JMAP
 REGENTS BY PERFORMANCE INDICATOR: TOPIC

NY Integrated Algebra Regents Exam Questions from Fall 2007 to August 2013 Sorted by PI: Topic
www.jmap.org

TABLE OF CONTENTS

TOPIC	PI: SUBTOPIC QUESTION NUMBER
NUMBERS, OPERATIONS AND PROPERTIES	
GRAPHS AND STATISTICS	A.S.5, 9: Frequency Histograms, Bar Graphs and Tables48-55 A.S.5, 6: Box-and-Whisker Plots...56-68 A.S.11: Quartiles and Percentiles ...569-70 A.S.7-8, 12, 17: Scatter Plots A.S.4, 16: Central Tendency. \qquad A.S.16: Average Known with Missing Data A.S.1-3, 13-14: Analysis of Data..125-141 A.M.3: Error
PROBABILITY	
EXPRESSIONS AND EQUATIONS	
RATE	
LINEAR EQUATIONS	
INEQUALITIES	A.A.24: Solving Inequalities ...336-355 A.A.21: Interpreting Solutions A.A.4-6: Modeling Inequalities ... A.G.6: Linear Inequalities
ABSOLUTE VALUE	A.G.4-5: Graphing Absolute Value Functions358-364
QUADRATICS	

	A.G.10: Identifying the Vertex of a Quadratic Given Graph.....412-420 A.A.41: Identifying the Vertex of Quadratic Given Equation ...421-427
SYSTEMS	A.A.10, G.7: Solving Linear Systems \qquad .428-440 A.A.7: Writing Linear Systems \qquad .441-453 A.A.40, G.7: Systems of Linear Inequalities. \qquad .454-464 A.A.11, G.9: Quadratic-Linear Systems. \qquad .465-482
POWERS	
RADICALS	A.N.2: Simplifying Radicals..549-555 A.N.3: Operations with Radicals
RATIONALS	
FUNCTIONS	
TRIANGLES	A.A.45: Pythagorean Theorem ...630-641
TRIGONOMETRY	A.A.42: Trigonometric Ratios ..653-652 A.A.44: Using Trigonometry to Find a Side..................661-671 A.A.44: Using Trigonometry to Find an Angle................6
MEASURING IN THE PLANE AND SPACE	A.G.1: Compositions of Polygons and Circles ..

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic

NUMBERS, OPERATIONS
AND PROPERTIES
A.N.6: EVALUATING EXPRESSIONS

1 What is the value of $\left|\frac{4(-6)+18}{4!}\right|$?
$1 \quad \frac{1}{4}$
$2-\frac{1}{4}$
312
$4-12$

2 The value of the expression $6!+\frac{5!(3!)}{4!}-10$ is
150
2102
3740
4750

3 What is the value of the expression $|-5 x+12|$ when $x=5$?
$1-37$
$2-13$
313
437

4 The value of the expression $-|a-b|$ when $a=7$ and $b=-3$ is
$1-10$
$2 \quad 10$
$3-4$
44

5 If $x=-3$, what is the value of $|x-4|-x^{2}$?
1 -8
$2-2$
37
416

6 What is the value of the expression $-3 x^{2} y+4 x$ when $x=-4$ and $y=2$?
$1-112$
$2-80$
380
$4 \quad 272$

7 What is the value of the expression $\left(a^{3}+b^{0}\right)^{2}$ when $a=-2$ and $b=4$?
$1 \quad 64$
249
$3-49$
4 -64

A.N.1: IDENTIFYING PROPERTIES

8 Which property is illustrated by the equation $a x+a y=a(x+y)$?
1 associative
2 commutative
3 distributive
4 identity

9 The statement $2+0=2$ is an example of the use of which property of real numbers?
1 associative
2 additive identity
3 additive inverse
4 distributive

10 The equation $3(4 x)=(4 x) 3$ illustrates which property?
1 commutative
2 associative
3 distributive
4 multiplicative inverse

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

11 A method for solving $5(x-2)-2(x-5)=9$ is shown below. Identify the property used to obtain each of the two indicated steps.
$5(x-2)-2(x-5)=9$
(1) $5 x-10-2 x+10=9$
(1)
(2) \qquad

$$
\begin{aligned}
3 x+0 & =9 \\
3 x & =9 \\
x & =3
\end{aligned}
$$

A.N.1: PROPERTIES OF REALS

12 What is the additive inverse of the expression
$a-b$?
$1 a+b$
$2 a-b$
$3-a+b$
$4-a-b$

13 Which statement illustrates the additive identity property?
$16+0=6$
$2-6+6=0$
$3 \quad 4(6+3)=4(6)+4(3)$
$4 \quad(4+6)+3=4+(6+3)$

14 Which equation illustrates the associative property?
$1 x+y+z=x+y+z$
$2 x(y+z)=x y+x z$
$3 \quad x+y+z=z+y+x$
$4 \quad(x+y)+z=x+(y+z)$

15 Which equation is an example of the use of the associative property of addition?
$1 \quad x+7=7+x$
$23(x+y)=3 x+3 y$
$3 \quad(x+y)+3=x+(y+3)$
$4 \quad 3+(x+y)=(x+y)+3$

A.A.29: SET THEORY

17 Which interval notation represents the set of all numbers from 2 through 7, inclusive?
1 (2,7]
$2(2,7)$
$3 \quad[2,7)$
$4 \quad[2,7]$

18 Which interval notation represents the set of all numbers greater than or equal to 5 and less than 12 ?
$1 \quad[5,12)$
$2(5,12]$
$3(5,12)$
$4 \quad[5,12]$

19 Which interval notation represents the set of all real numbers greater than 2 and less than or equal to 20 ?
$1(2,20)$
$2(2,20]$
$3 \quad[2,20)$
4 [2,20]

20 In interval notation, the set of all real numbers greater than -6 and less than or equal to 14 is represented by
$1(-6,14)$
$2 \quad[-6,14)$
$3(-6,14]$
4 [-6,14]

21 Which interval notation describes the set $S=\{x \mid 1 \leq x<10\}$?
1 [1,10]
$2(1,10]$
$3 \quad[1,10)$
$4(1,10)$

16 Perform the indicated operation: $-6(a-7)$
State the name of the property used.

22 Which interval notation represents $-3 \leq x \leq 3$?
$1 \quad[-3,3]$
$2(-3,3]$
$3 \quad[-3,3)$
$4(-3,3)$

23 The inequality $-2 \leq x \leq 3$ can be written as
$1 \quad(-2,3)$
$2 \quad[-2,3)$
$3 \quad(-2,3]$
$4 \quad[-2,3]$

24 The set $\{1,2,3,4\}$ is equivalent to
$1\{x \mid 1<x<4$, where x is a whole number $\}$
$2\{x \mid 0<x<4$, where x is a whole number $\}$
$3\{x \mid 0<x \leq 4$, where x is a whole number $\}$
$4\{x \mid 1<x \leq 4$, where x is a whole number $\}$

25 The set $\{11,12\}$ is equivalent to
$1\{x \mid 11<x<12$, where x is an integer $\}$
$2\{x \mid 11<x \leq 12$, where x is an integer $\}$
$3\{x \mid 10 \leq x<12$, where x is an integer $\}$
$4\{x \mid 10<x \leq 12$, where x is an integer $\}$

26 Which set-builder notation describes
$\{-3,-2,-1,0,1,2\}$?
$1\{x \mid-3 \leq x<2$, where x is an integer $\}$
$2\{x \mid-3<x \leq 2$, where x is an integer $\}$
$3\{x \mid-3<x<2$, where x is an integer $\}$
$4\{x \mid-3 \leq x \leq 2$, where x is an integer $\}$

27 Which notation describes $\{1,2,3\}$?
$1 \quad\{x \mid 1 \leq x<3$, where x is an integer $\}$
$2\{x \mid 0<x \leq 3$, where x is an integer $\}$
$3\{x \mid 1<x<3$, where x is an integer $\}$
$4\{x \mid 0 \leq x \leq 3$, where x is an integer $\}$

28 Which set builder notation describes
$\{-2,-1,0,1,2,3\}$?
$1\{x \mid-3 \leq x \leq 3$, where x is an integer $\}$
$2\{x \mid-3<x \leq 4$, where x is an integer $\}$
$3\{x \mid-2<x<3$, where x is an integer $\}$
$4\{x \mid-2 \leq x<4$, where x is an integer $\}$

29 Written in set-builder notation, $S=\{1,3,5,7,9\}$ is
$1\{x \mid 1<x<9$, where x is a prime number $\}$
$2\{x \mid 1 \leq x \leq 9$, where x is a prime number $\}$
$3\{x \mid 1<x<9$, where x is an odd integer $\}$
$4\{x \mid 1 \leq x \leq 9$, where x is an odd integer $\}$

A.A.30: SET THEORY

30 Given: Set $U=\{S, O, P, H, I, A\}$
Set $B=\{A, I, O\}$
If set B is a subset of set U, what is the complement of set B ?
$1\{O, P, S\}$
$2\{I, P, S\}$
$3\{A, H, P\}$
$4\{H, P, S\}$

31 Given: $U=\{1,2,3,4,5,6,7,8\}$

$$
B=\{2,3,5,6\}
$$

Set B is a subset of set U. What is the complement of set B ?
1 \{\}
$2\{2,3,5,6\}$
3 \{1,4,7,8\}
$4\{1,2,3,4,5,6,7,8\}$

32 If the universal set is \{pennies, nickels, dimes, quarters $\}$, what is the complement of the set \{nickels\}?
1 \{ \}
2 \{pennies, quarters\}
3 \{pennies, dimes, quarters\}
4 \{pennies, nickels, dimes, quarters\}

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

33 Consider the set of integers greater than -2 and less than 6. A subset of this set is the positive factors of 5. What is the complement of this subset?
$1\{0,2,3,4\}$
$2\{-1,0,2,3,4\}$
$3\{-2,-1,0,2,3,4,6\}$
$4\{-2,-1,0,1,2,3,4,5,6\}$

34 Given:
$A=\{$ All even integers from 2 to 20, inclusive $\}$
$B=\{10,12,14,16,18\}$
What is the complement of set B within the universe of set A ?
$1 \quad\{4,6,8\}$
$2\{2,4,6,8\}$
3 \{4,6,8,20\}
$4\{2,4,6,8,20\}$

35 Given:
$A=$ \{perfect square integers from 4-100, inclusive $\}$
$B=\{16,36,49,64\}$
The complement of set B in the universal set A is
1 \{9,25,81\}
$2\{4,9,25,81,100\}$
3 \{1,4,9,25, 81, 100\}
$4\{4,16,36,49,64,100\}$
36 Given:
$A=$ \{all odd integers from 1 through 19, inclusive $\}$
$B=\{9,11,13,15,17\}$
What is the complement of set B within set A ?
$1\{3,5,7\}$
$2\{3,5,7,19\}$
3 \{1,3,5,7\}
$4\{1,3,5,7,19\}$

37 Twelve players make up a high school basketball team. The team jerseys are numbered 1 through 12 . The players wearing the jerseys numbered $3,6,7$, 8 , and 11 are the only players who start a game. Using set notation, list the complement of this subset.

A.A.31: SET THEORY

Given: $A=\{3,6,9,12,15\}$

$$
B=\{2,4,6,8,10,12\}
$$

What is the union of sets A and B ?
1 \{6\}
$2\{6,12\}$
$3\{2,3,4,8,9,10,15\}$
$4\{2,3,4,6,8,9,10,12,15\}$

39 Given: $A=\{2,4,5,7,8\}$

$$
B=\{3,5,8,9\}
$$

What is $A \cup B$?
1 \{5\}
$2\{5,8\}$
3 \{2,3,4,7,9\}
$4\{2,3,4,5,7,8,9\}$

40 Which set represents the intersection of sets A, B, and C shown in the diagram below?

$1\{3,4,5,6,7\}$
2 \{2\}
3 \{2,3,4,5,6,7\}
$4\{1,2,3,4,5,6,7,8,9\}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

41 Given:
Set $A=\{(-2,-1),(-1,0),(1,8)\}$
Set $B=\{(-3,-4),(-2,-1),(-1,2),(1,8)\}$.
What is the intersection of sets A and B ?
$1 \quad\{(1,8)\}$
$2\{(-2,-1)\}$
$3\{(-2,-1),(1,8)\}$
$4\{(-3,-4),(-2,-1),(-1,2),(-1,0),(1,8)\}$

42 Given: $Q=\{0,2,4,6\}$

$$
\begin{aligned}
& W=\{0,1,2,3\} \\
& Z=\{1,2,3,4\}
\end{aligned}
$$

What is the intersection of sets Q, W, and Z ?
$1 \quad\{2\}$
$2\{0,2\}$
3 \{1,2,3\}
4 \{0, 1,2,3,4,6\}

43 Given: $X=\{1,2,3,4\}$
$Y=\{2,3,4,5\}$
$Z=\{3,4,5,6\}$
What is the intersection of sets X, Y, and Z ?

1	$\{3,4\}$
2	$\{2,3,4\}$
3	$\{3,4,5\}$
4	$\{1,2,3,4,5,6\}$

44 If $A=\{0,1,3,4,6,7), B=\{0,2,3,5,6)$, and $C=\{0,1,4,6,7)$, then $A \cap B \cap C$ is
$1\{0,1,2,3,4,5,6,7\}$
$2\{0,3,6\}$
3 \{0,6\}
$4\{0\}$

45 Given: $R=\{1,2,3,4\}$

$$
\begin{aligned}
& A=\{0,2,4,6\} \\
& P=\{1,3,5,7\}
\end{aligned}
$$

What is $R \cap P$?
$1\{0,1,2,3,4,5,6,7\}$
$2\{1,2,3,4,5,7\}$
$3\{1,3\}$
$4 \quad\{2,4\}$

46 Given: $A=\{1,3,5,7,9\}$

$$
\begin{aligned}
& B=\{2,4,6,8,10\} \\
& C=\{2,3,5,7\} \\
& D=\{1,2,3,4,5,6,7,8,9,10\}
\end{aligned}
$$

What statement is false?

$$
\begin{array}{ll}
1 & A \cup B \cup C=D \\
2 & A \cap B \cap C=\{ \} \\
3 & A \cup C=\{1,2,3,5,7\} \\
4 & A \cap C=\{3,5,7\}
\end{array}
$$

47 Maureen tracks the range of outdoor temperatures over three days. She records the following information.

Express the intersection of the three sets as an inequality in terms of temperature, t.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

GRAPHS AND STATISTICS

A.S.5: FREQUENCY HISTOGRAMS, BAR GRAPHS AND TABLES

48 Ms. Hopkins recorded her students' final exam scores in the frequency table below.

Interval	Tally	Frequency
$61-70$	HHI	5
$71-80$	IIII	4
$81-90$	HHI IIII	9
$91-100$	H⿻川 I	6

On the grid below, construct a frequency histogram based on the table.

49 The Fahrenheit temperature readings on 30 April mornings in Stormville, New York, are shown below.
$41^{\circ}, 58^{\circ}, 61^{\circ}, 54^{\circ}, 49^{\circ}, 46^{\circ}, 52^{\circ}, 58^{\circ}, 67^{\circ}, 43^{\circ}$, $47^{\circ}, 60^{\circ}, 52^{\circ}, 58^{\circ}, 48^{\circ}, 44^{\circ}, 59^{\circ}, 66^{\circ}, 62^{\circ}, 55^{\circ}$, $44^{\circ}, 49^{\circ}, 62^{\circ}, 61^{\circ}, 59^{\circ}, 54^{\circ}, 57^{\circ}, 58^{\circ}, 63^{\circ}, 60^{\circ}$ Using the data, complete the frequency table below.

Interval	Tally	Frequency
$40-44$		
$45-49$		
$50-54$		
$55-59$		
$60-64$		
$65-69$		

On the grid below, construct and label a frequency histogram based on the table.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

50 The test scores for 18 students in Ms. Mosher's class are listed below:

86, 81, 79, 71, 58, 87, 52, 71, 87,
$87,93,64,94,81,76,98,94,68$
Complete the frequency table below.

Interval	Tally	Frequency
$51-60$		
$61-70$		
$71-80$		
$81-90$		
$91-100$		

Draw and label a frequency histogram on the grid below.

51 Twenty students were surveyed about the number of days they played outside in one week. The results of this survey are shown below.
$\{6,5,4,3,0,7,1,5,4,4,3,2,2,3,2,4,3,4,0,7\}$
Complete the frequency table below for these data.

Interval	Tally	Frequency
$0-1$		
$2-3$		
$4-5$		
$6-7$		

Complete the cumulative frequency table below using these data.

Number of Days Outside

Interval	Cumulative Frequency
$0-1$	
$0-3$	
$0-5$	
$0-7$	

On the grid below, create a cumulative frequency histogram based on the table you made.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A.S.9: FREQUENCY HISTOGRAMS, BAR GRAPHS AND TABLES

52 The table below shows a cumulative frequency distribution of runners' ages.

Cumulative Frequency Distribution
of Runners' Ages

Age Group	Total
$20-29$	8
$20-39$	18
$20-49$	25
$20-59$	31
$20-69$	35

According to the table, how many runners are in their forties?
125
$2 \quad 10$
37
46

53 The cumulative frequency table below shows the length of time that 30 students spent text messaging on a weekend.

Minutes Used	Cumulative Frequency
$31-40$	2
$31-50$	5
$31-60$	10
$31-70$	19
$31-80$	30

Which 10-minute interval contains the first quartile?

1	$31-40$
2	$41-50$
3	$51-60$
4	$61-70$

2 41-50
4 61-70

54 The diagram below shows a cumulative frequency histogram of the students' test scores in Ms. Wedow's algebra class.

Ms. Wedow's Algebra Class Test Scores

Determine the total number of students in the class.
Determine how many students scored higher than 70. State which ten-point interval contains the median. State which two ten-point intervals contain the same frequency.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

55 The following cumulative frequency histogram shows the distances swimmers completed in a recent swim test.

Based on the cumulative frequency histogram, determine the number of swimmers who swam between 200 and 249 yards. Determine the number of swimmers who swam between 150 and 199 yards. Determine the number of swimmers who took the swim test.

A.S.5: BOX-AND-WHISKER PLOTS

56 The data set $5,6,7,8,9,9,9,10,12,14,17,17$, $18,19,19$ represents the number of hours spent on the Internet in a week by students in a mathematics class. Which box-and-whisker plot represents the data?

57 The test scores from Mrs. Gray's math class are shown below.
$72,73,66,71,82,85,95,85,86,89,91,92$
Construct a box-and-whisker plot to display these data.

58 The number of songs fifteen students have on their MP3 players is:

$$
\begin{gathered}
120,124,132,145,200,255,260,292 \\
308,314,342,407,421,435,452
\end{gathered}
$$

State the values of the minimum, 1 st quartile, median, 3rd quartile, and maximum. Using these values, construct a box-and-whisker plot using an appropriate scale on the line below.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

59 Using the line provided, construct a
box-and-whisker plot for the 12 scores below.
$26,32,19,65,57,16,28,42,40,21,38,10$

Determine the number of scores that lie above the 75th percentile.

A.S.6: BOX-AND-WHISKER PLOTS

60 What is the range of the data represented in the box-and-whisker plot shown below?

140
245
360
4100

61 The box-and-whisker plot below represents the results of tests scores in a math class.

What do the scores 65,85 , and 100 represent?
$1 Q_{1}$, median, Q_{3}
$2 Q_{1}, Q_{3}$, maximum
3 median, Q_{1}, maximum
4 minimum, median, maximum

62 What is the value of the third quartile shown on the box-and-whisker plot below?

$1 \quad 6$
28.5

310
412

63 The box-and-whisker plot below represents students' scores on a recent English test.

What is the value of the upper quartile?
168
276
384
494
64 The box-and-whisker plot below represents the math test scores of 20 students.

