JMAP
 REGENTS BY TYPE

The NY Geometry Regents Exams
Fall 2008-August 2013
www.jmap.org

Geometry Multiple Choice Regents Exam Questions

1 In $\triangle A B C, D$ is the midpoint of $\overline{A B}$ and E is the midpoint of $\overline{B C}$. If $A C=3 x-15$ and $D E=6$, what is the value of x ?

1) 6
2) 7
3) 9
4) 12

2 What is the slope of the line perpendicular to the line represented by the equation $2 x+4 y=12$?

1) -2
2) 2
3) $-\frac{1}{2}$
4) $\frac{1}{2}$

3 What is the equation of a line passing through the point $(6,1)$ and parallel to the line whose equation is $3 x=2 y+4$?

1) $y=-\frac{2}{3} x+5$
2) $y=-\frac{2}{3} x-3$
3) $y=\frac{3}{2} x-8$
4) $y=\frac{3}{2} x-5$

4 In the diagram of trapezoid $A B C D$ below, $\overline{A B} \| \overline{D C}$, $\overline{A D} \cong \overline{B C}, \mathrm{~m} \angle A=4 x+20$, and $\mathrm{m} \angle C=3 x-15$.

What is $\mathrm{m} \angle D$?

1) 25
2) 35
3) 60
4) 90

5 The equation of a line is $y=\frac{2}{3} x+5$. What is an equation of the line that is perpendicular to the given line and that passes through the point $(4,2)$?

1) $y=\frac{2}{3} x-\frac{2}{3}$
2) $y=\frac{3}{2} x-4$
3) $y=-\frac{3}{2} x+7$
4) $y=-\frac{3}{2} x+8$

6 Chords $\overline{A B}$ and $\overline{C D}$ intersect at point E in a circle with center at O. If $A E=8, A B=20$, and $D E=16$, what is the length of $\overline{C E}$?

1) 6
2) 9
3) 10
4) 12

7 Which equation represents circle A shown in the diagram below?

1) $(x-4)^{2}+(y-1)^{2}=3$
2) $(x+4)^{2}+(y+1)^{2}=3$
3) $(x-4)^{2}+(y-1)^{2}=9$
4) $(x+4)^{2}+(y+1)^{2}=9$

8 As shown in the diagram of rectangle $A B C D$ below, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E.

If $A E=x+2$ and $B D=4 x-16$, then the length of $\overline{A C}$ is

1) 6
2) 10
3) 12
4) 24

14 Which graph could be used to find the solution to the following system of equations?

$$
\begin{gathered}
y=(x+3)^{2}-1 \\
x+y=2
\end{gathered}
$$

1)

2)

3)

4)

15 The equations $x^{2}+y^{2}=25$ and $y=5$ are graphed on a set of axes. What is the solution of this system?

1) $(0,0)$
2) $(5,0)$
3) $(0,5)$
4) $(5,5)$

16 When the system of equations $y+2=(x-4)^{2}$ and $2 x+y-6=0$ is solved graphically, the solution is

1) $(-4,-2)$ and $(-2,2)$
2) $(4,-2)$ and $(2,2)$
3) $(-4,2)$ and $(-6,6)$
4) $(4,2)$ and $(6,6)$

17 Triangle $A B C$ has the coordinates $A(1,2), B(5,2)$, and $C(5,5)$. Triangle $A B C$ is rotated 180° about the origin to form triangle $A^{\prime} B^{\prime} C^{\prime}$. Triangle $A^{\prime} B^{\prime} C^{\prime}$ is

1) acute
2) isosceles
3) obtuse
4) right

18 Triangle $A B C$ has vertices $A(0,0), B(6,8)$, and $C(8,4)$. Which equation represents the perpendicular bisector of $\overline{B C}$?

1) $y=2 x-6$
2) $y=-2 x+4$
3) $y=\frac{1}{2} x+\frac{5}{2}$
4) $y=-\frac{1}{2} x+\frac{19}{2}$
$19 \frac{\text { Given: }}{\overline{A D}} \triangle A B D, \overline{B C}$ is the perpendicular bisector of

Which statement can not always be proven?

1) $\overline{A C} \cong \overline{D C}$
2) $\overline{B C} \cong \overline{C D}$
3) $\angle A C B \cong \angle D C B$
4) $\triangle A B C \cong \triangle D B C$

20 Points $A(5,3)$ and $B(7,6)$ lie on $\overleftrightarrow{A B}$. Points $C(6,4)$ and $D(9,0)$ lie on $\overleftrightarrow{C D}$. Which statement is true?

1) $\overleftrightarrow{A B} \| \overleftrightarrow{C D}$
2) $\overleftrightarrow{A B} \perp \overleftrightarrow{C D}$
3) $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ are the same line.
4) $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ intersect, but are not perpendicular.

21 What is the difference between the sum of the measures of the interior angles of a regular pentagon and the sum of the measures of the exterior angles of a regular pentagon?

1) 36
2) 72
3) 108
4) 180

22 In the diagram of $\triangle A B C$ below, medians $\overline{A D}$ and $\overline{B E}$ intersect at point F.

If $A F=6$, what is the length of $\overline{F D}$?

1) 6
2) 2
3) 3
4) 9

23 In the diagram below of circle $O, \overline{P A C}$ and $\overline{P B D}$ are secants.

If $\mathrm{m} \overparen{C D}=70$ and $\mathrm{m} \overparen{A B}=20$, what is the degree measure of $\angle P$?

1) 25
2) 35
3) 45
4) 50

24 In $\triangle A B C, \angle A \cong \angle B$ and $\angle C$ is an obtuse angle. Which statement is true?

1) $\overline{A C} \cong \overline{A B}$ and $\overline{B C}$ is the longest side.
2) $\overline{A C} \cong \overline{B C}$ and $\overline{A B}$ is the longest side.
3) $\overline{A C} \cong \overline{A B}$ and $\overline{B C}$ is the shortest side.
4) $\overline{A C} \cong \overline{B C}$ and $\overline{A B}$ is the shortest side.

25 The diagram below shows $\triangle A B D$, with $\overrightarrow{A B C}$, $\overline{B E} \perp \overline{A D}$, and $\angle E B D \cong \angle C B D$.

If $\mathrm{m} \angle A B E=52$, what is $\mathrm{m} \angle D$?

1) 26
2) 38
3) 52
4) 64

26 Triangle $A B C$ is shown in the diagram below.

If $\overline{D E}$ joins the midpoints of $\overline{A D C}$ and $\overline{A E B}$, which statement is not true?

1) $D E=\frac{1}{2} C B$
2) $\overline{D E} \| \overline{C B}$
3) $\frac{A D}{D C}=\frac{D E}{C B}$
4) $\triangle A B C \sim \triangle A E D$

27 As shown in the diagram below, when right triangle $D A B$ is reflected over the x-axis, its image is triangle $D C B$.

Which statement justifies why $\overline{A B} \cong \overline{C B}$?

1) Distance is preserved under reflection.
2) Orientation is preserved under reflection.
3) Points on the line of reflection remain invariant.
4) Right angles remain congruent under reflection.

28 The equation of a circle is $(x-2)^{2}+(y+5)^{2}=32$. What are the coordinates of the center of this circle and the length of its radius?

1) $(-2,5)$ and 16
2) $(2,-5)$ and 16
3) $(-2,5)$ and $4 \sqrt{2}$
4) $(2,-5)$ and $4 \sqrt{2}$

29 In a coordinate plane, the locus of points 5 units from the x-axis is the

1) lines $x=5$ and $x=-5$
2) lines $y=5$ and $y=-5$
3) line $x=5$, only
4) line $y=5$, only

30 What is the equation of circle O shown in the diagram below?

1) $(x+4)^{2}+(y-1)^{2}=3$
2) $(x-4)^{2}+(y+1)^{2}=3$
3) $(x+4)^{2}+(y-1)^{2}=9$
4) $(x-4)^{2}+(y+1)^{2}=9$

31 What are the coordinates of A^{\prime}, the image of $A(-3,4)$, after a rotation of 180° about the origin?

1) $(4,-3)$
2) $(-4,-3)$
3) $(3,4)$
4) $(3,-4)$

32 Which set of numbers could not represent the lengths of the sides of a right triangle?

1) $\{1,3, \sqrt{10}\}$
2) $\{2,3,4\}$
3) $\{3,4,5\}$
4) $\{8,15,17\}$

33 Transversal $\overleftrightarrow{E F}$ intersects $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$, as shown in the diagram below.

Which statement could always be used to prove $\overleftrightarrow{A B} \| \overleftrightarrow{C D}$?

1) $\angle 2 \cong \angle 4$
2) $\angle 7 \cong \angle 8$
3) $\angle 3$ and $\angle 6$ are supplementary
4) $\angle 1$ and $\angle 5$ are supplementary

34 Point A is on line m. How many distinct planes will be perpendicular to line m and pass through point A ?

1) one
2) two
3) zero
4) infinite

35 Which graph represents a circle whose equation is $x^{2}+(y-1)^{2}=9$?
1)

2)

36 The diagram below shows the construction of line m, parallel to line ℓ, through point P.

Which theorem was used to justify this construction?

1) If two lines are cut by a transversal and the alternate interior angles are congruent, the lines are parallel.
2) If two lines are cut by a transversal and the interior angles on the same side are supplementary, the lines are parallel.
3) If two lines are perpendicular to the same line, they are parallel.
4) If two lines are cut by a transversal and the corresponding angles are congruent, they are parallel.

37 As shown in the diagram below, $\overline{C D}$ is a median of $\triangle A B C$.

Which statement is always true?

1) $\overline{A D} \cong \overline{D B}$
2) $\overline{A C} \cong \overline{A D}$
3) $\angle A C D \cong \angle C D B$
4) $\angle B C D \cong \angle A C D$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

38 If the vertices of $\triangle A B C$ are $A(-2,4), B(-2,8)$, and $C(-5,6)$, then $\triangle A B C$ is classified as

1) right
2) scalene
3) isosceles
4) equilateral

39 Triangle $A B C$ shown below is a right triangle with altitude $\overline{A D}$ drawn to the hypotenuse $\overline{B C}$.

If $B D=2$ and $D C=10$, what is the length of $\overline{A B}$?

1) $2 \sqrt{2}$
2) $2 \sqrt{5}$
3) $2 \sqrt{6}$
4) $2 \sqrt{30}$

40 A rectangular prism has a base with a length of 25 , a width of 9 , and a height of 12 . A second prism has a square base with a side of 15 . If the volumes of the two prisms are equal, what is the height of the second prism?

1) 6
2) 8
3) 12
4) 15

41 In the diagram of $\triangle U V W$ below, A is the midpoint of $\overline{U V}, B$ is the midpoint of $\overline{U W}, C$ is the midpoint of $\overline{V W}$, and $\overline{A B}$ and $\overline{A C}$ are drawn.

If $V W=7 x-3$ and $A B=3 x+1$, what is the length of $\overline{V C}$?

1) 5
2) 13
3) 16
4) 32

42 The diagram below shows the construction of an equilateral triangle.

Which statement justifies this construction?

1) $\angle A+\angle B+\angle C=180$
2) $\mathrm{m} \angle A=\mathrm{m} \angle B=\mathrm{m} \angle C$
3) $A B=A C=B C$
4) $A B+B C>A C$

43 Triangle $A B C$ is similar to triangle $D E F$. The lengths of the sides of $\triangle A B C$ are 5,8 , and 11 . What is the length of the shortest side of $\triangle D E F$ if its perimeter is 60 ?

1) 10
2) 12.5
3) 20
4) 27.5

44 In the diagram of circle O below, chord $\overline{C D}$ is parallel to diameter $\overline{A O B}$ and $\mathrm{m} \overparen{C D}=110$.

What is $\mathrm{m} \overparen{D B}$?

1) 35
2) 55
3) 70
4) 110

45 Secants $\overline{J K L}$ and $\overline{J M N}$ are drawn to circle O from an external point, J. If $J K=8, L K=4$, and $J M=6$, what is the length of $\overline{J N}$?

1) 16
2) 12
3) 10
4) 8

46 If line ℓ is perpendicular to distinct planes \mathscr{P} and Q, then planes P and Q

1) are parallel
2) contain line ℓ
3) are perpendicular
4) intersect, but are not perpendicular

47 Lines m and n are in plane \mathcal{A}. What is the converse of the statement "If lines m and n are parallel, then lines m and n do not intersect"?

1) If lines m and n are not parallel, then lines m and n intersect.
2) If lines m and n are not parallel, then lines m and n do not intersect
3) If lines m and n intersect, then lines m and n are not parallel.
4) If lines m and n do not intersect, then lines m and n are parallel.

48 In right triangle $A B C$ shown in the diagram below, altitude $\overline{B D}$ is drawn to hypotenuse $\overline{A C}, C D=12$, and $A D=3$.

What is the length of $\overline{A B}$?

1) $5 \sqrt{3}$
2) 6
3) $3 \sqrt{5}$
4) 9

49 Which set of equations represents two circles that have the same center?

1) $x^{2}+(y+4)^{2}=16$ and $(x+4)^{2}+y^{2}=16$
2) $(x+3)^{2}+(y-3)^{2}=16$ and
$(x-3)^{2}+(y+3)^{2}=25$
3) $(x-7)^{2}+(y-2)^{2}=16$ and

$$
(x+7)^{2}+(y+2)^{2}=25
$$

4) $(x-2)^{2}+(y-5)^{2}=16$ and $(x-2)^{2}+(y-5)^{2}=25$

50 How many points are 5 units from a line and also equidistant from two points on the line?

1) 1
2) 2
3) 3
4) 0

51 In circle R shown below, diameter $\overline{D E}$ is perpendicular to chord $\overline{S T}$ at point L.

Which statement is not always true?

1) $\overline{S L} \cong \overline{T L}$
2) $R S=D R$
3) $\overline{R L} \cong \overline{L E}$
4) $(D L)(L E)=(S L)(L T)$

52 The measure of an interior angle of a regular polygon is 120°. How many sides does the polygon have?

1) 5
2) 6
3) 3
4) 4

53 The bases of a right triangular prism are $\triangle A B C$ and $\triangle D E F$. Angles A and D are right angles, $A B=6$, $A C=8$, and $A D=12$. What is the length of edge $\overline{B E}$?

1) 10
2) 12
3) 14
4) 16

54 In the diagram below, under which transformation is $\Delta A^{\prime} B^{\prime} C^{\prime}$ the image of $\triangle A B C$?

1) D_{2}
2) $r_{x \text {-xis }}$
3) $r_{y \text {-axis }}$
4) $(x, y) \rightarrow(x-2, y)$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

55 In circle O, diameter $\overline{A B}$ intersects chord $\overline{C D}$ at E. If $C E=E D$, then $\angle C E A$ is which type of angle?

1) straight
2) obtuse
3) acute
4) right

56 In the diagram of $\triangle A B C$ below, $\overline{A B}$ is extended to point D.

If $\mathrm{m} \angle C A B=x+40, \mathrm{~m} \angle A C B=3 x+10$, $\mathrm{m} \angle C B D=6 x$, what is $\mathrm{m} \angle C A B$?

1) 13
2) 25
3) 53
4) 65

57 In trapezoid $R S T V$ with bases $\overline{R S}$ and $\overline{V T}$, diagonals $\overline{R T}$ and $\overline{S V}$ intersect at Q.

If trapezoid $R S T V$ is not isosceles, which triangle is equal in area to $\Delta R S V$?

1) $\Delta R Q V$
2) $\triangle R S T$
3) $\triangle R V T$
4) $\triangle S V T$

58 In the diagram below, $\overline{A C}$ and $\overline{A D}$ are tangent to circle B at points C and D, respectively, and $\overline{B C}$, $\overline{B D}$, and $\overline{B A}$ are drawn.

If $A C=12$ and $A B=15$, what is the length of $\overline{B D}$?

1) 5.5
2) 9
3) 12
4) 18

59 If $\triangle A B C \cong \triangle J K L \cong \triangle R S T$, then $\overline{B C}$ must be congruent to

1) $\overline{J L}$
2) $\overline{J K}$
3) $\overline{S T}$
4) $\overline{R S}$

60 Consider the relationship between the two statements below.

$$
\begin{aligned}
& \text { If } \sqrt{16+9} \neq 4+3, \text { then } 5 \neq 4+3 \\
& \text { If } \sqrt{16+9}=4+3 \text {, then } 5=4+3
\end{aligned}
$$

These statements are

1) inverses
2) converses
3) contrapositives
4) biconditionals

61 A student wrote the following equations:

$$
\begin{aligned}
& 3 y+6=2 x \\
& 2 y-3 x=6
\end{aligned}
$$

The lines represented by these equations are

1) parallel
2) the same line
3) perpendicular
4) intersecting, but not perpendicular

62 In a park, two straight paths intersect. The city wants to install lampposts that are both equidistant from each path and also 15 feet from the intersection of the paths. How many lampposts are needed?

1) 1
2) 2
3) 3
4) 4

63 Square $A B C D$ has vertices $A(-2,-3), B(4,-1)$, $C(2,5)$, and $D(-4,3)$. What is the length of a side of the square?

1) $2 \sqrt{5}$
2) $2 \sqrt{10}$
3) $4 \sqrt{5}$
4) $10 \sqrt{2}$

64 What is the converse of "If an angle measures 90 degrees, then it is a right angle"?

1) If an angle is a right angle, then it measures 90 degrees.
2) An angle is a right angle if it measures 90 degrees.
3) If an angle is not a right angle, then it does not measure 90 degrees.
4) If an angle does not measure 90 degrees, then it is not a right angle.

65 Two prisms have equal heights and equal volumes. The base of one is a pentagon and the base of the other is a square. If the area of the pentagonal base is 36 square inches, how many inches are in the length of each side of the square base?

1) 6
2) 9
3) 24
4) 36

66 What is an equation of the circle with center $(-5,4)$ and a radius of 7 ?

1) $(x-5)^{2}+(y+4)^{2}=14$
2) $(x-5)^{2}+(y+4)^{2}=49$
3) $(x+5)^{2}+(y-4)^{2}=14$
4) $(x+5)^{2}+(y-4)^{2}=49$

67 What are the coordinates of the center of a circle if the endpoints of its diameter are $A(8,-4)$ and $B(-3,2)$?

1) $(2.5,1)$
2) $(2.5,-1)$
3) $(5.5,-3)$
4) $(5.5,3)$

68 The lateral area of a right circular cone is equal to $120 \pi \mathrm{~cm}^{2}$. If the base of the cone has a diameter of 24 cm , what is the length of the slant height, in centimeters?

1) 2.5
2) 5
3) 10
4) 15.7

69 Plane \mathcal{A} and plane \mathcal{B} are two distinct planes that are both perpendicular to line ℓ. Which statement about planes \mathcal{A} and \mathscr{B} is true?

1) Planes \mathcal{A} and \mathscr{B} have a common edge, which forms a line.
2) Planes \mathcal{A} and \mathscr{B} are perpendicular to each other.
3) Planes \mathcal{A} and \mathcal{B} intersect each other at exactly one point.
4) Planes \mathcal{A} and \mathscr{B} are parallel to each other.

70 Circle O with $\angle A O C$ and $\angle A B C$ is shown in the diagram below.

What is the ratio of $\mathrm{m} \angle A O C$ to $\mathrm{m} \angle A B C$?

1) $1: 1$
2) $2: 1$
3) $3: 1$
4) $1: 2$

71 Given the statement: One is a prime number. What is the negation and the truth value of the negation?

1) One is not a prime number; true
2) One is not a prime number; false
3) One is a composite number; true
4) One is a composite number; false

72 Which graph represents a circle whose equation is $x^{2}+(y-2)^{2}=4$?
1)

2)

3)

4)

Geometry Multiple Choice Regents Exam Questions www.jmap.org

73 In circle O shown in the diagram below, chords $\overline{A B}$ and $\overline{C D}$ are parallel.

If $\mathrm{m} \overparen{A B}=104$ and $\widehat{\mathrm{m} C D}=168$, what is $\widehat{\mathrm{m} \overparen{B D}}$?

1) 38
2) 44
3) 88
4) 96

74 Based on the construction below, which conclusion is not always true?

1) $\overline{A B} \perp \overline{C D}$
2) $A B=C D$
3) $A E=E B$
4) $C E=D E$

75 In the diagram below, $\triangle X Y V \cong \Delta T S V$.

Which statement can not be proven?

1) $\angle X V Y \cong \angle T V S$
2) $\angle V Y X \cong \angle V U T$
3) $X Y \cong T S$
4) $\overline{Y V} \cong \overline{S V}$

76 Which equation represents a line that is parallel to the line whose equation is $3 x-2 y=7$?

1) $y=-\frac{3}{2} x+5$
2) $y=-\frac{2}{3} x+4$
3) $y=\frac{3}{2} x-5$
4) $y=\frac{2}{3} x-4$

77 In $\triangle A B C, \mathrm{~m} \angle A=3 x+1, \mathrm{~m} \angle B=4 x-17$, and $\mathrm{m} \angle C=5 x-20$. Which type of triangle is $\triangle A B C$?

1) right
2) scalene
3) isosceles
4) equilateral

Geometry Multiple Choice Regents Exam Questions www.jmap.org

78 What is the equation for circle O shown in the graph below?

1) $(x-3)^{2}+(y+1)^{2}=6$
2) $(x+3)^{2}+(y-1)^{2}=6$
3) $(x-3)^{2}+(y+1)^{2}=9$
4) $(x+3)^{2}+(y-1)^{2}=9$

79 In the diagram below of right triangle $A B C$, altitude $\overline{C D}$ is drawn to hypotenuse $\overline{A B}$.

If $A D=3$ and $D B=12$, what is the length of altitude $\overline{C D}$?

1) 6
2) $6 \sqrt{5}$
3) 3
4) $3 \sqrt{5}$

80 As shown in the diagram below, $\overline{F D}$ and $\overline{C B}$ intersect at point A and $\overline{E T}$ is perpendicular to both $\overline{F D}$ and $\overline{C B}$ at A.

Which statement is not true?

1) $\overline{E T}$ is perpendicular to plane $B A D$.
2) $\overline{E T}$ is perpendicular to plane $F A B$.
3) $\overline{E T}$ is perpendicular to plane $C A D$.
4) $E T$ is perpendicular to plane $B A T$.

81 As shown in the diagram below, a right pyramid has a square base, $A B C D$, and $\overline{E F}$ is the slant height.

Which statement is not true?

1) $\overline{E A} \cong \overline{E C}$
2) $\overline{E B} \cong \overline{E F}$
3) $\triangle A E B \cong \triangle B E C$
4) $\triangle C E D$ is isosceles

Geometry Multiple Choice Regents Exam Questions

82 In the diagram below, $\overleftrightarrow{A B}$ is perpendicular to plane $A E F G$.

Which plane must be perpendicular to plane $A E F G$?

1) $A B C E$
2) $B C D H$
3) $C D F E$
4) $H D F G$

83 If $\triangle J K L \cong \triangle M N O$, which statement is always true?

1) $\angle K L J \cong \angle N M O$
2) $\angle K J L \cong \angle M O N$
3) $\overline{J L} \cong \overline{M O}$
4) $\overline{J K} \cong \overline{O N}$

84 What is the length of the line segment whose endpoints are $A(-1,9)$ and $B(7,4)$?

1) $\sqrt{61}$
2) $\sqrt{89}$
3) $\sqrt{205}$
4) $\sqrt{233}$

85 The diagram below shows the construction of $\overleftrightarrow{A B}$ through point P parallel to $\overleftrightarrow{C D}$.

Which theorem justifies this method of construction?

1) If two lines in a plane are perpendicular to a transversal at different points, then the lines are parallel.
2) If two lines in a plane are cut by a transversal to form congruent corresponding angles, then the lines are parallel.
3) If two lines in a plane are cut by a transversal to form congruent alternate interior angles, then the lines are parallel.
4) If two lines in a plane are cut by a transversal to form congruent alternate exterior angles, then the lines are parallel.

86 Which type of triangle can be drawn using the points $(-2,3),(-2,-7)$, and $(4,-5)$?

1) scalene
2) isosceles
3) equilateral
4) no triangle can be drawn

87 In $\triangle R S T, \mathrm{~m} \angle R=58$ and $\mathrm{m} \angle S=73$. Which inequality is true?

1) $R T<T S<R S$
2) $R S<R T<T S$
3) $R T<R S<T S$
4) $R S<T S<R T$

88 What is an equation of the line that is perpendicular to the line whose equation is $y=\frac{3}{5} x-2$ and that passes through the point $(3,-6)$?

1) $y=\frac{5}{3} x-11$
2) $y=-\frac{5}{3} x+11$
3) $y=-\frac{5}{3} x-1$
4) $y=\frac{5}{3} x+1$

89 Parallelogram $A B C D$ has coordinates $A(1,5)$, $B(6,3), C(3,-1)$, and $D(-2,1)$. What are the coordinates of E, the intersection of diagonals $\overline{A C}$ and $\overline{B D}$?

1) $(2,2)$
2) $(4.5,1)$
3) $(3.5,2)$
4) $(-1,3)$

90 When a quadrilateral is reflected over the line $y=x$, which geometric relationship is not preserved?

1) congruence
2) orientation
3) parallelism
4) perpendicularity

91 The equation of line k is $y=\frac{1}{3} x-2$. The equation of line m is $-2 x+6 y=18$. Lines k and m are

1) parallel
2) perpendicular
3) the same line
4) neither parallel nor perpendicular

92 In the diagram of $\triangle A B C$ shown below, D is the midpoint of $\overline{A B}, E$ is the midpoint of $\overline{B C}$, and F is the midpoint of $\overline{A C}$.

If $A B=20, B C=12$, and $A C=16$, what is the perimeter of trapezoid $A B E F$?

1) 24
2) 36
3) 40
4) 44

93 A circle has the equation $(x-2)^{2}+(y+3)^{2}=36$.
What are the coordinates of its center and the length of its radius?

1) $(-2,3)$ and 6
2) $(2,-3)$ and 6
3) $(-2,3)$ and 36
4) $(2,-3)$ and 36

94 In the diagram below of $\triangle P A O, \overline{A P}$ is tangent to circle O at point $A, O B=7$, and $B P=18$.

What is the length of $\overline{A P}$?

1) 10
2) 12
3) 17
4) 24

95 As shown in the diagram below, $\overleftrightarrow{E F}$ intersects planes \mathscr{P}, Q, and R.

If $\overleftrightarrow{E F}$ is perpendicular to planes \mathscr{P} and \mathcal{R}, which statement must be true?

1) Plane \mathscr{P} is perpendicular to plane Q.
2) Plane R is perpendicular to plane \mathscr{P}.
3) Plane \mathscr{P} is parallel to plane Q.
4) Plane \mathcal{R} is parallel to plane \mathscr{P}.

96 Which line is parallel to the line whose equation is $4 x+3 y=7$ and also passes through the point $(-5,2)$?

1) $4 x+3 y=-26$
2) $4 x+3 y=-14$
3) $3 x+4 y=-7$
4) $3 x+4 y=14$

97 Pentagon $P Q R S T$ has $\overline{P Q}$ parallel to $\overline{T S}$. After a translation of $T_{2,-5}$, which line segment is parallel
to $\overline{P^{\prime} Q^{\prime}}$?

1) $\overline{R^{\prime} Q^{\prime}}$
2) $\overline{R^{\prime} S^{\prime}}$
3) $\overline{T^{\prime} S^{\prime}}$
4) $\overline{T^{\prime} P^{\prime}}$

98 In the diagram below, $\triangle L M O$ is isosceles with $L O=M O$.

If $\mathrm{m} \angle L=55$ and $\mathrm{m} \angle N O M=28$, what is $\mathrm{m} \angle N$?

1) 27
2) 28
3) 42
4) 70

Geometry Multiple Choice Regents Exam Questions www.jmap.org

99 The statement " x is a multiple of 3 , and x is an even integer" is true when x is equal to

1) 9
2) 8
3) 3
4) 6

100 In the diagram below of circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E.

If $\mathrm{m} \angle A E C=34$ and $\mathrm{m} \overparen{A C}=50$, what is $\mathrm{m} \overparen{D B}$?

1) 16
2) 18
3) 68
4) 118

101 What is the volume, in cubic centimeters, of a cylinder that has a height of 15 cm and a diameter of 12 cm ?

1) 180π
2) 540π
3) 675π
4) $2,160 \pi$

102 The volume of a rectangular prism is 144 cubic inches. The height of the prism is 8 inches. Which measurements, in inches, could be the dimensions of the base?

1) 3.3 by 5.5
2) 2.5 by 7.2
3) 12 by 8
4) 9 by 9

103 When writing a geometric proof, which angle relationship could be used alone to justify that two angles are congruent?

1) supplementary angles
2) linear pair of angles
3) adjacent angles
4) vertical angles

104 Which statement is the negation of "Two is a prime number" and what is the truth value of the negation?

1) Two is not a prime number; false
2) Two is not a prime number; true
3) A prime number is two; false
4) A prime number is two; true

105 What is the length of the line segment whose endpoints are $(1,-4)$ and $(9,2)$?

1) 5
2) $2 \sqrt{17}$
3) 10
4) $2 \sqrt{26}$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

106 In the diagram below of isosceles trapezoid $A B C D$, $A B=C D=25, A D=26$, and $B C=12$.

What is the length of an altitude of the trapezoid?

1) 7
2) 14
3) 19
4) 24

107 A packing carton in the shape of a triangular prism is shown in the diagram below.

What is the volume, in cubic inches, of this carton?

1) 20
2) 60
3) 120
4) 240

108 Which quadrilateral has diagonals that always bisect its angles and also bisect each other?

1) rhombus
2) rectangle
3) parallelogram
4) isosceles trapezoid

109 Which equation represents the circle whose center is $(-5,3)$ and that passes through the point $(-1,3)$?

1) $(x+1)^{2}+(y-3)^{2}=16$
2) $(x-1)^{2}+(y+3)^{2}=16$
3) $(x+5)^{2}+(y-3)^{2}=16$
4) $(x-5)^{2}+(y+3)^{2}=16$

110 Which equation represents circle O with center $(2,-8)$ and radius 9 ?

1) $(x+2)^{2}+(y-8)^{2}=9$
2) $(x-2)^{2}+(y+8)^{2}=9$
3) $(x+2)^{2}+(y-8)^{2}=81$
4) $(x-2)^{2}+(y+8)^{2}=81$

111 Plane \mathbb{R} is perpendicular to line k and plane \mathscr{D} is perpendicular to line k. Which statement is correct?

1) Plane \mathcal{R} is perpendicular to plane \mathscr{D}.
2) Plane \mathbb{R} is parallel to plane \mathcal{D}.
3) Plane \mathcal{R} intersects plane \mathcal{D}.
4) Plane \mathbb{R} bisects plane \mathscr{D}.

Geometry Multiple Choice Regents Exam Questions www.jmap.org

112 In the diagram of $\triangle K L M$ below, $\mathrm{m} \angle L=70$, $\mathrm{m} \angle M=50$, and $\overline{M K}$ is extended through N.

What is the measure of $\angle L K N$?

1) 60°
2) 120°
3) 180°
4) 300°

113 The diagram below shows a rectangular prism.

Which pair of edges are segments of lines that are coplanar?

1) $\overline{A B}$ and $\overline{D H}$
2) $\overline{A E}$ and $\overline{D C}$
3) $\overline{B C}$ and $\overline{E H}$
4) $\overline{C G}$ and $\overline{E F}$

114 What is an equation of the circle shown in the graph below?

1) $(x-3)^{2}+(y-4)^{2}=25$
2) $(x+3)^{2}+(y+4)^{2}=25$
3) $(x-3)^{2}+(y-4)^{2}=10$
4) $(x+3)^{2}+(y+4)^{2}=10$

115 The coordinates of the endpoints of $\overline{A B}$ are $A(0,0)$ and $B(0,6)$. The equation of the perpendicular bisector of $\overline{A B}$ is

1) $x=0$
2) $x=3$
3) $y=0$
4) $y=3$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

116 What are the center and the radius of the circle whose equation is $(x-5)^{2}+(y+3)^{2}=16$?

1) $(-5,3)$ and 16
2) $(5,-3)$ and 16
3) $(-5,3)$ and 4
4) $(5,-3)$ and 4

117 Triangle $A B C$ is graphed on the set of axes below.

Which transformation produces an image that is similar to, but not congruent to, $\triangle A B C$?

