area
215 ANS: 4
PTS: 2
REF: 060922ge
STA: G.G. 73
TOP: Equations of Circles
216 ANS: 3

The sum of the interior angles of a pentagon is $(5-2) 180=540$.
PTS: 2
REF: 011023ge STA: G.G. 36
TOP: Interior and Exterior Angles of Polygons
217 ANS: 2
$6+17>22$
PTS: 2
REF: 080916ge
STA: G.G. 33
TOP: Triangle Inequality Theorem

218 ANS: 4
$d=\sqrt{(146-(-4))^{2}+(52-2)^{2}}=\sqrt{25,000} \approx 158.1$
PTS: 2 REF: 061021ge STA: G.G. 67 TOP: Distance
KEY: general
219 ANS: 4
Longest side of a triangle is opposite the largest angle. Shortest side is opposite the smallest angle.
PTS: 2 REF: 081011ge STA: G.G. 34 TOP: Angle Side Relationship
220 ANS:
$y=\frac{2}{3} x-9$. The slope of $2 x-3 y=11$ is $-\frac{A}{B}=\frac{-2}{-3}=\frac{2}{3} .-5=\left(\frac{2}{3}\right)(6)+b$

$$
\begin{aligned}
-5 & =4+b \\
b & =-9
\end{aligned}
$$

PTS: 2 REF: 080931ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
221 ANS:

PTS: 2 REF: fall0832ge STA: G.G. 17 TOP: Constructions
222 ANS: 4
(4) is not true if $\angle P Q R$ is obtuse.

PTS: 2 REF: 060924ge STA: G.G. 32 TOP: Exterior Angle Theorem
223 ANS: 2
$\frac{87+35}{2}=\frac{122}{2}=61$
PTS: 2
REF: 011015ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inside circle

224 ANS: 1
The centroid divides each median into segments whose lengths are in the ratio $2: 1 . \quad \overline{G C}=2 \overline{F G}$

$$
\begin{aligned}
\overline{G C}+\overline{F G} & =24 \\
2 \overline{F G}+\overline{F G} & =24 \\
3 \overline{F G} & =24 \\
\overline{F G} & =8
\end{aligned}
$$

PTS: 2
REF: 081018ge
STA: G.G. 43 TOP: Centroid
225 ANS:

PTS: 2
REF: 060932ge
STA: G.G. 22 TOP: Locus
226
ANS: 4
$\begin{array}{lll}y+x=4 . & \begin{array}{cc}x^{2}-6 x+10=-x+4 . & y+x=4 . \\ y=-x+4 & y+2=4 \\ x^{2}-5 x+6=0 & y+3=4\end{array} \quad y=2 \\ \begin{array}{cl}x-3)(x-2)=0 & y=1\end{array} \\ x=3 \text { or } 2\end{array}$

PTS: 2
227

REF: 080912ge
PTS: 2
TOP: Properties of Transformations

STA: G.G. 70
REF: 011102ge

TOP: Quadratic-Linear Systems
STA: G.G. 55

228 ANS: 3

PTS: 2 REF: 080920ge STA: G.G. 42 TOP: Midsegments

Geometry Regents at Random

Answer Section

229 ANS: 1
The length of the midsegment of a trapezoid is the average of the lengths of its bases. $\frac{x+3+5 x-9}{2}=2 x+2$.

$$
\begin{aligned}
6 x-6 & =4 x+4 \\
2 x & =10 \\
x & =5
\end{aligned}
$$

PTS: 2
233
ANS: 3
TOP: Parallelograms
234 ANS: 3
TOP: Triangle Congruency
ANS:

PTS: 4
REF: 081237ge STA: G.G. 70
REF: 061229ge
PTS: 2
PTS: 2
\qquad -

REF: 081237g

TOP: Translations
REF: 011104ge STA: G.G. 38
REF: 061102ge STA: G.G. 29

TOP: Quadratic-Linear Systems

236 ANS: 4
The slope of $3 x+5 y=4$ is $m=\frac{-A}{B}=\frac{-3}{5} . m_{\perp}=\frac{5}{3}$.
PTS: 2
237 ANS: 2
REF: 061127ge
PTS: 2
TOP: Identifying Transformations
238
ANS:

PTS: 2
REF: 011233ge
STA: G.G. 17
TOP: Constructions
239 ANS:

PTS: 2
REF: 011133ge
STA: G.G. 17
TOP: Constructions
240
ANS: 1

PTS: 2
REF: 081219ge
STA: G.G. 34
TOP: Angle Side Relationship
241 ANS: 3
$(n-2) 180=(5-2) 180=540$
PTS: 2
REF: 011223ge
STA: G.G. 36
TOP: Interior and Exterior Angles of Polygons

PTS: 2
REF: 081233ge
STA: G.G. 19
TOP: Constructions

243 ANS: 3

$$
\begin{aligned}
180(n-2) & =n\left(180-\frac{180(n-2)}{n}\right) \\
180 n-360 & =180 n-180 n+360 \\
180 n & =720 \\
n & =4
\end{aligned}
$$

PTS: 2 REF: 081223ge STA: G.G. 36 TOP: Interior and Exterior Angles of Polygons
244 ANS: \qquad $\overline{O A} \cong \overline{O B}$ because all radii are equal. $\overline{O P} \cong \overline{O P}$ because of the reflexive property. $\overline{O A} \perp \overline{P A}$ and $\overline{O B} \perp \overline{P B}$ because tangents to a circle are perpendicular to a radius at a point on a circle. $\angle P A O$ and $\angle P B O$ are right angles because of the definition of perpendicular. $\angle P A O \cong \angle P B O$ because all right angles are congruent. $\triangle A O P \cong \triangle B O P$ because of HL. $\angle A O P \cong \angle B O P$ because of CPCTC.

PTS: 6
REF: 061138ge
STA: G.G. 27
TOP: Circle Proofs
245 ANS:

REF: 061234ge
STA: G.G. 23
ANS: 4
PTS: 2
REF: 061114ge
TOP: Locus
TOP: Equations of Circles
247 ANS:
9.1. $(11)(8) h=800$

$$
h \approx 9.1
$$

PTS: 2
248 ANS: 2
TOP: Constructions
249
ANS: 4
TOP: Compound Statements
250
ANS: 3
TOP: Similarity

PTS: 2

PTS: 2
REF: 061131ge
PTS: 2

KEY: basic

STA: G.G. 12
REF: 061208ge
REF: 081101ge
STA: G.G. 25
KEY: conjunction
REF: 061224ge STA: G.G. 45

251 ANS:

PTS: 2
REF: 061130ge
STA: G.G. 20
TOP: Constructions
252 ANS:
32. $\frac{16}{20}=\frac{x-3}{x+5} \cdot \overline{A C}=x-3=35-3=32$

$$
16 x+80=20 x-60
$$

$$
\begin{aligned}
140 & =4 x \\
35 & =x
\end{aligned}
$$

PTS: 4
REF: 011137ge
STA: G.G. 46
TOP: Side Splitter Theorem
ANS: 2
$V=\pi r^{2} h=\pi \cdot 6^{2} \cdot 15=540 \pi$
PTS: 2
REF: 011117ge
STA: G.G. 14
REF: 061223ge
TOP: Volume
STA: G.G. 73
TOP: Equations of Circles
ANS: 2
PTS: 2
REF: 081212ge
STA: G.G. 72
TOP: Equations of Circles
256 ANS: 4
$6^{2}=x(x+5)$
$36=x^{2}+5 x$
$0=x^{2}+5 x-36$
$0=(x+9)(x-4)$
$x=4$
PTS: 2
REF: 011123ge
STA: G.G. 47
KEY: leg
TOP: Similarity

257 ANS: $1 \quad$ PTS: 2
REF: 061113ge STA: G.G. 63
TOP: Parallel and Perpendicular Lines
258
ANS: 2

$\sqrt{17^{2}-15^{2}}=8 . \quad 17-8=9$
PTS: 2
REF: 061221ge STA: G.G. 49
TOP: Chords
259 ANS: 1
The diagonals of a parallelogram intersect at their midpoints. $M_{A C}^{-}\left(\frac{1+3}{2}, \frac{5+(-1)}{2}\right)=(2,2)$
PTS: 2
REF: 061209ge
STA: G.G. 69
TOP: Quadrilaterals in the Coordinate Plane
260 ANS: 4
$20+8+10+6=44$.