What percentage of the test scores are less than 72 ?
125
250
375
4100

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

65 The box-and-whisker plot below represents the ages of 12 people.

What percentage of these people are age 15 or older?
125
235
375
485

66 The box-and-whisker plot below represents a set of grades in a college statistics class.

626466687072747678808284868890929496
Which interval contains exactly 50% of the grades?
1 63-88
2 63-95
3 75-81
4 75-88

67 A movie theater recorded the number of tickets sold daily for a popular movie during the month of June. The box-and-whisker plot shown below represents the data for the number of tickets sold, in hundreds.

Which conclusion can be made using this plot?
1 The second quartile is 600 .
2 The mean of the attendance is 400 .
3 The range of the attendance is 300 to 600 .
4 Twenty-five percent of the attendance is between 300 and 400 .

68 Based on the box-and-whisker plot below, which statement is false?

1 The median is 7.
2 The range is 12.
3 The first quartile is 4 .
4 The third quartile is 11 .

A.S.11: QUARTILES AND PERCENTILES

69 The freshman class held a canned food drive for 12 weeks. The results are summarized in the table below.

Canned Food Drive Results

Week	1	2	3	4	5	6	7	8	9	10	11	12
Number of Cans	20	35	32	45	58	46	28	23	31	79	65	62

Which number represents the second quartile of the number of cans of food collected?
129.5
230.5

340
$4 \quad 60$

70 Brianna's score on a national math assessment exceeded the scores of 95,000 of the 125,000 students who took the assessment. What was her percentile rank?
16
$2 \quad 24$
31
476

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A.S.7: SCATTER PLOTS

71 For 10 days, Romero kept a record of the number of hours he spent listening to music. The information is shown in the table below.

Day	1	2	3	4	5	6	7	8	9	10
Hours	9	3	2	6	8	6	10	4	5	2

Which scatter plot shows Romero's data graphically?

2

3

72 The school store did a study comparing the cost of a sweatshirt with the number of sweatshirts sold. The price was changed several times and the numbers of sweatshirts sold were recorded. The data are shown in the table below.

Cost of Sweatshirt	$\$ 10$	$\$ 25$	$\$ 15$	$\$ 20$	$\$ 5$
Number Sold	9	6	15	11	14

Which scatter plot represents the data?

Cost of
Sweatshirt
1
(in dollars)

3 Sweatshirt

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

73 The maximum height and speed of various roller coasters in North America are shown in the table below.

Maximum Speed, in mph, (x)	45	50	54	60	65	70
Maximum Height, in feet, (y)	63	80	105	118	141	107

Which graph represents a correct scatter plot of the data?

1

2

A.S.8: SCATTER PLOTS

74 Which equation most closely represents the line of best fit for the scatter plot below?

Money Earned from Babysitting

$1 \quad y=x$
$2 y=\frac{2}{3} x+1$
$3 y=\frac{3}{2} x+4$
$4 \quad y=\frac{3}{2} x+1$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

75 A scatter plot was constructed on the graph below and a line of best fit was drawn.

What is the equation of this line of best fit?
$1 y=x+5$
$2 y=x+25$
$3 y=5 x+5$
$4 y=5 x+25$

76 The table below shows the number of prom tickets sold over a ten-day period.

Prom Ticket Sales

Day (x)	1	2	5	7	10
Number of Prom Tickets Sold (y)	30	35	55	60	70

Plot these data points on the coordinate grid below. Use a consistent and appropriate scale. Draw a reasonable line of best fit and write its equation.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A.S.12: SCATTER PLOTS

77 There is a negative correlation between the number of hours a student watches television and his or her social studies test score. Which scatter plot below displays this correlation?

1

2

3

78 Which scatter plot shows the relationship between x and y if x represents a student score on a test and y represents the number of incorrect answers a student received on the same test?

1

4

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

79 What is the relationship between the independent and dependent variables in the scatter plot shown below?

1 undefined correlation
2 negative correlation
3 positive correlation
4 no correlation

80 The scatter plot shown below represents a relationship between x and y.

This type of relationship is
1 a positive correlation
2 a negative correlation
3 a zero correlation
4 not able to be determined

81 A set of data is graphed on the scatter plot below.

This scatter plot shows
1 no correlation
2 positive correlation
3 negative correlation
4 undefined correlation

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

82 The number of hours spent on math homework during one week and the math exam grades for eleven students in Ms. Smith's algebra class are plotted below.

Ms. Smith's Class

Based on the plotted data, what is the correlation between the time spent on homework and the exam grade?
1 positive
2 negative
3 no correlation
4 cannot be determined

83 The scatter plot below represents the relationship between the number of peanuts a student eats and the student's bowling score.

Which conclusion about the scatter plot is valid?
1 There is almost no relationship between eating peanuts and bowling score.
2 Students who eat more peanuts have higher bowling scores.
3 Students who eat more peanuts have lower bowling scores.
4 No bowlers eat peanuts.

84 Which situation describes a negative correlation?
1 the amount of gas left in a car's tank and the amount of gas used from it
2 the number of gallons of gas purchased and the amount paid for the gas
3 the size of a car's gas tank and the number of gallons it holds
4 the number of miles driven and the amount of gas used

A.S.17: SCATTER PLOTS

85 The number of hours spent on math homework each week and the final exam grades for twelve students in Mr. Dylan's algebra class are plotted below.

Based on a line of best fit, which exam grade is the best prediction for a student who spends about 4 hours on math homework each week?
$1 \quad 62$
$2 \quad 72$
382
492

86 The scatter plot below shows the profit, by month, for a new company for the first year of operation. Kate drew a line of best fit, as shown in the diagram.

Using this line, what is the best estimate for profit in the 18th month?
1 \$35,000
2 \$37,750
3 \$42,500
4 \$45,000

87 Based on the line of best fit drawn below, which value could be expected for the data in June 2015?

$1 \quad 230$
2310
3480
4540

88 Megan and Bryce opened a new store called the Donut Pit. Their goal is to reach a profit of $\$ 20,000$ in their 18 th month of business. The table and scatter plot below represent the profit, P, in thousands of dollars, that they made during the first 12 months.

t (months)	P (profit, in thousands of dollars)
1	3.0
2	2.5
3	4.0
4	5.0
5	6.5
6	5.5
7	7.0
8	6.0
9	7.5
10	7.0
11	9.0
12	9.5

Draw a reasonable line of best fit. Using the line of best fit, predict whether Megan and Bryce will reach their goal in the 18th month of their business. Justify your answer.

A.S.4: CENTRAL TENDENCY

89 Which statement is true about the data set $3,4,5,6$, 7, 7, 10?
1 mean $=$ mode
2 mean $>$ mode
3 mean $=$ median
4 mean $<$ median
90 Sam's grades on eleven chemistry tests were 90 , $85,76,63,94,89,81,76,78,69$, and 97 . Which statement is true about the measures of central tendency?
1 mean $>$ mode
2 mean $<$ median
3 mode > median
4 median = mean

91 Which statement is true about the data set 4, 5, 6, 6, 7, 9, 12?
1 mean $=$ mode
2 mode = median
3 mean $<$ median
4 mode > mean

92 Alex earned scores of $60,74,82,87,87$, and 94 on his first six algebra tests. What is the relationship between the measures of central tendency of these scores?
1 median $<$ mode $<$ mean
2 mean $<$ mode $<$ median
3 mode $<$ median $<$ mean
4 mean $<$ median $<$ mode

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

93 The values of 11 houses on Washington St. are shown in the table below.

Value per House	Number of Houses
$\$ 100,000$	1
$\$ 175,000$	5
$\$ 200,000$	4
$\$ 700,000$	1

Find the mean value of these houses in dollars. Find the median value of these houses in dollars. State which measure of central tendency, the mean or the median, best represents the values of these 11 houses. Justify your answer.

94 The prices of seven race cars sold last week are listed in the table below.

Price per Race Car	Number of Race Cars
$\$ 126,000$	1
$\$ 140,000$	2
$\$ 180,000$	1
$\$ 400,000$	2
$\$ 819,000$	1

What is the mean value of these race cars, in dollars? What is the median value of these race cars, in dollars? State which of these measures of central tendency best represents the value of the seven race cars. Justify your answer.

A.S.16: CENTRAL TENDENCY

95 Mr. Taylor raised all his students' scores on a recent test by five points. How were the mean and the range of the scores affected?
1 The mean increased by five and the range increased by five.
2 The mean increased by five and the range remained the same.
3 The mean remained the same and the range increased by five.
4 The mean remained the same and the range remained the same.

96 Ms. Mosher recorded the math test scores of six students in the table below.

Student	Student Score
Andrew	72
John	80
George	85
Amber	93
Betty	78
Roberto	80

Determine the mean of the student scores, to the nearest tenth. Determine the median of the student scores. Describe the effect on the mean and the median if Ms. Mosher adds 5 bonus points to each of the six students' scores.

97 Given the following list of students' scores on a quiz:

$$
5,12,7,15,20,14,7
$$

Determine the median of these scores. Determine the mode of these scores. The teacher decides to adjust these scores by adding three points to each score. Explain the effect, if any, that this will have on the median and mode of these scores.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A.S.16: AVERAGE KNOWN WITH MISSING DATA

98 This year, John played in 10 baseball games. In these games he had hit the ball $2,3,0,1,3,2,4,0$, 2 , and 3 times. In the first 10 games he plays next year, John wants to increase his average (mean) hits per game by 0.5 . What is the total number of hits John needs over the first 10 games next year to achieve his goal?
15
22
320
425

A.S.1: ANALYSIS OF DATA

99 Which data set describes a situation that could be classified as qualitative?
1 the elevations of the five highest mountains in the world
2 the ages of presidents at the time of their inauguration
3 the opinions of students regarding school lunches
4 the shoe sizes of players on the basketball team
100 Which data set describes a situation that could be classified as qualitative?
1 the ages of the students in Ms. Marshall's Spanish class
2 the test scores of the students in Ms.
Fitzgerald's class
3 the favorite ice cream flavor of each of Mr. Hayden's students
4 the heights of the players on the East High School basketball team

101 Which set of data can be classified as qualitative?
1 scores of students in an algebra class
2 ages of students in a biology class
3 numbers of students in history classes
4 eye colors of students in an economics class

102 Which set of data describes a situation that could be classified as qualitative?
1 the colors of the birds at the city zoo
2 the shoe size of the zookeepers at the city zoo
3 the heights of the giraffes at the city zoo
4 the weights of the monkeys at the city zoo
103 Which data set describes a situation that could be classified as quantitative?
1 the phone numbers in a telephone book
2 the addresses for students at Hopkins High School
3 the zip codes of residents in the city of Buffalo, New York
4 the time it takes each of Mr. Harper's students to complete a test

104 Which set of data can be classified as quantitative?
1 first names of students in a chess club 2 ages of students in a government class
3 hair colors of students in a debate club
4 favorite sports of students in a gym class

105 An art studio has a list of information posted with each sculpture that is for sale. Each entry in the list could be classified as quantitative except for the
1 cost
2 height
3 artist
4 weight

106 Craig sees an advertisement for a car in a newspaper. Which information would not be classified as quantitative?
1 the cost of the car
2 the car's mileage
3 the model of the car
4 the weight of the car

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A.S.2: ANALYSIS OF DATA

107 Which situation should be analyzed using bivariate data?
1 Ms. Saleem keeps a list of the amount of time her daughter spends on her social studies homework.
2 Mr. Benjamin tries to see if his students' shoe sizes are directly related to their heights.
3 Mr. DeStefan records his customers' best video game scores during the summer.
4 Mr. Chan keeps track of his daughter's algebra grades for the quarter.

108 Which situation is an example of bivariate data?
1 the number of pizzas Tanya eats during her years in high school
2 the number of times Ezra puts air, in his bicycle tires during the summer
3 the number of home runs Elias hits per game and the number of hours he practices baseball
4 the number of hours Nellie studies for her mathematics tests during the first half of the school year

109 Which data table represents univariate data?

Side Length of a Square	Area of Square
2	4
3	9
4	16
5	25

1

Hours Worked	Pay
20	$\$ 160$
25	$\$ 200$
30	$\$ 240$
35	$\$ 280$

2

Age Group	Frequency
$20-29$	9
$30-39$	7
$40-49$	10
$50-59$	4

3

People	Number of Fingers
2	20
3	30
4	40
5	50

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

110 Which table does not show bivariate data?

Height (inches)	Weight (pounds)
39	50
48	70
60	90

Gallons	Miles Driven
15	300
20	400
25	500

2

3

4

Quiz Average	Frequency
70	12
80	15
90	6

Speed (mph)	Distance (miles)
40	80
50	120
55	150

4

Day	Temperature (degrees F)
Monday	63
Tuesday	58
Wednesday	72
Thursday	74
Friday	78

A.S.3: ANALYSIS OF DATA

112 A school wants to add a coed soccer program. To determine student interest in the program, a survey will be taken. In order to get an unbiased sample, which group should the school survey?
1 every third student entering the building
2 every member of the varsity football team
3 every member in Ms. Zimmer's drama classes
4 every student having a second-period French class

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

113 A survey is being conducted to determine if a cable company should add another sports channel to their schedule. Which random survey would be the least biased?
1 surveying 30 men at a gym
2 surveying 45 people at a mall
3 surveying 50 fans at a football game
4 surveying 20 members of a high school soccer team

114 A school newspaper will survey students about the quality of the school's lunch program. Which method will create the least biased results?
1 Twenty-five vegetarians are randomly surveyed.
2 Twenty-five students are randomly chosen from each grade level.
3 Students who dislike the school's lunch program are chosen to complete the survey.
4 A booth is set up in the cafeteria for the students to voluntarily complete the survey.

115 A survey is being conducted to determine which types of television programs people watch. Which survey and location combination would likely contain the most bias?
1 surveying 10 people who work in a sporting goods store
2 surveying the first 25 people who enter a grocery store
3 randomly surveying 50 people during the day in a mall
4 randomly surveying 75 people during the day in a clothing store

116 Erica is conducting a survey about the proposed increase in the sports budget in the Hometown School District. Which survey method would likely contain the most bias?
1 Erica asks every third person entering the Hometown Grocery Store.
2 Erica asks every third person leaving the Hometown Shopping Mall this weekend.
3 Erica asks every fifth student entering Hometown High School on Monday morning.
4 Erica asks every fifth person leaving Saturday's Hometown High School football game.

117 A survey is being conducted to determine which school board candidate would best serve the Yonkers community. Which group, when randomly surveyed, would likely produce the most bias?
115 employees of the Yonkers school district
225 people driving past Yonkers High School
375 people who enter a Yonkers grocery store
4100 people who visit the local Yonkers shopping mall

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

118 Four hundred licensed drivers participated in the math club's survey on driving habits. The table below shows the number of drivers surveyed in each age group.

Ages of People in Survey on Driving Habits

Age Group	Number of Drivers
$16-25$	150
$26-35$	129
$36-45$	33
$46-55$	57
$56-65$	31

Which statement best describes a conclusion based on the data in the table?
1 It may be biased because no one younger than 16 was surveyed.
2 It would be fair because many different age groups were surveyed.
3 It would be fair because the survey was conducted by the math club students.
4 It may be biased because the majority of drivers surveyed were in the younger age intervals.

A.S.13: ANALYSIS OF DATA

119 Which relationship can best be described as causal?
1 height and intelligence
2 shoe size and running speed
3 number of correct answers on a test and test score
4 number of students in a class and number of students with brown hair

120 Which situation does not describe a causal relationship?
1 The higher the volume on a radio, the louder the sound will be.
2 The faster a student types a research paper, the more pages the paper will have.
3 The shorter the distance driven, the less gasoline that will be used.
4 The slower the pace of a runner, the longer it will take the runner to finish the race.

A.S.14: ANALYSIS OF DATA

121 Which situation describes a correlation that is not a causal relationship?
1 The rooster crows, and the Sun rises.
2 The more miles driven, the more gasoline needed
3 The more powerful the microwave, the faster the food cooks.
4 The faster the pace of a runner, the quicker the runner finishes.

122 Which situation describes a correlation that is not a causal relationship?
1 the length of the edge of a cube and the volume of the cube
2 the distance traveled and the time spent driving
3 the age of a child and the number of siblings the child has
4 the number of classes taught in a school and the number of teachers employed

123 Which phrase best describes the relationship between the number of miles driven and the amount of gasoline used?
1 causal, but not correlated
2 correlated, but not causal
3 both correlated and causal
4 neither correlated nor causal

124 A study showed that a decrease in the cost of carrots led to an increase in the number of carrots sold. Which statement best describes this relationship?
1 positive correlation and a causal relationship
2 negative correlation and a causal relationship
3 positive correlation and not a causal relationship
4 negative correlation and not a causal relationship

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org
A.M.3: ERROR

125 The groundskeeper is replacing the turf on a football field. His measurements of the field are 130 yards by 60 yards. The actual measurements are 120 yards by 54 yards. Which expression represents the relative error in the measurement?
$1 \frac{(130)(60)-(120)(54)}{(120)(54)}$
$2 \frac{(120)(54)}{(130)(60)-(120)(54)}$
$3 \frac{(130)(60)-(120)(54)}{(130)(60)}$
$4 \frac{(130)(60)}{(130)(60)-(120)(54)}$

126 Carrie bought new carpet for her living room. She calculated the area of the living room to be 174.2 square feet. The actual area was 149.6 square feet. What is the relative error of the area to the nearest ten-thousandth?
10.1412
20.1644
31.8588
$4 \quad 2.1644$

127 Corinne calculated the area of a paper plate to be 50.27 square inches. If the actual area of the plate is 55.42 square inches, what is the relative error in calculating the area, to the nearest thousandth?
10.092
20.093
30.102
$4 \quad 0.103$

128 The dimensions of a rectangle are measured to be 12.2 inches by 11.8 inches. The actual dimensions are 12.3 inches by 11.9 inches. What is the relative error, to the nearest ten-thousandth, in calculating the area of the rectangle?
10.0168
20.0167
30.0165
$4 \quad 0.0164$

129 Jack wants to replace the flooring in his rectangular kitchen. He calculates the area of the floor to be 12.8 square meters. The actual area of the floor is 13.5 square meters. What is the relative error in calculating the area of the floor, to the nearest thousandth?
10.051
20.052
30.054
40.055

130 The actual dimensions of a rectangle are 2.6 cm by 6.9 cm . Andy measures the sides as 2.5 cm by 6.8 cm . In calculating the area, what is the relative error, to the nearest thousandth?
10.055
20.052
$3 \quad 0.022$
$4 \quad 0.021$

131 Sophie measured a piece of paper to be 21.7 cm by 28.5 cm . The piece of paper is actually 21.6 cm by 28.4 cm . Determine the number of square centimeters in the area of the piece of paper using Sophie's measurements. Determine the number of square centimeters in the actual area of the piece of paper. Determine the relative error in calculating the area. Express your answer as a decimal to the nearest thousandth. Sophie does not think there is a significant amount of error. Do you agree or disagree? Justify your answer.

