JMAP
 REGENTS BY PERFORMANCE INDICATOR: TOPIC

NY Geometry Regents Exam Questions from Fall 2008 to August 2013 Sorted by PI: Topic
www.jmap.org

TABLE OF CONTENTS

TOPIC	P.I.: SUBTOPIC QUESTION NUMBER
LINEAR EQUATIONS	G.G.62-65: Parallel and Perpendicular Lines1-42 G.G.68: Perpendicular Bisector...43-47
SYSTEMS	G.G.70: Quadratic-Linear Systems.......................................48-60
TOOLS OF GEOMETRY	
ANGLES	G.G.35: Parallel Lines and Transversals...............................170-178
TRIANGLES	
POLYGONS	
CONICS	
MEASURING IN THE PLANE AND SPACE	G.G.11-16: Volume, Surface Area and Lateral Area..45-454 G.G.45, 47: Similarity
TRANSFORMATIONS	
LOGIC	

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

Geometry Regents Exam Questions by Performance Indicator: Topic

LINEAR EQUATIONS
 G.G.62: PARALLEL AND PERPENDICULAR LINES

1 What is the slope of a line perpendicular to the line whose equation is $5 x+3 y=8$?
$1 \frac{5}{3}$
$2 \quad \frac{3}{5}$
$3-\frac{3}{5}$
$4-\frac{5}{3}$

2 What is the slope of a line perpendicular to the line whose equation is $y=-\frac{2}{3} x-5$?
$1-\frac{3}{2}$
$2-\frac{2}{3}$
$3 \quad \frac{2}{3}$
$4 \quad \frac{3}{2}$

3 What is the slope of a line that is perpendicular to the line whose equation is $3 x+4 y=12$?
$1 \quad \frac{3}{4}$
$2-\frac{3}{4}$
$3 \quad \frac{4}{3}$
$4-\frac{4}{3}$

4 What is the slope of a line perpendicular to the line whose equation is $y=3 x+4$?
$1 \quad \frac{1}{3}$
$2-\frac{1}{3}$
33
$4-3$

5 What is the slope of a line perpendicular to the line whose equation is $2 y=-6 x+8$?
1 -3
$2 \quad \frac{1}{6}$
$3 \quad \frac{1}{3}$
$4-6$

6 What is the slope of a line that is perpendicular to the line whose equation is $3 x+5 y=4$?
$1-\frac{3}{5}$
$2 \quad \frac{3}{5}$
$3-\frac{5}{3}$
$4 \quad \frac{5}{3}$

7 What is the slope of a line that is perpendicular to the line represented by the equation $x+2 y=3$?
1 -2
22
$3-\frac{1}{2}$
$4 \quad \frac{1}{2}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

8 What is the slope of a line perpendicular to the line whose equation is $20 x-2 y=6$?
1 -10
$2-\frac{1}{10}$
310
$4 \frac{1}{10}$

9 What is the slope of the line perpendicular to the line represented by the equation $2 x+4 y=12$?
1 -2
22
$3-\frac{1}{2}$
$4 \quad \frac{1}{2}$

10 The slope of line ℓ is $-\frac{1}{3}$. What is an equation of a line that is perpendicular to line ℓ ?
$1 \quad y+2=\frac{1}{3} x$
$2-2 x+6=6 y$
$3 \quad 9 x-3 y=27$
$43 x+y=0$

11 Find the slope of a line perpendicular to the line whose equation is $2 y-6 x=4$.

G.G.63: PARALLEL AND PERPENDICULAR LINES

12 The lines $3 y+1=6 x+4$ and $2 y+1=x-9$ are 1 parallel
2 perpendicular
3 the same line
4 neither parallel nor perpendicular

13 The lines represented by the equations $y+\frac{1}{2} x=4$
and $3 x+6 y=12$ are
1 the same line
2 parallel
3 perpendicular
4 neither parallel nor perpendicular

14 The equation of line k is $y=\frac{1}{3} x-2$. The equation of line m is $-2 x+6 y=18$. Lines k and m are
1 parallel
2 perpendicular
3 the same line
4 neither parallel nor perpendicular

15 The two lines represented by the equations below are graphed on a coordinate plane.

$$
\begin{gathered}
x+6 y=12 \\
3(x-2)=-y-4
\end{gathered}
$$

Which statement best describes the two lines?
1 The lines are parallel.
2 The lines are the same line.
3 The lines are perpendicular.
4 The lines intersect at an angle other than 90°.

16 A student wrote the following equations:

$$
\begin{aligned}
& 3 y+6=2 x \\
& 2 y-3 x=6
\end{aligned}
$$

The lines represented by these equations are
1 parallel
2 the same line
3 perpendicular
4 intersecting, but not perpendicular

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

17 Points $A(5,3)$ and $B(7,6)$ lie on $\overleftrightarrow{A B}$. Points $C(6,4)$ and $D(9,0)$ lie on $\overleftrightarrow{C D}$. Which statement is true?
$1 \overleftrightarrow{A B} \| \overleftrightarrow{C D}$
$2 \overleftrightarrow{A B} \perp \overleftrightarrow{C D}$
$3 \quad \overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ are the same line
$4 \quad \overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ intersect, but are not perpendicular.

18 Determine whether the two lines represented by the equations $y=2 x+3$ and $2 y+x=6$ are parallel, perpendicular, or neither. Justify your response.

19 Two lines are represented by the equations $x+2 y=4$ and $4 y-2 x=12$. Determine whether these lines are parallel, perpendicular, or neither. Justify your answer.

20 What is the equation of a line that is parallel to the line whose equation is $y=x+2$?
$1 \quad x+y=5$
$2 \quad 2 x+y=-2$
3 $y-x=-1$
$4 y-2 x=3$

21 Which equation represents a line parallel to the line whose equation is $2 y-5 x=10$?
$15 y-2 x=25$
$25 y+2 x=10$
$3 \quad 4 y-10 x=12$
$42 y+10 x=8$

22 Which equation represents a line that is parallel to the line whose equation is $3 x-2 y=7$?
$1 \quad y=-\frac{3}{2} x+5$
$2 y=-\frac{2}{3} x+4$
$3 y=\frac{3}{2} x-5$
$4 \quad y=\frac{2}{3} x-4$

23 Two lines are represented by the equations $-\frac{1}{2} y=6 x+10$ and $y=m x$. For which value of m will the lines be parallel?

1	-12
2	-3
3	3
4	12

24 Which equation represents a line perpendicular to the line whose equation is $2 x+3 y=12$?
$16 y=-4 x+12$
$2 \quad 2 y=3 x+6$
$32 y=-3 x+6$
$4 \quad 3 y=-2 x+12$

G.G.64: PARALLEL AND PERPENDICULAR

 LINES25 What is an equation of the line that passes through the point $(-2,5)$ and is perpendicular to the line whose equation is $y=\frac{1}{2} x+5$?

1. $y=2 x+1$
$2 y=-2 x+1$
$3 y=2 x+9$
$4 y=-2 x-9$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

26 What is an equation of the line that contains the point $(3,-1)$ and is perpendicular to the line whose equation is $y=-3 x+2$?
$1 y=-3 x+8$
$2 y=-3 x$
$3 y=\frac{1}{3} x$
$4 \quad y=\frac{1}{3} x-2$

27 What is an equation of the line that is perpendicular to the line whose equation is $y=\frac{3}{5} x-2$ and that passes through the point $(3,-6)$?
$1 y=\frac{5}{3} x-11$
$2 y=-\frac{5}{3} x+11$
$3 y=-\frac{5}{3} x-1$
$4 y=\frac{5}{3} x+1$

28 What is the equation of the line that passes through the point $(-9,6)$ and is perpendicular to the line

$$
y=3 x-5 ?
$$

$1 y=3 x+21$
$2 y=-\frac{1}{3} x-3$
$3 y=3 x+33$
$4 y=-\frac{1}{3} x+3$

29 Which equation represents the line that is perpendicular to $2 y=x+2$ and passes through the point $(4,3)$?
$1 \quad y=\frac{1}{2} x-5$
$2 y=\frac{1}{2} x+1$
$3 y=-2 x+11$
$4 y=-2 x-5$

30 The equation of a line is $y=\frac{2}{3} x+5$. What is an equation of the line that is perpendicular to the given line and that passes through the point $(4,2)$?
$1 \quad y=\frac{2}{3} x-\frac{2}{3}$
$2 y=\frac{3}{2} x-4$
$3 y=-\frac{3}{2} x+7$
$4 \quad y=-\frac{3}{2} x+8$

31 Find an equation of the line passing through the point $(6,5)$ and perpendicular to the line whose equation is $2 y+3 x=6$.

G.G.65: PARALLEL AND PERPENDICULAR LINES

32 What is the equation of a line that passes through the point $(-3,-11)$ and is parallel to the line whose equation is $2 x-y=4$?
$1 y=2 x+5$
$2 y=2 x-5$
$3 y=\frac{1}{2} x+\frac{25}{2}$
$4 y=-\frac{1}{2} x-\frac{25}{2}$

33 What is an equation of the line that passes through the point $(7,3)$ and is parallel to the line $4 x+2 y=10$?
$1 \quad y=\frac{1}{2} x-\frac{1}{2}$
$2 y=-\frac{1}{2} x+\frac{13}{2}$
$3 y=2 x-11$
$4 y=-2 x+17$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

34 What is an equation of the line that passes through the point $(-2,3)$ and is parallel to the line whose equation is $y=\frac{3}{2} x-4$?
$1 y=\frac{-2}{3} x$
$2 y=\frac{-2}{3} x+\frac{5}{3}$
$3 y=\frac{3}{2} x$
$4 \quad y=\frac{3}{2} x+6$

35 Which line is parallel to the line whose equation is
$4 x+3 y=7$ and also passes through the point $(-5,2)$?
$1 \quad 4 x+3 y=-26$
$2 \quad 4 x+3 y=-14$
$3 \quad 3 x+4 y=-7$
$43 x+4 y=14$

36 Which equation represents the line parallel to the line whose equation is $4 x+2 y=14$ and passing through the point $(2,2)$?
$1 \quad y=-2 x$
$2 y=-2 x+6$
$3 y=\frac{1}{2} x$
$4 y=\frac{1}{2} x+1$

37 What is the equation of a line passing through $(2,-1)$ and parallel to the line represented by the equation $y=2 x+1$?
$1 y=-\frac{1}{2} x$
$2 y=-\frac{1}{2} x+1$
$3 y=2 x-5$
$4 y=2 x-1$

38 An equation of the line that passes through $(2,-1)$ and is parallel to the line $2 y+3 x=8$ is
$1 \quad y=\frac{3}{2} x-4$
$2 y=\frac{3}{2} x+4$
$3 y=-\frac{3}{2} x-2$
$4 y=-\frac{3}{2} x+2$

39 Which equation represents a line that is parallel to the line whose equation is $y=\frac{3}{2} x-3$ and passes through the point $(1,2)$?
$1 \quad y=\frac{3}{2} x+\frac{1}{2}$
$2 y=\frac{2}{3} x+\frac{4}{3}$
$3 y=\frac{3}{2} x-2$
$4 y=-\frac{2}{3} x+\frac{8}{3}$

40 What is the equation of a line passing through the point $(6,1)$ and parallel to the line whose equation is $3 x=2 y+4$?
$1 \quad y=-\frac{2}{3} x+5$
$2 y=-\frac{2}{3} x-3$
$3 y=\frac{3}{2} x-8$
$4 \quad y=\frac{3}{2} x-5$

41 Find an equation of the line passing through the point $(5,4)$ and parallel to the line whose equation is $2 x+y=3$.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

42 Write an equation of the line that passes through the point $(6,-5)$ and is parallel to the line whose equation is $2 x-3 y=11$.

G.G.68: PERPENDICULAR BISECTOR

43 Write an equation of the perpendicular bisector of the line segment whose endpoints are $(-1,1)$ and $(7,-5)$. [The use of the grid below is optional]

44 Write an equation of the line that is the perpendicular bisector of the line segment having endpoints $(3,-1)$ and $(3,5)$. [The use of the grid below is optional]

45 The coordinates of the endpoints of $\overline{A B}$ are $A(0,0)$ and $B(0,6)$. The equation of the perpendicular bisector of $\overline{A B}$ is
$1 x=0$
$2 x=3$
$3 y=0$
$4 y=3$

46 Which equation represents the perpendicular bisector of $\overline{A B}$ whose endpoints are $A(8,2)$ and $B(0,6)$?
$1 y=2 x-4$
$2 y=-\frac{1}{2} x+2$
$3 y=-\frac{1}{2} x+6$
$4 y=2 x-12$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

47 Triangle $A B C$ has vertices $A(0,0), B(6,8)$, and $C(8,4)$. Which equation represents the perpendicular bisector of $\overline{B C}$?
$1 y=2 x-6$
$2 y=-2 x+4$
$3 y=\frac{1}{2} x+\frac{5}{2}$
$4 y=-\frac{1}{2} x+\frac{19}{2}$

SYSTEMS

G.G.70: QUADRATIC-LINEAR SYSTEMS

48 Which graph could be used to find the solution to the following system of equations?

$$
\begin{gathered}
y=(x+3)^{2}-1 \\
x+y=2
\end{gathered}
$$

1

2

3

4

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

49 Which graph could be used to find the solution to the following system of equations?

1

50 Given the system of equations: $y=x^{2}-4 x$

$$
x=4
$$

The number of points of intersection is
$1 \quad 1$
22
33
40

51 Given: $y=\frac{1}{4} x-3$

$$
y=x^{2}+8 x+12
$$

In which quadrant will the graphs of the given equations intersect?

1	I
2	II
3	III
4	IV

52 Given the equations: $y=x^{2}-6 x+10$

$$
y+x=4
$$

What is the solution to the given system of equations?
$1(2,3)$
$2(3,2)$
3 (2,2) and $(1,3)$
$4(2,2)$ and $(3,1)$

53 What is the solution of the following system of equations?

$$
\begin{aligned}
& y=(x+3)^{2}-4 \\
& y=2 x+5
\end{aligned}
$$

$1 \quad(0,-4)$
$2(-4,0)$
$3(-4,-3)$ and $(0,5)$
$4(-3,-4)$ and $(5,0)$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

54 When solved graphically, what is the solution to the following system of equations?

$$
\begin{gathered}
y=x^{2}-4 x+6 \\
y=x+2
\end{gathered}
$$

$1(1,4)$
$2(4,6)$
$3(1,3)$ and $(4,6)$
$4(3,1)$ and $(6,4)$

55 The equations $x^{2}+y^{2}=25$ and $y=5$ are graphed on a set of axes. What is the solution of this system?
1 (0,0)
$2(5,0)$
$3(0,5)$
$4(5,5)$

56 When the system of equations $y+2=(x-4)^{2}$ and $2 x+y-6=0$ is solved graphically, the solution is $1 \quad(-4,-2)$ and $(-2,2)$
$2(4,-2)$ and $(2,2)$
$3(-4,2)$ and $(-6,6)$
$4(4,2)$ and $(6,6)$

57 On the set of axes below, solve the following system of equations graphically for all values of x and y.

$$
\begin{gathered}
y=(x-2)^{2}+4 \\
4 x+2 y=14
\end{gathered}
$$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

58 Solve the following system of equations graphically.

$$
\begin{gathered}
2 x^{2}-4 x=y+1 \\
x+y=1
\end{gathered}
$$

59 On the set of axes below, solve the system of equations graphically and state the coordinates of all points in the solution.

$$
\begin{gathered}
y=(x-2)^{2}-3 \\
2 y+16=4 x
\end{gathered}
$$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

60 On the set of axes below, solve the following system of equations graphically and state the coordinates of all points in the solution.

$$
\begin{gathered}
(x+3)^{2}+(y-2)^{2}=25 \\
2 y+4=-x
\end{gathered}
$$

TOOLS OF GEOMETRY
G.G.66: MIDPOINT

61 Square $L M N O$ is shown in the diagram below.

What are the coordinates of the midpoint of diagonal $\overline{L N}$?
$1 \quad\left(4 \frac{1}{2},-2 \frac{1}{2}\right)$
$2\left(-3 \frac{1}{2}, 3 \frac{1}{2}\right)$
$3\left(-2 \frac{1}{2}, 3 \frac{1}{2}\right)$
$4 \quad\left(-2 \frac{1}{2}, 4 \frac{1}{2}\right)$

62 Line segment $A B$ has endpoints $A(2,-3)$ and $B(-4,6)$. What are the coordinates of the midpoint of $\overline{A B}$?
$1(-2,3)$
$2\left(-1,1 \frac{1}{2}\right)$
$3(-1,3)$
$4 \quad\left(3,4 \frac{1}{2}\right)$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

63 The endpoints of $\overline{C D}$ are $C(-2,-4)$ and $D(6,2)$.
What are the coordinates of the midpoint of $\overline{C D}$?
1 (2,3)
$2(2,-1)$
$3(4,-2)$
$4(4,3)$

64 A line segment has endpoints $A(7,-1)$ and $B(-3,3)$.
What are the coordinates of the midpoint of $\overline{A B}$?
1 (1,2)
$2(2,1)$
$3(-5,2)$
$4(5,-2)$

65 What are the coordinates of the center of a circle if the endpoints of its diameter are $A(8,-4)$ and $B(-3,2)$?
$1(2.5,1)$
$2(2.5,-1)$
$3(5.5,-3)$
$4(5.5,3)$

66 If a line segment has endpoints $A(3 x+5,3 y)$ and $B(x-1,-y)$, what are the coordinates of the midpoint of $\overline{A B}$?
$1(x+3,2 y)$
$2(2 x+2, y)$
$3(2 x+3, y)$
$4(4 x+4,2 y)$

67 In the diagram below of circle $C, \overline{Q R}$ is a diameter, and $Q(1,8)$ and $C(3.5,2)$ are points on a coordinate plane. Find and state the coordinates of point R.

68 In circle O, diameter $\overline{R S}$ has endpoints $R(3 a, 2 b-1)$ and $S(a-6,4 b+5)$. Find the coordinates of point O, in terms of a and b. Express your answer in simplest form.

69 Segment $A B$ is the diameter of circle M. The coordinates of A are $(-4,3)$. The coordinates of M are $(1,5)$. What are the coordinates of B ?
$1(6,7)$
$2(5,8)$
$3(-3,8)$
$4(-5,2)$

70 Point M is the midpoint of $\overline{A B}$. If the coordinates of A are $(-3,6)$ and the coordinates of M are $(-5,2)$, what are the coordinates of B ?
$1(1,2)$
$2(7,10)$
$3(-4,4)$
$4(-7,-2)$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

71 Line segment $A B$ is a diameter of circle O whose center has coordinates $(6,8)$. What are the coordinates of point B if the coordinates of point A are $(4,2)$?
$1(1,3)$
$2(5,5)$
$3(8,14)$
$4(10,10)$

G.G.67: DISTANCE

72 If the endpoints of $\overline{A B}$ are $A(-4,5)$ and $B(2,-5)$, what is the length of $\overline{A B}$?
$12 \sqrt{34}$
22
$3 \sqrt{61}$
48

73 What is the distance between the points $(-3,2)$ and $(1,0)$?
$1 \quad 2 \sqrt{2}$
$2 \quad 2 \sqrt{3}$
$3 \quad 5 \sqrt{2}$
$4 \quad 2 \sqrt{5}$

74 What is the length, to the nearest tenth, of the line segment joining the points $(-4,2)$ and $(146,52)$?
$1 \quad 141.4$
$2 \quad 150.5$
3151.9
$4 \quad 158.1$

75 What is the length of the line segment with endpoints $(-6,4)$ and $(2,-5)$?
$1 \sqrt{13}$
$2 \quad \sqrt{17}$
$3 \sqrt{72}$
$4 \sqrt{145}$

76 What is the length of the line segment whose endpoints are $A(-1,9)$ and $B(7,4)$?
$1 \sqrt{61}$
$2 \sqrt{89}$
$3 \sqrt{205}$
$4 \sqrt{233}$

77 What is the length of the line segment whose endpoints are $(1,-4)$ and $(9,2)$?
15
$2 \quad 2 \sqrt{17}$
310
$4 \quad 2 \sqrt{26}$

78 A line segment has endpoints $(4,7)$ and $(1,11)$.
What is the length of the segment?
15
27
316
425

79 What is the length of $\overline{A B}$ with endpoints $A(-1,0)$ and $B(4,-3)$?
$1 \quad \sqrt{6}$
$2 \sqrt{18}$
$3 \sqrt{34}$
$4 \quad \sqrt{50}$

80 In circle O, a diameter has endpoints $(-5,4)$ and $(3,-6)$. What is the length of the diameter?
$1 \sqrt{2}$
$2 \quad 2 \sqrt{2}$
$3 \sqrt{10}$
$4 \quad 2 \sqrt{41}$

81 The endpoints of $\overline{P Q}$ are $P(-3,1)$ and $Q(4,25)$. Find the length of $\overline{P Q}$.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

82 The coordinates of the endpoints of $\overline{F G}$ are $(-4,3)$ and (2,5). Find the length of $\overline{F G}$ in simplest radical form.

83 Find, in simplest radical form, the length of the line segment with endpoints whose coordinates are $(-1,4)$ and $(3,-2)$.

G.G.1: PLANES

84 Lines k_{1} and k_{2} intersect at point E. Line m is perpendicular to lines k_{1} and k_{2} at point E.

Which statement is always true?
1 Lines k_{1} and k_{2} are perpendicular.
2 Line m is parallel to the plane determined by lines k_{1} and k_{2}.
3 Line m is perpendicular to the plane determined by lines k_{1} and k_{2}.
4 Line m is coplanar with lines k_{1} and k_{2}.

85 As shown in the diagram below, $\overline{F D}$ and $\overline{C B}$ intersect at point A and $\overline{E T}$ is perpendicular to both $\overline{F D}$ and $\overline{C B}$ at A.

Which statement is not true?
$1 \overline{E T}$ is perpendicular to plane $B A D$.
$2 \overline{E T}$ is perpendicular to plane $F A B$.
$3 \overline{E T}$ is perpendicular to plane $C A D$.
$4 E T$ is perpendicular to plane $B A T$.

86 Lines j and k intersect at point P. Line m is drawn so that it is perpendicular to lines j and k at point P. Which statement is correct?
$1 \quad$ Lines j and k are in perpendicular planes.
2 Line m is in the same plane as lines j and k.
3 Line m is parallel to the plane containing lines j and k.
4 Line m is perpendicular to the plane containing lines j and k.

87 In plane \mathscr{P}, lines m and n intersect at point A. If line k is perpendicular to line m and line n at point A, then line k is
1 contained in plane P
2 parallel to plane \mathscr{P}
3 perpendicular to plane P
4 skew to plane \mathscr{P}

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

88 Lines m and n intersect at point A. Line k is perpendicular to both lines m and n at point A. Which statement must be true?
1 Lines m, n, and k are in the same plane.
2 Lines m and n are in two different planes.
3 Lines m and n are perpendicular to each other.
4 Line k is perpendicular to the plane containing lines m and n.

89 Lines a and b intersect at point P. Line c passes through P and is perpendicular to the plane containing lines a and b. Which statement must be true?
1 Lines a, b, and c are coplanar.
2 Line a is perpendicular to line b.
3 Line c is perpendicular to both line a and line b.

4 Line c is perpendicular to line a or line b, but not both.

G.G.2: PLANES

90 Point P is on line m. What is the total number of planes that are perpendicular to line m and pass through point P ?
11
22
30
4 infinite

91 Point P lies on line m. Point P is also included in distinct planes Q, \mathcal{R}, S, and \mathcal{T}. At most, how many of these planes could be perpendicular to line m ?
$1 \quad 1$
22
33
44

92 Point A is on line m. How many distinct planes will be perpendicular to line m and pass through point A ?
1 one
2 two
3 zero
4 infinite

G.G.3: PLANES

93 Through a given point, P, on a plane, how many lines can be drawn that are perpendicular to that plane?
11
22
3 more than 2
4 none

94 Point A is not contained in plane \mathscr{B}. How many lines can be drawn through point A that will be perpendicular to plane \mathscr{B} ?
1 one
2 two
3 zero
4 infinite

95 Point A lies in plane \mathcal{B}. How many lines can be drawn perpendicular to plane \mathcal{B} through point A ?
1 one
2 two
3 zero
4 infinite

G.G.4: PLANES

96 If two different lines are perpendicular to the same plane, they are
1 collinear
2 coplanar
3 congruent
4 consecutive

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.5: PLANES

97 As shown in the diagram below, $\overline{F J}$ is contained in plane $\mathrm{R}, \overline{B C}$ and $\overline{D E}$ are contained in plane S , and $\overline{F J}, \overline{B C}$, and $\overline{D E}$ intersect at A.

Which fact is not sufficient to show that planes R and S are perpendicular?
$1 \overline{F A} \perp \overline{D E}$
$2 \overline{A D} \perp \overline{A F}$
$3 \overline{B C} \perp \overline{F J}$
$4 \quad \overline{D E} \perp \overline{B C}$

98 If $\overleftrightarrow{A B}$ is contained in plane P, and $\overleftrightarrow{A B}$ is perpendicular to plane \mathbb{R}, which statement is true?
$1 \overleftrightarrow{A B}$ is parallel to plane R
2 Plane \mathbb{P} is parallel to plane \mathbb{R}.
$3 \overleftrightarrow{A B}$ is perpendicular to plane \mathscr{P}.
4 Plane \mathscr{P} is perpendicular to plane \mathbb{R}.

G.G.7: PLANES

99 In the diagram below, line k is perpendicular to plane P at point T.

Which statement is true?
1 Any point in plane \mathscr{P} also will be on line k.
2 Only one line in plane \mathscr{P} will intersect line k.
3 All planes that intersect plane \mathscr{P} will pass through T.
4 Any plane containing line k is perpendicular to plane P.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

100 In the diagram below, $\overleftrightarrow{A B}$ is perpendicular to plane $A E F G$.

Which plane must be perpendicular to plane
$A E F G$?
1 ABCE
2 BCDH
3 CDFE
4 HDFG

G.G.8: PLANES

101 In three-dimensional space, two planes are parallel and a third plane intersects both of the parallel planes. The intersection of the planes is a
1 plane
2 point
3 pair of parallel lines
4 pair of intersecting lines

102 Plane \mathcal{A} is parallel to plane \mathcal{B}. Plane C intersects plane \mathcal{A} in line m and intersects plane \mathcal{B} in line n. Lines m and n are
1 intersecting
2 parallel
3 perpendicular
4 skew

G.G.9: PLANES

103 As shown in the diagram below, $\overleftrightarrow{E F}$ intersects planes \mathscr{P}, Q, and \mathcal{R}.

If $\overleftrightarrow{E F}$ is perpendicular to planes \mathscr{P} and \mathbb{R}, which statement must be true?
1 Plane \mathscr{P} is perpendicular to plane Q.
2 Plane R is perpendicular to plane \mathscr{P}.
3 Plane \mathscr{P} is parallel to plane Q.
4 Plane \mathbb{R} is parallel to plane \mathscr{P}.

104 Line k is drawn so that it is perpendicular to two distinct planes, P and R. What must be true about planes P and R ?
$1 \quad$ Planes P and R are skew.
$2 \quad$ Planes P and R are parallel.
3 Planes P and R are perpendicular.
$4 \quad$ Plane P intersects plane R but is not perpendicular to plane R.

105 A support beam between the floor and ceiling of a house forms a 90° angle with the floor. The builder wants to make sure that the floor and ceiling are parallel. Which angle should the support beam form with the ceiling?
145°
260°
390°
4180°

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

106 Plane \mathcal{R} is perpendicular to line k and plane \mathscr{D} is perpendicular to line k. Which statement is correct?
1 Plane \mathcal{R} is perpendicular to plane \mathcal{D}.
2 Plane \mathcal{R} is parallel to plane \mathcal{D}.
3 Plane \mathbb{R} intersects plane \mathscr{D}.
4 Plane \mathbb{R} bisects plane \mathcal{D}.

107 If two distinct planes, \mathcal{A} and \mathscr{B}, are perpendicular to line c, then which statement is true?
$1 \quad$ Planes \mathcal{A} and \mathscr{B} are parallel to each other.
2 Planes \mathcal{A} and \mathscr{B} are perpendicular to each other.
3 The intersection of planes \mathcal{A} and \mathscr{B} is a line parallel to line c.
4 The intersection of planes \mathcal{A} and \mathscr{B} is a line perpendicular to line c.

108 Plane \mathcal{A} and plane \mathcal{B} are two distinct planes that are both perpendicular to line ℓ. Which statement about planes \mathcal{A} and \mathcal{B} is true?
1 Planes \mathcal{A} and \mathscr{B} have a common edge, which forms a line.
2 Planes \mathcal{A} and \mathscr{B} are perpendicular to each other.
3 Planes \mathcal{A} and \mathscr{B} intersect each other at exactly one point.
$4 \quad$ Planes \mathcal{A} and \mathscr{B} are parallel to each other.

109 If line ℓ is perpendicular to distinct planes \mathscr{P} and Q, then planes \mathcal{P} and Q
1 are parallel
2 contain line ℓ
3 are perpendicular
4 intersect, but are not perpendicular

G.G.10: SOLIDS

110 The figure in the diagram below is a triangular prism.

Which statement must be true?
$1 \overline{D E} \cong \overline{A B}$
$2 \overline{A D} \cong \overline{B C}$
$3 \overline{A D} \| \overline{C E}$
$4 \overline{D E} \| \overline{B C}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

111 The diagram below shows a right pentagonal prism.

Which statement is always true?
$\begin{array}{ll}1 & \overline{B C} \| \overline{E D} \\ 2 & \overline{F G} \| \overline{C D} \\ 3 & \overline{F J} \| \overline{I H} \\ 4 & \overline{G B} \| \overline{H C}\end{array}$

112 The diagram below shows a rectangular prism.

Which pair of edges are segments of lines that are coplanar?
$1 \quad \overline{A B}$ and $\overline{D H}$
$2 \overline{A E}$ and $\overline{D C}$
$3 \overline{B C}$ and $\overline{E H}$
$4 \overline{C G}$ and $\overline{E F}$

113 The diagram below represents a rectangular solid.

Which statement must be true?
$1 \overline{E H}$ and $\overline{B C}$ are coplanar
$2 \overline{F G}$ and $\overline{A B}$ are coplanar
$3 \overline{E H}$ and $\overline{A D}$ are skew
$4 \quad \overline{F G}$ and $\overline{C G}$ are skew

114 The bases of a right triangular prism are $\triangle A B C$ and $\triangle D E F$. Angles A and D are right angles, $A B=6$, $A C=8$, and $A D=12$. What is the length of edge $\overline{B E}$?
110
$2 \quad 12$
$3 \quad 14$
$4 \quad 16$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.13: SOLIDS

115 As shown in the diagram below, a right pyramid has a square base, $A B C D$, and $\overline{E F}$ is the slant height.

Which statement is not true?
$1 \overline{E A} \cong \overline{E C}$
$2 \overline{E B} \cong \overline{E F}$
$3 \triangle A E B \cong \triangle B E C$
$4 \Delta C E D$ is isosceles

116 The lateral faces of a regular pyramid are composed of
1 squares
2 rectangles
3 congruent right triangles
4 congruent isosceles triangles

G.G.17: CONSTRUCTIONS

117 Which illustration shows the correct construction of an angle bisector?

118 The diagram below shows the construction of the bisector of $\angle A B C$.

Which statement is not true?
$1 \mathrm{~m} \angle E B F=\frac{1}{2} \mathrm{~m} \angle A B C$
$2 \mathrm{~m} \angle D B F=\frac{1}{2} \mathrm{~m} \angle A B C$
$3 \mathrm{~m} \angle E B F=\mathrm{m} \angle A B C$
$4 \mathrm{~m} \angle D B F=\mathrm{m} \angle E B F$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

119 Based on the construction below, which statement must be true?

$1 \mathrm{~m} \angle A B D=\frac{1}{2} \mathrm{~m} \angle C B D$
$2 \mathrm{~m} \angle A B D=\mathrm{m} \angle C B D$
$3 \mathrm{~m} \angle A B D=\mathrm{m} \angle A B C$
$4 \mathrm{~m} \angle C B D=\frac{1}{2} \mathrm{~m} \angle A B D$

120 .A straightedge and compass were used to create the construction below. Arc $E F$ was drawn from point B, and arcs with equal radii were drawn from E and F.

Which statement is false?
$1 \mathrm{~m} \angle A B D=\mathrm{m} \angle D B C$
$2 \quad \frac{1}{2}(\mathrm{~m} \angle A B C)=\mathrm{m} \angle A B D$
$32(\mathrm{~m} \angle D B C)=\mathrm{m} \angle A B C$
$4 \quad 2(\mathrm{~m} \angle A B C)=\mathrm{m} \angle C B D$

121 The diagram below shows the construction of the perpendicular bisector of $\overline{A B}$.

Which statement is not true?
$1 A C=C B$
$2 C B=\frac{1}{2} A B$
$3 A C=2 A B$
$4 A C+C B=A B$

122 Using a compass and straightedge, construct the bisector of the angle shown below. [Leave all construction marks.]

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

123 Using a compass and straightedge, construct the angle bisector of $\angle A B C$ shown below. [Leave all construction marks.]