PTS: 2
REF: 061211ge
STA: G.G. 42
TOP: Midsegments
ANS: 1
PTS: 2
REF: 011112ge
STA: G.G. 39
TOP: Special Parallelograms
262 ANS: 4
PTS: 2
REF: 081211ge
STA: G.G. 5
TOP: Planes
263 ANS: 3
$4 x+14+8 x+10=180$

$$
\begin{aligned}
12 x & =156 \\
x & =13
\end{aligned}
$$

PTS: 2
REF: 081213ge
STA: G.G. 35
TOP: Parallel Lines and Transversals
264 ANS: 3
$(3,-2) \rightarrow(2,3) \rightarrow(8,12)$
PTS: 2
REF: 011126ge
STA: G.G. 54
TOP: Compositions of Transformations
KEY: basic
PTS: 2
REF: 081128ge
STA: G.G. 39
TOP: Special Parallelograms

266 ANS: 4
$\sqrt{25^{2}-\left(\frac{26-12}{2}\right)^{2}}=24$
PTS: 2 REF: 011219ge STA: G.G. 40 TOP: Trapezoids
267 ANS:
$m=\frac{-A}{B}=\frac{6}{2}=3 . m_{\perp}=-\frac{1}{3}$.

PTS: 2
REF: 011134ge
PTS: 2
TOP: Triangle Congruency
269 ANS: 3

$$
\begin{aligned}
x+2 x+15 & =5 x+15 \quad 2(5)+15=25 \\
3 x+15 & =5 x+5 \\
10 & =2 x \\
5 & =x
\end{aligned}
$$

PTS: 2
REF: 011127ge
ANS: 4
$\sqrt{6^{2}-2^{2}}=\sqrt{32}=\sqrt{16} \sqrt{2}=4 \sqrt{2}$
PTS: 2
REF: 081124ge
ANS:

PTS: 2
REF: 061232ge
272 ANS: 3
PTS: 2
TOP: Equations of Circles
273 ANS:
$\frac{180-80}{2}=50$
PTS: 2
REF: 081129ge
STA: G.G. 52

STA: G.G. 17
REF: 011116ge

TOP: Constructions
STA: G.G. 71

274 ANS: 1
$m=\left(\frac{8+0}{2}, \frac{2+6}{2}\right)=(4,4) m=\frac{6-2}{0-8}=\frac{4}{-8}=-\frac{1}{2} \quad m_{\perp}=2 \quad y=m x+b$

$$
\begin{aligned}
& 4=2(4)+b \\
& -4=b
\end{aligned}
$$

PTS: 2 REF: 081126ge STA: G.G. 68 TOP: Perpendicular Bisector
275 ANS: 2
The diagonals of a rhombus are perpendicular. $180-(90+12)=78$
PTS: 2 REF: 011204ge STA: G.G. 39 TOP: Special Parallelograms
276 ANS:
11. $x^{2}+6 x=x+14.6(2)-1=11$

$$
\begin{aligned}
x^{2}+5 x-14 & =0 \\
(x+7)(x-2) & =0 \\
x & =2
\end{aligned}
$$

PTS: 2 REF: 081235ge STA: G.G. 38 TOP: Parallelograms
277 ANS: 2
$V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot\left(\frac{6}{2}\right)^{3} \approx 36 \pi$
PTS: 2 REF: 081215ge STA: G.G. 16 TOP: Volume and Surface Area
ANS:
Yes. A reflection is an isometry.
PTS: 2 REF: 061132ge STA: G.G. 56 TOP: Identifying Transformations
279 ANS: 2
$A C=B D$
$A C-B C=B D-B C$
$A B=C D$
$\begin{array}{lllll}\text { PTS: } 2 & \text { REF: } 061206 \mathrm{ge} & \text { STA: } & \text { G.G. } 27 & \text { TOP: Line Proofs } \\ \text { ANS: } 2 & \text { PTS: } 2 & \text { REF: } 011125 \text { ge } & \text { STA: } & \text { G.G. } 74\end{array}$
TOP: Graphing Circles
281 ANS:
The medians of a triangle are not concurrent. False.
PTS: 2 REF: 061129ge STA: G.G. 24 TOP: Negations

282
ANS: 1

PTS: 2
ANS: 4
REF: 061211ge
PTS: 2
TOP: Compound Statements
284 ANS:
$\angle A C B \cong \angle A E D$ is given. $\angle A \cong \angle A$ because of the reflexive property. Therefore $\triangle A B C \sim \triangle A D E$ because of AA.
PTS: 2
REF: 081133ge
PTS: 2
ANS: 1
Circles
TOP: Equations of Circles
ANS: 2
PTS: 2
TOP: Planes
ANS: 2
TOP: Planes
ANS:
$2 \quad \frac{x+2}{x}=\frac{x+6}{4}$

$$
\begin{aligned}
x^{2}+6 x & =4 x+8 \\
x^{2}+2 x-8 & =0 \\
(x+4)(x-2) & =0 \\
x & =2
\end{aligned}
$$

PTS: 4
REF: 081137ge
STA: G.G. 45
TOP: Similarity
KEY: basic
ANS:

PTS: 4
REF: 081236ge
STA: G.G. 58
TOP: Compositions of Transformations KEY: grids

290 ANS: 3
$\frac{7 x}{4}=\frac{7}{x} .7(2)=14$
$7 x^{2}=28$
$x=2$
PTS: 2 REF: 061120ge STA: G.G. 45 TOP: Similarity
KEY: basic
ANS: 2
PTS: 2
REF: 061121ge
STA: G.G. 22
TOP: Locus
ANS: 3
PTS: 2
REF: 081123ge
STA: G.G. 12
TOP: Volume
293 ANS: 3
The slope of $2 y=x+2$ is $\frac{1}{2}$, which is the opposite reciprocal of $-2 . \quad 3=-2(4)+b$

$$
11=b
$$

PTS: 2 REF: 081228ge STA: G.G. 64 TOP: Parallel and Perpendicular Lines 294 ANS: 3

The slope of $9 x-3 y=27$ is $m=\frac{-A}{B}=\frac{-9}{-3}=3$, which is the opposite reciprocal of $-\frac{1}{3}$.
PTS: 2 REF: 081225ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
295 ANS: 3
$\sqrt{5^{2}+12^{2}}=13$
PTS: 2 REF: 061116ge STA: G.G. 39 TOP: Special Parallelograms
296 ANS: 2
$5-3=2,5+3=8$
PTS: 2
ANS: 3
TOP: Midsegments
298 ANS: 3
$7 x=5 x+30$
$2 x=30$
$x=15$
PTS: 2 REF: 081109ge STA: G.G. 35 TOP: Parallel Lines and Transversals 299 ANS:
$E O=6 . C E=\sqrt{10^{2}-6^{2}}=8$
PTS: 2
REF: 011234ge
STA: G.G. 49
TOP: Chords

300 ANS:
$180-(90+63)=27$
PTS: 2 REF: 061230ge STA: G.G. 35 TOP: Parallel Lines and Transversals
301 ANS: 1

$$
\begin{aligned}
A B & =C D \\
A B+B C & =C D+B C \\
A C & =B D
\end{aligned}
$$

PTS: 2
REF: 081207ge
STA: G.G. 27
TOP: Triangle Proofs
ANS: 3
$8^{2}+24^{2} \neq 25^{2}$

PTS: 2
ANS: 2
TOP: Constructions
304
ANS: 4

$$
\begin{aligned}
m_{\perp}=-\frac{1}{3} \cdot y & =m x+b \\
6 & =-\frac{1}{3}(-9)+b \\
6 & =3+b \\
3 & =b
\end{aligned}
$$

PTS: 2
REF: 061215ge
STA: G.G. 64
TOP: Parallel and Perpendicular Lines
305 ANS: 3
$d=\sqrt{(1-9)^{2}+(-4-2)^{2}}=\sqrt{64+36}=\sqrt{100}=10$
PTS: 2
REF: 081107ge
STA: G.G. 67
KEY: general
306
ANS: 3

PTS: 2
REF: 081118ge
STA: G.G. 70
TOP: Quadratic-Linear Systems

307 ANS:

$$
\begin{aligned}
V & =\pi r^{2} h \quad . L=2 \pi r h=2 \pi \cdot 5 \sqrt{2} \cdot 12 \approx 533.1 \\
600 \pi & =\pi r^{2} \cdot 12 \\
50 & =r^{2} \\
\sqrt{25} \sqrt{2} & =r \\
5 \sqrt{2} & =r
\end{aligned}
$$