132 Sarah measures her rectangular bedroom window for a new shade. Her measurements are 36 inches by 42 inches. The actual measurements of the window are 36.5 inches and 42.5 inches. Using the measurements that Sarah took, determine the number of square inches in the area of the window. Determine the number of square inches in the actual area of the window. Determine the relative error in calculating the area. Express your answer as a decimal to the nearest thousandth.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

133 Students calculated the area of a playing field to be 8,100 square feet. The actual area of the field is $7,678.5$ square feet. Find the relative error in the area, to the nearest thousandth.

134 Wendy measures the floor in her rectangular bedroom for new carpeting. Her measurements are 24 feet by 14 feet. The actual measurements are 24.2 feet by 14.1 feet. Determine the relative error in calculating the area of her bedroom. Express your answer as a decimal to the nearest thousandth.

135 Janis measures the dimensions of the floor in her rectangular classroom for a rug. Her measurements are 10.50 feet by 12.25 feet. The actual measurements of the floor are 10.75 feet by 12.50 feet. Determine the relative error in calculating the area, to the nearest thousandth.

136 Ryan estimates the measurement of the volume of a popcorn container to be 282 cubic inches. The actual volume of the popcorn container is 289 cubic inches. What is the relative error of Ryan's measurement to the nearest thousandth?
10.024
20.025
30.096
$4 \quad 1.025$

137 To calculate the volume of a small wooden cube, Ezra measured an edge of the cube as 2 cm . The actual length of the edge of Ezra's cube is 2.1 cm . What is the relative error in his volume calculation to the nearest hundredth?
10.13
20.14
30.15
$4 \quad 0.16$

138 Using his ruler, Howell measured the sides of a rectangular prism to be 5 cm by 8 cm by 4 cm . The actual measurements are 5.3 cm by 8.2 cm by 4.1 cm . Find Howell's relative error in calculating the volume of the prism, to the nearest thousandth.

139 Alexis calculates the surface area of a gift box as 600 square inches. The actual surface area of the gift box is 592 square inches. Find the relative error of Alexis' calculation expressed as a decimal to the nearest thousandth.

140 An oil company distributes oil in a metal can shaped like a cylinder that has an actual radius of 5.1 cm and a height of 15.1 cm . A worker incorrectly measured the radius as 5 cm and the height as 15 cm . Determine the relative error in calculating the surface area, to the nearest thousandth.

141 Ashley measured the dimensions of a rectangular prism to be 6 cm by 10 cm by 1.5 cm . The actual dimensions are 5.9 cm by 10.3 cm by 1.7 cm . Determine the relative error, to the nearest thousandth, in calculating the volume of the prism.

PROBABILITY

A.S.19: SAMPLE SPACE

142 A cube, with faces numbered 1 to 6 , is rolled, and a penny is tossed at the same time. How many elements in the sample space consist of an even number and a tail?
$1 \quad 12$
22
3
44

143 Clayton has three fair coins. Find the probability that he gets two tails and one head when he flips the three coins.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

144 Mr. Laub has three children: two girls (Sue and Karen) and one boy (David). After each meal, one child is chosen at random to wash dishes. If the same child can be chosen for both lunch and dinner, construct a tree diagram or list a sample space of all the possible outcomes of who will wash dishes after lunch and dinner on Saturday. Determine the probability that one boy and one girl will wash dishes after lunch and dinner on Saturday.

145 A restaurant sells kids' meals consisting of one main course, one side dish, and one drink, as shown in the table below.

Kids' Meal Choices

Main Course	Side Dish	Drink
hamburger	French fries	milk
chicken nuggets	applesauce	juice
turkey sandwich		soda

Draw a tree diagram or list the sample space showing all possible kids' meals. How many different kids' meals can a person order? Jose does not drink juice. Determine the number of different kids' meals that do not include juice. Jose's sister will eat only chicken nuggets for her main course. Determine the number of different kids' meals that include chicken nuggets.

146 An outfit Jennifer wears to school consists of a top, a bottom, and shoes. Possible choices are listed below.

Tops: T-shirt, blouse, sweater
Bottoms: jeans, skirt, capris
Shoes: flip-flops, sneakers
List the sample space or draw a tree diagram to represent all possible outfits consisting of one type of top, one type of bottom, and one pair of shoes. Determine how many different outfits contain jeans and flip-flops. Determine how many different outfits do not include a sweater.

147 A sandwich consists of one type of bread, one type of meat, and one type of cheese. The possible choices are listed below. Bread: white, rye
Meat: ham, turkey, beef
Cheese: American, Swiss
Draw a tree diagram or list a sample space of all the possible different sandwiches consisting of one type of bread, one type of meat, and one type of cheese. Determine the number of sandwiches that will not include turkey. Determine the number of sandwiches that will include rye bread and Swiss cheese.

148 A company is running a contest and offering a first, second, and third prize. First prize is a choice of a car or $\$ 15,000$ cash. Second prize is a choice of a motorbike, a trip to New York City, or $\$ 2,000$ cash. Third prize is a choice of a television or $\$ 500$ cash. If each prize is equally likely to be selected, list the sample space or draw a tree diagram of all possible different outcomes of first, second, and third prizes. Determine the number of ways that all three prizes selected could be cash. Determine the number of ways that none of the three prizes selected could be cash.

149 In a game, a player must spin each spinner shown in the diagram below once.

Spinner 1

Spinner 2

Draw a tree diagram or list a sample space showing all possible outcomes. Determine the number of outcomes that consist of a prime number and a letter in the word "CAT."

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A.S.21: EXPERIMENTAL PROBABILITY

150 Students in Ms. Nazzeer's mathematics class tossed a six-sided number cube whose faces are numbered 1 to 6 . The results are recorded in the table below.

Result	Frequency
1	3
2	6
3	4
4	6
5	4
6	7

Based on these data, what is the empirical probability of tossing a 4 ?
$1 \frac{8}{30}$
$2 \frac{6}{30}$
$3 \quad \frac{5}{30}$
$4 \quad \frac{1}{30}$

151 Three high school juniors, Reese, Matthew, and Chris, are running for student council president. A survey is taken a week before the election asking 40 students which candidate they will vote for in the election. The results are shown in the table below.

Candidate's Name	Number of Students Supporting Candidate
Reese	15
Matthew	13
Chris	12

Based on the table, what is the probability that a student will vote for Reese?
$1 \quad \frac{1}{3}$
$2 \frac{3}{5}$
$3 \quad \frac{3}{8}$
$4 \quad \frac{5}{8}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

152 A spinner that is equally divided into eight numbered sectors is spun 20 times. The table below shows the number of times the arrow landed in each numbered sector.

Spinner Sector	Number of Times
1	2
2	3
3	2
4	3
5	4
6	2
7	3
8	1

Based on the table, what is the empirical probability that the spinner will land on a prime number on the next spin?
$1 \quad \frac{9}{20}$
$2 \quad \frac{11}{20}$
$3 \quad \frac{12}{20}$
$4 \quad \frac{14}{20}$

Casey purchased a pack of assorted flower seeds and planted them in her garden. When the first 25 flowers bloomed, 11 were white, 5 were red, 3 were blue, and the rest were yellow. Find the empirical probability that a flower that blooms will be yellow.

A.S.20: THEORETICAL PROBABILITY

154 A bag contains eight green marbles, five white marbles, and two red marbles. What is the probability of drawing a red marble from the bag?
$1 \quad \frac{1}{15}$
$2 \frac{2}{15}$
$3 \quad \frac{2}{13}$
$4 \quad \frac{13}{15}$

A.S.22: THEORETICAL PROBABILITY

155 Which event is certain to happen?
1 Everyone walking into a room will have red hair.
2 All babies born in June will be males.
3 The Yankees baseball team will win the World Series.
4 The Sun will rise in the east.

156 Maria has a set of 10 index cards labeled with the digits 0 through 9 . She puts them in a bag and selects one at random. The outcome that is most likely to occur is selecting
1 an odd number
2 a prime number
3 a number that is at most 5
4 a number that is divisible by 3
157 The faces of a cube are numbered from 1 to 6 . If the cube is rolled once, which outcome is least likely to occur?
1 rolling an odd number
2 rolling an even number
3 rolling a number less than 6
4 rolling a number greater than 4

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

158 A cube with faces numbered 1 through 6 is rolled 75 times, and the results are given in the table below.

Number	Frequency
1	7
2	22
3	14
4	6
5	20
6	6

Based on these results, which statement is true?
$1 \quad P($ odd $)<P($ even $)$
$2 \quad P(3$ or less) $<P($ odd $)$
$3 \quad P($ even $)<P(2$ or 4$)$
$4 \quad P(2$ or 4$)<P(3$ or less $)$

159 Jon is buying tickets for himself for two concerts. For the jazz concert, 4 tickets are available in the front row, and 32 tickets are available in the other rows. For the orchestra concert, 3 tickets are available in the front row, and 23 tickets are available in the other rows. Jon is randomly assigned one ticket for each concert. Determine the concert for which he is more likely to get a front-row ticket. Justify your answer.

160 Each of the hats shown below has colored marbles placed inside. Hat A contains five green marbles and four red marbles. Hat B contains six blue marbles and five red marbles. Hat C contains five green marbles and five blue marbles.

If a student were to randomly pick one marble from each of these three hats, determine from which hat the student would most likely pick a green marble. Justify your answer. Determine the fewest number of marbles, if any, and the color of these marbles that could be added to each hat so that the probability of picking a green marble will be one-half in each of the three hats.

161 Three storage bins contain colored blocks. Bin 1 contains 15 red and 14 blue blocks. Bin 2 contains 16 white and 15 blue blocks. Bin 3 contains 15 red and 15 white blocks. All of the blocks from the three bins are placed into one box. If one block is randomly selected from the box, which color block would most likely be picked? Justify your answer.

A.S.23: THEORETICAL PROBABILITY

162 Throughout history, many people have contributed to the development of mathematics. These mathematicians include Pythagoras, Euclid, Hypatia, Euler, Einstein, Agnesi, Fibonacci, and Pascal. What is the probability that a mathematician's name selected at random from those listed will start with either the letter E or the letter A ?
$1 \frac{2}{8}$
$2 \frac{3}{8}$
$3 \frac{4}{8}$
$4 \quad \frac{6}{8}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

163 The faces of a cube are numbered from 1 to 6 . If the cube is tossed once, what is the probability that a prime number or a number divisible by 2 is obtained?
$1 \frac{6}{6}$
$2 \frac{5}{6}$
$3 \frac{4}{6}$
$4 \quad \frac{1}{6}$

164 The probability that it will snow on Sunday is $\frac{3}{5}$. The probability that it will snow on both Sunday and Monday is $\frac{3}{10}$. What is the probability that it will snow on Monday, if it snowed on Sunday?
$1 \quad \frac{9}{50}$
22
$3 \quad \frac{1}{2}$
$4 \quad \frac{9}{10}$

165 Three fair coins are tossed. What is the probability that two heads and one tail appear?
$1 \frac{1}{8}$
$2 \quad \frac{3}{8}$
$3 \quad \frac{3}{6}$
$4 \quad \frac{2}{3}$

166 The probability it will rain tomorrow is $\frac{1}{2}$. The probability that our team will win tomorrow's basketball game is $\frac{3}{5}$. Which expression represents the probability that it will rain and that our team will not win the game?
$1 \quad \frac{1}{2}+\frac{3}{5}$
$2 \quad \frac{1}{2}+\frac{2}{5}$
$3 \quad \frac{1}{2} \times \frac{3}{5}$
$4 \quad \frac{1}{2} \times \frac{2}{5}$

167 Vince buys a box of candy that consists of six chocolate pieces, four fruit-flavored pieces, and two mint pieces. He selects three pieces of candy at random, without replacement. Calculate the probability that the first piece selected will be fruit flavored and the other two will be mint. Calculate the probability that all three pieces selected will be the same type of candy.

168 A jar contains five red marbles and three green marbles. A marble is drawn at random and not replaced. A second marble is then drawn from the jar. Find the probability that the first marble is red and the second marble is green. Find the probability that both marbles are red. Find the probability that both marbles are the same color.

169 A bottle contains 12 red marbles and 8 blue marbles. A marble is chosen at random and not replaced. Then, a second marble is chosen at random. Determine the probability that the two marbles are not the same color. Determine the probability that at least one of the marbles is red.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A.S.20: GEOMETRIC PROBABILITY

170 The spinner below is divided into eight equal regions and is spun once. What is the probability of not getting red?

$1 \quad \frac{3}{5}$
$2 \quad \frac{3}{8}$
$3 \frac{5}{8}$
$4 \quad \frac{7}{8}$

171 The bull's-eye of a dartboard has a radius of 2 inches and the entire board has a radius of 9 inches, as shown in the diagram below.

If a dart is thrown and hits the board, what is the probability that the dart will land in the bull's-eye?
$1 \quad \frac{2}{9}$
$2 \quad \frac{7}{9}$
$3 \quad \frac{4}{81}$
$4 \quad \frac{49}{81}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

172 The square dart board shown below has a side that measures 40 inches. The shaded portion in the center is a square whose side is 15 inches. A dart thrown at the board is equally likely to land on any point on the dartboard.

Find the probability that a dart hitting the board will not land in the shaded area.

A.S.22: GEOMETRIC PROBABILITY

173 A spinner is divided into eight equal regions as shown in the diagram below.

Which event is most likely to occur in one spin?
1 The arrow will land in a green or white area.
2 The arrow will land in a green or black area.
3 The arrow will land in a yellow or black area.
4 The arrow will land in a yellow or green area.

174 The spinner shown in the diagram below is divided into six equal sections.

Which outcome is least likely to occur on a single spin?
1 an odd number
2 a prime number
3 a perfect square
4 a number divisible by 2

A.S.23: GEOMETRIC PROBABILITY

175 Keisha is playing a game using a wheel divided into eight equal sectors, as shown in the diagram below. Each time the spinner lands on orange, she will win a prize.

If Keisha spins this wheel twice, what is the probability she will win a prize on both spins?
$1 \frac{1}{64}$
$2 \quad \frac{1}{56}$
$3 \quad \frac{1}{16}$
$4 \quad \frac{1}{4}$

176 Brianna is using the two spinners shown below to play her new board game. She spins the arrow on each spinner once. Brianna uses the first spinner to determine how many spaces to move. She uses the second spinner to determine whether her move from the first spinner will be forward or backward.

Find the probability that Brianna will move fewer than four spaces and backward.

A.S.18: CONDITIONAL PROBABILITY

177 A bag contains five green gumdrops and six red gumdrops. If Kim pulls a green gumdrop out of the bag and eats it, what is the probability that the next gumdrop she pulls out will be red?
$1 \frac{5}{11}$
$2 \frac{5}{10}$
$3 \quad \frac{6}{11}$
$4 \frac{6}{10}$

178 Gabriella has 20 quarters, 15 dimes, 7 nickels, and 8 pennies in a jar. After taking 6 quarters out of the jar, what will be the probability of Gabriella randomly selecting a quarter from the coins left in the jar?
$1 \quad \frac{14}{44}$
$2 \quad \frac{30}{44}$
$3 \quad \frac{14}{50}$
$4 \quad \frac{20}{50}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

179 Some books are laid on a desk. Two are English, three are mathematics, one is French, and four are social studies. Theresa selects an English book and Isabelle then selects a social studies book. Both girls take their selections to the library to read. If Truman then selects a book at random, what is the probability that he selects an English book?

A.N.7: MULTIPLICATION COUNTING PRINCIPLE

180 The local ice cream stand offers three flavors of soft-serve ice cream: vanilla, chocolate, and strawberry; two types of cone: sugar and wafer; and three toppings: sprinkles, nuts, and cookie crumbs. If Dawn does not order vanilla ice cream, how many different choices can she make that have one flavor of ice cream, one type of cone, and one topping?
17
28
312
$4 \quad 18$

181 How many different sandwiches consisting of one type of cheese, one condiment, and one bread choice can be prepared from five types of cheese, two condiments, and three bread choices?
$1 \quad 10$
$2 \quad 13$
315
430

182 The bowling team at Lincoln High School must choose a president, vice president, and secretary. If the team has 10 members, which expression could be used to determine the number of ways the officers could be chosen?
$1 \quad{ }_{3} \mathrm{P}_{10}$
$2{ }_{7} \mathrm{P}_{3}$
$3 \quad{ }_{10} \mathrm{P}_{3}$
$4 \quad{ }_{10} \mathrm{P}_{7}$

A.N.8: PERMUTATIONS

183 John is going to line up his four golf trophies on a shelf in his bedroom. How many different possible arrangements can he make?
$1 \quad 24$
$2 \quad 16$
$3 \quad 10$
44

184 How many different ways can five books be arranged on a shelf?
15
$2 \quad 15$
325
4120
185 There are 18 students in a class. Each day, the teacher randomly selects three students to assist in a game: a leader, a recorder, and a timekeeper. In how many possible ways can the jobs be assigned?
1306
2816
34896
45832

186 How many different three-letter arrangements can be formed using the letters in the word ABSOLUTE if each letter is used only once?
156
2112
3168
4336

187 How many different four-letter arrangements are possible with the letters G, A, R, D, E, N if each letter may be used only once?
115
$2 \quad 24$
$3 \quad 360$
4720

188 Determine how many three-letter arrangements are possible with the letters A, N, G, L, and E if no letter may be repeated.

189 A password consists of three digits, 0 through 9, followed by three letters from an alphabet having 26 letters. If repetition of digits is allowed, but repetition of letters is not allowed, determine the number of different passwords that can be made. If repetition is not allowed for digits or letters, determine how many fewer different passwords can be made.

190 The menu for the high school cafeteria is shown below.

Main Course	Vegetable	Dessert	Beverage
veggie burger	corn	gelatin	milk
pizza	green beans	fruit salad	juice
tuna sandwich	carrots	yogurt	bottled water
frankfurter		cookie	
chicken tenders		ice cream cup	

Determine the number of possible meals consisting of a main course, a vegetable, a dessert, and a beverage that can be selected from the menu. Determine how many of these meals will include chicken tenders. If a student chooses pizza, corn or carrots, a dessert, and a beverage from the menu, determine the number of possible meals that can be selected.

191 A large company must chose between two types of passwords to \log on to a computer. The first type is a four-letter password using any of the 26 letters of the alphabet, without repetition of letters. The second type is a six-digit password using the digits 0 through 9 , with repetition of digits allowed. Determine the number of possible four-letter passwords. Determine the number of possible six-digit passwords. The company has 500,000 employees and needs a different password for each employee. State which type of password the company should choose. Explain your answer.