124 On the diagram below, use a compass and straightedge to construct the bisector of $\angle A B C$.
[Leave all construction marks.]

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

127 Using a compass and straightedge, construct the bisector of $\angle M J H$. [Leave all construction marks.]

128 As shown in the diagram below of $\triangle A B C$, a compass is used to find points D and E, equidistant from point A. Next, the compass is used to find point F, equidistant from points D and E. Finally, a straightedge is used to draw $\overrightarrow{A F}$. Then, point G, the intersection of $\overrightarrow{A F}$ and side $\overline{B C}$ of $\triangle A B C$, is labeled.

Which statement must be true?
$1 \overrightarrow{A F}$ bisects side $\overrightarrow{B C}$
$2 \overrightarrow{A F}$ bisects $\angle B A C$
$3 \overrightarrow{A F} \perp \overrightarrow{B C}$
$4 \triangle A B G \sim \triangle A C G$

G.G.18: CONSTRUCTIONS

129 Which diagram shows the construction of the perpendicular bisector of $\overline{A B}$?

1

2

3

4

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

130 Line segment $A B$ is shown in the diagram below.

Which two sets of construction marks, labeled I, II, III, and IV, are part of the construction of the perpendicular bisector of line segment $A B$?
1 I and II
2 I and III
3 II and III
4 II and IV

131 One step in a construction uses the endpoints of $\overline{A B}$ to create arcs with the same radii. The arcs intersect above and below the segment. What is the relationship of $\overline{A B}$ and the line connecting the points of intersection of these arcs?
1 collinear
2 congruent
3 parallel
4 perpendicular

132 Based on the construction below, which conclusion is not always true?

$1 \quad \overline{A B} \perp \overline{C D}$
$2 A B=C D$
$3 A E=E B$
$4 \quad C E=D E$

133 The diagram below illustrates the construction of $\overleftrightarrow{P S}$ parallel to $\overleftrightarrow{R Q}$ through point P.

Which statement justifies this construction?
$1 \mathrm{~m} \angle 1=\mathrm{m} \angle 2$
$2 \mathrm{~m} \angle 1=\mathrm{m} \angle 3$
$3 \quad \overline{P R} \cong \overline{R Q}$
$4 \overline{P S} \cong \overline{R Q}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

134 On the diagram of $\triangle A B C$ shown below, use a compass and straightedge to construct the perpendicular bisector of $\overline{A C}$. [Leave all construction marks.]

G.G.19: CONSTRUCTIONS

135 Which geometric principle is used to justify the construction below?

1 A line perpendicular to one of two parallel lines is perpendicular to the other.
2 Two lines are perpendicular if they intersect to form congruent adjacent angles.
3 When two lines are intersected by a transversal and alternate interior angles are congruent, the lines are parallel.
4 When two lines are intersected by a transversal and the corresponding angles are congruent, the lines are parallel.

136 The diagram below shows the construction of a line through point P perpendicular to line m.

Which statement is demonstrated by this construction?
1 If a line is parallel to a line that is perpendicular to a third line, then the line is also perpendicular to the third line.
2 The set of points equidistant from the endpoints of a line segment is the perpendicular bisector of the segment.
3 Two lines are perpendicular if they are equidistant from a given point.
4 Two lines are perpendicular if they intersect to form a vertical line.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

137 The diagram below shows the construction of $\overleftrightarrow{A B}$ through point P parallel to $\overleftrightarrow{C D}$.

Which theorem justifies this method of construction?
1 If two lines in a plane are perpendicular to a transversal at different points, then the lines are parallel.
2 If two lines in a plane are cut by a transversal to form congruent corresponding angles, then the lines are parallel.
3 If two lines in a plane are cut by a transversal to form congruent alternate interior angles, then the lines are parallel.
4 If two lines in a plane are cut by a transversal to form congruent alternate exterior angles, then the lines are parallel.

138 The diagram below shows the construction of line m, parallel to line ℓ, through point P.

Which theorem was used to justify this construction?
1 If two lines are cut by a transversal and the alternate interior angles are congruent, the lines are parallel.
2 If two lines are cut by a transversal and the interior angles on the same side are supplementary, the lines are parallel.
3 If two lines are perpendicular to the same line, they are parallel.
4 If two lines are cut by a transversal and the corresponding angles are congruent, they are parallel.

139 Using a compass and straightedge, construct a line that passes through point P and is perpendicular to line m. [Leave all construction marks.]
. P

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

140 Using a compass and straightedge, construct a line perpendicular to $\overline{A B}$ through point P. [Leave all construction marks.]

141 Using a compass and straightedge, construct a line perpendicular to line ℓ through point P. [Leave all construction marks.]

G.G.20: CONSTRUCTIONS

142 Which diagram shows the construction of an equilateral triangle?

1

2

3

4

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

143 Which diagram represents a correct construction of equilateral $\triangle A B C$, given side $\overline{A B}$?

1

3

4

144 The diagram below shows the construction of an equilateral triangle.

Which statement justifies this construction?
$1 \angle A+\angle B+\angle C=180$
$2 \mathrm{~m} \angle A=\mathrm{m} \angle B=\mathrm{m} \angle C$
$3 A B=A C=B C$
$4 A B+B C>A C$

145 On the line segment below, use a compass and straightedge to construct equilateral triangle $A B C$. [Leave all construction marks.]

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

146 Using a compass and straightedge, and $\overline{A B}$ below, construct an equilateral triangle with all sides congruent to $\overline{A B}$. [Leave all construction marks.]

147 Using a compass and straightedge, on the diagram below of $\overleftrightarrow{R S}$, construct an equilateral triangle with $R S$ as one side. [Leave all construction marks.]

148 On the ray drawn below, using a compass and straightedge, construct an equilateral triangle with a vertex at R. The length of a side of the triangle must be equal to a length of the diagonal of rectangle $A B C D$.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.22: LOCUS

149 A man wants to place a new bird bath in his yard so that it is 30 feet from a fence, f, and also 10 feet from a light pole, P. As shown in the diagram below, the light pole is 35 feet away from the fence.

How many locations are possible for the bird bath?
11
22
33
40

150 How many points are 5 units from a line and also equidistant from two points on the line?
11
22
33
40

151 Towns A and B are 16 miles apart. How many points are 10 miles from town A and 12 miles from town B ?
11
22
33
40

152 In a park, two straight paths intersect. The city wants to install lampposts that are both equidistant from each path and also 15 feet from the intersection of the paths. How many lampposts are needed?
11
22
$3 \quad 3$
$4 \quad 4$

153 Two lines, $\overleftrightarrow{A B}$ and $\overleftrightarrow{C R D}$, are parallel and 10 inches apart. Sketch the locus of all points that are equidistant from $\overleftrightarrow{A B}$ and $\overleftrightarrow{C R D}$ and 7 inches from point R. Label with an \mathbf{X} each point that satisfies both conditions.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

154 The length of $\overline{A B}$ is 3 inches. On the diagram below, sketch the points that are equidistant from A and B and sketch the points that are 2 inches from A. Label with an \mathbf{X} all points that satisfy both conditions.

155 In the diagram below, car A is parked 7 miles from car B. Sketch the points that are 4 miles from $\operatorname{car} A$ and sketch the points that are 4 miles from car B. Label with an \mathbf{X} all points that satisfy both conditions.

156 In the diagram below, point M is located on $\overleftrightarrow{A B}$. Sketch the locus of points that are 1 unit from $\overleftrightarrow{A B}$ and the locus of points 2 units from point M. Label with an \mathbf{X} all points that satisfy both conditions.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

Two intersecting lines are shown in the diagram below. Sketch the locus of points that are equidistant from the two lines. Sketch the locus of points that are a given distance, d, from the point of intersection of the given lines. State the number of points that satisfy both conditions.

G.G.23: LOCUS

158 In a coordinate plane, the locus of points 5 units from the x-axis is the
1 lines $x=5$ and $x=-5$
2 lines $y=5$ and $y=-5$
3 line $x=5$, only
4 line $y=5$, only

159 In a coordinate plane, how many points are both 5 units from the origin and 2 units from the x-axis?
$1 \quad 1$
22
33
44

160 How many points are both 4 units from the origin and also 2 units from the line $y=4$?
11
22
$3 \quad 3$
44

161 A city is planning to build a new park. The park must be equidistant from school A at $(3,3)$ and school B at $(3,-5)$. The park also must be exactly 5 miles from the center of town, which is located at the origin on the coordinate graph. Each unit on the graph represents 1 mile. On the set of axes below, sketch the compound loci and label with an \mathbf{X} all possible locations for the new park.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

162 On the set of axes below, sketch the points that are 5 units from the origin and sketch the points that are 2 units from the line $y=3$. Label with an \mathbf{X} all points that satisfy both conditions.

163 On the grid below, graph the points that are equidistant from both the x and y axes and the points that are 5 units from the origin. Label with an \mathbf{X} all points that satisfy both conditions.

164 On the set of axes below, graph the locus of points that are four units from the point $(2,1)$. On the same set of axes, graph the locus of points that are two units from the line $x=4$. State the coordinates of all points that satisfy both conditions.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

165 On the set of coordinate axes below, graph the locus of points that are equidistant from the lines $y=6$ and $y=2$ and also graph the locus of points that are 3 units from the y-axis. State the coordinates of all points that satisfy both conditions.

166 On the set of axes below, graph the locus of points that are 4 units from the line $x=3$ and the locus of points that are 5 units from the point $(0,2)$. Label with an \mathbf{X} all points that satisfy both conditions.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

167 The graph below shows the locus of points equidistant from the x-axis and y-axis. On the same set of axes, graph the locus of points 3 units from the line $x=0$. Label with an \mathbf{X} all points that satisfy both conditions.

168 On the set of axes below, graph the locus of points 4 units from $(0,1)$ and the locus of points 3 units from the origin. Label with an \mathbf{X} any points that satisfy both conditions.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

169 On the set of axes below, graph the locus of points 4 units from the x-axis and equidistant from the points whose coordinates are $(-2,0)$ and $(8,0)$. Mark with an \mathbf{X} all points that satisfy both conditions.

ANGLES

G.G.35: PARALLEL LINES \& TRANSVERSALS

170 In the diagram below, line p intersects line m and line n.

If $\mathrm{m} \angle 1=7 x$ and $\mathrm{m} \angle 2=5 x+30$, lines m and n are parallel when x equals
112.5

215
387.5

4105

171 In the diagram below, lines n and m are cut by transversals p and q.

What value of x would make lines n and m parallel?
1110
280
370
450

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

172 Line n intersects lines l and m, forming the angles shown in the diagram below.

Which value of x would prove $l \| m$?
12.5
24.5
$3 \quad 6.25$
$4 \quad 8.75$

173 As shown in the diagram below, lines m and n are cut by transversal p.

If $\mathrm{m} \angle 1=4 x+14$ and $\mathrm{m} \angle 2=8 x+10$, lines m and n are parallel when x equals
11
26
313
$4 \quad 17$

174 Based on the diagram below, which statement is true?

$\begin{array}{ll}1 & a \| b \\ 2 & a \| c \\ 3 & b \| c \\ 4 & d \| e\end{array}$

175 Transversal $\overleftrightarrow{E F}$ intersects $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$, as shown in the diagram below.

Which statement could always be used to prove
$\overleftrightarrow{A B} \| \overleftrightarrow{C D}$?
$1 \angle 2 \cong \angle 4$
$2 \quad \angle 7 \cong \angle 8$
$3 \angle 3$ and $\angle 6$ are supplementary
$4 \quad \angle 1$ and $\angle 5$ are supplementary

176 A transversal intersects two lines. Which condition would always make the two lines parallel?
1 Vertical angles are congruent.
2 Alternate interior angles are congruent.
3 Corresponding angles are supplementary.
4 Same-side interior angles are complementary.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

Geometry Regents Exam Questions by Performance Indicator: Topic

177 In the diagram below, $\ell \| m$ and $\overline{Q R} \perp \overline{S T}$ at R.

If $\mathrm{m} \angle 1=63$, find $\mathrm{m} \angle 2$.

178 In the diagram below of quadrilateral $A B C D$ with diagonal $B D, \mathrm{~m} \angle A=93, \mathrm{~m} \angle A D B=43$, $\mathrm{m} \angle C=3 x+5, \mathrm{~m} \angle B D C=x+19$, and $\underline{\mathrm{m}} \angle D B C=2 x+6$. Determine if $\overline{A B}$ is parallel to $\overline{D C}$. Explain your reasoning.

TRIANGLES

G.G.48: PYTHAGOREAN THEOREM

179 Which set of numbers does not represent the sides of a right triangle?
$1\{6,8,10\}$
$2\{8,15,17\}$
3 \{8,24,25\}
$4\{15,36,39\}$

180 Which set of numbers could not represent the lengths of the sides of a right triangle?
$1\{1,3, \sqrt{10}\}$
$2\{2,3,4\}$
$3\{3,4,5\}$
$4\{8,15,17\}$

181 In the diagram below of $\triangle A D B, \mathrm{~m} \angle B D A=90$, $A D=5 \sqrt{2}$, and $A B=2 \sqrt{15}$.

What is the length of $\overline{B D}$?
$1 \sqrt{10}$
$2 \sqrt{20}$
$3 \sqrt{50}$
$4 \sqrt{110}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

182 The diagram below shows a pennant in the shape of an isosceles triangle. The equal sides each measure 13 , the altitude is $x+7$, and the base is $2 x$.

What is the length of the base?
15
$2 \quad 10$
312
$4 \quad 24$

183 As shown in the diagram below, a kite needs a vertical and a horizontal support bar attached at opposite corners. The upper edges of the kite are 7 inches, the side edges are x inches, and the vertical support bar is $(x+1)$ inches.

What is the measure, in inches, of the vertical support bar?
123
$2 \quad 24$
325
$4 \quad 26$

G.G.30: INTERIOR AND EXTERIOR ANGLES OF TRIANGLES

184 Juliann plans on drawing $\triangle A B C$, where the measure of $\angle A$ can range from 50° to 60° and the measure of $\angle B$ can range from 90° to 100°. Given these conditions, what is the correct range of measures possible for $\angle C$?
120° to 40°
230° to 50°
380° to 90°
4120° to 130°

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

185 In an equilateral triangle, what is the difference between the sum of the exterior angles and the sum of the interior angles?
1180°
2120°
390°
460°

186 In $\triangle A B C, \mathrm{~m} \angle A=x, \mathrm{~m} \angle B=2 x+2$, and $\mathrm{m} \angle C=3 x+4$. What is the value of x ?
129
231
359
461

187 In $\triangle D E F, \mathrm{~m} \angle D=3 x+5, \mathrm{~m} \angle E=4 x-15$, and $\mathrm{m} \angle F=2 x+10$. Which statement is true?
$1 \quad D F=F E$
$2 D E=F E$
$3 \mathrm{~m} \angle E=\mathrm{m} \angle F$
$4 \mathrm{~m} \angle D=\mathrm{m} \angle F$

188 Triangle $P Q R$ has angles in the ratio of 2:3:5.
Which type of triangle is $\triangle P Q R$?
1 acute
2 isosceles
3 obtuse
4 right

189 In $\triangle A B C, \mathrm{~m} \angle A=3 x+1, \mathrm{~m} \angle B=4 x-17$, and $\mathrm{m} \angle C=5 x-20$. Which type of triangle is $\triangle A B C$?
1 right
2 scalene
3 isosceles
4 equilateral

190 The angles of triangle $A B C$ are in the ratio of
$8: 3: 4$. What is the measure of the smallest angle?
$1 \quad 12^{\circ}$
$2 \quad 24^{\circ}$
$3 \quad 36^{\circ}$
472°

191 In the diagram of $\triangle J E A$ below, $\mathrm{m} \angle J E A=90$ and $\mathrm{m} \angle E A J=48$. Line segment $M S$ connects points M and S on the triangle, such that $\mathrm{m} \angle E M S=59$.

What is $\mathrm{m} \angle J S M$?
$1 \quad 163$
2121
342
417

192 The diagram below shows $\triangle A B D$, with $\overrightarrow{A B C}$, $\overline{B E} \perp \overline{A D}$, and $\angle E B D \cong \angle C B D$.

If $\mathrm{m} \angle A B E=52$, what is $\mathrm{m} \angle D$?
126
$2 \quad 38$
352
$4 \quad 64$

193 The degree measures of the angles of $\triangle A B C$ are represented by $x, 3 x$, and $5 x-54$. Find the value of x.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

194 In right $\triangle D E F, \mathrm{~m} \angle D=90$ and $\mathrm{m} \angle F$ is 12 degrees less than twice $\mathrm{m} \angle E$. Find $\mathrm{m} \angle E$.

195 In $\triangle A B C$, the measure of angle A is fifteen less than twice the measure of angle B. The measure of angle C equals the sum of the measures of angle A and angle B. Determine the measure of angle B.

G.G.31: ISOSCELES TRIANGLE THEOREM

196 In $\triangle A B C, \overline{A B} \cong \overline{B C}$. An altitude is drawn from B to $\overline{A C}$ and intersects $\overline{A C}$ at D. Which conclusion is not always true?
$1 \angle A B D \cong \angle C B D$
$2 \angle B D A \cong \angle B D C$
$3 \overline{A D} \cong \overline{B D}$
$4 \overline{A D} \cong \overline{D C}$

197 In isosceles triangle $A B C, A B=B C$. Which statement will always be true?
$1 \mathrm{~m} \angle B=\mathrm{m} \angle A$
$2 \mathrm{~m} \angle A>\mathrm{m} \angle B$
$3 \mathrm{~m} \angle A=\mathrm{m} \angle C$
$4 \mathrm{~m} \angle C<\mathrm{m} \angle B$

198 If the vertex angles of two isosceles triangles are congruent, then the triangles must be
1 acute
2 congruent
3 right
4 similar

199 In the diagram of $\triangle A B C$ below, $\overline{A B} \cong \overline{A C}$. The measure of $\angle B$ is 40°.

What is the measure of $\angle A$?
140°
250°
370°
4100°

200 In the diagram below, $\triangle L M O$ is isosceles with $L O=M O$.

If $\mathrm{m} \angle L=55$ and $\mathrm{m} \angle N O M=28$, what is $\mathrm{m} \angle N$?
127
$2 \quad 28$
342
470

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

201 In the diagram below of $\triangle A B C, \overline{A B} \cong \overline{A C}$, $\mathrm{m} \angle A=3 x$, and $\mathrm{m} \angle B=x+20$.

What is the value of x ?
$1 \quad 10$
$2 \quad 28$
$3 \quad 32$
440

202 In the diagram below of $\triangle A C D, B$ is a point on $\overline{A C}$ such that $\triangle A D B$ is an equilateral triangle, and
$\triangle D B C$ is an isosceles triangle with $\overline{D B} \cong \overline{B C}$. Find $\mathrm{m} \angle C$.

203 In the diagram below of $\Delta G J K, H$ is a point on $\overline{G J}$, $\overline{H J} \cong \overline{J K}, \mathrm{~m} \angle G=28$, and $\mathrm{m} \angle G J K=70$.
Determine whether $\triangle G H K$ is an isosceles triangle and justify your answer.

204 In $\triangle R S T, \mathrm{~m} \angle R S T=46$ and $\overline{R S} \cong \overline{S T}$. Find $\mathrm{m} \angle S T R$.

G.G.32: EXTERIOR ANGLE THEOREM

205 In the diagram below, $\triangle A B C$ is shown with $\overline{A C}$ extended through point D.

If $\mathrm{m} \angle B C D=6 x+2, \mathrm{~m} \angle B A C=3 x+15$, and $\mathrm{m} \angle A B C=2 x-1$, what is the value of x ?
$1 \quad 12$
$2 \quad 14 \frac{10}{11}$
316
$4 \quad 18 \frac{1}{9}$

206 In the diagram below of $\triangle A B C$, side $\overline{B C}$ is extended to point $D, \mathrm{~m} \angle A=x, \mathrm{~m} \angle B=2 x+15$, and $\mathrm{m} \angle A C D=5 x+5$.

What is $\mathrm{m} \angle B$?
15
20
325
455

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

207 In the diagram of $\triangle K L M$ below, $\mathrm{m} \angle L=70$, $\mathrm{m} \angle M=50$, and $M K$ is extended through N.

What is the measure of $\angle L K N$?
160°
2120°
3180°
4300°

208 In the diagram below of $\triangle A B C, \overline{B C}$ is extended to D.

If $\mathrm{m} \angle A=x^{2}-6 x, \mathrm{~m} \angle B=2 x-3$, and $\mathrm{m} \angle A C D=9 x+27$, what is the value of x ?
110
$2 \quad 2$
33
415

209 In the diagram of $\triangle A B C$ below, $\overline{A B}$ is extended to point D.

If $\mathrm{m} \angle C A B=x+40, \mathrm{~m} \angle A C B=3 x+10$, $\mathrm{m} \angle C B D=6 x$, what is $\mathrm{m} \angle C A B$?
113
225
353
465

210 In $\Delta F G H, \mathrm{~m} \angle F=42$ and an exterior angle at vertex H has a measure of 104 . What is $\mathrm{m} \angle G$?
134
262
376
4146

211 Side $\overline{P Q}$ of $\triangle P Q R$ is extended through Q to point T. Which statement is not always true?
$1 \mathrm{~m} \angle R Q T>\mathrm{m} \angle R$
$2 \mathrm{~m} \angle R Q T>\mathrm{m} \angle P$
$3 \mathrm{~m} \angle R Q T=\mathrm{m} \angle P+\mathrm{m} \angle R$
$4 \mathrm{~m} \angle R Q T>\mathrm{m} \angle P Q R$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

212 In the diagram below of $\triangle B C D$, side $\overline{D B}$ is extended to point A.

Which statement must be true?
$1 \mathrm{~m} \angle C>\mathrm{m} \angle D$
$2 \mathrm{~m} \angle A B C<\mathrm{m} \angle D$
$3 \mathrm{~m} \angle A B C>\mathrm{m} \angle C$
$4 \mathrm{~m} \angle A B C>\mathrm{m} \angle C+\mathrm{m} \angle D$

213 In the diagram below of $\triangle H Q P$, side $\overline{H P}$ is
extended through P to $T, \mathrm{~m} \angle Q P T=6 x+20$, $\mathrm{m} \angle H Q P=x+40$, and $\mathrm{m} \angle P H Q=4 x-5$. Find $\mathrm{m} \angle Q P T$.

G.G.33: TRIANGLE INEQUALITY THEOREM

214 In the diagram below of $\triangle A B C, D$ is a point on $\overline{A B}$, $A C=7, A D=6$, and $B C=18$.

The length of $\overline{D B}$ could be
15
$2 \quad 12$
319
425

215 Which set of numbers represents the lengths of the sides of a triangle?
$1\{5,18,13\}$
$2\{6,17,22\}$
$3\{16,24,7\}$
$4\{26,8,15\}$

216 In $\triangle A B C, A B=5$ feet and $B C=3$ feet. Which inequality represents all possible values for the length of $\overline{A C}$, in feet?
$12 \leq A C \leq 8$
$22<A C<8$
$3 \quad 3 \leq A C \leq 7$
$43<A C<7$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.34: ANGLE SIDE RELATIONSHIP

217 In $\triangle A B C, \mathrm{~m} \angle A=95, \mathrm{~m} \angle B=50$, and $\mathrm{m} \angle C=35$. Which expression correctly relates the lengths of the sides of this triangle?
$1 A B<B C<C A$
$2 A B<A C<B C$
$3 A C<B C<A B$
$4 B C<A C<A B$

218 In $\triangle P Q R, P Q=8, Q R=12$, and $R P=13$. Which statement about the angles of $\triangle P Q R$ must be true?
$1 \mathrm{~m} \angle Q>\mathrm{m} \angle P>\mathrm{m} \angle R$
$2 \mathrm{~m} \angle Q>\mathrm{m} \angle R>\mathrm{m} \angle P$
$3 \mathrm{~m} \angle R>\mathrm{m} \angle P>\mathrm{m} \angle Q$
$4 \mathrm{~m} \angle P>\mathrm{m} \angle R>\mathrm{m} \angle Q$

219 In $\triangle A B C, A B=7, B C=8$, and $A C=9$. Which list has the angles of $\triangle A B C$ in order from smallest to largest?
$1 \angle A, \angle B, \angle C$
$2 \angle B, \angle A, \angle C$
$3 \angle C, \angle B, \angle A$
$4 \angle C, \angle A, \angle B$

220 In scalene triangle $A B C, \mathrm{~m} \angle B=45$ and $\mathrm{m} \angle C=55$. What is the order of the sides in length, from longest to shortest?
$1 \overline{A B}, \overline{B C}, \overline{A C}$
$2 \overline{B C}, \overline{A C}, \overline{A B}$
$3 \overline{A C}, \overline{B C}, \overline{A B}$
$4 \overline{B C}, \overline{A B}, \overline{A C}$

221 As shown in the diagram of $\triangle A C D$ below, B is a point on $\overline{A C}$ and $\overline{D B}$ is drawn.

If $\mathrm{m} \angle A=66, \mathrm{~m} \angle C D B=18$, and $\mathrm{m} \angle C=24$, what is the longest side of $\triangle A B D$?
$1 \quad \overrightarrow{A B}$
$2 \overline{D C}$
$3 \overline{A D}$
$4 \quad \overline{B D}$

222 In $\triangle A B C, \mathrm{~m} \angle A=60, \mathrm{~m} \angle B=80$, and $\mathrm{m} \angle C=40$. Which inequality is true?
$1 A B>B C$
$2 A C>B C$
$3 A C<B A$
$4 B C<B A$

223 In $\triangle R S T, \mathrm{~m} \angle R=58$ and $\mathrm{m} \angle S=73$. Which inequality is true?
$1 \quad R T<T S<R S$
$2 R S<R T<T S$
$3 R T<R S<T S$
$4 R S<T S<R T$

224 In $\triangle A B C, \angle A \cong \angle B$ and $\angle C$ is an obtuse angle.
Which statement is true?
$1 \overline{A C} \cong \overline{A B}$ and $\overline{B C}$ is the longest side.
$2 \overline{A C} \cong \overline{B C}$ and $\overline{A B}$ is the longest side.
$3 \overline{A C} \cong \overline{A B}$ and $\overline{B C}$ is the shortest side.
$4 \overline{A C} \cong \overline{B C}$ and $\overline{A B}$ is the shortest side.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

225 In the diagram below of $\triangle A B C$ with side $\overline{A C}$ extended through $D, \mathrm{~m} \angle A=37$ and $\mathrm{m} \angle B C D=117$. Which side of $\triangle A B C$ is the longest side? Justify your answer.

226
In $\triangle A B C, \mathrm{~m} \angle A=x^{2}+12, \mathrm{~m} \angle B=11 x+5$, and $\mathrm{m} \angle C=13 x-17$. Determine the longest side of $\triangle A B C$.

G.G.46: SIDE SPLITTER THEOREM

227 In the diagram below of $\triangle A C T, \overleftrightarrow{B E} \| \overline{A T}$

If $C B=3, C A=10$, and $C E=6$, what is the length of $\overline{E T}$?
15
$2 \quad 14$
$3 \quad 20$
426

228 In the diagram below of $\triangle A B C, \overleftrightarrow{T V} \| \overline{B C}, A T=5$, $T B=7$, and $A V=10$.

What is the length of $\overline{V C}$?
$13 \frac{1}{2}$
$27 \frac{1}{7}$
314
424

229 In the diagram of $\triangle A B C$ shown below, $\overline{D E} \| \overline{B C}$.

If $A B=10, A D=8$, and $A E=12$, what is the length of $\overline{E C}$?
16
22
$3 \quad 3$
415

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

230 In $\triangle A B C$, point \bar{D} is on $\overline{A B}$, and point E is on $\overline{B C}$ such that $\overline{D E} \| \overline{A C}$. If $D B=2, D A=7$, and $D E=3$, what is the length of $\overline{A C}$?
18
29
310.5
$4 \quad 13.5$

231 In the diagram below of $\triangle A D E, B$ is a point on $\overline{A E}$ and C is a point on $\overline{A D}$ such that $\overline{B C} \| \overline{E D}$, $A C=x-3, B E=20, A B=16$, and $A D=2 x+2$. Find the length of $\overline{A C}$.

232 In the diagram below of $\triangle A B C, D$ is a point on $\overline{A B}$, E is a point on $\overline{B C}, \overline{A C} \| \overline{D E}, C E=25$ inches, $A D=18$ inches, and $D B=12$ inches. Find, to the nearest tenth of an inch, the length of $\overline{E B}$.

233 In the diagram below of $\triangle A C D, E$ is a point on $\overline{A D}$ and B is a point on $\overline{A C}$, such that $\overline{E B} \| \overline{D C}$. If $A E=3, E D=6$, and $D C=15$, find the length of $E B$.

G.G.42: MIDSEGMENTS

234 In the diagram below of $\triangle A C T, D$ is the midpoint of $\overline{A C}, O$ is the midpoint of $\overline{A T}$, and G is the midpoint of $\overline{C T}$.

If $A C=10, A T=18$, and $C T=22$, what is the perimeter of parallelogram $C D O G$?
$1 \quad 21$
$2 \quad 25$
32
440

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

235 In the diagram below, the vertices of $\triangle D E F$ are the midpoints of the sides of equilateral triangle $A B C$, and the perimeter of $\triangle A B C$ is 36 cm .

What is the length, in centimeters, of $\overline{E F}$?
16
$2 \quad 12$
318
44

236 In the diagram below of $\triangle A B C, D$ is the midpoint of $\overline{A B}$, and E is the midpoint of $\overline{B C}$.

If $A C=4 x+10$, which expression represents $D E$?
$1 x+2.5$
$2 \quad 2 x+5$
$3 \quad 2 x+10$
$4 \quad 8 x+20$

237 In the diagram of $\triangle A B C$ shown below, D is the midpoint of $\overline{A B}, E$ is the midpoint of $\overline{B C}$, and F is the midpoint of $\overline{A C}$.

If $A B=20, B C=12$, and $A C=16$, what is the perimeter of trapezoid $A B E F$?
$1 \quad 24$
236
340
444

238 In $\triangle A B C, D$ is the midpoint of $\overline{A B}$ and E is the midpoint of $\overline{B C}$. If $A C=3 x-15$ and $D E=6$, what is the value of x ?

$1 \quad 6$
27
39
$4 \quad 12$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

239 In the diagram of $\triangle U V W$ below, A is the midpoint of $\overline{U V}, B$ is the midpoint of $\overline{U W}, C$ is the midpoint of $\overline{V W}$, and $\overline{A B}$ and $\overline{A C}$ are drawn.

If $V W=7 x-3$ and $A B=3 x+1$, what is the length of $\overline{V C}$?
15
$2 \quad 13$
316
432

240 In the diagram below, $\overline{D E}$ joins the midpoints of two sides of $\triangle A B C$.

Which statement is not true?
$1 C E=\frac{1}{2} C B$
$2 D E=\frac{1}{2} A B$
3 area of $\triangle C D E=\frac{1}{2}$ area of $\triangle C A B$
4 perimeter of $\triangle C D E=\frac{1}{2}$ perimeter of $\triangle C A B$

241 Triangle $A B C$ is shown in the diagram below.

If $\overline{D E}$ joins the midpoints of $\overline{A D C}$ and $\overline{A E B}$, which statement is not true?
$1 \quad D E=\frac{1}{2} C B$
$2 \overline{D E} \| \overline{C B}$
$3 \frac{A D}{D C}=\frac{D E}{C B}$
$4 \triangle A B C \sim \triangle A E D$

242 In the diagram of $\triangle A B C$ below, $A B=10, B C=14$, and $A C=16$. Find the perimeter of the triangle formed by connecting the midpoints of the sides of $\triangle A B C$.

243 In the diagram below of $\triangle A B C, \overline{D E}$ is a midsegment of $\triangle A B C, D E=7, A B=10$, and $B C=13$. Find the perimeter of $\triangle A B C$.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

244 On the set of axes below, graph and label $\triangle D E F$ with vertices at $D(-4,-4), E(-2,2)$, and $F(8,-2)$. If G is the midpoint of $\overline{E F}$ and H is the midpoint of $\overline{D F}$, state the coordinates of G and H and label each point on your graph. Explain why $\overline{G H} \| \overline{D E}$.

245 Triangle $H K L$ has vertices $H(-7,2), K(3,-4)$, and $L(5,4)$. The midpoint of $\overline{H L}$ is M and the midpoint of $\overline{L K}$ is N. Determine and state the coordinates of points M and N. Justify the statement: $\overline{M N}$ is parallel to $\overline{H K}$. [The use of the set of axes below is optional.]

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org
G.G.21: CENTROID, ORTHOCENTER, INCENTER AND CIRCUMCENTER

246 In the diagram below of $\triangle A B C, \overline{A E} \cong \overline{B E}$, $\overline{A F} \cong \overline{C F}$, and $\overline{C D} \cong \overline{B D}$.