$\begin{array}{lllll}\text { PTS: } 4 & \text { REF: } 011236 \mathrm{ge} & \text { STA: } & \text { G.G. } 14 & \text { TOP: Volume } \\ \text { ANS: } 1 & \text { PTS: } 2 & \text { REF: } 061214 \mathrm{ge} & \text { STA: } & \text { G.G. } 21\end{array}$
TOP: Centroid, Orthocenter, Incenter and Circumcenter
309 ANS: 4
PTS: 2
REF: 081110ge STA: G.G. 71
TOP: Equations of Circles
310 ANS: 3
$\frac{5}{7}=\frac{10}{x}$
$5 x=70$
$x=14$
$\begin{array}{lllll}\text { PTS: } 2 & \text { REF: } 081103 \mathrm{ge} & \text { STA: G.G. } 46 & \text { TOP: } & \text { Side Splitter Theorem } \\ \text { ANS: } 3 & \text { PTS: } 2 & \text { REF: 061218ge } & \text { STA: G.G. } 36\end{array}$
TOP: Interior and Exterior Angles of Polygons
312 ANS:
30. $3 x+4 x+5 x=360 . \mathrm{m} \overparen{\mathrm{LN}}: \mathrm{m} \overparen{\mathrm{NK}}: \mathrm{m} \overparen{\mathrm{KL}}=90: 120: 150 . \frac{150-90}{2}=30$

$$
x=20
$$

PTS: 4 REF: 061136ge STA: G.G.51 TOP: Arcs Determined by Angles
KEY: outside circle
313 ANS: 2
PTS: 2
REF: 081108ge
STA: G.G. 54
TOP: Reflections KEY: basic
314 ANS:
$\angle B$ and $\angle E$ are right angles because of the definition of perpendicular lines. $\angle B \cong \angle E$ because all right angles are congruent. $\angle B F D$ and $\angle D F E$ are supplementary and $\angle E C A$ and $\angle A C B$ are supplementary because of the definition of supplementary angles. $\angle D F E \cong \angle A C B$ because angles supplementary to congruent angles are congruent. $\triangle A B C \sim \triangle D E F$ because of AA.

PTS: 4
REF: 011136ge
STA: G.G. 44
TOP: Similarity Proofs

315 ANS:
$m_{\overline{A B}}=\left(\frac{-6+2}{2}, \frac{-2+8}{2}\right)=D(2,3) m_{B C}=\left(\frac{2+6}{2}, \frac{8+-2}{2}\right)=E(4,3) F(0,-2)$. To prove that $A D E F$ is a parallelogram, show that both pairs of opposite sides of the parallelogram are parallel by showing the opposite sides have the same slope: $\mathrm{m}_{\overline{A D}}=\frac{3--2}{-2--6}=\frac{5}{4} \quad \overline{A F} \| \overline{D E}$ because all horizontal lines have the same slope. $A D E F$

$$
\mathrm{m}_{F E}=\frac{3--2}{4-0}=\frac{5}{4}
$$

is not a rhombus because not all sides are congruent. $A D=\sqrt{5^{2}+4^{2}}=\sqrt{41} \quad A F=6$
PTS: 6
REF: 081138ge
STA: G.G. 69
TOP: Quadrilaterals in the Coordinate Plane
316 ANS: 2
$6 x+42=18 x-12$

$$
54=12 x
$$

$$
x=\frac{54}{12}=4.5
$$

PTS: 2
REF: 011201ge
STA: G.G. 35
TOP: Parallel Lines and Transversals
317 ANS:

PTS: 2
REF: 081234ge
ANS: 2
PTS: 2

STA: G.G. 23
REF: 081226ge

TOP: Locus
STA: G.G. 69

TOP: Triangles in the Coordinate Plane
319 ANS: 3
$d=\sqrt{(-1-4)^{2}+(0-(-3))^{2}}=\sqrt{25+9}=\sqrt{34}$
PTS: 2
REF: 061217ge
STA: G.G. 67
TOP: Distance
KEY: general
320 ANS: 3
PTS: 2
REF: 061122ge STA: G.G. 56
TOP: Identifying Transformations

321 ANS: 4

$$
\begin{array}{rlrl}
x+6 y & =12 & 3(x-2) & =-y-4 \\
6 y & =-x+12 & -3(x-2) & =y+4 \\
y & =-\frac{1}{6} x+2 & m & =-3 \\
m & =-\frac{1}{6} & &
\end{array}
$$

PTS: 2
322 ANS: 2
ANS: 2 PTS: 2
TOP: Exterior Angle Theorem
323 ANS:

PTS: 2
REF: 081130ge
ANS: 4
$x^{2}-6 x+2 x-3=9 x+27$

$$
x^{2}-4 x-3=9 x+27
$$

$$
x^{2}-13 x-30=0
$$

$$
(x-15)(x+2)=0
$$

$$
x=15,-2
$$

PTS: 2
325
ANS:
$V=\frac{4}{3} \pi \cdot 9^{3}=972 \pi$
PTS: 2
326 ANS: 1
REF: 081131ge
TOP: Constructions
327
ANS: 1
TOP: Planes

PTS: 2
PTS: 2
-

STA: G.G. 16
REF: 011120 ge
REF: 011128ge

TOP: Surface Area STA: G.G. 18

STA: G.G. 2

328 ANS:

The slope of $y=2 x+3$ is 2 . The slope of $2 y+x=6$ is $\frac{-A}{B}=\frac{-1}{2}$. Since the slopes are opposite reciprocals, the lines are perpendicular.

PTS: 2 REF: 011231ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
329 ANS: 4
TOP: Planes
330 ANS: 2
$(n-2) 180=(6-2) 180=720 . \frac{720}{6}=120$.
PTS: 2 REF: 081125ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons
331 ANS:

$$
G^{\prime \prime}(3,3), H^{\prime \prime}(7,7), S^{\prime \prime}(-1,9)
$$

PTS: 4
332

333
ANS: 2 TOP: Locus
ANS: 4
$\frac{5}{2+3+5} \times 180=90$
PTS: 2
REF: 081119ge STA: G.G. 30
ANS: 4
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.
PTS: 2 REF: 081220ge STA: G.G. 43 TOP: Centroid
335 ANS: 3

$8 x=24$
$x=3$
PTS: 2
REF: 061216ge
STA: G.G. 46
TOP: Side Splitter Theorem

336
ANS: 3
PTS: 2
REF: 081111ge
STA: G.G. 32
TOP: Exterior Angle Theorem
337 ANS: 1
PTS: 2
TOP: Centroid
338 ANS:

PTS: 4
REF: 061135ge
ANS:
$x^{2}=9 \cdot 8$
$x=\sqrt{72}$
$x=\sqrt{36} \sqrt{2}$
$x=6 \sqrt{2}$
PTS: 2
REF: 011132ge
KEY: two chords
340
ANS: 3
PTS: 2
TOP: Equations of Circles
ANS: 1
PTS: 2
TOP: Negations
342 ANS: 1

$$
1=\frac{-4+x}{2} . \quad 5=\frac{3+y}{2} .
$$

$-4+x=2 \quad 3+y=10$
$x=6$
$y=7$
PTS: 2
REF: 081115ge
ANS: 2
PTS: 2
TOP: Triangles in the Coordinate Plane
344

ANS: 2

$V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot\left(\frac{15}{2}\right)^{3} \approx 1767.1$
PTS: 2
REF: 061207ge

TOP: Midpoint
STA: G.G. 69

STA: G.G. 16
STA: G.G. 66
REF: 061115ge

STA: G.G.16

TOP: Volume and Surface Area

345
ANS:

The length of each side of quadrilateral is 5 . Since each side is congruent, quadrilateral $M A T H$ is a rhombus. The slope of $\overline{M H}$ is 0 and the slope of $\overline{H T}$ is $-\frac{4}{3}$. Since the slopes are not negative reciprocals, the sides are not perpendicular and do not form rights angles. Since adjacent sides are not perpendicular, quadrilateral $M A T H$ is not a square.

PTS: 6 REF: 011138ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane
346 ANS: 4

$$
\begin{aligned}
x \cdot 4 x & =6^{2} . P Q=4 x+x=5 x=5(3)=15 \\
4 x^{2} & =36 \\
x & =3
\end{aligned}
$$

PTS: 2 REF: 011227ge STA: G.G. 47 TOP: Similarity
KEY: leg
ANS:
Quadrilateral $A B C D, \overline{A D} \cong \overline{B C}$ and $\angle D A E \cong \angle B C E$ are given. $\overline{A D} \| \overline{B C}$ because if two lines are cut by a transversal so that a pair of alternate interior angles are congruent, the lines are parallel. $A B C D$ is a parallelogram because if one pair of opposite sides of a quadrilateral are both congruent and parallel, the quadrilateral is a parallelogram. $\overline{A E} \cong \overline{C E}$ because the diagonals of a parallelogram bisect each other. $\angle F E A \cong \angle G E C$ as vertical angles. $\triangle A E F \cong \triangle C E G$ by ASA.