EXPRESSIONS AND EQUATIONS
 A.A.1: EXPRESSIONS

192 Mr. Turner bought x boxes of pencils. Each box holds 25 pencils. He left 3 boxes of pencils at home and took the rest to school. Which expression represents the total number of pencils he took to school?
$122 x$
2 25x-3
$325-3 x$
4 25x-75
193 The length of a rectangular room is 7 less than three times the width, w, of the room. Which expression represents the area of the room?
$13 w-4$
$23 w-7$
$33 w^{2}-4 w$
$43 w^{2}-7 w$

194 Marie currently has a collection of 58 stamps. If she buys s stamps each week for w weeks, which expression represents the total number of stamps she will have?
$158 s w$
$258+s w$
$358 s+w$
$4 \quad 58+s+w$

195 What is the perimeter of a regular pentagon with a side whose length is $x+4$?
$1 x^{2}+16$
$2 \quad 4 x+16$
$35 x+4$
$45 x+20$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

196 Tim ate four more cookies than Alice. Bob ate twice as many cookies as Tim. If x represents the number of cookies Alice ate, which expression represents the number of cookies Bob ate?
$12+(x+4)$
$2 \quad 2 x+4$
$32(x+4)$
$4 \quad 4(x+2)$
197 Which algebraic expression represents 15 less than x divided by 9 ?
$1 \frac{x}{9}-15$
$29 x-15$
$3 \quad 15-\frac{x}{9}$
4 15-9x
198 Timmy bought a skateboard and two helmets for a total of d dollars. If each helmet cost h dollars, the cost of the skateboard could be represented by
$12 d h$
$2 \frac{d h}{2}$
$3 d-2 h$
$4 d-\frac{h}{2}$

199 Marcy determined that her father's age is four less than three times her age. If x represents Marcy's age, which expression represents her father's age?
$13 x-4$
$23(x-4)$
$3 \quad 4 x-3$
$4 \quad 4-3 x$

200 A correct translation of "six less than twice the value of x " is
$1 \quad 2 x<6$
$2 \quad 2 x-6$
$36<2 x$
4 6-2x

201 If Angelina's weekly allowance is d dollars, which expression represents her allowance, in dollars, for x weeks?
$1 d x$
$27 d x$
$3 x+7 d$
$4 \quad \frac{d}{x}$

202 Which expression represents " 5 less than twice x "?
$12 x-5$
$25-2 x$
3 2(5-x)
$42(x-5)$

203 Which expression represents the number of hours in w weeks and d days?
$17 w+12 d$
$284 w+24 d$
$3168 w+24 d$
$4 \quad 168 w+60 d$

204 Marie currently has a collection of 58 stamps. If she buys s stamps each week for w weeks, which expression represents the total number of stamps she will have?
$158 s w$
$258+s w$
$3 \quad 58 s+w$
$458+s+w$

A.A.2: EXPRESSIONS

205 Which verbal expression represents $2(n-6)$?
1 two times n minus six
2 two times six minus n
3 two times the quantity n less than six
4 two times the quantity six less than n
206 Which verbal expression is represented by
$\frac{1}{2}(n-3)$?
1 one-half n decreased by 3
2 one-half n subtracted from 3
3 the difference of one-half n and 3
4 one-half the difference of n and 3

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

207 Which verbal expression can be represented by $2(x-5)$?
15 less than 2 times x
22 multiplied by x less than 5
3 twice the difference of x and 5
4 the product of 2 and x, decreased by 5

208 Which verbal expression is represented by $2(x+4)$?
1 twice the sum of a number and four
2 the sum of two times a number and four
3 two times the difference of a number and four
4 twice the product of a number and four

A.A.3: EXPRESSIONS

209 An example of an algebraic expression is
$1 \quad \frac{2 x+3}{7}=\frac{13}{x}$
$2(2 x+1)(x-7)$
$3 \quad 4 x-1=4$
$4 \quad x=2$

210 An example of an algebraic expression is
$1 \quad x+2$
$2 y=x+2$
$3 y<x+2$
$4 y=x^{2}+2 x$

211 An example of an algebraic expression is
$1 \quad y=m x+b$
$2 \quad 3 x+4 y-7$
$3 \quad 2 x+3 y \leq 18$
$4 \quad(x+y)(x-y)=25$

212 Mr. Stanton asked his students to write an algebraic expression on a piece of paper. He chose four students to go to the board and write their expression.

Robert wrote: $4(2 x+5) \geq 17$
Meredith wrote: $3 y-7+11 z$
Steven wrote: $9 w+2=20$ Cynthia wrote: $8+10-4=14$
Which student wrote an algebraic expression?
1 Robert
2 Meredith
3 Steven
4 Cynthia
213 Chad complained to his friend that he had five equations to solve for homework. Are all of the homework problems equations? Justify your answer.

Math Homework

1. $3 x^{2} \cdot 2 x^{4}$
2. $5-2 x=3 x$
3. $3(2 x+7)$
4. $7 x^{2}+2 x-3 x^{2}-9$
5. $\frac{2}{3}=\frac{x+2}{6}$

Name Chod

A.A.22: SOLVING EQUATIONS

214 Which value of p is the solution of
$5 p-1=2 p+20$?
$1 \frac{19}{7}$
$2 \quad \frac{19}{3}$
33
47

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

215 What is the value of x in the equation
$2(x-4)=4(2 x+1)$?
1 -2
22
$3-\frac{1}{2}$
$4 \quad \frac{1}{2}$

216 The solution of the equation $5-2 x=-4 x-7$ is
11
22
$3-2$
$4-6$

217 Debbie solved the linear equation $3(x+4)-2=16$ as follows:
[Line 1] $3(x+4)-2=16$
[Line 2] $3(x+4)=18$
[Line 3] $3 x+4=18$
[Line 4] $3 x=14$
[Line 5] $x=4 \frac{2}{3}$
She made an error between lines
$1 \quad 1$ and 2
2 2and 3
33 and 4
44 and 5

218 Solve for $g: 3+2 g=5 g-9$

219 Solve algebraically for x : $3(x+1)-5 x=12-(6 x-7)$

A.A.25: SOLVING EQUATIONS WITH FRACTIONAL EXPRESSIONS

220 Which value of x is the solution of
$\frac{2 x}{5}+\frac{1}{3}=\frac{7 x-2}{15}$?
$1 \frac{3}{5}$
$2 \quad \frac{31}{26}$
33
47

221 Which value of x is the solution of the equation $\frac{2 x}{3}+\frac{x}{6}=5$?
16
210
315
430

222 Solve for $x: \frac{3}{5}(x+2)=x-4$
18
$2 \quad 13$
315
$4 \quad 23$

223 Which value of x is the solution of $\frac{x}{3}+\frac{x+1}{2}=x$?
$1 \quad 1$
$2-1$
3 3
$4-3$

224 Which value of x is the solution of the equation $\frac{2}{3} x+\frac{1}{2}=\frac{5}{6}$?
$1 \quad \frac{1}{2}$
22
$3 \quad \frac{2}{3}$
$4 \quad \frac{3}{2}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

225 Which value of x is the solution of the equation $\frac{1}{7}+\frac{2 x}{3}=\frac{15 x-3}{21}$?
16
20
$3 \quad \frac{4}{13}$
$4 \quad \frac{6}{29}$

226 Solve for $m: \frac{m}{5}+\frac{3(m-1)}{2}=2(m-3)$

A.A.25: SOLVING EQUATIONS WITH

 DECIMALS227 The value of y in the equation
$0.06 y+200=0.03 y+350$ is
1500
2 1,666. $\overline{6}$
3 5,000
$4 \quad 18,333 . \overline{3}$

A.A.4: MODELING EQUATIONS

228 If h represents a number, which equation is a correct translation of "Sixty more than 9 times a number is 375 "?
$1 \quad 9 h=375$
$2 \quad 9 h+60=375$
$3 \quad 9 h-60=375$
$4 \quad 60 h+9=375$

A.A.5: MODELING EQUATIONS

229 The length of a rectangular window is 5 feet more than its width, w. The area of the window is 36 square feet. Which equation could be used to find the dimensions of the window?
$1 w^{2}+5 w+36=0$
$2 w^{2}-5 w-36=0$
$3 w^{2}-5 w+36=0$
$4 w^{2}+5 w-36=0$

230 Rhonda has $\$ 1.35$ in nickels and dimes in her pocket. If she has six more dimes than nickels, which equation can be used to determine x, the number of nickels she has?
$1 \quad 0.05(x+6)+0.10 x=1.35$
$2 \quad 0.05 x+0.10(x+6)=1.35$
$3 \quad 0.05+0.10(6 x)=1.35$
$4 \quad 0.15(x+6)=1.35$

231 The width of a rectangle is 3 less than twice the length, x. If the area of the rectangle is 43 square feet, which equation can be used to find the length, in feet?
$12 x(x-3)=43$
$2 x(3-2 x)=43$
$3 \quad 2 x+2(2 x-3)=43$
$4 \quad x(2 x-3)=43$

232 If n is an odd integer, which equation can be used to find three consecutive odd integers whose sum is -3 ?
$1 \quad n+(n+1)+(n+3)=-3$
$2 n+(n+1)+(n+2)=-3$
$3 n+(n+2)+(n+4)=-3$
$4 n+(n+2)+(n+3)=-3$

A.A.6: MODELING EQUATIONS

233 The ages of three brothers are consecutive even integers. Three times the age of the youngest brother exceeds the oldest brother's age by 48 years. What is the age of the youngest brother?
$1 \quad 14$
$2 \quad 18$
$3 \quad 22$
426

234 The sum of three consecutive odd integers is 18 less than five times the middle number. Find the three integers. [Only an algebraic solution can receive full credit.]

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A.A.6: VENN DIAGRAMS

235 Monique has three sons who play football, two sons who play baseball, and one son who plays both sports. If all of her sons play baseball or football, how many sons does she have?
15
26
33
$4 \quad 4$

A.A.23: TRANSFORMING FORMULAS

236 If $3 a x+b=c$, then x equals
$1 c-b+3 a$
$2 c+b-3 a$
$3 \frac{c-b}{3 a}$
$4 \quad \frac{b-c}{3 a}$

237 If the formula for the perimeter of a rectangle is $P=2 l+2 w$, then w can be expressed as
$1 \quad w=\frac{2 l-P}{2}$
$2 \quad w=\frac{P-2 l}{2}$
$3 w=\frac{P-l}{2}$
$4 \quad w=\frac{P-2 w}{2 l}$
238 If $a+a r=b+r$, the value of a in terms of b and r can be expressed as
$1 \quad \frac{b}{r}+1$
$2 \frac{1+b}{r}$
$3 \frac{b+r}{1+r}$
$4 \frac{1+b}{r+b}$

239 The members of the senior class are planning a dance. They use the equation $r=p n$ to determine the total receipts. What is n expressed in terms of r and p ?
$1 \quad n=r+p$
$2 n=r-p$
$3 n=\frac{p}{r}$
$4 \quad n=\frac{r}{p}$

240 A formula used for calculating velocity is $v=\frac{1}{2} a t^{2}$. What is a expressed in terms of v and t ?
$1 \quad a=\frac{2 v}{t}$
$2 a=\frac{2 v}{t^{2}}$
$3 \quad a=\frac{v}{t}$
$4 \quad a=\frac{v}{2 t^{2}}$

241 If $\frac{e y}{n}+k=t$, what is y in terms of e, n, k, and t ?
$1 y=\frac{t n+k}{e}$
$2 y=\frac{t n-k}{e}$
$3 y=\frac{n(t+k)}{e}$
$4 y=\frac{n(t-k)}{e}$

242 If $s=\frac{2 x+t}{r}$, then x equals
$1 \frac{r s-t}{2}$
$2 \frac{r s+1}{2}$
$32 r s-t$
$4 r s-2 t$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic

243 If $k=a m+3 m x$, the value of m in terms of a, k, and x can be expressed as
$1 \frac{k}{a+3 x}$
$2 \frac{k-3 m x}{a}$
$3 \frac{k-a m}{3 x}$
$4 \quad \frac{k-a}{3 x}$

244 The formula for the volume of a pyramid is $V=\frac{1}{3} B h$. What is h expressed in terms of B and V ?
$1 \quad h=\frac{1}{3} V B$
$2 h=\frac{V}{3 B}$
$3 h=\frac{3 V}{B}$
$4 h=3 V B$

245 If $r x-s t=r$, which expression represents x ?
$1 \frac{r+s t}{r}$
$2 \quad \frac{r}{r+s t}$
$3 \frac{r}{r-s t}$
$4 \frac{r-s t}{r}$

246 If $2 y+2 w=x$, then w, in terms of x and y, is equal to
$1 x-y$
$2 \frac{x-2 y}{2}$
$3 x+y$
$4 \frac{x+2 y}{2}$

247 Solve for c in terms of a and $b: b c+a c=a b$

RATE

A.M.1: USING RATE

248 Nicole's aerobics class exercises to fast-paced music. If the rate of the music is 120 beats per minute, how many beats would there be in a class that is 0.75 hour long?
190
2160
3 5,400
4 7,200

249 A cell phone can receive 120 messages per minute. At this rate, how many messages can the phone receive in 150 seconds?
148
275
3300
$4 \quad 18,000$
250 A car uses one gallon of gasoline for every 20 miles it travels. If a gallon of gasoline costs $\$ 3.98$, how much will the gas cost, to the nearest dollar, to travel 180 miles?
19
236
345
480

251 Joseph typed a 1,200-word essay in 25 minutes. At this rate, determine how many words he can type in 45 minutes.

252 Tom drove 290 miles from his college to home and used 23.2 gallons of gasoline. His sister, Ann, drove 225 miles from her college to home and used 15 gallons of gasoline. Whose vehicle had better gas mileage? Justify your answer.

A.M.1: SPEED

253 What is the speed, in meters per second, of a paper airplane that flies 24 meters in 6 seconds?
$1 \quad 144$
$2 \quad 30$
318
44

254 It takes Tammy 45 minutes to ride her bike 5 miles. At this rate, how long will it take her to ride 8 miles?
10.89 hour
$2 \quad 1.125$ hours
348 minutes
472 minutes

255 Steve ran a distance of 150 meters in $1 \frac{1}{2}$ minutes.
What is his speed in meters per hour?
16
260
3100
4 6,000

256 A hiker walked 12.8 miles from 9:00 a.m. to noon. He walked an additional 17.2 miles from 1:00 p.m. to $6: 00 \mathrm{p} . \mathrm{m}$. What is his average rate for the entire walk, in miles per hour?
$1 \quad 3.75$
23.86
$3 \quad 4.27$
$4 \quad 7.71$

257 In a baseball game, the ball traveled 350.7 feet in 4.2 seconds. What was the average speed of the ball, in feet per second?
183.5
$2 \quad 177.5$
$3 \quad 354.9$
4 1,472.9

258 In a game of ice hockey, the hockey puck took 0.8 second to travel 89 feet to the goal line. Determine the average speed of the puck in feet per second.

259 The chart below compares two runners.

Runner	Distance, in miles	Time, in hours
Greg	11	2
Dave	16	3

Based on the information in this chart, state which runner has the faster rate. Justify your answer.

260 The distance from Earth to Mars is $136,000,000$ miles. A spaceship travels at 31,000 miles per hour. Determine, to the nearest day, how long it will take the spaceship to reach Mars.

261 A turtle and a rabbit are in a race to see who is first to reach a point 100 feet away. The turtle travels at a constant speed of 20 feet per minute for the entire 100 feet. The rabbit travels at a constant speed of 40 feet per minute for the first 50 feet, stops for 3 minutes, and then continues at a constant speed of 40 feet per minute for the last 50 feet. Determine which animal won the race and by how much time.

262 Hannah took a trip to visit her cousin. She drove 120 miles to reach her cousin's house and the same distance back home. It took her 1.2 hours to get halfway to her cousin's house. What was her average speed, in miles per hour, for the first 1.2 hours of the trip? Hannah's average speed for the remainder of the trip to her cousin's house was 40 miles per hour. How long, in hours, did it take her to drive the remaining distance? Traveling home along the same route, Hannah drove at an average rate of 55 miles per hour. After 2 hours her car broke down. How many miles was she from home?

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A.M.2: CONVERSIONS

263 On a certain day in Toronto, Canada, the temperature was 15° Celsius (C). Using the formula $F=\frac{9}{5} C+32$, Peter converts this temperature to degrees Fahrenheit (F). Which temperature represents $15^{\circ} \mathrm{C}$ in degrees Fahrenheit?
1 -9
235
359
485

264 Which expression can be used to change 75 kilometers per hour to meters per minute?
$1 \quad \frac{75 \mathrm{~km}}{1 \mathrm{hr}} \times \frac{1 \mathrm{~km}}{1,000 \mathrm{~m}} \times \frac{1 \mathrm{hr}}{60 \mathrm{~min}}$
$2 \frac{75 \mathrm{~km}}{1 \mathrm{hr}} \times \frac{1 \mathrm{~km}}{1,000 \mathrm{~m}} \times \frac{60 \mathrm{~min}}{1 \mathrm{hr}}$
$3 \quad \frac{75 \mathrm{~km}}{1 \mathrm{hr}} \times \frac{1,000 \mathrm{~m}}{1 \mathrm{~km}} \times \frac{1 \mathrm{hr}}{60 \mathrm{~min}}$
$4 \frac{75 \mathrm{~km}}{1 \mathrm{hr}} \times \frac{1,000 \mathrm{~m}}{1 \mathrm{~km}} \times \frac{60 \mathrm{~min}}{1 \mathrm{hr}}$

265 Elizabeth is baking chocolate chip cookies. A single batch uses $\frac{3}{4}$ teaspoon of vanilla. If Elizabeth is mixing the ingredients for five batches at the same time, how many tablespoons of vanilla will she use?

$$
3 \text { teaspoons }=1 \text { tablespoon }
$$

$1 \quad 1 \frac{1}{4}$
$2 \quad 1 \frac{3}{4}$
$3 \quad 3 \frac{3}{4}$
$4 \quad 5 \frac{3}{4}$

266 Peter walked 8,900 feet from home to school.

$$
1 \text { mile }=5,280 \text { feet }
$$

How far, to the nearest tenth of a mile, did he walk?
10.5
20.6
31.6
$4 \quad 1.7$

267 If the speed of sound is 344 meters per second, what is the approximate speed of sound, in meters per hour?

60 seconds $=1$ minute
60 minutes $=1$ hour

1	20,640
2	41,280
3	123,840
4	$1,238,400$

268 A soda container holds $5 \frac{1}{2}$ gallons of soda. How many ounces of soda does this container hold?

$$
\begin{aligned}
& 1 \text { quart }=32 \text { ounces } \\
& 1 \text { gallon }=4 \text { quarts }
\end{aligned}
$$

```
1 44
2 176
3 640
4704
```

269 Mrs. Chen owns two pieces of property. The areas of the properties are 77,120 square feet and 33,500 square feet.

$$
43,560 \text { square feet }=1 \text { acre }
$$

Find the total number of acres Mrs. Chen owns, to the nearest hundredth of an acre.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

270 A jogger ran at a rate of 5.4 miles per hour. Find the jogger's exact rate, in feet per minute.

$$
1 \text { mile }=5,280 \text { feet }
$$

271 Angela wants to purchase carpeting for her living room. The dimensions of her living room are 12 feet by 12 feet. If carpeting is sold by the square yard, determine how many square yards of carpeting she must purchase.

272 Roberta needs ribbon for a craft project. The ribbon sells for $\$ 3.75$ per yard. Find the cost, in dollars, for 48 inches of the ribbon.

A.N.5: PERCENTS

273 In a recent town election, 1,860 people voted for either candidate A or candidate B for the position of supervisor. If candidate A received 55% of the votes, how many votes did candidate B receive?
1186
2837
3 1,023
4 1,805

274 The Hudson Record Store is having a going-out-of-business sale. CDs normally sell for $\$ 18.00$. During the first week of the sale, all CDs will sell for $\$ 15.00$. Written as a fraction, what is the rate of discount? What is this rate expressed as a percent? Round your answer to the nearest hundredth of a percent. During the second week of the sale, the same CDs will be on sale for 25% off the original price. What is the price of a CD during the second week of the sale?

275 At the end of week one, a stock had increased in value from $\$ 5.75$ a share to $\$ 7.50$ a share. Find the percent of increase at the end of week one to the nearest tenth of a percent. At the end of week two, the same stock had decreased in value from $\$ 7.50$ to $\$ 5.75$. Is the percent of decrease at the end of week two the same as the percent of increase at the end of week one? Justify your answer.