Point P must be the
1 centroid
2 circumcenter
3 Incenter
4 orthocenter

247 The vertices of the triangle in the diagram below are $A(7,9), B(3,3)$, and $C(11,3)$.

What are the coordinates of the centroid of $\triangle A B C$?
$1(5,6)$
$2(7,3)$
$3(7,5)$
$4(9,6)$

248 In a given triangle, the point of intersection of the three medians is the same as the point of intersection of the three altitudes. Which classification of the triangle is correct?
1 scalene triangle
2 isosceles triangle
3 equilateral triangle
4 right isosceles triangle

249 In which triangle do the three altitudes intersect outside the triangle?
1 a right triangle
2 an acute triangle
3 an obtuse triangle
4 an equilateral triangle

250 For a triangle, which two points of concurrence could be located outside the triangle?
1 incenter and centroid
2 centroid and orthocenter
3 incenter and circumcenter
4 circumcenter and orthocenter

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

251 The diagram below shows the construction of the center of the circle circumscribed about $\triangle A B C$.

This construction represents how to find the intersection of
1 the angle bisectors of $\triangle A B C$
2 the medians to the sides of $\triangle A B C$
3 the altitudes to the sides of $\triangle A B C$
4 the perpendicular bisectors of the sides of $\triangle A B C$

252 In the diagram below of $\triangle A B C, \overline{C D}$ is the bisector of $\angle B C A, \overline{A E}$ is the bisector of $\angle C A B$, and $\overline{B G}$ is drawn.

Which statement must be true?
$1 \quad D G=E G$
$2 A G=B G$
$3 \angle A E B \cong \angle A E C$
$4 \angle D B G \cong \angle E B G$

253 Which geometric principle is used in the construction shown below?

1 The intersection of the angle bisectors of a triangle is the center of the inscribed circle.
2 The intersection of the angle bisectors of a triangle is the center of the circumscribed circle.
3 The intersection of the perpendicular bisectors of the sides of a triangle is the center of the inscribed circle.
4 The intersection of the perpendicular bisectors of the sides of a triangle is the center of the circumscribed circle.

254 Triangle $A B C$ has vertices $A(3,3), B(7,9)$, and $C(11,3)$. Determine the point of intersection of the medians, and state its coordinates. [The use of the set of axes below is optional.]

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.43: CENTROID

255 In the diagram of $\triangle A B C$ below, Jose found centroid P by constructing the three medians. He measured $C F$ and found it to be 6 inches.

If $P F=x$, which equation can be used to find x ?
$1 \quad x+x=6$
$2 \quad 2 x+x=6$
$3 \quad 3 x+2 x=6$
$4 \quad x+\frac{2}{3} x=6$

256 In the diagram below of $\triangle A B C$, medians $\overline{A D}, \overline{B E}$, and $\overline{C F}$ intersect at G.

If $C F=24$, what is the length of $\overline{F G}$?
18
$2 \quad 10$
312
416

257 In the diagram below of $\triangle A C E$, medians $\overline{A D}, \overline{E B}$, and $\overline{C F}$ intersect at G. The length of $\overline{F G}$ is 12 cm .

What is the length, in centimeters, of $\overline{G C}$?
$1 \quad 24$
$2 \quad 12$
36
44

258 In the diagram below, point P is the centroid of $\triangle A B C$.

If $P M=2 x+5$ and $B P=7 x+4$, what is the length of $\overline{P M}$?
19
22
$\begin{array}{ll}3 & 18\end{array}$
$4 \quad 27$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

259 In $\triangle A B C$ shown below, P is the centroid and $B F=18$.

What is the length of $\overline{B P}$?
16
29
33
$4 \quad 12$

260 In the diagram of $\triangle A B C$ below, medians $\overline{A D}$ and $B E$ intersect at point F.

If $A F=6$, what is the length of $\overline{F D}$?
16
22
33
$4 \quad 9$

261 In the diagram below of $\triangle T E M$, medians $\overline{T B}, \overline{E C}$, and $\overline{M A}$ intersect at D, and $T B=9$. Find the length of $\overline{T D}$.

G.G.69: TRIANGLES IN THE COORDINATE PLANE

262 The vertices of $\triangle A B C$ are $A(-1,-2), B(-1,2)$ and $C(6,0)$. Which conclusion can be made about the angles of $\triangle A B C$?
$1 \mathrm{~m} \angle A=\mathrm{m} \angle B$
$2 \mathrm{~m} \angle A=\mathrm{m} \angle C$
$3 \mathrm{~m} \angle A C B=90$
$4 \mathrm{~m} \angle A B C=60$

263 Triangle $A B C$ has vertices $A(0,0), B(3,2)$, and $C(0,4)$. The triangle may be classified as
1 equilateral
2 isosceles
3 right
4 scalene

264 Which type of triangle can be drawn using the points $(-2,3),(-2,-7)$, and $(4,-5)$?
1 scalene
2 isosceles
3 equilateral
4 no triangle can be drawn

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

265 If the vertices of $\triangle A B C$ are $A(-2,4), B(-2,8)$, and $C(-5,6)$, then $\triangle A B C$ is classified as
1 right
2 scalene
3 isosceles
4 equilateral

266 Triangle $A B C$ has vertices at $A(3,0), B(9,-5)$, and $C(7,-8)$. Find the length of $\overline{A C}$ in simplest radical form.

267 Triangle $A B C$ has coordinates $A(-6,2), B(-3,6)$, and $C(5,0)$. Find the perimeter of the triangle.
Express your answer in simplest radical form. [The use of the grid below is optional.]

POLYGONS

G.G.36: INTERIOR AND EXTERIOR ANGLES OF POLYGONS

268 The sum of the interior angles of a polygon of n sides is
1360
$2 \frac{360}{n}$
$3(n-2) \cdot 180$
$4 \quad \frac{(n-2) \cdot 180}{n}$

269 For which polygon does the sum of the measures of the interior angles equal the sum of the measures of the exterior angles?
1 hexagon
2 pentagon
3 quadrilateral
4 triangle

270 In which polygon does the sum of the measures of the interior angles equal the sum of the measures of the exterior angles?
1 triangle
2 hexagon
3 octagon
4 quadrilateral

271 The number of degrees in the sum of the interior angles of a pentagon is
172
2360
3540
4720

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

272 The pentagon in the diagram below is formed by five rays.

What is the degree measure of angle x ?
172
296
3108
4112
G.G.37: INTERIOR AND EXTERIOR ANGLES

OF POLYGONS

273 In the diagram below of regular pentagon $A B C D E$, $\overline{E B}$ is drawn.

What is the measure of $\angle A E B$?
136°
254°
$3 \quad 72^{\circ}$
$4 \quad 108^{\circ}$

274 What is the measure of an interior angle of a regular octagon?
145°
260°
3120°
4135°

275 What is the measure of each interior angle of a regular hexagon?
160°
2120°
3135°
4270°

276 The measure of an interior angle of a regular polygon is 120°. How many sides does the polygon have?
15
26
33
44

277 What is the difference between the sum of the measures of the interior angles of a regular pentagon and the sum of the measures of the exterior angles of a regular pentagon?
136
272
3108
4180

278 Find, in degrees, the measures of both an interior angle and an exterior angle of a regular pentagon.

279 Determine, in degrees, the measure of each interior angle of a regular octagon.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.38: PARALLELOGRAMS

280
In the diagram below of parallelogram $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}, \mathrm{~m} \angle 1=45$ and $\mathrm{m} \angle D C B=120$.

What is the measure of $\angle 2$?
$1 \quad 15^{\circ}$
230°
345°
460°

281
In the diagram below of parallelogram STUV, $S V=x+3, V U=2 x-1$, and $T U=4 x-3$.

What is the length of $\overline{S V}$?
15
22
37
44

282 Which statement is true about every parallelogram?
1 All four sides are congruent.
2 The interior angles are all congruent.
3 Two pairs of opposite sides are congruent.
4 The diagonals are perpendicular to each other.

283 In the diagram below, parallelogram $A B C D$ has diagonals $\overline{A C}$ and $\overline{B D}$ that intersect at point E.

Which expression is not always true?
$1 \angle D A E \cong \angle B C E$
$2 \angle D E C \cong \angle B E A$
$3 \overline{A C} \cong \overline{D B}$
$4 \overline{D E} \cong \overline{E B}$

284 As shown in the diagram below, the diagonals of parallelogram $Q R S T$ intersect at E. If $Q E=x^{2}+6 x$, $S E=x+14$, and $T E=6 x-1$, determine $T E$ algebraically.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.39: PARALLELOGRAMS

285 In the diagram below of rhombus $A B C D$, $\mathrm{m} \angle C=100$.

What is $\mathrm{m} \angle D B C$?
140
245
350
480

286
In the diagram below, MATH is a rhombus with diagonals $\overline{A H}$ and $\overline{M T}$.

If $\mathrm{m} \angle H A M=12$, what is $\mathrm{m} \angle A M T$?
$1 \quad 12$
278
384
4156

287 As shown in the diagram of rectangle $A B C D$ below, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E.

If $A E=x+2$ and $B D=4 x-16$, then the length of $\overline{A C}$ is
16
$2 \quad 10$
312
$4 \quad 24$

288 In rhombus $A B C D$, the diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E. If $A E=5$ and $B E=12$, what is the length of $\overline{A B}$?
17
$2 \quad 10$
313
$4 \quad 17$

289 Square $A B C D$ has vertices $A(-2,-3), B(4,-1)$, $C(2,5)$, and $D(-4,3)$. What is the length of a side of the square?
$12 \sqrt{5}$
$2 \quad 2 \sqrt{10}$
$3 \quad 4 \sqrt{5}$
$4 \quad 10 \sqrt{2}$

290 What is the perimeter of a rhombus whose diagonals are 16 and 30 ?
192
268
$3 \quad 60$
$4 \quad 17$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

291 Which reason could be used to prove that a parallelogram is a rhombus?
1 Diagonals are congruent.
2 Opposite sides are parallel.
3 Diagonals are perpendicular.
4 Opposite angles are congruent.

292 Which quadrilateral has diagonals that always bisect its angles and also bisect each other?
1 rhombus
2 rectangle
3 parallelogram
4 isosceles trapezoid

293 The diagonals of a quadrilateral are congruent but do not bisect each other. This quadrilateral is
1 an isosceles trapezoid
2 a parallelogram
3 a rectangle
4 a rhombus

294 Given three distinct quadrilaterals, a square, a rectangle, and a rhombus, which quadrilaterals must have perpendicular diagonals?
1 the rhombus, only
2 the rectangle and the square
3 the rhombus and the square
4 the rectangle, the rhombus, and the square

295 In the diagram below, quadrilateral $S T A R$ is a rhombus with diagonals $\overline{S A}$ and $\overline{T R}$ intersecting at E. $S T=3 x+30, S R=8 x-5, S E=3 z, T E=5 z+5$, $A E=4 z-8, \mathrm{~m} \angle R T A=5 y-2$, and $\mathrm{m} \angle T A S=9 y+8$. Find $S R, R T$, and $\mathrm{m} \angle T A S$.

G.G.40: TRAPEZOIDS

296 In the diagram below of trapezoid $R S U T, \overline{R S} \| \overline{T U}$, X is the midpoint of $\overline{R T}$, and V is the midpoint of $\overline{S U}$.

If $R S=30$ and $X V=44$, what is the length of $\overline{T U}$? $1 \quad 37$
258
374
4118

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

297 In the diagram below of isosceles trapezoid $A B C D$, $A B=C D=25, A D=26$, and $B C=12$.

What is the length of an altitude of the trapezoid?
17
$2 \quad 14$
319
$4 \quad 24$

In the diagram below, $L A T E$ is an isosceles trapezoid with $\overline{L E} \cong \overline{A T}, L A=24, E T=40$, and $A T=10$. Altitudes $\overline{L F}$ and $\overline{A G}$ are drawn.

What is the length of $\overline{L F}$?
16
28
$3 \quad 3$
44

299 In the diagram below, $\overline{E F}$ is the median of trapezoid $A B C D$.

If $A B=5 x-9, D C=x+3$, and $E F=2 x+2$, what is the value of x ?
15
22
37
48

300 In the diagram of trapezoid $A B C D$ below, $\overline{A B} \| \overline{D C}$, $\overline{A D} \cong \overline{B C}, \mathrm{~m} \angle A=4 x+20$, and $\mathrm{m} \angle C=3 x-15$.

What is $\mathrm{m} \angle D$?
125
235
360
490

301 Isosceles trapezoid $A B C D$ has diagonals $\overline{A C}$ and $\overline{B D}$. If $A C=5 x+13$ and $B D=11 x-5$, what is the value of x ?
128
$2 \quad 10 \frac{3}{4}$
33
$4 \quad \frac{1}{2}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

302 In isosceles trapezoid $A B C D, \overline{A B} \cong \overline{C D}$. If
$B C=20, A D=36$, and $A B=17$, what is the length of the altitude of the trapezoid?
$1 \quad 10$
$2 \quad 12$
315
416

303 If the diagonals of a quadrilateral do not bisect each other, then the quadrilateral could be a
1 rectangle
2 rhombus
3 square
4 trapezoid

304 In trapezoid $R S T V$ with bases $\overline{R S}$ and $\overline{V T}$, diagonals $\overline{R T}$ and $\overline{S V}$ intersect at Q.

If trapezoid $R S T V$ is not isosceles, which triangle is equal in area to $\Delta R S V$?
$1 \Delta R Q V$
$2 \Delta R S T$
$3 \Delta R V T$
$4 \Delta S V T$

305 In the diagram below of isosceles trapezoid $D E F G$, $\overline{D E} \| \overline{G F}, D E=4 x-2, E F=3 x+2, F G=5 x-3$, and $G D=2 x+5$. Find the value of x.

306 The diagram below shows isosceles trapezoid $A B C D$ with $\overline{A B} \| \overline{D C}$ and $\overline{A D} \cong \overline{B C}$. If $\mathrm{m} \angle B A D=2 x$ and $\mathrm{m} \angle B C D=3 x+5$, find $\mathrm{m} \angle B A D$.

307 Trapezoid TRAP, with median $\overline{M Q}$, is shown in the diagram below. Solve algebraically for x and y.

G.G.41: SPECIAL QUADRILATERALS

308 A quadrilateral whose diagonals bisect each other and are perpendicular is a
1 rhombus
2 rectangle
3 trapezoid
4 parallelogram

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org
G.G.69: QUADRILATERALS IN THE COORDINATE PLANE

309 The coordinates of the vertices of parallelogram $A B C D$ are $A(-3,2), B(-2,-1), C(4,1)$, and $D(3,4)$.
The slopes of which line segments could be calculated to show that $A B C D$ is a rectangle?
$1 \quad \overline{A B}$ and $\overline{D C}$
$2 \overline{A B}$ and $\overline{B C}$
$3 \overline{A D}$ and $\overline{B C}$
$4 \quad \overline{A C}$ and $\overline{B D}$

310 Parallelogram $A B C D$ has coordinates $A(1,5)$, $B(6,3), C(3,-1)$, and $D(-2,1)$. What are the coordinates of E, the intersection of diagonals $\overline{A C}$ and $\overline{B D}$?
1 (2,2)
$2(4.5,1)$
$3(3.5,2)$
$4 \quad(-1,3)$

311 The coordinates of two vertices of square $A B C D$ are $A(2,1)$ and $B(4,4)$. Determine the slope of side $\overline{B C}$.

312 Given: Quadrilateral $A B C D$ has vertices $A(-5,6)$, $B(6,6), C(8,-3)$, and $D(-3,-3)$.
Prove: Quadrilateral $A B C D$ is a parallelogram but is neither a rhombus nor a rectangle. [The use of the grid below is optional.]

313 Quadrilateral MATH has coordinates $M(1,1)$, $A(-2,5), T(3,5)$, and $H(6,1)$. Prove that quadrilateral $M A T H$ is a rhombus and prove that it is not a square. [The use of the grid is optional.]

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

314 Given: $\triangle A B C$ with vertices $A(-6,-2), B(2,8)$, and $C(6,-2) . \overline{A B}$ has midpoint $D, \overline{B C}$ has midpoint E, and $\overline{A C}$ has midpoint F.
Prove: $A D E F$ is a parallelogram $A D E F$ is not a rhombus
[The use of the grid is optional.]

315 Quadrilateral $A B C D$ with vertices $A(-7,4)$, $B(-3,6), C(3,0)$, and $D(1,-8)$ is graphed on the set of axes below. Quadrilateral $M N P Q$ is formed by joining M, N, P, and Q, the midpoints of $\overline{A B}, \overline{B C}$, $\overline{C D}$, and $\overline{A D}$, respectively. Prove that quadrilateral $M N P Q$ is a parallelogram. Prove that quadrilateral $M N P Q$ is not a rhombus.

CONICS

G.G.49: CHORDS

316 In circle O, diameter $\overline{A B}$ intersects chord $\overline{C D}$ at E. If $C E=E D$, then $\angle C E A$ is which type of angle?
1 straight
2 obtuse
3 acute
4 right

317 In the diagram below, circle O has a radius of 5, and $C E=2$. Diameter $\overline{A C}$ is perpendicular to chord $\overline{B D}$ at E.

What is the length of $\overline{B D}$?
$1 \quad 12$
210
38
$4 \quad 4$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

318 In the diagram below of circle O, radius $\overline{O C}$ is 5 cm . Chord $\overline{A B}$ is 8 cm and is perpendicular to $\overline{O C}$ at point P.

What is the length of $\overline{O P}$, in centimeters?
18
22
$3 \quad 3$
$4 \quad 4$

319 In the diagram below of circle O, diameter $\overline{A O B}$ is perpendicular to chord $\overline{C D}$ at point $E, O A=6$, and $O E=2$.

What is the length of $\overline{C E}$?
$14 \sqrt{3}$
$2 \quad 2 \sqrt{3}$
$3 \quad 8 \sqrt{2}$
$4 \quad 4 \sqrt{2}$

320 In circle O shown below, diameter $\overline{D B}$ is perpendicular to chord $\overline{A C}$ at E.

If $D B=34, A C=30$, and $D E>B E$, what is the length of $\overline{B E}$?
18
29
316
$4 \quad 25$

321 In circle R shown below, diameter $\overline{D E}$ is perpendicular to chord $\overline{S T}$ at point L.

Which statement is not always true?
$1 \overline{S L} \cong \overline{T L}$
$2 R S=D R$
$3 \overline{R L} \cong \overline{L E}$
$4 \quad(D L)(L E)=(S L)(L T)$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

322 In the diagram below, $\triangle A B C$ is inscribed in circle P. The distances from the center of circle P to each side of the triangle are shown.

Which statement about the sides of the triangle is true?
$1 A B>A C>B C$
$2 A B<A C$ and $A C>B C$
$3 A C>A B>B C$
$4 A C=A B$ and $A B>B C$

323 In circle O shown below, chords $\overline{A B}$ and $\overline{C D}$ and radius $\overline{O A}$ are drawn, such that $\overline{A B} \cong \overline{C D}$, $\overline{O E} \perp \overline{A B}, \overline{O F} \perp \overline{C D}, O F=16, C F=y+10$, and $C D=4 y-20$.

Determine the length of $\overline{D F}$. Determine the length of $\overline{O A}$.

324 In the diagram below of circle O, diameter $\overline{A B}$ is perpendicular to chord $\overline{C D}$ at E. If $A O=10$ and $B E=4$, find the length of $\overline{C E}$.

G.G.52: CHORDS

325 In the diagram of circle O below, chords $\overline{A B}$ and $\overline{C D}$ are parallel, and $\overline{B D}$ is a diameter of the circle.

If $\mathrm{m} \overparen{A D}=60$, what is $\mathrm{m} \angle C D B$?
$1 \quad 20$
230
360
4120

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

326 In the diagram of circle O below, chord $\overline{C D}$ is parallel to diameter $\overline{A O B}$ and $\mathrm{m} \overparen{A C}=30$.

What is mCD ?
1150
2120
3100
460

327 In the diagram below of circle O, diameter $\overline{A B}$ is parallel to chord $\overline{C D}$.

If $\mathrm{m} \overparen{C D}=70$, what is $\overleftarrow{\mathrm{m}} \overleftarrow{A C}$?
$1 \quad 110$
270
355
435

328 In circle O shown in the diagram below, chords $\overline{A B}$ and $\overline{C D}$ are parallel.

If $\mathrm{m} \overparen{A B}=104$ and $\mathrm{m} \overparen{C D}=168$, what is $\mathrm{m} \overparen{B D}$?
138
244
388
496

329 In the diagram of circle O below, chord $\overline{C D}$ is parallel to diameter $\overline{A O B}$ and $\mathrm{mCD}=110$.

What is $\mathrm{m} \overparen{D B}$?
135
255
370
4110

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

330 In the diagram below of circle O, chord $\overline{A B} \|$ chord $\overline{C D}$, and chord $\overline{C D} \|$ chord $\overline{E F}$.

Which statement must be true?
$1 \overparen{C E} \cong \overparen{D F}$
$2 \overparen{A C} \cong \overparen{D F}$
$3 \overparen{A C} \cong \overparen{C E}$
$4 \overparen{E F} \cong \overparen{C D}$

331 In the diagram below of circle O, chord $\overline{A B}$ is parallel to chord $\overline{C D}$.

Which statement must be true?
$1 \overparen{A C} \cong \overparen{B D}$
$2 \overparen{A B} \cong \overparen{C D}$
$3 \overline{A B} \cong \overline{C D}$
$4 \widehat{A B D} \cong \widehat{C D B}$

332 In the diagram below of circle O, chord $\overline{A B}$ is parallel to chord $\overline{G H}$. Chord $\overline{C D}$ intersects $\overline{A B}$ at E and $\overline{G H}$ at F.

Which statement must always be true?
$1 \overparen{A C} \cong \overparen{C B}$
$2 \overparen{D H} \cong \overparen{B H}$
$3 \overparen{A B} \cong \overparen{G H}$
$4 \overparen{A G} \cong \overparen{B H}$

333 In the diagram below, trapezoid $A B C D$, with bases $\overline{A B}$ and $\overline{D C}$, is inscribed in circle O, with diameter $\overline{D C}$. If $\mathrm{m} \overparen{A B}=80$, find $\mathrm{m} \overparen{B C}$.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

334 In the diagram below, two parallel lines intersect circle O at points A, B, C, and D, with $\mathrm{m} \overparen{A B}=x+20$ and $\mathrm{m} \overparen{D C}=2 x-20$. Find $\mathrm{m} \overparen{A B}$.

G.G.50: TANGENTS

335 In the diagram below, circle A and circle B are shown.

What is the total number of lines of tangency that are common to circle A and circle B ?
11
22
33
$4 \quad 4$

336 How many common tangent lines can be drawn to the two externally tangent circles shown below?

11
22
3
$4 \quad 4$

337 In the diagram below, circles A and B are tangent at point C and $\overline{A B}$ is drawn. Sketch all common tangent lines.

338 The angle formed by the radius of a circle and a tangent to that circle has a measure of 145°
290°
3135°
4180°

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

339 Line segment $A B$ is tangent to circle O at A. Which type of triangle is always formed when points A, B, and O are connected?
1 right
2 obtuse
3 scalene
4 isosceles

340 In the diagram below of $\triangle P A O, \overline{A P}$ is tangent to circle O at point $A, O B=7$, and $B P=18$.

What is the length of $\overline{A P}$?
$1 \quad 10$
$2 \quad 12$
317
$4 \quad 24$

341 In the diagram below, $\overline{A C}$ and $\overline{A D}$ are tangent to circle B at points C and D, respectively, and $\overline{B C}$, $\overline{B D}$, and $\overline{B A}$ are drawn.

If $A C=12$ and $A B=15$, what is the length of $\overline{B D}$?
15.5

29
312
418

342 Tangents $\overline{P A}$ and $\overline{P B}$ are drawn to circle O from an external point, P, and radii $\overline{O A}$ and $\overline{O B}$ are drawn. If $\mathrm{m} \angle A P B=40$, what is the measure of $\angle A O B$?
$1 \quad 140^{\circ}$
2100°
370°
450°

343 In the diagram below, circles X and Y have two tangents drawn to them from external point T. The points of tangency are C, A, S, and E. The ratio of $T A$ to $A C$ is $1: 3$. If $T S=24$, find the length of $\overline{S E}$.

(Not drawn to scale)

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org
G.G.51: ARCS DETERMINED BY ANGLES

344 In the diagram below of circle O, chords $\overline{A D}$ and $\overline{B C}$ intersect at $E, \mathrm{~m} \overleftarrow{\mathrm{AC}}=87$, and $\mathrm{m} \overparen{B D}=35$.

What is the degree measure of $\angle C E A$?
187
261
343.5
$4 \quad 26$

345 In the diagram below of circle O, chords $\overline{A E}$ and $\overline{D C}$ intersect at point B, such that $\mathrm{m} \overparen{A C}=36$ and $\mathrm{m} \overparen{D E}=20$.

What is $\mathrm{m} \angle A B C$?
156
236
$3 \quad 28$
48

346 In the diagram below of circle $C, \overparen{\mathrm{~m} T}=140$, and $\mathrm{m} \angle P=40$.

What is $\mathrm{m} \overparen{R S}$?
150
260
390
4110

347 In the diagram below of circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E.

If $\mathrm{m} \angle A E C=34$ and $\mathrm{m} \overparen{A C}=50$, what is $\mathrm{m} \overparen{D B}$?
$1 \quad 16$
$2 \quad 18$
368
4118

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

348 In the diagram below of circle $O, \overline{P A C}$ and $\overline{P B D}$ are secants.

If $\mathrm{m} \overparen{C D}=70$ and $\mathrm{m} \overparen{A B}=20$, what is the degree measure of $\angle P$?
125
235
345
450

349 Circle O with $\angle A O C$ and $\angle A B C$ is shown in the diagram below.

What is the ratio of $\mathrm{m} \angle A O C$ to $\mathrm{m} \angle A B C$?
1 1:1
2 2:1
3 3:1
4 1:2

350 In the diagram below, quadrilateral $J U M P$ is inscribed in a circle..

Opposite angles J and M must be
1 right
2 complementary
3 congruent
4 supplementary

351 In the diagram below of circle O, chords $\overline{A D}$ and $\overline{B C}$ intersect at E.

Which relationship must be true?
$1 \quad \triangle C A E \cong \triangle D B E$
$2 \triangle A E C \sim \triangle B E D$
$3 \angle A C B \cong \angle C B D$
$4 \overparen{C A} \cong \overparen{D B}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

352 In the diagram below of circle O, chords $\overline{D F}, \overline{D E}$, $\overline{F G}$, and $\overline{E G}$ are drawn such that $\mathrm{m} \overparen{D F}: \mathrm{m} \overparen{F E}: \mathrm{m} \overparen{E G}: \mathrm{m} \overparen{G D}=5: 2: 1: 7$. Identify one pair of inscribed angles that are congruent to each other and give their measure.

354 Chords $\overline{A B}$ and $\overline{C D}$ intersect at E in circle O, as shown in the diagram below. Secant $\overline{F D A}$ and tangent $\overline{F B}$ are drawn to circle O from external point F and chord $\overline{A C}$ is drawn. The $\mathrm{m} \overparen{D A}=56$, $\mathrm{m} \overparen{D B}=112$, and the ratio of $\mathrm{m} \overparen{A C}: \mathrm{m} \overparen{C B}=3: 1$.

Determine $\mathrm{m} \angle C E B$. Determine $\mathrm{m} \angle F$. Determine $\mathrm{m} \angle D A C$.

G.G.53: SEGMENTS INTERCEPTED BY

 CIRCLE355 In the diagram of circle O below, chord $\overline{A B}$ intersects chord $\overline{C D}$ at $E, D E=2 x+8, E C=3$, $A E=4 x-3$, and $E B=4$.

What is the value of x ?
11
23.6

35
$4 \quad 10.25$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

356 In the diagram below of circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E.

If $C E=10, E D=6$, and $A E=4$, what is the length of $\overline{E B}$?
115
$2 \quad 12$
$\begin{array}{ll}3 & 6.7\end{array}$
$4 \quad 2.4$

357 Chords $\overline{A B}$ and $\overline{C D}$ intersect at point E in a circle with center at O. If $A E=8, A B=20$, and $D E=16$, what is the length of $\overline{C E}$?
16
29
310
$4 \quad 12$

358 In the diagram below of circle O, chord $\overline{A B}$ bisects chord $\overline{C D}$ at E. If $A E=8$ and $B E=9$, find the length of $\overline{C E}$ in simplest radical form.

359 In the diagram below, $\overline{P S}$ is a tangent to circle O at point $S, \overline{P Q R}$ is a secant, $P S=x, P Q=3$, and $P R=x+18$.

(Not drawn to scale)
What is the length of $\overline{P S}$?
16
29
33
$4 \quad 27$

360 In the diagram below, tangent $\overline{A B}$ and secant $\overline{A C D}$ are drawn to circle O from an external point A, $A B=8$, and $A C=4$.

What is the length of $\overline{C D}$?
$1 \quad 16$
$2 \quad 13$
312
410

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

361 In the diagram below, tangent $\overline{P A}$ and secant $\overline{P B C}$ are drawn to circle O from external point P.

If $P B=4$ and $B C=5$, what is the length of $\overline{P A}$?
120
29
38
46

362 In the diagram below of circle O, secant $\overline{A B}$ intersects circle O at D, secant $\overline{A O C}$ intersects circle O at $E, A E=4, A B=12$, and $D B=6$.

What is the length of $\overline{O C}$?
14.5

27
39
414

363 In the diagram below of circle $O, P A$ is tangent to circle O at A, and $\overline{P B C}$ is a secant with points B and C on the circle.

If $P A=8$ and $P B=4$, what is the length of $\overline{B C}$?
120
216
315
$4 \quad 12$

364 Secants $\overline{J K L}$ and $\overline{J M N}$ are drawn to circle O from an external point, J. If $J K=8, L K=4$, and $J M=6$, what is the length of $\overline{J N}$?
116
212
310
48

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

365
In the diagram below of circle O, chords $\overline{R T}$ and $\overline{Q S}$ intersect at M. Secant $\overline{P T R}$ and tangent $\overline{P S}$ are drawn to circle O. The length of $\overline{R M}$ is two more than the length of $\overline{T M}, Q M=2, S M=12$, and $P T=8$.

Find the length of $\overline{R T}$. Find the length of $\overline{P S}$.

366
In the diagram below, $\overline{A B}, \overline{B C}$, and $\overline{A C}$ are tangents to circle O at points F, E, and D, respectively, $A F=6, C D=5$, and $B E=4$.

What is the perimeter of $\triangle A B C$?
$1 \quad 15$
$2 \quad 25$
$3 \quad 30$
$4 \quad 60$

367 In the diagram below, $\triangle A B C$ is circumscribed about circle O and the sides of $\triangle A B C$ are tangent to the circle at points D, E, and F.

If $A B=20, A E=12$, and $C F=15$, what is the length of $\overline{A C}$?
18
215
323
$4 \quad 27$

G.G.71: EQUATIONS OF CIRCLES

368 What is an equation of a circle with its center at $(-3,5)$ and a radius of 4 ?
$1(x-3)^{2}+(y+5)^{2}=16$
$2(x+3)^{2}+(y-5)^{2}=16$
$3(x-3)^{2}+(y+5)^{2}=4$
$4(x+3)^{2}+(y-5)^{2}=4$

369 Which equation represents the circle whose center is $(-2,3)$ and whose radius is 5 ?
$1(x-2)^{2}+(y+3)^{2}=5$
$2(x+2)^{2}+(y-3)^{2}=5$
$3(x+2)^{2}+(y-3)^{2}=25$
$4(x-2)^{2}+(y+3)^{2}=25$

370 What is an equation of a circle with center $(7,-3)$ and radius 4 ?
$1(x-7)^{2}+(y+3)^{2}=4$
$2(x+7)^{2}+(y-3)^{2}=4$
$3(x-7)^{2}+(y+3)^{2}=16$
$4 \quad(x+7)^{2}+(y-3)^{2}=16$

371 What is an equation of the circle with a radius of 5 and center at $(1,-4)$?
$1(x+1)^{2}+(y-4)^{2}=5$
$2(x-1)^{2}+(y+4)^{2}=5$
$3(x+1)^{2}+(y-4)^{2}=25$
$4 \quad(x-1)^{2}+(y+4)^{2}=25$

372 Which equation represents circle O with center $(2,-8)$ and radius 9 ?
$1 \quad(x+2)^{2}+(y-8)^{2}=9$
$2(x-2)^{2}+(y+8)^{2}=9$
$3(x+2)^{2}+(y-8)^{2}=81$
$4 \quad(x-2)^{2}+(y+8)^{2}=81$

373 The equation of a circle with its center at $(-3,5)$ and a radius of 4 is
$1 \quad(x+3)^{2}+(y-5)^{2}=4$
$2(x-3)^{2}+(y+5)^{2}=4$
$3(x+3)^{2}+(y-5)^{2}=16$
$4(x-3)^{2}+(y+5)^{2}=16$

374 What is an equation of the circle with center $(-5,4)$ and a radius of 7 ?
$1(x-5)^{2}+(y+4)^{2}=14$
$2(x-5)^{2}+(y+4)^{2}=49$
$3(x+5)^{2}+(y-4)^{2}=14$
$4(x+5)^{2}+(y-4)^{2}=49$

375 What is the equation of a circle whose center is 4 units above the origin in the coordinate plane and whose radius is 6 ?
$1 x^{2}+(y-6)^{2}=16$
$2(x-6)^{2}+y^{2}=16$
$3 \quad x^{2}+(y-4)^{2}=36$
$4 \quad(x-4)^{2}+y^{2}=36$

376 Write an equation of a circle whose center is $(-3,2)$ and whose diameter is 10 .

377 Which equation represents the circle whose center is $(-5,3)$ and that passes through the point $(-1,3)$?

$$
\begin{array}{ll}
1 & (x+1)^{2}+(y-3)^{2}=16 \\
2 & (x-1)^{2}+(y+3)^{2}=16 \\
3 & (x+5)^{2}+(y-3)^{2}=16 \\
4 & (x-5)^{2}+(y+3)^{2}=16
\end{array}
$$

378 The diameter of a circle has endpoints at $(-2,3)$ and $(6,3)$. What is an equation of the circle?
$1(x-2)^{2}+(y-3)^{2}=16$
$2(x-2)^{2}+(y-3)^{2}=4$
$3(x+2)^{2}+(y+3)^{2}=16$
$4(x+2)^{2}+(y+3)^{2}=4$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

379 Write an equation of the circle whose diameter $\overline{A B}$ has endpoints $A(-4,2)$ and $B(4,-4)$. [The use of the grid below is optional.]