1) $T_{2,3}$
2) D_{2}
3) $r_{y=x}$
4) R_{90}

118 What is an equation of the circle with a radius of 5 and center at $(1,-4)$?

1) $(x+1)^{2}+(y-4)^{2}=5$
2) $(x-1)^{2}+(y+4)^{2}=5$
3) $(x+1)^{2}+(y-4)^{2}=25$
4) $(x-1)^{2}+(y+4)^{2}=25$

119 In the diagram below of $\triangle A C E$, medians $\overline{A D}, \overline{E B}$, and $\overline{C F}$ intersect at G. The length of $\overline{F G}$ is 12 cm .

What is the length, in centimeters, of $\overline{G C}$?

1) 24
2) 12
3) 6
4) 4

120 As shown in the diagram of $\triangle A C D$ below, B is a point on $\overline{A C}$ and $\overline{D B}$ is drawn.

If $\mathrm{m} \angle A=66, \mathrm{~m} \angle C D B=18$, and $\mathrm{m} \angle C=24$, what is the longest side of $\triangle A B D$?

1) $A B$
2) $\overline{D C}$
3) $A D$
4) $\overline{B D}$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

121 In the diagram below of $\triangle B C D$, side $\overline{D B}$ is extended to point A.

Which statement must be true?

1) $\mathrm{m} \angle C>\mathrm{m} \angle D$
2) $\mathrm{m} \angle A B C<\mathrm{m} \angle D$
3) $\mathrm{m} \angle A B C>\mathrm{m} \angle C$
4) $\mathrm{m} \angle A B C>\mathrm{m} \angle C+\mathrm{m} \angle D$

122 Segment $A B$ is the diameter of circle M. The coordinates of A are $(-4,3)$. The coordinates of M are $(1,5)$. What are the coordinates of B ?

1) $(6,7)$
2) $(5,8)$
3) $(-3,8)$
4) $(-5,2)$

123 Scalene triangle $A B C$ is similar to triangle $D E F$. Which statement is false?

1) $A B: B C=D E: E F$
2) $A C: D F=B C: E F$
3) $\angle A C B \cong \angle D F E$
4) $\angle A B C \cong \angle E D F$

124 The angles of triangle $A B C$ are in the ratio of $8: 3: 4$. What is the measure of the smallest angle?

1) 12°
2) 24°
3) 36°
4) 72°

125 As shown in the diagram below, $\overline{A C}$ bisects $\angle B A D$ and $\angle B \cong \angle D$.

Which method could be used to prove
$\triangle A B C \cong \triangle A D C$?

1) SSS
2) AAA
3) SAS
4) AAS

126 In the diagram below, $\triangle A B C \cong \triangle X Y Z$.

Which statement must be true?

1) $\angle C \cong \angle Y$
2) $\angle A \cong \angle X$
3) $\overline{A C} \cong \overline{Y Z}$
4) $\overline{C B} \cong \overline{X Z}$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

127 In the diagram below of $\triangle A B C, \overline{A E} \cong \overline{B E}$, $\overline{A F} \cong \overline{C F}$, and $\overline{C D} \cong \overline{B D}$.

Point P must be the

1) centroid
2) circumcenter
3) Incenter
4) orthocenter

128 Which reason could be used to prove that a parallelogram is a rhombus?

1) Diagonals are congruent.
2) Opposite sides are parallel.
3) Diagonals are perpendicular.
4) Opposite angles are congruent.

129 What is the equation of the line that passes through the point $(-9,6)$ and is perpendicular to the line $y=3 x-5$?

1) $y=3 x+21$
2) $y=-\frac{1}{3} x-3$
3) $y=3 x+33$
4) $y=-\frac{1}{3} x+3$

130 The point $(3,-2)$ is rotated 90° about the origin and then dilated by a scale factor of 4 . What are the coordinates of the resulting image?

1) $(-12,8)$
2) $(12,-8)$
3) $(8,12)$
4) $(-8,-12)$

131 What is an equation of circle O shown in the graph below?

1) $(x+2)^{2}+(y-2)^{2}=9$
2) $(x+2)^{2}+(y-2)^{2}=3$
3) $(x-2)^{2}+(y+2)^{2}=9$
4) $(x-2)^{2}+(y+2)^{2}=3$

132 What is an equation of a circle with center (7,-3) and radius 4 ?

1) $(x-7)^{2}+(y+3)^{2}=4$
2) $(x+7)^{2}+(y-3)^{2}=4$
3) $(x-7)^{2}+(y+3)^{2}=16$
4) $(x+7)^{2}+(y-3)^{2}=16$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

133 In parallelogram $A B C D$ shown below, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E.

Which statement must be true?

1) $\overline{A C} \cong \overline{D B}$
2) $\angle A B D \cong \angle C B D$
3) $\triangle A E D \cong \triangle C E B$
4) $\triangle D C E \cong \triangle B C E$

134 In the diagram below of circle $O, \overline{P A}$ is tangent to circle O at A, and $\overline{P B C}$ is a secant with points B and C on the circle.

If $P A=8$ and $P B=4$, what is the length of $\overline{B C}$?

1) 20
2) 16
3) 15
4) 12

135 In the diagram below, $\triangle A B C$ is circumscribed about circle O and the sides of $\triangle A B C$ are tangent to the circle at points D, E, and F.

If $A B=20, A E=12$, and $C F=15$, what is the length of $\overline{A C}$?

1) 8
2) 15
3) 23
4) 27

136 As shown in the diagram below, $\triangle A B C \sim \triangle D E F$, $A B=7 x, B C=4, D E=7$, and $E F=x$.

What is the length of $\overline{A B}$?

1) 28
2) 2
3) 14
4) 4

137 Which diagram represents a correct construction of equilateral $\triangle A B C$, given side $\overline{A B}$?
1)

2)
3)

4)

138 As shown in the diagram below of $\triangle A B C$, a compass is used to find points D and E, equidistant from point A. Next, the compass is used to find point F, equidistant from points D and E. Finally, a straightedge is used to draw $\overrightarrow{A F}$. Then, point G, the intersection of $\overrightarrow{A F}$ and side $\overline{B C}$ of $\triangle A B C$, is labeled.

Which statement must be true?

1) $\overrightarrow{A F}$ bisects side $\overrightarrow{B C}$
2) $\overrightarrow{A F}$ bisects $\angle B A C$
3) $\overrightarrow{A F} \perp \overrightarrow{B C}$
4) $\triangle A B G \sim \triangle A C G$

139 Lines m and n intersect at point A. Line k is perpendicular to both lines m and n at point A. Which statement must be true?

1) Lines m, n, and k are in the same plane.
2) Lines m and n are in two different planes.
3) Lines m and n are perpendicular to each other.
4) Line k is perpendicular to the plane containing lines m and n.

Geometry Multiple Choice Regents Exam Questions www.jmap.org

140 In the diagram below, MATH is a rhombus with diagonals $\overline{A H}$ and $\overline{M T}$.

If $\mathrm{m} \angle H A M=12$, what is $\mathrm{m} \angle A M T$?

1) 12
2) 78
3) 84
4) 156

141 Point P lies on line m. Point P is also included in distinct planes Q, R, S, and \mathcal{T}. At most, how many of these planes could be perpendicular to line m ?

1) 1
2) 2
3) 3
4) 4

142 Which compound statement is true?

1) A triangle has three sides and a quadrilateral has five sides.
2) A triangle has three sides if and only if a quadrilateral has five sides.
3) If a triangle has three sides, then a quadrilateral has five sides.
4) A triangle has three sides or a quadrilateral has five sides.

143 Given that $A B C D$ is a parallelogram, a student wrote the proof below to show that a pair of its opposite angles are congruent.

What is the reason justifying that $\angle B \cong \angle D$?

1) Opposite angles in a quadrilateral are congruent.
2) Parallel lines have congruent corresponding angles.
3) Corresponding parts of congruent triangles are congruent.
4) Alternate interior angles in congruent triangles are congruent.

144 An equation of the line that passes through $(2,-1)$ and is parallel to the line $2 y+3 x=8$ is

1) $y=\frac{3}{2} x-4$
2) $y=\frac{3}{2} x+4$
3) $y=-\frac{3}{2} x-2$
4) $y=-\frac{3}{2} x+2$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

145 In the diagram below of rhombus $A B C D$, $\mathrm{m} \angle C=100$.

What is $\mathrm{m} \angle D B C$?

1) 40
2) 45
3) 50
4) 80

146 As shown in the diagram below, lines m and n are cut by transversal p.

If $\mathrm{m} \angle 1=4 x+14$ and $\mathrm{m} \angle 2=8 x+10$, lines m and n are parallel when x equals

1) 1
2) 6
3) 13
4) 17

147 Lines a and b intersect at point P. Line c passes through P and is perpendicular to the plane containing lines a and b. Which statement must be true?

1) Lines a, b, and c are coplanar.
2) Line a is perpendicular to line b.
3) Line c is perpendicular to both line a and line b.
4) Line c is perpendicular to line a or line b, but not both.

148 As shown in the diagram below, a kite needs a vertical and a horizontal support bar attached at opposite corners. The upper edges of the kite are 7 inches, the side edges are x inches, and the vertical support bar is $(x+1)$ inches.

What is the measure, in inches, of the vertical support bar?

1) 23
2) 24
3) 25
4) 26

Geometry Multiple Choice Regents Exam Questions www.jmap.org

149 Which graph represents a circle with the equation $(x-3)^{2}+(y+1)^{2}=4$?
1)

2)

3)

150 The number of degrees in the sum of the interior angles of a pentagon is

1) 72
2) 360
3) 540
4) 720

151 Which equation represents the perpendicular bisector of $\overline{A B}$ whose endpoints are $A(8,2)$ and $B(0,6)$?

1) $y=2 x-4$
2) $y=-\frac{1}{2} x+2$
3) $y=-\frac{1}{2} x+6$
4) $y=2 x-12$

152 Which equation of a circle will have a graph that lies entirely in the first quadrant?

1) $(x-4)^{2}+(y-5)^{2}=9$
2) $(x+4)^{2}+(y+5)^{2}=9$
3) $(x+4)^{2}+(y+5)^{2}=25$
4) $(x-5)^{2}+(y-4)^{2}=25$

153 The volume, in cubic centimeters, of a sphere whose diameter is 6 centimeters is

1) 12π
2) 36π
3) 48π
4) 288π

Geometry Multiple Choice Regents Exam Questions www.jmap.org

154 As shown on the graph below, $\Delta R^{\prime} S^{\prime} T^{\prime}$ is the image of $\triangle R S T$ under a single transformation.

Which transformation does this graph represent?

1) glide reflection
2) line reflection
3) rotation
4) translation

155 What is an equation of the line that passes through the point $(-2,3)$ and is parallel to the line whose equation is $y=\frac{3}{2} x-4$?

1) $y=\frac{-2}{3} x$
2) $y=\frac{-2}{3} x+\frac{5}{3}$
3) $y=\frac{3}{2} x$
4) $y=\frac{3}{2} x+6$

156 When solved graphically, what is the solution to the following system of equations?

$$
\begin{gathered}
y=x^{2}-4 x+6 \\
y=x+2
\end{gathered}
$$

1) $(1,4)$
2) $(4,6)$
3) $(1,3)$ and $(4,6)$
4) $(3,1)$ and $(6,4)$

157 Line segment $A B$ is shown in the diagram below.

Which two sets of construction marks, labeled I, II, III, and IV, are part of the construction of the perpendicular bisector of line segment $A B$?

1) I and II
2) I and III
3) II and III
4) II and IV

158 If the vertex angles of two isosceles triangles are congruent, then the triangles must be

1) acute
2) congruent
3) right
4) similar

Geometry Multiple Choice Regents Exam Questions www.jmap.org

159 In $\triangle P Q R, \angle P R Q$ is a right angle and $\overline{R T}$ is drawn perpendicular to hypotenuse $\overline{P Q}$. If $P T=x$, $R T=6$, and $T Q=4 x$, what is the length of $\overline{P Q}$?

1) 9
2) 12
3) 3
4) 15

160 A student wrote the sentence " 4 is an odd integer." What is the negation of this sentence and the truth value of the negation?

1) 3 is an odd integer; true
2) 4 is not an odd integer; true
3) 4 is not an even integer; false
4) 4 is an even integer; false

161 Line n intersects lines l and m, forming the angles shown in the diagram below.

Which value of x would prove $l \| m$?

1) 2.5
2) 4.5
3) 6.25
4) 8.75

162 In the diagram below, lines n and m are cut by transversals p and q.

What value of x would make lines n and m parallel?

1) 110
2) 80
3) 70
4) 50

163 In the diagram below, parallelogram $A B C D$ has diagonals $\overline{A C}$ and $\overline{B D}$ that intersect at point E.

Which expression is not always true?

1) $\angle D A E \cong \angle B C E$
2) $\angle D E C \cong \angle B E A$
3) $\overline{A C} \cong \overline{D B}$
4) $\overline{D E} \cong \overline{E B}$

Geometry Multiple Choice Regents Exam Questions

 www.jmap.org164 In the diagram below of right triangle $A B C, \overline{C D}$ is the altitude to hypotenuse $A B, C B=6$, and $A D=5$.

What is the length of $\overline{B D}$?

1) 5
2) 9
3) 3
4) 4

165 Point A lies in plane \mathscr{B}. How many lines can be drawn perpendicular to plane \mathscr{B} through point A ?

1) one
2) two
3) zero
4) infinite

166 Quadrilateral $M N O P$ is a trapezoid with $\overline{M N} \| \overline{O P}$. If $M^{\prime} N^{\prime} O^{\prime} P^{\prime}$ is the image of $M N O P$ after a reflection over the x-axis, which two sides of quadrilateral $M^{\prime} N^{\prime} O^{\prime} P^{\prime}$ are parallel?

1) $\overline{M^{\prime} N^{\prime}}$ and $\overline{O^{\prime} P^{\prime}}$
2) $\overline{M^{\prime} N^{\prime}}$ and $\overline{N^{\prime} O^{\prime}}$
3) $\overline{P^{\prime} M^{\prime}}$ and $\overline{O^{\prime} P^{\prime}}$
4) $\overline{P^{\prime} M^{\prime}}$ and $\overline{N^{\prime} O^{\prime}}$

167 .A straightedge and compass were used to create the construction below. Arc $E F$ was drawn from point B, and arcs with equal radii were drawn from E and F.

Which statement is false?

1) $\mathrm{m} \angle A B D=\mathrm{m} \angle D B C$
2) $\frac{1}{2}(\mathrm{~m} \angle A B C)=\mathrm{m} \angle A B D$
3) $2(\mathrm{~m} \angle D B C)=\mathrm{m} \angle A B C$
4) $2(\mathrm{~m} \angle A B C)=\mathrm{m} \angle C B D$

168
In the diagram below, $\overline{D E}$ joins the midpoints of two sides of $\triangle A B C$.

Which statement is not true?

1) $C E=\frac{1}{2} C B$
2) $D E=\frac{1}{2} A B$
3) area of $\triangle C D E=\frac{1}{2}$ area of $\triangle C A B$
4) perimeter of $\triangle C D E=\frac{1}{2}$ perimeter of $\triangle C A B$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

169 In rhombus $A B C D$, the diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E. If $A E=5$ and $B E=12$, what is the length of $\overline{A B}$?

1) 7
2) 10
3) 13
4) 17

170 In the diagram below of $\overline{A B C D}, \overline{A C} \cong \overline{B D}$.

Using this information, it could be proven that

1) $B C=A B$
2) $A B=C D$
3) $A D-B C=C D$
4) $A B+C D=A D$

171 In the diagram below of circle O, diameter $\overline{A O B}$ is perpendicular to chord $\overline{C D}$ at point $E, O A=6$, and $O E=2$.

What is the length of $\overline{C E}$?

1) $4 \sqrt{3}$
2) $2 \sqrt{3}$
3) $8 \sqrt{2}$
4) $4 \sqrt{2}$

172 What is the slope of a line that is perpendicular to the line whose equation is $3 x+5 y=4$?

1) $-\frac{3}{5}$
2) $\frac{3}{5}$
3) $-\frac{5}{3}$
4) $\frac{5}{3}$

173 What is an equation of circle O shown in the graph below?

1) $(x+1)^{2}+(y-3)^{2}=25$
2) $(x-1)^{2}+(y+3)^{2}=25$
3) $(x-5)^{2}+(y+6)^{2}=25$
4) $(x+5)^{2}+(y-6)^{2}=25$

174 How many points are both 4 units from the origin and also 2 units from the line $y=4$?

1) 1
2) 2
3) 3
4) 4

Geometry Multiple Choice Regents Exam Questions www.jmap.org

175 In the diagram below, $\overline{A B}, \overline{B C}$, and $\overline{A C}$ are tangents to circle O at points F, E, and D, respectively, $A F=6, C D=5$, and $B E=4$.

What is the perimeter of $\triangle A B C$?

1) 15
2) 25
3) 30
4) 60

176 In the diagram below of $\triangle A B C, \overleftrightarrow{T V} \| \overline{B C}, A T=5$, $T B=7$, and $A V=10$.

What is the length of $\overline{V C}$?

1) $3 \frac{1}{2}$
2) $7 \frac{1}{7}$
3) 14
4) 24

177 The diagram below shows a pair of congruent triangles, with $\angle A D B \cong \angle C D B$ and $\angle A B D \cong \angle C B D$.

Which statement must be true?

1) $\angle A D B \cong \angle C B D$
2) $\angle A B C \cong \angle A D C$
3) $\overline{A B} \cong \overline{C D}$
4) $\overline{A D} \cong \overline{C D}$

178 A line segment has endpoints $(4,7)$ and $(1,11)$. What is the length of the segment?

1) 5
2) 7
3) 16
4) 25

179 Point M is the midpoint of $\overline{A B}$. If the coordinates of A are $(-3,6)$ and the coordinates of M are $(-5,2)$, what are the coordinates of B ?

1) $(1,2)$
2) $(7,10)$
3) $(-4,4)$
4) $(-7,-2)$

180 In $\triangle A B C$ and $\triangle D E F, \frac{A C}{D F}=\frac{C B}{F E}$. Which additional information would prove
$\triangle A B C \sim \triangle D E F ?$

1) $A C=D F$
2) $C B=F E$
3) $\angle A C B \cong \angle D F E$
4) $\angle B A C \cong \angle E D F$

181 If $\overleftrightarrow{A B}$ is contained in plane P, and $\overleftrightarrow{A B}$ is perpendicular to plane R, which statement is true?

1) $\overleftrightarrow{A B}$ is parallel to plane \mathbb{R}
2) Plane P is parallel to plane R.
3) $\overleftrightarrow{A B}$ is perpendicular to plane \mathscr{P}.
4) Plane \mathscr{P} is perpendicular to plane R.

183 A man wants to place a new bird bath in his yard so that it is 30 feet from a fence, f, and also 10 feet from a light pole, P. As shown in the diagram below, the light pole is 35 feet away from the fence.

How many locations are possible for the bird bath?

1) 1
2) 2
3) 3
4) 0

184 For which polygon does the sum of the measures of the interior angles equal the sum of the measures of the exterior angles?

1) hexagon
2) pentagon
3) quadrilateral
4) triangle

185 The diameter of a sphere is 15 inches. What is the volume of the sphere, to the nearest tenth of a cubic inch?

1) 706.9
2) 1767.1
3) 2827.4
4) $14,137.2$

186 Which equation represents the line that is perpendicular to $2 y=x+2$ and passes through the point $(4,3)$?

1) $y=\frac{1}{2} x-5$
2) $y=\frac{1}{2} x+1$
3) $y=-2 x+11$
4) $y=-2 x-5$

187 For a triangle, which two points of concurrence could be located outside the triangle?

1) incenter and centroid
2) centroid and orthocenter
3) incenter and circumcenter
4) circumcenter and orthocenter

188 In triangles $A B C$ and $D E F, A B=4, A C=5$, $D E=8, D F=10$, and $\angle A \cong \angle D$. Which method could be used to prove $\triangle A B C \sim \triangle D E F ?$

1) AA
2) SAS
3) SSS
4) ASA

189 The equation of a circle with its center at $(-3,5)$ and a radius of 4 is

1) $(x+3)^{2}+(y-5)^{2}=4$
2) $(x-3)^{2}+(y+5)^{2}=4$
3) $(x+3)^{2}+(y-5)^{2}=16$
4) $(x-3)^{2}+(y+5)^{2}=16$

190 If two distinct planes, \mathcal{A} and \mathscr{B}, are perpendicular to line c, then which statement is true?

1) Planes \mathcal{A} and \mathscr{B} are parallel to each other.
2) Planes \mathcal{A} and \mathscr{B} are perpendicular to each other.
3) The intersection of planes \mathcal{A} and \mathscr{B} is a line parallel to line c.
4) The intersection of planes \mathcal{A} and \mathscr{B} is a line perpendicular to line c.

191 The vertices of parallelogram $A B C D$ are $A(2,0)$, $B(0,-3), C(3,-3)$, and $D(5,0)$. If $A B C D$ is reflected over the x-axis, how many vertices remain invariant?

1) 1
2) 2
3) 3
4) 0

192 In the diagram below of $\triangle A B C, \overline{A B} \cong \overline{A C}$, $\mathrm{m} \angle A=3 x$, and $\mathrm{m} \angle B=x+20$.

What is the value of x ?

1) 10
2) 28
3) 32
4) 40

Geometry Multiple Choice Regents Exam Questions www.jmap.org

193 The graph below shows $\overline{J T}$ and its image, $\overline{J^{\prime} T^{\prime}}$, after a transformation.

Which transformation would map $\overline{J T}$ onto $\overline{J^{\prime} T^{\prime}}$?

1) translation
2) glide reflection
3) rotation centered at the origin
4) reflection through the origin

194 Which equation represents a line that is parallel to the line whose equation is $y=\frac{3}{2} x-3$ and passes through the point $(1,2)$?

1) $y=\frac{3}{2} x+\frac{1}{2}$
2) $y=\frac{2}{3} x+\frac{4}{3}$
3) $y=\frac{3}{2} x-2$
4) $y=-\frac{2}{3} x+\frac{8}{3}$

195 When a dilation is performed on a hexagon, which property of the hexagon will not be preserved in its image?

1) parallelism
2) orientation
3) length of sides
4) measure of angles

196 What is the equation of a circle whose center is 4 units above the origin in the coordinate plane and whose radius is 6 ?

1) $x^{2}+(y-6)^{2}=16$
2) $(x-6)^{2}+y^{2}=16$
3) $x^{2}+(y-4)^{2}=36$
4) $(x-4)^{2}+y^{2}=36$

197 The diagram below represents a rectangular solid.

Which statement must be true?

1) $\overline{E H}$ and $\overline{B C}$ are coplanar
2) $\overline{F G}$ and $\overline{A B}$ are coplanar
3) $\overline{E H}$ and $\overline{A D}$ are skew
4) $\overline{F G}$ and $\overline{C G}$ are skew

198 The sum of the interior angles of a polygon of n sides is

1) 360
2) $\frac{360}{n}$
3) $(n-2) \cdot 180$
4) $\frac{(n-2) \cdot 180}{n}$

199 Plane \mathcal{A} is parallel to plane \mathcal{B}. Plane C intersects plane \mathcal{A} in line m and intersects plane \mathcal{B} in line n. Lines m and n are

1) intersecting
2) parallel
3) perpendicular
4) skew

200 The coordinates of point A are $(-3 a, 4 b)$. If point A^{\prime} is the image of point A reflected over the line $y=x$, the coordinates of A^{\prime} are

1) $(4 b,-3 a)$
2) $(3 a, 4 b)$
3) $(-3 a,-4 b)$
4) $(-4 b,-3 a)$

201 The slope of line ℓ is $-\frac{1}{3}$. What is an equation of a line that is perpendicular to line ℓ ?

1) $y+2=\frac{1}{3} x$
2) $-2 x+6=6 y$
3) $9 x-3 y=27$
4) $3 x+y=0$

202 In the diagram below of right triangle $A B C$, altitude $\overline{B D}$ is drawn to hypotenuse $\overline{A C}, A C=16$, and $C D=7$.

What is the length of $\overline{B D}$?

1) $3 \sqrt{7}$
2) $4 \sqrt{7}$
3) $7 \sqrt{3}$
4) 12

203 In the diagram below, line p intersects line m and line n.

If $\mathrm{m} \angle 1=7 x$ and $\mathrm{m} \angle 2=5 x+30$, lines m and n are parallel when x equals

1) 12.5
2) 15
3) 87.5
4) 105

Geometry Multiple Choice Regents Exam Questions www.jmap.org

204 In the diagram below of $\triangle D A E$ and $\triangle B C E, \overline{A B}$ and $\overline{C D}$ intersect at E, such that $\overline{A E} \cong \overline{C E}$ and $\angle B C E \cong \angle D A E$.

Triangle $D A E$ can be proved congruent to triangle BCE by

1) ASA
2) SAS
3) SSS
4) HL

205 Given three distinct quadrilaterals, a square, a rectangle, and a rhombus, which quadrilaterals must have perpendicular diagonals?

1) the rhombus, only
2) the rectangle and the square
3) the rhombus and the square
4) the rectangle, the rhombus, and the square

206 The diagonals of a quadrilateral are congruent but do not bisect each other. This quadrilateral is

1) an isosceles trapezoid
2) a parallelogram
3) a rectangle
4) a rhombus

207 Triangle $P Q R$ has angles in the ratio of 2:3:5. Which type of triangle is $\triangle P Q R$?

1) acute
2) isosceles
3) obtuse
4) right

208 In circle O, a diameter has endpoints $(-5,4)$ and $(3,-6)$. What is the length of the diameter?

1) $\sqrt{2}$
2) $2 \sqrt{2}$
3) $\sqrt{10}$
4) $2 \sqrt{41}$

209 A line segment has endpoints $A(7,-1)$ and $B(-3,3)$.
What are the coordinates of the midpoint of $\overline{A B}$?

1) $(1,2)$
2) $(2,1)$
3) $(-5,2)$
4) $(5,-2)$

210 What is the slope of a line perpendicular to the line whose equation is $20 x-2 y=6$?

1) -10
2) $-\frac{1}{10}$
3) 10
4) $\frac{1}{10}$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

211 What is the image of the point $(2,-3)$ after the transformation $r_{y-a x i s}$?

1) $(2,3)$
2) $(-2,-3)$
3) $(-2,3)$
4) $(-3,2)$

212 As shown in the diagram below, $\overline{F J}$ is contained in plane $\mathrm{R}, \overline{B C}$ and $\overline{D E}$ are contained in plane S , and $\overline{F J}, \overline{B C}$, and $\overline{D E}$ intersect at A.

Which fact is not sufficient to show that planes R and S are perpendicular?

1) $\overline{F A} \perp \overline{D E}$
2) $\overline{A D} \perp \overline{A F}$
3) $\overline{B C} \perp \overline{F J}$
4) $\overline{D E} \perp \overline{B C}$

213 Line segment $A B$ is a diameter of circle O whose center has coordinates $(6,8)$. What are the coordinates of point B if the coordinates of point A are $(4,2)$?

1) $(1,3)$
2) $(5,5)$
3) $(8,14)$
4) $(10,10)$

214 In $\triangle A B C$ shown below, P is the centroid and $B F=18$.

What is the length of $\overline{B P}$?

1) 6
2) 9
3) 3
4) 12

215 In the diagram below of circle O, diameter $\overline{A B}$ is parallel to chord $\overline{C D}$.

If $\overparen{\mathrm{m} C D}=70$, what is $\overleftarrow{\mathrm{m}} \overleftarrow{A C}$?

1) 110
2) 70
3) 55
4) 35

Geometry Multiple Choice Regents Exam Questions www.jmap.org

216 Which graph represents a circle whose equation is $(x+2)^{2}+y^{2}=16 ?$
1)

3)

217 In $\triangle D E F, \mathrm{~m} \angle D=3 x+5, \mathrm{~m} \angle E=4 x-15$, and $\mathrm{m} \angle F=2 x+10$. Which statement is true?

1) $D F=F E$
2) $D E=F E$
3) $\mathrm{m} \angle E=\mathrm{m} \angle F$
4) $\mathrm{m} \angle D=\mathrm{m} \angle F$

218 In scalene triangle $A B C, \mathrm{~m} \angle B=45$ and $\mathrm{m} \angle C=55$. What is the order of the sides in length, from longest to shortest?

1) $\overline{A B}, \overline{B C}, \overline{A C}$
2) $\overline{B C}, \overline{A C}, \overline{A B}$
3) $\overline{A C}, \overline{B C}, \overline{A B}$
4) $\overline{B C}, \overline{A B}, \overline{A C}$

219 In the diagram below, point P is the centroid of $\triangle A B C$.

If $P M=2 x+5$ and $B P=7 x+4$, what is the length of $\overline{P M}$?

1) 9
2) 2
3) 18
4) 27

220 Which equation represents the line parallel to the line whose equation is $4 x+2 y=14$ and passing through the point $(2,2)$?

1) $y=-2 x$
2) $y=-2 x+6$
3) $y=\frac{1}{2} x$
4) $y=\frac{1}{2} x+1$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

221 When $\triangle A B C$ is dilated by a scale factor of 2 , its image is $\Delta A^{\prime} B^{\prime} C^{\prime}$. Which statement is true?

1) $\overline{A C} \cong \overline{A^{\prime} C^{\prime}}$
2) $\angle A \cong \angle A^{\prime}$
3) perimeter of $\triangle A B C=$ perimeter of $\Delta A^{\prime} B^{\prime} C^{\prime}$
4) $2($ area of $\triangle A B C)=$ area of $\Delta A^{\prime} B^{\prime} C^{\prime}$

222 The vertices of the triangle in the diagram below are $A(7,9), B(3,3)$, and $C(11,3)$.

What are the coordinates of the centroid of $\triangle A B C$?

1) $(5,6)$
2) $(7,3)$
3) $(7,5)$
4) $(9,6)$

223 In a given triangle, the point of intersection of the three medians is the same as the point of intersection of the three altitudes. Which classification of the triangle is correct?

1) scalene triangle
2) isosceles triangle
3) equilateral triangle
4) right isosceles triangle

224 In the diagram below, $\overline{E F}$ is the median of trapezoid $A B C D$.

If $A B=5 x-9, D C=x+3$, and $E F=2 x+2$, what is the value of x ?

1) 5
2) 2
3) 7
4) 8

225 In the diagram below of circle O, chord $\overline{A B}$ is parallel to chord $\overline{G H}$. Chord $\overline{C D}$ intersects $\overline{A B}$ at E and $\overline{G H}$ at F.

Which statement must always be true?

1) $\overparen{A C} \cong \overparen{C B}$
2) $\overparen{D H} \cong \overparen{B H}$
3) $\overparen{A B} \cong \overparen{G H}$
4) $\overparen{A G} \cong \overparen{B H}$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

226 In $\triangle A E D$ with $\overline{A B C D}$ shown in the diagram below, $\overline{E B}$ and $\overline{E C}$ are drawn.

If $\overline{A B} \cong \overline{C D}$, which statement could always be proven?

1) $\overline{A C} \cong \overline{D B}$
2) $\overline{A E} \cong \overline{E D}$
3) $\overline{A B} \cong \overline{B C}$
4) $\overline{E C} \cong \overline{E A}$

227 In the diagram below of $\triangle A B C, \overline{B C}$ is extended to D.

If $\mathrm{m} \angle A=x^{2}-6 x, \mathrm{~m} \angle B=2 x-3$, and $\mathrm{m} \angle A C D=9 x+27$, what is the value of x ?

1) 10
2) 2
3) 3
4) 15

228 The angle formed by the radius of a circle and a tangent to that circle has a measure of

1) 45°
2) 90°
3) 135°
4) 180°

229 In the diagram below, $\Delta A^{\prime} B^{\prime} C^{\prime}$ is a transformation of $\triangle A B C$, and $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is a transformation of $\Delta A^{\prime} B^{\prime} C^{\prime}$.

The composite transformation of $\triangle A B C$ to $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is an example of a

1) reflection followed by a rotation
2) reflection followed by a translation
3) translation followed by a rotation
4) translation followed by a reflection

Geometry Multiple Choice Regents Exam Questions www.jmap.org

230 The two lines represented by the equations below are graphed on a coordinate plane.

$$
\begin{gathered}
x+6 y=12 \\
3(x-2)=-y-4
\end{gathered}
$$

Which statement best describes the two lines?

1) The lines are parallel.
2) The lines are the same line.
3) The lines are perpendicular.
4) The lines intersect at an angle other than 90°.

231 What is the length of $\overline{A B}$ with endpoints $A(-1,0)$ and $B(4,-3)$?

1) $\sqrt{6}$
2) $\sqrt{18}$
3) $\sqrt{34}$
4) $\sqrt{50}$

232 In the diagram below of circle O, radius $\overline{O C}$ is 5 cm . Chord $\overline{A B}$ is 8 cm and is perpendicular to $\overline{O C}$ at point P.