276 Shana wants to buy a new bicycle that has a retail price of $\$ 259.99$. She knows that it will be on sale next week for 30% off the retail price. If the tax rate is 7%, find the total amount, to the nearest cent, that she will save by waiting until next week.

277 Miller's Department Store is having a sale with a 25% discount on mattresses. If the sales tax rate is 8%, how much change will Frank receive from $\$ 800$ if he purchases a mattress regularly priced at $\$ 895$ during this sale?

A.N.5: DIRECT VARIATION

278 The number of calories burned while jogging varies directly with the number of minutes spent jogging. If George burns 150 calories by jogging for 20 minutes, how many calories does he burn by jogging for 30 minutes?
1100
2180
3200
4225

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

279 The table below represents the number of hours a student worked and the amount of money the student earned.

Number of Hours (h)	Dollars Earned (d)
8	$\$ 50.00$
15	$\$ 93.75$
19	$\$ 118.75$
30	$\$ 187.50$

Write an equation that represents the number of dollars, d, earned in terms of the number of hours, h, worked. Using this equation, determine the number of dollars the student would earn for working 40 hours.

LINEAR EQUATIONS
 A.A.32: SLOPE

280 In a linear equation, the independent variable increases at a constant rate while the dependent variable decreases at a constant rate. The slope of this line is
1 zero
2 negative
3 positive
4 undefined

281 In a given linear equation, the value of the independent variable decreases at a constant rate while the value of the dependent variable increases at a constant rate. The slope of this line is
1 positive
2 negative
3 zero
4 undefined

282 The data in the table below are graphed, and the slope is examined.

\mathbf{x}	\mathbf{y}
0.5	9.0
1	8.75
1.5	8.5
2	8.25
2.5	8.0

The rate of change represented in this table can be described as
1 negative
2 positive
3 undefined
4 zero

A.A.33: SLOPE

283 What is the slope of the line containing the points $(3,4)$ and $(-6,10)$?
$1 \quad \frac{1}{2}$
22
$3-\frac{2}{3}$
$4-\frac{3}{2}$

284 What is the slope of the line that passes through the points $(-6,1)$ and $(4,-4)$?
1 -2
22
$3-\frac{1}{2}$
$4 \quad \frac{1}{2}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

285 What is the slope of the line that passes through the points $(2,5)$ and $(7,3)$?
$1-\frac{5}{2}$
$2-\frac{2}{5}$
$3 \quad \frac{8}{9}$
$4 \quad \frac{9}{8}$

286 What is the slope of the line that passes through the points $(-5,4)$ and $(15,-4)$?
$1-\frac{2}{5}$
20
$3-\frac{5}{2}$
4 undefined
287 What is the slope of the line that passes through the points $(3,5)$ and $(-2,2)$?
$1 \frac{1}{5}$
$2 \quad \frac{3}{5}$
$3 \quad \frac{5}{3}$
45

288 What is the slope of the line passing through the points $(-2,4)$ and $(3,6)$?
$1-\frac{5}{2}$
$2-\frac{2}{5}$
$3 \quad \frac{2}{5}$
$4 \quad \frac{5}{2}$

289 What is the slope of the line that passes through the points $(2,-3)$ and $(5,1)$?
$1-\frac{2}{3}$
$2 \quad \frac{2}{3}$
$3-\frac{4}{3}$
$4 \quad \frac{4}{3}$

290 What is the slope of the line that passes through the points $(4,-7)$ and $(9,1)$?
$1 \frac{5}{8}$
$2 \frac{8}{5}$
$3-\frac{6}{12}$
$4-\frac{13}{6}$

291 In the diagram below, what is the slope of the line passing through points A and B ?

$1 \quad-2$
22
$3-\frac{1}{2}$
$4 \quad \frac{1}{2}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

292 What is the slope of the line passing through the points A and B, as shown on the graph below?

1 -3
$2-\frac{1}{3}$
33
$4 \quad \frac{1}{3}$

A.A.37: SLOPE

293 What is the slope of the line whose equation is $3 x-7 y=9$?
$1-\frac{3}{7}$
$2 \quad \frac{3}{7}$
$3-\frac{7}{3}$
$4 \quad \frac{7}{3}$

294 What is the slope of the line represented by the equation $4 x+3 y=12$?
$1 \quad \frac{4}{3}$
$2 \quad \frac{3}{4}$
$3-\frac{3}{4}$
$4-\frac{4}{3}$

295 The line represented by the equation $2 y-3 x=4$ has a slope of
$1-\frac{3}{2}$
22
33
$4 \quad \frac{3}{2}$

A.G.4: GRAPHING LINEAR FUNCTIONS

296
The gas tank in a car holds a total of 16 gallons of gas. The car travels 75 miles on 4 gallons of gas. If the gas tank is full at the beginning of a trip, which graph represents the rate of change in the amount of gas in the tank?

1
Distance (miles)

3
Distance (miles)

A.A.34: WRITING LINEAR EQUATIONS

297 What is an equation of the line that passes through the point $(4,-6)$ and has a slope of -3 ?
$1 y=-3 x+6$
$2 y=-3 x-6$
$3 y=-3 x+10$
$4 y=-3 x+14$

298 What is an equation of the line that passes through the point $(3,-1)$ and has a slope of 2 ?

$$
\begin{array}{ll}
1 & y=2 x+5 \\
2 & y=2 x-1 \\
3 & y=2 x-4 \\
4 & y=2 x-7
\end{array}
$$

299 Which equation represents the line that passes through the point $(1,5)$ and has a slope of -2 ?
$1 \quad y=-2 x+7$
$2 y=-2 x+11$
$3 y=2 x-9$
$4 y=2 x+3$
300 Which equation represents a line that has a slope of $\frac{3}{4}$ and passes through the point $(2,1)$?
$13 y=4 x-5$
$23 y=4 x+2$
$34 y=3 x-2$
$4 \quad 4 y=3 x+5$

301 A line having a slope of $\frac{3}{4}$ passes through the point $(-8,4)$. Write the equation of this line in slope-intercept form.

A.A.35: WRITING LINEAR EQUATIONS

302 What is an equation for the line that passes through the coordinates $(2,0)$ and $(0,3)$?
$1 \quad y=-\frac{3}{2} x+3$
$2 y=-\frac{3}{2} x-3$
$3 y=-\frac{2}{3} x+2$
$4 y=-\frac{2}{3} x-2$

303 What is an equation of the line that passes through the points $(3,-3)$ and $(-3,-3)$?
$1 \quad y=3$
$2 x=-3$
$3 y=-3$
$4 x=y$

304 Which equation represents the line that passes through the points $(-3,7)$ and $(3,3)$?
$1 \quad y=\frac{2}{3} x+1$
$2 y=\frac{2}{3} x+9$
$3 y=-\frac{2}{3} x+5$
$4 y=-\frac{2}{3} x+9$

305 What is an equation of the line that passes through the points $(1,3)$ and $(8,5)$?
$1 \quad y+1=\frac{2}{7}(x+3)$
$2 y-5=\frac{2}{7}(x-8)$
$3 y-1=\frac{2}{7}(x+3)$
$4 \quad y+5=\frac{2}{7}(x-8)$
306 Write an equation that represents the line that passes through the points $(5,4)$ and $(-5,0)$.

A.A.39: IDENTIFYING POINTS ON A LINE

307 Which point is on the line $4 y-2 x=0$?
$1 \quad(-2,-1)$
$2(-2,1)$
$3(-1,-2)$
$4(1,2)$

308 Which point lies on the line whose equation is $2 x-3 y=9$?
$1(-1,-3)$
$2(-1,3)$
$3(0,3)$
$4(0,-3)$

309 Which point lies on the graph represented by the equation $3 y+2 x=8$?
$1(-2,7)$
$2(0,4)$
$3(2,4)$
$4(7,-2)$
310 Which set of coordinates is a solution of the equation $2 x-y=11$?
$1(-6,1)$
$2(-1,9)$
$3(0,11)$
$4(2,-7)$

311 If the point $(5, k)$ lies on the line represented by the equation $2 x+y=9$, the value of k is
11
22
$3-1$
$4-2$

312 Which linear equation represents a line containing the point $(1,3)$?

$$
\begin{array}{ll}
1 & x+2 y=5 \\
2 & x-2 y=5 \\
3 & 2 x+y=5 \\
4 & 2 x-y=5
\end{array}
$$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A.A.36: PARALLEL AND PERPENDICULAR LINES

313 Which equation represents a line parallel to the x-axis?
$1 \quad x=5$
$2 y=10$
$3 x=\frac{1}{3} y$
$4 y=5 x+17$

314 Which equation represents a line parallel to the x-axis?
$1 \quad y=-5$
$2 y=-5 x$
$3 x=3$
$4 x=3 y$

315 Which equation represents a line parallel to the y-axis?
$1 \quad x=y$
$2 x=4$
$3 y=4$
$4 y=x+4$

316 Which equation represents a line parallel to the y-axis?
$1 y=x$
$2 y=3$
$3 x=-y$
$4 x=-4$

317 Which equation represents the line that passes through the point $(3,4)$ and is parallel to the x-axis?
$1 x=4$
$2 x=-3$
$3 y=4$
$4 y=-3$

318 Which equation represents a line that is parallel to the y-axis and passes through the point $(4,3)$?
$1 \quad x=3$
$2 x=4$
$3 y=3$
$4 y=4$

A.A.38: PARALLEL AND PERPENDICULAR LINES

319 Which equation represents a line that is parallel to the line $y=-4 x+5$?
$1 \quad y=-4 x+3$
$2 y=-\frac{1}{4} x+5$
$3 y=\frac{1}{4} x+3$
$4 y=4 x+5$

320 Which equation represents a line that is parallel to the line $y=3-2 x$?
$1 \quad 4 x+2 y=5$
$22 x+4 y=1$
$3 y=3-4 x$
$4 y=4 x-2$

321 Which equation represents a line parallel to the graph of $2 x-4 y=16$?
$1 y=\frac{1}{2} x-5$
$2 y=-\frac{1}{2} x+4$
$3 y=-2 x+6$
$4 y=2 x+8$

322 Which equation represents a line that is parallel to the line whose equation is $2 x-3 y=9$?
$1 \quad y=\frac{2}{3} x-4$
$2 y=-\frac{2}{3} x+4$
$3 y=\frac{3}{2} x-4$
$4 y=-\frac{3}{2} x+4$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

323 Which equation represents a line that is parallel to the line whose equation is $y=-3 x-7$?
$1 y=-3 x+4$
$2 y=-\frac{1}{3} x-7$
$3 y=\frac{1}{3} x+5$
$4 y=3 x-2$

324 The graphs of the equations $y=2 x-7$ and $y-k x=7$ are parallel when k equals
1 -2
22
$3-7$
47

INEQUALITIES

A.A.24: SOLVING INEQUALITIES

325 What is the solution of $3(2 m-1) \leq 4 m+7$?
$1 \quad m \leq 5$
$2 m \geq 5$
$3 m \leq 4$
$4 \quad m \geq 4$

326 What is the solution of the inequality
$-6 x-17 \geq 8 x+25$?
$1 \quad x \geq 3$
$2 \quad x \leq 3$
$3 x \geq-3$
$4 \quad x \leq-3$

327 Solve algebraically for x : $2(x-4) \geq \frac{1}{2}(5-3 x)$

328 Solve the inequality $-5(x-7)<15$ algebraically for x.

A.A.21: INTERPRETING SOLUTIONS

329 Which value of x is in the solution set of the inequality $-2 x+5>17$?
1 -8
$2-6$
$3-4$
412

330 Which value of x is in the solution set of the inequality $-4 x+2>10$?
1 -2
22
33
$4-4$

331 Which value of x is in the solution set of $\frac{4}{3} x+5<17$?
18
29
312
416

332 Which value of x is in the solution set of the inequality $-2(x-5)<4$?
10
22
33
45

333 Which value of x is in the solution set of $-3 x+8 \geq 14$?
$1-3$
$2-1$
30
43

334 The statement $|-15|<x<|-20|$ is true when x is equal to
$1-16$
$2-14$
317
421

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

335
Given: $A=\{18,6,-3,-12\}$
Determine all elements of set A that are in the solution of the inequality $\frac{2}{3} x+3<-2 x-7$.

A.A.4: MODELING INEQUALITIES

336 Mrs. Smith wrote "Eight less than three times a number is greater than fifteen" on the board. If x represents the number, which inequality is a correct translation of this statement?
$1 \quad 3 x-8>15$
$2 \quad 3 x-8<15$
$3 \quad 8-3 x>15$
$48-3 x<15$

337 The sign shown below is posted in front of a roller coaster ride at the Wadsworth County Fairgrounds.

If h represents the height of a rider in inches, what is a correct translation of the statement on this sign?
$1 h<48$
$2 h>48$
$3 h \leq 48$
$4 \quad h \geq 48$

A.A.5: MODELING INEQUALITIES

338 An electronics store sells DVD players and cordless telephones. The store makes a $\$ 75$ profit on the sale of each DVD player (d) and a $\$ 30$ profit on the sale of each cordless telephone (c). The store wants to make a profit of at least $\$ 255.00$ from its sales of DVD players and cordless phones. Which inequality describes this situation?
$1 \quad 75 d+30 c<255$
$275 d+30 c \leq 255$
$375 d+30 c>255$
$475 d+30 c \geq 255$

339 Students in a ninth grade class measured their heights, h, in centimeters. The height of the shortest student was 155 cm , and the height of the tallest student was 190 cm . Which inequality represents the range of heights?

$$
\begin{array}{ll}
1 & 155<h<190 \\
2 & 155 \leq h \leq 190 \\
3 & h \geq 155 \text { or } h \leq 190 \\
4 & h>155 \text { or } h<190
\end{array}
$$

340 Roger is having a picnic for 78 guests. He plans to serve each guest at least one hot dog. If each package, p, contains eight hot dogs, which inequality could be used to determine how many packages of hot dogs Roger will need to buy?
$1 \quad p \geq 78$
$2 \quad 8 p \geq 78$
$3 \quad 8+p \geq 78$
$4 \quad 78-p \geq 8$

341 The ninth grade class at a local high school needs to purchase a park permit for $\$ 250.00$ for their upcoming class picnic. Each ninth grader attending the picnic pays $\$ 0.75$. Each guest pays $\$ 1.25$. If 200 ninth graders attend the picnic, which inequality can be used to determine the number of guests, x, needed to cover the cost of the permit?
$\begin{array}{ll}1 & 0.75 x-(1.25)(200) \geq 250.00 \\ 2 & 0.75 x+(1.25)(200) \geq 250.00 \\ 3 & (0.75)(200)-1.25 x \geq 250.00 \\ 4 & (0.75)(200)+1.25 x \geq 250.00\end{array}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

342 The length of a rectangle is 15 and its width is w. The perimeter of the rectangle is, at most, 50 . Which inequality can be used to find the longest possible width?
$130+2 w<50$
$2 \quad 30+2 w \leq 50$
$3 \quad 30+2 w>50$
$4 \quad 30+2 w \geq 50$
343 Carol plans to sell twice as many magazine subscriptions as Jennifer. If Carol and Jennifer need to sell at least 90 subscriptions in all, which inequality could be used to determine how many subscriptions, x, Jennifer needs to sell?
$1 \quad x \geq 45$
$2 \quad 2 x \geq 90$
3 2x-x ≥ 90
$4 \quad 2 x+x \geq 90$

A.A.6: MODELING INEQUALITIES

344 Tamara has a cell phone plan that charges $\$ 0.07$ per minute plus a monthly fee of $\$ 19.00$. She budgets $\$ 29.50$ per month for total cell phone expenses without taxes. What is the maximum number of minutes Tamara could use her phone each month in order to stay within her budget?
$1 \quad 150$
2271
3421
4692

345 An online music club has a one-time registration fee of $\$ 13.95$ and charges $\$ 0.49$ to buy each song. If Emma has $\$ 50.00$ to join the club and buy songs, what is the maximum number of songs she can buy?
173
$2 \quad 74$
3130
4131

346 If five times a number is less than 55 , what is the greatest possible integer value of the number?
$1 \quad 12$
$2 \quad 11$
310
$4 \quad 9$

347 Jason's part-time job pays him $\$ 155$ a week. If he has already saved $\$ 375$, what is the minimum number of weeks he needs to work in order to have enough money to buy a dirt bike for $\$ 900$?
18
29
33
$4 \quad 4$

348 A prom ticket at Smith High School is $\$ 120$. Tom is going to save money for the ticket by walking his neighbor's dog for $\$ 15$ per week. If Tom already has saved $\$ 22$, what is the minimum number of weeks Tom must walk the dog to earn enough to pay for the prom ticket?

349 Peter begins his kindergarten year able to spell 10 words. He is going to learn to spell 2 new words every day. Write an inequality that can be used to determine how many days, d, it takes Peter to be able to spell at least 75 words. Use this inequality to determine the minimum number of whole days it will take for him to be able to spell at least 75 words.

350 Chelsea has $\$ 45$ to spend at the fair. She spends $\$ 20$ on admission and $\$ 15$ on snacks. She wants to play a game that costs $\$ 0.65$ per game. Write an inequality to find the maximum number of times, x, Chelsea can play the game. Using this inequality, determine the maximum number of times she can play the game.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A.G.6: LINEAR INEQUALITIES

351 Which quadrant will be completely shaded in the graph of the inequality $y \leq 2 x$?
1 Quadrant I
2 Quadrant II
3 Quadrant III
4 Quadrant IV

352 Which inequality is represented by the graph below?

$1 \quad y<2 x+1$
$2 y<-2 x+1$
$3 y<\frac{1}{2} x+1$
$4 y<-\frac{1}{2} x+1$

353 The diagram below shows the graph of which inequality?

$1 y>x-1$
$2 y \geq x-1$
$3 y<x-1$
$4 y \leq x-1$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

354 Which graph represents the inequality $y>3$?

355 Which graph represents the solution of $3 y-9 \leq 6 x$?

1

2

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

356 Which graph represents the inequality $y \geq x+3$?

1

2

3

4

357 Graph the solution set for the inequality $4 x-3 y>9$ on the set of axes below. Determine if the point $(1,-3)$ is in the solution set. Justify your answer.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

ABSOLUTE VALUE
A.G.4: GRAPHING ABSOLUTE VALUE FUNCTIONS

358 Which is the graph of $y=|x|+2$?

1

2

3

4

359 On the set of axes below, graph $y=2|x+3|$. Include the interval $-7 \leq x \leq 1$.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A.G.5: GRAPHING ABSOLUTE VALUE FUNCTIONS

360 The diagram below shows the graph of $y=|x-3|$.

Which diagram shows the graph of $y=-|x-3|$?

1

3

4

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

362 The graph of $y=|x+2|$ is shown below.

Which graph represents $y=-|x+2|$?

1

2

4

363 Graph and label the following equations on the set of axes below.

$$
\begin{aligned}
& y=|x| \\
& y=\left|\frac{1}{2} x\right|
\end{aligned}
$$

Explain how decreasing the coefficient of x affects the graph of the equation $y=|x|$.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

364 On the set of axes below, graph and label the equations $y=|x|$ and $y=3|x|$ for the interval $-3 \leq x \leq 3$.

Explain how changing the coefficient of the absolute value from 1 to 3 affects the graph.