PTS: 6 REF: 011238ge STA: G.G. 27 TOP: Quadrilateral Proofs
ANS:
$L=2 \pi r h=2 \pi \cdot 12 \cdot 22 \approx 1659 . \frac{1659}{600} \approx 2.8 .3$ cans are needed.
PTS: 2 REF: 061233ge STA: G.G. 14 TOP: Lateral Area
349 ANS: 2
PTS: 2
TOP: Properties of Transformations
350
ANS: 4
PTS: 2
REF: 081224ge
STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
ANS: 2
$V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot 3^{3}=36 \pi$

| PTS: 2 | REF: 061112 ge | STA: | G.G. 16 | TOP: Volume and Surface Area |
| :--- | :---: | :--- | :--- | :--- | :--- |
| ANS: 3 | PTS: 2 | REF: 011217 ge | STA: | G.G. 64 |

353 ANS: 4
$\mathrm{m} \angle A=80$
PTS: 2 REF: 011115ge
ANS: 4
PTS: 2
STA: G.G. 34
REF: 061124ge
TOP: Angle Side Relationship
TOP: Isosceles Triangle Theorem
355
ANS:
$(x-5)^{2}+(y+4)^{2}=36$
PTS: 2
356
ANS: 1
REF: 081132ge
TOP: Special Parallelograms
ANS: 1

PTS: 2 REF: 081210ge STA: G.G. 28 TOP: Triangle Congruency
358 ANS: 2
$m=\frac{-A}{B}=\frac{-4}{2}=-2 \quad y=m x+b$
$2=-2(2)+b$
$6=b$
PTS: 2 REF: 081112ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
ANS:
$(2 a-3,3 b+2) .\left(\frac{3 a+a-6}{2}, \frac{2 b-1+4 b+5}{2}\right)=\left(\frac{4 a-6}{2}, \frac{6 b+4}{2}\right)=(2 a-3,3 b+2)$
PTS: 2 REF: 061134ge STA: G.G. 66 TOP: Midpoint
360 ANS: 2
$3 x+x+20+x+20=180$

$$
\begin{aligned}
5 x & =40 \\
x & =28
\end{aligned}
$$

PTS: 2
REF: 081222ge
STA: G.G. 31
TOP: Isosceles Triangle Theorem

361 ANS: 4

PTS: 2
REF: 081114ge
PTS: 2
ANS: 1
STA: G.G. 28
TOP: Special Parallelograms
363 ANS: 2
$d=\sqrt{(-1-7)^{2}+(9-4)^{2}}=\sqrt{64+25}=\sqrt{89}$
PTS: 2
REF: 061109ge
STA: G.G. 67
TOP: Distance
KEY: general

PTS: 6
REF: 061238ge
STA: G.G. 70
ANS: 3
$\frac{3}{8+3+4} \times 180=36$

PTS: 2
366 ANS: 3
TOP: Solids
REF: 011210ge
PTS: 2

PTS: 2
TOP: Equations of Circles

STA: G.G. 30
REF: 011105ge
REF: 061110ge

TOP: Quadratic-Linear Systems

TOP: Interior and Exterior Angles of Triangles STA: G.G. 10

STA: G.G. 72

368
ANS:
$52,40,80.360-(56+112)=192 . \frac{192-112}{2}=40 \cdot \frac{112+48}{2}=80$

$$
\begin{aligned}
& \frac{1}{4} \times 192=48 \\
& \frac{56+48}{2}=52
\end{aligned}
$$

PTS: 6 REF: 081238ge STA: G.G. 51 TOP: Arcs Determined by Angles
KEY: mixed
ANS: 4
$m=\frac{-A}{B}=\frac{-3}{2} . \quad y=m x+b$

$$
\begin{aligned}
-1 & =\left(\frac{-3}{2}\right)(2)+b \\
-1 & =-3+b \\
2 & =b
\end{aligned}
$$

	PTS: 2	REF: 061226ge	STA: G.G.65
370	ANS: 1	PTS: 2	REF: 081113ge
	TOP: Reflections	KEY: basic	
371	ANS: 3	PTS: 2	REF: 081208ge
	TOP: Quadrilateral Proofs		
372	ANS: 3	PTS: 2	REF: 061111ge
	TOP: Parallelograms		
373	ANS: 1	PTS: 2	REF: 011221ge
	TOP: Solids		
374	ANS:		
	$\sqrt{(-4-2)^{2}+(3-5)^{2}}=\sqrt{36+4}=\sqrt{40}=\sqrt{4} \sqrt{10}=2 \sqrt{10}$.		

$\begin{array}{lllll}\text { PTS: } 2 & \text { REF: } 081232 \text { ge } & \text { STA: } & \text { G.G. } 67 & \text { TOP: Distance } \\ \text { ANS: } 1 & \text { PTS: } 2 & \text { REF: } 011218 \mathrm{ge} & \text { STA: } & \text { G.G. } 3 \\ \text { TOP: Planes } & & & \\ \text { ANS: } 4 \\ \overline{A B} \text { is a vertical line, so its perpendicular bisector is a horizontal line through the midpoint of } \overline{A B} \text {, which is }(0,3) \text {. }\end{array}$
PTS: 2
REF: 011225ge
STA: G.G. 68
TOP: Perpendicular Bisector
377 ANS: 4

$$
\begin{aligned}
4(x+4) & =8^{2} \\
4 x+16 & =64 \\
4 x & =48 \\
x & =12
\end{aligned}
$$

PTS: 2
REF: 061117ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: tangent and secant

378 ANS: 3

. Opposite sides of a parallelogram are congruent and the diagonals of a parallelogram
bisect each other.
PTS: 2
REF: 061222ge
STA: G.G. 28
TOP: Triangle Congruency
379
ANS: 3
$y=m x+b$
$-1=2(2)+b$
$-5=b$
PTS: 2
REF: 011224ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines
380 ANS: 1
$x^{2}=7(16-7)$
$x^{2}=63$
$x=\sqrt{9} \sqrt{7}$
$x=3 \sqrt{7}$
PTS: 2
REF: 061128ge
STA: G.G. 47
TOP: Similarity
KEY: altitude
381 ANS: 4
PTS: 2
REF: 061118ge
STA: G.G. 1
TOP: Planes
382 ANS: 3

PTS: 2
REF: 011112ge
ANS: 2
PTS: 2
STA: G.G. 49
REF: 011203ge
TOP: Chords
TOP: Equations of Circles
384 ANS: 2
PTS: 2
REF: 061202ge STA: G.G. 24

385
ANS: 2
The slope of a line in standard form is $\frac{-A}{B}$, so the slope of this line is $\frac{-4}{3}$. A parallel line would also have a slope of $\frac{-4}{3}$. Since the answers are in standard form, use the point-slope formula. $y-2=-\frac{4}{3}(x+5)$

$$
\begin{aligned}
3 y-6 & =-4 x-20 \\
4 x+3 y & =-14
\end{aligned}
$$

PTS: 2
386 ANS: 4
TOP: Segments Intercepted by Circle
ANS: 4

$$
\begin{array}{rlrl}
-5 & =\frac{-3+x}{2}, & 2 & =\frac{6+y}{2} \\
-10 & =-3+x & 4 & =6+y \\
-7 & =x & -2 & =y
\end{array}
$$

PTS: 2
REF: 081203ge
ANS: 4
$\sqrt{25^{2}-7^{2}}=24$
PTS: 2 REF: 081105ge STA: G.G. 50 TOP: Tangents
KEY: point of tangency
389 ANS: 4
Parallel lines intercept congruent arcs.
PTS: 2 REF: 081201ge STA: G.G. 52 TOP: Chords
390 ANS: 2
$7 x=5 x+30$
$2 x=30$
$x=15$
PTS: 2 REF: 061106ge STA: G.G. 35
391 ANS: 4
PTS: 2 REF: 081206ge
TOP: Interior and Exterior Angles of Triangles
ANS: 2
PTS: 2
REF: 061107ge
STA: G.G. 32
TOP: Exterior Angle Theorem
ANS: 3 PTS: 2
REF: 011110ge
STA: G.G. 21
KEY: Centroid, Orthocenter, Incenter and Circumcenter

394
ANS: 4
$y=m x+b$
$3=\frac{3}{2}(-2)+b$
$3=-3+b$
$6=b$

PTS: 2 REF: 011114ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
ANS:

PTS: 2
REF: 011130ge
STA: G.G. 54
TOP: Reflections
KEY: grids
ANS:

$$
A^{\prime}(-2,1), B^{\prime}(-3,-4) \text {, and } C^{\prime}(5,-3)
$$

PTS: 2	REF: 081230 ge	STA:	G.G. 54	TOP: Rotations
ANS: 4	PTS: 2	REF:	011212ge	STA:
TOP: G. 71				

$\frac{40-24}{2}=8 . \quad \sqrt{10^{2}-8^{2}}=6$.