What is the length of $\overline{O P}$, in centimeters?

1) 8
2) 2
3) 3
4) 4

233 What is the image of the point $(-5,2)$ under the translation $T_{3,-4}$?

1) $(-9,5)$
2) $(-8,6)$
3) $(-2,-2)$
4) $(-15,-8)$

234 Which set of numbers does not represent the sides of a right triangle?

1) $\{6,8,10\}$
2) $\{8,15,17\}$
3) $\{8,24,25\}$
4) $\{15,36,39\}$

235 In the diagram of $\triangle A B C$ shown below, $\overline{D E} \| \overline{B C}$.

If $A B=10, A D=8$, and $A E=12$, what is the length of $\overline{E C}$?

1) 6
2) 2
3) 3
4) 15

Geometry Multiple Choice Regents Exam Questions www.jmap.org

236 In the diagram below, quadrilateral $J U M P$ is inscribed in a circle..

Opposite angles J and M must be

1) right
2) complementary
3) congruent
4) supplementary

237 What is the slope of a line that is perpendicular to the line represented by the equation $x+2 y=3$?

1) -2
2) 2
3) $-\frac{1}{2}$
4) $\frac{1}{2}$

238 What is the equation of a line passing through $(2,-1)$ and parallel to the line represented by the equation $y=2 x+1$?

1) $y=-\frac{1}{2} x$
2) $y=-\frac{1}{2} x+1$
3) $y=2 x-5$
4) $y=2 x-1$

239 A sphere is inscribed inside a cube with edges of 6 cm . In cubic centimeters, what is the volume of the sphere, in terms of π ?

1) 12π
2) 36π
3) 48π
4) 288π

240 What is the measure of each interior angle of a regular hexagon?

1) 60°
2) 120°
3) 135°
4) 270°

241 In the diagram of quadrilateral $A B C D, \overline{A B} \| \overline{C D}$, $\angle A B C \cong \angle C D A$, and diagonal $\overline{A C}$ is drawn.

Which method can be used to prove $\triangle A B C$ is congruent to $\triangle C D A$?

1) AAS
2) SSA
3) SAS
4) SSS

Geometry Multiple Choice Regents Exam Questions www.jmap.org

242 Which diagram shows the construction of the perpendicular bisector of $\overline{A B}$?
1)

2)
3)
4)

243 Triangle $A B C$ has vertices $A(0,0), B(3,2)$, and $C(0,4)$. The triangle may be classified as

1) equilateral
2) isosceles
3) right
4) scalene

244 In $\triangle A B C, A B=5$ feet and $B C=3$ feet. Which inequality represents all possible values for the length of $\overline{A C}$, in feet?

1) $2 \leq A C \leq 8$
2) $2<A C<8$
3) $3 \leq A C \leq 7$
4) $3<A C<7$

245 In the diagram below of circle O, chord $\overline{A B}$ is parallel to chord $\overline{C D}$.

Which statement must be true?

1) $\overparen{A C} \cong \overparen{B D}$
2) $\overparen{A B} \cong \overparen{C D}$
3) $\overline{A B} \cong \overline{C D}$
4) $\widehat{A B D} \cong \overparen{C D B}$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

246 In the diagram below, $\triangle A B C \sim \triangle R S T$.

Which statement is not true?

1) $\angle A \cong \angle R$
2) $\frac{A B}{R S}=\frac{B C}{S T}$
3) $\frac{A B}{B C}=\frac{S T}{R S}$
4) $\frac{A B+B C+A C}{R S+S T+R T}=\frac{A B}{R S}$

247 In the diagram below of $\triangle A B C, D$ is the midpoint of $\overline{A B}$, and E is the midpoint of $\overline{B C}$.

If $A C=4 x+10$, which expression represents $D E$?

1) $x+2.5$
2) $2 x+5$
3) $2 x+10$
4) $8 x+20$

248 In $\triangle F G H, \mathrm{~m} \angle F=42$ and an exterior angle at vertex H has a measure of 104 . What is $\mathrm{m} \angle G$?

1) 34
2) 62
3) 76
4) 146

249 Which statement is true about every parallelogram?

1) All four sides are congruent.
2) The interior angles are all congruent.
3) Two pairs of opposite sides are congruent.
4) The diagonals are perpendicular to each other.

250 In the diagram below of $\triangle A B C$, side $\overline{B C}$ is extended to point $D, \mathrm{~m} \angle A=x, \mathrm{~m} \angle B=2 x+15$, and $\mathrm{m} \angle A C D=5 x+5$.

What is $\mathrm{m} \angle B$?

1) 5
2) 20
3) 25
4) 55

Geometry Multiple Choice Regents Exam Questions

251 Which transformation is not always an isometry?

1) rotation
2) dilation
3) reflection
4) translation

252 Which illustration shows the correct construction of an angle bisector?
1)

2)
3)

253 In plane \mathscr{P}, lines m and n intersect at point A. If line k is perpendicular to line m and line n at point A, then line k is

1) contained in plane \mathscr{P}
2) parallel to plane \mathscr{P}
3) perpendicular to plane \mathscr{P}
4) skew to plane \mathscr{P}

254 In the diagram of $\triangle A B C$ below, Jose found centroid P by constructing the three medians. He measured $\overline{C F}$ and found it to be 6 inches.

If $P F=x$, which equation can be used to find x ?

1) $x+x=6$
2) $2 x+x=6$
3) $3 x+2 x=6$
4) $x+\frac{2}{3} x=6$

255 A rectangular prism has a volume of $3 x^{2}+18 x+24$. Its base has a length of $x+2$ and a width of 3 . Which expression represents the height of the prism?

1) $x+4$
2) $x+2$
3) 3
4) $x^{2}+6 x+8$

256 A transversal intersects two lines. Which condition would always make the two lines parallel?

1) Vertical angles are congruent.
2) Alternate interior angles are congruent.
3) Corresponding angles are supplementary.
4) Same-side interior angles are complementary.

Geometry Multiple Choice Regents Exam Questions www.jmap.org

257 The pentagon in the diagram below is formed by five rays.

What is the degree measure of angle x ?

1) 72
2) 96
3) 108
4) 112

258
The diagram below shows the construction of the bisector of $\angle A B C$.

Which statement is not true?

1) $\mathrm{m} \angle E B F=\frac{1}{2} \mathrm{~m} \angle A B C$
2) $\mathrm{m} \angle D B F=\frac{1}{2} \mathrm{~m} \angle A B C$
3) $\mathrm{m} \angle E B F=\mathrm{m} \angle A B C$
4) $\mathrm{m} \angle D B F=\mathrm{m} \angle E B F$

259 The diagram below shows the construction of a line through point P perpendicular to line m.

Which statement is demonstrated by this construction?

1) If a line is parallel to a line that is perpendicular to a third line, then the line is also perpendicular to the third line.
2) The set of points equidistant from the endpoints of a line segment is the perpendicular bisector of the segment.
3) Two lines are perpendicular if they are equidistant from a given point.
4) Two lines are perpendicular if they intersect to form a vertical line.

260 Through a given point, P, on a plane, how many lines can be drawn that are perpendicular to that plane?

1) 1
2) 2
3) more than 2
4) none

Geometry Multiple Choice Regents Exam Questions www.jmap.org

261 In the diagram below of circle O, chords $\overline{A E}$ and $\overline{D C}$ intersect at point B, such that $\mathrm{m} \overparen{A C}=36$ and $\mathrm{m} \overparen{D E}=20$.

What is $\mathrm{m} \angle A B C$?

1) 56
2) 36
3) 28
4) 8

262 What is an equation of the line that contains the point $(3,-1)$ and is perpendicular to the line whose equation is $y=-3 x+2$?

1) $y=-3 x+8$
2) $y=-3 x$
3) $y=\frac{1}{3} x$
4) $y=\frac{1}{3} x-2$

263 A right circular cylinder has a volume of 1,000 cubic inches and a height of 8 inches. What is the radius of the cylinder to the nearest tenth of an inch?

1) 6.3
2) 11.2
3) 19.8
4) 39.8

264 Which diagram shows the construction of an equilateral triangle?
1)
2)

4)

Geometry Multiple Choice Regents Exam Questions www.jmap.org

265 Which equation represents the circle whose center is $(-2,3)$ and whose radius is 5 ?

1) $(x-2)^{2}+(y+3)^{2}=5$
2) $(x+2)^{2}+(y-3)^{2}=5$
3) $(x+2)^{2}+(y-3)^{2}=25$
4) $(x-2)^{2}+(y+3)^{2}=25$

266 What is the length, to the nearest tenth, of the line segment joining the points $(-4,2)$ and $(146,52)$?

1) 141.4
2) 150.5
3) 151.9
4) 158.1

267 Which expression best describes the transformation shown in the diagram below?

1) same orientation; reflection
2) opposite orientation; reflection
3) same orientation; translation
4) opposite orientation; translation

268 What is the slope of a line perpendicular to the line whose equation is $y=3 x+4$?

1) $\frac{1}{3}$
2) $-\frac{1}{3}$
3) 3
4) -3

269 In the diagram below of $\triangle A B C, \overline{C D}$ is the bisector of $\angle B C A, \overline{A E}$ is the bisector of $\angle C A B$, and $\overline{B G}$ is drawn.

Which statement must be true?

1) $D G=E G$
2) $A G=B G$
3) $\angle A E B \cong \angle A E C$
4) $\angle D B G \cong \angle E B G$

270 Given $\triangle A B C \sim \triangle D E F$ such that $\frac{A B}{D E}=\frac{3}{2}$. Which statement is not true?

1) $\frac{B C}{E F}=\frac{3}{2}$
2) $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle D}=\frac{3}{2}$
3) $\frac{\text { area of } \triangle A B C}{\text { area of } \triangle D E F}=\frac{9}{4}$
4) $\frac{\text { perimeter of } \triangle A B C}{\text { perimeter of } \triangle D E F}=\frac{3}{2}$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

271 In the diagram of $\triangle A B C$ and $\triangle D E F$ below, $\overline{A B} \cong \overline{D E}, \angle A \cong \angle D$, and $\angle B \cong \angle E$.

Which method can be used to prove

$\triangle A B C \cong \triangle D E F ?$

1) SSS
2) SAS
3) ASA
4) HL

272 In the diagram below of circle O, chord $\overline{A B} \|$ chord $\overline{C D}$, and chord $\overline{C D} \|$ chord $\overline{E F}$.

Which statement must be true?

1) $\overparen{C E} \cong \overparen{D F}$
2) $\overparen{A C} \cong \overparen{D F}$
3) $\overparen{A C} \cong \overparen{C E}$
4) $\overparen{E F} \cong \overparen{C D}$

273 The diagram below illustrates the construction of $\overleftrightarrow{P S}$ parallel to $\overleftrightarrow{R Q}$ through point P.

Which statement justifies this construction?

1) $\mathrm{m} \angle 1=\mathrm{m} \angle 2$
2) $\mathrm{m} \angle 1=\mathrm{m} \angle 3$
3) $\overline{P R} \cong \overline{R Q}$
4) $\overline{P S} \cong \overline{R Q}$

274 In a coordinate plane, how many points are both 5 units from the origin and 2 units from the x-axis?

1) 1
2) 2
3) 3
4) 4

275 What is the image of point $A(4,2)$ after the composition of transformations defined by $R_{90^{\circ}}{ }^{\circ} r_{y=x}$?

1) $(-4,2)$
2) $(4,-2)$
3) $(-4,-2)$
4) $(2,-4)$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

276 Lines k_{1} and k_{2} intersect at point E. Line m is perpendicular to lines k_{1} and k_{2} at point E.

Which statement is always true?

1) Lines k_{1} and k_{2} are perpendicular.
2) Line m is parallel to the plane determined by lines k_{1} and k_{2}.
3) Line m is perpendicular to the plane determined by lines k_{1} and k_{2}.
4) Line m is coplanar with lines k_{1} and k_{2}.

277 In the diagram below, $L A T E$ is an isosceles trapezoid with $\overline{L E} \cong \overline{A T}, L A=24, E T=40$, and $A T=10$. Altitudes $\overline{L F}$ and $\overline{A G}$ are drawn.

What is the length of $\overline{L F}$?

1) 6
2) 8
3) 3
4) 4

278 The diagram below shows the construction of the perpendicular bisector of $\overline{A B}$.

Which statement is not true?

1) $A C=C B$
2) $C B=\frac{1}{2} A B$
3) $A C=2 A B$
4) $A C+C B=A B$

279 What is the converse of the statement "If Bob does his homework, then George gets candy"?

1) If George gets candy, then Bob does his homework.
2) Bob does his homework if and only if George gets candy.
3) If George does not get candy, then Bob does not do his homework.
4) If Bob does not do his homework, then George does not get candy.

Geometry Multiple Choice Regents Exam Questions www.jmap.org

280 In the diagram below, $\triangle A B C$ is shown with $\overline{A C}$ extended through point D.

If $\mathrm{m} \angle B C D=6 x+2, \mathrm{~m} \angle B A C=3 x+15$, and $\mathrm{m} \angle A B C=2 x-1$, what is the value of x ?

1) 12
2) $14 \frac{10}{11}$
3) 16
4) $18 \frac{1}{9}$

281 What is the contrapositive of the statement, "If I am tall, then I will bump my head"?

1) If I bump my head, then I am tall.
2) If I do not bump my head, then I am tall.
3) If I am tall, then I will not bump my head.
4) If I do not bump my head, then I am not tall.

282 What is the slope of a line that is perpendicular to the line whose equation is $3 x+4 y=12$?

1) $\frac{3}{4}$
2) $-\frac{3}{4}$
3) $\frac{4}{3}$
4) $-\frac{4}{3}$

283 The diagonal $\overline{A C}$ is drawn in parallelogram $A B C D$. Which method can not be used to prove that $\triangle A B C \cong \triangle C D A$?

1) SSS
2) SAS
3) SSA
4) ASA

284 The diagram below shows the construction of the center of the circle circumscribed about $\triangle A B C$.

This construction represents how to find the intersection of

1) the angle bisectors of $\triangle A B C$
2) the medians to the sides of $\triangle A B C$
3) the altitudes to the sides of $\triangle A B C$
4) the perpendicular bisectors of the sides of $\triangle A B C$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

285 In the diagram below of circle O, chords $\overline{A B}$ and $C D$ intersect at E.

If $\underline{C E}=10, E D=6$, and $A E=4$, what is the length of $\overline{E B}$?

1) 15
2) 12
3) 6.7
4) 2.4

286 If the diagonals of a quadrilateral do not bisect each other, then the quadrilateral could be a

1) rectangle
2) rhombus
3) square
4) trapezoid

287 What is an equation of a circle with its center at $(-3,5)$ and a radius of 4 ?

1) $(x-3)^{2}+(y+5)^{2}=16$
2) $(x+3)^{2}+(y-5)^{2}=16$
3) $(x-3)^{2}+(y+5)^{2}=4$
4) $(x+3)^{2}+(y-5)^{2}=4$

288 In the diagram below of regular pentagon $A B C D E$, $\overline{E B}$ is drawn.

What is the measure of $\angle A E B$?

1) 36°
2) 54°
3) 72°
4) 108°

289 Which geometric principle is used to justify the construction below?

1) A line perpendicular to one of two parallel lines is perpendicular to the other.
2) Two lines are perpendicular if they intersect to form congruent adjacent angles.
3) When two lines are intersected by a transversal and alternate interior angles are congruent, the lines are parallel.
4) When two lines are intersected by a transversal and the corresponding angles are congruent, the lines are parallel.

Geometry Multiple Choice Regents Exam Questions www.jmap.org

290 In the diagram below, $\triangle A B C$ is inscribed in circle P. The distances from the center of circle P to each side of the triangle are shown.

Which statement about the sides of the triangle is true?

1) $A B>A C>B C$
2) $A B<A C$ and $A C>B C$
3) $A C>A B>B C$
4) $A C=A B$ and $A B>B C$

291 If the endpoints of $\overline{A B}$ are $A(-4,5)$ and $B(2,-5)$, what is the length of $\overline{A B}$?

1) $2 \sqrt{34}$
2) 2
3) $\sqrt{61}$
4) 8

292 If two different lines are perpendicular to the same plane, they are

1) collinear
2) coplanar
3) congruent
4) consecutive

293 What is the equation of a line that passes through the point $(-3,-11)$ and is parallel to the line whose equation is $2 x-y=4$?

1) $y=2 x+5$
2) $y=2 x-5$
3) $y=\frac{1}{2} x+\frac{25}{2}$
4) $y=-\frac{1}{2} x-\frac{25}{2}$

294 The rectangle $A B C D$ shown in the diagram below will be reflected across the x-axis.

What will not be preserved?

1) slope of $\overline{A B}$
2) parallelism of $\overline{A B}$ and $\overline{C D}$
3) length of $\overline{A B}$
4) measure of $\angle A$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

295 In the diagram below, circle A and circle B are shown.

What is the total number of lines of tangency that are common to circle A and circle B ?

1) 1
2) 2
3) 3
4) 4

296 In the diagram below of circle O, chords $\overline{A D}$ and $\overline{B C}$ intersect at $E, \mathrm{~m} \overparen{A C}=87$, and $\mathrm{m} \overparen{B D}=35$.

What is the degree measure of $\angle C E A$?

1) 87
2) 61
3) 43.5
4) 26

297 Which graph represents a circle with the equation $(x-5)^{2}+(y+1)^{2}=9$?

2)

3)

Geometry Multiple Choice Regents Exam Questions www.jmap.org

298 What is an equation for the circle shown in the graph below?

1) $x^{2}+y^{2}=2$
2) $x^{2}+y^{2}=4$
3) $x^{2}+y^{2}=8$
4) $x^{2}+y^{2}=16$

299 In the diagram below of $\triangle A D B, \mathrm{~m} \angle B D A=90$, $A D=5 \sqrt{2}$, and $A B=2 \sqrt{15}$.

What is the length of $\overline{B D}$?

1) $\sqrt{10}$
2) $\sqrt{20}$
3) $\sqrt{50}$
4) $\sqrt{110}$

300 On the set of axes below, Geoff drew rectangle $A B C D$. He will transform the rectangle by using the translation $(x, y) \rightarrow(x+2, y+1)$ and then will reflect the translated rectangle over the x-axis.

What will be the area of the rectangle after these transformations?

1) exactly 28 square units
2) less than 28 square units
3) greater than 28 square units
4) It cannot be determined from the information given.

301 In which triangle do the three altitudes intersect outside the triangle?

1) a right triangle
2) an acute triangle
3) an obtuse triangle
4) an equilateral triangle

302 Point P is on line m. What is the total number of planes that are perpendicular to line m and pass through point P ?

1) 1
2) 2
3) 0
4) infinite

Geometry Multiple Choice Regents Exam Questions www.jmap.org

303 In the diagram below of parallelogram STUV, $S V=x+3, V U=2 x-1$, and $T U=4 x-3$.

What is the length of $\overline{S V}$?

1) 5
2) 2
3) 7
4) 4

304 Juliann plans on drawing $\triangle A B C$, where the measure of $\angle A$ can range from 50° to 60° and the measure of $\angle B$ can range from 90° to 100°. Given these conditions, what is the correct range of measures possible for $\angle C$?

1) 20° to 40°
2) 30° to 50°
3) 80° to 90°
4) 120° to 130°

305 What is the negation of the statement "The Sun is shining"?

1) It is cloudy.
2) It is daytime.
3) It is not raining.
4) The Sun is not shining.

306 In the diagram below, a right circular cone has a diameter of 8 inches and a height of 12 inches.

What is the volume of the cone to the nearest cubic inch?

1) 201
2) 481
3) 603
4) 804

307 In $\triangle A B C, A B=7, B C=8$, and $A C=9$. Which list has the angles of $\triangle A B C$ in order from smallest to largest?

1) $\angle A, \angle B, \angle C$
2) $\angle B, \angle A, \angle C$
3) $\angle C, \angle B, \angle A$
4) $\angle C, \angle A, \angle B$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

308 In the diagram of trapezoid $A B C D$ below, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E and $\triangle A B C \cong \triangle D C B$.

Which statement is true based on the given information?

1) $\overline{A C} \cong \overline{B C}$
2) $\overline{C D} \cong \overline{A D}$
3) $\angle C D E \cong \angle B A D$
4) $\angle C D B \cong \angle B A C$

The figure in the diagram below is a triangular prism.

Which statement must be true?

1) $\overline{D E} \cong \overline{A B}$
2) $\overline{A D} \cong \overline{B C}$
3) $\overline{A D} \| \overline{C E}$
4) $\overline{D E} \| \overline{B C}$

310 Tangents $\overline{P A}$ and $\overline{P B}$ are drawn to circle O from an external point, P, and radii $\overline{O A}$ and $\overline{O B}$ are drawn. If $\mathrm{m} \angle A P B=40$, what is the measure of $\angle A O B$?

1) 140°
2) 100°
3) 70°
4) 50°

311 In which polygon does the sum of the measures of the interior angles equal the sum of the measures of the exterior angles?

1) triangle
2) hexagon
3) octagon
4) quadrilateral

312 What is the slope of a line perpendicular to the line whose equation is $2 y=-6 x+8$?

1) -3
2) $\frac{1}{6}$
3) $\frac{1}{3}$
4) -6

313 Line segment $A B$ has endpoints $A(2,-3)$ and $B(-4,6)$. What are the coordinates of the midpoint of $\overline{A B}$?

1) $(-2,3)$
2) $\left(-1,1 \frac{1}{2}\right)$
3) $(-1,3)$
4) $\left(3,4 \frac{1}{2}\right)$

314 In the diagram below, $\triangle A B C \cong \triangle X Y Z$.

Which two statements identify corresponding congruent parts for these triangles?

1) $\overline{A B} \cong \overline{X Y}$ and $\angle C \cong \angle Y$
2) $\overline{A B} \cong \overline{Y Z}$ and $\angle C \cong \angle X$
3) $\overline{B C} \cong \overline{X Y}$ and $\angle A \cong \angle Y$
4) $\overline{B C} \cong \overline{Y Z}$ and $\angle A \cong \angle X$

315 In the diagram below of $\triangle A G E$ and $\triangle O L D$, $\angle G A E \cong \angle L O D$, and $\overline{A E} \cong \overline{O D}$.

To prove that $\triangle A G E$ and $\triangle O L D$ are congruent by SAS, what other information is needed?

1) $\overline{G E} \cong \overline{L D}$
2) $\overline{A G} \cong \overline{O L}$
3) $\angle A G E \cong \angle O L D$
4) $\angle A E G \cong \angle O D L$

316 The lateral faces of a regular pyramid are composed of

1) squares
2) rectangles
3) congruent right triangles
4) congruent isosceles triangles

317 In the diagram below of $\triangle A B C$, medians $\overline{A D}, \overline{B E}$, and $\overline{C F}$ intersect at G.

If $C F=24$, what is the length of $\overline{F G}$?

1) 8
2) 10
3) 12
4) 16

318 How many common tangent lines can be drawn to the two externally tangent circles shown below?

1) 1
2) 2
3) 3
4) 4

319 A circle is represented by the equation $x^{2}+(y+3)^{2}=13$. What are the coordinates of the center of the circle and the length of the radius?

1) $(0,3)$ and 13
2) $(0,3)$ and $\sqrt{13}$
3) $(0,-3)$ and 13
4) $(0,-3)$ and $\sqrt{13}$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

320 The coordinates of the vertices of parallelogram $A B C D$ are $A(-3,2), B(-2,-1), C(4,1)$, and $D(3,4)$. The slopes of which line segments could be calculated to show that $A B C D$ is a rectangle?

1) $\overline{A B}$ and $\overline{D C}$
2) $\overline{A B}$ and $\overline{B C}$
3) $\overline{A D}$ and $\overline{B C}$
4) $\overline{A C}$ and $\overline{B D}$

321 In the diagram below, the vertices of $\triangle D E F$ are the midpoints of the sides of equilateral triangle $A B C$, and the perimeter of $\triangle A B C$ is 36 cm .

What is the length, in centimeters, of $\overline{E F}$?

1) 6
2) 12
3) 18
4) 4

322 Given the equations: $y=x^{2}-6 x+10$

$$
y+x=4
$$

What is the solution to the given system of equations?

1) $(2,3)$
2) $(3,2)$
3) $(2,2)$ and $(1,3)$
4) $(2,2)$ and $(3,1)$

323 In the diagram below, tangent $\overline{A B}$ and secant $\overline{A C D}$ are drawn to circle O from an external point A, $A B=8$, and $A C=4$.

What is the length of $\overline{C D}$?

1) 16
2) 13
3) 12
4) 10

324 Which expression represents the volume, in cubic centimeters, of the cylinder represented in the diagram below?

1) 162π
2) 324π
3) 972π
4) $3,888 \pi$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

325 In the diagram below of right triangle $A C B$, altitude $\overline{C D}$ is drawn to hypotenuse $\overline{A B}$.

If $A B=36$ and $A C=12$, what is the length of $\overline{A D}$?

1) 32
2) 6
3) 3
4) 4

326 In the diagram of circle O below, chord $\overline{A B}$ intersects chord $\overline{C D}$ at $E, D E=2 x+8, E C=3$, $A E=4 x-3$, and $E B=4$.

What is the value of x ?

1) 1
2) 3.6
3) 5
4) 10.25

327 After a composition of transformations, the coordinates $A(4,2), B(4,6)$, and $C(2,6)$ become $A^{\prime \prime}(-2,-1), B^{\prime \prime}(-2,-3)$, and $C^{\prime \prime}(-1,-3)$, as shown on the set of axes below.

Which composition of transformations was used?

1) $R_{180^{\circ}} \circ D_{2}$
2) $R_{90^{\circ}} \circ D_{2}$
3) $D \frac{1}{2} \circ R_{180^{\circ}}$
4) $D_{\frac{1}{2}}^{\circ} R_{90^{\circ}}$

328 The equation of a circle is $x^{2}+(y-7)^{2}=16$. What are the center and radius of the circle?

1) center $=(0,7)$; radius $=4$
2) center $=(0,7)$; radius $=16$
3) center $=(0,-7)$; radius $=4$
4) center $=(0,-7)$; radius $=16$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

329 Which equation represents circle K shown in the graph below?

1) $(x+5)^{2}+(y-1)^{2}=3$
2) $(x+5)^{2}+(y-1)^{2}=9$
3) $(x-5)^{2}+(y+1)^{2}=3$
4) $(x-5)^{2}+(y+1)^{2}=9$

330 What is the equation of a line that is parallel to the line whose equation is $y=x+2$?

1) $x+y=5$
2) $2 x+y=-2$
3) $y-x=-1$
4) $y-2 x=3$

331 Given: $y=\frac{1}{4} x-3$

$$
y=x^{2}+8 x+12
$$

In which quadrant will the graphs of the given equations intersect?

1) I
2) II
3) III
4) IV

332 In $\triangle A B C, \mathrm{~m} \angle A=x, \mathrm{~m} \angle B=2 x+2$, and $\mathrm{m} \angle C=3 x+4$. What is the value of x ?

1) 29
2) 31
3) 59
4) 61

333 Based on the diagram below, which statement is true?

1) $a \| b$
2) $a \| c$
3) $b \| c$
4) $d \| e$

334 Point A is located at $(4,-7)$. The point is reflected in the x-axis. Its image is located at

1) $(-4,7)$
2) $(-4,-7)$
3) $(4,7)$
4) $(7,-4)$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

335 Which set of numbers represents the lengths of the sides of a triangle?

1) $\{5,18,13\}$
2) $\{6,17,22\}$
3) $\{16,24,7\}$
4) $\{26,8,15\}$

336 A transformation of a polygon that always preserves both length and orientation is

1) dilation
2) translation
3) line reflection
4) glide reflection

337 Given the system of equations: $y=x^{2}-4 x$

$$
x=4
$$

The number of points of intersection is

1) 1
2) 2
3) 3
4) 0

338 The lines represented by the equations $y+\frac{1}{2} x=4$ and $3 x+6 y=12$ are

1) the same line
2) parallel
3) perpendicular
4) neither parallel nor perpendicular

339 In the diagram of $\triangle A B C$ below, $\overline{A B} \cong \overline{A C}$. The measure of $\angle B$ is 40°.

What is the measure of $\angle A$?

1) 40°
2) 50°
3) 70°
4) 100°

340 In the diagram of circle O below, chord $\overline{C D}$ is parallel to diameter $\overline{A O B}$ and $\widetilde{\mathrm{m} C}=30$.

What is $\mathrm{m} \overparen{C D}$?

1) 150
2) 120
3) 100
4) 60

Geometry Multiple Choice Regents Exam Questions www.jmap.org

341 In the diagram of $\triangle A B C$ and $\triangle E D C$ below, $\overline{A E}$ and $\overline{B D}$ intersect at C, and $\angle C A B \cong \angle C E D$.

Which method can be used to show that $\triangle A B C$ must be similar to $\triangle E D C$?

1) SAS
2) AA
3) SSS
4) HL

342 In the diagram below, the length of the legs $\overline{A C}$ and $B C$ of right triangle $A B C$ are 6 cm and 8 cm , respectively. Altitude $\overline{C D}$ is drawn to the hypotenuse of $\triangle A B C$.

What is the length of $\overline{A D}$ to the nearest tenth of a centimeter?

1) 3.6
2) 6.0
3) 6.4
4) 4.0

343 What is the slope of a line perpendicular to the line whose equation is $y=-\frac{2}{3} x-5$?

1) $-\frac{3}{2}$
2) $-\frac{2}{3}$
3) $\frac{2}{3}$
4) $\frac{3}{2}$

344 Line k is drawn so that it is perpendicular to two distinct planes, P and R. What must be true about planes P and R ?

1) Planes P and R are skew.
2) Planes P and R are parallel.
3) Planes P and R are perpendicular.
4) Plane P intersects plane R but is not perpendicular to plane R.

345 In the diagram below of $\triangle A C T, D$ is the midpoint of $\overline{A C}, O$ is the midpoint of $\overline{A T}$, and G is the midpoint of $\overline{C T}$.

If $A C=10, A T=18$, and $C T=22$, what is the perimeter of parallelogram $C D O G$?

1) 21
2) 25
3) 32
4) 40

346 The diagram below shows a right pentagonal prism.

Which statement is always true?

1) $\overline{B C} \| \overline{E D}$
2) $\overline{F G} \| \overline{C D}$
3) $\overline{F J} \| \overline{I H}$
4) $\overline{G B} \| \overline{H C}$

347 Which transformation can map the letter S onto itself?

1) glide reflection
2) translation
3) line reflection
4) rotation $(1,0)$?
5) $2 \sqrt{2}$
6) $2 \sqrt{3}$
7) $5 \sqrt{2}$
8) $2 \sqrt{5}$

349 What is an equation of the line that passes through the point $(7,3)$ and is parallel to the line
$4 x+2 y=10$?

1) $y=\frac{1}{2} x-\frac{1}{2}$
2) $y=-\frac{1}{2} x+\frac{13}{2}$
3) $y=2 x-11$
4) $y=-2 x+17$

350 In $\triangle P Q R, P Q=8, Q R=12$, and $R P=13$. Which statement about the angles of $\triangle P Q R$ must be true?

1) $\mathrm{m} \angle Q>\mathrm{m} \angle P>\mathrm{m} \angle R$
2) $\mathrm{m} \angle Q>\mathrm{m} \angle R>\mathrm{m} \angle P$
3) $\mathrm{m} \angle R>\mathrm{m} \angle P>\mathrm{m} \angle Q$
4) $\mathrm{m} \angle P>\mathrm{m} \angle R>\mathrm{m} \angle Q$

351 One step in a construction uses the endpoints of $\overline{A B}$ to create arcs with the same radii. The arcs intersect above and below the segment. What is the relationship of $\overline{A B}$ and the line connecting the points of intersection of these arcs?

1) collinear
2) congruent
3) parallel
4) perpendicular

352 Which statement is logically equivalent to "If it is warm, then I go swimming"

1) If I go swimming, then it is warm.
2) If it is warm, then I do not go swimming.
3) If I do not go swimming, then it is not warm.
4) If it is not warm, then I do not go swimming.

353 In the diagram below of $\triangle A B C, D$ is a point on $\overline{A B}$, $A C=7, A D=6$, and $B C=18$.

The length of $\overline{D B}$ could be

1) 5
2) 12
3) 19
4) 25

354 In isosceles trapezoid $A B C D, \overline{A B} \cong \overline{C D}$. If $B C=20, A D=36$, and $A B=17$, what is the length of the altitude of the trapezoid?