G.G.72: EQUATIONS OF CIRCLES

What is an equation of circle O shown in the graph below?

$1(x+2)^{2}+(y-2)^{2}=9$
$2(x+2)^{2}+(y-2)^{2}=3$
$3(x-2)^{2}+(y+2)^{2}=9$
$4(x-2)^{2}+(y+2)^{2}=3$

381 Which equation represents circle K shown in the graph below?

$1(x+5)^{2}+(y-1)^{2}=3$
$2(x+5)^{2}+(y-1)^{2}=9$
$3(x-5)^{2}+(y+1)^{2}=3$
$4(x-5)^{2}+(y+1)^{2}=9$

382 What is an equation for the circle shown in the graph below?

$1 \quad x^{2}+y^{2}=2$
$2 x^{2}+y^{2}=4$
$3 \quad x^{2}+y^{2}=8$
$4 \quad x^{2}+y^{2}=16$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

383 What is an equation of circle O shown in the graph below?

$1(x+1)^{2}+(y-3)^{2}=25$
$2(x-1)^{2}+(y+3)^{2}=25$
$3(x-5)^{2}+(y+6)^{2}=25$
$4 \quad(x+5)^{2}+(y-6)^{2}=25$

384 Which equation represents circle A shown in the diagram below?

$1(x-4)^{2}+(y-1)^{2}=3$
$2(x+4)^{2}+(y+1)^{2}=3$
$3(x-4)^{2}+(y-1)^{2}=9$
$4 \quad(x+4)^{2}+(y+1)^{2}=9$

385 What is an equation of the circle shown in the graph below?

$1(x-3)^{2}+(y-4)^{2}=25$
$2(x+3)^{2}+(y+4)^{2}=25$
$3(x-3)^{2}+(y-4)^{2}=10$
$4(x+3)^{2}+(y+4)^{2}=10$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

386 What is the equation for circle O shown in the graph below?

$1(x-3)^{2}+(y+1)^{2}=6$
$2(x+3)^{2}+(y-1)^{2}=6$
$3(x-3)^{2}+(y+1)^{2}=9$
$4 \quad(x+3)^{2}+(y-1)^{2}=9$

387 What is the equation of circle O shown in the diagram below?

$1(x+4)^{2}+(y-1)^{2}=3$
$2(x-4)^{2}+(y+1)^{2}=3$
$3(x+4)^{2}+(y-1)^{2}=9$
$4(x-4)^{2}+(y+1)^{2}=9$

388 Write an equation for circle O shown on the graph below.

389 Write an equation of the circle graphed in the diagram below.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.73: EQUATIONS OF CIRCLES

390
What are the center and radius of a circle whose equation is $(x-A)^{2}+(y-B)^{2}=C$?
1 center $=(A, B)$; radius $=C$
2 center $=(-A,-B)$; radius $=C$
3 center $=(A, B) ;$ radius $=\sqrt{C}$
4 center $=(-A,-B)$; radius $=\sqrt{C}$

391 A circle is represented by the equation
$x^{2}+(y+3)^{2}=13$. What are the coordinates of the center of the circle and the length of the radius?
$1(0,3)$ and 13
$2(0,3)$ and $\sqrt{13}$
$3(0,-3)$ and 13
$4(0,-3)$ and $\sqrt{13}$

392 What are the center and the radius of the circle whose equation is $(x-3)^{2}+(y+3)^{2}=36$
1 center $=(3,-3)$; radius $=6$
2 center $=(-3,3)$; radius $=6$
3 center $=(3,-3)$; radius $=36$
4 center $=(-3,3)$; radius $=36$

393 The equation of a circle is $x^{2}+(y-7)^{2}=16$. What are the center and radius of the circle?
1 center $=(0,7)$; radius $=4$
2 center $=(0,7) ;$ radius $=16$
3 center $=(0,-7)$; radius $=4$
4 center $=(0,-7)$; radius $=16$

394 What are the center and the radius of the circle whose equation is $(x-5)^{2}+(y+3)^{2}=16$?
$1(-5,3)$ and 16
$2(5,-3)$ and 16
$3(-5,3)$ and 4
$4(5,-3)$ and 4

395 A circle has the equation $(x-2)^{2}+(y+3)^{2}=36$. What are the coordinates of its center and the length of its radius?
$1 \quad(-2,3)$ and 6
$2(2,-3)$ and 6
$3(-2,3)$ and 36
$4(2,-3)$ and 36

396 Which equation of a circle will have a graph that lies entirely in the first quadrant?

$$
\begin{array}{ll}
1 & (x-4)^{2}+(y-5)^{2}=9 \\
2 & (x+4)^{2}+(y+5)^{2}=9 \\
3 & (x+4)^{2}+(y+5)^{2}=25 \\
4 & (x-5)^{2}+(y-4)^{2}=25
\end{array}
$$

397 The equation of a circle is $(x-2)^{2}+(y+5)^{2}=32$. What are the coordinates of the center of this circle and the length of its radius?
$1 \quad(-2,5)$ and 16
$2(2,-5)$ and 16
$3(-2,5)$ and $4 \sqrt{2}$
$4 \quad(2,-5)$ and $4 \sqrt{2}$

398 Which set of equations represents two circles that have the same center?
$1 x^{2}+(y+4)^{2}=16$ and $(x+4)^{2}+y^{2}=16$
$2(x+3)^{2}+(y-3)^{2}=16$ and
$(x-3)^{2}+(y+3)^{2}=25$
$3(x-7)^{2}+(y-2)^{2}=16$ and
$(x+7)^{2}+(y+2)^{2}=25$
$4(x-2)^{2}+(y-5)^{2}=16$ and
$(x-2)^{2}+(y-5)^{2}=25$

399 A circle has the equation $(x-3)^{2}+(y+4)^{2}=10$. Find the coordinates of the center of the circle and the length of the circle's radius.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.74: GRAPHING CIRCLES

400 Which graph represents a circle with the equation
$(x-5)^{2}+(y+1)^{2}=9$?

1

2

3

401 The equation of a circle is $(x-2)^{2}+(y+4)^{2}=4$. Which diagram is the graph of the circle?

1

3

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

402 Which graph represents a circle with the equation
$(x-3)^{2}+(y+1)^{2}=4$?

1

2

3

403 Which graph represents a circle whose equation is $(x+2)^{2}+y^{2}=16$?

1

2

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

404 Which graph represents a circle whose equation is $x^{2}+(y-1)^{2}=9$?

1

3

405 Which graph represents a circle whose equation is
$x^{2}+(y-2)^{2}=4$?

1

2

3

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

Geometry Regents Exam Questions by Performance Indicator: Topic

MEASURING IN THE PLANE AND SPACE

G.G.11: VOLUME

406 A rectangular prism has a base with a length of 25 , a width of 9 , and a height of 12 . A second prism has a square base with a side of 15 . If the volumes of the two prisms are equal, what is the height of the second prism?
16
28
$3 \quad 12$
415

407 Two prisms have equal heights and equal volumes. The base of one is a pentagon and the base of the other is a square. If the area of the pentagonal base is 36 square inches, how many inches are in the length of each side of the square base?
16
29
$3 \quad 24$
436

408 Tim has a rectangular prism with a length of 10 centimeters, a width of 2 centimeters, and an unknown height. He needs to build another rectangular prism with a length of 5 centimeters and the same height as the original prism. The volume of the two prisms will be the same. Find the width, in centimeters, of the new prism.

G.G.12: VOLUME

409 A packing carton in the shape of a triangular prism is shown in the diagram below.

What is the volume, in cubic inches, of this carton?
120
260
3120
4240

410 The volume of a rectangular prism is 144 cubic inches. The height of the prism is 8 inches. Which measurements, in inches, could be the dimensions of the base?
$1 \quad 3.3$ by 5.5
22.5 by 7.2
$3 \quad 12$ by 8
49 by 9

411 A rectangular prism has a volume of $3 x^{2}+18 x+24$. Its base has a length of $x+2$ and a width of 3 . Which expression represents the height of the prism?
$1 \quad x+4$
$2 x+2$
33
$4 \quad x^{2}+6 x+8$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

412 The Parkside Packing Company needs a rectangular shipping box. The box must have a length of 11 inches and a width of 8 inches. Find, to the nearest tenth of an inch, the minimum height of the box such that the volume is at least 800 cubic inches.

G.G.13: VOLUME

413 A regular pyramid with a square base is shown in the diagram below.

A side, s, of the base of the pyramid is 12 meters, and the height, h, is 42 meters. What is the volume of the pyramid in cubic meters?

414 The base of a pyramid is a rectangle with a width of 6 cm and a length of 8 cm . Find, in centimeters, the height of the pyramid if the volume is $288 \mathrm{~cm}^{3}$.

G.G.14: VOLUME AND LATERAL AREA

415 Which expression represents the volume, in cubic centimeters, of the cylinder represented in the diagram below?

$1 \quad 162 \pi$
2324π
$3 \quad 972 \pi$
$43,888 \pi$

416 What is the volume, in cubic centimeters, of a cylinder that has a height of 15 cm and a diameter of 12 cm ?
$1 \quad 180 \pi$
2540π
3675π
$4 \quad 2,160 \pi$

417 A cylinder has a height of 7 cm and a base with a diameter of 10 cm . Determine the volume, in cubic centimeters, of the cylinder in terms of π.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

418 A right circular cylinder has a volume of 1,000 cubic inches and a height of 8 inches. What is the radius of the cylinder to the nearest tenth of an inch?
16.3
211.2
319.8
$4 \quad 39.8$

419 The volume of a cylinder is $12,566.4 \mathrm{~cm}^{3}$. The height of the cylinder is 8 cm . Find the radius of the cylinder to the nearest tenth of a centimeter.

420 A right circular cylinder has an altitude of 11 feet and a radius of 5 feet. What is the lateral area, in square feet, of the cylinder, to the nearest tenth?
$1 \quad 172.7$
$2 \quad 172.8$
$\begin{array}{ll}3 & 345.4\end{array}$
$4 \quad 345.6$

421 A right circular cylinder has a height of 7 inches and the base has a diameter of 6 inches. Determine the lateral area, in square inches, of the cylinder in terms of π.

422 The cylindrical tank shown in the diagram below is to be painted. The tank is open at the top, and the bottom does not need to be painted. Only the outside needs to be painted. Each can of paint covers 600 square feet. How many cans of paint must be purchased to complete the job?

423 A right circular cylinder with a height of 5 cm has a base with a diameter of 6 cm . Find the lateral area of the cylinder to the nearest hundredth of a square centimeter. Find the volume of the cylinder to the nearest hundredth of a cubic centimeter.

424 A paint can is in the shape of a right circular cylinder. The volume of the paint can is 600π cubic inches and its altitude is 12 inches. Find the radius, in inches, of the base of the paint can. Express the answer in simplest radical form. Find, to the nearest tenth of a square inch, the lateral area of the paint can.

G.G.15: VOLUME AND LATERAL AREA

425 In the diagram below, a right circular cone has a diameter of 8 inches and a height of 12 inches.

What is the volume of the cone to the nearest cubic inch?
1201
2481
3603
4804

426 A right circular cone has a base with a radius of 15 cm , a vertical height of 20 cm , and a slant height of 25 cm . Find, in terms of π, the number of square centimeters in the lateral area of the cone.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

427 The lateral area of a right circular cone is equal to $120 \pi \mathrm{~cm}^{2}$. If the base of the cone has a diameter of 24 cm , what is the length of the slant height, in centimeters?
12.5

25
310
$4 \quad 15.7$

G.G.16: VOLUME AND SURFACE AREA

428 The volume, in cubic centimeters, of a sphere whose diameter is 6 centimeters is
$1 \quad 12 \pi$
236π
348π
4288π

429 The diameter of a sphere is 15 inches. What is the volume of the sphere, to the nearest tenth of a cubic inch?
1706.9
21767.1
$3 \quad 2827.4$
4 14,137.2

430 A sphere is inscribed inside a cube with edges of 6 cm . In cubic centimeters, what is the volume of the sphere, in terms of π ?
112π
236π
348π
4288π

431 The volume of a sphere is approximately 44.6022 cubic centimeters. What is the radius of the sphere, to the nearest tenth of a centimeter?
12.2
23.3
$3 \quad 4.4$
44.7

432 A sphere has a diameter of 18 meters. Find the volume of the sphere, in cubic meters, in terms of π.

433 Tim is going to paint a wooden sphere that has a diameter of 12 inches. Find the surface area of the sphere, to the nearest square inch.

434 If the surface area of a sphere is represented by 144π, what is the volume in terms of π ?
136π
248π
3216π
4288π

G.G.45: SIMILARITY

435 As shown in the diagram below, $\triangle A B C \sim \triangle D E F$, $A B=7 x, B C=4, D E=7$, and $E F=x$.

What is the length of $A B$?

1	28
2	2
3	14
4	4

436 If $\triangle A B C \sim \triangle Z X Y, \mathrm{~m} \angle A=50$, and $\mathrm{m} \angle C=30$, what is $\mathrm{m} \angle X$?
130
250
380
4100

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

437 Triangle $A B C$ is similar to triangle $D E F$. The lengths of the sides of $\triangle A B C$ are 5,8 , and 11 . What is the length of the shortest side of $\triangle D E F$ if its perimeter is 60 ?
$1 \quad 10$
212.5

320
427.5

438 Two triangles are similar, and the ratio of each pair of corresponding sides is $2: 1$. Which statement regarding the two triangles is not true?
1 Their areas have a ratio of 4:1.
2 Their altitudes have a ratio of $2: 1$.
3 Their perimeters have a ratio of $2: 1$.
4 Their corresponding angles have a ratio of $2: 1$.

439 The sides of a triangle are 8,12 , and 15 . The longest side of a similar triangle is 18 . What is the ratio of the perimeter of the smaller triangle to the perimeter of the larger triangle?
1 2:3
2 4:9
3 5:6
4 25:36

440 Given $\triangle A B C \sim \triangle D E F$ such that $\frac{A B}{D E}=\frac{3}{2}$. Which statement is not true?
$1 \quad \frac{B C}{E F}=\frac{3}{2}$
$2 \frac{\mathrm{~m} \angle A}{\mathrm{~m} \angle D}=\frac{3}{2}$
$3 \frac{\text { area of } \triangle A B C}{\text { area of } \triangle D E F}=\frac{9}{4}$
$4 \frac{\text { perimeter of } \triangle A B C}{\text { perimeter of } \triangle D E F}=\frac{3}{2}$
$441 \triangle A B C$ is similar to $\triangle D E F$. The ratio of the length of $\overline{A B}$ to the length of $\overline{D E}$ is $3: 1$. Which ratio is also equal to $3: 1$?
$1 \frac{\mathrm{~m} \angle A}{\mathrm{~m} \angle D}$
$2 \frac{\mathrm{~m} \angle B}{\mathrm{~m} \angle F}$
$3 \frac{\text { area of } \triangle A B C}{\text { area of } \triangle D E F}$
$4 \frac{\text { perimeter of } \triangle A B C}{\text { perimeter of } \triangle D E F}$

442 In the diagram below, $\triangle A B C \sim \triangle R S T$.

Which statement is not true?
$1 \angle A \cong \angle R$
$2 \frac{A B}{R S}=\frac{B C}{S T}$
$3 \frac{A B}{B C}=\frac{S T}{R S}$
$4 \frac{A B+B C+A C}{R S+S T+R T}=\frac{A B}{R S}$

443 Scalene triangle $A B C$ is similar to triangle $D E F$.
Which statement is false?
$1 A B: B C=D E: E F$
$2 A C: D F=B C: E F$
$3 \angle A C B \cong \angle D F E$
$4 \angle A B C \cong \angle E D F$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

444 In the diagram below, $\triangle A B C \sim \Delta E F G$, $\mathrm{m} \angle C=4 x+30$, and $\mathrm{m} \angle G=5 x+10$. Determine the value of x.

445
In the diagram below, $\triangle A B C \sim \triangle D E F, D E=4$, $A B=x, A C=x+2$, and $D F=x+6$. Determine the length of $\overline{A B}$. [Only an algebraic solution can receive full credit.]

446 If $\triangle R S T \sim \triangle A B C, \mathrm{~m} \angle A=x^{2}-8 x, \mathrm{~m} \angle C=4 x-5$, and $\mathrm{m} \angle R=5 x+30$, find $\mathrm{m} \angle C$. [Only an algebraic solution can receive full credit.]

G.G.47: SIMILARITY

447 In the diagram below of right triangle $A B C$, altitude $\overline{B D}$ is drawn to hypotenuse $\overline{A C}, A C=16$, and $C D=7$.

What is the length of $\overline{B D}$?
$1 \quad 3 \sqrt{7}$
$2 \quad 4 \sqrt{7}$
$3 \quad 7 \sqrt{3}$
412

448 In the diagram below of right triangle $A B C$, altitude $\overline{C D}$ is drawn to hypotenuse $\overline{A B}$.

If $A D=3$ and $D B=12$, what is the length of altitude $\overline{C D}$?
16
$26 \sqrt{5}$
33
$4 \quad 3 \sqrt{5}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

449 In right triangle $A B C$ shown in the diagram below, altitude $\overline{B D}$ is drawn to hypotenuse $\overline{A C}, C D=12$, and $A D=3$.

What is the length of $\overline{A B}$?
$15 \sqrt{3}$
26
$3 \quad 3 \sqrt{5}$
49

450 In the diagram below of right triangle $A C B$, altitude $\overline{C D}$ intersects $\overline{A B}$ at D. If $A D=3$ and $D B=4$, find the length of $\overline{C D}$ in simplest radical form.

451 In the diagram below, $\triangle R S T$ is a $3-4-5$ right triangle. The altitude, h, to the hypotenuse has been drawn. Determine the length of h.

452 In the diagram below, the length of the legs $\overline{A C}$ and $\overline{B C}$ of right triangle $A B C$ are 6 cm and 8 cm , respectively. Altitude $\overline{C D}$ is drawn to the hypotenuse of $\triangle A B C$.

What is the length of $\overline{A D}$ to the nearest tenth of a centimeter?
13.6
26.0
36.4
44.0

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

453 In the diagram below of right triangle $A C B$, altitude $\overline{C D}$ is drawn to hypotenuse $\overline{A B}$.

If $A B=36$ and $A C=12$, what is the length of $\overline{A D}$?
132
26
33
44

454 In the diagram below of right triangle $A B C, \overline{C D}$ is the altitude to hypotenuse $\overline{A B}, C B=6$, and $A D=5$.

What is the length of $\overline{B D}$?
15
29
33
44

455 In $\triangle P Q R, \angle P R Q$ is a right angle and $\overline{R T}$ is drawn perpendicular to hypotenuse $\overline{P Q}$. If $P T=x$, $R T=6$, and $T Q=4 x$, what is the length of $\overline{P Q}$?
19
$2 \quad 12$
33
$4 \quad 15$

456 Triangle $A B C$ shown below is a right triangle with altitude $\overline{A D}$ drawn to the hypotenuse $\overline{B C}$.

If $B D=2$ and $D C=10$, what is the length of $\overline{A B}$?
$1 \quad 2 \sqrt{2}$
$2 \quad 2 \sqrt{5}$
$3 \quad 2 \sqrt{6}$
$4 \quad 2 \sqrt{30}$

TRANSFORMATIONS

G.G.54: ROTATIONS

457 What are the coordinates of A^{\prime}, the image of $A(-3,4)$, after a rotation of 180° about the origin?
$1(4,-3)$
$2(-4,-3)$
$3(3,4)$
$4(3,-4)$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

The coordinates of the vertices of $\triangle R S T$ are $R(-2,3), S(4,4)$, and $T(2,-2)$. Triangle $R^{\prime} S^{\prime} T^{\prime}$ is the image of $\Delta R S T$ after a rotation of 90° about the origin. State the coordinates of the vertices of $\Delta R^{\prime} S^{\prime} T^{\prime}$. [The use of the set of axes below is optional.]

459 The coordinates of the vertices of $\triangle A B C$ are $A(1,2), B(-4,3)$, and $C(-3,-5)$. State the coordinates of $\Delta A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a rotation of 90° about the origin. [The use of the set of axes below is optional.]

G.G.54: REFLECTIONS

460 Point A is located at (4, -7). The point is reflected in the x-axis. Its image is located at
$1(-4,7)$
$2(-4,-7)$
$3(4,7)$
$4(7,-4)$

461 What is the image of the point $(2,-3)$ after the transformation $r_{y \text {-axis }}$?
$1(2,3)$
$2(-2,-3)$
$3(-2,3)$
$4 \quad(-3,2)$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

462 The coordinates of point A are $(-3 a, 4 b)$. If point A^{\prime} is the image of point A reflected over the line $y=x$, the coordinates of A^{\prime} are
$1(4 b,-3 a)$
$2(3 a, 4 b)$
$3(-3 a,-4 b)$
$4(-4 b,-3 a)$

463 Triangle $A B C$ has vertices $A(-2,2), B(-1,-3)$, and $C(4,0)$. Find the coordinates of the vertices of $\Delta A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after the transformation $r_{\mathrm{x} \text {-axis }}$. [The use of the grid is optional.]

464 Triangle $X Y Z$, shown in the diagram below, is reflected over the line $x=2$. State the coordinates of $\Delta X^{\prime} Y^{\prime} Z^{\prime}$, the image of $\triangle X Y Z$.

G.G.54: TRANSLATIONS

465 What is the image of the point $(-5,2)$ under the translation $T_{3,-4}$?

1	$(-9,5)$
2	$(-8,6)$
3	$(-2,-2)$
4	$(-15,-8)$

466 Triangle $A B C$ has vertices $A(1,3), B(0,1)$, and $C(4,0)$. Under a translation, A^{\prime}, the image point of A, is located at $(4,4)$. Under this same translation, point C^{\prime} is located at
$1(7,1)$
$2(5,3)$
$3(3,2)$
$4(1,-1)$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

467
Triangle $T A P$ has coordinates $T(-1,4), A(2,4)$, and $P(2,0)$. On the set of axes below, graph and label $\Delta T^{\prime} A^{\prime} P^{\prime}$, the image of $\Delta T A P$ after the translation $(x, y) \rightarrow(x-5, y-1)$.

G.G.58: DILATIONS

468 Triangle $A B C$ has vertices $A(6,6), B(9,0)$, and $C(3,-3)$. State and label the coordinates of $\Delta A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a dilation of $D_{\frac{1}{3}}$.

G.G.54: COMPOSITIONS OF

TRANSFORMATIONS
469 What is the image of point $A(4,2)$ after the composition of transformations defined by $R_{90^{\circ}}{ }^{\circ} r_{y=x}$?
$1(-4,2)$
$2(4,-2)$
$3(-4,-2)$
$4(2,-4)$

470 The point $(3,-2)$ is rotated 90° about the origin and then dilated by a scale factor of 4 . What are the coordinates of the resulting image?
$1(-12,8)$
$2(12,-8)$
$3(8,12)$
$4(-8,-12)$

471 The coordinates of the vertices of parallelogram $A B C D$ are $A(-2,2), B(3,5), C(4,2)$, and $D(-1,-1)$. State the coordinates of the vertices of parallelogram $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ that result from the transformation $r_{y-\text { axis }}{ }^{\circ} T_{2,-3}$. [The use of the set of axes below is optional.]

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org
G.G.58: COMPOSITIONS OF TRANSFORMATIONS

472 The endpoints of $\overline{A B}$ are $A(3,2)$ and $B(7,1)$. If $\overline{A^{\prime \prime} B^{\prime \prime}}$ is the result of the transformation of $\overline{A B}$ under $D_{2}{ }^{\circ} T_{-4,3}$ what are the coordinates of $A^{\prime \prime}$ and $B^{\prime \prime}$?
$1 \quad A^{\prime \prime}(-2,10)$ and $B^{\prime \prime}(6,8)$
$2 A^{\prime \prime}(-1,5)$ and $B^{\prime \prime}(3,4)$
$3 A^{\prime \prime}(2,7)$ and $B^{\prime \prime}(10,5)$
$4 A^{\prime \prime}(14,-2)$ and $B^{\prime \prime}(22,-4)$

473 The coordinates of the vertices of $\triangle A B C A(1,3)$, $B(-2,2)$ and $C(0,-2)$. On the grid below, graph and label $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the result of the composite transformation $D_{2} \circ T_{3,-2}$. State the coordinates of $A^{\prime \prime}, B^{\prime \prime}$, and $C^{\prime \prime}$.

474 As shown on the set of axes below, $\triangle G H S$ has vertices $G(3,1), H(5,3)$, and $S(1,4)$. Graph and state the coordinates of $\Delta G^{\prime \prime} H^{\prime \prime} S^{\prime \prime}$, the image of $\Delta G H S$ after the transformation $T_{-3,1}{ }^{\circ} D_{2}$.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

475 The coordinates of trapezoid $A B C D$ are $A(-4,5)$, $B(1,5), C(1,2)$, and $D(-6,2)$. Trapezoid $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ is the image after the composition $r_{x-\text { axis }}{ }^{\circ} r_{y=x}$ is performed on trapezoid $A B C D$.
State the coordinates of trapezoid $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$. [The use of the set of axes below is optional.]

476 The vertices of $\triangle R S T$ are $R(-6,5), S(-7,-2)$, and $T(1,4)$. The image of $\triangle R S T$ after the composition $T_{-2,3}{ }^{\circ} r_{y=x}$ is $\Delta R " S " T "$. State the coordinates of $\Delta R " S^{\prime \prime} T^{\prime \prime}$. [The use of the set of axes below is optional.]

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

477
Triangle $A B C$ has vertices $A(5,1), B(1,4)$ and $C(1,1)$. State and label the coordinates of the vertices of $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the image of $\triangle A B C$, following the composite transformation $T_{1,-1} \circ D_{2}$. [The use of the set of axes below is optional.]

478 The coordinates of the vertices of parallelogram $S W A N$ are $S(2,-2), W(-2,-4), A(-4,6)$, and $N(0,8)$. State and label the coordinates of parallelogram $S^{\prime \prime} W^{\prime \prime} A^{\prime \prime} N^{\prime \prime}$, the image of $S W A N$ after the transformation $T_{4,-2} \circ D_{\frac{1}{2}}$. [The use of the set of axes below is optional.]

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

479 Quadrilateral MATH has coordinates $M(-6,-3)$, $A(-1,-3), T(-2,-1)$, and $H(-4,-1)$. The image of quadrilateral MATH after the composition $r_{x \text {-xxis }}{ }^{\circ} T_{7,5}$ is quadrilateral $M^{\prime \prime} A^{\prime \prime} T^{\prime \prime} H^{\prime \prime}$. State and label the coordinates of $M^{\prime \prime} A^{\prime \prime} T^{\prime \prime} H^{\prime \prime}$. [The use of the set of axes below is optional.]

G.G.55: PROPERTIES OF TRANSFORMATIONS

480 Which expression best describes the transformation shown in the diagram below?

1 same orientation; reflection 2 opposite orientation; reflection 3 same orientation; translation 4 opposite orientation; translation

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

481 The rectangle $A B C D$ shown in the diagram below will be reflected across the x-axis.

What will not be preserved?
1 slope of $\overline{A B}$
2 parallelism of $\overline{A B}$ and $\overline{C D}$
3 length of $\overline{A B}$
4 measure of $\angle A$

482 As shown in the diagram below, when right triangle $D A B$ is reflected over the x-axis, its image is triangle $D C B$.

Which statement justifies why $\overline{A B} \cong \overline{C B}$?
1 Distance is preserved under reflection.
2 Orientation is preserved under reflection.
3 Points on the line of reflection remain invariant.
4 Right angles remain congruent under reflection.

483 A transformation of a polygon that always preserves both length and orientation is
1 dilation
2 translation
3 line reflection
4 glide reflection

484 When a quadrilateral is reflected over the line $y=x$, which geometric relationship is not preserved?
1 congruence
2 orientation
3 parallelism
4 perpendicularity

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

485 Quadrilateral $M N O P$ is a trapezoid with $\overline{M N} \| \overline{O P}$. If $M^{\prime} N^{\prime} O^{\prime} P^{\prime}$ is the image of $M N O P$ after a reflection over the x-axis, which two sides of quadrilateral $M^{\prime} N^{\prime} O^{\prime} P^{\prime}$ are parallel?
$1 \overline{M^{\prime} N^{\prime}}$ and $\overline{O^{\prime} P^{\prime}}$
$2 \overline{M^{\prime} N^{\prime}}$ and $\overline{N^{\prime} O^{\prime}}$
$3 \overline{P^{\prime} M^{\prime}}$ and $\overline{O^{\prime} P^{\prime}}$
$4 \quad \overline{P^{\prime} M^{\prime}}$ and $\overline{N^{\prime} O^{\prime}}$

486 Pentagon $P Q R S T$ has $\overline{P Q}$ parallel to $\overline{T S}$. After a translation of $T_{2,-5}$, which line segment is parallel to $\overline{P^{\prime} Q^{\prime}}$?
$1 \overline{R^{\prime} Q^{\prime}}$
$2 \overline{R^{\prime} S^{\prime}}$
$3 \overline{T^{\prime} S^{\prime}}$
$4 \overline{T^{\prime} P^{\prime}}$

487 The vertices of parallelogram $A B C D$ are $A(2,0)$, $B(0,-3), C(3,-3)$, and $D(5,0)$. If $A B C D$ is reflected over the x-axis, how many vertices remain invariant?
11
22
33
40

488 Triangle $A B C$ has the coordinates $A(1,2), B(5,2)$, and $C(5,5)$. Triangle $A B C$ is rotated 180° about the origin to form triangle $A^{\prime} B^{\prime} C^{\prime}$. Triangle $A^{\prime} B^{\prime} C^{\prime}$ is 1 acute
2 isosceles
3 obtuse
4 right

489 After the transformation $r_{y=x}$, the image of $\triangle A B C$
is $\Delta A^{\prime} B^{\prime} C^{\prime}$. If $A B=2 x+13$ and $A^{\prime} B^{\prime}=9 x-8$, find the value of x.

490 The vertices of $\triangle A B C$ are $A(3,2), B(6,1)$, and $C(4,6)$. Identify and graph a transformation of $\Delta A B C$ such that its image, $\Delta A^{\prime} B^{\prime} C^{\prime}$, results in $\overline{A B} \| \overline{A^{\prime} B^{\prime}}$.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

491 Triangle $D E G$ has the coordinates $D(1,1), E(5,1)$, and $G(5,4)$. Triangle $D E G$ is rotated 90° about the origin to form $\Delta D^{\prime} E^{\prime} G^{\prime}$. On the grid below, graph and label $\triangle D E G$ and $\triangle D^{\prime} E^{\prime} G^{\prime}$. State the coordinates of the vertices D^{\prime}, E^{\prime}, and G^{\prime}. Justify that this transformation preserves distance.

492 Triangle $A B C$ has coordinates $A(2,-2), B(2,1)$, and $C(4,-2)$. Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ under $T_{5,-2}$. On the set of axes below, graph and label $\triangle A B C$ and its image, $\triangle A^{\prime} B^{\prime} C^{\prime}$. Determine the relationship between the area of $\triangle A B C$ and the area of $\Delta A^{\prime} B^{\prime} C^{\prime}$. Justify your response.