QUADRATICS

A.A.20: FACTORING POLYNOMIALS

365 What are the factors of the expression $x^{2}+x-20$?
$1 \quad(x+5)$ and $(x+4)$
$2(x+5)$ and $(x-4)$
$3(x-5)$ and $(x+4)$
$4 \quad(x-5)$ and $(x-4)$

366 Factored completely, the expression $2 x^{2}+10 x-12$ is equivalent to
$12(x-6)(x+1)$
$22(x+6)(x-1)$
$32(x+2)(x+3)$
$42(x-2)(x-3)$

367 Factored completely, the expression $3 x^{2}-3 x-18$ is equivalent to
$13\left(x^{2}-x-6\right)$
$23(x-3)(x+2)$
$3(3 x-9)(x+2)$
$4(3 x+6)(x-3)$

368 Factored completely, the expression $3 x^{3}-33 x^{2}+90 x$ is equivalent to
$13 x\left(x^{2}-33 x+90\right)$
$23 x\left(x^{2}-11 x+30\right)$
$33 x(x+5)(x+6)$
$43 x(x-5)(x-6)$

369 Factor completely: $5 x^{3}-20 x^{2}-60 x$

A.A.19: FACTORING THE DIFFERENCE OF PERFECT SQUARES

370 If Ann correctly factors an expression that is the difference of two perfect squares, her factors could be

$$
\begin{array}{ll}
1 & (2 x+y)(x-2 y) \\
2 & (2 x+3 y)(2 x-3 y) \\
3 & (x-4)(x-4) \\
4 & (2 y-5)(y-5)
\end{array}
$$

371 The expression $x^{2}-16$ is equivalent to
$1(x+2)(x-8)$
$2(x-2)(x+8)$
$3(x+4)(x-4)$
$4 \quad(x+8)(x-8)$

372 The expression $100 n^{2}-1$ is equivalent to
$1(10 n+1)(10 n-1)$
$2(10 n-1)(10 n-1)$
$3(50 n+1)(50 n-1)$
$4(50 n-1)(50 n-1)$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

373 Which expression is equivalent to $64-x^{2}$?
$1(8-x)(8-x)$
$2(8-x)(8+x)$
$3(x-8)(x-8)$
$4(x-8)(x+8)$

374 Which expression is equivalent to $121-x^{2}$?
$1(x-11)(x-11)$
$2(x+11)(x-11)$
$3(11-x)(11+x)$
$4(11-x)(11-x)$

375 Factored, the expression $16 x^{2}-25 y^{2}$ is equivalent to
$1 \quad(4 x-5 y)(4 x+5 y)$
$2(4 x-5 y)(4 x-5 y)$
$3(8 x-5 y)(8 x+5 y)$
$4(8 x-5 y)(8 x-5 y)$

376 The expression $9 x^{2}-100$ is equivalent to
$1 \quad(9 x-10)(x+10)$
$2(3 x-10)(3 x+10)$
$3(3 x-100)(3 x-1)$
$4(9 x-100)(x+1)$

377 Which expression is equivalent to $9 x^{2}-16$?
$1 \quad(3 x+4)(3 x-4)$
$2(3 x-4)(3 x-4)$
$3(3 x+8)(3 x-8)$
$4(3 x-8)(3 x-8)$

378 The expression $x^{2}-36 y^{2}$ is equivalent to
$1(x-6 y)(x-6 y)$
$2(x-18 y)(x-18 y)$
$3(x+6 y)(x-6 y)$
$4 \quad(x+18 y)(x-18 y)$

379 Which expression represents $36 x^{2}-100 y^{6}$ factored completely?
$12\left(9 x+25 y^{3}\right)\left(9 x-25 y^{3}\right)$
$24\left(3 x+5 y^{3}\right)\left(3 x-5 y^{3}\right)$
$3\left(6 x+10 y^{3}\right)\left(6 x-10 y^{3}\right)$
$4\left(18 x+50 y^{3}\right)\left(18 x-50 y^{3}\right)$

380 The expression $9 a^{2}-64 b^{2}$ is equivalent to
$1 \quad(9 a-8 b)(a+8 b)$
$2(9 a-8 b)(a-8 b)$
$3(3 a-8 b)(3 a+8 b)$
$4(3 a-8 b)(3 a-8 b)$

381 When $a^{3}-4 a$ is factored completely, the result is
$1(a-2)(a+2)$
$2 a(a-2)(a+2)$
$3 a^{2}(a-4)$
$4 a(a-2)^{2}$

382 Factor completely: $4 x^{3}-36 x$

A.A.27: SOLVING QUADRATICS BY FACTORING

383 The solutions of $x^{2}=16 x-28$ are
1 -2 and -14
$2 \quad 2$ and 14
$3-4$ and -7
$4 \quad 4$ and 7

384 The solution to the equation $x^{2}-6 x=0$ is
1 0, only
2 6, only
30 and 6
$4 \pm \sqrt{6}$

A.A.28: ROOTS OF QUADRATICS

385 What are the roots of the equation
$x^{2}-10 x+21=0$?
$1 \quad 1$ and 21
2 -5 and -5
$3 \quad 3$ and 7
$4-3$ and -7

386 What are the roots of the equation $x^{2}-7 x+6=0$?
$1 \quad 1$ and 7
$2-1$ and 7
$3-1$ and -6
$4 \quad 1$ and 6
387 Which equation has roots of -3 and 5?
$1 x^{2}+2 x-15=0$
$2 x^{2}-2 x-15=0$
$3 x^{2}+2 x+15=0$
$4 x^{2}-2 x+15=0$

388 What are the roots of the equation $x^{2}-5 x+6=0$?
1 1 and -6
22 and 3
$3-1$ and 6
$4 \quad-2$ and -3

389 The roots of the equation $3 x^{2}-27 x=0$ are
10 and 9
20 and -9
30 and 3
40 and -3

390 The roots of the equation $x^{2}-14 x+48=0$ are
1 -6 and -8
$2-6$ and 8
36 and -8
$4 \quad 6$ and 8

391 If the roots of a quadratic equation are -2 and 3 , the equation can be written as
$1 \quad(x-2)(x+3)=0$
$2(x+2)(x-3)=0$
$3 \quad(x+2)(x+3)=0$
$4 \quad(x-2)(x-3)=0$

392 Find the roots of the equation $x^{2}-x=6$ algebraically.

393 Find the roots of the equation $x^{2}=30-13 x$ algebraically.

A.G.5: GRAPHING QUADRATIC FUNCTIONS

394 Consider the graph of the equation $y=a x^{2}+b x+c$, when $a \neq 0$. If a is multiplied by 3 , what is true of the graph of the resulting parabola?
1 The vertex is 3 units above the vertex of the original parabola.
2 The new parabola is 3 units to the right of the original parabola.
3 The new parabola is wider than the original parabola.
4 The new parabola is narrower than the original parabola.

395 Melissa graphed the equation $y=x^{2}$ and Dave graphed the equation $y=-3 x^{2}$ on the same coordinate grid. What is the relationship between the graphs that Melissa and Dave drew?
1 Dave's graph is wider and opens in the opposite direction from Melissa's graph.
2 Dave's graph is narrower and opens in the opposite direction from Melissa's graph.
3 Dave's graph is wider and is three units below Melissa's graph.
4 Dave's graph is narrower and is three units to the left of Melissa's graph.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

396 The graph of a parabola is represented by the equation $y=a x^{2}$ where a is a positive integer. If a is multiplied by 2 , the new parabola will become
1 narrower and open downward
2 narrower and open upward
3 wider and open downward
4 wider and open upward

397 How is the graph of $y=x^{2}+4 x+3$ affected when the coefficient of x^{2} is changed to a smaller positive number?
1 The graph becomes wider, and the y-intercept changes.
2 The graph becomes wider, and the y-intercept stays the same.
3 The graph becomes narrower, and the y-intercept changes.
4 The graph becomes narrower, and the y-intercept stays the same.

398 The diagram below shows the graph of $y=-x^{2}-c$.

Which diagram shows the graph of $y=x^{2}-c$?

1

2

3

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A.G.8: SOLVING QUADRATICS BY GRAPHING

399 The equation $y=x^{2}+3 x-18$ is graphed on the set of axes below.

Based on this graph, what are the roots of the equation $x^{2}+3 x-18=0$?
$1 \quad-3$ and 6
20 and -18
3 3 and -6
43 and -18

400 The equation $y=-x^{2}-2 x+8$ is graphed on the set of axes below.

Based on this graph, what are the roots of the equation $-x^{2}-2 x+8=0$?
18 and 0
2 2 and -4
39 and -1
4 and - 2

401 A student correctly graphed the parabola shown below to solve a given quadratic equation.

What are the roots of the quadratic equation associated with this graph?
$1-6$ and 3
$2-6$ and 0
$3-3$ and 2
$4-2$ and 3

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

402 The roots of a quadratic equation can be found using the graph below.

What are the roots of this equation?
$1-4$, only
2 -4 and -1
$3-1$ and 4
$4-4,-1$, and 4

On the set of axes below, graph the equation $y=x^{2}+2 x-8$. Using the graph, determine and state the roots of the equation $x^{2}+2 x-8=0$.

404 Graph the equation $y=x^{2}-2 x-3$ on the accompanying set of axes. Using the graph, determine the roots of the equation $x^{2}-2 x-3=0$.

A.A.8: WRITING QUADRATICS

405 When 36 is subtracted from the square of a number, the result is five times the number. What is the positive solution?
19
26
$3 \quad 3$
44

406 Byron is 3 years older than Doug. The product of their ages is 40 . How old is Doug?

1	10
2	8
3	5
4	4

407 Noj is 5 years older than Jacob. The product of their ages is 84 . How old is Noj?
16
27
$3 \quad 12$
$4 \quad 14$

408 Find three consecutive positive even integers such that the product of the second and third integers is twenty more than ten times the first integer. [Only an algebraic solution can receive full credit.]

A.A.8: GEOMETRIC APPLICATIONS OF

 QUADRATICS409 A rectangle has an area of 24 square units. The width is 5 units less than the length. What is the length, in units, of the rectangle?
16
28
33
419

410 The length of a rectangle is 3 inches more than its width. The area of the rectangle is 40 square inches. What is the length, in inches, of the rectangle?
15
28
38.5
$4 \quad 11.5$

411 A contractor needs 54 square feet of brick to construct a rectangular walkway. The length of the walkway is 15 feet more than the width. Write an equation that could be used to determine the dimensions of the walkway. Solve this equation to find the length and width, in feet, of the walkway.

A.G.10: IDENTIFYING THE VERTEX OF A QUADRATIC GIVEN GRAPH

412 What are the vertex and the axis of symmetry of the parabola shown in the diagram below?

1 The vertex is $(-2,-3)$, and the axis of symmetry is $x=-2$.
2 The vertex is ($-2,-3$), and the axis of symmetry is $y=-2$.
3 The vertex is ($-3,-2$), and the axis of symmetry is $y=-2$.
4 The vertex is $(-3,-2)$, and the axis of symmetry is $x=-2$.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

413 A swim team member performs a dive from a 14 -foot-high springboard. The parabola below shows the path of her dive.

Which equation represents the axis of symmetry?
$1 \quad x=3$
$2 y=3$
$3 x=23$
$4 y=23$

414 Which equation represents the axis of symmetry of the graph of the parabola below?

$1 \quad y=-3$
$2 x=-3$
$3 y=-25$
$4 \quad x=-25$

415 What is the equation of the axis of symmetry of the parabola shown in the diagram below?

$$
\begin{array}{ll}
1 & x=-0.5 \\
2 & x=2 \\
3 & x=4.5 \\
4 & x=13
\end{array}
$$

416 What are the vertex and axis of symmetry of the parabola shown in the diagram below?

1 vertex: $(1,-4)$; axis of symmetry: $x=1$
2 vertex: $(1,-4)$; axis of symmetry: $x=-4$
3 vertex: $(-4,1)$; axis of symmetry: $x=1$
4 vertex: $(-4,1)$; axis of symmetry: $x=-4$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

417 What are the vertex and the axis of symmetry of the parabola shown in the graph below?

1
vertex: $(1,6)$; axis of symmetry: $y=1$
2 vertex: (1,6); axis of symmetry: $x=1$
3 vertex: $(6,1)$; axis of symmetry: $y=1$
4 vertex: $(6,1)$; axis of symmetry: $x=1$

418 What are the coordinates of the vertex and the equation of the axis of symmetry of the parabola shown in the graph below?

$1(0,2)$ and $y=2$
$2(0,2)$ and $x=2$
$3(-2,6)$ and $y=-2$
$4 \quad(-2,6)$ and $x=-2$

419 Which is the equation of a parabola that has the same vertex as the parabola represented by $y=x^{2}$, but is wider?
$1 y=x^{2}+2$
$2 y=x^{2}-2$
$3 y=2 x^{2}$
$4 y=\frac{1}{2} x^{2}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

420 State the equation of the axis of symmetry and the coordinates of the vertex of the parabola graphed below.

A.A.41: IDENTIFYING THE VERTEX OF A QUADRATIC GIVEN EQUATION

421 What are the vertex and axis of symmetry of the parabola $y=x^{2}-16 x+63$?
1 vertex: $(8,-1)$; axis of symmetry: $x=8$
2 vertex: $(8,1)$; axis of symmetry: $x=8$
3 vertex: $(-8,-1)$; axis of symmetry: $x=-8$
4 vertex: $(-8,1)$; axis of symmetry: $x=-8$

422 The height, y, of a ball tossed into the air can be represented by the equation $y=-x^{2}+10 x+3$, where x is the elapsed time. What is the equation of the axis of symmetry of this parabola?
$1 \quad y=5$
$2 y=-5$
$3 x=5$
$4 x=-5$

423 What is an equation of the axis of symmetry of the parabola represented by $y=-x^{2}+6 x-4$?
$1 x=3$
$2 y=3$
$3 x=6$
$4 y=6$

424 The equation of the axis of symmetry of the graph of $y=2 x^{2}-3 x+7$ is
$1 x=\frac{3}{4}$
$2 y=\frac{3}{4}$
$3 x=\frac{3}{2}$
$4 y=\frac{3}{2}$

425 What is the vertex of the parabola represented by the equation $y=-2 x^{2}+24 x-100$?
$1 \quad x=-6$
$2 x=6$
$3(6,-28)$
$4(-6,-316)$

426 The vertex of the parabola $y=x^{2}+8 x+10$ lies in Quadrant
1 I
2 II
3 III
4 IV

427 Find algebraically the equation of the axis of symmetry and the coordinates of the vertex of the parabola whose equation is $y=-2 x^{2}-8 x+3$.

SYSTEMS

A.A.10: SOLVING LINEAR SYSTEMS

428 The equations $5 x+2 y=48$ and $3 x+2 y=32$ represent the money collected from school concert ticket sales during two class periods. If x represents the cost for each adult ticket and y represents the cost for each student ticket, what is the cost for each adult ticket?
$1 \quad \$ 20$
$2 \quad \$ 10$
$3 \quad \$ 8$
$4 \quad \$ 4$
429 What is the value of the y-coordinate of the solution to the system of equations $x+2 y=9$ and $x-y=3$?
16
22
33
45

430 What is the value of the y-coordinate of the solution to the system of equations $x-2 y=1$ and $x+4 y=7$?
11
$2-1$
33
44

431 What is the solution of the system of equations
$c+3 d=8$ and $c=4 d-6$?
$1 c=-14, d=-2$
$2 c=-2, d=2$
$3 c=2, d=2$
$4 c=14, d=-2$
432 What is the value of the y-coordinate of the solution to the system of equations $2 x+y=8$ and
$x-3 y=-3$?
1 -2
22
$3 \quad 3$
$4-3$

433 What is the solution of the system of equations
$2 x-5 y=11$ and $-2 x+3 y=-9$?
$1 \quad(-3,-1)$
$2(-1,3)$
$3(3,-1)$
$4(3,1)$

434 Using the substitution method, Ken solves the following system of equations algebraically.

$$
\begin{aligned}
2 x-y & =5 \\
3 x+2 y & =-3
\end{aligned}
$$

Which equivalent equation could Ken use?
$13 x+2(2 x-5)=-3$
$23 x+2(5-2 x)=-3$
$3 \quad 3\left(y+\frac{5}{2}\right)+2 y=-3$
$4 \quad 3\left(\frac{5}{2}-y\right)+2 y=-3$

435 Solve the following system of equations algebraically:

$$
\begin{aligned}
& 3 x+2 y=4 \\
& 4 x+3 y=7
\end{aligned}
$$

[Only an algebraic solution can receive full credit.]

436 Solve the following system of equations algebraically for y :

$$
\begin{gathered}
2 x+2 y=9 \\
2 x-y=3
\end{gathered}
$$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A.G.7: SOLVING LINEAR SYSTEMS

437 A system of equations is graphed on the set of axes below.

The solution of this system is
$1(0,4)$
$2(2,4)$
$3(4,2)$
$4(8,0)$
438 What is the solution of the system of equations shown in the graph below?

$1(1,0)$ and $(-3,0)$
$2(0,-3)$ and $(0,-1)$
$3(-1,-2)$
$4(-2,-1)$

439 On the grid below, solve the system of equations graphically for x and y.

$$
\begin{aligned}
& 4 x-2 y=10 \\
& y=-2 x-1
\end{aligned}
$$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

440 On the set of axes below, solve the following system of equations graphically. State the coordinates of the solution.

$$
\begin{aligned}
& y=4 x-1 \\
& 2 x+y=5
\end{aligned}
$$

A.A.7: WRITING LINEAR SYSTEMS

441 The sum of two numbers is 47 , and their difference is 15 . What is the larger number?
$1 \quad 16$
231
$3 \quad 32$
436

442 Jack bought 3 slices of cheese pizza and 4 slices of mushroom pizza for a total cost of $\$ 12.50$. Grace bought 3 slices of cheese pizza and 2 slices of mushroom pizza for a total cost of $\$ 8.50$. What is the cost of one slice of mushroom pizza?
$1 \quad \$ 1.50$
$2 \quad \$ 2.00$
$3 \quad \$ 3.00$
$4 \quad \$ 3.50$

443 Pam is playing with red and black marbles. The number of red marbles she has is three more than twice the number of black marbles she has. She has 42 marbles in all. How many red marbles does Pam have?
113
$2 \quad 15$
$3 \quad 29$
433

444 Sam and Odel have been selling frozen pizzas for a class fundraiser. Sam has sold half as many pizzas as Odel. Together they have sold a total of 126 pizzas. How many pizzas did Sam sell?
121
242
363
484

445 At Genesee High School, the sophomore class has 60 more students than the freshman class. The junior class has 50 fewer students than twice the students in the freshman class. The senior class is three times as large as the freshman class. If there are a total of 1,424 students at Genesee High School, how many students are in the freshman class?
1202
2205
3235
4236

446 Julia went to the movies and bought one jumbo popcorn and two chocolate chip cookies for $\$ 5.00$. Marvin went to the same movie and bought one jumbo popcorn and four chocolate chip cookies for $\$ 6.00$. How much does one chocolate chip cookie cost?
$1 \quad \$ 0.50$
$2 \quad \$ 0.75$
$3 \quad \$ 1.00$
$4 \quad \$ 2.00$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

447 Josh and Mae work at a concession stand. They each earn $\$ 8$ per hour. Josh worked three hours more than Mae. If Josh and Mae earned a total of $\$ 120$, how many hours did Josh work?
16
29
312
415
448 Michael is 25 years younger than his father. The sum of their ages is 53 . What is Michael's age?
$1 \quad 14$
$2 \quad 25$
328
439

449 Ben has four more than twice as many CDs as Jake. If they have a total of 31 CDs, how many CDs does Jake have?
19
$2 \quad 13$
314
422

450 The total score in a football game was 72 points. The winning team scored 12 points more than the losing team. How many points did the winning team score?
130
242
354
$4 \quad 60$

451 The cost of 3 markers and 2 pencils is $\$ 1.80$. The cost of 4 markers and 6 pencils is $\$ 2.90$. What is the cost of each item? Include appropriate units in your answer.