1) 10
2) 12
3) 15
4) 16
$355 \triangle A B C$ is similar to $\triangle D E F$. The ratio of the length of $\overline{A B}$ to the length of $\overline{D E}$ is $3: 1$. Which ratio is also equal to $3: 1$?
5) $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle D}$
6) $\frac{\mathrm{m} \angle B}{\mathrm{~m} \angle F}$
7) $\frac{\text { area of } \triangle A B C}{\text { area of } \triangle D E F}$
8) $\frac{\text { perimeter of } \triangle A B C}{\text { perimeter of } \triangle D E F}$

356 Which geometric principle is used in the construction shown below?

1) The intersection of the angle bisectors of a triangle is the center of the inscribed circle.
2) The intersection of the angle bisectors of a triangle is the center of the circumscribed circle.
3) The intersection of the perpendicular bisectors of the sides of a triangle is the center of the inscribed circle.
4) The intersection of the perpendicular bisectors of the sides of a triangle is the center of the circumscribed circle.

357 In the diagram below of $\triangle A C T, \overleftrightarrow{B E} \| \overrightarrow{A T}$.

If $C B=3, C A=10$, and $C E=6$, what is the length of $\overline{E T}$?

1) 5
2) 14
3) 20
4) 26

Geometry Multiple Choice Regents Exam Questions www.jmap.org

358 In the diagram below of parallelogram $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}, \mathrm{~m} \angle 1=45$ and $\mathrm{m} \angle D C B=120$.

What is the measure of $\angle 2$?

1) 15°
2) 30°
3) 45°
4) 60°

359 Which transformation produces a figure similar but not congruent to the original figure?

1) $T_{1,3}$
2) $D_{\frac{1}{2}}$
3) $R_{90^{\circ}}$
4) $r_{y=x}$

360 Triangle $A B C$ has vertices $A(1,3), B(0,1)$, and $C(4,0)$. Under a translation, A^{\prime}, the image point of A, is located at $(4,4)$. Under this same translation, point C^{\prime} is located at

1) $(7,1)$
2) $(5,3)$
3) $(3,2)$
4) $(1,-1)$

361 The equation of a circle is $(x-2)^{2}+(y+4)^{2}=4$. Which diagram is the graph of the circle?
1)

2)

3)

Geometry Multiple Choice Regents Exam Questions www.jmap.org

362 In isosceles triangle $A B C, A B=B C$. Which statement will always be true?

1) $\mathrm{m} \angle B=\mathrm{m} \angle A$
2) $\mathrm{m} \angle A>\mathrm{m} \angle B$
3) $\mathrm{m} \angle A=\mathrm{m} \angle C$
4) $\mathrm{m} \angle C<\mathrm{m} \angle B$

363 Which equation represents a line perpendicular to the line whose equation is $2 x+3 y=12$?

1) $6 y=-4 x+12$
2) $2 y=3 x+6$
3) $2 y=-3 x+6$
4) $3 y=-2 x+12$

364 Isosceles trapezoid $A B C D$ has diagonals $\overline{A C}$ and $\overline{B D}$. If $A C=5 x+13$ and $B D=11 x-5$, what is the value of x ?

1) 28
2) $10 \frac{3}{4}$
3) 3
4) $\frac{1}{2}$

365 What is the solution of the following system of equations?

$$
\begin{aligned}
& y=(x+3)^{2}-4 \\
& y=2 x+5
\end{aligned}
$$

1) $(0,-4)$
2) $(-4,0)$
3) $(-4,-3)$ and $(0,5)$
4) $(-3,-4)$ and $(5,0)$

366 The diagram below shows $\overline{A B}$ and $\overline{D E}$.

Which transformation will move $\overline{A B}$ onto $\overline{D E}$ such that point D is the image of point A and point E is the image of point B ?

1) $T_{3,-3}$
2) $D \frac{1}{2}$
3) $R_{90^{\circ}}$
4) $r_{y=x}$

367 Side $\overline{P Q}$ of $\triangle P Q R$ is extended through Q to point T. Which statement is not always true?

1) $\mathrm{m} \angle R Q T>\mathrm{m} \angle R$
2) $\mathrm{m} \angle R Q T>\mathrm{m} \angle P$
3) $\mathrm{m} \angle R Q T=\mathrm{m} \angle P+\mathrm{m} \angle R$
4) $\mathrm{m} \angle R Q T>\mathrm{m} \angle P Q R$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

368 A quadrilateral whose diagonals bisect each other and are perpendicular is a

1) rhombus
2) rectangle
3) trapezoid
4) parallelogram

369 In the diagram below, which transformation was used to map $\triangle A B C$ to $\Delta A^{\prime} B^{\prime} C^{\prime}$?

1) dilation
2) rotation
3) reflection
4) glide reflection

370 What are the center and radius of a circle whose equation is $(x-A)^{2}+(y-B)^{2}=C$?

1) center $=(A, B)$; radius $=C$
2) center $=(-A,-B)$; radius $=C$
3) center $=(A, B)$; radius $=\sqrt{C}$
4) center $=(-A,-B)$; radius $=\sqrt{C}$

371 Based on the construction below, which statement must be true?

1) $\mathrm{m} \angle A B D=\frac{1}{2} \mathrm{~m} \angle C B D$
2) $\mathrm{m} \angle A B D=\mathrm{m} \angle C B D$
3) $\mathrm{m} \angle A B D=\mathrm{m} \angle A B C$
4) $\mathrm{m} \angle C B D=\frac{1}{2} \mathrm{~m} \angle A B D$

372 In $\triangle A B C, \mathrm{~m} \angle A=95, \mathrm{~m} \angle B=50$, and $\mathrm{m} \angle C=35$. Which expression correctly relates the lengths of the sides of this triangle?

1) $A B<B C<C A$
2) $A B<A C<B C$
3) $A C<B C<A B$
4) $B C<A C<A B$

373 Which equation represents a line parallel to the line whose equation is $2 y-5 x=10$?

1) $5 y-2 x=25$
2) $5 y+2 x=10$
3) $4 y-10 x=12$
4) $2 y+10 x=8$

Geometry Multiple Choice Regents Exam Questions

 www.jmap.org374 In the diagram below, under which transformation will $\Delta A^{\prime} B^{\prime} C^{\prime}$ be the image of $\triangle A B C$?

1) rotation
2) dilation
3) translation
4) glide reflection

377 In the diagram of circle O below, chords $\overline{A B}$ and $\overline{C D}$ are parallel, and $\overline{B D}$ is a diameter of the circle.

If $\mathrm{m} \overparen{A D}=60$, what is $\mathrm{m} \angle C D B$?

1) 20
2) 30
3) 60
4) 120

375 Lines j and k intersect at point P. Line m is drawn so that it is perpendicular to lines j and k at point P. Which statement is correct?

1) Lines j and k are in perpendicular planes.
2) Line m is in the same plane as lines j and k.
3) Line m is parallel to the plane containing lines j and k.
4) Line m is perpendicular to the plane containing lines j and k.

376 A right circular cylinder has an altitude of 11 feet and a radius of 5 feet. What is the lateral area, in square feet, of the cylinder, to the nearest tenth?

1) 172.7
2) 172.8
3) 345.4
4) 345.6

378 The endpoints of $\overline{C D}$ are $C(-2,-4)$ and $D(6,2)$.
What are the coordinates of the midpoint of $\overline{C D}$?

1) $(2,3)$
2) $(2,-1)$
3) $(4,-2)$
4) $(4,3)$

379 What are the center and the radius of the circle whose equation is $(x-3)^{2}+(y+3)^{2}=36$

1) center $=(3,-3)$; radius $=6$
2) center $=(-3,3)$; radius $=6$
3) center $=(3,-3)$; radius $=36$
4) center $=(-3,3)$; radius $=36$

Geometry Multiple Choice Regents Exam Questions www.jmap.org

380 If $\triangle A B C \sim \triangle Z X Y, \mathrm{~m} \angle A=50$, and $\mathrm{m} \angle C=30$, what is $\mathrm{m} \angle X$?

1) 30
2) 50
3) 80
4) 100

381 Two lines are represented by the equations $-\frac{1}{2} y=6 x+10$ and $y=m x$. For which value of m will the lines be parallel?

1) -12
2) -3
3) 3
4) 12

382 In the diagram below of circle $C, \mathrm{~m} \overparen{Q T}=140$, and $\mathrm{m} \angle P=40$.

What is $\mathrm{m} \overparen{R S}$?

1) 50
2) 60
3) 90
4) 110

383 The diameter of a circle has endpoints at $(-2,3)$ and $(6,3)$. What is an equation of the circle?

1) $(x-2)^{2}+(y-3)^{2}=16$
2) $(x-2)^{2}+(y-3)^{2}=4$
3) $(x+2)^{2}+(y+3)^{2}=16$
4) $(x+2)^{2}+(y+3)^{2}=4$

384 Square $L M N O$ is shown in the diagram below.

What are the coordinates of the midpoint of diagonal $\overline{L N}$?

1) $\left(4 \frac{1}{2},-2 \frac{1}{2}\right)$
2) $\left(-3 \frac{1}{2}, 3 \frac{1}{2}\right)$
3) $\left(-2 \frac{1}{2}, 3 \frac{1}{2}\right)$
4) $\left(-2 \frac{1}{2}, 4 \frac{1}{2}\right)$

385 In the diagram of $\triangle J E A$ below, $\mathrm{m} \angle J E A=90$ and $\mathrm{m} \angle E A J=48$. Line segment $M S$ connects points M and S on the triangle, such that $\mathrm{m} \angle E M S=59$.

What is $\mathrm{m} \angle J S M$?

1) 163
2) 121
3) 42
4) 17

386 What is the slope of a line perpendicular to the line whose equation is $5 x+3 y=8$?

1) $\frac{5}{3}$
2) $\frac{3}{5}$
3) $-\frac{3}{5}$
4) $-\frac{5}{3}$

387 What is an equation of the line that passes through the point $(-2,5)$ and is perpendicular to the line whose equation is $y=\frac{1}{2} x+5$?

1) $y=2 x+1$
2) $y=-2 x+1$
3) $y=2 x+9$
4) $y=-2 x-9$

388 In the diagram below of circle O, chords $\overline{A D}$ and $\overline{B C}$ intersect at E.

Which relationship must be true?

1) $\triangle C A E \cong \triangle D B E$
2) $\triangle A E C \sim \triangle B E D$
3) $\angle A C B \cong \angle C B D$
4) $\overparen{C A} \cong \overparen{D B}$

389 In the diagram below, line k is perpendicular to plane \mathscr{P} at point T.

Which statement is true?

1) Any point in plane \mathscr{P} also will be on line k.
2) Only one line in plane \mathscr{P} will intersect line k.
3) All planes that intersect plane \mathscr{P} will pass through T.
4) Any plane containing line k is perpendicular to plane \mathscr{P}.

Geometry Multiple Choice Regents Exam Questions www.jmap.org

390 In the diagram below, circle O has a radius of 5, and $C E=2$. Diameter $\overline{A C}$ is perpendicular to chord $\overline{B D}$ at E.

What is the length of $\overline{B D}$?

1) 12
2) 10
3) 8
4) 4

391 Towns A and B are 16 miles apart. How many points are 10 miles from town A and 12 miles from town B ?

1) 1
2) 2
3) 3
4) 0

392 The lines $3 y+1=6 x+4$ and $2 y+1=x-9$ are

1) parallel
2) perpendicular
3) the same line
4) neither parallel nor perpendicular

393 What is the length of the line segment with endpoints $(-6,4)$ and $(2,-5)$?

1) $\sqrt{13}$
2) $\sqrt{17}$
3) $\sqrt{72}$
4) $\sqrt{145}$

394 The endpoints of $\overline{A B}$ are $A(3,2)$ and $B(7,1)$. If $\overline{A^{\prime \prime} B^{\prime \prime}}$ is the result of the transformation of $\overline{A B}$ under $D_{2}{ }^{\circ} T_{-4,3}$ what are the coordinates of $A^{\prime \prime}$ and $B^{\prime \prime}$?

1) $A^{\prime \prime}(-2,10)$ and $B^{\prime \prime}(6,8)$
2) $A^{\prime \prime}(-1,5)$ and $B^{\prime \prime}(3,4)$
3) $A^{\prime \prime}(2,7)$ and $B^{\prime \prime}(10,5)$
4) $A^{\prime \prime}(14,-2)$ and $B^{\prime \prime}(22,-4)$

395 In the diagram below of $\triangle P R T, Q$ is a point on $\overline{P R}$, S is a point on $\overline{T R}, \overline{Q S}$ is drawn, and $\angle R P T \cong \angle R S Q$.

Which reason justifies the conclusion that $\Delta P R T \sim \Delta S R Q$?

1) AA
2) $A S A$
3) SAS
4) SSS

Geometry Multiple Choice Regents Exam Questions www.jmap.org

396 In the diagram below, $\overline{S Q}$ and $\overline{P R}$ intersect at $T, \overline{P Q}$ is drawn, and $\overline{P S} \| \overline{Q R}$.

What technique can be used to prove that
$\triangle P S T \sim \Delta R Q T$?

1) SAS
2) SSS
3) ASA
4) AA

397 If a line segment has endpoints $A(3 x+5,3 y)$ and $B(x-1,-y)$, what are the coordinates of the midpoint of $\overline{A B}$?

1) $(x+3,2 y)$
2) $(2 x+2, y)$
3) $(2 x+3, y)$
4) $(4 x+4,2 y)$

398 What is the negation of the statement "I am not going to eat ice cream"?

1) I like ice cream.
2) I am going to eat ice cream.
3) If I eat ice cream, then I like ice cream.
4) If I don't like ice cream, then I don't eat ice cream.

399 In $\triangle A B C$, point D is on $\overline{A B}$, and point E is on $\overline{B C}$ such that $\overline{D E} \| \overline{A C}$. If $D B=2, D A=7$, and $D E=3$, what is the length of $\overline{A C}$?

1) 8
2) 9
3) 10.5
4) 13.5

400 The vertices of $\triangle A B C$ are $A(-1,-2), B(-1,2)$ and $C(6,0)$. Which conclusion can be made about the angles of $\triangle A B C$?

1) $\mathrm{m} \angle A=\mathrm{m} \angle B$
2) $\mathrm{m} \angle A=\mathrm{m} \angle C$
3) $\mathrm{m} \angle A C B=90$
4) $\mathrm{m} \angle A B C=60$

401 What is the negation of the statement "Squares are parallelograms"?

1) Parallelograms are squares.
2) Parallelograms are not squares.
3) It is not the case that squares are parallelograms.
4) It is not the case that parallelograms are squares.

402 Line segment $A B$ is tangent to circle O at A. Which type of triangle is always formed when points A, B, and O are connected?

1) right
2) obtuse
3) scalene
4) isosceles

403 In the diagram below, tangent $\overline{P A}$ and secant $\overline{P B C}$ are drawn to circle O from external point P.

If $P B=4$ and $B C=5$, what is the length of $\overline{P A}$?

1) 20
2) 9
3) 8
4) 6

Two triangles are similar, and the ratio of each pair of corresponding sides is $2: 1$. Which statement regarding the two triangles is not true?

1) Their areas have a ratio of $4: 1$.
2) Their altitudes have a ratio of $2: 1$.
3) Their perimeters have a ratio of $2: 1$.
4) Their corresponding angles have a ratio of $2: 1$.

405 The diagram below shows a pennant in the shape of an isosceles triangle. The equal sides each measure 13 , the altitude is $x+7$, and the base is $2 x$.

What is the length of the base?

1) 5
2) 10
3) 12
4) 24

406 In the diagram below of trapezoid $R S U T, \overline{R S} \| \overline{T U}$, \underline{X} is the midpoint of $\overline{R T}$, and V is the midpoint of $\overline{S U}$.

If $R S=30$ and $X V=44$, what is the length of $\overline{T U}$?

1) 37
2) 58
3) 74
4) 118

Geometry Multiple Choice Regents Exam Questions www.jmap.org

407 A support beam between the floor and ceiling of a house forms a 90° angle with the floor. The builder wants to make sure that the floor and ceiling are parallel. Which angle should the support beam form with the ceiling?

1) 45°
2) 60°
3) 90°
4) 180°

408 If the surface area of a sphere is represented by 144π, what is the volume in terms of π ?

1) 36π
2) 48π
3) 216π
4) 288π

409 In $\triangle A B C, \overline{A B} \cong \overline{B C}$. An altitude is drawn from B to $\overline{A C}$ and intersects $\overline{A C}$ at D. Which conclusion is not always true?

1) $\angle A B D \cong \angle C B D$
2) $\angle B D A \cong \angle B D C$
3) $\overline{A D} \cong \overline{B D}$
4) $\overline{A D} \cong \overline{D C}$

410 In an equilateral triangle, what is the difference between the sum of the exterior angles and the sum of the interior angles?

1) 180°
2) 120°
3) 90°
4) 60°

411 What is the measure of an interior angle of a regular octagon?

1) 45°
2) 60°
3) 120°
4) 135°

412 What is the inverse of the statement "If two triangles are not similar, their corresponding angles are not congruent"?

1) If two triangles are similar, their corresponding angles are not congruent.
2) If corresponding angles of two triangles are not congruent, the triangles are not similar.
3) If two triangles are similar, their corresponding angles are congruent.
4) If corresponding angles of two triangles are congruent, the triangles are similar.

413 In the diagram below of circle O, secant $\overline{A B}$ intersects circle O at D, secant $\overline{A O C}$ intersects circle O at $E, A E=4, A B=12$, and $D B=6$.

What is the length of $\overline{O C}$?

1) 4.5
2) 7
3) 9
4) 14

Geometry Multiple Choice Regents Exam Questions www.jmap.org

414 Which graph could be used to find the solution to the following system of equations?
1)

$$
\begin{gathered}
y=-x+2 \\
y=x^{2}
\end{gathered}
$$

)

2)

3)
4)

415 Point A is not contained in plane \mathcal{B}. How many lines can be drawn through point A that will be perpendicular to plane \mathscr{B} ?

1) one
2) two
3) zero
4) infinite

416 A polygon is transformed according to the rule: $(x, y) \rightarrow(x+2, y)$. Every point of the polygon moves two units in which direction?

1) $u p$
2) down
3) left
4) right

417 In the diagram below, $\overline{P S}$ is a tangent to circle O at point $S, \overline{P Q R}$ is a secant, $P S=x, P Q=3$, and $P R=x+18$.

(Not drawn to scale)
What is the length of $\overline{P S}$?

1) 6
2) 9
3) 3
4) 27

Geometry Multiple Choice Regents Exam Questions www.jmap.org

418 Given $\triangle A B C$ with base $\overline{A F E D C}$, median $\overline{B F}$, altitude $\overline{B D}$, and $\overline{B E}$ bisects $\angle A B C$, which conclusion is valid?

1) $\angle F A B \cong \angle A B F$
2) $\angle A B F \cong \angle C B D$
3) $\overline{C E} \cong \overline{E A}$
4) $\overline{C F} \cong F A$

419 In three-dimensional space, two planes are parallel and a third plane intersects both of the parallel planes. The intersection of the planes is a

1) plane
2) point
3) pair of parallel lines
4) pair of intersecting lines

420 Which transformation of the line $x=3$ results in an image that is perpendicular to the given line?

1) $r_{x \text {-axis }}$
2) $r_{y \text {-axis }}$
3) $r_{y=x}$
4) $r_{x=1}$

Geometry 2 Point Regents Exam Questions www.jmap.org

Geometry 2 Point Regents Exam Questions

421 In the diagram below of $\triangle A B C, \overline{D E}$ is a midsegment of $\triangle A B C, D E=7, A B=10$, and $B C=13$. Find the perimeter of $\triangle A B C$.

422 Triangle $T A P$ has coordinates $T(-1,4), A(2,4)$, and $P(2,0)$. On the set of axes below, graph and label $\Delta T^{\prime} A^{\prime} P^{\prime}$, the image of $\Delta T A P$ after the translation $(x, y) \rightarrow(x-5, y-1)$.

423 A right circular cone has a base with a radius of 15 cm , a vertical height of 20 cm , and a slant height of 25 cm . Find, in terms of π, the number of square centimeters in the lateral area of the cone.

424 Using a compass and straightedge, construct the angle bisector of $\angle A B C$ shown below. [Leave all construction marks.]

425 Using a compass and straightedge, construct a line that passes through point P and is perpendicular to line m. [Leave all construction marks.]
$\xrightarrow{\bullet P}$

426 Find the slope of a line perpendicular to the line whose equation is $2 y-6 x=4$.

427 Triangle $A B C$ has vertices $A(3,3), B(7,9)$, and $C(11,3)$. Determine the point of intersection of the medians, and state its coordinates. [The use of the set of axes below is optional.]

In the diagram below of circle O, chord $\overline{A B}$ bisects chord $\overline{C D}$ at E. If $A E=8$ and $B E=9$, find the length of $\overline{C E}$ in simplest radical form.

429 The graph below shows the locus of points equidistant from the x-axis and y-axis. On the same set of axes, graph the locus of points 3 units from the line $x=0$. Label with an \mathbf{X} all points that satisfy both conditions.

In the diagram below of $\triangle H Q P$, side $\overline{H P}$ is extended through P to $T, \mathrm{~m} \angle Q P T=6 x+20$, $\mathrm{m} \angle H Q P=x+40$, and $\mathrm{m} \angle P H Q=4 x-5$. Find $\mathrm{m} \angle Q P T$.

(Not drawn to scale)

431 Write an equation of a circle whose center is $(-3,2)$ and whose diameter is 10 .

432 A sphere has a diameter of 18 meters. Find the volume of the sphere, in cubic meters, in terms of π.

433 Tim is going to paint a wooden sphere that has a diameter of 12 inches. Find the surface area of the sphere, to the nearest square inch.

434 The base of a pyramid is a rectangle with a width of 6 cm and a length of 8 cm . Find, in centimeters, the height of the pyramid if the volume is $288 \mathrm{~cm}^{3}$.

435 In the diagram below, car A is parked 7 miles from car B. Sketch the points that are 4 miles from car A and sketch the points that are 4 miles from car B. Label with an \mathbf{X} all points that satisfy both conditions.

436 Two lines, $\overleftrightarrow{A B}$ and $\overleftrightarrow{C R D}$, are parallel and 10 inches apart. Sketch the locus of all points that are equidistant from $\overleftrightarrow{A B}$ and $\overleftrightarrow{C R D}$ and 7 inches from point R. Label with an \mathbf{X} each point that satisfies both conditions.

437 In the diagram below of $\triangle A C D, B$ is a point on $\overline{A C}$ such that $\triangle A D B$ is an equilateral triangle, and $\triangle D B C$ is an isosceles triangle with $\overline{D B} \cong \overline{B C}$. Find $\mathrm{m} \angle C$.

438 Using a compass and straightedge, construct a line perpendicular to line ℓ through point P. [Leave all construction marks.]

439 In the diagram below of $\triangle T E M$, medians $\overline{T B}, \overline{E C}$, and $\overline{M A}$ intersect at D, and $T B=9$. Find the length of $\overline{T D}$.

440 A circle has the equation $(x-3)^{2}+(y+4)^{2}=10$. Find the coordinates of the center of the circle and the length of the circle's radius.

441 In the diagram below, two parallel lines intersect circle O at points A, B, C, and D, with $\mathrm{m} \overparen{A B}=x+20$ and $\mathrm{m} \overparen{D C}=2 x-20$. Find $\mathrm{m} \overparen{A B}$.

442 Using a compass and straightedge, construct the bisector of the angle shown below. [Leave all construction marks.]

443 Write the negation of the statement " 2 is a prime number," and determine the truth value of the negation.

444 On the set of axes below, graph the locus of points 4 units from the x-axis and equidistant from the points whose coordinates are $(-2,0)$ and $(8,0)$. Mark with an \mathbf{X} all points that satisfy both conditions.

445 Two lines are represented by the equations $x+2 y=4$ and $4 y-2 x=12$. Determine whether these lines are parallel, perpendicular, or neither. Justify your answer.

446 The Parkside Packing Company needs a rectangular shipping box. The box must have a length of 11 inches and a width of 8 inches. Find, to the nearest tenth of an inch, the minimum height of the box such that the volume is at least 800 cubic inches.

447 Write an equation of the circle graphed in the diagram below.

448 Using a compass and straightedge, construct a line perpendicular to $\overline{A B}$ through point P. [Leave all construction marks.]

Geometry 2 Point Regents Exam Questions www.jmap.org

449 Determine whether the two lines represented by the equations $y=2 x+3$ and $2 y+x=6$ are parallel, perpendicular, or neither. Justify your response.

450 In the diagram below of $\triangle A C D, E$ is a point on $\overline{A D}$ and B is a point on $\overline{A C}$, such that $\overline{E B} \| \overline{D C}$. If $\underline{A E}=3, E D=6$, and $D C=15$, find the length of $\overline{E B}$.

451 In the diagram below of circle O, diameter $\overline{A B}$ is perpendicular to chord $\overline{C D}$ at E. If $A O=10$ and $B E=4$, find the length of $\overline{C E}$.

452 On the diagram of $\triangle A B C$ shown below, use a compass and straightedge to construct the perpendicular bisector of $\overline{A C}$. [Leave all construction marks.]

453 Write an equation for circle O shown on the graph below.

Geometry 2 Point Regents Exam Questions www.jmap.org

454 The vertices of $\triangle A B C$ are $A(3,2), B(6,1)$, and $C(4,6)$. Identify and graph a transformation of $\triangle A B C$ such that its image, $\Delta A^{\prime} B^{\prime} C^{\prime}$, results in $\overline{A B} \| \overline{A^{\prime} B^{\prime}}$.

455 In the diagram of $\triangle A B C$ below, $A B=10, B C=14$, and $A C=16$. Find the perimeter of the triangle formed by connecting the midpoints of the sides of $\triangle A B C$.

456 The coordinates of two vertices of square $A B C D$ are $A(2,1)$ and $B(4,4)$. Determine the slope of side $\overline{B C}$.

457 On the set of axes below, graph the locus of points 4 units from $(0,1)$ and the locus of points 3 units from the origin. Label with an \mathbf{X} any points that satisfy both conditions.

458 In the diagram below of $\triangle A B C, D$ is a point on $\overline{A B}$, E is a point on $\overline{B C}, \overline{A C} \| \overline{D E}, C E=25$ inches, $A D=18$ inches, and $D B=12$ inches. Find, to the nearest tenth of an inch, the length of $\overline{E B}$.

459 The endpoints of $\overline{P Q}$ are $P(-3,1)$ and $Q(4,25)$. Find the length of $\overline{P Q}$.

460 On the ray drawn below, using a compass and straightedge, construct an equilateral triangle with a vertex at R. The length of a side of the triangle must be equal to a length of the diagonal of rectangle $A B C D$.

461 Given the true statement, "The medians of a triangle are concurrent," write the negation of the statement and give the truth value for the negation.

462 In $\triangle R S T, \mathrm{~m} \angle R S T=46$ and $\overline{R S} \cong \overline{S T}$. Find $\mathrm{m} \angle S T R$.

463 In the diagram below, $\ell \|_{m}$ and $\overline{Q R} \perp \overline{S T}$ at R.

If $\mathrm{m} \angle 1=63$, find $\mathrm{m} \angle 2$.

464 In the diagram below, circles A and B are tangent at point C and $\overline{A B}$ is drawn. Sketch all common tangent lines.

465 A right circular cylinder has a height of 7 inches and the base has a diameter of 6 inches. Determine the lateral area, in square inches, of the cylinder in terms of π.

466 In the diagram below, point M is located on $\overleftrightarrow{A B}$.
Sketch the locus of points that are 1 unit from $\overleftrightarrow{A B}$ and the locus of points 2 units from point M. Label with an \mathbf{X} all points that satisfy both conditions.

467 On the line segment below, use a compass and straightedge to construct equilateral triangle $A B C$. [Leave all construction marks.]

468 On the set of axes below, graph the locus of points that are 4 units from the line $x=3$ and the locus of points that are 5 units from the point $(0,2)$. Label with an \mathbf{X} all points that satisfy both conditions.

469 A cylinder has a height of 7 cm and a base with a diameter of 10 cm . Determine the volume, in cubic centimeters, of the cylinder in terms of π.

470 Write an equation of the line that passes through the point $(6,-5)$ and is parallel to the line whose equation is $2 x-3 y=11$.

471 Triangle $A B C$ has vertices $A(-2,2), B(-1,-3)$, and $C(4,0)$. Find the coordinates of the vertices of $\Delta A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after the transformation $r_{\mathrm{x} \text {-xxis }}$. [The use of the grid is optional.]

472 Tim has a rectangular prism with a length of 10 centimeters, a width of 2 centimeters, and an unknown height. He needs to build another rectangular prism with a length of 5 centimeters and the same height as the original prism. The volume of the two prisms will be the same. Find the width, in centimeters, of the new prism.

473 Triangle $A B C$ has vertices $A(6,6), B(9,0)$, and $C(3,-3)$. State and label the coordinates of $\Delta A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a dilation of $D \frac{1}{3}$.

474 On the diagram below, use a compass and straightedge to construct the bisector of $\angle X Y Z$. [Leave all construction marks.]

475 Write an equation of the line that is the perpendicular bisector of the line segment having endpoints $(3,-1)$ and $(3,5)$. [The use of the grid below is optional]

476 Triangle $A B C$ has vertices at $A(3,0), B(9,-5)$, and $C(7,-8)$. Find the length of $\overline{A C}$ in simplest radical form.

477 Using a compass and straightedge, construct the bisector of $\angle M J H$. [Leave all construction marks.]

479 Find an equation of the line passing through the point $(5,4)$ and parallel to the line whose equation is $2 x+y=3$.

480 Find, in simplest radical form, the length of the line segment with endpoints whose coordinates are $(-1,4)$ and $(3,-2)$.

481 The coordinates of the endpoints of $\overline{F G}$ are $(-4,3)$ and $(2,5)$. Find the length of $\overline{F G}$ in simplest radical form.

482 After the transformation $r_{y=x}$, the image of $\triangle A B C$ is $\Delta A^{\prime} B^{\prime} C^{\prime}$. If $A B=2 x+13$ and $A^{\prime} B^{\prime}=9 x-8$, find the value of x.

483 In the diagram below of right triangle $A C B$, altitude $\overline{C D}$ intersects $\overline{A B}$ at D. If $A D=3$ and $D B=4$, find the length of $\overline{C D}$ in simplest radical form.

484 The diagram below shows $\triangle A B C$, with $\overline{A E B}, \overline{A D C}$, and $\angle A C B \cong \angle A E D$. Prove that $\triangle A B C$ is similar to $\triangle A D E$.

485 Using a compass and straightedge, on the diagram below of $\overleftrightarrow{R S}$, construct an equilateral triangle with $\overline{R S}$ as one side. [Leave all construction marks.]
$\hat{\theta}^{A} R$

S

486 The coordinates of the vertices of $\triangle R S T$ are $R(-2,3), S(4,4)$, and $T(2,-2)$. Triangle $R^{\prime} S^{\prime} T^{\prime}$ is the image of $\Delta R S T$ after a rotation of 90° about the origin. State the coordinates of the vertices of $\Delta R^{\prime} S^{\prime} T^{\prime}$. [The use of the set of axes below is optional.]

487 Using a compass and straightedge, and $\overline{A B}$ below, construct an equilateral triangle with all sides congruent to $A B$. [Leave all construction marks.]

488 Triangle $X Y Z$, shown in the diagram below, is reflected over the line $x=2$. State the coordinates of $\Delta X^{\prime} Y^{\prime} Z^{\prime}$, the image of $\Delta X Y Z$.

489 In the diagram below of isosceles trapezoid $D E F G$, $\overline{D E} \| \overline{G F}, D E=4 x-2, E F=3 x+2, F G=5 x-3$, and $G D=2 x+5$. Find the value of x.

490 Two intersecting lines are shown in the diagram below. Sketch the locus of points that are equidistant from the two lines. Sketch the locus of points that are a given distance, d, from the point of intersection of the given lines. State the number of points that satisfy both conditions.

491 Given: Two is an even integer or three is an even integer.
Determine the truth value of this disjunction. Justify your answer.

492 The diagram below shows isosceles trapezoid $A B C D$ with $\overline{A B} \| \overline{D C}$ and $\overline{A D} \cong \overline{B C}$. If $\mathrm{m} \angle B A D=2 x$ and $\mathrm{m} \angle B C D=3 x+5$, find $\mathrm{m} \angle B A D$.

493 On the diagram below, use a compass and straightedge to construct the bisector of $\angle A B C$. [Leave all construction marks.]