PTS: 2
REF: 061204ge
STA: G.G. 40
TOP: Trapezoids
$M\left(\frac{-7+5}{2}, \frac{2+4}{2}\right)=M(-1,3) . N\left(\frac{3+5}{2}, \frac{-4+4}{2}\right)=N(4,0) . \overline{M N}$ is a midsegment.

REF: 011237ge STA: G.G. 42
PTS: 2
KEY: point of tangency

PTS: 2
REF: 011205ge STA: G.G. 67
KEY: general
ANS:
The slope of $x+2 y=4$ is $m=\frac{-A}{B}=\frac{-1}{2}$. The slope of $4 y-2 x=12$ is $\frac{-A}{B}=\frac{2}{4}=\frac{1}{2}$. Since the slopes are neither equal nor opposite reciprocals, the lines are neither parallel nor perpendicular.

PTS: 2 REF: 061231ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines 405 ANS: 3

PTS: 2
REF: 011101ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: two tangents

406 ANS:
$(7,5) m_{A B}^{-}=\left(\frac{3+7}{2}, \frac{3+9}{2}\right)=(5,6) m_{B C}=\left(\frac{7+11}{2}, \frac{9+3}{2}\right)=(9,6)$

PTS: 2
REF: 081134ge STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
407 ANS: 1
$7 x+4=2(2 x+5) . \quad P M=2(2)+5=9$
$7 x+4=4 x+10$
$3 x=6$
$x=2$
PTS: 2
ANS: 1
REF: 011226ge
PTS: 2
STA: G.G. 43
REF: 011122ge
TOP: Centroid
TOP: Triangle Congruency
409 ANS:
30.

PTS: 2
REF: 011129ge
STA: G.G. 31
TOP: Isosceles Triangle Theorem
410 ANS:
$A^{\prime}(7,-4), B^{\prime}(7,-1) \cdot C^{\prime}(9,-4)$. The areas are equal because translations preserve distance.

PTS: 4
411 ANS: 1 TOP: Planes
412 ANS: 2
TOP: Volume

REF: 011235 ge
PTS: 2

PTS: 2
REF: 011215ge

TOP: Properties of Transformations
STA: G.G. 9
STA: G.G. 12

413 ANS:
$\angle B$ and $\angle C$ are right angles because perpendicular lines form right angles. $\angle B \cong \angle C$ because all right angles are congruent. $\angle A E B \cong \angle D E C$ because vertical angles are congruent. $\triangle A B E \cong \triangle D C E$ because of ASA. $\overline{A B} \cong \overline{D C}$ because CPCTC.

PTS: 4 REF: 061235ge STA: G.G. 27 TOP: Triangle Proofs
414 ANS: 2
The slope of $x+2 y=3$ is $m=\frac{-A}{B}=\frac{-1}{2} . m_{\perp}=2$.

	PTS: 2
415	ANS: 1
	TOP: Constructio
416	ANS: 4
	TOP: Planes
417	ANS:
	16.7. $\frac{x}{25}=\frac{12}{18}$
	$18 x=300$
	$x \approx 16.7$

PTS: 2 REF: 061133ge STA: G.G. 46 TOP: Side Splitter Theorem
418 ANS: 2
$M_{x}=\frac{7+(-3)}{2}=2 . M_{Y}=\frac{-1+3}{2}=1$.
PTS: 2 REF: 011106ge STA: G.G. 66 TOP: Midpoint
419 ANS:
$(5-2) 180=540 . \frac{540}{5}=108$ interior. $180-108=72$ exterior
PTS: 2
REF: 011131ge
STA: G.G. 37
REF: 081204ge
TOP: Interior and Exterior Angles of Polygons
ANS: 3
PTS: 2
STA: G.G. 59
TOP: Properties of Transformations
421 ANS: 4
PTS: 2
REF: 081106ge
STA: G.G. 17
TOP: Constructions
422 ANS: 3
$-5+3=-2 \quad 2+-4=-2$
PTS: 2 REF: 011107ge STA: G.G. 54 TOP: Translations
423 ANS:
$V=\pi r^{2} h=\pi(5)^{2} \cdot 7=175 \pi$
PTS: 2
REF: 081231ge
STA: G.G. 14
TOP: Volume

424 ANS:

No, $\angle K G H$ is not congruent to $\angle G K H$.

PTS: 2
REF: 081135ge
STA: G.G. 31
TOP: Isosceles Triangle Theorem
425 ANS: 3
$\frac{180-70}{2}=55$
PTS: 2
REF: 061205ge
STA: G.G. 52
TOP: Chords
426 ANS:

PTS: 2
REF: 011230ge
ANS: 4
PTS: 2
TOP: Arcs Determined by Angles
STA: G.G. 22
REF: 011124ge
KEY: inscribed
ANS: 2
$\frac{4 x+10}{2}=2 x+5$
PTS: 2
REF: 011103ge
ANS: 3
PTS: 2
STA: G.G. 42
REF: 011202ge
TOP: Midsegments
TOP: Centroid, Orthocenter, Incenter and Circumcenter

430 ANS:

PTS: 4
REF: 061137ge
STA: G.G. 70
TOP: Quadratic-Linear Systems
431 ANS: 1
$m=\frac{3}{2} \quad y=m x+b$
$2=\frac{3}{2}(1)+b$
$\frac{1}{2}=b$

PTS: 2
432 ANS: 4
TOP: Angle Proofs
433 ANS: 2

$$
x^{2}=3(x+18)
$$

$x^{2}-3 x-54=0$
$(x-9)(x+6)=0$

$$
x=9
$$

PTS: 2
REF: fall0817ge
KEY: tangent and secant
434 ANS: 4
PTS: 2
TOP: Angle Side Relationship
435 ANS: 1
$3 x+5+4 x-15+2 x+10=180 . \mathrm{m} \angle D=3(20)+5=65 . \mathrm{m} \angle E=4(20)-15=65$.

$$
\begin{aligned}
9 x & =180 \\
x & =20
\end{aligned}
$$

PTS: 2
REF: 061119ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles

436 ANS: 4
PTS: 2
TOP: Identifying Transformations
437 ANS: 2
PTS: 2
REF: 061103ge
STA: G.G. 60
REF: 081205ge
STA: G.G. 17
TOP: Constructions
438 ANS:

$$
\begin{aligned}
2 x-20 & =x+20 . \mathrm{m} \overparen{A B}=x+20=40+20=60 \\
x & =40
\end{aligned}
$$

PTS: 2
REF: 011229ge
STA: G.G. 52
TOP: Chords
439 ANS:

PTS: 4
440 ANS: 2
REF: 011135ge
PTS: 2
TOP: Properties of Transformations
441 ANS: 2
$m=\frac{-A}{B}=\frac{-20}{-2}=10 . m_{\perp}=-\frac{1}{10}$
PTS: 2 REF: 061219ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
442 ANS:

$$
A^{\prime}(5,-4), B^{\prime}(5,1), C^{\prime}(2,1), D^{\prime}(2,-6) ; A^{\prime \prime}(5,4), B^{\prime \prime}(5,-1), C^{\prime \prime}(2,-1), D^{\prime \prime}(2,6)
$$

PTS: 4
REF: 061236ge
STA: G.G. 58
TOP: Compositions of Transformations KEY: grids
443 ANS:
2 is not a prime number, false.

PTS: 2
444
ANS: 4

TOP: Similarity

REF: 081229ge
PTS: 2
KEY: basic

STA: G.G. 24
REF: 081216ge

TOP: Negations
STA: G.G. 45

445 ANS: 1
Parallel lines intercept congruent arcs.
PTS: 2 REF: 061105ge STA: G.G. 52 TOP: Chords
446 ANS: 3
PTS: 2
REF: 081218ge
STA: G.G. 1
TOP: Planes
447 ANS: 4
$d=\sqrt{(-5-3)^{2}+(4-(-6))^{2}}=\sqrt{64+100}=\sqrt{164}=\sqrt{4} \sqrt{41}=2 \sqrt{41}$
PTS: 2 REF: 011121ge STA: G.G. 67 TOP: Distance
KEY: general
448 ANS:

$x(x+2)=12 \cdot 2 . \overline{R T}=6+4=10 . y \cdot y=18 \cdot 8$

$$
\begin{array}{rlrl}
x^{2}+2 x-24 & =0 & y^{2} & =144 \\
(x+6)(x-4) & =0 & y & =12
\end{array}
$$

PTS: 4
REF: 061237ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: tangent and secant
449 ANS: 3
$x^{2}+7^{2}=(x+1)^{2} \quad x+1=25$
$x^{2}+49=x^{2}+2 x+1$

$$
48=2 x
$$

$$
24=x
$$

PTS: $2 \quad$ REF: 081127ge
STA: G.G. 48 TOP: Pythagorean Theorem
REF: 061201ge STA: G.G. 59
TOP: Properties of Transformations
451 ANS: 2
PTS: 2
TOP: Properties of Transformations
PTS: 2
REF: 081202ge STA: G.G. 55