G.G.57: PROPERTIES OF TRANSFORMATIONS

493 Which transformation of the line $x=3$ results in an image that is perpendicular to the given line?
$\begin{array}{ll}1 & r_{x \text {-axis }} \\ 2 & r_{y \text {-axis }} \\ 3 & r_{y=x} \\ 4 & r_{x=1}\end{array}$
ou

$$
3 \quad r_{y=x}
$$

$$
4 \quad r_{x=1}
$$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org
G.G.59: PROPERTIES OF

TRANSFORMATIONS

494 Triangle $A B C$ is graphed on the set of axes below.

Which transformation produces an image that is similar to, but not congruent to, $\triangle A B C$?
$1 \quad T_{2,3}$
$2 \quad D_{2}$
$3 r_{y=x}$
$4 \quad R_{90}$

495 When a dilation is performed on a hexagon, which property of the hexagon will not be preserved in its image?
1 parallelism
2 orientation
3 length of sides
4 measure of angles

496 When $\triangle A B C$ is dilated by a scale factor of 2 , its image is $\Delta A^{\prime} B^{\prime} C^{\prime}$. Which statement is true?
$1 \overline{A C} \cong \overline{A^{\prime} C^{\prime}}$
$2 \angle A \cong \angle A^{\prime}$
3 perimeter of $\triangle A B C=$ perimeter of $\triangle A^{\prime} B^{\prime} C^{\prime}$
$42($ area of $\Delta A B C)=$ area of $\Delta A^{\prime} B^{\prime} C^{\prime}$

497 In $\triangle K L M, \mathrm{~m} \angle K=36$ and $K M=5$. The transformation D_{2} is performed on $\triangle K L M$ to form $\Delta K^{\prime} L^{\prime} M^{\prime}$. Find $\mathrm{m} \angle K^{\prime}$. Justify your answer. Find the length of $\overline{K^{\prime} M^{\prime}}$. Justify your answer.

G.G.56: IDENTIFYING TRANSFORMATIONS

498 In the diagram below, under which transformation will $\Delta A^{\prime} B^{\prime} C^{\prime}$ be the image of $\triangle A B C$?

1 rotation
2 dilation
3 translation
4 glide reflection

499 In the diagram below, which transformation was used to map $\triangle A B C$ to $\Delta A^{\prime} B^{\prime} C^{\prime}$?

$\begin{array}{ll}1 & \text { dilation } \\ 2 & \text { rotation } \\ 3 & \text { reflection } \\ 4 & \text { glide reflection }\end{array}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

500 The diagram below shows $\overline{A B}$ and $\overline{D E}$.

Which transformation will move $\overline{A B}$ onto $\overline{D E}$ such that point D is the image of point A and point E is the image of point B ?
$1 T_{3,-3}$
$2 \quad D \frac{1}{2}$
$3 R_{90^{\circ}}$
$4 \quad r_{y=x}$

501 As shown on the graph below, $\Delta R^{\prime} S^{\prime} T^{\prime}$ is the image of $\triangle R S T$ under a single transformation.

Which transformation does this graph represent?
1 glide reflection
2 line reflection
3 rotation
4 translation

502 The graph below shows $\overline{J T}$ and its image, $\overline{J^{\prime} T^{\prime}}$, after a transformation.

Which transformation would map $\overline{J T}$ onto $\overline{J^{\prime} T^{\prime}}$?
1 translation
2 glide reflection
3 rotation centered at the origin
4 reflection through the origin

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

503 In the diagram below, under which transformation is $\triangle A^{\prime} B^{\prime} C^{\prime}$ the image of $\triangle A B C$?

$1 \quad D_{2}$
$2 r_{x \text {-axis }}$
$3 \quad r_{y \text {-xis }}$
$4(x, y) \rightarrow(x-2, y)$

504 Which transformation is not always an isometry?
1 rotation
2 dilation
3 reflection
4 translation

505 Which transformation can map the letter S onto itself?
1 glide reflection
2 translation
3 line reflection
4 rotation

506 A pentagon is drawn on the set of axes below. If the pentagon is reflected over the y-axis, determine if this transformation is an isometry. Justify your answer. [The use of the set of axes is optional.]

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.60: IDENTIFYING TRANSFORMATIONS

507 After a composition of transformations, the coordinates $A(4,2), B(4,6)$, and $C(2,6)$ become $A^{\prime \prime}(-2,-1), B^{\prime \prime}(-2,-3)$, and $C^{\prime \prime}(-1,-3)$, as shown on the set of axes below.

Which composition of transformations was used?
$1 \quad R_{180^{\circ}}{ }^{\circ} D_{2}$
$2 \quad R_{90^{\circ}} \circ D_{2}$
$3 \quad D_{\frac{1}{2}} \circ R_{180^{\circ}}$
$4 \quad D_{\frac{1}{2}}^{\circ} R_{90^{\circ}}$

508 In the diagram below, $\Delta A^{\prime} B^{\prime} C^{\prime}$ is a transformation of $\triangle A B C$, and $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is a transformation of $\Delta A^{\prime} B^{\prime} C^{\prime}$.

The composite transformation of $\triangle A B C$ to $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is an example of a
1 reflection followed by a rotation
2 reflection followed by a translation
3 translation followed by a rotation
4 translation followed by a reflection

509 Which transformation produces a figure similar but not congruent to the original figure?
$1 T_{1,3}$
$2 D_{\frac{1}{2}}$
$3 R_{90^{\circ}}$
$4 \quad r_{y=x}$

G.G.61: ANALYTICAL REPRESENTATIONS OF TRANSFORMATIONS

510 A polygon is transformed according to the rule: $(x, y) \rightarrow(x+2, y)$. Every point of the polygon moves two units in which direction?
1 up
2 down
3 left
4 right

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

511 On the set of axes below, Geoff drew rectangle $A B C D$. He will transform the rectangle by using the translation $(x, y) \rightarrow(x+2, y+1)$ and then will reflect the translated rectangle over the x-axis.

What will be the area of the rectangle after these transformations?
1 exactly 28 square units
2 less than 28 square units
3 greater than 28 square units
4 It cannot be determined from the information given.

LOGIC

G.G.24: STATEMENTS AND NEGATIONS

512 Given $\triangle A B C$ with base $\overline{A F E D C}$, median $\overline{B F}$, altitude $\overline{B D}$, and $\overline{B E}$ bisects $\angle A B C$, which conclusion is valid?

$1 \angle F A B \cong \angle A B F$
$2 \angle A B F \cong \angle C B D$
$3 \overline{C E} \cong \overline{E A}$
$4 \overline{C F} \cong \overline{F A}$

513 As shown in the diagram below, $\overline{C D}$ is a median of $\triangle A B C$.

Which statement is always true?
$\begin{array}{ll}1 & \overline{A D} \cong \overline{D B} \\ 2 & \overline{A C} \cong \overline{A D} \\ 3 & \angle A C D \cong \angle C D B \\ 4 & \angle B C D \cong \angle A C D\end{array}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

514 Given: $\triangle A B D, \overline{B C}$ is the perpendicular bisector of $\overline{A D}$

Which statement can not always be proven?
$1 \overline{A C} \cong \overline{D C}$
$2 \overline{B C} \cong \overline{C D}$
$3 \angle A C B \cong \angle D C B$
$4 \triangle A B C \cong \triangle D B C$

515 What is the negation of the statement "The Sun is shining"?
1 It is cloudy.
2 It is daytime.
3 It is not raining.
4 The Sun is not shining.

516 What is the negation of the statement "Squares are parallelograms"?
1 Parallelograms are squares.
2 Parallelograms are not squares.
3 It is not the case that squares are parallelograms.
4 It is not the case that parallelograms are squares.

517 What is the negation of the statement "I am not going to eat ice cream"?
1 I like ice cream.
2 I am going to eat ice cream.
3 If I eat ice cream, then I like ice cream.
4 If I don't like ice cream, then I don't eat ice cream.

518 Which statement is the negation of "Two is a prime number" and what is the truth value of the negation?
1 Two is not a prime number; false
2 Two is not a prime number; true
3 A prime number is two; false
4 A prime number is two; true

519 A student wrote the sentence "4 is an odd integer." What is the negation of this sentence and the truth value of the negation?
13 is an odd integer; true
24 is not an odd integer; true
34 is not an even integer; false
44 is an even integer; false

520 Given the statement: One is a prime number. What is the negation and the truth value of the negation?
1 One is not a prime number; true
2 One is not a prime number; false
3 One is a composite number; true
4 One is a composite number; false

521 Given the true statement, "The medians of a triangle are concurrent," write the negation of the statement and give the truth value for the negation.

522 Write the negation of the statement " 2 is a prime number," and determine the truth value of the negation.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.25: COMPOUND STATEMENTS

523 Which compound statement is true?
1 A triangle has three sides and a quadrilateral has five sides.
2 A triangle has three sides if and only if a quadrilateral has five sides.
3 If a triangle has three sides, then a quadrilateral has five sides.
4 A triangle has three sides or a quadrilateral has five sides.

524 The statement " x is a multiple of 3 , and x is an even integer" is true when x is equal to
19
28
33
46

525 Given: Two is an even integer or three is an even integer.
Determine the truth value of this disjunction.
Justify your answer.

G.G.26: CONDITIONAL STATEMENTS

526 What is the inverse of the statement "If two
triangles are not similar, their corresponding angles are not congruent"?
1 If two triangles are similar, their corresponding angles are not congruent.
2 If corresponding angles of two triangles are not congruent, the triangles are not similar.
3 If two triangles are similar, their corresponding angles are congruent.
4 If corresponding angles of two triangles are congruent, the triangles are similar.

527 What is the converse of the statement "If Bob does his homework, then George gets candy"?
1 If George gets candy, then Bob does his homework.
2 Bob does his homework if and only if George gets candy.
3 If George does not get candy, then Bob does not do his homework.
4 If Bob does not do his homework, then George does not get candy.

528 What is the converse of "If an angle measures 90 degrees, then it is a right angle"?
1 If an angle is a right angle, then it measures 90 degrees.
2 An angle is a right angle if it measures 90 degrees.
3 If an angle is not a right angle, then it does not measure 90 degrees.
4 If an angle does not measure 90 degrees, then it is not a right angle.

529 Lines m and n are in plane \mathcal{A}. What is the converse of the statement "If lines m and n are parallel, then lines m and n do not intersect"?
1 If lines m and n are not parallel, then lines m and n intersect.
2 If lines m and n are not parallel, then lines m and n do not intersect
3 If lines m and n intersect, then lines m and n are not parallel.
4 If lines m and n do not intersect, then lines m and n are parallel.

530 What is the contrapositive of the statement, "If I am tall, then I will bump my head"?
1 If I bump my head, then I am tall.
2 If I do not bump my head, then I am tall.
3 If I am tall, then I will not bump my head.
4 If I do not bump my head, then I am not tall.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

531 Which statement is logically equivalent to "If it is warm, then I go swimming"
1 If I go swimming, then it is warm.
2 If it is warm, then I do not go swimming.
3 If I do not go swimming, then it is not warm.
4 If it is not warm, then I do not go swimming.

532 Consider the relationship between the two statements below.

$$
\begin{aligned}
& \text { If } \sqrt{16+9} \neq 4+3, \text { then } 5 \neq 4+3 \\
& \text { If } \sqrt{16+9}=4+3, \text { then } 5=4+3
\end{aligned}
$$

These statements are
1 inverses
2 converses
3 contrapositives
4 biconditionals

533 Write a statement that is logically equivalent to the statement "If two sides of a triangle are congruent, the angles opposite those sides are congruent." Identify the new statement as the converse, inverse, or contrapositive of the original statement.

G.G.28: TRIANGLE CONGRUENCY

534 In the diagram of $\triangle A B C$ and $\triangle D E F$ below, $\overline{A B} \cong \overline{D E}, \angle A \cong \angle D$, and $\angle B \cong \angle E$.

Which method can be used to prove
$\triangle A B C \cong \triangle D E F ?$
1 SSS
2 SAS
3 ASA
4 HL

535 In the diagram of quadrilateral $A B C D, \overline{A B} \| \overline{C D}$, $\angle A B C \cong \angle C D A$, and diagonal $\overline{A C}$ is drawn.

Which method can be used to prove $\triangle A B C$ is congruent to $\triangle C D A$?
1 AAS
2 SSA
3 SAS
4 SSS

536 As shown in the diagram below, $\overline{A C}$ bisects $\angle B A D$ and $\angle B \cong \angle D$.

Which method could be used to prove
$\triangle A B C \cong \triangle A D C$?
1 SSS
2 AAA
3 SAS
4 AAS

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

537 In the diagram below of $\triangle D A E$ and $\triangle B C E, \overline{A B}$ and $\overline{C D}$ intersect at E, such that $\overline{A E} \cong \overline{C E}$ and $\angle B C E \cong \angle D A E$.

Triangle $D A E$ can be proved congruent to triangle $B C E$ by
1 ASA
2 SAS
3 SSS
4 HL

538 The diagonal $\overline{A C}$ is drawn in parallelogram $A B C D$. Which method can not be used to prove that $\triangle A B C \cong \triangle C D A$?
1 SSS
2 SAS
3 SSA
4 ASA

539 In the diagram below of $\triangle A G E$ and $\triangle O L D$, $\angle G A E \cong \angle L O D$, and $\overline{A E} \cong \overline{O D}$.

To prove that $\triangle A G E$ and $\triangle O L D$ are congruent by SAS, what other information is needed?
$1 \overline{\overline{G E}} \cong \overline{L D}$
$3 \angle A G E \cong \angle O L D$
$4 \angle A E G \cong \angle O D L$

540 In parallelogram $A B C D$ shown below, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E.

Which statement must be true?
$\begin{array}{ll}1 & \overline{A C} \cong \overline{D B} \\ 2 & \angle A B D \cong \angle C B D \\ 3 & \triangle A E D \cong \triangle C E B \\ 4 & \triangle D C E \cong \triangle B C E\end{array}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org
G.G.29: TRIANGLE CONGRUENCY

541 In the diagram of trapezoid $A B C D$ below, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E and $\triangle A B C \cong \triangle D C B$.

Which statement is true based on the given information?
$\begin{array}{ll}1 & \overline{A C} \\ 2 & \overline{C D} \cong \overline{B C} \\ \cong \overline{A D}\end{array}$
$3 \angle C D E \cong \angle B A D$
$4 \angle C D B \cong \angle B A C$

542 In the diagram below, $\triangle A B C \cong \triangle X Y Z$.

Which two statements identify corresponding congruent parts for these triangles?
$1 \overline{A B} \cong \overline{X Y}$ and $\angle C \cong \angle Y$
$2 \overline{A B} \cong \overline{Y Z}$ and $\angle C \cong \angle X$
$3 \overline{B C} \cong \overline{X Y}$ and $\angle A \cong \angle Y$
$4 \overline{B C} \cong \overline{Y Z}$ and $\angle A \cong \angle X$

543 In the diagram below, $\triangle A B C \cong \triangle X Y Z$.

Which statement must be true?
$1 \angle C \cong \angle Y$
$2 \angle A \cong \angle X$
$3 \overline{A C} \cong \overline{Y Z}$
$4 \overline{C B} \cong \overline{X Z}$

544 The diagram below shows a pair of congruent triangles, with $\angle A D B \cong \angle C D B$ and $\angle A B D \cong \angle C B D$.

Which statement must be true?
$1 \angle A D B \cong \angle C B D$
$2 \angle A B C \cong \angle A D C$
$3 \overline{A B} \cong \overline{C D}$
$4 \quad \overline{A D} \cong \overline{C D}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

545 In the diagram below, $\triangle X Y V \cong \triangle T S V$.

Which statement can not be proven?
$1 \angle X V Y \cong \angle T V S$
$2 \angle V Y X \cong \angle V U T$
$3 \overline{X Y} \cong \overline{T S}$
$4 \overline{Y V} \cong \overline{S V}$

546 If $\triangle J K L \cong \triangle M N O$, which statement is always true?
$1 \angle K L J \cong \angle N M O$
$2 \angle K J L \cong \angle M O N$
$3 \overline{J L} \cong \overline{M O}$
$4 \overline{J K} \cong \overline{O N}$
549 In the diagram below of $\overline{A B C D}, \overline{A C} \cong \overline{B D}$.

Using this information, it could be proven that
$1 \quad B C=A B$
$2 A B=C D$
$3 A D-B C=C D$
$4 A B+C D=A D$

G.G.27: ANGLE PROOFS

550 When writing a geometric proof, which angle relationship could be used alone to justify that two angles are congruent?
1 supplementary angles
2 linear pair of angles
3 adjacent angles
4 vertical angles

G.G.27: TRIANGLE PROOFS

551 In $\triangle A E D$ with $A B C D$ shown in the diagram below, $\overline{E B}$ and $\overline{E C}$ are drawn.

If $\overline{A B} \cong \overline{C D}$, which statement could always be proven?
$1 \overline{A C} \cong \overline{D B}$
$2 \overline{A E} \cong \overline{E D}$
$3 \overline{A B} \cong \overline{B C}$
$4 \overline{E C} \cong \overline{E A}$

1	$\overline{X V}$
2	$\frac{W X}{}$
3	$\frac{V W}{N P}$
4	

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

552 Given: $\triangle A B C$ and $\triangle E D C, C$ is the midpoint of $\overline{B D}$ and $\overline{A E}$
Prove: $\overline{A B} \| \overline{D E}$

553
Given: $\overline{A D}$ bisects $\overline{B C}$ at E.
$\overline{A B} \perp \overline{B C}$ $\overline{D C} \perp \overline{B C}$
Prove: $\overline{A B} \cong \overline{D C}$

554 In the diagram of $\triangle M A H$ below, $\overline{M H} \cong \overline{A H}$ and medians $\overline{A B}$ and $\overline{M T}$ are drawn.
Prove: $\angle M B A \cong \angle A T M$

555 Given: $\triangle A B C, \overline{B D}$ bisects $\angle A B C, \overline{B D} \perp \overline{A C}$
Prove: $\overline{A B} \cong \overline{C B}$

G.G.27: QUADRILATERAL PROOFS

556 Given that $A B C D$ is a parallelogram, a student wrote the proof below to show that a pair of its opposite angles are congruent.

What is the reason justifying that $\angle B \cong \angle D$?
1 Opposite angles in a quadrilateral are congruent.
2 Parallel lines have congruent corresponding angles.
3 Corresponding parts of congruent triangles are congruent.
4 Alternate interior angles in congruent triangles are congruent.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

557 Given: Quadrilateral $A B C D$, diagonal $\overline{A F E C}$, $\overline{A E} \cong \overline{F C}, \overline{B F} \perp \overline{A C}, \overline{D E} \perp \overline{A C}, \angle 1 \cong \angle 2$
Prove: $A B C D$ is a parallelogram.

558 Given: $J K L M$ is a parallelogram.

$$
\begin{aligned}
& \overline{J M} \cong \overline{L N} \\
& \angle L M N \cong \angle L N M
\end{aligned}
$$

Prove: $J K L M$ is a rhombus.

559 In the diagram below of quadrilateral $A B C D$, $\overline{A D} \cong \overline{B C}$ and $\angle D A E \cong \angle B C E$. Line segments $A C$, $D B$, and $F G$ intersect at E.
Prove: $\triangle A E F \cong \triangle C E G$

560 The diagram below shows rectangle $A B C D$ with points E and F on side $\overline{A B}$. Segments $C E$ and $D F$ intersect at G, and $\angle A D G \cong \angle B C G$. Prove:
$\overline{A E} \cong \overline{B F}$

561 In the diagram below, quadrilateral $A B C D$ is inscribed in circle $O, \overline{A B} \| \overline{D C}$, and diagonals $\overline{A C}$ and $\overline{B D}$ are drawn. Prove that $\triangle A C D \cong \triangle B D C$.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.27: CIRCLE PROOFS

562 In the diagram below, $\overline{P A}$ and $\overline{P B}$ are tangent to circle $O, \overline{O A}$ and $\overline{O B}$ are radii, and $\overline{O P}$ intersects the circle at C. Prove: $\angle A O P \cong \angle B O P$

563 Given: Quadrilateral $A B C D$ with $\overline{A B} \cong \overline{C D}$, $\overline{A D} \cong \overline{B C}$, and diagonal $\overline{B D}$ is drawn Prove: $\angle B D C \cong \angle A B D$

G.G.44: SIMILARITY PROOFS

564 In the diagram below of $\triangle P R T, Q$ is a point on $\overline{P R}$, S is a point on $\overline{T R}, \overline{Q S}$ is drawn, and $\angle R P T \cong \angle R S Q$.

Which reason justifies the conclusion that
$\Delta P R T \sim \Delta S R Q$?
1 AA
2 ASA
3 SAS
4 SSS

565 In the diagram of $\triangle A B C$ and $\triangle E D C$ below, $\overline{A E}$ and $\overline{B D}$ intersect at C, and $\angle C A B \cong \angle C E D$.

Which method can be used to show that $\triangle A B C$ must be similar to $\triangle E D C$?
1 SAS
2 AA
3 SSS
4 HL

566 In the diagram below, $\overline{S Q}$ and $\overline{P R}$ intersect at $T, \overline{P Q}$ is drawn, and $\overline{P S} \| \overline{Q R}$.

What technique can be used to prove that $\triangle P S T \sim \Delta R Q T ?$
1 SAS
2 SSS
3 ASA
4 AA

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

567 In triangles $A B C$ and $D E F, A B=4, A C=5$, $D E=8, D F=10$, and $\angle A \cong \angle D$. Which method could be used to prove $\triangle A B C \sim \triangle D E F$?
1 AA
2 SAS
3 SSS
4 ASA

568 In $\triangle A B C$ and $\triangle D E F, \frac{A C}{D F}=\frac{C B}{F E}$. Which additional information would prove
$\triangle A B C \sim \triangle D E F ?$
$1 \quad A C=D F$
$2 \quad C B=F E$
$3 \angle A C B \cong \angle D F E$
$4 \angle B A C \cong \angle E D F$

569 In the diagram below, $\overline{B F C E}, \overline{A B} \perp \overline{B E}, \overline{D E} \perp \overline{B E}$, and $\angle B F D \cong \angle E C A$. Prove that $\triangle A B C \sim \triangle D E F$.

570 The diagram below shows $\triangle A B C$, with $\overline{A E B}, \overline{A D C}$, and $\angle A C B \cong \angle A E D$. Prove that $\triangle A B C$ is similar to $\triangle A D E$.

Geometry Regents Exam Questions by Performance Indicator: Topic Answer Section

1 ANS: 2
The slope of a line in standard form is $-\frac{A}{B}$ so the slope of this line is $-\frac{5}{3}$ Perpendicular lines have slope that are the opposite and reciprocal of each other.

PTS: 2 REF: fall0828ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
2 ANS: 4
The slope of $y=-\frac{2}{3} x-5$ is $-\frac{2}{3}$. Perpendicular lines have slope that are opposite reciprocals.
PTS: 2 REF: 080917ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
3 ANS: 3
$m=\frac{-A}{B}=-\frac{3}{4}$
PTS: 2 REF: 011025ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
4 ANS: 2
PTS: 2
REF: 061022ge
STA: G.G. 62
TOP: Parallel and Perpendicular Lines
5 ANS: 3
$2 y=-6 x+8$ Perpendicular lines have slope the opposite and reciprocal of each other.
$y=-3 x+4$
$m=-3$
$m_{\perp}=\frac{1}{3}$
PTS: 2 REF: 081024ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
6 ANS: 4
The slope of $3 x+5 y=4$ is $m=\frac{-A}{B}=\frac{-3}{5} . m_{\perp}=\frac{5}{3}$.
PTS: 2 REF: 061127ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
7 ANS: 2
The slope of $x+2 y=3$ is $m=\frac{-A}{B}=\frac{-1}{2} . \quad m_{\perp}=2$.
PTS: 2 REF: 081122ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
8 ANS: 2
$m=\frac{-A}{B}=\frac{-20}{-2}=10 . m_{\perp}=-\frac{1}{10}$
PTS: 2
REF: 061219ge STA: G.G. 62
TOP: Parallel and Perpendicular Lines

9 ANS: 2
The slope of $2 x+4 y=12$ is $m=\frac{-A}{B}=\frac{-2}{4}=-\frac{1}{2} . m_{\perp}=2$.
PTS: 2 REF: 011310ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
10 ANS: 3
The slope of $9 x-3 y=27$ is $m=\frac{-A}{B}=\frac{-9}{-3}=3$, which is the opposite reciprocal of $-\frac{1}{3}$.
PTS: 2
REF: 081225ge
STA: G.G. 62
TOP: Parallel and Perpendicular Lines
11 ANS:
$m=\frac{-A}{B}=\frac{6}{2}=3 . m_{\perp}=-\frac{1}{3}$.
PTS: 2
REF: 011134ge
STA: G.G. 62
TOP: Parallel and Perpendicular Lines
12 ANS: 4
$3 y+1=6 x+4.2 y+1=x-9$

$$
\begin{array}{rlrl}
3 y & =6 x+3 & 2 y & =x-10 \\
y & =2 x+1 & y & =\frac{1}{2} x-5
\end{array}
$$

PTS: 2 REF: fall0822ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
13 ANS: 2
$y+\frac{1}{2} x=4 \quad 3 x+6 y=12$
$y=-\frac{1}{2} x+4$

$$
6 y=-3 x+12
$$

$m=-\frac{1}{2}$

$$
y=-\frac{3}{6} x+2
$$

$$
y=-\frac{1}{2} x+2
$$

PTS: 2
14 ANS: 1
REF: 081014ge
PTS: 2
TOP: Parallel and Perpendicular Lines
15 ANS: 4

$$
\begin{array}{rlrl}
x+6 y & =12 & 3(x-2) & =-y-4 \\
6 y & =-x+12 & -3(x-2) & =y+4 \\
y & =-\frac{1}{6} x+2 & m & =-3 \\
m & =-\frac{1}{6} & &
\end{array}
$$

PTS: 2
REF: 011119ge
STA: G.G. 63
TOP: Parallel and Perpendicular Lines

16 ANS: 4

$$
\begin{array}{rlrl}
3 y+6 & =2 x & 2 y-3 x & =6 \\
3 y & =2 x-6 & 2 y & =3 x+6 \\
y & =\frac{2}{3} x-2 & y & =\frac{3}{2} x+3 \\
m & =\frac{2}{3} & m & =\frac{3}{2}
\end{array}
$$

PTS: 2 REF: 081315ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
ANS: 4
$m_{A B}^{\overleftrightarrow{A B}}=\frac{6-3}{7-5}=\frac{3}{2} \cdot m_{C D}^{\overleftrightarrow{ }}=\frac{4-0}{6-9}=\frac{4}{-3}$
PTS: 2 REF: 061318ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
ANS:
The slope of $y=2 x+3$ is 2 . The slope of $2 y+x=6$ is $\frac{-A}{B}=\frac{-1}{2}$. Since the slopes are opposite reciprocals, the lines are perpendicular.

PTS: 2 REF: 011231ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
19 ANS:
The slope of $x+2 y=4$ is $m=\frac{-A}{B}=\frac{-1}{2}$. The slope of $4 y-2 x=12$ is $\frac{-A}{B}=\frac{2}{4}=\frac{1}{2}$. Since the slopes are neither equal nor opposite reciprocals, the lines are neither parallel nor perpendicular.

PTS: 2 REF: 061231ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines ANS: 3
The slope of $y=x+2$ is 1 . The slope of $y-x=-1$ is $\frac{-A}{B}=\frac{-(-1)}{1}=1$.
PTS: 2 REF: 080909ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
ANS: 3
$m=\frac{-A}{B}=\frac{5}{2} . m=\frac{-A}{B}=\frac{10}{4}=\frac{5}{2}$
PTS: 2 REF: 011014ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
ANS: 3
$m=\frac{-A}{B}=\frac{-3}{-2}=\frac{3}{2}$
PTS: 2
REF: 011324ge
STA: G.G. 63
TOP: Parallel and Perpendicular Lines

23 ANS: 1

$$
\begin{aligned}
-2\left(-\frac{1}{2} y\right. & =6 x+10) \\
y & =-12 x-20
\end{aligned}
$$

PTS: 2 REF: 061027ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
24 ANS: 2
The slope of $2 x+3 y=12$ is $-\frac{A}{B}=-\frac{2}{3}$. The slope of a perpendicular line is $\frac{3}{2}$. Rewritten in slope intercept form, (2) becomes $y=\frac{3}{2} x+3$.

PTS: 2 REF: 060926ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
25 ANS: 2
The slope of $y=\frac{1}{2} x+5$ is $\frac{1}{2}$. The slope of a perpendicular line is $-2 . \quad y=m x+b$

$$
\begin{aligned}
& 5=(-2)(-2)+b \\
& b=1
\end{aligned}
$$

PTS: 2 REF: 060907ge STA: G.G. 64 TOP: Parallel and Perpendicular Lines
ANS: 4
The slope of $y=-3 x+2$ is -3 . The perpendicular slope is $\frac{1}{3} .-1=\frac{1}{3}(3)+b$

$$
\begin{aligned}
-1 & =1+b \\
b & =-2
\end{aligned}
$$

$\begin{array}{ll}\text { PTS: } 2 & \text { REF: } 011018 \mathrm{ge} \\ \text { ANS: } 3 & \text { PTS: } 2\end{array}$
STA: G.G. 64
REF: 011217ge
TOP: Parallel and Perpendicular Lines
TOP: Parallel and Perpendicular Lines
28 ANS: 4

$$
\begin{aligned}
m_{\perp}=-\frac{1}{3} \cdot y & =m x+b \\
6 & =-\frac{1}{3}(-9)+b \\
6 & =3+b \\
3 & =b
\end{aligned}
$$

PTS: 2 REF: 061215ge STA: G.G. 64 TOP: Parallel and Perpendicular Lines
29 ANS: 3
The slope of $2 y=x+2$ is $\frac{1}{2}$, which is the opposite reciprocal of $-2 . \quad 3=-2(4)+b$

$$
11=b
$$

PTS: 2
REF: 081228ge
STA: G.G. 64
TOP: Parallel and Perpendicular Lines

30 ANS: 4
$m=\frac{2}{3} \quad .2=-\frac{3}{2}(4)+b$
$m_{\perp}=-\frac{3}{2} \quad \begin{array}{ll}2 & =-6+b \\ 8 & =b\end{array}$
PTS: 2 REF: 011319ge STA: G.G. 64 TOP: Parallel and Perpendicular Lines
31 ANS:

$$
\begin{aligned}
& y=\frac{2}{3} x+1.2 y+3 x=6 \quad . y=m x+b \\
& 2 y=-3 x+6 \quad 5=\frac{2}{3}(6)+b \\
& y=-\frac{3}{2} x+3 \quad 5=4+b \\
& m=-\frac{3}{2} \quad 1=b \\
& m_{\perp}=\frac{2}{3} \quad y=\frac{2}{3} x+1
\end{aligned}
$$

PTS: 4 REF: 061036ge STA: G.G. 64 TOP: Parallel and Perpendicular Lines
32 ANS: 2
The slope of a line in standard form is $-\frac{A}{B}$, so the slope of this line is $\frac{-2}{-1}=2$. A parallel line would also have a slope of 2. Since the answers are in slope intercept form, find the y-intercept: $\quad y=m x+b$

$$
\begin{aligned}
-11 & =2(-3)+b \\
-5 & =b
\end{aligned}
$$

PTS: 2 REF: fall0812ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines ANS: 4
The slope of a line in standard form is $-\frac{A}{B}$, so the slope of this line is $\frac{-4}{2}=-2$. A parallel line would also have a slope of -2 . Since the answers are in slope intercept form, find the y-intercept: $y=m x+b$

$$
\begin{aligned}
3 & =-2(7)+b \\
17 & =b
\end{aligned}
$$

PTS: 2 REF: 081010ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
34 ANS: 4
$y=m x+b$
$3=\frac{3}{2}(-2)+b$
$3=-3+b$
$6=b$
PTS: 2
REF: 011114ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines

35 ANS: 2
The slope of a line in standard form is $\frac{-A}{B}$, so the slope of this line is $\frac{-4}{3}$. A parallel line would also have a slope of $\frac{-4}{3}$. Since the answers are in standard form, use the point-slope formula. $y-2=-\frac{4}{3}(x+5)$

$$
\begin{aligned}
3 y-6 & =-4 x-20 \\
4 x+3 y & =-14
\end{aligned}
$$

PTS: 2
REF: 061123ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines
36 ANS: 2

PTS: 2
REF: 081112ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines
ANS: 3

$$
y=m x+b
$$

$$
-1=2(2)+b
$$

$$
-5=b
$$

PTS: 2
REF: 011224ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines
38
ANS: 4

$$
\begin{aligned}
m=\frac{-A}{B}=\frac{-3}{2} . & y
\end{aligned}=m x+b, \begin{aligned}
-1 & =\left(\frac{-3}{2}\right)(2)+b \\
-1 & =-3+b \\
2 & =b
\end{aligned}
$$

PTS: 2
39 ANS: 1

$$
\begin{aligned}
m=\frac{3}{2} \quad y & =m x+b \\
2 & =\frac{3}{2}(1)+b \\
\frac{1}{2} & =b
\end{aligned}
$$

PTS: 2
REF: 081217ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines

$$
\begin{aligned}
& m=\frac{-A}{B}=\frac{-4}{2}=-2 \quad y=m x+b \\
& 2=-2(2)+b \\
& 6=b
\end{aligned}
$$

40
ANS: 3
$2 y=3 x-4 . \quad 1=\frac{3}{2}(6)+b$
$\begin{aligned} y=\frac{3}{2} x-2 \quad 1 & =9+b \\ -8 & =b\end{aligned}$

PTS: 2
REF: 061316ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines
41
ANS:
$y=-2 x+14$. The slope of $2 x+y=3$ is $\frac{-A}{B}=\frac{-2}{1}=-2 . y=m x+b \quad$.

$$
\begin{aligned}
& 4=(-2)(5)+b \\
& b=14
\end{aligned}
$$

PTS: 2
REF: 060931ge STA: G.G. 65
TOP: Parallel and Perpendicular Lines
42
ANS:
$y=\frac{2}{3} x-9$. The slope of $2 x-3 y=11$ is $-\frac{A}{B}=\frac{-2}{-3}=\frac{2}{3} .-5=\left(\frac{2}{3}\right)(6)+b$

$$
\begin{aligned}
-5 & =4+b \\
b & =-9
\end{aligned}
$$

PTS: 2 REF: 080931ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
43 ANS:
$y=\frac{4}{3} x-6 . M_{x}=\frac{-1+7}{2}=3 \quad$ The perpendicular bisector goes through $(3,-2)$ and has a slope of $\frac{4}{3}$.

$$
M_{y}=\frac{1+(-5)}{2}=-2
$$

$$
m=\frac{1-(-5)}{-1-7}=-\frac{3}{4}
$$

$y-y_{M}=m\left(x-x_{M}\right)$.

$$
y-1=\frac{4}{3}(x-2)
$$

PTS: 4
REF: 080935ge
STA: G.G. 68
TOP: Perpendicular Bisector

44 ANS:
$M=\left(\frac{3+3}{2}, \frac{-1+5}{2}\right)=(3,2) . y=2$.
PTS: 2 REF: 011334ge STA: G.G. 68 TOP: Perpendicular Bisector
45 ANS: 4
$\overline{A B}$ is a vertical line, so its perpendicular bisector is a horizontal line through the midpoint of $\overline{A B}$, which is $(0,3)$.
PTS: 2 REF: 011225ge STA: G.G. 68 TOP: Perpendicular Bisector
46 ANS: 1
$m=\left(\frac{8+0}{2}, \frac{2+6}{2}\right)=(4,4) m=\frac{6-2}{0-8}=\frac{4}{-8}=-\frac{1}{2} \quad m_{\perp}=2 \quad y=m x+b$

$$
4=2(4)+b
$$

$$
-4=b
$$

PTS: 2 REF: 081126ge STA: G.G. 68 TOP: Perpendicular Bisector
47 ANS: 3
midpoint: $\left(\frac{6+8}{2}, \frac{8+4}{2}\right)=(7,6)$. slope: $\frac{8-4}{6-8}=\frac{4}{-2}=-2 ; m_{\perp}=\frac{1}{2} . \quad 6=\frac{1}{2}(7)+b$

$$
\begin{aligned}
& \frac{12}{2}=\frac{7}{2}+b \\
& \frac{5}{12}=b
\end{aligned}
$$

PTS: 2 REF: fall0805ge STA: G.G. 70 TOP: Quadratic-Linear Systems

50 ANS: 1
$y=x^{2}-4 x=(4)^{2}-4(4)=0 .(4,0)$ is the only intersection.
PTS: 2
REF: 060923ge STA: G.G. 70

TOP: Quadratic-Linear Systems
51 ANS: 3

PTS: 2
REF: 061011ge
STA: G.G. 70
TOP: Quadratic-Linear Systems
52 ANS: 4

$$
\begin{array}{cccc}
y+x=4 . & x^{2}-6 x+10=-x+4 . & y+x=4 . & y+2=4 \\
y=-x+4 & x^{2}-5 x+6=0 & y+3=4 & y=2 \\
(x-3)(x-2)=0 & y=1 & \\
x=3 \text { or } 2 &
\end{array}
$$

PTS: 2
REF: 080912ge
STA: G.G. 70
TOP: Quadratic-Linear Systems
53 ANS: 3

$$
\begin{aligned}
(x+3)^{2}-4 & =2 x+5 \\
x^{2}+6 x+9-4 & =2 x+5 \\
x^{2}+4 x & =0 \\
x(x+4) & =0 \\
x & =0,-4
\end{aligned}
$$

PTS: 2
REF: 081004ge STA: G.G. 70
TOP: Quadratic-Linear Systems

54 ANS: 3

PTS: 2
REF: 081118ge STA: G.G. 70
55 ANS: 3

$$
\begin{aligned}
x^{2}+5^{2} & =25 \\
x & =0
\end{aligned}
$$

PTS: 2
REF: 011312ge STA: G.G. 70
TOP: Quadratic-Linear Systems
56 ANS: 2

$$
\begin{aligned}
(x-4)^{2}-2 & =-2 x+6 . \quad y=-2(4)+6=-2 \\
x^{2}-8 x+16-2 & =-2 x+6 \quad y=-2(2)+6=2 \\
x^{2}-6 x+8 & =0 \\
(x-4)(x-2) & =0 \\
x & =4,2
\end{aligned}
$$

PTS: 2
REF: 081319ge
STA: G.G. 70
TOP: Quadratic-Linear Systems
57 ANS:

PTS: 6
REF: 011038ge
STA: G.G. 70
TOP: Quadratic-Linear Systems

58
ANS:

PTS: 4
REF: 061137 ge
STA: G.G. 70
TOP: Quadratic-Linear Systems
59 ANS:

PTS: 6
REF: 061238ge
60 ANS:

PTS: 4
REF: 081237ge
61 ANS: 4
$M_{x}=\frac{-6+1}{2}=-\frac{5}{2} . M_{y}=\frac{1+8}{2}=\frac{9}{2}$.