494 In the diagram below, trapezoid $A B C D$, with bases $\overline{A B}$ and $\overline{D C}$, is inscribed in circle O, with diameter $\overline{D C}$. If $\mathrm{m} \overparen{A B}=80$, find $\mathrm{m} \overparen{B C}$.

495 Write a statement that is logically equivalent to the statement "If two sides of a triangle are congruent, the angles opposite those sides are congruent." Identify the new statement as the converse, inverse, or contrapositive of the original statement.

496 In circle O, diameter $\overline{R S}$ has endpoints $R(3 a, 2 b-1)$ and $S(a-6,4 b+5)$. Find the coordinates of point O, in terms of a and b. Express your answer in simplest form.

497 In $\triangle A B C$, the measure of angle A is fifteen less than twice the measure of angle B. The measure of angle C equals the sum of the measures of angle A and angle B. Determine the measure of angle B.

In right $\triangle D E F, \mathrm{~m} \angle D=90$ and $\mathrm{m} \angle F$ is 12 degrees less than twice $\mathrm{m} \angle E$. Find $\mathrm{m} \angle E$.

499 A pentagon is drawn on the set of axes below. If the pentagon is reflected over the y-axis, determine if this transformation is an isometry. Justify your answer. [The use of the set of axes is optional.]

500 Find, in degrees, the measures of both an interior angle and an exterior angle of a regular pentagon.

The cylindrical tank shown in the diagram below is to be painted. The tank is open at the top, and the bottom does not need to be painted. Only the outside needs to be painted. Each can of paint covers 600 square feet. How many cans of paint must be purchased to complete the job?

502 In the diagram below of circle $C, \overline{Q R}$ is a diameter, and $Q(1,8)$ and $C(3.5,2)$ are points on a coordinate plane. Find and state the coordinates of point R.

The volume of a cylinder is $12,566.4 \mathrm{~cm}^{3}$. The height of the cylinder is 8 cm . Find the radius of the cylinder to the nearest tenth of a centimeter.

504 In the diagram below, $\triangle A B C \sim \Delta E F G$, $\mathrm{m} \angle C=4 x+30$, and $\mathrm{m} \angle G=5 x+10$. Determine the value of x.

505 The coordinates of the vertices of $\triangle A B C$ are $A(1,2), B(-4,3)$, and $C(-3,-5)$. State the coordinates of $\Delta A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a rotation of 90° about the origin. [The use of the set of axes below is optional.]

506 In the diagram below of $\triangle A B C$ with side $\overline{A C}$ extended through $D, \mathrm{~m} \angle A=37$ and $\mathrm{m} \angle B C D=117$. Which side of $\triangle A B C$ is the longest side? Justify your answer.

508 Determine, in degrees, the measure of each interior angle of a regular octagon.

509 Using a compass and straightedge, construct the bisector of $\angle C B A$. [Leave all construction marks.]

507 The degree measures of the angles of $\triangle A B C$ are represented by $x, 3 x$, and $5 x-54$. Find the value of x.

510 The length of $\overline{A B}$ is 3 inches. On the diagram below, sketch the points that are equidistant from A and B and sketch the points that are 2 inches from A. Label with an \mathbf{X} all points that satisfy both conditions.

Geometry 4 Point Regents Exam Questions www.jmap.org

Geometry 4 Point Regents Exam Questions

511 In circle O shown below, chords $\overline{A B}$ and $\overline{C D}$ and radius $\overline{O A}$ are drawn, such that $\overline{A B} \cong \overline{C D}$, $\overline{O E} \perp \overline{A B}, \overline{O F} \perp \overline{C D}, O F=16, C F=y+10$, and $C D=4 y-20$.

Determine the length of $\overline{D F}$. Determine the length of $\overline{O A}$.

512 Solve the following system of equations graphically.

$$
\begin{gathered}
2 x^{2}-4 x=y+1 \\
x+y=1
\end{gathered}
$$

513 On the set of axes below, solve the following system of equations graphically and state the coordinates of all points in the solution.

$$
\begin{gathered}
(x+3)^{2}+(y-2)^{2}=25 \\
2 y+4=-x
\end{gathered}
$$

514 In the diagram below, $\triangle A B C \sim \triangle D E F, D E=4$, $A B=x, A C=x+2$, and $D F=x+6$. Determine the length of $\overline{A B}$. [Only an algebraic solution can receive full credit.]

Geometry 4 Point Regents Exam Questions www.jmap.org

515 Triangle $A B C$ has vertices $A(5,1), B(1,4)$ and $C(1,1)$. State and label the coordinates of the vertices of $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the image of $\triangle A B C$, following the composite transformation $T_{1,-1}{ }^{\circ} D_{2}$. [The use of the set of axes below is optional.]

516 In the diagram below of circle O, chords $\overline{D F}, \overline{D E}$, $\overline{F G}$, and $\overline{E G}$ are drawn such that $\mathrm{m} \overparen{D F}: \mathrm{m} \overparen{F E}: \mathrm{m} \overparen{\mathrm{EG}}: \mathrm{m} \overparen{G D}=5: 2: 1: 7$. Identify one pair of inscribed angles that are congruent to each other and give their measure.

517 Triangle $A B C$ has coordinates $A(-6,2), B(-3,6)$, and $C(5,0)$. Find the perimeter of the triangle.
Express your answer in simplest radical form. [The use of the grid below is optional.]

518 In the diagram below of quadrilateral $A B C D$ with diagonal $\overline{B D}, \mathrm{~m} \angle A=93, \mathrm{~m} \angle A D B=43$, $\mathrm{m} \angle C=3 x+5, \mathrm{~m} \angle B D C=x+19$, and $\mathrm{m} \angle D B C=2 x+6$. Determine if $\overline{A B}$ is parallel to $\overline{D C}$. Explain your reasoning.

519 The coordinates of the vertices of parallelogram $A B C D$ are $A(-2,2), B(3,5), C(4,2)$, and $D(-1,-1)$. State the coordinates of the vertices of parallelogram $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ that result from the transformation $r_{y-\text { axis }}{ }^{\circ} T_{2,-3}$. [The use of the set of axes below is optional.]

520 In the diagram below, $\Delta R S T$ is a $3-4-5$ right triangle. The altitude, h, to the hypotenuse has been drawn. Determine the length of h.

521 Write an equation of the circle whose diameter $\overline{A B}$ has endpoints $A(-4,2)$ and $B(4,-4)$. [The use of the grid below is optional.]

522 In the diagram below of $\triangle G J K, H$ is a point on $\overline{G J}$, $\overline{H J} \cong \overline{J K}, \mathrm{~m} \angle G=28$, and $\mathrm{m} \angle G J K=70$.
Determine whether $\triangle G H K$ is an isosceles triangle and justify your answer.

523 As shown on the set of axes below, $\Delta G H S$ has vertices $G(3,1), H(5,3)$, and $S(1,4)$. Graph and state the coordinates of $\Delta G^{\prime \prime} H^{\prime \prime} S^{\prime \prime}$, the image of $\Delta G H S$ after the transformation $T_{-3,1} \circ D_{2}$.

524 Given: Quadrilateral $A B C D$ with $\overline{A B} \cong \overline{C D}$, $\overline{A D} \cong \overline{B C}$, and diagonal $\overline{B D}$ is drawn Prove: $\angle B D C \cong \angle A B D$

525 As shown in the diagram below, the diagonals of parallelogram $Q R S T$ intersect at E. If $Q E=x^{2}+6 x$, $S E=x+14$, and $T E=6 x-1$, determine $T E$ algebraically.

526 A paint can is in the shape of a right circular cylinder. The volume of the paint can is 600π cubic inches and its altitude is 12 inches. Find the radius, in inches, of the base of the paint can. Express the answer in simplest radical form. Find, to the nearest tenth of a square inch, the lateral area of the paint can.

527 On the set of axes below, graph the locus of points that are four units from the point $(2,1)$. On the same set of axes, graph the locus of points that are two units from the line $x=4$. State the coordinates of all points that satisfy both conditions.

528 Find an equation of the line passing through the point $(6,5)$ and perpendicular to the line whose equation is $2 y+3 x=6$.

529 Triangle $D E G$ has the coordinates $D(1,1), E(5,1)$, and $G(5,4)$. Triangle $D E G$ is rotated 90° about the origin to form $\Delta D^{\prime} E^{\prime} G^{\prime}$. On the grid below, graph and label $\triangle D E G$ and $\Delta D^{\prime} E^{\prime} G^{\prime}$. State the coordinates of the vertices D^{\prime}, E^{\prime}, and G^{\prime}. Justify that this transformation preserves distance.

530
Trapezoid $T R A P$, with median $\overline{M Q}$, is shown in the diagram below. Solve algebraically for x and y.

531 On the set of axes below, graph and label $\triangle D E F$ with vertices at $D(-4,-4), E(-2,2)$, and $F(8,-2)$. If G is the midpoint of $\overline{E F}$ and H is the midpoint of $\overline{D F}$, state the coordinates of G and H and label each point on your graph. Explain why $\overline{G H} \| \overline{D E}$.

532 Given: $J K L M$ is a parallelogram. $\overline{J M} \cong \overline{L N}$

$$
\angle L M N \cong \angle L N M
$$

Prove: $J K L M$ is a rhombus.

533 On the grid below, graph the points that are equidistant from both the x and y axes and the points that are 5 units from the origin. Label with an \mathbf{X} all points that satisfy both conditions.

534 If $\triangle R S T \sim \triangle A B C, \mathrm{~m} \angle A=x^{2}-8 x, \mathrm{~m} \angle C=4 x-5$, and $\mathrm{m} \angle R=5 x+30$, find $\mathrm{m} \angle C$. [Only an algebraic solution can receive full credit.]

535 In the diagram below, circles X and Y have two tangents drawn to them from external point T. The points of tangency are C, A, S, and E. The ratio of $T A$ to $A C$ is 1:3. If $T S=24$, find the length of $\overline{S E}$.

(Not drawn to scale)

536 A city is planning to build a new park. The park must be equidistant from school A at $(3,3)$ and school B at $(3,-5)$. The park also must be exactly 5 miles from the center of town, which is located at the origin on the coordinate graph. Each unit on the graph represents 1 mile. On the set of axes below, sketch the compound loci and label with an \mathbf{X} all possible locations for the new park.

537 In the diagram below of $\triangle A D E, B$ is a point on $\overline{A E}$ and C is a point on $\overline{A D}$ such that $\overline{B C} \| \overline{E D}$, $A C=x-3, B E=20, A B=16$, and $A D=2 x+2$. Find the length of $\overline{A C}$.

538 Quadrilateral MATH has coordinates $M(-6,-3)$, $A(-1,-3), T(-2,-1)$, and $H(-4,-1)$. The image of quadrilateral MATH after the composition $r_{x \text {-xxis }}{ }^{\circ} T_{7,5}$ is quadrilateral $M^{\prime \prime} A^{\prime \prime} T^{\prime \prime} H^{\prime \prime}$. State and label the coordinates of $M^{\prime \prime} A^{\prime \prime} T^{\prime \prime} H^{\prime \prime}$. [The use of the set of axes below is optional.]

539 In the diagram below, $\overline{B F C E}, \overline{A B} \perp \overline{B E}, \overline{D E} \perp \overline{B E}$, and $\angle B F D \cong \angle E C A$. Prove that $\triangle A B C \sim \triangle D E F$.

540 Given: $\overline{A D}$ bisects $\overline{B C}$ at E. $\overline{A B} \perp \overline{B C}$ $\overline{D C} \perp \overline{B C}$
Prove: $\overline{A B} \cong \overline{D C}$

541 In $\triangle A B C, \mathrm{~m} \angle A=x^{2}+12, \mathrm{~m} \angle B=11 x+5$, and $\mathrm{m} \angle C=13 x-17$. Determine the longest side of $\triangle A B C$.

542 Triangle $H K L$ has vertices $H(-7,2), K(3,-4)$, and $L(5,4)$. The midpoint of $\overline{H L}$ is M and the midpoint of $\overline{L K}$ is N. Determine and state the coordinates of points M and N. Justify the statement: $\overline{M N}$ is parallel to $\overline{H K}$. [The use of the set of axes below is optional.]

543 The coordinates of the vertices of parallelogram $S W A N$ are $S(2,-2), W(-2,-4), A(-4,6)$, and $N(0,8)$. State and label the coordinates of parallelogram $S^{\prime \prime} W^{\prime \prime} A^{\prime \prime} N^{\prime \prime}$, the image of $S W A N$ after the transformation $T_{4,-2} \circ D_{\frac{1}{2}}$. [The use of the set of axes below is optional.]

544 A right circular cylinder with a height of 5 cm has a base with a diameter of 6 cm . Find the lateral area of the cylinder to the nearest hundredth of a square centimeter. Find the volume of the cylinder to the nearest hundredth of a cubic centimeter.

545 Given: $\triangle A B C, \overline{B D}$ bisects $\angle A B C, \overline{B D} \perp \overline{A C}$
Prove: $\overline{A B} \cong \overline{C B}$

546 In $\triangle K L M, \mathrm{~m} \angle K=36$ and $K M=5$. The transformation D_{2} is performed on $\triangle K L M$ to form $\Delta K^{\prime} L^{\prime} M^{\prime}$. Find $\mathrm{m} \angle K^{\prime}$. Justify your answer. Find the length of $\overline{K^{\prime} M^{\prime}}$. Justify your answer.

547 On the set of axes below, sketch the points that are 5 units from the origin and sketch the points that are 2 units from the line $y=3$. Label with an \mathbf{X} all points that satisfy both conditions.

548 In the diagram below of circle O, chords $\overline{R T}$ and $\overline{Q S}$ intersect at M. Secant $\overline{P T R}$ and tangent $\overline{P S}$ are drawn to circle O. The length of $\overline{R M}$ is two more than the length of $\overline{T M}, Q M=2, S M=12$, and $P T=8$.

Find the length of $\overline{R T}$. Find the length of $\overline{P S}$.

549 Write an equation of the perpendicular bisector of the line segment whose endpoints are $(-1,1)$ and $(7,-5)$. [The use of the grid below is optional]

550 The coordinates of the vertices of $\triangle A B C A(1,3)$, $B(-2,2)$ and $C(0,-2)$. On the grid below, graph and label $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the result of the composite transformation $D_{2}{ }^{\circ} T_{3,-2}$. State the coordinates of $A^{\prime \prime}, B^{\prime \prime}$, and $C^{\prime \prime}$.

551 In the diagram below, tangent $\overline{M L}$ and secant $\overline{M N K}$ are drawn to circle O. The ratio $\mathrm{m} \overparen{L N}: \mathrm{m} \overparen{\mathrm{NK}}: \mathrm{m} \overparen{\mathrm{KL}}$ is $3: 4: 5$. Find $\mathrm{m} \angle L M K$.

Geometry 4 Point Regents Exam Questions www.jmap.org

552 The vertices of $\triangle R S T$ are $R(-6,5), S(-7,-2)$, and $T(1,4)$. The image of $\triangle R S T$ after the composition $T_{-2,3}{ }^{\circ} r_{y=x}$ is $\Delta R " S^{\prime \prime} T^{\prime \prime}$. State the coordinates of $\Delta R " S^{\prime \prime} T^{\prime \prime}$. [The use of the set of axes below is optional.]

553 Triangle $A B C$ has coordinates $A(2,-2), B(2,1)$, and $C(4,-2)$. Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ under $T_{5,-2}$. On the set of axes below, graph and label $\triangle A B C$ and its image, $\Delta A^{\prime} B^{\prime} C^{\prime}$. Determine the relationship between the area of $\triangle A B C$ and the area of $\Delta A^{\prime} B^{\prime} C^{\prime}$. Justify your response.

554 On the set of coordinate axes below, graph the locus of points that are equidistant from the lines $y=6$ and $y=2$ and also graph the locus of points that are 3 units from the y-axis. State the coordinates of all points that satisfy both conditions.

555 The coordinates of trapezoid $A B C D$ are $A(-4,5)$, $B(1,5), C(1,2)$, and $D(-6,2)$. Trapezoid $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ is the image after the composition $r_{x-\text { axis }}{ }^{\circ} r_{y=x}$ is performed on trapezoid $A B C D$. State the coordinates of trapezoid $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$. [The use of the set of axes below is optional.]

Geometry 6 Point Regents Exam Questions www.jmap.org

Geometry 6 Point Regents Exam Questions

556 On the set of axes below, solve the following system of equations graphically for all values of x and y.

$$
\begin{gathered}
y=(x-2)^{2}+4 \\
4 x+2 y=14
\end{gathered}
$$

557 Given: Quadrilateral $A B C D$, diagonal $\overline{A F E C}$, $\overline{A E} \cong \overline{F C}, \overline{B F} \perp \overline{A C}, \overline{D E} \perp \overline{A C}, \angle 1 \cong \angle 2$ Prove: $A B C D$ is a parallelogram.

558 Given: $\triangle A B C$ and $\triangle E D C, C$ is the midpoint of $\overline{B D}$ and $\overline{A E}$
Prove: $\overline{A B} \| \overline{D E}$

559 In the diagram below, quadrilateral STAR is a rhombus with diagonals $\overline{S A}$ and $\overline{T R}$ intersecting at E. $S T=3 x+30, S R=8 x-5, S E=3 z, T E=5 z+5$, $A E=4 z-8, \mathrm{~m} \angle R T A=5 y-2$, and $\mathrm{m} \angle T A S=9 y+8$. Find $S R, R T$, and $\mathrm{m} \angle T A S$.

Geometry 6 Point Regents Exam Questions www.jmap.org

560 Chords $\overline{A B}$ and $\overline{C D}$ intersect at E in circle O, as shown in the diagram below. Secant $\overline{F D A}$ and tangent $\overline{F B}$ are drawn to circle O from external point F and chord $\overline{A C}$ is drawn. The $\mathrm{m} \overparen{D A}=56$, $\mathrm{m} \overparen{D B}=112$, and the ratio of $\mathrm{m} \overparen{A C}: \stackrel{\mathrm{m} C B}{ }=3: 1$.

Determine $\mathrm{m} \angle C E B$. Determine $\mathrm{m} \angle F$. Determine $\mathrm{m} \angle D A C$.

Quadrilateral MATH has coordinates $M(1,1)$, $A(-2,5), T(3,5)$, and $H(6,1)$. Prove that quadrilateral $M A T H$ is a rhombus and prove that it is not a square. [The use of the grid is optional.]

564 Given: Quadrilateral $A B C D$ has vertices $A(-5,6)$, $B(6,6), C(8,-3)$, and $D(-3,-3)$.
Prove: Quadrilateral $A B C D$ is a parallelogram but is neither a rhombus nor a rectangle. [The use of the grid below is optional.]

565 In the diagram below, $\overline{P A}$ and $\overline{P B}$ are tangent to circle $O, \overline{O A}$ and $\overline{O B}$ are radii, and $\overline{O P}$ intersects the circle at C. Prove: $\angle A O P \cong \angle B O P$

566 In the diagram below, quadrilateral $A B C D$ is inscribed in circle $O, \overline{A B} \| \overline{D C}$, and diagonals $\overline{A C}$ and $\overline{B D}$ are drawn. Prove that $\triangle A C D \cong \triangle B D C$.

567 The diagram below shows rectangle $A B C D$ with points E and F on side $\overline{A B}$. Segments $C E$ and $D F$ intersect at G, and $\angle A D G \cong \angle B C G$. Prove: $\overline{A E} \cong \overline{B F}$

Geometry 6 Point Regents Exam Questions www.jmap.org

568 On the set of axes below, solve the system of equations graphically and state the coordinates of all points in the solution.

$$
\begin{gathered}
y=(x-2)^{2}-3 \\
2 y+16=4 x
\end{gathered}
$$

569 In the diagram of $\triangle M A H$ below, $\overline{M H} \cong \overline{A H}$ and medians $\overline{A B}$ and $\overline{M T}$ are drawn.
Prove: $\angle M B A \cong \angle A T M$

570 Given: $\triangle A B C$ with vertices $A(-6,-2), B(2,8)$, and $C(6,-2) . \overline{A B}$ has midpoint $D, \overline{B C}$ has midpoint E, and $\overline{A C}$ has midpoint F.
Prove: $A D E F$ is a parallelogram $A D E F$ is not a rhombus [The use of the grid is optional.]

Geometry Multiple Choice Regents Exam Questions

Answer Section
1 ANS: 3

$$
\begin{aligned}
3 x-15 & =2(6) \\
3 x & =27 \\
x & =9
\end{aligned}
$$

PTS: 2
REF: 061311ge
STA: G.G. 42
TOP: Midsegments
2 ANS: 2
The slope of $2 x+4 y=12$ is $m=\frac{-A}{B}=\frac{-2}{4}=-\frac{1}{2} . m_{\perp}=2$.
PTS: 2
REF: 011310ge STA: G.G. 62
TOP: Parallel and Perpendicular Lines
3 ANS: 3

$$
\begin{array}{rlrl}
2 y=3 x-4 . & & =\frac{3}{2}(6)+b \\
y=\frac{3}{2} x-2 & 1 & =9+b \\
& -8 & =b
\end{array}
$$

PTS: 2
REF: 061316ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines
4 ANS: 3

$$
\begin{aligned}
2(4 x+20)+2(3 x-15) & =360 . \quad \angle D=3(25)-15=60 \\
8 x+40+6 x-30 & =360 \\
14 x+10 & =360 \\
14 x & =350 \\
x & =25
\end{aligned}
$$

PTS: 2
REF: 011321ge
STA: G.G. 40
TOP: Trapezoids
5 ANS: 4
$m=\frac{2}{3} \quad . \quad 2=-\frac{3}{2}(4)+b$
$m_{\perp}=-\frac{3}{2} \quad \begin{aligned} & 2=-6+b \\ & 8=b\end{aligned}$
PTS: 2
REF: 011319ge
STA: G.G. 64
TOP: Parallel and Perpendicular Lines
6 ANS: 1
$8 \times 12=16 x$

$$
6=x
$$

PTS: 2
REF: 081328ge STA: G.G. 53
TOP: Segments Intercepted by Circle

7 ANS: 4 PTS: 2 REF: 011323ge STA: G.G. 72
TOP: Equations of Circles
8 ANS: 4
$2 x-8=x+2 . A E=10+2=12 . A C=2(A E)=2(12)=24$
$x=10$

PTS: 2
9 ANS: 2
PTS: 2
TOP: Angle Side Relationship
10 ANS: 1
$V=\frac{4}{3} \pi r^{3}$
$44.6022=\frac{4}{3} \pi r^{3}$
$10.648 \approx r^{3}$

PTS: 2
REF: 061317ge
STA: G.G. 16

STA: G.G. 39
TOP: Special Parallelograms
12 ANS: 3
$\frac{15}{18}=\frac{5}{6}$
PTS: 2
REF: 081317ge
KEY: perimeter and area
13 ANS: 1
PTS: 2
TOP: Triangle Congruency
14 ANS: 2 PTS: 2
TOP: Quadratic-Linear Systems
15 ANS: 3
$x^{2}+5^{2}=25$
$x=0$
REF: 011312ge STA: G.G.70

TOP: Special Parallelograms
STA: G.G. 34
STA: G.G34

11 ANS: 2
$\sqrt{8^{2}+15^{2}}=17$

PTS: 2
REF: 061326ge
STA: G.G. 39

$$
10 \sim 1
$$

$$
2.2 \approx r
$$

$2.2 \approx r$

PTS: 2
REF: 061321ge

16 ANS: 2

$$
\begin{aligned}
(x-4)^{2}-2 & =-2 x+6 . \\
x^{2}-8 x+16-2 & =-2 x+6 \quad y=-2(4)+6=-2 \\
x^{2}-6 x+8 & =0 \\
(x-4)(x-2) & =0 \\
x & =4,2
\end{aligned}
$$

PTS: 2 REF: 081319ge STA: G.G. 70 TOP: Quadratic-Linear Systems
17 ANS: 4
Distance is preserved after a rotation.
PTS: 2 REF: 081304ge STA: G.G. 55 TOP: Properties of Transformations
18 ANS: 3
midpoint: $\left(\frac{6+8}{2}, \frac{8+4}{2}\right)=(7,6)$. slope: $\frac{8-4}{6-8}=\frac{4}{-2}=-2 ; m_{\perp}=\frac{1}{2} . \quad 6=\frac{1}{2}(7)+b$

$$
\begin{aligned}
& \frac{12}{2}=\frac{7}{2}+b \\
& \frac{5}{12}=b
\end{aligned}
$$

PTS: 2 REF: 081327ge STA: G.G. 68 TOP: Perpendicular Bisector
19 ANS: 2
PTS: 2 REF: 081301ge
STA: G.G. 24
TOP: Statements
20 ANS: 4
$m_{A B}^{\overleftrightarrow{ }}=\frac{6-3}{7-5}=\frac{3}{2} \cdot m_{C D}^{\leftrightarrows}=\frac{4-0}{6-9}=\frac{4}{-3}$
PTS: 2 REF: 061318ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
21 ANS: 4
$(n-2) 180-n\left(\frac{(n-2) 180}{n}\right)=180 n-360-180 n+180 n-360=180 n-720$.
$180(5)-720=180$
PTS: 2 REF: 081322ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons
ANS: 3
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.
PTS: 2
REF: 081307ge
STA: G.G. 43 TOP: Centroid
23 ANS: 1
$\frac{70-20}{2}=25$
PTS: 2
REF: 011325ge STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: outside circle

24 ANS: 2 PTS: 2 REF: 081306ge STA: G.G. 34
TOP: Angle Side Relationship
25 ANS: 1
$\frac{180-52}{2}=64.180-(90+64)=26$
PTS: 2 REF: 011314ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
26 ANS: 3
PTS: 2
REF: 011311ge
STA: G.G. 42
TOP: Midsegments
27 ANS: $1 \quad$ PTS: 2
REF: 061307ge STA: G.G. 55
TOP: Properties of Transformations
28 ANS: 4 PTS: 2
TOP: Equations of Circles
29 ANS: $2 \quad$ PTS: 2
TOP: Locus
30 ANS: 3 PTS: 2
REF: 081312ge STA: G.G. 72
TOP: Equations of Circles
31 ANS: 4
$(x, y) \rightarrow(-x,-y)$
PTS: 2
REF: 061304ge
STA: G.G. 54
TOP: Rotations
32 ANS: 2
$2^{2}+3^{2} \neq 4^{2}$
$\begin{array}{ll}\text { PTS: } 2 & \text { REF: } 011316 \mathrm{ge} \\ \text { ANS: } 3 & \text { PTS: } 2\end{array}$
STA: G.G. 48
REF: 061320ge
STA: G.G. 35
TOP: Parallel Lines and Transversals
34 ANS: $1 \quad$ PTS: 2
TOP: Planes
35 ANS: $1 \quad$ PTS: 2
TOP: Graphing Circles
36 ANS: 4
PTS: 2
REF: 081313ge STA: G.G. 19
TOP: Constructions
37 ANS: 1 PTS: 2 REF: 011303ge STA: G.G. 24
TOP: Statements
38 ANS: 3
$A B=8-4=4 \cdot B C=\sqrt{(-2-(-5))^{2}+(8-6)^{2}}=\sqrt{13} \cdot A C=\sqrt{(-2-(-5))^{2}+(4-6)^{2}}=\sqrt{13}$
PTS: 2 REF: 011328ge STA: G.G. 69 TOP: Triangles in the Coordinate Plane

39 ANS: 3
$x^{2}=2(2+10)$
$x^{2}=24$
$x=\sqrt{24}=\sqrt{4} \sqrt{6}=2 \sqrt{6}$
PTS: 2 REF: 081326ge STA: G.G. 47 TOP: Similarity
KEY: leg
40 ANS: 3
$25 \times 9 \times 12=15^{2} h$

$$
2700=15^{2} h
$$

$$
12=h
$$

$\begin{array}{lllll}\text { PTS: } 2 & \text { REF: } 061323 \text { ge } & \text { STA: G.G. } 11 & \text { TOP: Volume } \\ \text { ANS: } 3 & \text { PTS: } 2 & \text { REF: 081320ge } & \text { STA: G.G. } 42 \\ \text { TOP: Midsegments } & & & & \\ \text { ANS: } 3 & \text { PTS: } 2 & \text { REF: } 011309 \text { ge } & \text { STA: G.G. } 20\end{array}$
TOP: Constructions
43 ANS: 2
Perimeter of $\triangle D E F$ is $5+8+11=24 . \frac{5}{24}=\frac{x}{60}$

$$
\begin{aligned}
24 x & =300 \\
x & =12.5
\end{aligned}
$$

PTS: 2 REF: 011307ge STA: G.G. 45 TOP: Similarity
KEY: perimeter and area
44 ANS: 1
Parallel chords intercept congruent arcs. $\mathrm{m} \overparen{A C}=\mathrm{m} \overparen{B D} \cdot \frac{180-110}{2}=35$.
PTS: 2
REF: 081302ge STA: G.G. 52
TOP: Chords
45 ANS: 1
$12(8)=x(6)$
$96=6 x$

$$
16=x
$$

PTS: 2 REF: 061328ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: two secants
46 ANS: 1
PTS: 2
REF: 081323ge STA: G.G. 9
TOP: Planes
47 ANS: 4
PTS: 2
REF: 081318ge STA: G.G. 26
TOP: Converse and Biconditional

48 ANS: 3
$x^{2}=3 \times 12 . \sqrt{6^{2}+3^{2}}=\sqrt{45}=\sqrt{9} \sqrt{5}=3 \sqrt{5}$
$x=6$
PTS: 2 REF: 061327ge STA: G.G. 47 TOP: Similarity
KEY: altitude
49 ANS: $4 \quad$ PTS: 2
TOP: Equations of Circles
50 ANS: 2 PTS: 2 REF: 011317ge STA: G.G. 22
TOP: Locus
51 ANS: 3 PTS: 2 REF: 011322ge STA: G.G. 49
TOP: Chords
52 ANS: 2
$\frac{(n-2) 180}{n}=120$.
$180 n-360=120 n$
$60 n=360$
$n=6$
$\begin{array}{lllll}\text { PTS: } 2 & \text { REF: } 011326 \mathrm{ge} & \text { STA: } & \text { G.G. } 37 & \text { TOP: Interior and Exterior Angles of Polygons } \\ \text { ANS: } 2 & \text { PTS: } 2 & \text { REF: } 081311 \text { ge } & \text { STA: } & \text { G.G. } 10\end{array}$
53 ANS: 2
TOP: Solids
54 ANS: 3
PTS: 2
REF: 011304ge STA: G.G. 56
TOP: Identifying Transformations
55 ANS: 4 PTS: 2 REF: 081308ge STA: G.G. 49
TOP: Chords
56 ANS: 4
$6 x=x+40+3 x+10 . \mathrm{m} \angle C A B=25+40=65$
$6 x=4 x+50$
$2 x=50$
$x=25$
PTS: 2 REF: 081310ge STA: G.G. 32 TOP: Exterior Angle Theorem
57 ANS: 2
Isosceles or not, $\triangle R S V$ and $\triangle R S T$ have a common base, and since $\overline{R S}$ and $\overline{V T}$ are bases, congruent altitudes.
PTS: 2
REF: 061301ge STA: G.G. 40
TOP: Trapezoids
58 ANS: 2
$\sqrt{15^{2}-12^{2}}=9$
PTS: 2
REF: 081325ge
STA: G.G. 50
TOP: Tangents
KEY: point of tangency
59 ANS: $3 \quad$ PTS: 2
REF: 081309ge STA: G.G. 29
TOP: Triangle Congruency

60 ANS: 1 PTS: 2 REF: 011320ge STA: G.G. 26
TOP: Conditional Statements
61 ANS: 4
$3 y+6=2 x \quad 2 y-3 x=6$
$3 y=2 x-6 \quad 2 y=3 x+6$
$y=\frac{2}{3} x-2 \quad y=\frac{3}{2} x+3$
$m=\frac{2}{3} \quad m=\frac{3}{2}$
PTS: 2 REF: 081315ge
STA: G.G. 63
REF: 061303ge
TOP: Parallel and Perpendicular Lines
STA: G.G. 22
TOP: Locus
63 ANS: 2
$\sqrt{(-2-4)^{2}+(-3-(-1))^{2}}=\sqrt{40}=\sqrt{4} \sqrt{10}=2 \sqrt{10}$
PTS: 2
REF: 011313ge
STA: G.G. 39
REF: 061314ge
TOP: Special Parallelograms
64 ANS: 1
PTS: 2
STA: G.G. 26
TOP: Converse and Biconditional
65 ANS: 1
If two prisms have equal heights and volume, the area of their bases is equal.
PTS: 2
REF: 081321ge
STA: G.G. 11
66 ANS: 4
PTS: 2
TOP: Equations of Circles
67 ANS: 2
$M_{x}=\frac{8+(-3)}{2}=2.5 . M_{Y}=\frac{-4+2}{2}=-1$.
PTS: 2
REF: 061312ge
STA: G.G. 66
TOP: Midpoint
68 ANS: 3
$120 \pi=\pi(12)(l)$

$$
10=l
$$

PTS: 2
69 ANS: 4
TOP: Planes
70 ANS: 2
REF: 081314ge
STA: G.G. 15
REF: 011306ge
TOP: Volume and Lateral Area
PTS: 2
PTS: 2
REF: 061322ge
STA: G.G. 51
TOP: Arcs Determined by Angles
71 ANS: 1
PTS: 2
TOP: Negations
72 ANS: $1 \quad$ PTS: 2
KEY: inscribed
REF: 081303ge STA: G.G. 24

TOP: Graphing Circles

73 ANS: 2
Parallel chords intercept congruent arcs. $\frac{360-(104+168)}{2}=44$
PTS: 2 REF: 011302ge STA: G.G. 52 TOP: Chords
74 ANS: 2 PTS: 2 REF: 061305ge STA: G.G. 18
TOP: Constructions
75 ANS: 2
(1) is true because of vertical angles. (3) and (4) are true because CPCTC.