TOP: Equations of Circles
PTS: 2
REF: 061210ge
STA: G.G. 71

TOP: Planes

454 ANS: 2

$$
\begin{aligned}
\frac{50+x}{2} & =34 \\
50+x & =68 \\
x & =18
\end{aligned}
$$

PTS: 2
REF: 011214ge STA: G.G. 51 TOP: Arcs Determined by Angles
KEY: inside circle

Geometry Regents at Random

Answer Section

455 ANS: 3
$m=\frac{-A}{B}=\frac{-3}{-2}=\frac{3}{2}$
PTS: 2 REF: 011324ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
456 ANS: 2
PTS: 2
REF: 081301ge
STA: G.G. 24
TOP: Statements
457 ANS: 2
Perimeter of $\triangle D E F$ is $5+8+11=24 \cdot \frac{5}{24}=\frac{x}{60}$

$$
\begin{aligned}
24 x & =300 \\
x & =12.5
\end{aligned}
$$

PTS: 2 REF: 011307ge STA: G.G. 45 TOP: Similarity
KEY: perimeter and area
458 ANS:
$12 x-4+180-6 x+6 x+7 x+13=360.16 y+1=\frac{12 y+1+18 y+6}{2}$

$$
\begin{array}{rlrl}
19 x+189 & =360 & 32 y+2 & =30 y+7 \\
19 x & =171 & 2 y & =5 \\
x & =9 & y & =\frac{5}{2}
\end{array}
$$

PTS: 4
REF: 081337ge
STA: G.G. 40
TOP: Trapezoids
459 ANS: 1
$\frac{70-20}{2}=25$
PTS: 2 REF: 011325ge STA: G.G. 51 TOP: Arcs Determined by Angles
KEY: outside circle
460 ANS: 2
$\sqrt{8^{2}+15^{2}}=17$
PTS: 2 REF: 061326ge STA: G.G. 39 TOP: Special Parallelograms
461 ANS: 3
$3 x+1+4 x-17+5 x-20=180.3(18)+1=55$

$$
\begin{array}{rlrl}
12 x-36 & =180 & 4(18)-17=55 \\
12 x & =216 & 5(18)-20=70 \\
x & =18 &
\end{array}
$$

PTS: 2 REF: 061308ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles

462 ANS: 4
TOP: Constructions
463 ANS:

PTS: 2
REF: 081334ge
PTS: 2
ANS: 2
TOP: Angle Side Relationship
465
ANS: 2
$2^{2}+3^{2} \neq 4^{2}$
PTS: 2
REF: 011316ge ANS: center: $(3,-4)$; radius: $\sqrt{10}$

PTS: 2
REF: 081333ge
STA: G.G. 73
TOP: Equations of Circles 467 ANS:
$m_{\overline{A B}}=\frac{4-1}{4-2}=\frac{3}{2} \cdot m_{B C}=-\frac{2}{3}$

PTS: 4

PTS: 2
REF: 011331ge
471 ANS: 2
PTS: 2
TOP: Angle Side Relationship

STA: G.G. 22
REF: 061321ge
TOP: Locus
STA: G.G. 34
REF: 081313ge STA: G.G. 19

STA:

472 ANS: 3

$$
\begin{array}{rlrl}
6 & =\frac{4+x}{2} . & 8 & =\frac{2+y}{2} . \\
4+x & =12 & 2+y & =16 \\
x & =8 & y & =14
\end{array}
$$

PTS: 2 REF: 011305ge STA: G.G. 66 TOP: Midpoint
473 ANS:

$S^{\prime \prime}(5,-3), W^{\prime \prime}(3,-4), A^{\prime \prime}(2,1)$, and $N^{\prime \prime}(4,2)$
PTS: 4
REF: 061335ge STA: G.G. 58
TOP: Compositions of Transformations
KEY: grids
474 ANS: 4
$2 x-8=x+2 . A E=10+2=12 . A C=2(A E)=2(12)=24$

$$
x=10
$$

PTS: 2
REF: 011327ge
STA: G.G. 39
TOP: Special Parallelograms
ANS:

$$
\begin{aligned}
2(y+10) & =4 y-20 . \overline{D F}=y+10=20+10=30 . \overline{O A}=\overline{O D}=\sqrt{16^{2}+30^{2}}=34 \\
2 y+20 & =4 y-20 \\
40 & =2 y \\
20 & =y
\end{aligned}
$$

PTS: 4 REF: 061336ge STA: G.G. 49 TOP: Chords
ANS:
$\triangle A B C, \overline{B D}$ bisects $\angle A B C, \overline{B D} \perp \overline{A C}$ (Given). $\angle C B D \cong \angle A B D$ (Definition of angle bisector). $\overline{B D} \cong \overline{B D}$ (Reflexive property). $\angle C D B$ and $\angle A D B$ are right angles (Definition of perpendicular). $\angle C D B \cong \angle A D B$ (All right angles are congruent). $\triangle C D B \cong \triangle A D B$ (SAS). $\overline{A B} \cong \overline{C B}$ (CPCTC).

PTS: 4 REF: 081335ge STA: G.G. 27 TOP: Triangle Proofs
477 ANS: 1
$8 \times 12=16 x$

$$
6=x
$$

PTS: 2
REF: 081328ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: two chords

478 ANS: 1 PTS: 2 REF: 081324ge STA: G.G. 74
TOP: Graphing Circles
479 ANS: 4
Distance is preserved after a rotation.
PTS: 2 REF: 081304ge STA: G.G. 55 TOP: Properties of Transformations
480 ANS: 1
If two prisms have equal heights and volume, the area of their bases is equal.
PTS: 2 REF: 081321ge STA: G.G. 11 TOP: Volume
481 ANS: 3
PTS: 2
REF: 081320ge
STA: G.G. 42
TOP: Midsegments
482 ANS: 3
$\frac{15}{18}=\frac{5}{6}$
PTS: 2
REF: 081317ge
STA: G.G. 45
TOP: Similarity
KEY: perimeter and area
483 ANS: 2
Parallel chords intercept congruent arcs. $\frac{360-(104+168)}{2}=44$
PTS: 2 REF: 011302ge STA: G.G. 52 TOP: Chords
484 ANS: 2
$\sqrt{(-2-4)^{2}+(-3-(-1))^{2}}=\sqrt{40}=\sqrt{4} \sqrt{10}=2 \sqrt{10}$
PTS: 2 REF: 011313ge STA: G.G. 39 TOP: Special Parallelograms
485 ANS: 3
PTS: 2
REF: 061220ge
STA: G.G. 74
TOP: Graphing Circles
486 ANS: 3
$x^{2}=2(2+10)$
$x^{2}=24$
$x=\sqrt{24}=\sqrt{4} \sqrt{6}=2 \sqrt{6}$
PTS: 2
REF: 081326ge
STA: G.G. 47
TOP: Similarity
KEY: leg
487 ANS: 4
$m_{A B}^{\overleftrightarrow{G}}=\frac{6-3}{7-5}=\frac{3}{2} \cdot m_{C D}^{\leftrightarrows}=\frac{4-0}{6-9}=\frac{4}{-3}$
PTS: 2
REF: 061318ge
STA: G.G. 63
TOP: Parallel and Perpendicular Lines

488 ANS: 2

$$
\begin{aligned}
(x-4)^{2}-2 & =-2 x+6 . \quad y=-2(4)+6=-2 \\
x^{2}-8 x+16-2 & =-2 x+6 \quad y=-2(2)+6=2 \\
x^{2}-6 x+8 & =0 \\
(x-4)(x-2) & =0 \\
x & =4,2
\end{aligned}
$$

PTS: 2
REF: 081319ge STA: G.G. 70
TOP: Quadratic-Linear Systems
489 ANS:

$$
\begin{aligned}
x^{2}-8 x & =5 x+30 . \mathrm{m} \angle C=4(15)-5=55 \\
x^{2}-13 x-30 & =0 \\
(x-15)(x+2) & =0 \\
x & =15
\end{aligned}
$$

PTS: 4
REF: 061337ge
STA: G.G. 45
TOP: Similarity
KEY: basic
490 ANS: 2
PTS: 2
REF: 081311ge
STA: G.G. 10
TOP: Solids
491 ANS: 4
$(x, y) \rightarrow(-x,-y)$
PTS: 2
ANS: 4
REF: 061304ge
STA: G.G. 54
REF: 081308ge
TOP: Rotations

TOP: Chords
PTS: 2
STA: G.G. 49

493 ANS:
$A^{\prime}(2,2), B^{\prime}(3,0), C(1,-1)$
PTS: 2
ANS: 2
The slope of $2 x+4 y=12$ is $m=\frac{-A}{B}=\frac{-2}{4}=-\frac{1}{2} . m_{\perp}=2$.
PTS: 2
495 ANS: 4
REF: 011310ge STA: G.G. 62
TOP: Locus
PTS: 2
REF: 061303ge
TOP: Parallel and Perpendicular Lines STA: G.G. 22
REF: 081329ge STA: G.G. 58
$=12$ is $m=\frac{-A}{B}=\frac{-2}{4}=-\frac{1}{2} \cdot m_{\perp}=2$.