452 The cost of three notebooks and four pencils is $\$ 8.50$. The cost of five notebooks and eight pencils is $\$ 14.50$. Determine the cost of one notebook and the cost of one pencil. [Only an algebraic solution can receive full credit.]

453 The difference between two numbers is 28 . The larger number is 8 less than twice the smaller number. Find both numbers. [Only an algebraic solution can receive full credit.]

A.A.40: SYSTEMS OF LINEAR INEQUALITIES

454 Which ordered pair is in the solution set of the system of linear inequalities graphed below?

$1(1,-4)$
$2(-5,7)$
$3(5,3)$
$4(-7,-2)$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

455 Which ordered pair is in the solution set of the system of inequalities shown in the graph below?

$1 \quad(-2,-1)$
$2(-2,2)$
$3(-2,-4)$
$4(2,-2)$

456
Which ordered pair is in the solution set of the following system of inequalities?

$$
\begin{aligned}
& y<\frac{1}{2} x+4 \\
& y \geq-x+1
\end{aligned}
$$

$1(-5,3)$
$2(0,4)$
$3(3,-5)$
$4(4,0)$

457 Which ordered pair is in the solution set of the following system of linear inequalities?

$$
\begin{aligned}
& y<2 x+2 \\
& y \geq-x-1
\end{aligned}
$$

$1(0,3)$
$2(2,0)$
$3(-1,0)$
$4(-1,-4)$

458 Which coordinates represent a point in the solution set of the system of inequalities shown below?

$$
\begin{gathered}
y \leq \frac{1}{2} x+13 \\
4 x+2 y>3
\end{gathered}
$$

$1(-4,1)$
$2(-2,2)$
$3(1,-4)$
$4 \quad(2,-2)$

459 Which ordered pair is in the solution set of the system of inequalities $y \leq 3 x+1$ and $x-y>1$?
$1(-1,-2)$
$2(2,-1)$
3 (1,2)
$4(-1,2)$

A.G.7: SYSTEMS OF LINEAR INEQUALITIES

460 On the set of axes below, graph the following system of inequalities and state the coordinates of a point in the solution set.

$$
\begin{gathered}
2 x-y \geq 6 \\
x>2
\end{gathered}
$$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

461 On the set of axes below, solve the following system of inequalities graphically.

$$
\begin{gathered}
y<2 x+1 \\
y \geq-\frac{1}{3} x+4
\end{gathered}
$$

State the coordinates of a point in the solution set.

462 Graph the following systems of inequalities on the set of axes shown below and label the solution set S :

$$
\begin{aligned}
& y>-x+2 \\
& y \leq \frac{2}{3} x+5
\end{aligned}
$$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

463 Solve the following system of inequalities graphically on the set of axes below.

$$
\begin{gathered}
3 x+y<7 \\
y \geq \frac{2}{3} x-4
\end{gathered}
$$

State the coordinates of a point in the solution set.

464 On the set of axes below, graph the following system of inequalities.

$$
\begin{aligned}
y+x & \geq 3 \\
5 x-2 y & >10
\end{aligned}
$$

State the coordinates of one point that satisfies $y+x \geq 3$, but does not satisfy $5 x-2 y>10$.

A.A.11: QUADRATIC-LINEAR SYSTEMS

465 Which ordered pair is a solution to the system of equations $y=x$ and $y=x^{2}-2$?
1 (-2,-2)
$2(-1,1)$
$3(0,0)$
$4(2,2)$

466 Which ordered pair is in the solution set of the system of equations $y=-x+1$ and $y=x^{2}+5 x+6$?
$1(-5,-1)$
$2(-5,6)$
$3(5,-4)$
$4(5,2)$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

467
Which ordered pair is a solution of the system of equations $y=x^{2}-x-20$ and $y=3 x-15$?
$1(-5,-30)$
$2(-1,-18)$
$3(0,5)$
$4(5,-1)$

468
Which ordered pair is a solution to the system of equations $y=x+3$ and $y=x^{2}-x$?
$1(6,9)$
$2(3,6)$
$3(3,-1)$
$4(2,5)$

469 What is the solution set of the system of equations $x+y=5$ and $y=x^{2}-25$?
$1\{(0,5),(11,-6)\}$
$2\{(5,0),(-6,11)\}$
$3\{(-5,0),(6,11)\}$
$4\{(-5,10),(6,-1)\}$

470 Solve the following system of equations algebraically for all values of x and y.

$$
\begin{aligned}
& y=x^{2}+2 x-8 \\
& y=2 x+1
\end{aligned}
$$

A.G.9: QUADRATIC-LINEAR SYSTEMS

471 Which ordered pair is a solution of the system of equations shown in the graph below?

$\begin{array}{ll}1 & (-3,1) \\ 2 & (-3,5) \\ 3 & (0,-1) \\ 4 & (0,-4)\end{array}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

472 Two equations were graphed on the set of axes below.

Which point is a solution of the system of equations shown on the graph?
$1(8,9)$
$2(5,0)$
$3(0,3)$
$4(2,-3)$

473 Which graph can be used to find the solution of the following system of equations?

2

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

474 Which graph could be used to find the solution of the system of equations $y=2 x+6$ and
$y=x^{2}+4 x+3$?

1

2

3

4

475 How many solutions are there for the following system of equations?

$$
\begin{gathered}
y=x^{2}-5 x+3 \\
y=x-6
\end{gathered}
$$

$1 \quad 1$
22
$3 \quad 3$
40

476 Solve the following systems of equations graphically, on the set of axes below, and state the coordinates of the point(s) in the solution set.

$$
\begin{gathered}
y=x^{2}-6 x+5 \\
2 x+y=5
\end{gathered}
$$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

477 On the set of axes below, solve the following system of equations graphically and state the coordinates of all points in the solution set.

$$
\begin{gathered}
y=x^{2}+4 x-5 \\
y=x-1
\end{gathered}
$$

478 On the set of axes below, solve the following system of equations graphically for all values of x and y.

$$
\begin{gathered}
y=x^{2}-6 x+1 \\
y+2 x=6
\end{gathered}
$$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

479 On the set of axes below, solve the following system of equations graphically for all values of x and y.

$$
\begin{gathered}
y=-x^{2}-4 x+12 \\
y=-2 x+4
\end{gathered}
$$

480 On the set of axes below, solve the following system of equations graphically and state the coordinates of all points in the solution set.

$$
\begin{gathered}
y=-x^{2}+6 x-3 \\
x+y=7
\end{gathered}
$$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

481 On the set of axes below, graph the following system of equations.

$$
\begin{gathered}
y+2 x=x^{2}+4 \\
y-x=4
\end{gathered}
$$

Using the graph, determine and state the coordinates of all points in the solution set for the system of equations.

482 On the set of axes below, graph the following system of equations. Using the graph, determine and state all solutions of the system of equations.

$$
\begin{gathered}
y=-x^{2}-2 x+3 \\
y+1=-2 x
\end{gathered}
$$

A.A.13: ADDITION AND SUBTRACTION OF MONOMIALS

483 Which expression is equivalent to $-3 x(x-4)-2 x(x+3)$?
$1-x^{2}-1$
$2-x^{2}+18 x$
$3-5 x^{2}-6 x$
$4-5 x^{2}+6 x$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic

A.A.13: ADDITION AND SUBTRACTION OF POLYNOMIALS

484 When $3 g^{2}-4 g+2$ is subtracted from $7 g^{2}+5 g-1$, the difference is
$1-4 g^{2}-9 g+3$
$24 g^{2}+g+1$
$3 \quad 4 g^{2}+9 g-3$
$4 \quad 10 g^{2}+g+1$

485 When $4 x^{2}+7 x-5$ is subtracted from $9 x^{2}-2 x+3$, the result is
$1 \quad 5 x^{2}+5 x-2$
$25 x^{2}-9 x+8$
$3-5 x^{2}+5 x-2$
$4-5 x^{2}+9 x-8$

486 The sum of $4 x^{3}+6 x^{2}+2 x-3$ and
$3 x^{3}+3 x^{2}-5 x-5$ is
$17 x^{3}+3 x^{2}-3 x-8$
$27 x^{3}+3 x^{2}+7 x+2$
$37 x^{3}+9 x^{2}-3 x-8$
$4 \quad 7 x^{6}+9 x^{4}-3 x^{2}-8$

487 What is the result when $2 x^{2}+3 x y-6$ is subtracted from $x^{2}-7 x y+2$?
$1-x^{2}-10 x y+8$
$2 \quad x^{2}+10 x y-8$
$3-x^{2}-4 x y-4$
$4 \quad x^{2}-4 x y-4$

488 When $5 x+4 y$ is subtracted from $5 x-4 y$, the difference is
10
$210 x$
$38 y$
$4-8 y$

489 What is the sum of $-3 x^{2}-7 x+9$ and $-5 x^{2}+6 x-4$?
$1-8 x^{2}-x+5$
$2-8 x^{4}-x+5$
$3-8 x^{2}-13 x+13$
$4-8 x^{4}-13 x^{2}+13$

490 When $8 x^{2}+3 x+2$ is subtracted from $9 x^{2}-3 x-4$, the result is
$1 \quad x^{2}-2$
$2 \quad 17 x^{2}-2$
$3-x^{2}+6 x+6$
$4 \quad x^{2}-6 x-6$

491 The sum of $3 x^{2}+5 x-6$ and $-x^{2}+3 x+9$ is
$12 x^{2}+8 x-15$
$2 \quad 2 x^{2}+8 x+3$
$3 \quad 2 x^{4}+8 x^{2}+3$
$4 \quad 4 x^{2}+2 x-15$

492 When $2 x^{2}-3 x+2$ is subtracted from $4 x^{2}-5 x+2$, the result is
$1 \quad 2 x^{2}-2 x$
$2-2 x^{2}+2 x$
$3-2 x^{2}-8 x+4$
$4 \quad 2 x^{2}-8 x+4$

493 The sum of $8 n^{2}-3 n+10$ and $-3 n^{2}-6 n-7$ is
$1 \quad 5 n^{2}-9 n+3$
$25 n^{2}-3 n-17$
$3-11 n^{2}-9 n-17$
$4-11 n^{2}-3 n+3$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A.A.13: MULTIPLICATION OF POLYNOMIALS

494 What is the product of $-3 x^{2} y$ and $\left(5 x y^{2}+x y\right)$?

$$
\begin{array}{ll}
1 & -15 x^{3} y^{3}-3 x^{3} y^{2} \\
2 & -15 x^{3} y^{3}-3 x^{3} y \\
3 & -15 x^{2} y^{2}-3 x^{2} y \\
4 & -15 x^{3} y^{3}+x y
\end{array}
$$

495 What is the product of $(3 x+2)$ and $(x-7)$?
$13 x^{2}-14$
$23 x^{2}-5 x-14$
$3 \quad 3 x^{2}-19 x-14$
$4 \quad 3 x^{2}-23 x-14$

A.A.14: DIVISION OF POLYNOMIALS

496 Which expression represents $\frac{12 x^{3}-6 x^{2}+2 x}{2 x}$ in simplest form?
$16 x^{2}-3 x$
$2 \quad 10 x^{2}-4 x$
$3 \quad 6 x^{2}-3 x+1$
$410 x^{2}-4 x+1$

497 The quotient of $\frac{8 x^{5}-2 x^{4}+4 x^{3}-6 x^{2}}{2 x^{2}}$ is
$1 \quad 16 x^{7}-4 x^{6}+8 x^{5}-12 x^{4}$
$2.4 x^{7}-x^{6}+2 x^{5}-3 x^{4}$
$34 x^{3}-x^{2}+2 x-3 x$
$4 \quad 4 x^{3}-x^{2}+2 x-3$

498 What is $24 x^{2} y^{6}-16 x^{6} y^{2}+4 x y^{2}$ divided by $4 x y^{2}$?
$16 x y^{4}-4 x^{5}$
$26 x y^{4}-4 x^{5}+1$
$36 x^{2} y^{3}-4 x^{6} y$
$4 \quad 6 x^{2} y^{3}-4 x^{6} y+1$

499 Express in simplest form: $\frac{45 a^{4} b^{3}-90 a^{3} b}{15 a^{2} b}$

A.A.12: MULTIPLICATION OF POWERS

500 Which expression is equivalent to $3^{3} \cdot 3^{4}$?
$1 \quad 9^{12}$
$2 \quad 9^{7}$
$3 \quad 3^{12}$
$\begin{array}{ll}4 & 3^{7}\end{array}$

501 Which expression represents $\left(3 x^{2} y^{4}\right)\left(4 x y^{2}\right)$ in simplest form?
$1 \quad 12 x^{2} y^{8}$
$212 x^{2} y^{6}$
$3 \quad 12 x^{3} y^{8}$
$4 \quad 12 x^{3} y^{6}$

A.A.12: DIVISION OF POWERS

502 What is half of 2^{6} ?
11^{3}
$2 \quad 1^{6}$
$3 \quad 2^{3}$
$4 \quad 2^{5}$

503 What is one-third of 3^{6} ?
$1 \quad 1^{2}$
23^{2}
$3 \quad 3^{5}$
$4 \quad 9^{6}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

504 Which expression represents $\frac{27 x^{18} y^{5}}{9 x^{6} y}$ in simplest form?
$13 x^{12} y^{4}$
$23 x^{3} y^{5}$
$3 \quad 18 x^{12} y^{4}$
$4 \quad 18 x^{3} y^{5}$

505 Which expression represents $\frac{-14 a^{2} c^{8}}{7 a^{3} c^{2}}$ in simplest form?
$1-2 a c^{4}$
$2-2 a c^{6}$
$3 \frac{-2 c^{4}}{a}$
$4 \quad \frac{-2 c^{6}}{a}$

506 The expression $\frac{12 w^{9} y^{3}}{-3 w^{3} y^{3}}$ is equivalent to
$1-4 w^{6}$
$2-4 w^{3} y$
$39 w^{6}$
$4 \quad 9 w^{3} y$

507 Which expression represents $\frac{\left(2 x^{3}\right)\left(8 x^{5}\right)}{4 x^{6}}$ in simplest form?
$1 x^{2}$
$2 x^{9}$
$34 x^{2}$
$44 x^{9}$

508 The product of $\frac{4 x^{2}}{7 y^{2}}$ and $\frac{21 y^{3}}{20 x^{4}}$, expressed in simplest form, is
$10.6 x^{2} y$
$2 \frac{3 y}{5 x^{2}}$
$3 \frac{12 x^{2} y^{3}}{20 x^{4} y^{2}}$
$4 \frac{84 x^{2} y^{3}}{140 x^{4} y^{2}}$

509 Simplify: $\frac{27 k^{5} m^{8}}{\left(4 k^{3}\right)\left(9 m^{2}\right)}$

A.A.12: POWERS OF POWERS

510 Which expression is equivalent to $\left(3 x^{2}\right)^{3}$?
$19 x^{5}$
$29 x^{6}$
$327 x^{5}$
$427 x^{6}$

511 The expression $\frac{\left(10 w^{3}\right)^{2}}{5 w}$ is equivalent to
$12 w^{5}$
$22 w^{8}$
$320 w^{5}$
$420 w^{8}$

512 The expression $\frac{\left(4 x^{3}\right)^{2}}{2 x}$ is equivalent to
$14 x^{4}$
$24 x^{5}$
$38 x^{4}$
$48 x^{5}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

513 If the expression $\left(2 y^{a}\right)^{4}$ is equivalent to $16 y^{8}$, what is the value of a ?
$1 \quad 12$
22
32
44

514 Which equation is true?
$1 \quad \frac{c^{5}}{d^{7}} \div \frac{d^{3}}{c}=\frac{c^{4}}{d^{4}}$
$2\left(-2 m^{2} p\right)^{3}=-8 m^{6} p^{3}$
$3\left(\frac{s^{3} t^{8}}{s^{4} t^{5}}\right)^{2}=\frac{t^{5}}{s^{2}}$
$4 \quad\left(-2 a^{2} b^{3}\right)\left(3 a b^{2}\right)=a^{3} b^{5}$

A.N.4: OPERATIONS WITH SCIENTIFIC
 NOTATION

515 What is the product of $\left(6 \times 10^{3}\right),\left(4.6 \times 10^{5}\right)$, and $\left(2 \times 10^{-2}\right)$ expressed in scientific notation?

$$
\begin{array}{ll}
1 & 55.2 \times 10^{6} \\
2 & 5.52 \times 10^{7} \\
3 & 55.2 \times 10^{7} \\
4 & 5.52 \times 10^{10}
\end{array}
$$

516 What is the product of 8.4×10^{8} and 4.2×10^{3} written in scientific notation?
12.0×10^{5}
$2 \quad 12.6 \times 10^{11}$
$3 \quad 35.28 \times 10^{11}$
$4 \quad 3.528 \times 10^{12}$

517 What is the product of 12 and 4.2×10^{6} expressed in scientific notation?
$1 \quad 50.4 \times 10^{6}$
$2 \quad 50.4 \times 10^{7}$
35.04×10^{6}
$4 \quad 5.04 \times 10^{7}$

518 The quotient of $\left(9.2 \times 10^{6}\right)$ and $\left(2.3 \times 10^{2}\right)$ expressed in scientific notation is

1	4,000
2	40,000
3	4×10^{3}
4	4×10^{4}

519 What is the quotient of 8.05×10^{6} and 3.5×10^{2} ?
$1 \quad 2.3 \times 10^{3}$
$2 \quad 2.3 \times 10^{4}$
$3 \quad 2.3 \times 10^{8}$
$4 \quad 2.3 \times 10^{12}$

520 The expression $\frac{6 \times 10^{-7}}{3 \times 10^{-3}}$ is equivalent to
12×10^{4}
$2 \quad 2 \times 10^{10}$
32×10^{-4}
42×10^{-10}

521 State the value of the expression $\frac{\left(4.1 \times 10^{2}\right)\left(2.4 \times 10^{3}\right)}{\left(1.5 \times 10^{7}\right)}$ in scientific notation.

A.A.9: EXPONENTIAL FUNCTIONS

522 The current population of a town is 10,000 . If the population, P, increases by 20% each year, which equation could be used to find the population after t years?
$1 \quad P=10,000(0.2)^{t}$
$2 P=10,000(0.8)^{t}$
$3 \quad P=10,000(1.2)^{t}$
$4 \quad P=10,000(1.8)^{t}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

523 Cassandra bought an antique dresser for $\$ 500$. If the value of her dresser increases 6% annually, what will be the value of Cassandra's dresser at the end of 3 years to the nearest dollar?
$1 \quad \$ 415$
$2 \quad \$ 590$
$3 \quad \$ 596$
$4 \quad \$ 770$
524 The value, y, of a $\$ 15,000$ investment over x years is represented by the equation $y=15000(1.2)^{\frac{x}{3}}$. What is the profit (interest) on a 6 -year investment?
1 \$6,600
$2 \quad \$ 10,799$
3 \$21,600
4 \$25,799

525 The current student population of the Brentwood Student Center is 2,000 . The enrollment at the center increases at a rate of 4% each year. To the nearest whole number, what will the student population be closest to in 3 years'?
1 2,240
2 2,250
3 5,488
4 6,240

526
Mr. Smith invested \$2,500 in a savings account that earns 3\% interest compounded annually. He made no additional deposits or withdrawals. Which expression can be used to determine the number of dollars in this account at the end of 4 years?
$1 \quad 2500(1+0.03)^{4}$
$22500(1+0.3)^{4}$
$3 \quad 2500(1+0.04)^{3}$
$4 \quad 2500(1+0.4)^{3}$

527 A bank is advertising that new customers can open a savings account with a $3 \frac{3}{4} \%$ interest rate compounded annually. Robert invests $\$ 5,000$ in an account at this rate. If he makes no additional deposits or withdrawals on his account, find the amount of money he will have, to the nearest cent, after three years.