PTS: 2 REF: 061302ge STA: G.G. 29 TOP: Triangle Congruency
76 ANS: 3
$m=\frac{-A}{B}=\frac{-3}{-2}=\frac{3}{2}$
PTS: 2 REF: 011324ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
77 ANS: 3
$3 x+1+4 x-17+5 x-20=180.3(18)+1=55$
$12 x-36=180 \quad 4(18)-17=55$
$12 x=216 \quad 5(18)-20=70$
$x=18$
PTS: 2 REF: 061308ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
78 ANS: 3
PTS: 2
REF: 061309ge
STA: G.G. 72
TOP: Equations of Circles
79 ANS: 1
$x^{2}=3 \times 12$
$x=6$
PTS: 2
REF: 011308ge
STA: G.G. 47
TOP: Similarity
KEY: altitude
80 ANS: 4
PTS: 2
REF: 011315ge STA: G.G. 1
TOP: Planes
81 ANS: 2
PTS: 2
REF: 061315ge STA: G.G. 13
TOP: Classifying Solids

Geometry Multiple Choice Regents Exam Questions

Answer Section

The diagonals of a parallelogram intersect at their midpoints. $M_{A C}\left(\frac{1+3}{2}, \frac{5+(-1)}{2}\right)=(2,2)$

| | PTS: 2 | REF: 061209ge | STA: G.G. 69 | TOP: Quadrilaterals in the Coordinate Plane |
| :--- | :--- | :---: | :--- | :--- | :--- |
| 90 | ANS: 2 | PTS: 2 | REF: 011211ge | STA: G.G. 55 |
| | TOP: Properties of Transformations | | | |
| 91 | ANS: 1 | PTS: 2 | REF: 061113ge | STA: G.G. 63 |
| | TOP: Parallel and Perpendicular Lines | | | |
| 92 | ANS: 4 | | | |

$20+8+10+6=44$.

PTS: 2
93 ANS: 2
REF: 061211ge
PTS: 2
STA: G.G. 42
REF: 011203ge
TOP: Midsegments
STA: G.G. 73
TOP: Equations of Circles

94 ANS: 4
$\sqrt{25^{2}-7^{2}}=24$
PTS: 2 REF: 081105ge STA: G.G. 50 TOP: Tangents
KEY: point of tangency
95 ANS: 4 PTS: 2 REF: 061203ge STA: G.G. 9
TOP: Planes
96 ANS: 2
The slope of a line in standard form is $\frac{-A}{B}$, so the slope of this line is $\frac{-4}{3}$. A parallel line would also have a slope of $\frac{-4}{3}$. Since the answers are in standard form, use the point-slope formula. $y-2=-\frac{4}{3}(x+5)$

$$
\begin{aligned}
3 y-6 & =-4 x-20 \\
4 x+3 y & =-14
\end{aligned}
$$

PTS: 2
97 ANS: 3
TOP: Properties of Transformations
98 ANS: 1

PTS: 2
REF: 061211ge
99 ANS: 4
PTS: 2
TOP: Compound Statements
STA: G.G. 31
REF: 081101ge
KEY: conjunction

STA: G.G. 65
REF: 081104ge

100 ANS: 2
$\frac{50+x}{2}=34$
$50+x=68$
$x=18$
PTS: 2
REF: 011214ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inside circle
ANS: 2
$V=\pi r^{2} h=\pi \cdot 6^{2} \cdot 15=540 \pi$

PTS: 2
102

103 ANS: 4

REF: 011117ge
PTS: 2
PTS: 2
TOP: Angle Proofs

TOP: Parallel and Perpendicular Lines
STA: G.G. 55

104	ANS: 1 PTS: 2 TOP: Negations	REF:	011213ge	STA:	G.G. 24
105	ANS: 3 $d=\sqrt{(1-9)^{2}+(-4-2)^{2}}=\sqrt{64+36}=$	$\sqrt{100}=$			
	PTS: 2 REF: 081107ge KEY: general	STA:	G.G. 67	TOP:	Distance
106	ANS: 4 $\sqrt{25^{2}-\left(\frac{26-12}{2}\right)^{2}}=24$				
	PTS: 2 REF: 011219ge	STA:	G.G. 40	TOP:	Trapezoids
107	ANS: 3 PTS: 2 TOP: Volume	REF:	081123ge	STA:	G.G. 12
108	ANS: 1 PTS: 2 TOP: Special Parallelograms	REF:	061125ge	STA:	G.G. 39
109	ANS: 3 PTS: 2 TOP: Equations of Circles	REF:	061306ge	STA:	G.G. 71
110	ANS: 4 PTS: 2 TOP: Equations of Circles	REF:	011212ge	STA:	G.G. 71
111	ANS: 2 PTS: 2 TOP: Planes	REF:	011109ge	STA:	G.G. 9
112	ANS: 2 PTS: 2 TOP: Exterior Angle Theorem	REF:	061107ge	STA:	G.G. 32
113	ANS: 3 TOP: Solids	REF:	011105ge	STA:	G.G. 10
114	ANS: 2 PTS: 2 TOP: Equations of Circles	REF:	081212ge	STA:	G.G. 72
115	ANS: 4 $\overline{A B}$ is a vertical line, so its perpendicular	sector is	is a horizont	ine throu	ugh the midpoint of $\overline{A B}$
	PTS: 2 REF: 011225ge	STA:	G.G. 68	TOP:	Perpendicular Bisector
116	ANS: 4 PTS: 2 TOP: Equations of Circles	REF:	061114ge	STA:	G.G. 73
117	ANS: 2 PTS: 2 TOP: Properties of Transformations	REF:	061201ge	STA:	G.G. 59
118	ANS: 4 PTS: 2 TOP: Equations of Circles	REF:	081110ge	STA:	G.G. 71
119	ANS: 1 TOP: Centroid	REF:	061104ge	STA:	G.G. 43

120 ANS: 1

PTS: 2
REF: 081219ge
STA: G.G. 34
121 ANS: 3
PTS: 2
TOP: Angle Side Relationship
TOP: Exterior Angle Theorem
122 ANS: 1

$$
\begin{array}{rlrl}
1 & =\frac{-4+x}{2} . & 5 & =\frac{3+y}{2} . \\
-4+x & =2 & 3+y & =10 \\
x & =6 & y & =7
\end{array}
$$

PTS: 2
123 ANS: 4
TOP: Similarity KEY: basic
ANS: 3
$\frac{3}{8+3+4} \times 180=36$
PTS: 2
125 ANS: 4

126 ANS: 2
127 ANS: 1
128
TOP: Special Parallelograms
124

REF: 011210ge
STA: G.G. 30

PTS: 2
REF: 081114ge
PTS: 2
TOP: Triangle Congruency
1 PTS: 2
TOP: Centroid, Orthocenter, Incenter and Circumcenter ANS: 3 PTS: 2

REF: 061214ge
REF: 061228ge STA: G.G. 39

REF: 081111ge

STA: G.G. 66
REF: 081216 ge
TOP: Midpoint
STA: G.G. 45
STA: G.G. 32

TOP: Interior and Exterior Angles of Triangles

129 ANS: 4

$$
\begin{aligned}
m_{\perp}=-\frac{1}{3} \cdot y & =m x+b \\
6 & =-\frac{1}{3}(-9)+b \\
6 & =3+b \\
3 & =b
\end{aligned}
$$

PTS: 2 REF: 061215ge STA: G.G. 64 TOP: Parallel and Perpendicular Lines
130 ANS: 3
$(3,-2) \rightarrow(2,3) \rightarrow(8,12)$
PTS: 2
REF: 011126ge
STA: G.G. 54
TOP: Compositions of Transformations
KEY: basic
131 ANS: 1
PTS: 2
REF: 011220ge STA: G.G. 72
TOP: Equations of Circles
132 ANS: 3
PTS: 2
REF: 011116ge STA: G.G. 71
TOP: Equations of Circles
133 ANS: 3

. Opposite sides of a parallelogram are congruent and the diagonals of a parallelogram bisect each other.

PTS: 2 REF: 061222ge STA: G.G. 28 TOP: Triangle Congruency
134 ANS: 4

$$
\begin{aligned}
4(x+4) & =8^{2} \\
4 x+16 & =64 \\
4 x & =48 \\
x & =12
\end{aligned}
$$

PTS: 2
REF: 061117ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: tangent and secant
135 ANS: 4
PTS: 2
REF: 011208ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: two tangents
136
ANS: 3
$\frac{7 x}{4}=\frac{7}{x} .7(2)=14$
$7 x^{2}=28$
$x=2$
PTS: 2
REF: 061120ge
STA: G.G. 45
TOP: Similarity
KEY: basic

137	ANS: 1	PTS:	2	REF:	011207ge	STA:	G.G. 20
	TOP: Constructions						
138	ANS: 2	PTS:	2	REF:	081205ge	STA:	G.G. 17
	TOP: Constructions						
139	ANS: 4	PTS:	2	REF:	061118ge	STA:	G.G. 1
	TOP: Planes						

140 ANS: 2
The diagonals of a rhombus are perpendicular. $180-(90+12)=78$

PTS: 2
141 ANS: 1 TOP: Planes
142 ANS: 4
TOP: Compound Statements
143 ANS: 3 PTS: 2
TOP: Quadrilateral Proofs
144 ANS: 4

$$
\begin{aligned}
& m=\frac{-A}{B}=\frac{-3}{2} . \quad y=m x+b \\
& -1=\left(\frac{-3}{2}\right)(2)+b \\
& -1=-3+b \\
& 2=b
\end{aligned}
$$

PTS: 2
REF: 061226ge
ANS: 1
PTS: 2
TOP: Special Parallelograms
146 ANS: 3

$$
\begin{aligned}
4 x+14+8 x+10 & =180 \\
12 x & =156 \\
x & =13
\end{aligned}
$$

TOP: Graphing Circles

PTS: 2
147 ANS: 3 TOP: Planes
148 ANS: 3
$x^{2}+7^{2}=(x+1)^{2} \quad x+1=25$
$x^{2}+49=x^{2}+2 x+1$
$48=2 x$
$24=x$
$\begin{array}{ll}\text { PTS: } 2 & \text { REF: 081127ge } \\ \text { ANS: } 2 & \text { PTS: } 2\end{array}$
149 ANS: 2
$\begin{array}{ll}\text { PTS: } 2 & \text { REF: } 081127 \mathrm{ge} \\ \text { ANS: } 2 & \text { PTS: } 2\end{array}$
REF: 081213ge
PTS: 2

STA: G.G. 48
REF: 011125ge

TOP: Parallel Lines and Transversals STA: G.G. 1

150 ANS: 3
$(n-2) 180=(5-2) 180=540$
PTS: 2 REF: 011223ge STA: G.G. 36 TOP: Interior and Exterior Angles of Polygons
151 ANS: 1
$m=\left(\frac{8+0}{2}, \frac{2+6}{2}\right)=(4,4) m=\frac{6-2}{0-8}=\frac{4}{-8}=-\frac{1}{2} \quad m_{\perp}=2 \quad y=m x+b$

$$
4=2(4)+b
$$

$$
-4=b
$$

	PTS: 2	REF:
152	ANS: 1	PTS:
TOP: Equations of Circles		
153	ANS: 2	
	$V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot 3^{3}=36 \pi$	

PTS: 2
REF: 061112ge
PTS: 2
TOP: Identifying Transformations
155 ANS: 4
$y=m x+b$
$3=\frac{3}{2}(-2)+b$
$3=-3+b$
$6=b$
PTS: 2
REF: 011114ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines
156 ANS: 3

STA: G.G. 16
REF: 061122ge

TOP: Volume and Surface Area
STA: G.G. 56

PTS: 2
157
ANS: 2
REF: 081118ge
PTS: 2
ANS: $4 \quad$ PTS: 2
TOP: Isosceles Triangle Theorem
ANS: $4 \quad$ PTS: 2
TOP: Isosceles Triangle Theorem
P
TOP: Constructions
158

STA: G.G. 70
REF: 061101ge
REF: 061124ge

TOP: Perpendicular Bisector
STA: G.G. 73

REF: 061223ge

159 ANS: 4
$x \cdot 4 x=6^{2} . P Q=4 x+x=5 x=5(3)=15$

$$
4 x^{2}=36
$$

$$
x=3
$$

PTS: 2
REF: 011227ge
STA: G.G. 47
TOP: Similarity
KEY: leg
160 ANS: 2
PTS: 2
REF: 061202ge
STA: G.G. 24
TOP: Negations
161 ANS: 2
$6 x+42=18 x-12$
$54=12 x$

$$
x=\frac{54}{12}=4.5
$$

PTS: 2
REF: 011201ge
STA: G.G. 35
TOP: Parallel Lines and Transversals
162 ANS: 3
$7 x=5 x+30$
$2 x=30$
$x=15$
PTS: 2
163 ANS: 3
REF: 081109ge
STA: G.G. 35
REF: 061111ge
TOP: Parallel Lines and Transversals STA: G.G. 38
TOP: Parallelograms
164 ANS: 4
$6^{2}=x(x+5)$
$36=x^{2}+5 x$
$0=x^{2}+5 x-36$
$0=(x+9)(x-4)$
$x=4$
PTS: 2
REF: 011123ge
STA: G.G. 47
REF: 011218ge
STA: G.G. 3
165 ANS: 1
PTS: 2

PTS: 2
REF: 011102ge
STA: G.G. 55
166 ANS: 1
TOP: Properties of Transformations
167 ANS: 4
PTS: 2
REF: 081106ge STA: G.G. 17
TOP: Constructions
168
ANS: $3 \quad$ PTS: 2
REF: 081227ge
STA: G.G. 42

169 ANS: 3
$\sqrt{5^{2}+12^{2}}=13$
PTS: 2
REF: 061116 ge
STA: G.G. 39
TOP: Special Parallelograms
170 ANS: 2

$$
A C=B D
$$

$A C-B C=B D-B C$
$A B=C D$
PTS: 2
REF: 061206ge
STA: G.G. 27
TOP: Line Proofs
171 ANS: 4
$\sqrt{6^{2}-2^{2}}=\sqrt{32}=\sqrt{16} \sqrt{2}=4 \sqrt{2}$
PTS: 2
REF: 081124ge
STA: G.G. 49
TOP: Chords
172 ANS: 4
The slope of $3 x+5 y=4$ is $m=\frac{-A}{B}=\frac{-3}{5} . m_{\perp}=\frac{5}{3}$.
PTS: 2
173 ANS: 1
REF: 061127ge
PTS: 2
TOP: Equations of Circles
174 ANS: 2
PTS: 2
TOP: Locus
175 ANS: 3

PTS: 2
REF: 011101ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: two tangents
176 ANS: 3
$\frac{5}{7}=\frac{10}{x}$
$5 x=70$
$x=14$
PTS: 2
177
ANS: 4
REF: 081103ge
TOP: Triangle Congruency

STA: G.G. 62
REF: 061110ge
REF: 081117ge
STA: G.G. 23
STA: G.G. 72

TOP: Parallel and Perpendicular Lines

178 ANS: 1
$d=\sqrt{(4-1)^{2}+(7-11)^{2}}=\sqrt{9+16}=\sqrt{25}=5$
PTS: 2
REF: 011205ge STA: G.G. 67
TOP: Distance
KEY: general
179

$$
\begin{array}{rlrl}
-5 & =\frac{-3+x}{2}, & 2 & =\frac{6+y}{2} \\
-10 & =-3+x & 4 & =6+y \\
-7 & =x & -2 & =y
\end{array}
$$

PTS: 2	REF:	081203ge	STA:	G.G. 66	TOP: Midpoint
ANS: 3	PTS:	2	REF: 011209 ge	STA:	G.G. 44
TOP: Similarity Proofs					
ANS: 4	PTS:	2	REF: 061213 ge	STA: G.G. 5	

TOP: Planes

182 ANS: 2

PTS: 2
ANS: 2
REF: 061221ge
STA: G.G. 49
TOP: Locus

$$
\begin{aligned}
& \text { ANS: } 3 \\
& \begin{aligned}
180(n-2) & =n\left(180-\frac{180(n-2)}{n}\right) \\
180 n-360 & =180 n-180 n+360 \\
180 n & =720 \\
n & =4
\end{aligned}
\end{aligned}
$$

PTS: 2
REF: 081223ge
STA: G.G. 36
ANS: 2
$V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot\left(\frac{15}{2}\right)^{3} \approx 1767.1$
PTS: 2
REF: 061207ge STA: G.G. 16
TOP: Volume and Surface Area

186 ANS: 3
The slope of $2 y=x+2$ is $\frac{1}{2}$, which is the opposite reciprocal of $-2 . \quad 3=-2(4)+b$

$$
11=b
$$

PTS: $2 \quad$ REF: 081228ge STA: G.G. 64
187 ANS: 4
PTS: 2
REF: 081224ge
TOP: Centroid, Orthocenter, Incenter and Circumcenter
188 ANS: 2

PTS: 2 REF: 061324ge
TOP: Similarity Proofs
189 ANS: $3 \quad$ PTS: 2
REF: 081209ge STA: G.G. 71
TOP: Equations of Circles
190 TOP: Planes
191 ANS: $2 \quad$ PTS: 2
TOP: Properties of Transformations
192 ANS: 2
$3 x+x+20+x+20=180$

$$
\begin{aligned}
5 x & =40 \\
x & =28
\end{aligned}
$$

PTS: 2
REF: 081222ge
STA: G.G. 31
REF: 061227ge
TOP: Isosceles Triangle Theorem
193 ANS: 2
PTS: 2
REF: 061108ge
REF: 081202ge

TOP: Identifying Transformations

194 ANS: 1

$$
\begin{aligned}
m=\frac{3}{2} \quad y & =m x+b \\
2 & =\frac{3}{2}(1)+b \\
\frac{1}{2} & =b
\end{aligned}
$$

PTS: 2 REF: 081217ge
STA: G.G. 65
REF: 081204ge
TOP: Properties of Transformations
196 ANS: 3 PTS: 2

REF: 061210ge
TOP: Parallel and Perpendicular Lines
STA: G.G. 59

TOP: Equations of Circles
197 ANS: 1
TOP: Sol

PTS: 2
REF: 011221ge
STA: G.G. 71

TOP: Solids
198 ANS: 3

PTS: 2
REF: 061218ge
TOP: Interior and Exterior Angles of Polygons
199 ANS: 2
PTS: 2
REF: 081120ge
STA: G.G. 8
TOP: Planes
200 ANS: 1
PTS: 2
REF: 081113ge
STA: G.G. 54

STA: G.G. 9
STA: G.G. 55
TOP: Parallel and Perpendicular Lines
STA: G.G. 21
STA: G.G. 44

STA: G.G. 56

201 ANS: 3
The slope of $9 x-3 y=27$ is $m=\frac{-A}{B}=\frac{-9}{-3}=3$, which is the opposite reciprocal of $-\frac{1}{3}$.
PTS: 2 REF: 081225ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
202 ANS: 1
$x^{2}=7(16-7)$
$x^{2}=63$
$x=\sqrt{9} \sqrt{7}$
$x=3 \sqrt{7}$
PTS: 2
REF: 061128ge
STA: G.G. 47
TOP: Similarity
KEY: altitude
203 ANS: 2
$7 x=5 x+30$
$2 x=30$
$x=15$
PTS: 2
ANS: 1

PTS: 2
REF: 081210ge
STA: G.G. 28
REF: 081128ge
TOP: Triangle Congruency
ANS: 3
PTS: 2
STA: G.G. 39
TOP: Special Parallelograms
PTS: 2
REF: 081121ge
STA: G.G. 39
TOP: Special Parallelograms
ANS: 4
$\frac{5}{2+3+5} \times 180=90$
PTS: 2 REF: 081119ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
208 ANS: 4
$d=\sqrt{(-5-3)^{2}+(4-(-6))^{2}}=\sqrt{64+100}=\sqrt{164}=\sqrt{4} \sqrt{41}=2 \sqrt{41}$
PTS: 2
REF: 011121ge STA: G.G. 67
TOP: Distance
KEY: general

209 ANS: 2
$M_{x}=\frac{7+(-3)}{2}=2 . M_{Y}=\frac{-1+3}{2}=1$.
PTS: 2 REF: 011106ge STA: G.G. 66 TOP: Midpoint
210 ANS: 2
$m=\frac{-A}{B}=\frac{-20}{-2}=10 . m_{\perp}=-\frac{1}{10}$
PTS: 2 REF: 061219ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
211 ANS: 2
PTS: 2
KEY: basic
TOP: Reflections
PTS: 2
TOP: Planes
213 ANS: 3

$$
\begin{array}{rlrl}
6 & =\frac{4+x}{2} . & 8 & =\frac{2+y}{2} . \\
4+x & =12 & 2+y & =16 \\
x & =8 & y & =14
\end{array}
$$

PTS: 2 REF: 011305ge STA: G.G. 66 TOP: Midpoint
214 ANS: 4
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.
PTS: 2 REF: 081220ge STA: G.G. 43 TOP: Centroid
215 ANS: 3
$\frac{180-70}{2}=55$
PTS: 2
REF: 061205ge
STA: G.G. 52
TOP: Chords
216 ANS: 3
PTS: 2
REF: 061220ge STA: G.G. 74
TOP: Graphing Circles
217 ANS: 1
$3 x+5+4 x-15+2 x+10=180 . \mathrm{m} \angle D=3(20)+5=65 . \mathrm{m} \angle E=4(20)-15=65$.

$$
\begin{aligned}
9 x & =180 \\
x & =20
\end{aligned}
$$

PTS: 2
REF: 061119 ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles
218 ANS: 4
$\mathrm{m} \angle A=80$
PTS: 2
REF: 011115ge
STA: G.G. 34
TOP: Angle Side Relationship

219 ANS: 1

$$
\begin{aligned}
7 x+4 & =2(2 x+5) . P M=2(2)+5=9 \\
7 x+4 & =4 x+10 \\
3 x & =6 \\
x & =2
\end{aligned}
$$

PTS: 2 REF: 011226ge STA: G.G. 43 TOP: Centroid
220 ANS: 2
$m=\frac{-A}{B}=\frac{-4}{2}=-2 \quad y=m x+b$
$2=-2(2)+b$
$6=b$
PTS: 2
221 ANS: 2
REF: 081112ge
STA: G.G. 65
TOP: Properties of Transformations
222 ANS: 3
PTS: 2
REF: 011110ge
STA: G.G. 21
KEY: Centroid, Orthocenter, Incenter and Circumcenter
223
ANS: 3 PTS: 2 REF: 011202
TOP: Centroid, Orthocenter, Incenter and Circumcenter
224 ANS: 1
The length of the midsegment of a trapezoid is the average of the lengths of its bases. $\frac{x+3+5 x-9}{2}=2 x+2$.

$$
\begin{aligned}
6 x-6 & =4 x+4 \\
2 x & =10 \\
x & =5
\end{aligned}
$$

PTS: 2
REF: 081221ge
STA: G.G. 40
TOP: Trapezoids
225 ANS: 4
Parallel lines intercept congruent arcs.
PTS: 2
REF: 081201ge
STA: G.G. 52
TOP: Chords
226 ANS: 1

$$
\begin{aligned}
A B & =C D \\
A B+B C & =C D+B C \\
A C & =B D
\end{aligned}
$$

PTS: 2
REF: 081207ge
STA: G.G. 27
TOP: Triangle Proofs

227 ANS: 4

$$
\begin{aligned}
x^{2}-6 x+2 x-3 & =9 x+27 \\
x^{2}-4 x-3 & =9 x+27 \\
x^{2}-13 x-30 & =0 \\
(x-15)(x+2) & =0 \\
x & =15,-2
\end{aligned}
$$

PTS: 2
228 ANS: 2
TOP: Tangents
229 ANS: 4 PTS: 2 TOP: Identifying Transformations
230 ANS: 4

$$
\begin{array}{rlrl}
x+6 y & =12 & 3(x-2) & =-y-4 \\
6 y & =-x+12 & -3(x-2) & =y+4 \\
y & =-\frac{1}{6} x+2 & m & =-3 \\
m & =-\frac{1}{6} & &
\end{array}
$$

REF: 061225ge
STA: G.G. 32
PTS: 2
REF: 081214ge
KEY: point of tangency
PTS: 2

PTS: 2
REF: 011119ge STA: G.G. 63
TOP: Parallel and Perpendicular Lines
231 ANS: 3
$d=\sqrt{(-1-4)^{2}+(0-(-3))^{2}}=\sqrt{25+9}=\sqrt{34}$
PTS: 2
REF: 061217ge
STA: G.G. 67
KEY: general
232 ANS: 3

PTS: 2
REF: 011112ge
STA: G.G. 49
TOP: Chords
233 ANS: 3 $-5+3=-2 \quad 2+-4=-2$

PTS: 2
REF: 011107ge
STA: G.G. 54

TOP: Exterior Angle Theorem
STA: G.G. 50
STA: G.G. 60

REF: 061103ge
STA:

234 ANS: 3
$8^{2}+24^{2} \neq 25^{2}$
PTS: 2
REF: 011111ge
STA: G.G. 48
ANS: 3
$\frac{8}{2}=\frac{12}{x}$.
$8 x=24$
$x=3$
PTS: 2
236 ANS: 4
REF: 061216ge
STA: G.G. 46
PTS: 2
TOP: Arcs Determined by Angles
REF: 011124ge
KEY: inscribed

237 ANS: 2
The slope of $x+2 y=3$ is $m=\frac{-A}{B}=\frac{-1}{2} . \quad m_{\perp}=2$.
PTS: 2
REF: 081122ge
STA: G.G. 62
ANS: 3
$y=m x+b$
$-1=2(2)+b$
$-5=b$
PTS: 2
REF: 011224 ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines
239 ANS: 2
$V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot\left(\frac{6}{2}\right)^{3} \approx 36 \pi$
PTS: 2
REF: 081215ge
STA: G.G. 16
TOP: Volume and Surface Area
240 ANS: 2
$(n-2) 180=(6-2) 180=720 . \frac{720}{6}=120$.
PTS: 2
REF: 081125ge
ANS: 1
PTS: 2
TOP: Triangle Congruency
242
ANS: 1
PTS: 2
TOP: Constructions
243
ANS: 2
PTS: 2
TOP: Triangles in the Coordinate Plane

STA: G.G. 37
REF: 011122ge
REF: 011120ge
REF: 061115 ge STA: G.G. 69
STA: G.G. 28
STA: G.G. 18

TOP: Interior and Exterior Angles of Polygons

244 ANS: 2
$5-3=2,5+3=8$
PTS: 2
REF: 011228ge
STA: G.G. 33
TOP: Triangle Inequality Theorem
245 ANS: 1
Parallel lines intercept congruent arcs.
PTS: 2
246 ANS: 3
TOP: Similarity
REF: 061105ge
PTS: 2
KEY: basic
247 ANS: 2
$\frac{4 x+10}{2}=2 x+5$
PTS: 2
248 ANS: 2
REF: 011103ge
TOP: Exterior Angle Theorem
249 ANS: 3
PTS: 2
TOP: Parallelograms
250
ANS: 3

$$
x+2 x+15=5 x+152(5)+15=25
$$

$$
3 x+15=5 x+5
$$

$$
10=2 x
$$

$$
5=x
$$

PTS: 2
REF: 011127ge
STA: G.G. 32
TOP: Exterior Angle Theorem

Geometry Multiple Choice Regents Exam Questions

Answer Section

251 ANS: $2 \quad$ PTS: 2
TOP: Identifying Transformations
252
ANS: 3
PTS: 2
TOP: Constructions
253
ANS: 3
PTS: 2
TOP: Planes
254 ANS: 2
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.
PTS: 2 REF: 060914ge STA: G.G. 43 TOP: Centroid
255 ANS: 1
$3 x^{2}+18 x+24$
$3\left(x^{2}+6 x+8\right)$
$3(x+4)(x+2)$
PTS: 2 REF: fall0815ge STA: G.G. 12 TOP: Volume
256 ANS: 2
PTS: 2
REF: 061007ge
STA: G.G. 35
TOP: Parallel Lines and Transversals
257 ANS: 3

. The sum of the interior angles of a pentagon is $(5-2) 180=540$.
PTS: 2 REF: 011023ge STA: G.G. 36 TOP: Interior and Exterior Angles of Polygons
258 ANS: 3
TOP: Constructions
259 ANS: 2
TOP: Constructions
260 ANS: 1
TOP: Planes
261 ANS: 3
$\frac{36+20}{2}=28$
PTS: 2 REF: 061019ge STA: G.G. 51 TOP: Arcs Determined by Angles
KEY: inside circle

PTS: 2
PTS: 2
REF: 080902ge
REF: 061020ge STA: G.G. 19
REF: 011024ge STA: G.G. 3
PTS: 2
\qquad

262 ANS: 4
The slope of $y=-3 x+2$ is -3 . The perpendicular slope is $\frac{1}{3} .-1=\frac{1}{3}(3)+b$

$$
\begin{aligned}
-1 & =1+b \\
b & =-2
\end{aligned}
$$

PTS: 2
REF: 011018ge
STA: G.G. 64
TOP: Parallel and Perpendicular Lines
263 ANS: 1
$V=\pi r^{2} h$
$1000=\pi r^{2} \cdot 8$

$$
\begin{aligned}
r^{2} & =\frac{1000}{8 \pi} \\
r & \approx 6.3
\end{aligned}
$$

PTS: 2 REF: 080926ge STA: G.G. 14 TOP: Volume
PTS: 2
REF: 061012ge STA: G.G. 20
TOP: Constructions
PTS: 2
REF: 011010ge STA: G.G. 71
TOP: Equations of Circles
266 ANS: 4
$d=\sqrt{(146-(-4))^{2}+(52-2)^{2}}=\sqrt{25,000} \approx 158.1$
PTS: 2 REF: 061021ge STA: G.G. 67 TOP: Distance
KEY: general
267 ANS: 2
PTS: 2
REF: 011003ge STA: G.G. 55
TOP: Properties of Transformations
268 ANS: 2
PTS: 2
REF: 061022ge STA: G.G. 62
TOP: Parallel and Perpendicular Lines
ANS: 4
$\overline{B G}$ is also an angle bisector since it intersects the concurrence of $\overline{C D}$ and $\overline{A E}$
PTS: 2 REF: 061025ge STA: G.G. 21
KEY: Centroid, Orthocenter, Incenter and Circumcenter
ANS: 2
Because the triangles are similar, $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle D}=1$
PTS: 2 REF: 011022ge STA: G.G. 45 TOP: Similarity
KEY: perimeter and area

271 ANS: 3

PTS: 2
REF: 060902ge
STA: G.G. 28
TOP: Triangle Congruency
272 ANS: 1
Parallel lines intercept congruent arcs.