PTS: 2
KEY: graph

REF: 060919ge
STA: G.G. 66
TOP: Midpoint

62
ANS: 2
$M_{x}=\frac{2+(-4)}{2}=-1 . M_{Y}=\frac{-3+6}{2}=\frac{3}{2}$.
PTS: 2 REF: fall0813ge STA: G.G. 66 TOP: Midpoint
KEY: general
63
ANS: 2
$M_{x}=\frac{-2+6}{2}=2 . M_{y}=\frac{-4+2}{2}=-1$
PTS: 2 REF: 080910ge STA: G.G. 66 TOP: Midpoint
KEY: general
64 ANS: 2
$M_{x}=\frac{7+(-3)}{2}=2 . M_{Y}=\frac{-1+3}{2}=1$.
PTS: 2 REF: 011106ge STA: G.G. 66 TOP: Midpoint
65 ANS: 2
$M_{x}=\frac{8+(-3)}{2}=2.5 . M_{Y}=\frac{-4+2}{2}=-1$.
PTS: 2 REF: 061312ge STA: G.G. 66 TOP: Midpoint
66 ANS: 2
$M_{x}=\frac{3 x+5+x-1}{2}=\frac{4 x+4}{2}=2 x+2 . M_{Y}=\frac{3 y+(-y)}{2}=\frac{2 y}{2}=y$.
PTS: 2 REF: 081019ge STA: G.G. 66 TOP: Midpoint
KEY: general
67 ANS:
$(6,-4) . \quad C_{x}=\frac{Q_{x}+R_{x}}{2} . C_{y}=\frac{Q_{y}+R_{y}}{2}$.

$$
\begin{array}{rlrl}
3.5 & =\frac{1+R_{x}}{2} & 2 & =\frac{8+R_{y}}{2} \\
7 & =1+R_{x} & 4 & =8+R_{y} \\
6 & =R_{x} & -4 & =R_{y}
\end{array}
$$

PTS: 2 REF: 011031ge STA: G.G. 66 TOP: Midpoint KEY: graph
68 ANS:
$(2 a-3,3 b+2) .\left(\frac{3 a+a-6}{2}, \frac{2 b-1+4 b+5}{2}\right)=\left(\frac{4 a-6}{2}, \frac{6 b+4}{2}\right)=(2 a-3,3 b+2)$
PTS: 2
REF: 061134ge
STA: G.G. 66 TOP: Midpoint

69 ANS: 1

$$
\begin{array}{rlrl}
1 & =\frac{-4+x}{2}, & 5 & =\frac{3+y}{2} . \\
-4+x & =2 & 3+y & =10 \\
x & =6 & y & =7
\end{array}
$$

PTS: 2 REF: 081115ge STA: G.G. 66 TOP: Midpoint ANS: 4

$$
\begin{array}{rlrl}
-5 & =\frac{-3+x}{2} \cdot & 2 & =\frac{6+y}{2} \\
-10 & =-3+x & 4 & =6+y \\
-7 & =x & -2 & =y
\end{array}
$$

PTS: 2 REF: 081203ge STA: G.G. 66 TOP: Midpoint
71 ANS: 3

$$
\begin{array}{rlrl}
6 & =\frac{4+x}{2} . & 8 & =\frac{2+y}{2} . \\
4+x & =12 & 2+y & =16 \\
x & =8 & y & =14
\end{array}
$$

PTS: 2 REF: 011305ge STA: G.G. 66 TOP: Midpoint
ANS: 1
$d=\sqrt{(-4-2)^{2}+(5-(-5))^{2}}=\sqrt{36+100}=\sqrt{136}=\sqrt{4} \cdot \sqrt{34}=2 \sqrt{34}$.
PTS: 2 REF: 080919ge STA: G.G. 67 TOP: Distance
KEY: general
73
ANS: 4
$d=\sqrt{(-3-1)^{2}+(2-0)^{2}}=\sqrt{16+4}=\sqrt{20}=\sqrt{4} \cdot \sqrt{5}=2 \sqrt{5}$
PTS: 2 REF: 011017ge STA: G.G. 67 TOP: Distance
KEY: general
ANS: 4
$d=\sqrt{(146-(-4))^{2}+(52-2)^{2}}=\sqrt{25,000} \approx 158.1$
PTS: 2 REF: 061021ge STA: G.G. 67 TOP: Distance
KEY: general
75
ANS: 4
$d=\sqrt{(-6-2)^{2}+(4-(-5))^{2}}=\sqrt{64+81}=\sqrt{145}$
PTS: 2 REF: 081013ge STA: G.G. 67 TOP: Distance
KEY: general

76
ANS: 2
$d=\sqrt{(-1-7)^{2}+(9-4)^{2}}=\sqrt{64+25}=\sqrt{89}$
PTS: 2 REF: 061109ge STA: G.G. 67 TOP: Distance
KEY: general
77 ANS: 3
$d=\sqrt{(1-9)^{2}+(-4-2)^{2}}=\sqrt{64+36}=\sqrt{100}=10$
PTS: 2 REF: 081107ge STA: G.G. 67 TOP: Distance
KEY: general
78
ANS: 1
$d=\sqrt{(4-1)^{2}+(7-11)^{2}}=\sqrt{9+16}=\sqrt{25}=5$

PTS: 2 REF: 011205ge STA: G.G. 67 TOP: Distance
KEY: general
79 ANS: 3
$d=\sqrt{(-1-4)^{2}+(0-(-3))^{2}}=\sqrt{25+9}=\sqrt{34}$
PTS: 2 REF: 061217ge STA: G.G. 67 TOP: Distance
KEY: general
80 ANS: 4
$d=\sqrt{(-5-3)^{2}+(4-(-6))^{2}}=\sqrt{64+100}=\sqrt{164}=\sqrt{4} \sqrt{41}=2 \sqrt{41}$

PTS: 2 REF: 011121ge STA: G.G. 67 TOP: Distance
KEY: general
81 ANS:
25. $d=\sqrt{(-3-4)^{2}+(1-25)^{2}}=\sqrt{49+576}=\sqrt{625}=25$.

PTS: 2 REF: fall0831ge STA: G.G. 67 TOP: Distance
KEY: general
82 ANS:
$\sqrt{(-4-2)^{2}+(3-5)^{2}}=\sqrt{36+4}=\sqrt{40}=\sqrt{4} \sqrt{10}=2 \sqrt{10}$.

PTS: 2 REF: 081232ge STA: G.G. 67 TOP: Distance
83 ANS:
$\sqrt{(-1-3)^{2}+(4-(-2))^{2}}=\sqrt{16+36}=\sqrt{52}=\sqrt{4} \sqrt{13}=2 \sqrt{13}$
$\begin{array}{lllll}\text { PTS: } 2 & \text { REF: 081331ge } & \text { STA: G.G. } 67 & \text { TOP: Distance } \\ \text { ANS: } 3 & \text { PTS: } 2 & \text { REF: fall0816ge } & \text { STA: G.G. } 1 \\ \text { TOP: Planes } & & & & \\ \text { ANS: } 4 & \text { PTS: } 2 & \text { REF: } 011315 \mathrm{ge} & \text { STA: G.G. } 1 \\ \text { TOP: Planes } & & & & \end{array}$

86	ANS: 4 TOP: Planes	PTS:	2	REF:	011012ge	STA:	G.G. 1
87	ANS: 3 TOP: Planes	PTS:	2	REF:	061017ge	STA:	G.G. 1
88	ANS: 4 TOP: Planes	PTS:	2	REF:	061118ge	STA:	G.G. 1
89	ANS: 3 TOP: Planes	PTS:	2	REF:	081218ge	STA:	G.G. 1
90	ANS: 1 TOP: Planes	PTS:	2	REF:	060918ge	STA:	G.G. 2
91	ANS: 1 TOP: Planes	PTS:	2	REF:	011128ge	STA:	G.G. 2
92	ANS: 1 TOP: Planes	PTS:	2	REF:	061310ge	STA:	G.G. 2
93	ANS: 1 TOP: Planes	PTS:	2	REF:	011024ge	STA:	G.G. 3
94	ANS: 1 TOP: Planes	PTS:	2	REF:	081008ge	STA:	G.G. 3
95	ANS: 1 TOP: Planes	PTS:	2	REF:	011218 ge	STA:	G.G. 3
96	ANS: 2 TOP: Planes	PTS:	2	REF:	080927ge	STA:	G.G. 4
97	ANS: 4 TOP: Planes	PTS:	2	REF:	081211 ge	STA:	G.G. 5
98	ANS: 4 TOP: Planes	PTS:	2	REF:	061213ge	STA:	G.G. 5
99	ANS: 4 TOP: Planes	PTS:	2	REF:	080914ge	STA:	G.G. 7
100	ANS: 1 TOP: Planes	PTS:	2	REF:	081116ge	STA:	G.G. 7
101	ANS: 3 TOP: Planes	PTS:	2	REF:	060928ge	STA:	G.G. 8
102	ANS: 2 TOP: Planes	PTS:	2	REF:	081120ge	STA:	G.G. 8
103	ANS: 4 TOP: Planes	PTS:	2	REF:	061203ge	STA:	G.G. 9
104	ANS: 2 TOP: Planes	PTS:	2	REF:	fall0806ge	STA:	G.G. 9
105	ANS: 3 TOP: Planes	PTS:	2	REF:	081002ge	STA:	G.G. 9
106	ANS: 2 TOP: Planes	PTS:	2	REF:	011109ge	STA:	G.G. 9
107	ANS: 1 TOP: Planes	PTS:	2	REF:	061108ge	STA:	G.G. 9
108	ANS: 4 TOP: Planes	PTS:	2	REF:	011306ge	STA:	G.G. 9

109	ANS: 1 TOP. Planes	PTS:	2	REF:	081323ge	STA:	G.G. 9
11	ANS: 3						
	The lateral edges of a prism are parallel.						
	PTS: 2	REF:	fall0808ge	STA:	G.G. 10	TOP:	Solids
111	ANS: 4	PTS:	2	REF:	061003ge	STA:	G.G. 10
	TOP: Solids						
112	ANS: 3	PTS:	2	REF:	011105ge	STA:	G.G. 10
	TOP: Solids						
113	ANS: 1	PTS:	2	REF:	011221ge	STA:	G.G. 10
	TOP: Solids						
114	ANS: 2	PTS:	2	REF:	081311ge	STA:	G.G. 10
	TOP: Solids						
115	ANS: 2	PTS:	2	REF:	061315ge	STA:	G.G. 13
	TOP: Solids						
116	ANS: 4	PTS:	2	REF:	060904ge	STA:	G.G. 13
	TOP: Solids						
117	ANS: 3	PTS:	2	REF:	060925ge	STA:	G.G. 17
	TOP: Constructions						
118	ANS: 3	PTS:	2	REF:	080902ge	STA:	G.G. 17
	TOP: Constructions						
119	ANS: 2	PTS:	2	REF:	011004ge	STA:	G.G. 17
	TOP: Constructions						
120	ANS: 4	PTS:	2	REF:	081106ge	STA:	G.G. 17
	TOP: Constructions						
121	ANS: 3	PTS:	2	REF:	fall0804ge	STA:	G.G. 18
	TOP: Constructions						
122	ANS:						

PTS: 2
REF: fall0832ge
STA: G.G. 17
TOP: Constructions

123 ANS:

PTS: 2
REF: 080932ge
STA: G.G. 17
TOP: Constructions
124 ANS:

PTS: 2
REF: 011133ge
STA: G.G. 17
TOP: Constructions
125 ANS:

PTS: 2
REF: 011233ge
STA: G.G. 17
TOP: Constructions
126 ANS:

PTS: 2
REF: 061232ge
STA: G.G. 17
TOP: Constructions
127 ANS:

PTS: 2
128
ANS: 2

REF: 081330ge
TOP: Constructions

STA: G.G. 17
REF: 081205ge

TOP: Constructions
STA: G.G. 17

PTS: 2
135 ANS: 4
TOP: Constructions
136 ANS: 2 TOP: Constructions
137 ANS: 2
TOP: Constructions
138 ANS: 4 TOP: Constructions

PTS: 2
REF: 081130ge
PTS: 2

PTS: 2

PTS: 2 ,
\qquad

S
G.G. 18

REF: 061020ge
REF: 061208ge
REF: 081313ge STA: G.G. 19

STA: G.G. 19
TOP: Constructions
STA: G.G. 19
STA: G.G. 19

139 ANS:

χ
PTS: 2 REF: 060930ge STA: G.G. 19 TOP: Constructions
140
ANS:

PTS: 2
REF: 081233ge
STA: G.G. 19
TOP: Constructions
141

PTS: 2
142 ANS: 1 TOP: Constructions
143 ANS: 1
TOP: Constructions
144
ANS: 3
TOP: Constructions

REF: 011333ge
PTS: 2
PTS: 2
PTS: 2
REF: 011309ge
REF: 061012ge

TOP: Constructions
STA: G.G. 20
REF: 011207ge STA: G.G. 20
STA: G.G. 20

145 ANS:

PTS: 2
REF: 081032ge
STA: G.G. 20
TOP: Constructions
146 ANS:

PTS: 2
REF: 011032ge
ANS:

PTS: 2
REF: 061130ge
STA: G.G. 20
TOP: Constructions

148 ANS:

PTS: 2
149 ANS: 2 TOP: Locus
150 ANS: 2 TOP: Locus
151 ANS: 2 TOP: Locus
152 ANS: 4 TOP: Locus
153 ANS:

PTS: 2
REF: 061033ge
STA: G.G. 22
TOP: Locus
154 ANS:

PTS: 2
REF: 060932ge
STA: G.G. 22
TOP: Locus

155 ANS:

PTS: 2
REF: 081033ge
STA: G.G. 22
TOP: Locus
156 ANS:

PTS: 2
REF: 011230ge
STA: G.G. 22
TOP: Locus
157 ANS:

PTS: 2
158 ANS: 2 TOP: Locus
ANS: 4 TOP: Locus
160 ANS: 2 TOP: Locus

REF: 081334ge
PTS: 2

PTS: 2

PTS: 2

REF: 081117ge STA: G.G. 23
STA: G.G. 22 TOP: Locus
REF: 081316ge STA: G.G. 23
REF: 060912ge STA: G.G. 23

161 ANS:

PTS: 4
REF: fall0837ge
STA: G.G. 23
TOP: Locus
162 ANS:

PTS: 4
REF: 080936ge
ANS:

PTS: 4
REF: 011037ge
STA: G.G. 23
TOP: Locus

164 ANS:

PTS: 4
REF: 011135ge
STA: G.G. 23
TOP: Locus
165 ANS:

PTS: 4
REF: 061135ge ANS:

PTS: 2
REF: 061234ge
STA: G.G. 23
TOP: Locus

167 ANS:

PTS: 2
REF: 081234ge
STA: G.G. 23
TOP: Locus
168 ANS:

PTS: 2
REF: 011331ge
STA: G.G. 23
TOP: Locus
169 ANS:

PTS: 2
REF: 061333ge
STA: G.G. 23
TOP: Locus
170 ANS: 2
$7 x=5 x+30$
$2 x=30$
$x=15$
PTS: 2
171 ANS: 3
$7 x=5 x+30$
$2 x=30$
$x=15$
PTS: 2
REF: 081109ge
STA: G.G. 35
TOP: Parallel Lines and Transversals

172 ANS: 2

$$
\begin{aligned}
6 x+42 & =18 x-12 \\
54 & =12 x \\
x & =\frac{54}{12}=4.5
\end{aligned}
$$

PTS: 2 REF: 011201ge STA: G.G. 35 TOP: Parallel Lines and Transversals
$4 x+14+8 x+10=180$

$$
\begin{aligned}
12 x & =156 \\
x & =13
\end{aligned}
$$

PTS: 2 REF: 081213ge STA: G.G. 35 TOP: Parallel Lines and Transversals
174 ANS: 4
The marked 60° angle and the angle above it are on the same straight line and supplementary. This unmarked supplementary angle is 120°. Because the unmarked 120° angle and the marked 120° angle are alternate exterior angles and congruent, $d \| e$.

PTS: 2 REF: 080901ge STA: G.G. 35
175 ANS: 3
PTS: 2
TOP: Parallel Lines and Transversals
176 ANS: 2
PTS: 2
REF: 061320ge
TOP: Parallel Lines and Transversals
STA: G.G. 35

TOP: Parallel Lines and Transversals

Geometry Regents Exam Questions by Performance Indicator: Topic

 Answer Section177 ANS:
$180-(90+63)=27$
PTS: 2 REF: 061230ge STA: G.G. 35 TOP: Parallel Lines and Transversals
178 ANS:
Yes, $\mathrm{m} \angle A B D=\mathrm{m} \angle B D C=44180-(93+43)=44 x+19+2 x+6+3 x+5=180$. Because alternate interior

$$
\begin{aligned}
6 x+30 & =180 \\
6 x & =150 \\
x & =25 \\
x+19 & =44
\end{aligned}
$$

angles $\angle A B D$ and $\angle C D B$ are congruent, $\overline{A B}$ is parallel to $\overline{D C}$.
PTS: 4
REF: 081035ge STA: G.G. 35
TOP: Parallel Lines and Transversals
179 ANS: 3
$8^{2}+24^{2} \neq 25^{2}$
PTS: 2 REF: 011111ge STA: G.G. 48 TOP: Pythagorean Theorem
180 ANS: 2
$2^{2}+3^{2} \neq 4^{2}$
PTS: 2 REF: 011316ge STA: G.G. 48 TOP: Pythagorean Theorem
181 ANS: 1
$a^{2}+(5 \sqrt{2})^{2}=(2 \sqrt{15})^{2}$
$a^{2}+(25 \times 2)=4 \times 15$

$$
a^{2}+50=60
$$

$$
a^{2}=10
$$

$$
a=\sqrt{10}
$$

PTS: 2
REF: 011016ge
STA: G.G. 48
TOP: Pythagorean Theorem

182
ANS: 2

$$
\begin{aligned}
x^{2}+(x+7)^{2} & =13^{2} \\
x^{2}+x^{2}+7 x+7 x+49 & =169 \\
2 x^{2}+14 x-120 & =0 \\
x^{2}+7 x-60 & =0 \\
(x+12)(x-5) & =0 \\
x & =5 \\
2 x & =10
\end{aligned}
$$

PTS: 2 REF: 061024ge STA: G.G. 48 TOP: Pythagorean Theorem
183 ANS: 3
$x^{2}+7^{2}=(x+1)^{2} \quad x+1=25$
$x^{2}+49=x^{2}+2 x+1$
$48=2 x$
$24=x$
PTS: 2 REF: 081127ge STA: G.G. 48 TOP: Pythagorean Theorem
ANS: 1
If $\angle A$ is at minimum $\left(50^{\circ}\right)$ and $\angle B$ is at minimum $\left(90^{\circ}\right), \angle C$ is at maximum of $40^{\circ}\left(180^{\circ}-\left(50^{\circ}+90^{\circ}\right)\right.$). If $\angle A$ is at maximum $\left(60^{\circ}\right)$ and $\angle B$ is at maximum $\left(100^{\circ}\right), \angle C$ is at minimum of $20^{\circ}\left(180^{\circ}-\left(60^{\circ}+100^{\circ}\right)\right.$).

PTS: 2 REF: 060901ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
185 ANS: 1
In an equilateral triangle, each interior angle is 60° and each exterior angle is $120^{\circ}\left(180^{\circ}-120^{\circ}\right)$. The sum of the three interior angles is 180° and the sum of the three exterior angles is 360°.

PTS: 2 REF: 060909ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
186 ANS: 1
$x+2 x+2+3 x+4=180$

$$
\begin{aligned}
6 x+6 & =180 \\
x & =29
\end{aligned}
$$

PTS: 2 REF: 011002ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
ANS: 1
$3 x+5+4 x-15+2 x+10=180 . \mathrm{m} \angle D=3(20)+5=65 . \mathrm{m} \angle E=4(20)-15=65$.

$$
\begin{aligned}
9 x & =180 \\
x & =20
\end{aligned}
$$

PTS: 2
REF: 061119ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles

188
ANS: 4
$\frac{5}{2+3+5} \times 180=90$
PTS: 2
REF: 081119ge STA: G.G. 30
189 ANS: 3
$3 x+1+4 x-17+5 x-20=180.3(18)+1=55$

$$
\begin{array}{rlrl}
12 x-36 & =180 & & 4(18)-17=55 \\
12 x & =216 & 5(18)-20=70 \\
x & =18 & &
\end{array}
$$

PTS: 2
REF: 061308ge
STA: G.G. 30
ANS: 3
$\frac{3}{8+3+4} \times 180=36$
PTS: 2
191 ANS: 4
REF: 011210ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles
192 ANS: 1
$\frac{180-52}{2}=64.180-(90+64)=26$
PTS: 2
REF: 011314ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles
193 ANS:
26. $x+3 x+5 x-54=180$

$$
\begin{aligned}
9 x & =234 \\
x & =26
\end{aligned}
$$

PTS: 2
REF: 080933ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles 194 ANS:
34. $2 x-12+x+90=180$

$$
\begin{aligned}
3 x+78 & =90 \\
3 x & =102 \\
x & =34
\end{aligned}
$$

PTS: 2
REF: 061031ge STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles
195 ANS:
$A=2 B-15 \quad .2 B-15+B+2 B-15+B=180$
$C=A+B$
$6 B-30=180$
$C=2 B-15+B$

$$
\begin{aligned}
6 B & =210 \\
B & =35
\end{aligned}
$$

PTS: 2
REF: 081332ge
STA: G.G. 30

TOP: Interior and Exterior Angles of Triangles

TOP: Interior and Exterior Angles of Triangles

TOP: Interior and Exterior Angles of Triangles STA: G.G. 30

196 ANS: 3
PTS: 2
TOP: Isosceles Triangle Theorem
197 ANS: 3
PTS: 2
TOP: Isosceles Triangle Theorem
PTS: 2
TOP: Isosceles Triangle Theorem
199 ANS: 4
$180-(40+40)=100$
PTS: 2
200 ANS: 1

PTS: 2
REF: 061211ge
ANS: 2
$3 x+x+20+x+20=180$
$5 x=40$
$x=28$

PTS: 2
REF: 081222ge
ANS:
30.

PTS: 2
REF: 011129ge

No, $\angle K G H$ is not congruent to $\angle G K H$.
PTS: 2
REF: 081135ge

STA: G.G. 31 TOP: Isosceles Triangle Theorem

204
ANS:
67. $\frac{180-46}{2}=67$

PTS: 2
REF: 011029ge
STA: G.G. 31
ANS: 1

PTS: 2
REF: 011021ge
STA: G.G. 32
TOP: Exterior Angle Theorem 206 ANS: 3
$x+2 x+15=5 x+152(5)+15=25$

$$
\begin{aligned}
3 x+15 & =5 x+5 \\
10 & =2 x \\
5 & =x
\end{aligned}
$$

PTS: 2
REF: 011127ge
STA: G.G. 32
REF: 061107ge
TOP: Exterior Angle Theorem
208 ANS: 4

$$
\begin{aligned}
x^{2}-6 x+2 x-3 & =9 x+27 \\
x^{2}-4 x-3 & =9 x+27 \\
x^{2}-13 x-30 & =0 \\
(x-15)(x+2) & =0 \\
x & =15,-2
\end{aligned}
$$

PTS: 2
REF: 061225ge
STA: G.G. 32
TOP: Exterior Angle Theorem
209 ANS: 4
$6 x=x+40+3 x+10 . \mathrm{m} \angle C A B=25+40=65$
$6 x=4 x+50$
$2 x=50$

$$
x=25
$$

PTS: 2
REF: 081310ge
PTS: 2
TOP: Exterior Angle Theorem

STA: G.G. 32
REF: 011206ge

TOP: Exterior Angle Theorem
STA: G.G. 32

211 ANS: 4
(4) is not true if $\angle P Q R$ is obtuse.

PTS: 2
REF: 060924ge
STA: G.G. 32
212 ANS: 3
PTS: 2
TOP: Exterior Angle Theorem
213 ANS:
110. $6 x+20=x+40+4 x-5$
$6 x+20=5 x+35$
$x=15$
$6((15)+20=110$
PTS: 2 REF: 081031ge STA: G.G. 32 TOP: Exterior Angle Theorem
214 ANS: 2
$7+18>6+12$
PTS: 2 REF: fall0819ge STA: G.G. 33 TOP: Triangle Inequality Theorem
215 ANS: 2
$6+17>22$
PTS: 2 REF: 080916ge STA: G.G. 33 TOP: Triangle Inequality Theorem
216 ANS: 2
$5-3=2,5+3=8$
PTS: 2
REF: 011228ge STA: G.G. 33
TOP: Triangle Inequality Theorem
217 ANS: 2
Longest side of a triangle is opposite the largest angle. Shortest side is opposite the smallest angle.
PTS: 2 REF: 060911ge STA: G.G. 34 TOP: Angle Side Relationship
218 ANS: 1
PTS: 2
REF: 061010ge STA: G.G. 34
TOP: Angle Side Relationship
219 ANS: 4
Longest side of a triangle is opposite the largest angle. Shortest side is opposite the smallest angle.
PTS: 2 REF: 081011ge STA: G.G. 34 TOP: Angle Side Relationship
220 ANS: 4
$\mathrm{m} \angle A=80$
PTS: 2 REF: 011115ge STA: G.G. 34 TOP: Angle Side Relationship

221 ANS: 1

PTS: 2 REF: 081219ge STA: G.G. 34 TOP: Angle Side Relationship
ANS: 2
PTS: 2
REF: 061321ge
STA: G.G. 34
TOP: Angle Side Relationship
223 ANS: 4 PTS: 2
REF: 011222ge STA: G.G. 34
TOP: Angle Side Relationship
224 ANS: $2 \quad$ PTS: 2
REF: 081306ge STA: G.G. 34
TOP: Angle Side Relationship
225 ANS:
$\overline{A C} \cdot \mathrm{~m} \angle B C A=63$ and $\mathrm{m} \angle A B C=80 . \overline{A C}$ is the longest side as it is opposite the largest angle.
PTS: 2 REF: 080934ge STA: G.G. 34 TOP: Angle Side Relationship
226 ANS:
$x^{2}+12+11 x+5+13 x-17=180 . \mathrm{m} \angle A=6^{2}+12=48 . \angle B$ is the largest angle, so $\overline{A C}$ in the longest side.

$$
\begin{array}{rlrl}
x^{2}+24 x-180 & =0 & \mathrm{~m} \angle B=11(6)+5=71 \\
(x+30)(x-6) & =0 & \mathrm{~m} \angle C=13(6)-7=61 \\
x & =6 & &
\end{array}
$$

PTS: 4
REF: 011337ge
STA: G.G. 34
TOP: Angle Side Relationship
227 ANS: 2
$\frac{3}{7}=\frac{6}{x}$
$3 x=42$
$x=14$
PTS: 2
REF: 081027ge
STA: G.G. 46
TOP: Side Splitter Theorem
228
ANS: 3
$\frac{5}{7}=\frac{10}{x}$
$5 x=70$
$x=14$
PTS: 2
REF: 081103ge
STA: G.G. 46
TOP: Side Splitter Theorem

229 ANS: 3

PTS: 2 REF: 061216ge STA: G.G. 46 TOP: Side Splitter Theorem
230 ANS: 4
$\triangle A B C \sim \triangle D B E . \frac{\overline{A B}}{\overline{D B}}=\frac{\overline{A C}}{\overline{D E}}$

$$
\begin{aligned}
\frac{9}{2} & =\frac{x}{3} \\
x & =13.5
\end{aligned}
$$

PTS: 2 REF: 060927ge STA: G.G. 46 TOP: Side Splitter Theorem 231 ANS:
32. $\frac{16}{20}=\frac{x-3}{x+5} \cdot \overline{A C}=x-3=35-3=32$

$$
16 x+80=20 x-60
$$

$$
140=4 x
$$

$$
35=x
$$

PTS: 4 REF: 011137ge STA: G.G. 46 TOP: Side Splitter Theorem
232 ANS:
16.7. $\frac{x}{25}=\frac{12}{18}$

$$
\begin{aligned}
18 x & =300 \\
x & \approx 16.7
\end{aligned}
$$

PTS: 2
REF: 061133ge
STA: G.G. 46
TOP: Side Splitter Theorem
ANS:
5. $\frac{3}{x}=\frac{6+3}{15}$
$9 x=45$
$x=5$
PTS: 2
REF: 011033ge
STA: G.G. 46
TOP: Side Splitter Theorem

234 ANS: 3

PTS: 2 REF: 080920ge STA: G.G. 42 TOP: Midsegments
235 ANS: 1

PTS: 2 REF: 081003ge STA: G.G. 42 TOP: Midsegments
236 ANS: 2
$\frac{4 x+10}{2}=2 x+5$
PTS: 2
REF: 011103ge
STA: G.G. 42
TOP: Midsegments
237 ANS: 4

PTS: 2
REF: 061211ge STA: G.G. 42

TOP: Midsegments
238
ANS: 3
$3 x-15=2(6)$

$$
\begin{aligned}
3 x & =27 \\
x & =9
\end{aligned}
$$

PTS: 2
REF: 061311ge
STA: G.G. 42
TOP: Midsegments

ANS: 3
PTS: 2
TOP: Midsegments
ANS: 3
TOP: Midsegments
TOP: Midsegment
ANS:
20. The sides of the triangle formed by connecting the midpoints are half the sides of the original triangle.
$5+7+8=20$.