496 ANS: 1
$V=\frac{4}{3} \pi r^{3}$
$44.6022=\frac{4}{3} \pi r^{3}$
$10.648 \approx r^{3}$
$2.2 \approx r$
PTS: 2 REF: 061317ge
STA: G.G. 16
REF: 011318ge
TOP: Volume and Surface Area
ANS: 4
PTS: 2
STA: G.G. 73
TOP: Equations of Circles
PTS: 2
REF: 061313ge
STA: G.G. 70
TOP: Quadratic-Linear Systems
ANS: 1
$\frac{180-52}{2}=64.180-(90+64)=26$
PTS: 2 REF: 011314ge

STA: G.G. 30
REF: 061315ge

TOP: Interior and Exterior Angles of Triangles
STA: G.G. 13

ANS: 2
PTS: 2
TOP: Classifying Solids
ANS: 4
$(n-2) 180-n\left(\frac{(n-2) 180}{n}\right)=180 n-360-180 n+180 n-360=180 n-720$.
$180(5)-720=180$
PTS: 2 REF: 081322ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons
502 ANS: 3
$120 \pi=\pi(12)(l)$

$$
10=l
$$

PTS: 2 REF: 081314ge STA: G.G. 15 TOP: Volume and Lateral Area
ANS: 2
$M_{x}=\frac{8+(-3)}{2}=2.5 . M_{Y}=\frac{-4+2}{2}=-1$.
PTS: 2
504 ANS: 1
$12(8)=x(6)$

$$
96=6 x
$$

$$
16=x
$$

PTS: 2
REF: 061312ge
STA: G.G. 66
TOP: Midpoint

KEY: two secants

505 ANS:

$$
A^{\prime \prime}(11,1), B^{\prime \prime}(3,7), C^{\prime \prime}(3,1)
$$

PTS: 4 REF: 011336ge STA: G.G. 58 TOP: Compositions of Transformations

ANS:

$x^{2}+12+11 x+5+13 x-17=180 . \mathrm{m} \angle A=6^{2}+12=48 . \angle B$ is the largest angle, so $\overline{A C}$ in the longest side.

$$
\begin{array}{rlrl}
x^{2}+24 x-180 & =0 & \mathrm{~m} \angle B=11(6)+5=71 \\
(x+30)(x-6) & =0 & \mathrm{~m} \angle C=13(6)-7=61 \\
x & =6 & &
\end{array}
$$

PTS: 4 REF: 011337ge STA: G.G. 34 TOP: Angle Side Relationship
507 ANS: 3
midpoint: $\left(\frac{6+8}{2}, \frac{8+4}{2}\right)=(7,6)$. slope: $\frac{8-4}{6-8}=\frac{4}{-2}=-2 ; m_{\perp}=\frac{1}{2} . \quad 6=\frac{1}{2}(7)+b$

$$
\begin{aligned}
& \frac{12}{2}=\frac{7}{2}+b \\
& \frac{5}{12}=b
\end{aligned}
$$

PTS: 2 REF: 081327ge STA: G.G. 68 TOP: Perpendicular Bisector
508 ANS:
$L=2 \pi r h=2 \pi \cdot 3 \cdot 7=42 \pi$

PTS: 2
509 ANS: 2 TOP: Locus
510 ANS: 2
TOP: Locus
511 ANS:

PTS: 2
512 ANS: 3
REF: 081330ge
PTS: 2
TOP: Identifying Transformations
513 ANS: $2 \quad$ PTS: 2
TOP: Constructions

STA: G.G. 17
REF: 011304ge
REF: 061305ge

TOP: Constructions
STA: G.G. 56
STA: G.G. 18

514 ANS: 3
$A B=8-4=4 \cdot B C=\sqrt{(-2-(-5))^{2}+(8-6)^{2}}=\sqrt{13} \cdot A C=\sqrt{(-2-(-5))^{2}+(4-6)^{2}}=\sqrt{13}$
PTS: 2 REF: 011328ge STA: G.G. 69 TOP: Triangles in the Coordinate Plane
515 ANS:
$M=\left(\frac{3+3}{2}, \frac{-1+5}{2}\right)=(3,2) . y=2$.

	PTS: 2	REF: 011334ge	STA:	G.G. 68	TOP: Perpendicular Bisector
516	ANS: 3	PTS: 2	REF: 081309ge	STA:	G.G. 29
	TOP: Triangle Congruency				
517	ANS: 1	PTS: 2	REF: 061325 ge	STA:	G.G. 74
	TOP: Graphing Circles				

518 ANS:
Rectangle $A B C D$ with points E and F on side $\overline{A B}$, segments $C E$ and $D F$ intersect at G, and $\angle A D G \cong \angle B C E$ are given. $\overline{A D} \cong \overline{B C}$ because opposite sides of a rectangle are congruent. $\angle A$ and $\angle B$ are right angles and congruent because all angles of a rectangle are right and congruent. $\triangle A D F \cong \triangle B C E$ by ASA. $\overline{A F} \cong \overline{B E}$ per CPCTC.
$\overline{E F} \cong \overline{F E}$ under the Reflexive Property. $\overline{A F}-\overline{E F} \cong \overline{B E}-\overline{F E}$ using the Subtraction Property of Segments.
$\overline{A E} \cong \overline{B F}$ because of the Definition of Segments.

$$
\begin{aligned}
& \text { PTS: } 6 \\
519 & \text { ANS: } 3 \\
& \text { TOP: Parallel } \\
520 & \text { ANS: } 3 \\
& 3 x-15=2(6) \\
& 3 x=27 \\
& x=9
\end{aligned}
$$

REF: 011338ge
STA: G.G. 27
REF: 061320ge
TOP: Quadrilateral Proofs
TOP: Parallel Lines and Transversals

PTS: 2 REF: 061311ge STA: G.G. 42 TOP: Midsegments
521 ANS:
$(n-2) 180=(8-2) 180=1080 . \frac{1080}{8}=135$.

PTS: 2
522
523
ANS: 3
ANS: 3

TOP:

REF: 061330ge
PTS: 2
PTS: 2
TOP: Equations of Circles

STA: G.G. 37
REF: 011309ge
REF: 061306ge STA: G.G. 71
STA: G.G. 20

TOP: Interior and Exterior Angles of Polygons

STA: G.G. 35

524 ANS: 2
$\sqrt{15^{2}-12^{2}}=9$
PTS: 2 REF: 081325ge STA: G.G. 50 TOP: Tangents
KEY: point of tangency
525 ANS: 4
$m=\frac{2}{3} \quad .2=-\frac{3}{2}(4)+b$
$m_{\perp}=-\frac{3}{2} \quad \begin{array}{ll}2=-6+b \\ 8 & =b\end{array}$
PTS: 2 REF: 011319ge STA: G.G. 64 TOP: Parallel and Perpendicular Lines
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.
PTS: 2 REF: 081307ge STA: G.G. 43 TOP: Centroid
527 ANS: 4
PTS: 2
REF: 081305ge STA: G.G. 71
TOP: Equations of Circles
528
ANS: $1 \quad$ PTS: 2
REF: 061314ge STA: G.G. 26
TOP: Converse and Biconditional
529
ANS:
$\sqrt{(-1-3)^{2}+(4-(-2))^{2}}=\sqrt{16+36}=\sqrt{52}=\sqrt{4} \sqrt{13}=2 \sqrt{13}$
PTS: 2 REF: 081331ge STA: G.G. 67 TOP: Distance

530 ANS:
$M\left(\frac{-7+-3}{2}, \frac{4+6}{2}\right)=M(-5,5) \cdot m_{M N}=\frac{5-3}{-5-0}=\frac{2}{-5}$. Since both opposite sides have equal slopes and are
$N\left(\frac{-3+3}{2}, \frac{6+0}{2}\right)=N(0,3) \quad m_{P Q}=\frac{-4--2}{2--3}=\frac{-2}{5}$
$P\left(\frac{3+1}{2}, \frac{0+-8}{2}\right)=P(2,-4) \quad m_{N A}=\frac{3--4}{0-2}=\frac{7}{-2}$
$Q\left(\frac{-7+1}{2}, \frac{4+-8}{2}\right)=Q(-3,-2) \quad m_{\overline{Q M}}=\frac{-2-5}{-3--5}=\frac{-7}{2}$
parallel, $M N P Q$ is a parallelogram. $\overline{M N}=\sqrt{(-5-0)^{2}+(5-3)^{2}}=\sqrt{29} \cdot \overline{M N}$ is not congruent to $\overline{N P}$, so $M N P Q$

$$
\overline{N A}=\sqrt{(0-2)^{2}+(3--4)^{2}}=\sqrt{53}
$$

is not a rhombus since not all sides are congruent.