	PTS: 2	REF: 061001ge	STA: G.G.52	TOP: Chords	
273	ANS: 1	PTS: 2	REF: fall0807ge	STA: G.G. 19	
	TOP: Constructions				
274	ANS: 4	PTS: 2	REF: 060912 ge	STA: G.G. 23	
	TOP: Locus				
275	ANS: 1				

$A^{\prime}(2,4)$
PTS: 2
REF: 011023ge
STA: G.G. 54
TOP: Compositions of Transformations
KEY: basic
276 ANS: 3
PTS: 2
REF: fall0816ge
STA: G.G. 1

277 ANS: 1
$\frac{40-24}{2}=8 . \quad \sqrt{10^{2}-8^{2}}=6$.

PTS: 2
278 ANS: 3
REF: 061204ge
PTS: 2
TOP: Constructions
279 ANS: 1
PTS: 2
TOP: Converse and Biconditional
ANS: 1

PTS: 2
REF: 011021ge
STA: G.G. 32
TOP: Exterior Angle Theorem

TOP: Centroid, Orthocenter, Incenter and Circumcenter
285 ANS: 1
$4 x=6 \cdot 10$
$x=15$
PTS: 2
REF: 081017ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: two chords
286 ANS: 4
ANS: 4 PTS: 2 REF: 061008ge STA: G.G. 40
ANS: 4 PTS: 2 REF: 061008ge STA: G.G. 40
REF: 060910ge
PTS: 2
ANS: 2 PTS:
TOP: Equations of Circles
ANS: 1
$\angle A=\frac{(n-2) 180}{n}=\frac{(5-2) 180}{5}=108 \angle A E B=\frac{180-108}{2}=36$
PTS: 2 REF: 081022ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons
ANS: 4 PTS: 2 REF: 011009ge
TOP: Constructions
290 ANS: 1
The closer a chord is to the center of a circle, the longer the chord.
PTS: 2 REF: 011005ge STA: G.G. 49 TOP: Chords
ANS: 1
$d=\sqrt{(-4-2)^{2}+(5-(-5))^{2}}=\sqrt{36+100}=\sqrt{136}=\sqrt{4} \cdot \sqrt{34}=2 \sqrt{34}$.
PTS: 2 REF: 080919ge STA: G.G. 67 TOP: Distance
KEY: general
ANS: 2
TOP: Planes
PTS: 2 REF: 011025ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines

PTS: 2

PTS: 2

REF: 060913ge
STA: G.G. 26
TOP: Conditional Statements
ANS: 3
$m=\frac{-A}{B}=-\frac{3}{4}$

ANS: 3
REF: 080913ge
STA: G.G. 28
TOP: Triangle Congruency

293
ANS: 2
The slope of a line in standard form is $-\frac{A}{B}$, so the slope of this line is $\frac{-2}{-1}=2$. A parallel line would also have a slope of 2. Since the answers are in slope intercept form, find the y-intercept: $\quad y=m x+b$

$$
\begin{aligned}
-11 & =2(-3)+b \\
-5 & =b
\end{aligned}
$$

PTS: 2
ANS: 1
TOP: Properties of Transformations
ANS: 4
TOP: Tangents
KEY: common tangency
296 ANS: 2
$\frac{87+35}{2}=\frac{122}{2}=61$
PTS: 2
REF: 011015ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inside circle
ANS: 1
PTS: 2
REF: 060920ge
STA: G.G. 74
TOP: Graphing Circles
ANS: 4
The radius is 4. $r^{2}=16$.
PTS: 2 REF: 061014ge STA: G.G. 72 TOP: Equations of Circles
299 ANS: 1
$a^{2}+(5 \sqrt{2})^{2}=(2 \sqrt{15})^{2}$
$a^{2}+(25 \times 2)=4 \times 15$

$$
\begin{aligned}
a^{2}+50 & =60 \\
a^{2} & =10 \\
a & =\sqrt{10}
\end{aligned}
$$

PTS: 2 REF: 011016ge STA: G.G. 48 TOP: Pythagorean Theorem
ANS: 1
Translations and reflections do not affect distance.
PTS: 2
REF: 080908ge STA: G.G. 61
TOP: Analytical Representations of Transformations
PTS: 2
REF: fall0825ge
STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
ANS: 1 PTS: 2 REF: 060918ge STA: G.G. 2
TOP: Planes

PTS: 2
REF: fall0812ge STA: G.G. 65
REF: 061005ge
REF: fall0824ge
STA: G.G. 50

303 ANS: 1
Opposite sides of a parallelogram are congruent. $4 x-3=x+3 . S V=(2)+3=5$.

$$
\begin{aligned}
3 x & =6 \\
x & =2
\end{aligned}
$$

PTS: 2 REF: 011013ge STA: G.G. 38 TOP: Parallelograms
304 ANS: 1
If $\angle A$ is at minimum $\left(50^{\circ}\right)$ and $\angle B$ is at minimum $\left(90^{\circ}\right), \angle C$ is at maximum of $40^{\circ}\left(180^{\circ}-\left(50^{\circ}+90^{\circ}\right)\right.$). If $\angle A$ is at maximum $\left(60^{\circ}\right)$ and $\angle B$ is at maximum $\left(100^{\circ}\right), \angle C$ is at minimum of $20^{\circ}\left(180^{\circ}-\left(60^{\circ}+100^{\circ}\right)\right)$.

PTS: 2 REF: 060901ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
ANS: 4
PTS: 2
REF: fall0802ge
STA: G.G. 24
TOP: Negations
306 ANS: 1
$V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi \cdot 4^{2} \cdot 12 \approx 201$
PTS: 2 REF: 060921ge STA: G.G. 15 TOP: Volume
307 ANS: 4
Longest side of a triangle is opposite the largest angle. Shortest side is opposite the smallest angle.
PTS: 2 REF: 081011ge STA: G.G. 34
308 ANS: 4
PTS: 2
REF: 080905ge
TOP: Angle Side Relationship
TOP: Triangle Congruency
309 ANS: 3
The lateral edges of a prism are parallel.
PTS: 2
310 ANS: 1
TOP: Tangents
REF: fall0808ge
STA: G.G. 10
PTS: 2 REF: 081012ge
TOP: Solids
STA: G.G. 50
KEY: two tangents
311 ANS: 4
sum of interior $\angle \mathrm{s}=$ sum of exterior $\angle \mathrm{s}$

$$
\begin{aligned}
(n-2) 180 & =n\left(180-\frac{(n-2) 180}{n}\right) \\
180 n-360 & =180 n-180 n+360 \\
180 n & =720 \\
n & =4
\end{aligned}
$$

PTS: 2
REF: 081016ge
STA: G.G. 36
TOP: Interior and Exterior Angles of Polygons

312 ANS: 3
$2 y=-6 x+8$ Perpendicular lines have slope the opposite and reciprocal of each other.
$y=-3 x+4$
$m=-3$
$m_{\perp}=\frac{1}{3}$
PTS: 2 REF: 081024ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
313 ANS: 2
$M_{x}=\frac{2+(-4)}{2}=-1 . M_{Y}=\frac{-3+6}{2}=\frac{3}{2}$.
PTS: 2
REF: fall0813ge
STA: G.G. 66
TOP: Midpoint
KEY: general
314 ANS: 4

PTS: 2
REF: 081001ge
STA: G.G. 29
TOP: Triangle Congruency
315 ANS: 2

PTS: 2
316 ANS: 4
REF: 081007ge
STA: G.G. 28
TOP: Solids
317 ANS: 1
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.

$$
\overline{G C}=2 \overline{F G}
$$

$$
\begin{aligned}
\overline{G C}+\overline{F G} & =24 \\
2 \overline{F G}+\overline{F G} & =24 \\
3 \overline{F G} & =24 \\
\overline{F G} & =8
\end{aligned}
$$

PTS: 2
318
ANS: 3

TOP: Tangents

REF: 081018ge
PTS: 2
KEY: common tangency

STA: G.G. 43
REF: 080928ge
TOP: Centroid
STA: G.G. 50

ANS: 1

PTS: 2
ANS: 4

PTS: 2
REF: 080912ge
STA: G.G. 70
TOP: Quadratic-Linear Systems
$4(x+4)=8^{2}$
$4 x+16=64$

$$
x=12
$$

PTS: 2
REF: 060916ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: tangent and secant
ANS: 3
$V=\pi r^{2} h=\pi \cdot 6^{2} \cdot 27=972 \pi$
PTS: 2
REF: 011027ge
STA: G.G. 14 TOP: Volume

325 ANS: 4
Let $\overline{A D}=x . \quad 36 x=12^{2}$

$$
x=4
$$

PTS: 2 REF: 080922ge STA: G.G. 47 TOP: Similarity
KEY: leg
326 ANS: 2

$$
\begin{aligned}
4(4 x-3) & =3(2 x+8) \\
16 x-12 & =6 x+24 \\
10 x & =36 \\
x & =3.6
\end{aligned}
$$

PTS: 2 REF: 080923ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: two chords
327
TOP: Identifying Transformations
328 ANS: $1 \quad$ PTS: 2
TOP: Equations of Circles
329 ANS: 2
PTS: 2
REF: 080921ge STA: G.G. 72
TOP: Equations of Circles
330 ANS: 3
The slope of $y=x+2$ is 1 . The slope of $y-x=-1$ is $\frac{-A}{B}=\frac{-(-1)}{1}=1$.
PTS: 2 REF: 080909ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
ANS: 3

PTS: 2
REF: 061011ge
STA: G.G. 70
TOP: Quadratic-Linear Systems
332 ANS: 1

$$
\begin{aligned}
x+2 x+2+3 x+4 & =180 \\
6 x+6 & =180 \\
x & =29
\end{aligned}
$$

PTS: 2
REF: 011002ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles
$y=x^{2}-4 x=(4)^{2}-4(4)=0 .(4,0)$ is the only intersection.

PTS: 2 REF: 060923ge STA: G.G. 70 TOP: Quadratic-Linear Systems
ANS: 2
$y+\frac{1}{2} x=4 \quad 3 x+6 y=12$
$y=-\frac{1}{2} x+4$
$6 y=-3 x+12$
$m=-\frac{1}{2}$

$$
y=-\frac{3}{6} x+2
$$

$$
y=-\frac{1}{2} x+2
$$

PTS: 2 REF: 081014ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
339 ANS: 4
$180-(40+40)=100$

PTS: 2
REF: 080903ge
STA: G.G. 31
TOP: Isosceles Triangle Theorem
ANS: 2
Parallel chords intercept congruent arcs. $\mathrm{m} \overleftarrow{A C}=\mathrm{m} \overleftarrow{\mathrm{BD}}=30.180-30-30=120$.
PTS: 2
REF: 080904ge
STA: G.G. 52
TOP: Chords
ANS: 2
$\angle A C B$ and $\angle E C D$ are congruent vertical angles and $\angle C A B \cong \angle C E D$.

PTS: 2
REF: 060917ge STA: G.G. 44
TOP: Similarity Proofs

342 ANS: 1
$\overline{A B}=10$ since $\triangle A B C$ is a 6-8-10 triangle. $6^{2}=10 x$

$$
3.6=x
$$

PTS: 2 REF: 060915ge STA: G.G. 47 TOP: Similarity
KEY: leg
343 ANS: 4
The slope of $y=-\frac{2}{3} x-5$ is $-\frac{2}{3}$. Perpendicular lines have slope that are opposite reciprocals.
PTS: 2 REF: 080917ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
344 ANS: 2
TOP: Planes
345 ANS: 3

PTS: 2 REF: 080920ge STA: G.G. 42 TOP: Midsegments
346 ANS: 4
PTS: 2
REF: 061003ge
STA: G.G. 10
TOP: Solids
347 ANS: 4
PTS: 2
REF: 061015ge
STA: G.G. 56
TOP: Identifying Transformations
348 ANS: 4
$d=\sqrt{(-3-1)^{2}+(2-0)^{2}}=\sqrt{16+4}=\sqrt{20}=\sqrt{4} \cdot \sqrt{5}=2 \sqrt{5}$
PTS: 2 REF: 011017ge STA: G.G. 67 TOP: Distance
KEY: general
349 ANS: 4
The slope of a line in standard form is $-\frac{A}{B}$, so the slope of this line is $\frac{-4}{2}=-2$. A parallel line would also have a slope of -2 . Since the answers are in slope intercept form, find the y-intercept: $y=m x+b$

$$
\begin{aligned}
3 & =-2(7)+b \\
17 & =b
\end{aligned}
$$

| | PTS: 2 | REF: 081010ge | STA: G.G.65 | TOP: Parallel and Perpendicular Lines |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 350 | ANS: 1 | PTS: 2 | REF: 061010ge | STA: G.G. 34 |
| | TOP: Angle Side Relationship | | | |
| 351 | ANS: 4 | PTS: 2 | REF: 081005 ge | STA: G.G. 18 |
| | TOP: Constructions | | | |
| 352 | ANS: 3 | PTS: 2 | REF: 081026 ge | STA: G.G. 26 |
| | TOP: Contrapositive | | | |

353 ANS: 2
$7+18>6+12$
PTS: 2 REF: fall0819ge STA: G.G. 33 TOP: Triangle Inequality Theorem 354 ANS: 3

$$
\frac{36-20}{2}=8 . \sqrt{17^{2}-8^{2}}=15
$$

PTS: 2
355 ANS: 4
TOP: Similarity
REF: 061016ge
STA: G.G. 40
PTS: 2
REF: 081023ge
TOP: Trapezoids
KEY: perimeter and area
356 ANS: 1
PTS: 2
REF: 081028ge
STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
357 ANS: 2
$\frac{3}{7}=\frac{6}{x}$
$3 x=42$
$x=14$
PTS: 2 REF: 081027ge STA: G.G. 46 TOP: Side Splitter Theorem
358 ANS: 1
$\angle D C B$ and $\angle A D C$ are supplementary adjacent angles of a parallelogram. $180-120=60 . \angle 2=60-45=15$.
PTS: 2 REF: 080907ge STA: G.G. 38 TOP: Parallelograms
359 ANS: 2
A dilation affects distance, not angle measure.
PTS: 2 REF: 080906ge STA: G.G. 60 TOP: Identifying Transformations
360 ANS: 1
$(x, y) \rightarrow(x+3, y+1)$
PTS: 2
ANS: 2
REF: fall0803ge
STA: G.G. 54
REF: 011020ge
TOP: Translations
TOP: Graphing Circles
362

ANS: 3 PTS: 2
TOP: Isosceles Triangle Theorem

363
ANS: 2
The slope of $2 x+3 y=12$ is $-\frac{A}{B}=-\frac{2}{3}$. The slope of a perpendicular line is $\frac{3}{2}$. Rewritten in slope intercept form,
(2) becomes $y=\frac{3}{2} x+3$.

PTS: 2 REF: 060926ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
364 ANS: 3
The diagonals of an isosceles trapezoid are congruent. $5 x+3=11 x-5$.

$$
\begin{aligned}
6 x & =18 \\
x & =3
\end{aligned}
$$

PTS: 2 REF: fall0801ge STA: G.G. 40 TOP: Trapezoids
ANS: 3

$$
\begin{aligned}
(x+3)^{2}-4 & =2 x+5 \\
x^{2}+6 x+9-4 & =2 x+5 \\
x^{2}+4 x & =0 \\
x(x+4) & =0 \\
x & =0,-4
\end{aligned}
$$

PTS: 2 REF: 081004ge STA: G.G. 70 TOP: Quadratic-Linear Systems
366 ANS: 4
PTS: 2
REF: 061018ge
STA: G.G. 56
TOP: Identifying Transformations
367 ANS: 4
(4) is not true if $\angle P Q R$ is obtuse.

372 ANS: 2
Longest side of a triangle is opposite the largest angle. Shortest side is opposite the smallest angle.
PTS: 2 REF: 060911ge STA: G.G. 34 TOP: Angle Side Relationship
373 ANS: 3
$m=\frac{-A}{B}=\frac{5}{2} . m=\frac{-A}{B}=\frac{10}{4}=\frac{5}{2}$
PTS: 2 REF: 011014ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines

374	ANS: 1	PTS: 2	REF: 060903ge	STA: G.G. 56
	TOP: Identifying Transformations			
375	ANS: 4 \quad PTS: 2	REF: 011012ge	STA: G.G. 1	
	TOP: Planes			
376	ANS: 4			
	$L=2 \pi r h=2 \pi \cdot 5 \cdot 11 \approx 345.6$			

PTS: 2 REF: 061006ge STA: G.G. 14 TOP: Volume
377 ANS: 2
Parallel chords intercept congruent arcs. $\mathrm{m} \overparen{A D}=\mathrm{m} \overparen{B C}=60 . \mathrm{m} \angle C D B=\frac{1}{2} \mathrm{~m} \overparen{\mathrm{BC}}=30$.
PTS: 2 REF: 060906ge STA: G.G. 52 TOP: Chords
378 ANS: 2
$M_{x}=\frac{-2+6}{2}=2 . M_{y}=\frac{-4+2}{2}=-1$
PTS: 2
REF: 080910ge
STA: G.G. 66 TOP: Midpoint
KEY: general
ANS: 1
PTS: 2
REF: 080911ge STA: G.G. 73
TOP: Equations of Circles
380 ANS: 4
$180-(50+30)=100$
PTS: 2 REF: 081006ge STA: G.G. 45 TOP: Similarity
KEY: basic
381 ANS: 1

$$
\begin{aligned}
-2\left(-\frac{1}{2} y\right. & =6 x+10) \\
y & =-12 x-20
\end{aligned}
$$

PTS: 2
REF: 061027ge
STA: G.G. 63
TOP: Parallel and Perpendicular Lines
ANS: 2
$\frac{140-\overline{R S}}{2}=40$

$$
\begin{aligned}
140-\overline{R S} & =80 \\
\overline{R S} & =60
\end{aligned}
$$

PTS: 2 REF: 081025ge STA: G.G. 51 TOP: Arcs Determined by Angles
KEY: outside circle
383
ANS: 1
$M_{x}=\frac{-2+6}{2}=2 . M_{y}=\frac{3+3}{2}=3$. The center is (2,3). $d=\sqrt{(-2-6)^{2}+(3-3)^{2}}=\sqrt{64+0}=8$. If the diameter is 8 , the radius is 4 and $r^{2}=16$.

PTS: 2 REF: fall0820ge STA: G.G. 71 TOP: Equations of Circles

384
ANS: 4
$M_{x}=\frac{-6+1}{2}=-\frac{5}{2} . M_{y}=\frac{1+8}{2}=\frac{9}{2}$.
PTS: 2 REF: 060919ge STA: G.G. 66 TOP: Midpoint
KEY: graph
ANS: 4 PTS: 2 REF: 081206ge STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles
ANS: 2
The slope of a line in standard form is $-\frac{A}{B}$ so the slope of this line is $-\frac{5}{3}$ Perpendicular lines have slope that are the opposite and reciprocal of each other.

PTS: 2 REF: fall0828ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
387 ANS: 2
The slope of $y=\frac{1}{2} x+5$ is $\frac{1}{2}$. The slope of a perpendicular line is -2 . $y=m x+b$

$$
\begin{aligned}
& 5=(-2)(-2)+b \\
& b=1
\end{aligned}
$$

PTS: 2
REF: 060907ge
STA: G.G. 64
TOP: Parallel and Perpendicular Lines
ANS: 2

PTS: 2
KEY: inscribed
REF: 061026GE STA: G.G. 51
TOP: Arcs Determined by Angles

ANS: 3
Because $\overline{O C}$ is a radius, its length is 5. Since $C E=2 O E=3 . \triangle E D O$ is a 3-4-5 triangle. If $E D=4, B D=8$.
PTS: 2
REF: fall0811ge
STA: G.G. 49
TOP: Chords
ANS: 2
PTS: 2
REF: 011011ge
STA: G.G. 22

TOP: Locus

ANS: 4
$3 y+1=6 x+4.2 y+1=x-9$

$$
\begin{array}{rlrl}
3 y & =6 x+3 & 2 y & =x-10 \\
y & =2 x+1 & y & =\frac{1}{2} x-5
\end{array}
$$

PTS: 2 REF: fall0822ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
393 ANS: 4
$d=\sqrt{(-6-2)^{2}+(4-(-5))^{2}}=\sqrt{64+81}=\sqrt{145}$
PTS: 2 REF: 081013ge STA: G.G. 67 TOP: Distance
KEY: general
394 ANS: 1
After the translation, the coordinates are $A^{\prime}(-1,5)$ and $B^{\prime}(3,4)$. After the dilation, the coordinates are $A^{\prime \prime}(-2,10)$ and $B^{\prime \prime}(6,8)$.

PTS: 2 REF: fall0823ge STA: G.G. 58 TOP: Compositions of Transformations
$\triangle P R T$ and $\triangle S R Q$ share $\angle R$ and it is given that $\angle R P T \cong \angle R S Q$.
PTS: 2 REF: fall0821ge STA: G.G. 44 TOP: Similarity Proofs
396 ANS: 4
PTS: 2 REF: 011019ge
STA: G.G. 44
TOP: Similarity Proofs

PTS: 2
ANS: 1
Since $\overline{A C} \cong \overline{B C}, \mathrm{~m} \angle A=\mathrm{m} \angle B$ under the Isosceles Triangle Theorem.

REF: fall0809ge STA: G.G. 69
PTS: 2
2
REF: 080924ge

$$
\begin{aligned}
\frac{9}{2} & =\frac{x}{3} \\
x & =13.5
\end{aligned}
$$

PTS: 2
REF: 081019ge
STA: G.G. 66
KEY: general
ANS: 2
PTS: 2
REF: 061002ge
TOP: Negations
ANS: 4
$\triangle A B C \sim \triangle D B E . \frac{\overline{A B}}{\overline{D B}}=\frac{\overline{A C}}{\overline{D E}}$

REF: 060927 ge
STA: G.G. 46

PTS: 2
ANS: 3
TOP: Negations

TOP: Triangles in the Coordinate Plane
STA: G.G. 24

TOP: Midpoint
STA: G.G. 24

TOP: Side Splitter Theorem

402 ANS: 1
TOP: Tangents
403 ANS: 4
$x^{2}=(4+5) \times 4$
$x^{2}=36$
$x=6$
PTS: 2 REF: 011008ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: tangent and secant
404
ANS: 4
Corresponding angles of similar triangles are congruent.
PTS: 2 REF: fall0826ge STA: G.G. 45 TOP: Similarity
KEY: perimeter and area
405 ANS: 2

$$
x^{2}+(x+7)^{2}=13^{2}
$$

$x^{2}+x^{2}+7 x+7 x+49=169$

$$
\begin{aligned}
2 x^{2}+14 x-120 & =0 \\
x^{2}+7 x-60 & =0 \\
(x+12)(x-5) & =0 \\
x & =5 \\
2 x & =10
\end{aligned}
$$

PTS: 2 REF: 061024ge STA: G.G. 48 TOP: Pythagorean Theorem
The length of the midsegment of a trapezoid is the average of the lengths of its bases. $\frac{x+30}{2}=44$.

$$
\begin{aligned}
x+30 & =88 \\
x & =58
\end{aligned}
$$

PTS: 2
REF: 011001ge
STA: G.G. 40
407 ANS: 3
TOP: Planes
408
ANS: 4

$$
\begin{aligned}
\mathrm{SA} & =4 \pi r^{2} \quad V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot 6^{3}=288 \pi \\
144 \pi & =4 \pi r^{2} \\
36 & =r^{2} \\
6 & =r
\end{aligned}
$$

PTS: 2 REF: 081020ge STA: G.G. 16 TOP: Surface Area

409 ANS: 3 PTS: 2 REF: 011007ge STA: G.G. 31
TOP: Isosceles Triangle Theorem
410 ANS: 1
In an equilateral triangle, each interior angle is 60° and each exterior angle is $120^{\circ}\left(180^{\circ}-120^{\circ}\right)$. The sum of the three interior angles is 180° and the sum of the three exterior angles is 360°.

PTS: 2 REF: 060909ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
411 ANS: 4
$(n-2) 180=(8-2) 180=1080 . \frac{1080}{8}=135$.
PTS: 2
412 ANS: 3
TOP: Conditional Statements
413 ANS: 2
$(d+4) 4=12(6)$
$4 d+16=72$
$d=14$
$r=7$
PTS: 2
REF: 061023ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: two secants
414 ANS: 3

PTS: 2
415 ANS: 1 TOP: Planes
416 ANS: 4
ANS: 4 PTS: 2
TOP: Analytical Representations of Transformations
417 ANS: 2

$$
\begin{aligned}
x^{2} & =3(x+18) \\
x^{2}-3 x-54 & =0 \\
(x-9)(x+6) & =0 \\
x & =9
\end{aligned}
$$

PTS: 2
REF: fall0817ge STA: G.G. 53
KEY: tangent and secant
REF: fall0805ge STA: G.G. 70
PTS: 2
REF: 081008ge

STA: G.G. 37
REF: 011028ge
TOP: Interior and Exterior Angles of Polygons STA: G.G. 26

TOP: Quadratic-Linear Systems
STA: G.G. 3
STA: G.G. 61

418 ANS: 4
Median $\overline{B F}$ bisects $\overline{A C}$ so that $\overline{C F} \cong \overline{F A}$.
PTS: 2 REF: fall0810ge STA: G.G. 24 TOP: Statements
419 ANS: 3
PTS: 2
REF: 060928ge
STA: G.G. 8
TOP: Planes
PTS: 2
REF: 081021ge STA: G.G. 57
TOP: Properties of Transformations

Geometry 2 Point Regents Exam Questions

Answer Section

421 ANS:
37. Since $\overline{D E}$ is a midsegment, $A C=14.10+13+14=37$

PTS: 2 REF: 061030ge STA: G.G. 42 TOP: Midsegments 422 ANS:

PTS: 2
REF: 061229ge
STA: G.G. 54
TOP: Translations
423 ANS:
$375 \pi L=\pi r l=\pi(15)(25)=375 \pi$
PTS: 2 REF: 081030ge STA: G.G. 15 TOP: Lateral Area

424 ANS:

PTS: 2
REF: 080932ge
STA: G.G. 17
TOP: Constructions
ANS:

χ
PTS: 2
REF: 060930ge
STA: G.G. 19
TOP: Constructions

426 ANS:
$m=\frac{-A}{B}=\frac{6}{2}=3 . m_{\perp}=-\frac{1}{3}$.
PTS: 2
REF: 011134ge
STA: G.G. 62 ANS:

$(7,5) m_{\overline{A B}}=\left(\frac{3+7}{2}, \frac{3+9}{2}\right)=(5,6) m_{B C}=\left(\frac{7+11}{2}, \frac{9+3}{2}\right)=(9,6)$
TOP: Parallel and Perpendicular Lines

428 ANS:

$$
\begin{aligned}
x^{2} & =9 \cdot 8 \\
x & =\sqrt{72} \\
x & =\sqrt{36} \sqrt{2} \\
x & =6 \sqrt{2}
\end{aligned}
$$

PTS: 2 REF: 011132ge STA: G.G. 53 TOP: Segments Intercepted by Circle KEY: two chords
429 ANS:

PTS: 2
REF: 081234ge
STA: G.G. 23
TOP: Locus
430 ANS:
110. $6 x+20=x+40+4 x-5$

$$
\begin{aligned}
6 x+20 & =5 x+35 \\
x & =15
\end{aligned}
$$

$$
6((15)+20=110
$$

PTS: 2
REF: 081031ge
STA: G.G. 32
TOP: Exterior Angle Theorem
431 ANS:
If $r=5$, then $r^{2}=25 .(x+3)^{2}+(y-2)^{2}=25$
PTS: 2
REF: 011332ge STA: G.G. 71
TOP: Equations of Circles
432
ANS:
$V=\frac{4}{3} \pi \cdot 9^{3}=972 \pi$
PTS: 2
REF: 081131ge
STA: G.G. 16
TOP: Surface Area
433 ANS:
452. $S A=4 \pi r^{2}=4 \pi \cdot 6^{2}=144 \pi \approx 452$

PTS: 2
REF: 061029ge
STA: G.G. 16
TOP: Surface Area

434 ANS:
18. $V=\frac{1}{3} B h=\frac{1}{3} l w h$

$$
\begin{aligned}
288 & =\frac{1}{3} \cdot 8 \cdot 6 \cdot h \\
288 & =16 h \\
18 & =h
\end{aligned}
$$

PTS: 2
REF: 061034ge
STA: G.G. 13
TOP: Volume
435 ANS:

PTS: 2 REF: 081033ge STA: G.G. 22 TOP: Locus
436 ANS:

PTS: 2
REF: 061033ge
STA: G.G. 22
TOP: Locus
437 ANS:
30.

PTS: 2
REF: 011129ge
STA: G.G. 31
TOP: Isosceles Triangle Theorem

438 ANS:

PTS: 2 REF: 011333ge STA: G.G. 19 TOP: Constructions
439 ANS:
6. The centroid divides each median into segments whose lengths are in the ratio $2: 1 . \overline{T D}=6$ and $\overline{D B}=3$

PTS: 2
REF: 011034 ge STA: G.G. 43 TOP: Centroid
440 ANS:
center: $(3,-4)$; radius: $\sqrt{10}$
PTS: 2 REF: 081333ge STA: G.G. 73 TOP: Equations of Circles
441 ANS:
$2 x-20=x+20 . \mathrm{m} \overparen{A B}=x+20=40+20=60$

$$
x=40
$$

PTS: 2
REF: 011229ge
STA: G.G. 52
TOP: Chords
442 ANS:

PTS: 2
REF: fall0832ge STA: G.G. 17
TOP: Constructions
443 ANS:
2 is not a prime number, false.
PTS: 2
REF: 081229ge
STA: G.G. 24
TOP: Negations

444
ANS:

PTS: 2 REF: 061333ge STA: G.G. 23 TOP: Locus
ANS:
The slope of $x+2 y=4$ is $m=\frac{-A}{B}=\frac{-1}{2}$. The slope of $4 y-2 x=12$ is $\frac{-A}{B}=\frac{2}{4}=\frac{1}{2}$. Since the slopes are neither equal nor opposite reciprocals, the lines are neither parallel nor perpendicular.

PTS: 2
REF: 061231ge
STA: G.G. 63
TOP: Parallel and Perpendicular Lines
446
ANS:
9.1. $(11)(8) h=800$

$$
h \approx 9.1
$$

PTS: 2
REF: 061131ge
STA: G.G. 12
TOP: Volume
447
$(x-5)^{2}+(y+4)^{2}=36$
PTS: 2
REF: 081132ge
STA: G.G. 72
TOP: Equations of Circles
ANS:

PTS: 2
REF: 081233ge
STA: G.G. 19
TOP: Constructions
449
ANS:
The slope of $y=2 x+3$ is 2 . The slope of $2 y+x=6$ is $\frac{-A}{B}=\frac{-1}{2}$. Since the slopes are opposite reciprocals, the lines are perpendicular.

PTS: 2 REF: 011231ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
450 ANS:
5. $\frac{3}{x}=\frac{6+3}{15}$

$$
\begin{aligned}
9 x & =45 \\
x & =5
\end{aligned}
$$

PTS: 2
REF: 011033ge
STA: G.G. 46
TOP: Side Splitter Theorem

451 ANS:
$E O=6 . C E=\sqrt{10^{2}-6^{2}}=8$
PTS: 2
REF: 011234ge
STA: G.G. 49
ANS:

PTS: 2
REF: 081130ge
ANS:
$(x+1)^{2}+(y-2)^{2}=36$
PTS: 2
REF: 081034ge
STA: G.G. 72
TOP: Equations of Circles
454 ANS:

PTS: 2
REF: fall0830ge
STA: G.G. 55
TOP: Properties of Transformations

455 ANS:
20. The sides of the triangle formed by connecting the midpoints are half the sides of the original triangle.
$5+7+8=20$.
PTS: 2
456
ANS:
$m_{A B}^{-}=\frac{4-1}{4-2}=\frac{3}{2} . m_{B C}=-\frac{2}{3}$
PTS: 4
REF: 061334ge
STA: G.G. 69
ANS:

PTS: 2
REF: 011331ge
STA: G.G. 23
TOP: Locus
458 ANS:
16.7. $\frac{x}{25}=\frac{12}{18}$
$18 x=300$ $x \approx 16.7$

PTS: 2
REF: 061133ge
STA: G.G. 46
ANS:
25. $d=\sqrt{(-3-4)^{2}+(1-25)^{2}}=\sqrt{49+576}=\sqrt{625}=25$.