PTS: 2
REF: 060929ge
STA: G.G. 42
TOP: Midsegments
ANS:
37. Since $\overline{D E}$ is a midsegment, $A C=14.10+13+14=37$

PTS: 2 REF: 061030ge STA: G.G. 42 TOP: Midsegments
ANS:

PTS: 4 REF: fall0835ge STA: G.G. 42 TOP: Midsegments
245 ANS:
$M\left(\frac{-7+5}{2}, \frac{2+4}{2}\right)=M(-1,3) . N\left(\frac{3+5}{2}, \frac{-4+4}{2}\right)=N(4,0) . \overline{M N}$ is a midsegment.

PTS: 4

REF: 011237ge
STA: G.G. 42
PTS: 2
REF: 061214ge
TOP: Midsegments
TOP: Centroid, Orthocenter, Incenter and Circumcenter
PTS: 2
REF: 011110ge
STA: G.G. 21
KEY: Centroid, Orthocenter, Incenter and Circumcenter

ANS: 3
PTS: 2
REF: 011202ge
STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
ANS: 3
PTS: 2
REF: fall0825ge
STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
PTS: 2
REF: 081224ge
STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
ANS: 4 PTS: $2 \quad$ REF: 080925
TOP: Centroid, Orthocenter, Incenter and Circumcenter
252 ANS: 4
$\overline{B G}$ is also an angle bisector since it intersects the concurrence of $\overline{C D}$ and $\overline{A E}$
PTS: 2
REF: 061025ge STA: G.G. 21
KEY: Centroid, Orthocenter, Incenter and Circumcenter
253 ANS: 1
PTS: 2 REF: 081028ge
STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
254 ANS:
$(7,5) m_{\overline{A B}}=\left(\frac{3+7}{2}, \frac{3+9}{2}\right)=(5,6) m_{B C}=\left(\frac{7+11}{2}, \frac{9+3}{2}\right)=(9,6)$

PTS: 2
REF: 081134ge STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
255 ANS: 2
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.
PTS: 2 REF: 060914ge STA: G.G. 43 TOP: Centroid
ANS: 1
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.

$$
\begin{aligned}
\overline{G C} & =2 \overline{F G} \\
\overline{G C}+\overline{F G} & =24 \\
2 \overline{F G}+\overline{F G} & =24 \\
3 \overline{F G} & =24 \\
\overline{F G} & =8
\end{aligned}
$$

[^0]REF: 081018ge
STA: G.G. 43
REF: 061104ge STA: G.G. 43
TOP: Centroid
PTS: 2

258 ANS: 1

$$
\begin{aligned}
7 x+4 & =2(2 x+5) . P M=2(2)+5=9 \\
7 x+4 & =4 x+10 \\
3 x & =6 \\
x & =2
\end{aligned}
$$

PTS: 2 REF: 011226ge STA: G.G. 43 TOP: Centroid
259 ANS: 4
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.
PTS: 2 REF: 081220ge STA: G.G. 43 TOP: Centroid
ANS: 3
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.
PTS: 2 REF: 081307ge STA: G.G. 43 TOP: Centroid
261 ANS:
6. The centroid divides each median into segments whose lengths are in the ratio $2: 1 . \overline{T D}=6$ and $\overline{D B}=3$

PTS: 2 REF: 011034ge STA: G.G. 43 TOP: Centroid
262 ANS: 1
Since $\overline{A C} \cong \overline{B C}, \mathrm{~m} \angle A=\mathrm{m} \angle B$ under the Isosceles Triangle Theorem.
PTS: 2 REF: fall0809ge STA: G.G. 69 TOP: Triangles in the Coordinate Plane
ANS: 2
PTS: 2
REF: 061115ge
TOP: Triangles in the Coordinate Plane
ANS: 2 PTS: 2 REF: 081226ge STA: G.G. 69
TOP: Triangles in the Coordinate Plane
ANS: 3
$A B=8-4=4 . B C=\sqrt{(-2-(-5))^{2}+(8-6)^{2}}=\sqrt{13} \cdot A C=\sqrt{(-2-(-5))^{2}+(4-6)^{2}}=\sqrt{13}$
PTS: 2 REF: 011328ge STA: G.G. 69 TOP: Triangles in the Coordinate Plane ANS:
$\sqrt{(7-3)^{2}+(-8-0)^{2}}=\sqrt{16+64}=\sqrt{80}=4 \sqrt{5}$
PTS: 2 REF: 061331ge STA: G.G. 69 TOP: Triangles in the Coordinate Plane

267 ANS:
$15+5 \sqrt{5}$.

PTS: 4
268 ANS: 3
STA: G.G. 69
TOP: Interior and Exterior Angles of Polygons
269

$$
\begin{aligned}
180(n-2) & =n\left(180-\frac{180(n-2)}{n}\right) \\
180 n-360 & =180 n-180 n+360 \\
180 n & =720 \\
n & =4
\end{aligned}
$$

PTS: 2
REF: 081223ge
STA: G.G. 36
TOP: Interior and Exterior Angles of Polygons
270 ANS: 4
sum of interior $\angle \mathrm{s}=\mathrm{sum}$ of exterior $\angle \mathrm{s}$

$$
\begin{aligned}
(n-2) 180 & =n\left(180-\frac{(n-2) 180}{n}\right) \\
180 n-360 & =180 n-180 n+360 \\
180 n & =720 \\
n & =4
\end{aligned}
$$

PTS: 2
REF: 081016ge
STA: G.G. 36
271 ANS: 3
$(n-2) 180=(5-2) 180=540$
PTS: 2
REF: 011223ge
STA: G.G. 36

TOP: Triangles in the Coordinate Plane STA: G.G. 36

REF. O1223ge
TOP: Interior and Exterior Angles of Polygons

272
ANS: 3

. The sum of the interior angles of a pentagon is $(5-2) 180=540$.
PTS: 2 REF: 011023ge STA: G.G. 36 TOP: Interior and Exterior Angles of Polygons ANS: 1
$\angle A=\frac{(n-2) 180}{n}=\frac{(5-2) 180}{5}=108 \angle A E B=\frac{180-108}{2}=36$
PTS: 2 REF: 081022ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons
274 ANS: 4
$(n-2) 180=(8-2) 180=1080 . \frac{1080}{8}=135$.
PTS: 2 REF: fall0827ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons ANS: 2
$(n-2) 180=(6-2) 180=720 . \frac{720}{6}=120$.
PTS: 2 REF: 081125ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons
ANS: 2
$\frac{(n-2) 180}{n}=120$.
$180 n-360=120 n$

$$
\begin{aligned}
60 n & =360 \\
n & =6
\end{aligned}
$$

PTS: 2 REF: 011326ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons
ANS: 4
$(n-2) 180-n\left(\frac{(n-2) 180}{n}\right)=180 n-360-180 n+180 n-360=180 n-720$.
$180(5)-720=180$
PTS: 2 REF: 081322ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons
278 ANS:
$(5-2) 180=540 . \frac{540}{5}=108$ interior. $180-108=72$ exterior
PTS: 2 REF: 011131ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons

279
ANS:
$(n-2) 180=(8-2) 180=1080 \cdot \frac{1080}{8}=135$.
PTS: 2 REF: 061330ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons 280 ANS: 1
$\angle D C B$ and $\angle A D C$ are supplementary adjacent angles of a parallelogram. $180-120=60 . \angle 2=60-45=15$.
PTS: 2 REF: 080907ge STA: G.G. 38 TOP: Parallelograms
281 ANS: 1
Opposite sides of a parallelogram are congruent. $4 x-3=x+3 . S V=(2)+3=5$.

$$
\begin{aligned}
3 x & =6 \\
x & =2
\end{aligned}
$$

PTS: 2 REF: 011013ge STA: G.G. 38 TOP: Parallelograms
282 ANS: 3
PTS: 2
REF: 011104ge
REF: 061111ge
STA: G.G. 38
TOP: Parallelograms
283 ANS: $3 \quad$ PTS: 2
TOP: Parallelograms
284 ANS:

$$
\text { 11. } \begin{aligned}
x^{2}+6 x & =x+14.6(2)-1=11 \\
x^{2}+5 x-14 & =0 \\
(x+7)(x-2) & =0 \\
x & =2
\end{aligned}
$$

PTS: 2
REF: 081235ge
STA: G.G. 38
REF: 011112ge
TOP: Parallelograms
285 ANS: 1
PTS: 2
STA: G.G. 39
TOP: Special Parallelograms
ANS: 2
The diagonals of a rhombus are perpendicular. $180-(90+12)=78$
PTS: 2 REF: 011204ge STA: G.G. 39 TOP: Special Parallelograms
287 ANS: 4
$2 x-8=x+2 . A E=10+2=12 . A C=2(A E)=2(12)=24$
$x=10$
PTS: 2 REF: 011327ge STA: G.G. 39 TOP: Special Parallelograms
288 ANS: 3
$\sqrt{5^{2}+12^{2}}=13$
PTS: 2 REF: 061116ge STA: G.G. 39 TOP: Special Parallelograms

289 ANS: 2
$\sqrt{(-2-4)^{2}+(-3-(-1))^{2}}=\sqrt{40}=\sqrt{4} \sqrt{10}=2 \sqrt{10}$
PTS: 2 REF: 011313ge STA: G.G. 39 TOP: Special Parallelograms
290 ANS: 2
$\sqrt{8^{2}+15^{2}}=17$
PTS: 2
REF: 061326ge
STA: G.G. 39
TOP: Special Parallelograms
ANS: 3
PTS: 2
REF: 061228ge
STA: G.G. 39
TOP: Special Parallelograms

$$
\begin{aligned}
& 8 x-5=3 x+30.4 z-8=3 z .9 y+8+5 y-2=90 . \\
& 5 x=35 \quad z=8 \quad 14 y+6=90 \\
& x=7 \\
& 14 y=84 \\
& y=6
\end{aligned}
$$

PTS: 6 REF: 061038ge STA: G.G. 39 TOP: Special Parallelograms

The length of the midsegment of a trapezoid is the average of the lengths of its bases. $\frac{x+30}{2}=44$.

$$
\begin{aligned}
x+30 & =88 \\
x & =58
\end{aligned}
$$

PTS: 2 REF: 011001ge STA: G.G. 40 TOP: Trapezoids
ANS: 4
$\sqrt{25^{2}-\left(\frac{26-12}{2}\right)^{2}}=24$
PTS: 2
REF: 011219ge
STA: G.G. 40
TOP: Trapezoids

298 ANS: 1
$\frac{40-24}{2}=8 . \quad \sqrt{10^{2}-8^{2}}=6$.

PTS: 2 REF: 061204ge STA: G.G. 40 TOP: Trapezoids
ANS: 1
The length of the midsegment of a trapezoid is the average of the lengths of its bases. $\frac{x+3+5 x-9}{2}=2 x+2$.

$$
\begin{aligned}
6 x-6 & =4 x+4 \\
2 x & =10 \\
x & =5
\end{aligned}
$$

PTS: 2 REF: 081221ge STA: G.G. 40 TOP: Trapezoids
300 ANS: 3

$$
\begin{aligned}
2(4 x+20)+2(3 x-15) & =360 . \quad \angle D=3(25)-15=60 \\
8 x+40+6 x-30 & =360 \\
14 x+10 & =360 \\
14 x & =350 \\
x & =25
\end{aligned}
$$

PTS: 2 REF: 011321ge STA: G.G. 40 TOP: Trapezoids
ANS: 3
The diagonals of an isosceles trapezoid are congruent. $5 x+3=11 x-5$.

$$
\begin{aligned}
6 x & =18 \\
x & =3
\end{aligned}
$$

PTS: 2 REF: fall0801ge STA: G.G. 40 TOP: Trapezoids
ANS: 3

PTS: 2
ANS: 4
TOP: Trapezoids

REF: 061016 ge
PTS: 2

STA: G.G. 40
REF: 061008ge

TOP: Trapezoids
STA: G.G. 40

304
ANS: 2
Isosceles or not, $\triangle R S V$ and $\Delta R S T$ have a common base, and since $\overline{R S}$ and $\overline{V T}$ are bases, congruent altitudes.
PTS: 2
REF: 061301ge
STA: G.G. 40
TOP: Trapezoids
ANS:
3. The non-parallel sides of an isosceles trapezoid are congruent. $2 x+5=3 x+2$

$$
x=3
$$

PTS: 2 REF: 080929ge STA: G.G. 40 TOP: Trapezoids
306 ANS:
70. $3 x+5+3 x+5+2 x+2 x=180$

$$
\begin{aligned}
10 x+10 & =360 \\
10 x & =350 \\
x & =35 \\
2 x & =70
\end{aligned}
$$

PTS: 2
REF: 081029ge
STA: G.G. 40 TOP: Trapezoids
307
ANS:
$12 x-4+180-6 x+6 x+7 x+13=360.16 y+1=\frac{12 y+1+18 y+6}{2}$

$$
\begin{array}{rlrl}
19 x+189 & =360 & 32 y+2 & =30 y+7 \\
19 x & =171 & 2 y & =5 \\
x & =9 & y & =\frac{5}{2}
\end{array}
$$

PTS: 4 REF: 081337ge STA: G.G. 40 TOP: Trapezoids
308 ANS: 1
PTS: 2
REF: 080918ge
STA: G.G. 41
TOP: Special Quadrilaterals
ANS: 2
Adjacent sides of a rectangle are perpendicular and have opposite and reciprocal slopes.
PTS: 2 REF: 061028ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane
310 ANS: 1
The diagonals of a parallelogram intersect at their midpoints. $M_{A C}^{-}\left(\frac{1+3}{2}, \frac{5+(-1)}{2}\right)=(2,2)$
PTS: 2 REF: 061209ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane
311 ANS:
$m_{\overline{A B}}=\frac{4-1}{4-2}=\frac{3}{2} \cdot m_{B C}=-\frac{2}{3}$
PTS: 4 REF: 061334ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane

ANS:

$\overline{A B} \| \overline{C D}$ and $\overline{A D} \| \overline{C B}$ because their slopes are equal. $A B C D$ is a parallelogram because opposite side are parallel. $\overline{A B} \neq \overline{B C} . A B C D$ is not a rhombus because all sides are not equal. $\overline{A B} \sim \perp \overline{B C}$ because their slopes are not opposite reciprocals. $A B C D$ is not a rectangle because $\angle A B C$ is not a right angle.

PTS: 4 REF: 081038ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane
313 ANS:

The length of each side of quadrilateral is 5 . Since each side is congruent, quadrilateral $M A T H$ is a rhombus. The slope of $\overline{M H}$ is 0 and the slope of $\overline{H T}$ is $-\frac{4}{3}$. Since the slopes are not negative reciprocals, the sides are not perpendicular and do not form rights angles. Since adjacent sides are not perpendicular, quadrilateral $M A T H$ is not a square.

PTS: 6 REF: 011138ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane
314 ANS: $m_{\overline{A B}}=\left(\frac{-6+2}{2}, \frac{-2+8}{2}\right)=D(2,3) m_{B C}=\left(\frac{2+6}{2}, \frac{8+-2}{2}\right)=E(4,3) F(0,-2)$. To prove that $A D E F$ is a parallelogram, show that both pairs of opposite sides of the parallelogram are parallel by showing the opposite sides have the same slope: $\mathrm{m}_{\overline{A D}}=\frac{3--2}{-2--6}=\frac{5}{4} \overline{A F} \| \overline{D E}$ because all horizontal lines have the same slope. $A D E F$

$$
\mathrm{m}_{F E}=\frac{3--2}{4-0}=\frac{5}{4}
$$

is not a rhombus because not all sides are congruent. $A D=\sqrt{5^{2}+4^{2}}=\sqrt{41} \quad A F=6$
PTS: 6 REF: 081138ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane

ANS:
$M\left(\frac{-7+-3}{2}, \frac{4+6}{2}\right)=M(-5,5) . m_{M N}=\frac{5-3}{-5-0}=\frac{2}{-5}$. Since both opposite sides have equal slopes and are
$N\left(\frac{-3+3}{2}, \frac{6+0}{2}\right)=N(0,3) \quad m_{P Q}=\frac{-4--2}{2--3}=\frac{-2}{5}$
$P\left(\frac{3+1}{2}, \frac{0+-8}{2}\right)=P(2,-4) \quad m_{N A}=\frac{3--4}{0-2}=\frac{7}{-2}$
$Q\left(\frac{-7+1}{2}, \frac{4+-8}{2}\right)=Q(-3,-2) \quad m_{\overline{Q M}=\frac{-2-5}{-3--5}=\frac{-7}{2}}$
parallel, $M N P Q$ is a parallelogram. $\overline{M N}=\sqrt{(-5-0)^{2}+(5-3)^{2}}=\sqrt{29} \cdot \overline{M N}$ is not congruent to $\overline{N P}$, so $M N P Q$

$$
\overline{N A}=\sqrt{(0-2)^{2}+(3--4)^{2}}=\sqrt{53}
$$

is not a rhombus since not all sides are congruent.

PTS: 6 REF: 081338ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane 316 ANS: 4

PTS: 2
REF: 081308ge
STA: G.G. 49
TOP: Chords
317 ANS: 3
Because $\overline{O C}$ is a radius, its length is 5. Since $C E=2 O E=3 . \triangle E D O$ is a 3-4-5 triangle. If $E D=4, B D=8$.
PTS: 2 REF: fall0811ge STA: G.G. 49 TOP: Chords
318 ANS: 3

PTS: 2
REF: 011112ge
STA: G.G. 49
TOP: Chords

319 ANS: 4
$\sqrt{6^{2}-2^{2}}=\sqrt{32}=\sqrt{16} \sqrt{2}=4 \sqrt{2}$
PTS: 2 REF: 081124ge STA: G.G. 49 TOP: Chords
320 ANS: 2

$\sqrt{17^{2}-15^{2}}=8 . \quad 17-8=9$
PTS: 2 REF: 061221ge STA: G.G. 49 TOP: Chords
321 ANS: 3
PTS: 2
REF: 011322ge
STA: G.G. 49
TOP: Chords
322 ANS: 1
The closer a chord is to the center of a circle, the longer the chord.
PTS: 2 REF: 011005ge STA: G.G. 49 TOP: Chords
323 ANS:

$$
\begin{aligned}
2(y+10) & =4 y-20 . \overline{D F}=y+10=20+10=30 . \overline{O A}=\overline{O D}=\sqrt{16^{2}+30^{2}}=34 \\
2 y+20 & =4 y-20 \\
40 & =2 y \\
20 & =y
\end{aligned}
$$

PTS: 4 REF: 061336ge STA: G.G. 49 TOP: Chords 324 ANS:
$E O=6 . C E=\sqrt{10^{2}-6^{2}}=8$
PTS: 2 REF: 011234ge STA: G.G. 49 TOP: Chords
325 ANS: 2
Parallel chords intercept congruent arcs. $\mathrm{m} \overparen{A D}=\mathrm{m} \overparen{B C}=60 . \mathrm{m} \angle C D B=\frac{1}{2} \mathrm{~m} \overparen{\mathrm{BC}}=30$.
PTS: 2 REF: 060906ge STA: G.G. 52 TOP: Chords
326 ANS: 2
Parallel chords intercept congruent arcs. $\mathrm{m} \overparen{A C}=\mathrm{m} \overparen{B D}=30.180-30-30=120$.
PTS: 2 REF: 080904ge STA: G.G. 52 TOP: Chords
327 ANS: 3
$\frac{180-70}{2}=55$
PTS: 2
REF: 061205ge
STA: G.G. 52
TOP: Chords

328 ANS: 2
Parallel chords intercept congruent arcs. $\frac{360-(104+168)}{2}=44$
PTS: 2 REF: 011302ge STA: G.G. 52 TOP: Chords
329 ANS: 1
Parallel chords intercept congruent arcs. $\mathrm{m} \overparen{A C}=\mathrm{m} \overparen{B D} \cdot \frac{180-110}{2}=35$.
PTS: 2 REF: 081302ge STA: G.G. 52 TOP: Chords
330 ANS: 1
Parallel lines intercept congruent arcs.
PTS: 2 REF: 061001ge STA: G.G. 52 TOP: Chords
331 ANS: 1
Parallel lines intercept congruent arcs.
PTS: 2 REF: 061105ge STA: G.G. 52 TOP: Chords
332 ANS: 4
Parallel lines intercept congruent arcs.
PTS: 2 REF: 081201ge STA: G.G. 52 TOP: Chords 333 ANS:
$\frac{180-80}{2}=50$
PTS: 2 REF: 081129ge STA: G.G. 52 TOP: Chords
334 ANS:
$2 x-20=x+20 . \mathrm{m} \overparen{A B}=x+20=40+20=60$
$x=40$
PTS: 2 REF: 011229ge STA: G.G. 52 TOP: Chords
ANS: 4 PTS: 2 REF: fall0824ge STA: G.G. 50
TOP: Tangents
336 ANS: 3
KEY: common tangency
PTS: 2 REF: 080928ge STA: G.G. 50
TOP: Tangents KEY: common tangency
337 ANS:

PTS: 2
REF: 011330ge
STA: G.G. 50
TOP: Tangents
KEY: common tangency
PTS: 2
REF: 081214ge STA: G.G. 50
TOP: Tangents
KEY: point of tangency

339 ANS: 1
TOP: Tangents
340 ANS: 4
$\sqrt{25^{2}-7^{2}}=24$

KEY: point of tangency
341 ANS: 2
$\sqrt{15^{2}-12^{2}}=9$

KEY: point of tangency
TOP: Tangents KEY: two tangents
343 ANS:
18. If the ratio of $T A$ to $A C$ is $1: 3$, the ratio of $T E$ to $E S$ is also $1: 3 . x+3 x=24.3(6)=18$.

$$
x=6
$$

PTS: 4
REF: 060935ge
STA: G.G. 50
TOP: Tangents
KEY: common tangency
344 ANS: 2
$\frac{87+35}{2}=\frac{122}{2}=61$
PTS: 2
REF: 011015ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inside circle
345 ANS: 3
$\frac{36+20}{2}=28$
PTS: 2
REF: 061019ge STA: G.G. 51
KEY: inside circle
346
ANS: 2

$$
\begin{aligned}
\frac{140-\overline{R S}}{2} & =40 \\
140-\overline{R S} & =80 \\
\overline{R S} & =60
\end{aligned}
$$

PTS: 2
REF: 081025ge STA: G.G. 51
KEY: outside circle

PTS: 2 REF: 081105ge STA: G.G. 50 TOP: Tangents

PTS: 2 REF: 081325ge STA: G.G. 50 TOP: Tangents
342 ANS: 1 PTS: 2 REF: 081012ge STA: G.G. 50
PTS: 2
REF: 061013ge
STA: G.G. 50
KEY: point of tangency
$x=6$

ANS: 2

$$
\begin{aligned}
\frac{50+x}{2} & =34 \\
50+x & =68 \\
x & =18
\end{aligned}
$$

PTS: 2
REF: 011214ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inside circle

PTS: 2
REF: 011325ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: outside circle
ANS: 2
PTS: 2
REF: 061322ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inscribed
REF: 011124ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inscribed
ANS: 2

PTS: 2
REF: 061026GE
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inscribed
ANS:
$\angle D, \angle G$ and 24° or $\angle E, \angle F$ and $84^{\circ} . \mathrm{m} \overparen{F E}=\frac{2}{15} \times 360=48$. Since the chords forming $\angle D$ and $\angle G$ are intercepted by $\overparen{F E}$, their measure is $24^{\circ} . \mathrm{m} \overparen{G D}=\frac{7}{15} \times 360=168$. Since the chords forming $\angle E$ and $\angle F$ are intercepted by $\overparen{G D}$, their measure is 84°.

PTS: 4 REF: fall0836ge STA: G.G. 51 TOP: Arcs Determined by Angles
KEY: inscribed
353
ANS:
30. $3 x+4 x+5 x=360 . \mathrm{m} \overparen{\mathrm{LN}}: \overparen{\mathrm{m} N K}: \overparen{\mathrm{m} K L}=90: 120: 150 . \frac{150-90}{2}=30$

$$
x=20
$$

PTS: 4
REF: 061136ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: outside circle

354
ANS:
$52,40,80.360-(56+112)=192 . \frac{192-112}{2}=40 \cdot \frac{112+48}{2}=80$

$$
\begin{aligned}
& \frac{1}{4} \times 192=48 \\
& \frac{56+48}{2}=52
\end{aligned}
$$

PTS: 6
KEY: mixed
ANS: 2
$4(4 x-3)=3(2 x+8)$
$16 x-12=6 x+24$
$10 x=36$
$x=3.6$
PTS: 2
KEY: two chords
ANS: 1
$4 x=6 \cdot 10$
$x=15$
PTS: 2
REF: 081017ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: two chords
357 ANS: 1
$8 \times 12=16 x$

$$
6=x
$$

PTS: 2
REF: 081328ge
STA: G.G. 53
TOP: Segments Intercepted by Circle

REF: 080923ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
REF: 081238ge
STA: G.G. 51
TOP: Arcs Determined by Angles

: Segmats Intarcepted by Cirle

KEY: two chords

358 ANS:

$$
\begin{aligned}
x^{2} & =9 \cdot 8 \\
x & =\sqrt{72} \\
x & =\sqrt{36} \sqrt{2} \\
x & =6 \sqrt{2}
\end{aligned}
$$

PTS: 2 REF: 011132ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: two chords
359 ANS: 2

$$
\begin{aligned}
x^{2} & =3(x+18) \\
x^{2}-3 x-54 & =0 \\
(x-9)(x+6) & =0 \\
x & =9
\end{aligned}
$$

PTS: 2
REF: fall0817ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: tangent and secant
360
ANS: 3
$4(x+4)=8^{2}$
$4 x+16=64$

$$
x=12
$$

PTS: 2
REF: 060916ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: tangent and secant
361
ANS: 4
$x^{2}=(4+5) \times 4$
$x^{2}=36$
$x=6$
PTS: 2
REF: 011008ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: tangent and secant
ANS: 2
$(d+4) 4=12(6)$
$4 d+16=72$
$d=14$
$r=7$
PTS: 2
REF: 061023ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: two secants

363 ANS: 4

$$
\begin{aligned}
4(x+4) & =8^{2} \\
4 x+16 & =64 \\
4 x & =48 \\
x & =12
\end{aligned}
$$

PTS: 2
REF: 061117ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: tangent and secant
364

$$
\begin{aligned}
\text { ANS: } & 1 \\
12(8) & =x(6) \\
96 & =6 x \\
16 & =x
\end{aligned}
$$

PTS: 2
REF: 061328ge
STA: G.G. 53
TOP: Segments Intercepted by Circle KEY: two secants

$$
\begin{array}{rlrl}
x(x+2) & =12 \cdot 2 . \overline{R T}=6+4=10 . y \cdot y & =18 \cdot 8 \\
x^{2}+2 x-24 & =0 & y^{2} & =144 \\
(x+6)(x-4) & =0 & y & =12 \\
x & =4 &
\end{array}
$$

PTS: 4
REF: 061237ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: tangent and secant
ANS: 3

PTS: 2
REF: 011101ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: two tangents
REF: 011208ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: two tangents

368	ANS:	2 PTS:	2	REF:	060910ge	STA:	G.G. 71
TOP: Equations of Circles							
369	ANS:	3 PTS:	2	REF:	011010ge	STA:	G.G. 71
	TOP:	Equations of Circles					
370	ANS:	3 PTS:	2	REF:	011116ge	STA:	G.G. 71
	TOP:	Equations of Circles					
371	ANS:	4 PTS:	2	REF:	081110ge	STA:	G.G. 71
	TOP:	Equations of Circles					
372	ANS:	4 PTS:	2	REF:	011212ge	STA:	G.G. 71
	TOP:	Equations of Circles					
373	ANS:	3 PTS:	2	REF:	081209ge	STA:	G.G. 71
	TOP:	Equations of Circles					
374	ANS:	4 PTS:	2	REF:	081305ge	STA:	G.G. 71
	TOP:	Equations of Circles					
375	ANS:	3 PTS:	2	REF:	061210ge	STA:	G.G. 71
	TOP:	Equations of Circles					

If $r=5$, then $r^{2}=25 .(x+3)^{2}+(y-2)^{2}=25$
$\begin{array}{lllll}\text { PTS: } 2 & \text { REF: } 011332 \text { ge } & \text { STA: G.G.71 } & \text { TOP: Equations of Circles } \\ \text { ANS: } 3 & \text { PTS: } 2 & \text { REF: 061306ge } & \text { STA: } & \text { G.G. } 71\end{array}$
TOP: Equations of Circles
378 ANS: 1
$M_{x}=\frac{-2+6}{2}=2 . M_{y}=\frac{3+3}{2}=3$. The center is (2,3). $d=\sqrt{(-2-6)^{2}+(3-3)^{2}}=\sqrt{64+0}=8$. If the diameter is 8 , the radius is 4 and $r^{2}=16$.