PTS: 6 REF: 081338ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane
531 ANS: 3
$2 y=3 x-4 . \quad 1=\frac{3}{2}(6)+b$
$\begin{aligned} y=\frac{3}{2} x-2 \quad 1 & =9+b \\ -8 & =b\end{aligned}$
PTS: 2
REF: 061316ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines
532 ANS:
Distance is preserved after the reflection. $2 x+13=9 x-8$

$$
\begin{aligned}
21 & =7 x \\
3 & =x
\end{aligned}
$$

PTS: 2
REF: 011329ge
STA: G.G. 55
TOP: Properties of Transformations
ANS: 1
$x^{2}=3 \times 12$
$x=6$
PTS: 2
REF: 011308ge
STA: G.G. 47
TOP: Similarity
KEY: altitude
534 ANS: 2
PTS: 2
REF: 081102ge
STA: G.G. 29
TOP: Triangle Congruency

535 ANS:
$L=2 \pi r h=2 \pi \cdot 3 \cdot 5 \approx 94.25 . V=\pi r^{2} h=\pi(3)^{2}(5) \approx 141.37$
PTS: 4 REF: 011335ge STA: G.G. 14 TOP: Volume 536 ANS: 2
$\frac{(n-2) 180}{n}=120$.
$180 n-360=120 n$
$60 n=360$
$n=6$
PTS: 2
REF: 011326 ge
STA: G.G. 37
ANS: 3
PTS: 2
TOP: Equations of Circles
538 ANS: 1
PTS: 2
REF: 061309ge
REF: 011301ge
STA: G.G. 29
TOP: Triangle Congruency
539 ANS: 4 PTS: 2
TOP: Equations of Circles
540 ANS: 3
$x^{2}=3 \times 12 . \sqrt{6^{2}+3^{2}}=\sqrt{45}=\sqrt{9} \sqrt{5}=3 \sqrt{5}$
$x=6$
PTS: 2
REF: 061327ge
STA: G.G. 47
TOP: Similarity
KEY: altitude
541 ANS: 2
TOP: Arcs Determined by Angles
542 ANS: 3
TOP: Midsegments
543 ANS: 4
PTS: 2
REF: 061319ge STA: G.G. 73
TOP: Equations of Circles
544 ANS: 3

$$
\begin{aligned}
2(4 x+20)+2(3 x-15) & =360 . \quad \angle D=3(25)-15=60 \\
8 x+40+6 x-30 & =360 \\
14 x+10 & =360 \\
14 x & =350 \\
x & =25
\end{aligned}
$$

PTS: 2
545 ANS: 1 TOP: Planes
546 ANS: 1
TOP: Conditional Statements

REF: 011321ge STA: G.G. 40
PTS: 2
PTS: 2
REF: 061310ge
REF: 011320ge

TOP: Trapezoids
STA: G.G. 2
STA: G.G. 26

547 ANS:
$\Delta M A H, \overline{M H} \cong \overline{A H}$ and medians $\overline{A B}$ and $\overline{M T}$ are given. $\overline{M A} \cong \overline{A M}$ (reflexive property). $\triangle M A H$ is an isosceles triangle (definition of isosceles triangle). $\angle A M B \cong \angle M A T$ (isosceles triangle theorem). B is the midpoint of $\overline{M H}$ and T is the midpoint of $\overline{A H}$ (definition of median). $\mathrm{m} \overline{M B}=\frac{1}{2} \mathrm{~m} \overline{M H}$ and $\mathrm{m} \overline{A T}=\frac{1}{2} \mathrm{~m} \overline{A H}$ (definition of midpoint). $\overline{M B} \cong \overline{A T}$ (multiplication postulate). $\triangle M B A \cong \triangle A T M$ (SAS). $\angle M B A \cong \angle A T M$ (CPCTC).

548 ANS: 1 TOP: Planes
549 ANS: 4 TOP: Planes
550 ANS:

PTS: 2
ANS: 3
REF: 011333ge
STA: G.G. 19
REF: 081312ge
TOP: Constructions
STA: G.G. 72
TOP: Equations of Circles
552 ANS: 2
Isosceles or not, $\triangle R S V$ and $\triangle R S T$ have a common base, and since $\overline{R S}$ and $\overline{V T}$ are bases, congruent altitudes.
PTS: 2 REF: 061301ge STA: G.G. 40 TOP: Trapezoids
553 ANS:

$$
M^{\prime \prime}(1,-2), A^{\prime \prime}(6,-2), T^{\prime \prime}(5,-4), H^{\prime \prime}(3,-4)
$$

PTS: 4
REF: 081336ge STA: G.G. 58 TOP: Compositions of Transformations KEY: grids
(1) is true because of vertical angles. (3) and (4) are true because CPCTC.

PTS: 2 REF: 061302ge STA: G.G. 29 TOP: Triangle Congruency

555 ANS: 3
$25 \times 9 \times 12=15^{2} h$

$$
\begin{aligned}
2700 & =15^{2} h \\
12 & =h
\end{aligned}
$$

PTS: 2 REF: 061323ge STA: G.G. 11 TOP: Volume
ANS: 1
PTS: 2
REF: 011303ge
STA: G.G. 24
TOP: Statements
557 ANS: 4
$3 y+6=2 x \quad 2 y-3 x=6$

$$
\begin{array}{rlrl}
3 y & =2 x-6 & 2 y & =3 x+6 \\
y & =\frac{2}{3} x-2 & y & =\frac{3}{2} x+3 \\
m & =\frac{2}{3} & m & =\frac{3}{2}
\end{array}
$$

PTS: 2 REF: 081315ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines

PTS: 2
REF: 011330ge
STA: G.G. 50
TOP: Tangents
KEY: common tangency
559 ANS: 1
Parallel chords intercept congruent arcs. $\mathrm{m} \overparen{A C}=\mathrm{m} \overparen{B D} \cdot \frac{180-110}{2}=35$.

PTS: 2 REF: 081302ge STA: G.G. 52 TOP: Chords
560 ANS:
If $r=5$, then $r^{2}=25 .(x+3)^{2}+(y-2)^{2}=25$
PTS: 2 REF: 011332ge STA: G.G. 71 TOP: Equations of Circles
561 ANS: 4
$6 x=x+40+3 x+10 . \mathrm{m} \angle C A B=25+40=65$
$6 x=4 x+50$
$2 x=50$
$x=25$
PTS: 2 REF: 081310ge STA: G.G. 32 TOP: Exterior Angle Theorem

ANS:

PTS: 2
REF: 061333ge
STA: G.G. 23
TOP: Locus
563 ANS:

PTS: 2
REF: 061332ge
STA: G.G. 20
TOP: Constructions
564 ANS: 3
$x^{2}+5^{2}=25$

$$
x=0
$$

PTS: 2
REF: 011312ge
STA: G.G. 70
ANS:
$\sqrt{(7-3)^{2}+(-8-0)^{2}}=\sqrt{16+64}=\sqrt{80}=4 \sqrt{5}$
PTS: 2
REF: 061331ge
PTS: 2
STA: G.G. 69
REF: 061324ge
TOP: Similarity Proofs
ANS: 1
PTS: 2
REF: 061307ge
TOP: Properties of Transformations
ANS:

TOP: Quadratic-Linear Systems

TOP: Triangles in the Coordinate Plane
STA: G.G. 44

STA: G.G. 55
$A=2 B-15 \quad .2 B-15+B+2 B-15+B=180$
$C=A+B$
$6 B-30=180$
$C=2 B-15+B$

$$
\begin{aligned}
6 B & =210 \\
B & =35
\end{aligned}
$$

PTS: 2
ANS: 4
REF: 081332ge
PTS: 2
TOP: Converse and Biconditional

STA: G.G. 30
REF: 081318ge

TOP: Interior and Exterior Angles of Triangles STA: G.G. 26

ID: A

570 ANS: 4
PTS: 2
REF: 011306ge STA: G.G. 9
TOP: Planes

[^0]: ,