PTS: 2
REF: fall0831ge STA: G.G. 67
TOP: Distance
KEY: general
ANS:

PTS: 2
REF: 061332ge
STA: G.G. 20

TOP: Constructions

461 ANS:
The medians of a triangle are not concurrent. False.
PTS: 2 REF: 061129ge STA: G.G. 24 TOP: Negations 462 ANS:
67. $\frac{180-46}{2}=67$

PTS: 2
REF: 011029ge STA: G.G. 31
ANS:
$180-(90+63)=27$
PTS: 2
REF: 061230ge
STA: G.G. 35
TOP: Parallel Lines and Transversals

PTS: 2
REF: 011330ge
STA: G.G. 50
TOP: Tangents
KEY: common tangency
465
ANS:
$L=2 \pi r h=2 \pi \cdot 3 \cdot 7=42 \pi$
PTS: 2
REF: 061329ge
ANS:

PTS: 2
REF: 011230ge
STA: G.G. 22
TOP: Locus
467 ANS:

PTS: 2
REF: 081032ge
STA: G.G. 20

TOP: Constructions

468 ANS:

PTS: 2 REF: 061234ge STA: G.G. 23 TOP: Locus ANS:
$V=\pi r^{2} h=\pi(5)^{2} \cdot 7=175 \pi$
PTS: 2 REF: 081231ge STA: G.G. 14 TOP: Volume
470 ANS:
$y=\frac{2}{3} x-9$. The slope of $2 x-3 y=11$ is $-\frac{A}{B}=\frac{-2}{-3}=\frac{2}{3} .-5=\left(\frac{2}{3}\right)(6)+b$

$$
\begin{aligned}
-5 & =4+b \\
b & =-9
\end{aligned}
$$

PTS: 2 REF: 080931ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
471 ANS:

PTS: 2
REF: 011130ge
STA: G.G. 54
TOP: Reflections
KEY: grids
472 ANS:
4. $l_{1} w_{1} h_{1}=l_{2} w_{2} h_{2}$

$$
10 \times 2 \times h=5 \times w_{2} \times h
$$

$$
20=5 w_{2}
$$

$$
w_{2}=4
$$

PTS: 2
REF: 011030ge
STA: G.G. 11
TOP: Volume

473 ANS:
$A^{\prime}(2,2), B^{\prime}(3,0), C(1,-1)$
PTS: 2 REF: 081329ge STA: G.G. 58 TOP: Dilations
474 ANS:

PTS: 2
REF: 011233ge
STA: G.G. 17
TOP: Constructions
475 ANS:
$M=\left(\frac{3+3}{2}, \frac{-1+5}{2}\right)=(3,2) . y=2$.
PTS: 2 REF: 011334ge STA: G.G. 68 TOP: Perpendicular Bisector
476 ANS:
$\sqrt{(7-3)^{2}+(-8-0)^{2}}=\sqrt{16+64}=\sqrt{80}=4 \sqrt{5}$
PTS: 2
REF: 061331ge
STA: G.G. 69
TOP: Triangles in the Coordinate Plane
477 ANS:

PTS: 2
REF: 081330ge
STA: G.G. 17
TOP: Constructions
ANS:
2016. $V=\frac{1}{3} B h=\frac{1}{3} s^{2} h=\frac{1}{3} 12^{2} \cdot 42=2016$

PTS: 2
REF: 080930ge
STA: G.G. 13
TOP: Volume
479 ANS:
$y=-2 x+14$. The slope of $2 x+y=3$ is $\frac{-A}{B}=\frac{-2}{1}=-2 . \quad y=m x+b \quad$.

$$
\begin{aligned}
& 4=(-2)(5)+b \\
& b=14
\end{aligned}
$$

PTS: 2
REF: 060931ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines

480
ANS:
$\sqrt{(-1-3)^{2}+(4-(-2))^{2}}=\sqrt{16+36}=\sqrt{52}=\sqrt{4} \sqrt{13}=2 \sqrt{13}$
PTS: 2 REF: 081331ge STA: G.G. 67 TOP: Distance
ANS:
$\sqrt{(-4-2)^{2}+(3-5)^{2}}=\sqrt{36+4}=\sqrt{40}=\sqrt{4} \sqrt{10}=2 \sqrt{10}$.
PTS: 2 REF: 081232ge STA: G.G. 67 TOP: Distance
482
ANS:
Distance is preserved after the reflection. $2 x+13=9 x-8$

$$
\begin{aligned}
21 & =7 x \\
3 & =x
\end{aligned}
$$

PTS: 2
REF: 011329ge
STA: G.G. 55
TOP: Properties of Transformations

$$
\begin{aligned}
2 \sqrt{3} \cdot & x^{2}=3 \cdot 4 \\
x & =\sqrt{12}=2 \sqrt{3}
\end{aligned}
$$

PTS: 2 REF: fall0829ge STA: G.G. 47 TOP: Similarity
KEY: altitude
ANS:
$\angle A C B \cong \angle A E D$ is given. $\angle A \cong \angle A$ because of the reflexive property. Therefore $\triangle A B C \sim \triangle A D E$ because of AA.
PTS: 2
REF: 081133ge
STA: G.G. 44
TOP: Similarity Proofs
ANS:

PTS: 2
REF: 061130ge
STA: G.G. 20
TOP: Constructions

486
ANS:
$R^{\prime}(-3,-2), S^{\prime}(-4,4)$, and $T^{\prime}(2,2)$.
PTS: 2 REF: 011232ge STA: G.G. 54 TOP: Rotations
487 ANS:

PTS: 2 REF: 011032ge STA: G.G. 20 TOP: Constructions
488 ANS:

PTS: 2
REF: 061032ge
STA: G.G. 54
TOP: Reflections
KEY: grids
489
ANS:
3. The non-parallel sides of an isosceles trapezoid are congruent. $2 x+5=3 x+2$

$$
x=3
$$

PTS: 2

ANS:

PTS: 2
REF: 081334ge
STA: G.G. 22
TOP: Locus

491 ANS:
True. The first statement is true and the second statement is false. In a disjunction, if either statement is true, the disjunction is true.

PTS: 2 REF: 060933ge STA: G.G. 25 TOP: Compound Statements
KEY: disjunction
492 ANS:
70. $3 x+5+3 x+5+2 x+2 x=180$

$$
\begin{aligned}
10 x+10 & =360 \\
10 x & =350 \\
x & =35 \\
2 x & =70
\end{aligned}
$$

PTS: 2
REF: 081029ge
STA: G.G. 40
TOP: Trapezoids
493 ANS:

PTS: 2
REF: 011133ge
STA: G.G. 17
TOP: Constructions
494
ANS:
$\frac{180-80}{2}=50$

PTS: 2
REF: 081129ge
STA: G.G. 52
TOP: Chords
495 ANS:
Contrapositive-If two angles of a triangle are not congruent, the sides opposite those angles are not congruent.
PTS: 2 REF: fall0834ge STA: G.G. 26 TOP: Conditional Statements
ANS:
$(2 a-3,3 b+2) .\left(\frac{3 a+a-6}{2}, \frac{2 b-1+4 b+5}{2}\right)=\left(\frac{4 a-6}{2}, \frac{6 b+4}{2}\right)=(2 a-3,3 b+2)$
PTS: 2 REF: 061134ge STA: G.G. 66 TOP: Midpoint
497 ANS:
$A=2 B-15 \quad .2 B-15+B+2 B-15+B=180$
$C=A+B$
$6 B-30=180$
$C=2 B-15+B$

$$
\begin{aligned}
6 B & =210 \\
B & =35
\end{aligned}
$$

PTS: 2
REF: 081332ge STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles

ANS:
34. $2 x-12+x+90=180$

$$
\begin{aligned}
3 x+78 & =90 \\
3 x & =102 \\
x & =34
\end{aligned}
$$

PTS: 2 REF: 061031ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles 499 ANS:

Yes. A reflection is an isometry.
PTS: 2
REF: 061132 ge
STA: G.G. 56
TOP: Identifying Transformations
500
ANS:
$(5-2) 180=540 . \frac{540}{5}=108$ interior. $180-108=72$ exterior

PTS: 2
REF: 011131ge STA: G.G. 37
TOP: Interior and Exterior Angles of Polygons
501 ANS:
$L=2 \pi r h=2 \pi \cdot 12 \cdot 22 \approx 1659 . \frac{1659}{600} \approx 2.8 .3$ cans are needed.

PTS: 2
REF: 061233ge
STA: G.G. 14
TOP: Lateral Area
ANS:
$(6,-4) . \quad C_{x}=\frac{Q_{x}+R_{x}}{2} . C_{y}=\frac{Q_{y}+R_{y}}{2}$.

$$
\begin{array}{rlrl}
3.5 & =\frac{1+R_{x}}{2} & 2 & =\frac{8+R_{y}}{2} \\
7 & =1+R_{x} & 4 & =8+R_{y} \\
6 & =R_{x} & -4 & =R_{y}
\end{array}
$$

PTS: 2
REF: 011031ge
STA: G.G. 66
TOP: Midpoint
KEY: graph
503 ANS:
22.4 .

$$
\begin{aligned}
V & =\pi r^{2} h \\
12566.4 & =\pi r^{2} \cdot 8 \\
r^{2} & =\frac{12566.4}{8 \pi} \\
r & \approx 22.4
\end{aligned}
$$

PTS: 2
REF: fall0833ge
STA: G.G. 14
TOP: Volume

504 ANS:
20. $5 x+10=4 x+30$

$$
x=20
$$

PTS: 2
REF: 060934ge
STA: G.G. 45
TOP: Similarity
KEY: basic
505

$$
A^{\prime}(-2,1), B^{\prime}(-3,-4) \text {, and } C^{\prime}(5,-3)
$$

PTS: 2
REF: 081230ge
STA: G.G. 54
TOP: Rotations
506 ANS:
$\overline{A C} . \mathrm{m} \angle B C A=63$ and $\mathrm{m} \angle A B C=80 . \overline{A C}$ is the longest side as it is opposite the largest angle.
PTS: 2 REF: 080934ge STA: G.G. 34 TOP: Angle Side Relationship
507 ANS:
26. $x+3 x+5 x-54=180$

$$
\begin{aligned}
9 x & =234 \\
x & =26
\end{aligned}
$$

PTS: 2 REF: 080933ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles 508

ANS:
$(n-2) 180=(8-2) 180=1080 \cdot \frac{1080}{8}=135$.
PTS: 2 REF: 061330ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons 509 ANS:

PTS: 2
REF: 061232ge
STA: G.G. 17
TOP: Constructions

510 ANS:

PTS: 2
REF: 060932ge
STA: G.G. 22
TOP: Locus

Geometry 4 Point Regents Exam Questions

Answer Section
511 ANS:

$$
\begin{aligned}
2(y+10) & =4 y-20 . \overline{D F}=y+10=20+10=30 . \overline{O A}=\overline{O D}=\sqrt{16^{2}+30^{2}}=34 \\
2 y+20 & =4 y-20 \\
40 & =2 y \\
20 & =y
\end{aligned}
$$

PTS: 4
REF: 061336ge
STA: G.G. 49
TOP: Chords
512 ANS:

PTS: 4 REF: 061137ge STA: G.G. 70 TOP: Quadratic-Linear Systems
513 ANS:

PTS: 4
REF: 081237ge
STA: G.G. 70
TOP: Quadratic-Linear Systems

514 ANS:
$2 \quad \frac{x+2}{x}=\frac{x+6}{4}$

$$
x^{2}+6 x=4 x+8
$$

$$
x^{2}+2 x-8=0
$$

$$
(x+4)(x-2)=0
$$

$$
x=2
$$

PTS: 4
REF: 081137ge
STA: G.G. 45
TOP: Similarity
KEY: basic
515 ANS:

$$
A^{\prime \prime}(11,1), B^{\prime \prime}(3,7), C^{\prime \prime}(3,1)
$$

PTS: 4
REF: 011336ge STA: G.G. 58
TOP: Compositions of Transformations
$\angle D, \angle G$ and 24° or $\angle E, \angle F$ and $84^{\circ} . \mathrm{m} \overparen{F E}=\frac{2}{15} \times 360=48$. Since the chords forming $\angle D$ and $\angle G$ are intercepted by $\overparen{F E}$, their measure is $24^{\circ} . \mathrm{m} \overparen{G D}=\frac{7}{15} \times 360=168$. Since the chords forming $\angle E$ and $\angle F$ are intercepted by $\overparen{G D}$, their measure is 84°.

PTS: 4
REF: fall0836ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inscribed
517 ANS:
$15+5 \sqrt{5}$.

PTS: 4
REF: 060936ge
STA: G.G. 69
TOP: Triangles in the Coordinate Plane

ANS:
Yes, $\mathrm{m} \angle A B D=\mathrm{m} \angle B D C=44180-(93+43)=44 x+19+2 x+6+3 x+5=180$. Because alternate interior

$$
\begin{aligned}
6 x+30 & =180 \\
6 x & =150 \\
x & =25 \\
x+19 & =44
\end{aligned}
$$

angles $\angle A B D$ and $\angle C D B$ are congruent, $\overline{A B}$ is parallel to $\overline{D C}$.
PTS: 4 REF: 081035ge STA: G.G. 35 TOP: Parallel Lines and Transversals

PTS: 4
REF: 060937ge
STA: G.G. 54
TOP: Compositions of Transformations KEY: grids
520 ANS:
2.4. $5 a=4^{2} \quad 5 b=3^{2} \quad h^{2}=a b$

$$
\begin{array}{ll}
a=3.2 \quad b=1.8 & h^{2}=3.2 \cdot 1.8 \\
& h=\sqrt{5.76}=2.4
\end{array}
$$

PTS: 4
REF: 081037ge
STA: G.G. 47
TOP: Similarity
KEY: altitude
ANS:
Midpoint: $\left(\frac{-4+4}{2}, \frac{2+(-4)}{2}\right)=(0,-1)$. Distance: $d=\sqrt{(-4-4)^{2}+(2-(-4))^{2}}=\sqrt{100}=10$
$r=5$
$r^{2}=25$
$x^{2}+(y+1)^{2}=25$
PTS: 4 REF: 061037ge STA: G.G. 71 TOP: Equations of Circles

522 ANS:

No, $\angle K G H$ is not congruent to $\angle G K H$.

PTS: 2
REF: 081135ge
STA: G.G. 31
TOP: Isosceles Triangle Theorem
523 ANS:

$$
G^{\prime \prime}(3,3), H^{\prime \prime}(7,7), S^{\prime \prime}(-1,9)
$$

PTS: 4
REF: 081136ge
STA: G.G. 58
TOP: Compositions of Transformations
524 ANS:
$\overline{B D} \cong \overline{D B}$ (Reflexive Property); $\triangle A B D \cong \triangle C D B(\mathrm{SSS}) ; \angle B D C \cong \angle A B D$ (CPCTC).

PTS: 4
REF: 061035ge
STA: G.G. 27
TOP: Quadrilateral Proofs
525 ANS:
11. $x^{2}+6 x=x+14.6(2)-1=11$
$x^{2}+5 x-14=0$
$(x+7)(x-2)=0$
$x=2$
PTS: 2
REF: 081235ge
STA: G.G. 38
TOP: Parallelograms

526
ANS:

$$
\begin{aligned}
V & =\pi r^{2} h \quad . L=2 \pi r h=2 \pi \cdot 5 \sqrt{2} \cdot 12 \approx 533.1 \\
600 \pi & =\pi r^{2} \cdot 12 \\
50 & =r^{2} \\
\sqrt{25} \sqrt{2} & =r \\
5 \sqrt{2} & =r
\end{aligned}
$$

PTS: 4
REF: 011236ge
STA: G.G. 14
TOP: Volume

PTS: 4
REF: 011135ge
STA: G.G. 23
TOP: Locus
528 ANS:

$$
\begin{aligned}
& y=\frac{2}{3} x+1.2 y+3 x=6 \quad . y=m x+b \\
& 2 y=-3 x+6 \quad 5=\frac{2}{3}(6)+b \\
& y=-\frac{3}{2} x+3 \quad 5=4+b \\
& m=-\frac{3}{2} \quad 1=b \\
& m_{\perp}=\frac{2}{3} \quad y=\frac{2}{3} x+1
\end{aligned}
$$

PTS: 4
REF: 061036ge STA: G.G. 64
ANS:

PTS: 4
REF: 080937ge
STA: G.G. 55
TOP: Properties of Transformations

530 ANS:
$12 x-4+180-6 x+6 x+7 x+13=360.16 y+1=\frac{12 y+1+18 y+6}{2}$

$$
\begin{array}{rlrl}
19 x+189 & =360 & 32 y+2 & =30 y+7 \\
19 x & =171 & 2 y & =5 \\
x & =9 & y & =\frac{5}{2}
\end{array}
$$

PTS: 4 REF: 081337ge STA: G.G. 40 TOP: Trapezoids
531 ANS:

PTS: 4
REF: fall0835ge STA: G.G. 42 TOP: Midsegments
532 ANS:
$\overline{J K} \cong \overline{L M}$ because opposite sides of a parallelogram are congruent. $\overline{L M} \cong \overline{L N}$ because of the Isosceles Triangle Theorem. $\overline{L M} \cong \overline{J M}$ because of the transitive property. $J K L M$ is a rhombus because all sides are congruent.

PTS: 4 REF: 011036ge STA: G.G. 41 TOP: Special Quadrilaterals
533 ANS:

PTS: 4
REF: 011037ge
STA: G.G. 23
TOP: Locus

534 ANS:

$$
\begin{aligned}
x^{2}-8 x & =5 x+30 \cdot \mathrm{~m} \angle C=4(15)-5=55 \\
x^{2}-13 x-30 & =0 \\
(x-15)(x+2) & =0 \\
x & =15
\end{aligned}
$$

PTS: 4
REF: 061337ge
STA: G.G. 45
TOP: Similarity
KEY: basic
535 ANS:
18. If the ratio of $T A$ to $A C$ is $1: 3$, the ratio of $T E$ to $E S$ is also $1: 3 . \quad x+3 x=24.3(6)=18$.

$$
x=6
$$

PTS: 4
REF: 060935ge STA: G.G. 50
TOP: Tangents
KEY: common tangency
536 ANS:

PTS: 4 REF: fall0837ge STA: G.G. 23 TOP: Locus
537 ANS:
32. $\frac{16}{20}=\frac{x-3}{x+5} \cdot \overline{A C}=x-3=35-3=32$
$16 x+80=20 x-60$
$140=4 x$
$35=x$
PTS: 4 REF: 011137ge STA: G.G. 46 TOP: Side Splitter Theorem

538
ANS:

$$
M^{\prime \prime}(1,-2), A^{\prime \prime}(6,-2), T^{\prime \prime}(5,-4), H^{\prime \prime}(3,-4)
$$

PTS: 4 REF: 081336ge STA: G.G. 58 TOP: Compositions of Transformations
KEY: grids
539 ANS:
$\angle B$ and $\angle E$ are right angles because of the definition of perpendicular lines. $\angle B \cong \angle E$ because all right angles are congruent. $\angle B F D$ and $\angle D F E$ are supplementary and $\angle E C A$ and $\angle A C B$ are supplementary because of the definition of supplementary angles. $\angle D F E \cong \angle A C B$ because angles supplementary to congruent angles are congruent. $\triangle A B C \sim \triangle D E F$ because of AA.

PTS: 4 REF: 011136ge STA: G.G. 44 TOP: Similarity Proofs
540 ANS:
$\angle B$ and $\angle C$ are right angles because perpendicular lines form right angles. $\angle B \cong \angle C$ because all right angles are congruent. $\angle A E B \cong \angle D E C$ because vertical angles are congruent. $\triangle A B E \cong \triangle D C E$ because of ASA. $\overline{A B} \cong \overline{D C}$ because CPCTC.

PTS: 4 REF: 061235ge STA: G.G. 27 TOP: Triangle Proofs

ANS:

$x^{2}+12+11 x+5+13 x-17=180 . \mathrm{m} \angle A=6^{2}+12=48 . \angle B$ is the largest angle, so $\overline{A C}$ in the longest side.

$$
\begin{array}{rlrl}
x^{2}+24 x-180 & =0 & \mathrm{~m} \angle B=11(6)+5=71 \\
(x+30)(x-6) & =0 & \mathrm{~m} \angle C=13(6)-7=61 \\
x & =6 & &
\end{array}
$$

PTS: 4
REF: 011337ge
STA: G.G. 34
TOP: Angle Side Relationship
$M\left(\frac{-7+5}{2}, \frac{2+4}{2}\right)=M(-1,3) . N\left(\frac{3+5}{2}, \frac{-4+4}{2}\right)=N(4,0) . \overline{M N}$ is a midsegment.
PTS: 4
REF: 011237ge
STA: G.G. 42
TOP: Midsegments

543 ANS:

$$
S^{\prime \prime}(5,-3), W^{\prime \prime}(3,-4), A^{\prime \prime}(2,1), \text { and } N^{\prime \prime}(4,2)
$$

PTS: 4
REF: 061335ge STA: G.G. 58
TOP: Compositions of Transformations
KEY: grids
544 ANS:
$L=2 \pi r h=2 \pi \cdot 3 \cdot 5 \approx 94.25 . V=\pi r^{2} h=\pi(3)^{2}(5) \approx 141.37$
PTS: 4 REF: 011335ge STA: G.G. 14 TOP: Volume
545 ANS:
$\triangle A B C, \overline{B D}$ bisects $\angle A B C, \overline{B D} \perp \overline{A C}$ (Given). $\angle C B D \cong \angle A B D$ (Definition of angle bisector). $\overline{B D} \cong \overline{B D}$ (Reflexive property). $\angle C D B$ and $\angle A D B$ are right angles (Definition of perpendicular). $\angle C D B \cong \angle A D B$ (All right angles are congruent). $\triangle C D B \cong \triangle A D B$ (SAS). $\overline{A B} \cong \overline{C B}$ (CPCTC).

PTS: 4 REF: 081335ge STA: G.G. 27 TOP: Triangle Proofs
546 ANS:
36 , because a dilation does not affect angle measure. 10 , because a dilation does affect distance.
PTS: 4 REF: 011035ge STA: G.G. 59 TOP: Properties of Transformations
547 ANS:

PTS: 4 REF: 080936ge STA: G.G. 23 TOP: Locus

ANS:

$$
\begin{array}{rlrl}
x(x+2) & =12 \cdot 2 . \overline{R T}=6+4=10 . y \cdot y & =18 \cdot 8 \\
x^{2}+2 x-24 & =0 & y^{2} & =144 \\
(x+6)(x-4) & =0 & y & =12 \\
x & =4 & &
\end{array}
$$

PTS: 4
REF: 061237ge STA: G.G. 53
TOP: Segments Intercepted by Circle KEY: tangent and secant
ANS:
$y=\frac{4}{3} x-6 . \quad M_{x}=\frac{-1+7}{2}=3 \quad$ The perpendicular bisector goes through $(3,-2)$ and has a slope of $\frac{4}{3}$.

$$
\begin{aligned}
& M_{y}=\frac{1+(-5)}{2}=-2 \\
& m=\frac{1-(-5)}{-1-7}=-\frac{3}{4}
\end{aligned}
$$

$y-y_{M}=m\left(x-x_{M}\right)$.

$$
y-1=\frac{4}{3}(x-2)
$$

PTS: 4
REF: 080935 ge
STA: G.G. 68
TOP: Perpendicular Bisector

550 ANS:

$A^{\prime \prime}(8,2), B^{\prime \prime}(2,0), C^{\prime \prime}(6,-8)$
PTS: 4
ANS:
30. $3 x+4 x+5 x=360 . \mathrm{m} \overparen{\mathrm{LN}}: \overparen{\mathrm{m} K}: \overparen{\mathrm{m} K L}=90: 120: 150 . \frac{150-90}{2}=30$

$$
x=20
$$

PTS: 4 REF: 061136ge STA: G.G.51 TOP: Arcs Determined by Angles
KEY: outside circle
ANS:

PTS: 4
REF: 081236ge
STA: G.G. 58
TOP: Compositions of Transformations KEY: grids
ANS:
$A^{\prime}(7,-4), B^{\prime}(7,-1) . C^{\prime}(9,-4)$. The areas are equal because translations preserve distance.

PTS: 4 REF: 011235ge STA: G.G. 55 TOP: Properties of Transformations

554 ANS:

PTS: 4 REF: 061135ge STA: G.G. 23 TOP: Locus
555 ANS:

$$
A^{\prime}(5,-4), B^{\prime}(5,1), C^{\prime}(2,1), D^{\prime}(2,-6) ; A^{\prime \prime}(5,4), B^{\prime \prime}(5,-1), C^{\prime \prime}(2,-1), D^{\prime \prime}(2,6)
$$

PTS: 4
REF: 061236ge STA: G.G. 58
TOP: Compositions of Transformations KEY: grids

Geometry 6 Point Regents Exam Questions Answer Section

556 ANS:

PTS: 6
REF: 011038ge
STA: G.G. 70
TOP: Quadratic-Linear Systems
557 ANS:

$\overline{F E} \cong \overline{F E}$ (Reflexive Property); $\overline{A E}-\overline{F E} \cong \overline{F C}-\overline{E F}$ (Line Segment Subtraction Theorem); $\overline{A F} \cong \overline{C E}$ (Substitution); $\angle B F A \cong \angle D E C$ (All right angles are congruent); $\triangle B F A \cong \triangle D E C$ (AAS); $\overline{A B} \cong \overline{C D}$ and $\overline{B F} \cong \overline{D E}$ (CPCTC); $\angle B F C \cong \angle D E A$ (All right angles are congruent); $\triangle B F C \cong \triangle D E A$ (SAS); $\overline{A D} \cong \overline{C B}$ (CPCTC); $A B C D$ is a parallelogram (opposite sides of quadrilateral $A B C D$ are congruent)

PTS: 6 REF: 080938ge STA: G.G. 41 TOP: Special Quadrilaterals
$\overline{A C} \cong \overline{E C}$ and $\overline{D C} \cong \overline{B C}$ because of the definition of midpoint. $\angle A C B \cong \angle E C D$ because of vertical angles.
$\triangle A B C \cong \triangle E D C$ because of SAS. $\angle C D E \cong \angle C B A$ because of CPCTC. $\overline{B D}$ is a transversal intersecting $\overline{A B}$ and
$\overline{E D}$. Therefore $\overline{A B} \| \overline{D E}$ because $\angle C D E$ and $\angle C B A$ are congruent alternate interior angles.

PTS: 6 REF: 060938ge STA: G.G. 27 TOP: Triangle Proofs

559
$8 x-5=3 x+30.4 z-8=3 z .9 y+8+5 y-2=90$.
$5 x=35 \quad z=8 \quad 14 y+6=90$
$x=7$
$14 y+6=90$
$14 y=84$
$y=6$
PTS: 6 REF: 061038ge STA: G.G. 39 TOP: Special Parallelograms
ANS:

ANS:
$52,40,80.360-(56+112)=192 \cdot \frac{192-112}{2}=40 . \frac{112+48}{2}=80$

$$
\begin{aligned}
& \frac{1}{4} \times 192=48 \\
& \frac{56+48}{2}=52
\end{aligned}
$$

PTS: 6 REF: 081238ge STA: G.G. 51 TOP: Arcs Determined by Angles KEY: mixed
ANS:

The length of each side of quadrilateral is 5 . Since each side is congruent, quadrilateral $M A T H$ is a rhombus. The slope of $\overline{M H}$ is 0 and the slope of $\overline{H T}$ is $-\frac{4}{3}$. Since the slopes are not negative reciprocals, the sides are not perpendicular and do not form rights angles. Since adjacent sides are not perpendicular, quadrilateral $M A T H$ is not a square.

PTS: 6 REF: 011138ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane

ANS:
Quadrilateral $A B C D, \overline{A D} \cong \overline{B C}$ and $\angle D A E \cong \angle B C E$ are given. $\overline{A D} \| \overline{B C}$ because if two lines are cut by a transversal so that a pair of alternate interior angles are congruent, the lines are parallel. $A B C D$ is a parallelogram because if one pair of opposite sides of a quadrilateral are both congruent and parallel, the quadrilateral is a parallelogram. $\overline{A E} \cong \overline{C E}$ because the diagonals of a parallelogram bisect each other. $\angle F E A \cong \angle G E C$ as vertical angles. $\triangle A E F \cong \triangle C E G$ by ASA.

PTS: 6 REF: 011238ge STA: G.G. 27 TOP: Quadrilateral Proofs
ANS:
$M\left(\frac{-7+-3}{2}, \frac{4+6}{2}\right)=M(-5,5) \cdot m_{M N}=\frac{5-3}{-5-0}=\frac{2}{-5}$. Since both opposite sides have equal slopes and are
$N\left(\frac{-3+3}{2}, \frac{6+0}{2}\right)=N(0,3) \quad m_{P Q}=\frac{-4--2}{2--3}=\frac{-2}{5}$
$P\left(\frac{3+1}{2}, \frac{0+-8}{2}\right)=P(2,-4) \quad m_{\overline{N A}}=\frac{3--4}{0-2}=\frac{7}{-2}$
$Q\left(\frac{-7+1}{2}, \frac{4+-8}{2}\right)=Q(-3,-2)^{m \overline{Q M}=\frac{-2-5}{-3--5}=\frac{-7}{2}}$
parallel, $M N P Q$ is a parallelogram. $\overline{M N}=\sqrt{(-5-0)^{2}+(5-3)^{2}}=\sqrt{29} \cdot \overline{M N}$ is not congruent to $\overline{N P}$, so $M N P Q$

$$
\overline{N A}=\sqrt{(0-2)^{2}+(3--4)^{2}}=\sqrt{53}
$$

is not a rhombus since not all sides are congruent.

PTS: 6 REF: 081338ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane
564 ANS:

$\overline{A B} \| \overline{C D}$ and $\overline{A D} \| \overline{C B}$ because their slopes are equal. $A B C D$ is a parallelogram
because opposite side are parallel. $\overline{A B} \neq \overline{B C} . A B C D$ is not a rhombus because all sides are not equal. $\overline{A B} \sim \perp \overline{B C}$ because their slopes are not opposite reciprocals. $A B C D$ is not a rectangle because $\angle A B C$ is not a right angle.

PTS: 4
REF: 081038ge STA: G.G. 69
TOP: Quadrilaterals in the Coordinate Plane

PTS: 6
REF: fall0838ge
STA: G.G. 27
ANS:
Rectangle $A B C D$ with points E and F on side $\overline{A B}$, segments $C E$ and $D F$ intersect at G, and $\angle A D G \cong \angle B C E$ are given. $\overline{A D} \cong \overline{B C}$ because opposite sides of a rectangle are congruent. $\angle A$ and $\angle B$ are right angles and congruent because all angles of a rectangle are right and congruent. $\triangle A D F \cong \triangle B C E$ by ASA. $\overline{A F} \cong \overline{B E}$ per CPCTC. $\overline{E F} \cong \overline{F E}$ under the Reflexive Property. $\overline{A F}-\overline{E F} \cong \overline{B E}-\overline{F E}$ using the Subtraction Property of Segments. $\overline{A E} \cong \overline{B F}$ because of the Definition of Segments.

PTS: 6 REF: 011338ge STA: G.G. 27 TOP: Quadrilateral Proofs
ANS:

PTS: 6 REF: 061238ge STA: G.G. 70 TOP: Quadratic-Linear Systems
ANS:
$\Delta M A H, \overline{M H} \cong \overline{A H}$ and medians $\overline{A B}$ and $\overline{M T}$ are given. $\overline{M A} \cong \overline{A M}$ (reflexive property). $\triangle M A H$ is an isosceles triangle (definition of isosceles triangle). $\angle A M B \cong \angle M A T$ (isosceles triangle theorem). B is the midpoint of $\overline{M H}$ and T is the midpoint of $\overline{A H}$ (definition of median). $\mathrm{m} \overline{M B}=\frac{1}{2} \mathrm{~m} \overline{M H}$ and $\mathrm{m} \overline{A T}=\frac{1}{2} \mathrm{~m} \overline{A H}$ (definition of midpoint). $\overline{M B} \cong \overline{A T}$ (multiplication postulate). $\triangle M B A \cong \triangle A T M$ (SAS). $\angle M B A \cong \angle A T M$ (CPCTC).

PTS: 6
REF: 061338ge
STA: G.G. 27
TOP: Triangle Proofs

ANS:
$m_{\overline{A B}}=\left(\frac{-6+2}{2}, \frac{-2+8}{2}\right)=D(2,3) m_{B C}=\left(\frac{2+6}{2}, \frac{8+-2}{2}\right)=E(4,3) F(0,-2)$. To prove that $A D E F$ is a parallelogram, show that both pairs of opposite sides of the parallelogram are parallel by showing the opposite sides have the same slope: $\mathrm{m}_{A D}=\frac{3--2}{-2--6}=\frac{5}{4} \overline{A F} \| \overline{D E}$ because all horizontal lines have the same slope. $A D E F$

$$
\mathrm{m}_{F E}=\frac{3--2}{4-0}=\frac{5}{4}
$$

is not a rhombus because not all sides are congruent. $A D=\sqrt{5^{2}+4^{2}}=\sqrt{41} \quad A F=6$
PTS: 6
REF: 081138ge STA: G.G. 69
TOP: Quadrilaterals in the Coordinate Plane