PTS: 2 REF: fall0820ge STA: G.G. 71 TOP: Equations of Circles
379 ANS:
Midpoint: $\left(\frac{-4+4}{2}, \frac{2+(-4)}{2}\right)=(0,-1)$. Distance: $d=\sqrt{(-4-4)^{2}+(2-(-4))^{2}}=\sqrt{100}=10$

$$
r=5
$$

$$
r^{2}=25
$$

$x^{2}+(y+1)^{2}=25$
PTS: 4 REF: 061037ge STA: G.G. 71 TOP: Equations of Circles
380 ANS: 1
PTS: 2
REF: 011220ge STA: G.G. 72
TOP: Equations of Circles
381 ANS: $2 \quad$ PTS: 2
REF: 080921ge STA: G.G. 72
TOP: Equations of Circles
382 ANS: 4
The radius is 4. $r^{2}=16$.
PTS: 2 REF: 061014ge STA: G.G. 72 TOP: Equations of Circles

PTS: 2 REF: 081034ge STA: G.G. 72 TOP: Equations of Circles 389 ANS:
$(x-5)^{2}+(y+4)^{2}=36$
PTS: 2 REF: 081132ge STA: G.G. 72 TOP: Equations of Circles
390 ANS: $3 \quad$ PTS: 2
TOP: Equations of Circles
391 ANS: 4 PTS: 2
TOP: Equations of Circles
392 ANS: $1 \quad$ PTS: 2
TOP: Equations of Circles
393 ANS: $1 \quad$ PTS:
TOP: Equations of Circles
394 ANS: 4 PTS: 2
TOP: Equations of Circles
395 ANS: 2
PTS: 2
TOP: Equations of Circles
396 ANS: $1 \quad$ PTS: 2
TOP: Equations of Circles
397 ANS: $4 \quad$ PTS: 2
TOP: Equations of Circles
398 ANS: 4
PTS: 2
TOP: Equations of Circles
399 ANS:
center: $(3,-4)$; radius: $\sqrt{10}$
PTS: 2 REF: 081333g
STA: G.G. 73
REF: 060920ge
TOP: Equations of Circles
400 ANS: 1
PTS: 2
TOP: Graphing Circles
401 ANS: $2 \quad$ PTS: 2
REF: 011020ge
STA: G.G. 74
TOP: Graphing Circles
402 ANS: 2
PTS: 2
REF: 011125ge
STA: G.G. 74

403 ANS: $3 \quad$ PTS: 2
TOP: Graphing Circles
404 ANS: 1
PTS: 2
TOP: Graphing Circles
405 ANS: 1

PTS: 2 TOP: Graphing Circles

REF: 061220ge STA: G.G. 74
REF: 061325ge STA: G.G. 74
REF: 081324ge STA: G.G. 74

Geometry Regents Exam Questions by Performance Indicator: Topic Answer Section

406 ANS: 3
$25 \times 9 \times 12=15^{2} h$

$$
\begin{aligned}
2700 & =15^{2} h \\
12 & =h
\end{aligned}
$$

PTS: 2 REF: 061323ge STA: G.G. 11 TOP: Volume 407 ANS: 1

If two prisms have equal heights and volume, the area of their bases is equal.
PTS: 2 REF: 081321ge STA: G.G. 11 TOP: Volume 408 ANS:
4. $l_{1} w_{1} h_{1}=l_{2} w_{2} h_{2}$
$10 \times 2 \times h=5 \times w_{2} \times h$

$$
\begin{aligned}
& 20=5 w_{2} \\
& w_{2}=4
\end{aligned}
$$

PTS: 2 REF: 011030ge STA: G.G. 11 TOP: Volume
409 ANS: 3
PTS: 2
REF: 081123ge
STA: G.G. 12
TOP: Volume
410 ANS: 2
PTS: 2
REF: 011215 ge
STA: G.G. 12 TOP: Volume
411 ANS: 1
$3 x^{2}+18 x+24$
$3\left(x^{2}+6 x+8\right)$
$3(x+4)(x+2)$
PTS: 2 REF: fall0815ge STA: G.G. 12 TOP: Volume
412 ANS:
9.1. $(11)(8) h=800$

$$
h \approx 9.1
$$

PTS: 2
REF: 061131ge
STA: G.G. 12
TOP: Volume
413 ANS:
2016. $V=\frac{1}{3} B h=\frac{1}{3} s^{2} h=\frac{1}{3} 12^{2} \cdot 42=2016$

PTS: 2
REF: 080930ge STA: G.G. 13
TOP: Volume

414 ANS:
18. $V=\frac{1}{3} B h=\frac{1}{3} l w h$

$$
\begin{aligned}
288 & =\frac{1}{3} \cdot 8 \cdot 6 \cdot h \\
288 & =16 h \\
18 & =h
\end{aligned}
$$

PTS: 2 REF: 061034ge STA: G.G. 13 TOP: Volume
415 ANS: 3
$V=\pi r^{2} h=\pi \cdot 6^{2} \cdot 27=972 \pi$
PTS: 2 REF: 011027ge STA: G.G. 14 TOP: Volume
416 ANS: 2
$V=\pi r^{2} h=\pi \cdot 6^{2} \cdot 15=540 \pi$
PTS: 2
REF: 011117ge
STA: G.G. 14
TOP: Volume

417
$V=\pi r^{2} h=\pi(5)^{2} \cdot 7=175 \pi$
PTS: 2
REF: 081231ge
STA: G.G. 14
TOP: Volume
ANS: 1

$$
\begin{aligned}
V & =\pi r^{2} h \\
1000 & =\pi r^{2} \cdot 8 \\
r^{2} & =\frac{1000}{8 \pi} \\
r & \approx 6.3
\end{aligned}
$$

PTS: 2
REF: 080926ge
STA: G.G. 14
TOP: Volume 419 ANS:
22.4. $\quad V=\pi r^{2} h$
$12566.4=\pi r^{2} \cdot 8$

$$
r^{2}=\frac{12566.4}{8 \pi}
$$

$$
r \approx 22.4
$$

PTS: 2
REF: fall0833g
STA: G.G. 14
TOP: Volume
ANS: 4
$L=2 \pi r h=2 \pi \cdot 5 \cdot 11 \approx 345.6$
PTS: 2
REF: 061006ge
STA: G.G. 14
TOP: Volume

421 ANS:
$L=2 \pi r h=2 \pi \cdot 3 \cdot 7=42 \pi$
PTS: 2 REF: 061329ge STA: G.G. 14 TOP: Volume
422 ANS:
$L=2 \pi r h=2 \pi \cdot 12 \cdot 22 \approx 1659 \cdot \frac{1659}{600} \approx 2.8 .3$ cans are needed.
PTS: 2 REF: 061233ge STA: G.G. 14 TOP: Lateral Area
423 ANS:
$L=2 \pi r h=2 \pi \cdot 3 \cdot 5 \approx 94.25 . V=\pi r^{2} h=\pi(3)^{2}(5) \approx 141.37$
PTS: 4 REF: 011335ge STA: G.G. 14 TOP: Volume
424 ANS:

$$
\begin{aligned}
V & =\pi r^{2} h \quad . L=2 \pi r h=2 \pi \cdot 5 \sqrt{2} \cdot 12 \approx 533.1 \\
600 \pi & =\pi r^{2} \cdot 12 \\
50 & =r^{2} \\
\sqrt{25} \sqrt{2} & =r \\
5 \sqrt{2} & =r
\end{aligned}
$$

PTS: 4
REF: 011236ge
STA: G.G. 14
TOP: Volume
425 ANS: 1
$V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi \cdot 4^{2} \cdot 12 \approx 201$
PTS: 2
REF: 060921ge STA: G.G. 15
ANS:
$375 \pi L=\pi r l=\pi(15)(25)=375 \pi$
PTS: 2
REF: 081030ge
STA: G.G. 15
TOP: Lateral Area
427 ANS: 3
$120 \pi=\pi(12)(l)$

$$
10=l
$$

PTS: 2
REF: 081314 ge
STA: G.G. 15
TOP: Volume and Lateral Area
428 ANS: 2
$V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot 3^{3}=36 \pi$
PTS: 2
REF: 061112ge STA: G.G. 16
TOP: Volume and Surface Area

429 ANS: 2
$V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot\left(\frac{15}{2}\right)^{3} \approx 1767.1$
PTS: 2
REF: 061207ge
STA: G.G. 16
TOP: Volume and Surface Area
ANS: 2
$V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot\left(\frac{6}{2}\right)^{3} \approx 36 \pi$
PTS: 2
REF: 081215ge
STA: G.G. 16
TOP: Volume and Surface Area
ANS: 1
$V=\frac{4}{3} \pi r^{3}$
$44.6022=\frac{4}{3} \pi r^{3}$
$10.648 \approx r^{3}$
$2.2 \approx r$

PTS: 2
REF: 061317ge
STA: G.G. 16
TOP: Volume and Surface Area
432 ANS:
$V=\frac{4}{3} \pi \cdot 9^{3}=972 \pi$
PTS: 2
REF: 081131ge
STA: G.G. 16
TOP: Surface Area
433 ANS:
452. $S A=4 \pi r^{2}=4 \pi \cdot 6^{2}=144 \pi \approx 452$

PTS: 2
REF: 061029ge
STA: G.G. 16
TOP: Surface Area
434 ANS: 4

$$
\begin{aligned}
\mathrm{SA} & =4 \pi r^{2} \quad V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot 6^{3}=288 \pi \\
144 \pi & =4 \pi r^{2} \\
36 & =r^{2} \\
6 & =r
\end{aligned}
$$

PTS: 2
REF: 081020ge
STA: G.G. 16
TOP: Surface Area
435
ANS: 3
$\frac{7 x}{4}=\frac{7}{x} .7(2)=14$
$7 x^{2}=28$
$x=2$
PTS: 2
REF: 061120ge
STA: G.G. 45
TOP: Similarity

436 ANS: 4
$180-(50+30)=100$
PTS: 2 REF: 081006ge STA: G.G. 45 TOP: Similarity
KEY: basic
437 ANS: 2
Perimeter of $\triangle D E F$ is $5+8+11=24 . \frac{5}{24}=\frac{x}{60}$

$$
\begin{aligned}
24 x & =300 \\
x & =12.5
\end{aligned}
$$

PTS: 2 REF: 011307ge STA: G.G. 45 TOP: Similarity
KEY: perimeter and area
438 ANS: 4
Corresponding angles of similar triangles are congruent.
PTS: 2 REF: fall0826ge STA: G.G. 45 TOP: Similarity
KEY: perimeter and area
439 ANS: 3
$\frac{15}{18}=\frac{5}{6}$
PTS: 2
REF: 081317ge
STA: G.G. 45
TOP: Similarity
KEY: perimeter and area
440 ANS: 2
Because the triangles are similar, $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle D}=1$

PTS: 2
REF: 011022ge
STA: G.G. 45
TOP: Similarity
KEY: perimeter and area
441 ANS: 4
PTS: 2
REF: 081023ge
STA: G.G. 45
TOP: Similarity
KEY: perimeter and area
442 ANS: 3
PTS: 2
REF: 061224ge
STA: G.G. 45
TOP: Similarity
443 ANS: 4
TOP: Similarity
KEY: basic
PTS: 2
KEY: basic
444 ANS:
20. $5 x+10=4 x+30$

$$
x=20
$$

PTS: 2
REF: 060934ge
STA: G.G. 45
TOP: Similarity
KEY: basic

445 ANS:
$2 \quad \frac{x+2}{x}=\frac{x+6}{4}$

$$
\begin{aligned}
x^{2}+6 x & =4 x+8 \\
x^{2}+2 x-8 & =0 \\
(x+4)(x-2) & =0 \\
x & =2
\end{aligned}
$$

PTS: 4
REF: 081137ge STA: G.G. 45
TOP: Similarity KEY: basic
446 ANS:

$$
\begin{aligned}
x^{2}-8 x & =5 x+30 . \mathrm{m} \angle C=4(15)-5=55 \\
x^{2}-13 x-30 & =0 \\
(x-15)(x+2) & =0 \\
x & =15
\end{aligned}
$$

PTS: 4
REF: 061337ge
STA: G.G. 45
TOP: Similarity
KEY: basic
447 ANS: 1
$x^{2}=7(16-7)$
$x^{2}=63$
$x=\sqrt{9} \sqrt{7}$
$x=3 \sqrt{7}$
PTS: 2
REF: 061128ge
STA: G.G. 47
TOP: Similarity
KEY: altitude
448 ANS: 1
$x^{2}=3 \times 12$
$x=6$
PTS: 2
REF: 011308ge
STA: G.G. 47
TOP: Similarity
KEY: altitude
449 ANS: 3
$x^{2}=3 \times 12 . \sqrt{6^{2}+3^{2}}=\sqrt{45}=\sqrt{9} \sqrt{5}=3 \sqrt{5}$
$x=6$
PTS: 2
REF: 061327ge
STA: G.G. 47
TOP: Similarity KEY: altitude

450 ANS:
$2 \sqrt{3} \cdot x^{2}=3 \cdot 4$

$$
x=\sqrt{12}=2 \sqrt{3}
$$

PTS: 2
REF: fall0829ge
STA: G.G. 47
TOP: Similarity
KEY: altitude
451 ANS:
2.4. $5 a=4^{2} \quad 5 b=3^{2} \quad h^{2}=a b$

$$
\begin{array}{lll}
a=3.2 \quad b=1.8 & h^{2}=3.2 \cdot 1.8 \\
& h=\sqrt{5.76}=2.4
\end{array}
$$

PTS: 4
REF: 081037ge
STA: G.G. 47
TOP: Similarity
KEY: altitude
$\overline{A B}=10$ since $\triangle A B C$ is a 6-8-10 triangle. $6^{2}=10 x$

$$
3.6=x
$$

PTS: 2
REF: 060915ge STA: G.G. 47
TOP: Similarity
KEY: leg
ANS: 4
Let $\overline{A D}=x . \quad 36 x=12^{2}$
$x=4$
PTS: 2
REF: 080922ge
STA: G.G. 47
TOP: Similarity
KEY: leg
454
ANS: 4
$6^{2}=x(x+5)$
$36=x^{2}+5 x$
$0=x^{2}+5 x-36$
$0=(x+9)(x-4)$
$x=4$
PTS: 2
REF: 011123ge
STA: G.G. 47
TOP: Similarity
KEY: leg
455
ANS: 4

$$
\begin{aligned}
x \cdot 4 x & =6^{2} . P Q=4 x+x=5 x=5(3)=15 \\
4 x^{2} & =36 \\
x & =3
\end{aligned}
$$

PTS: 2
REF: 011227ge
STA: G.G. 47
TOP: Similarity
KEY: leg

456 ANS: 3
$x^{2}=2(2+10)$
$x^{2}=24$
$x=\sqrt{24}=\sqrt{4} \sqrt{6}=2 \sqrt{6}$
PTS: 2 REF: 081326ge STA: G.G. 47 TOP: Similarity
KEY: leg
457 ANS: 4
$(x, y) \rightarrow(-x,-y)$
PTS: 2
REF: 061304ge
STA: G.G. 54
TOP: Rotations
458 ANS:
$R^{\prime}(-3,-2), S^{\prime}(-4,4)$, and $T^{\prime}(2,2)$.
PTS: 2 REF: 011232ge STA: G.G. 54 TOP: Rotations
459 ANS:

$$
A^{\prime}(-2,1), B^{\prime}(-3,-4) \text {, and } C^{\prime}(5,-3)
$$

PTS: 2
460 ANS: 3
TOP: Reflections
ANS: 2
TOP: Reflections
462 ANS: 1
TOP: Reflections

REF: 081230ge
PTS: 2
KEY: basic
PTS: 2
KEY: basic
PTS: 2
KEY: basic

STA: G.G. 54 TOP: Rotations
REF: 060905ge STA: G.G. 54
REF: 081108ge STA: G.G. 54
REF: 081113ge STA: G.G. 54

463 ANS:

PTS: 2
REF: 011130ge
STA: G.G. 54
TOP: Reflections
KEY: grids
464
ANS:

PTS: 2
REF: 061032ge
STA: G.G. 54
TOP: Reflections
KEY: grids
465 ANS: 3
$-5+3=-2 \quad 2+-4=-2$
PTS: 2
REF: 011107ge
STA: G.G. 54
TOP: Translations
466 ANS: 1
$(x, y) \rightarrow(x+3, y+1)$
PTS: 2
REF: fall0803ge STA: G.G. 54
TOP: Translations
467 ANS:

PTS: 2
REF: 061229ge STA: G.G. 54
TOP: Translations

468
ANS:
$A^{\prime}(2,2), B^{\prime}(3,0), C(1,-1)$
PTS: 2 REF: 081329ge STA: G.G. 58 TOP: Dilations
469 ANS: 1 $A^{\prime}(2,4)$

PTS: 2
REF: 011023ge
STA: G.G. 54
TOP: Compositions of Transformations
KEY: basic
470 ANS: 3
$(3,-2) \rightarrow(2,3) \rightarrow(8,12)$
PTS: 2
REF: 011126ge
STA: G.G. 54
TOP: Compositions of Transformations KEY: basic
471 ANS:

PTS: 4
REF: 060937ge
STA: G.G. 54
TOP: Compositions of Transformations
KEY: grids
472 ANS: 1
After the translation, the coordinates are $A^{\prime}(-1,5)$ and $B^{\prime}(3,4)$. After the dilation, the coordinates are $A^{\prime \prime}(-2,10)$ and $B^{\prime \prime}(6,8)$.

PTS: 2 REF: fall0823ge STA: G.G. 58 TOP: Compositions of Transformations 473 ANS:

$$
A^{\prime \prime}(8,2), B^{\prime \prime}(2,0), C^{\prime \prime}(6,-8)
$$

PTS: 4
REF: 081036ge STA: G.G. 58
TOP: Compositions of Transformations

ANS:

$$
G^{\prime \prime}(3,3), H^{\prime \prime}(7,7), S^{\prime \prime}(-1,9)
$$

PTS: 4
REF: 081136ge STA: G.G. 58
TOP: Compositions of Transformations
ANS:

$$
A^{\prime}(5,-4), B^{\prime}(5,1), C^{\prime}(2,1), D^{\prime}(2,-6) ; A^{\prime \prime}(5,4), B^{\prime \prime}(5,-1), C^{\prime \prime}(2,-1), D^{\prime \prime}(2,6)
$$

PTS: 4
REF: 061236ge
STA: G.G. 58
TOP: Compositions of Transformations KEY: grids
476 ANS:

TOP: Compositions of Transformations
STA: G.G. 58

PTS: 4
KEY: grids
ANS:

$$
A^{\prime \prime}(11,1), B^{\prime \prime}(3,7), C^{\prime \prime}(3,1)
$$

PTS: 4
REF: 081236ge A"(11,1), $B^{\prime \prime}(3,7), C^{\prime \prime}(3,1)$

STA: G.G. 58

TOP: Compositions of Transformations

478 ANS:

$$
S^{\prime \prime}(5,-3), W^{\prime \prime}(3,-4), A^{\prime \prime}(2,1), \text { and } N^{\prime \prime}(4,2)
$$

PTS: 4
REF: 061335ge
STA: G.G. 58
TOP: Compositions of Transformations
KEY: grids
479 ANS:

$$
M^{\prime \prime}(1,-2), A^{\prime \prime}(6,-2), T^{\prime \prime}(5,-4), H^{\prime \prime}(3,-4)
$$

PTS: 4
KEY: grids
480 ANS: 2
TOP: Properties of Transformations
481 ANS: 1
PTS: 2
TOP: Properties of Transformations
482 ANS: 1
PTS: 2
TOP: Properties of Transformations
483 ANS: 2
PTS: 2
TOP: Properties of Transformations
484 ANS: $2 \quad$ PTS: 2
TOP: Properties of Transformations
485 ANS: 1
PTS: 2
TOP: Properties of Transformations
486 ANS: $3 \quad$ PTS: 2
TOP: Properties of Transformations
487 ANS: 2
PTS: 2
TOP: Properties of Transformations
ANS: 4
Distance is preserved after a rotation.

PTS: 2 REF: 081304ge STA: G.G. 55 TOP: Properties of Transformations

ANS:
Distance is preserved after the reflection. $2 x+13=9 x-8$

$$
\begin{aligned}
21 & =7 x \\
3 & =x
\end{aligned}
$$

PTS: 2
REF: 011329ge
STA: G.G. 55
TOP: Properties of Transformations
490 ANS:

PTS: 2
REF: fall0830ge
STA: G.G. 55
TOP: Properties of Transformations
491

$D^{\prime}(-1,1), E^{\prime}(-1,5), G^{\prime}(-4,5)$
PTS: 4
REF: 080937ge STA: G.G. 55
TOP: Properties of Transformations
$A^{\prime}(7,-4), B^{\prime}(7,-1) \cdot C^{\prime}(9,-4)$. The areas are equal because translations preserve distance.

PTS: 4
REF: 011235ge
STA: G.G. 55

ANS: 2 PTS: 2
REF: 061201ge STA: G.G. 59
TOP: Properties of Transformations
495
ANS: 3
PTS: 2
REF: 081204ge STA: G.G. 59
TOP: Properties of Transformations
496 ANS: $2 \quad$ PTS: 2
TOP: Properties of Transformations
497 ANS:
36, because a dilation does not affect angle measure. 10 , because a dilation does affect distance.
PTS: 4 REF: 011035ge STA: G.G. 59 TOP: Properties of Transformations
PTS: 2
REF: 060903ge
TOP: Identifying Transformations
499 ANS: 4 PTS: 2 REF: 080915ge
TOP: Identifying Transformations
500 ANS: 4 PTS: 2
REF: 061018ge
STA: G.G. 56

TOP: Identifying Transformations
501 ANS: $3 \quad$ PTS: 2
TOP: Identifying Transformations
502 ANS: 2 PTS: 2
TOP: Identifying Transformations
503 ANS: $3 \quad$ PTS: 2
TOP: Identifying Transformations
504 ANS: $2 \quad$ PTS: 2
TOP: Identifying Transformations
505 ANS: 4 PTS: 2
TOP: Identifying Transformations
506 ANS:
Yes. A reflection is an isometry.

	PTS: 2	REF: 061132ge	STA: G.G. 56	TOP:	Identifying Transformations
507	ANS: 3	PTS: 2	REF: 060908ge	STA:	G.G. 60
	TOP: Identifying Transformations				
508	ANS: 4	PTS: 2	REF: 061103ge	STA: G.G. 60	
	TOP: Identifying Transformations				
509	ANS: 2				
	A dilation affects distance, not angle measure.				

PTS: 2 REF: 080906ge STA: G.G. 60 TOP: Identifying Transformations
510 ANS: 4
PTS: 2
REF: fall0818ge
STA: G.G. 61
TOP: Analytical Representations of Transformations
511 ANS: 1
Translations and reflections do not affect distance.
PTS: 2 REF: 080908ge STA: G.G. 61
TOP: Analytical Representations of Transformations

512 ANS: 4
Median $\overline{B F}$ bisects $\overline{A C}$ so that $\overline{C F} \cong \overline{F A}$.

	PTS: 2	REF:	fall0810ge	STA:	G.G. 24	TOP:	Statements
513	ANS: 1	PTS:	2	REF:	011303ge	STA:	G.G. 24
	TOP: Statements						
514	ANS: 2	PTS:	2	REF:	081301ge	STA:	G.G. 24
	TOP: Statements						
515	ANS: 4	PTS:	2	REF:	fall0802ge	STA:	G.G. 24
	TOP: Negations						
516	ANS: 3	PTS:	2	REF:	080924ge	STA:	G.G. 24
	TOP: Negations						
517	ANS: 2	PTS:	2	REF:	061002ge	STA:	G.G. 24
	TOP: Negations						
518	ANS: 1	PTS:	2	REF:	011213ge	STA:	G.G. 24
	TOP: Negations						
519	ANS: 2	PTS:	2	REF:	061202ge	STA:	G.G. 24
	TOP: Negations						
520	ANS: 1	PTS:	2	REF:	081303ge	STA:	G.G. 24
	TOP: Negations						

521 ANS:
The medians of a triangle are not concurrent. False.
PTS: 2 REF: 061129ge STA: G.G. 24 TOP: Negations
522 ANS:
2 is not a prime number, false.

	PTS: 2	REF: 081229ge	STA: G.G.24	TOP: Negations	
523	ANS: 4	PTS: 2	REF: 011118ge	STA:	G.G. 25
	TOP: Compound Statements	KEY: general			
524	ANS: 4	PTS: 2	REF: 081101ge	STA: G.G. 25	
	TOP: Compound Statements	KEY: conjunction			

525 ANS:
True. The first statement is true and the second statement is false. In a disjunction, if either statement is true, the disjunction is true.

PTS: 2 REF: 060933ge STA: G.G. 25 TOP: Compound Statements
KEY: disjunction
526 ANS: $3 \quad$ PTS: 2
TOP: Conditional Statements
527 ANS: $1 \quad$ PTS: 2
TOP: Converse and Biconditional
528 ANS: $1 \quad$ PTS: 2
TOP: Converse and Biconditional
529 ANS: 4 PTS: 2
TOP: Converse and Biconditional

530 ANS: $4 \quad$ PTS: 2
REF: 060913ge STA: G.G. 26
TOP: Conditional Statements
531 ANS: 3 PTS: 2
REF: 081026ge STA: G.G. 26
TOP: Contrapositive
532 ANS: 1 PTS: 2 TOP: Conditional Statements
533 ANS:
Contrapositive-If two angles of a triangle are not congruent, the sides opposite those angles are not congruent.
PTS: 2
REF: fall0834ge STA: G.G. 26
TOP: Conditional Statements
534 ANS: 3

PTS: 2
535 ANS: 1
TOP: Triangle Congruency
536 ANS: 4

PTS: 2
REF: 081114ge
STA: G.G. 28
TOP: Triangle Congruency
537
ANS: 1

PTS: 2
538
REF: 060902ge
STA: G.G. 28
REF: 011122ge
TOP: Triangle Congruency
STA: G.G. 28
PTS: 2

ANS: 3
REF: 081210ge
PTS: 2

STA: G.G. 28
REF: 080913ge

TOP: Triangle Congruency
STA: G.G. 28

TOP: Triangle Congruency

539 ANS: 2

PTS: 2
REF: 081007 ge
STA: G.G. 28
TOP: Triangle Congruency
540 ANS: 3

Opposite sides of a parallelogram are congruent and the diagonals of a parallelogram bisect each other.

| | PTS: 2 | REF: 061222ge | STA: G.G. 28 | TOP: Triangle Congruency |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 541 | ANS: 4 | PTS: 2 | REF: 080905 ge | STA: G.G. 29 |
| | TOP: Triangle Congruency | | | |
| 542 | ANS: 4 | | | |

PTS: 2 REF: 081001ge STA: G.G. 29 TOP: Triangle Congruency
543 ANS: 2
PTS: 2
REF: 081102ge
STA: G.G. 29
TOP: Triangle Congruency
544 ANS: 4
PTS: 2
REF: 011216ge STA: G.G. 29
TOP: Triangle Congruency
545 ANS: 2
(1) is true because of vertical angles. (3) and (4) are true because CPCTC.

ANS: 4
TOP: Angle Proofs
ANS: 1
$A B=C D$
$A B+B C=C D+B C$
$A C=B D$
PTS: 2 REF: 081207ge STA: G.G. 27 TOP: Triangle Proofs
552 ANS:
$\overline{A C} \cong \overline{E C}$ and $\overline{D C} \cong \overline{B C}$ because of the definition of midpoint. $\angle A C B \cong \angle E C D$ because of vertical angles. $\triangle A B C \cong \triangle E D C$ because of SAS. $\angle C D E \cong \angle C B A$ because of CPCTC. $\overline{B D}$ is a transversal intersecting $\overline{A B}$ and
$\overline{E D}$. Therefore $\overline{A B} \| \overline{D E}$ because $\angle C D E$ and $\angle C B A$ are congruent alternate interior angles.

PTS: 6 REF: 060938ge STA: G.G. 27 TOP: Triangle Proofs
553 ANS:
$\angle B$ and $\angle C$ are right angles because perpendicular lines form right angles. $\angle B \cong \angle C$ because all right angles are congruent. $\angle A E B \cong \angle D E C$ because vertical angles are congruent. $\triangle A B E \cong \triangle D C E$ because of ASA. $\overline{A B} \cong \overline{D C}$ because CPCTC.

PTS: 4 REF: 061235ge STA: G.G. 27 TOP: Triangle Proofs
554 ANS:
$\Delta M A H, \overline{M H} \cong \overline{A H}$ and medians $\overline{A B}$ and $\overline{M T}$ are given. $\overline{M A} \cong \overline{A M}$ (reflexive property). $\triangle M A H$ is an isosceles triangle (definition of isosceles triangle). $\angle A M B \cong \angle M A T$ (isosceles triangle theorem). B is the midpoint of $\overline{M H}$ and T is the midpoint of $\overline{A H}$ (definition of median). $\mathrm{m} \overline{M B}=\frac{1}{2} \mathrm{~m} \overline{M H}$ and $\mathrm{m} \overline{A T}=\frac{1}{2} \mathrm{~m} \overline{A H}$ (definition of midpoint). $\overline{M B} \cong \overline{A T}$ (multiplication postulate). $\triangle M B A \cong \triangle A T M$ (SAS). $\angle M B A \cong \angle A T M$ (CPCTC).

PTS: 6 REF: 061338ge STA: G.G. 27 TOP: Triangle Proofs
555 ANS:
$\triangle A B C, \overline{B D}$ bisects $\angle A B C, \overline{B D} \perp \overline{A C}$ (Given). $\angle C B D \cong \angle A B D$ (Definition of angle bisector). $\overline{B D} \cong \overline{B D}$ (Reflexive property). $\angle C D B$ and $\angle A D B$ are right angles (Definition of perpendicular). $\angle C D B \cong \angle A D B$ (All right angles are congruent). $\triangle C D B \cong \triangle A D B$ (SAS). $\overline{A B} \cong \overline{C B}$ (CPCTC).

PTS: 4 REF: 081335ge STA: G.G. 27 TOP: Triangle Proofs
556 ANS: 3
PTS: 2
REF: 081208ge STA: G.G. 27
TOP: Quadrilateral Proofs

ANS:

$$
\overline{F E} \cong \overline{F E} \text { (Reflexive Property) } ; \overline{A E}-\overline{F E} \cong \overline{F C}-\overline{E F} \text { (Line Segment Subtraction }
$$ Theorem) $; \overline{A F} \cong \overline{C E}$ (Substitution); $\angle B F A \cong \angle D E C$ (All right angles are congruent); $\triangle B F A \cong \triangle D E C$ (AAS); $\overline{A B} \cong \overline{C D}$ and $\overline{B F} \cong \overline{D E}$ (CPCTC); $\angle B F C \cong \angle D E A$ (All right angles are congruent); $\triangle B F C \cong \triangle D E A$ (SAS); $\overline{A D} \cong \overline{C B}(\mathrm{CPCTC}) ; A B C D$ is a parallelogram (opposite sides of quadrilateral $A B C D$ are congruent)

$$
\text { PTS: } 6 \text { REF: 080938ge STA: G.G. } 27 \quad \text { TOP: Quadrilateral Proofs }
$$

ANS:
$\overline{J K} \cong \overline{L M}$ because opposite sides of a parallelogram are congruent. $\overline{L M} \cong \overline{L N}$ because of the Isosceles Triangle Theorem. $L M \cong J M$ because of the transitive property. $J K L M$ is a rhombus because all sides are congruent.

PTS: 4 REF: 011036ge STA: G.G. 27 TOP: Quadrilateral Proofs
ANS:
Quadrilateral $A B C D, \overline{A D} \cong \overline{B C}$ and $\angle D A E \cong \angle B C E$ are given. $\overline{A D} \| \overline{B C}$ because if two lines are cut by a transversal so that a pair of alternate interior angles are congruent, the lines are parallel. $A B C D$ is a parallelogram because if one pair of opposite sides of a quadrilateral are both congruent and parallel, the quadrilateral is a parallelogram. $A E \cong C E$ because the diagonals of a parallelogram bisect each other. $\angle F E A \cong \angle G E C$ as vertical angles. $\triangle A E F \cong \triangle C E G$ by ASA.

PTS: 6 REF: 011238ge STA: G.G. 27 TOP: Quadrilateral Proofs
ANS:
Rectangle $A B C D$ with points E and F on side $\overline{A B}$, segments $C E$ and $D F$ intersect at G, and $\angle A D G \cong \angle B C E$ are given. $\overline{A D} \cong \overline{B C}$ because opposite sides of a rectangle are congruent. $\angle A$ and $\angle B$ are right angles and congruent because all angles of a rectangle are right and congruent. $\triangle A D F \cong \triangle B C E$ by ASA. $\overline{A F} \cong \overline{B E}$ per CPCTC. $\overline{E F} \cong \overline{F E}$ under the Reflexive Property. $\overline{A F}-\overline{E F} \cong \overline{B E}-\overline{F E}$ using the Subtraction Property of Segments. $\overline{A E} \cong \overline{B F}$ because of the Definition of Segments.

PTS: 6 REF: 011338ge STA: G.G. 27 TOP: Quadrilateral Proofs
561 ANS:
Because $\overline{A B} \| \overline{D C}, \overparen{A D} \cong \overparen{B C}$ since parallel chords intersect congruent arcs. $\angle B D C \cong \angle A C D$ because inscribed angles that intercept congruent arcs are congruent. $\overline{A D} \cong \overline{B C}$ since congruent chords intersect congruent arcs. $\overline{D C} \cong \overline{C D}$ because of the reflexive property. Therefore, $\triangle A C D \cong \triangle B D C$ because of SAS.

PTS: 6 REF: fall0838ge STA: G.G. 27 TOP: Circle Proofs

562 ANS:
$\overline{O A} \cong \overline{O B}$ because all radii are equal. $\overline{O P} \cong \overline{O P}$ because of the reflexive property. $\overline{O A} \perp \overline{P A}$ and $\overline{O B} \perp \overline{P B}$ because tangents to a circle are perpendicular to a radius at a point on a circle. $\angle P A O$ and $\angle P B O$ are right angles because of the definition of perpendicular. $\angle P A O \cong \angle P B O$ because all right angles are congruent. $\triangle A O P \cong \triangle B O P$ because of HL . $\angle A O P \cong \angle B O P$ because of CPCTC.

PTS: 6 REF: 061138ge STA: G.G. 27 TOP: Circle Proofs
563 ANS:
$B D \cong \overline{D B}$ (Reflexive Property); $\triangle A B D \cong \triangle C D B(\mathrm{SSS}) ; \angle B D C \cong \angle A B D$ (CPCTC).

PTS: 4 REF: 061035ge STA: G.G. 27 TOP: Quadrilateral Proofs
564 ANS: 1
$\triangle P R T$ and $\triangle S R Q$ share $\angle R$ and it is given that $\angle R P T \cong \angle R S Q$.
PTS: 2 REF: fall0821ge STA: G.G. 44 TOP: Similarity Proofs
565 ANS: 2
$\angle A C B$ and $\angle E C D$ are congruent vertical angles and $\angle C A B \cong \angle C E D$.

PTS: 2 REF: 060917ge STA: G.G. 44 TOP: Similarity Proofs
566 ANS: 4
PTS: 2 REF: 011019ge
TOP: Similarity Proofs
567 ANS: 2 PTS:
TOP: Similarity Proofs
568
ANS: 3 PTS: 2 REF: 011209ge STA: G.G. 44
TOP: Similarity Proofs
569 ANS:
$\angle B$ and $\angle E$ are right angles because of the definition of perpendicular lines. $\angle B \cong \angle E$ because all right angles are congruent. $\angle B F D$ and $\angle D F E$ are supplementary and $\angle E C A$ and $\angle A C B$ are supplementary because of the definition of supplementary angles. $\angle D F E \cong \angle A C B$ because angles supplementary to congruent angles are congruent. $\triangle A B C \sim \triangle D E F$ because of AA.

PTS: 4 REF: 011136ge STA: G.G. 44 TOP: Similarity Proofs
570 ANS:
$\angle A C B \cong \angle A E D$ is given. $\angle A \cong \angle A$ because of the reflexive property. Therefore $\triangle A B C \sim \triangle A D E$ because of AA.
PTS: 2 REF: 081133ge STA: G.G. 44 TOP: Similarity Proofs

[^0]: PTS: 2
 257
 ANS: 1
 TOP: Centroid