528 Adrianne invested \$2000 in an account at a 3.5\% interest rate compounded annually. She made no deposits or withdrawals on the account for 4 years. Determine, to the nearest dollar, the balance in the account after the 4 years.

529 Kathy plans to purchase a car that depreciates (loses value) at a rate of 14% per year. The initial cost of the car is $\$ 21,000$. Which equation represents the value, v, of the car after 3 years?
$1 \quad v=21,000(0.14)^{3}$
$2 v=21,000(0.86)^{3}$
$3 v=21,000(1.14)^{3}$
$4 \quad v=21,000(0.86)(3)$
530 The New York Volleyball Association invited 64 teams to compete in a tournament. After each round, half of the teams were eliminated. Which equation represents the number of teams, t, that remained in the tournament after r rounds?

$$
\begin{array}{ll}
1 & t=64(r)^{0.5} \\
2 & t=64(-0.5)^{r} \\
3 & t=64(1.5)^{r} \\
4 & t=64(0.5)^{r}
\end{array}
$$

531 A car depreciates (loses value) at a rate of 4.5% annually. Greg purchased a car for $\$ 12,500$. Which equation can be used to determine the value of the car, V, after 5 years?

$$
\begin{array}{ll}
1 & V=12,500(0.55)^{5} \\
2 & V=12,500(0.955)^{5} \\
3 & V=12,500(1.045)^{5} \\
4 & V=12,500(1.45)^{5}
\end{array}
$$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

532 Is the equation $A=21000(1-0.12)^{t}$ a model of exponential growth or exponential decay, and what is the rate (percent) of change per time period?
1 exponential growth and 12%
2 exponential growth and 88%
3 exponential decay and 12%
4 exponential decay and 88%

533 Daniel's Print Shop purchased a new printer for $\$ 35,000$. Each year it depreciates (loses value) at a rate of 5%. What will its approximate value be at the end of the fourth year?
1 \$33,250.00
2 \$30,008.13
3 \$28,507.72
4 \$27,082.33
534 The value of a car purchased for $\$ 20,000$ decreases at a rate of 12% per year. What will be the value of the car after 3 years?
1 \$12,800.00
2 \$13,629.44
3 \$17,600.00
4 \$28,098.56

535 In a science fiction novel, the main character found a mysterious rock that decreased in size each day. The table below shows the part of the rock that remained at noon on successive days.

Day	Fractional Part of the Rock Remaining
1	1
2	$\frac{1}{2}$
3	$\frac{1}{4}$
4	$\frac{1}{8}$

Which fractional part of the rock will remain at noon on day 7 ?
$1 \frac{1}{128}$
$2 \frac{1}{64}$
$3 \frac{1}{14}$
$4 \quad \frac{1}{12}$

536 The Booster Club raised $\$ 30,000$ for a sports fund. No more money will be placed into the fund. Each year the fund will decrease by 5%. Determine the amount of money, to the nearest cent, that will be left in the sports fund after 4 years.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A.G.4: GRAPHING EXPONENTIAL

 FUNCTIONS537
On the set of axes below, draw the graph of $y=2^{x}$ over the interval $-1 \leq x \leq 3$. Will this graph ever intersect the x-axis? Justify your answer.

538 On the set of axes below, graph $y=3^{x}$ over the interval $-1 \leq x \leq 2$.

RADICALS
 A.N.2: SIMPLIFYING RADICALS

539 What is $\sqrt{72}$ expressed in simplest radical form?
$1 \quad 2 \sqrt{18}$
$2 \quad 3 \sqrt{8}$
$3 \quad 6 \sqrt{2}$
$4 \quad 8 \sqrt{3}$

540 What is $\sqrt{32}$ expressed in simplest radical form?
$1 \quad 16 \sqrt{2}$
$24 \sqrt{2}$
$3 \quad 4 \sqrt{8}$
$4 \quad 2 \sqrt{8}$

541 When $5 \sqrt{20}$ is written in simplest radical form, the result is $k \sqrt{5}$. What is the value of k ?
$1 \quad 20$
210
37
44

542 What is $3 \sqrt{250}$ expressed in simplest radical form?
$15 \sqrt{10}$
$2 \quad 8 \sqrt{10}$
$315 \sqrt{10}$
$4 \quad 75 \sqrt{10}$

543 What is $2 \sqrt{45}$ expressed in simplest radical form?
$1 \quad 3 \sqrt{5}$
$2 \quad 5 \sqrt{5}$
$3 \quad 6 \sqrt{5}$
$4 \quad 18 \sqrt{5}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

544 What is $\frac{\sqrt{32}}{4}$ expressed in simplest radical form?
$1 \sqrt{2}$
$2 \quad 4 \sqrt{2}$
$3 \sqrt{8}$
$4 \frac{\sqrt{8}}{2}$

545 Express $5 \sqrt{72}$ in simplest radical form.

546 Express $-3 \sqrt{48}$ in simplest radical form.

547 Express $4 \sqrt{75}$ in simplest radical form.

548 Express $2 \sqrt{108}$ in simplest radical form.
A.N.3: OPERATIONS WITH RADICALS

549 The expression $6 \sqrt{50}+6 \sqrt{2}$ written in simplest radical form is
$16 \sqrt{52}$
$2 \quad 12 \sqrt{52}$
$3 \quad 17 \sqrt{2}$
$436 \sqrt{2}$

550 The expression $\sqrt{72}-3 \sqrt{2}$ written in simplest radical form is
$1 \quad 5 \sqrt{2}$
$2 \quad 3 \sqrt{6}$
$3 \quad 3 \sqrt{2}$
$4 \sqrt{6}$

551 What is $3 \sqrt{2}+\sqrt{8}$ expressed in simplest radical form?
$13 \sqrt{10}$
$23 \sqrt{16}$
$35 \sqrt{2}$
$4 \quad 7 \sqrt{2}$

552 Express $\frac{3 \sqrt{75}+\sqrt{27}}{3}$ in simplest radical form.

553 Express $\sqrt{25}-2 \sqrt{3}+\sqrt{27}+2 \sqrt{9}$ in simplest radical form.

554 Express the product of $3 \sqrt{20}(2 \sqrt{5}-7)$ in simplest radical form.

555 Express $\frac{16 \sqrt{21}}{2 \sqrt{7}}-5 \sqrt{12}$ in simplest radical form.

RATIONALS

A.A.16: RATIONAL EXPRESSIONS

556 The expression $\frac{9 x^{4}-27 x^{6}}{3 x^{3}}$ is equivalent to
$13 x(1-3 x)$
$23 x\left(1-3 x^{2}\right)$
$3 \quad 3 x\left(1-9 x^{5}\right)$
$4 \quad 9 x^{3}(1-x)$

557 Which expression represents $\frac{2 x^{2}-12 x}{x-6}$ in simplest form?
10
$2 \quad 2 x$
$34 x$
$4 \quad 2 x+2$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

558 Which expression represents $\frac{25 x-125}{x^{2}-25}$ in simplest form?
$1 \frac{5}{x}$
$2 \frac{-5}{x}$
$3 \frac{25}{x-5}$
$4 \frac{25}{x+5}$

559 Which expression represents $\frac{x^{2}-2 x-15}{x^{2}+3 x}$ in simplest form?
1 -5
$2 \frac{x-5}{x}$
$3 \quad \frac{-2 x-5}{x}$
$4 \frac{-2 x-15}{3 x}$

560 Which expression represents $\frac{x^{2}-x-6}{x^{2}-5 x+6}$ in simplest form?
$1 \frac{x+2}{x-2}$
$2 \frac{-x-6}{-5 x+6}$
$3 \frac{1}{5}$
$4-1$

561 Which expression represents $\frac{x^{2}-3 x-10}{x^{2}-25}$ in simplest form?
$1 \frac{2}{5}$
$2 \frac{x+2}{x+5}$
$3 \frac{x-2}{x-5}$
$4 \frac{-3 x-10}{-25}$

562 Which expression is equivalent to
$\frac{2 x^{6}-18 x^{4}+2 x^{2}}{2 x^{2}} ?$
$1 x^{3}-9 x^{2}$
$2 x^{4}-9 x^{2}$
$3 x^{3}-9 x^{2}+1$
$4 x^{4}-9 x^{2}+1$

563 The expression $\frac{2 x^{2}+10 x-28}{4 x+28}$ is equivalent to
$1 \quad \frac{x-2}{2}$
$2 x-1$
$3 \frac{x+2}{2}$
$4 \quad \frac{x+5}{2}$

564 If the area of a rectangle is represented by $x^{2}+8 x+15$ and its length is represented by $x+5$, which expression represents the width of the rectangle?
$1 x+3$
$2 x-3$
$3 x^{2}+6 x+5$
$4 \quad x^{2}+7 x+10$

565 The area of a rectangle is represented by $x^{2}-5 x-24$. If the width of the rectangle is represented by $x-8$, express the length of the rectangle as a binomial.

566 Express in simplest form: $\frac{x^{2}-1}{x^{2}+3 x+2}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A.A.15: UNDEFINED RATIONALS

567 Which value of x makes the expression $\frac{x+4}{x-3}$ undefined?
1 -4
2 -3
33
40

568 The expression $\frac{x-3}{x+2}$ is undefined when the value of x is
$1-2$, only
2 -2 and 3
3 3, only
$4 \quad-3$ and 2

569 Which value of n makes the expression $\frac{5 n}{2 n-1}$ undefined?
11
20
$3-\frac{1}{2}$
$4 \quad \frac{1}{2}$

570 For which value of x is $\frac{x-3}{x^{2}-4}$ undefined?
1 -2
20
33
44

571 The function $y=\frac{x}{x^{2}-9}$ is undefined when the value of x is
10 or 3
2 or -3
3 3, only
$4-3$, only

572 The algebraic expression $\frac{x-2}{x^{2}-9}$ is undefined when x is
10
22
33
$4 \quad 9$

573 The expression $\frac{14+x}{x^{2}-4}$ is undefined when x is
$1-14$, only
2 2, only
$3-2$ or 2
$4-14,-2$, or 2
574 Which value of x makes the expression
$\frac{x^{2}-9}{x^{2}+7 x+10}$ undefined?
$1-5$
22
$3 \quad 3$
$4-3$

575 For which set of values of x is the algebraic expression $\frac{x^{2}-16}{x^{2}-4 x-12}$ undefined?
$1\{-6,2\}$
$2\{-4,3\}$
$3\{-4,4\}$
$4\{-2,6\}$

576 For which values of x is the fraction $\frac{x^{2}+x-6}{x^{2}+5 x-6}$ undefined?
$1 \quad 1$ and -6
2 2 and -3
3 3and -2
46 and -1

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

577 A value of x that makes the expression
$\frac{x^{2}+4 x-12}{x^{2}-2 x-15}$ undefined is
1 -6
2 -2
33
45

A.A.18: MULTIPLICATION AND DIVISION OF RATIONALS

578 What is the product of $\frac{x^{2}-1}{x+1}$ and $\frac{x+3}{3 x-3}$ expressed in simplest form?
$1 x$
$2 \quad \frac{x}{3}$
$3 x+3$
$4 \quad \frac{x+3}{3}$

579 What is the product of $\frac{4 x}{x-1}$ and $\frac{x^{2}-1}{3 x+3}$ expressed in simplest form?
$1 \quad \frac{4 x}{3}$
$2 \frac{4 x^{2}}{3}$
$3 \frac{4 x^{2}}{3(x+1)}$
$4 \frac{4(x+1)}{3}$

580 Express the product of $\frac{x+2}{2}$ and $\frac{4 x+20}{x^{2}+6 x+8}$ in simplest form.

581 What is the quotient of $\frac{x}{x+4}$ divided by $\frac{2 x}{x^{2}-16}$?
$1 \frac{2}{x-4}$
$2 \frac{2 x^{2}}{x-4}$
$3 \frac{2 x^{2}}{x^{2}-16}$
$4 \quad \frac{x-4}{2}$
582 Express in simplest form:
$\frac{x^{2}+9 x+14}{x^{2}-49} \div \frac{3 x+6}{x^{2}+x-56}$

583 Express in simplest form: $\frac{2 x^{2}-8 x-42}{6 x^{2}} \div \frac{x^{2}-9}{x^{2}-3 x}$

584 Perform the indicated operation and simplify:
$\frac{3 x+6}{4 x+12} \div \frac{x^{2}-4}{x+3}$

585 Express $\frac{3 x^{2}+9 x}{x^{2}+5 x+6} \div \frac{x^{2}-9}{x^{2}-x-6}$ in simplest form.

A.A.17: ADDITION AND SUBTRACTION OF RATIONALS

586 What is the sum of $\frac{d}{2}$ and $\frac{2 d}{3}$ expressed in simplest form?
$1 \quad \frac{3 d}{5}$
$2 \frac{3 d}{6}$
$3 \quad \frac{7 d}{5}$
$4 \frac{7 d}{6}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

587 What is the sum of $\frac{3}{2 x}$ and $\frac{4}{3 x}$ expressed in simplest form?
$1 \frac{12}{6 x^{2}}$
$2 \quad \frac{17}{6 x}$
$3 \quad \frac{7}{5 x}$
$4 \quad \frac{17}{12 x}$

588 What is the sum of $\frac{3}{2 x}$ and $\frac{7}{4 x}$?
$1 \quad \frac{21}{8 x^{2}}$
$2 \quad \frac{13}{4 x}$
$3 \frac{10}{6 x}$
$4 \quad \frac{13}{8 x}$

589 What is $\frac{2+x}{5 x}-\frac{x-2}{5 x}$ expressed in simplest form?
10
$2 \quad \frac{2}{5}$
$3 \frac{4}{5 x}$
$4 \quad \frac{2 x+4}{5 x}$

590 What is $\frac{6}{5 x}-\frac{2}{3 x}$ in simplest form?
$1 \frac{8}{15 x^{2}}$
$2 \frac{8}{15 x}$
$3 \quad \frac{4}{15 x}$
$4 \quad \frac{4}{2 x}$

591 What is $\frac{6}{4 a}-\frac{2}{3 a}$ expressed in simplest form?
$1 \quad \frac{4}{a}$
$2 \frac{5}{6 a}$
$3 \quad \frac{8}{7 a}$
$4 \quad \frac{10}{12 a}$

592 Which fraction is equivalent to $\frac{4}{3 a}-\frac{5}{2 a}$?
$1 \quad-\frac{1}{a}$
$2-\frac{1}{5 a}$
$3-\frac{7}{6 a}$
$4-\frac{7}{6 a^{2}}$

593 What is $\frac{7}{12 x}-\frac{y}{6 x^{2}}$ expressed in simplest form?
$1 \frac{7-y}{6 x}$
$2 \frac{7-y}{12 x-6 x^{2}}$
$3-\frac{7 y}{12 x^{2}}$
$4 \frac{7 x-2 y}{12 x^{2}}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

594 What is the sum of $\frac{3 x^{2}}{x-2}$ and $\frac{x^{2}}{x-2}$?
$1 \frac{3 x^{4}}{(x-2)^{2}}$
$2 \frac{3 x^{4}}{x-2}$
$3 \frac{4 x^{2}}{(x-2)^{2}}$
$4 \quad \frac{4 x^{2}}{x-2}$
595 What is the sum of $\frac{-x+7}{2 x+4}$ and $\frac{2 x+5}{2 x+4}$?
$1 \frac{x+12}{2 x+4}$
$2 \frac{3 x+12}{2 x+4}$
$3 \frac{x+12}{4 x+8}$
$4 \frac{3 x+12}{4 x+8}$

596 What is the sum of $\frac{2 y}{y+5}$ and $\frac{10}{y+5}$ expressed in simplest form?
11
22
$3 \frac{12 y}{y+5}$
$4 \frac{2 y+10}{y+5}$

597 The expression $\frac{2 x+13}{2 x+6}-\frac{3 x-6}{2 x+6}$ is equivalent to
$1 \frac{-x+19}{2(x+3)}$
$2 \frac{-x+7}{2(x+3)}$
$3 \frac{5 x+19}{2(x+3)}$
$4 \quad \frac{5 x+7}{4 x+12}$

A.A.26: SOLVING RATIONALS

598 Which value of x is a solution of $\frac{5}{x}=\frac{x+13}{6}$?
1 -2
$2-3$
$3-10$
$4 \quad-15$

599 What is the solution of $\frac{k+4}{2}=\frac{k+9}{3}$?
11
25
36
$4 \quad 14$
600 What is the value of x in the equation
$\frac{2}{x}-3=\frac{26}{x}$?
$1-8$
$2-\frac{1}{8}$
$3 \frac{1}{8}$
48

601 What is the solution set of $\frac{x+2}{x-2}=\frac{-3}{x}$?
$1\{-2,3\}$
$2\{-3,-2\}$
$3\{-1,6\}$
$4\{-6,1\}$

602 Which value of x is the solution of $\frac{2 x-3}{x-4}=\frac{2}{3}$?
$1 \quad-\frac{1}{4}$
$2 \quad \frac{1}{4}$
$3-4$
44

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

603 What is the solution of $\frac{2}{x+1}=\frac{x+1}{2}$?
$1 \quad-1$ and -3
$2-1$ and 3
3 1 and -3
$4 \quad 1$ and 3

604 What is the solution of the equation $\frac{x+2}{2}=\frac{4}{x}$?
$1 \quad 1$ and -8
2 2 and -4
$3-1$ and 8
$4 \quad-2$ and 4

605 Solve for $x: \frac{x+1}{x}=\frac{-7}{x-12}$

606 Solve algebraically for $x: \frac{x+2}{6}=\frac{3}{x-1}$

607 Solve algebraically for $x: \frac{3}{4}=\frac{-(x+11)}{4 x}+\frac{1}{2 x}$

608 Solve algebraically: $\frac{2}{3 x}+\frac{4}{x}=\frac{7}{x+1}$
[Only an algebraic solution can receive full credit.]

FUNCTIONS

A.G.4: FAMILIES OF FUNCTIONS

609 Which equation represents a quadratic function?
$1 y=x+2$
$2 y=|x+2|$
$3 y=x^{2}$
$4 y=2^{x}$

610 Which type of graph is shown in the diagram below?

1 absolute value
2 exponential
3 linear
4 quadratic
611 Which type of function is represented by the graph shown below?

1 absolute value
2 exponential
3 linear
4 quadratic

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

612 Which type of function is graphed below?

1 linear
2 quadratic
3 exponential
4 absolute value

613 Which graph represents a linear function?

1

2

3

4

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

614 Which graph represents an exponential equation?

1

2

615 Antwaan leaves a cup of hot chocolate on the counter in his kitchen. Which graph is the best representation of the change in temperature of his hot chocolate over time?

3

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org
A.G.4: IDENTIFYING THE EQUATION OF A GRAPH

616 Which equation is represented by the graph below?

$12 y+x=10$
$2 y-2 x=-5$
$3-2 y=10 x-4$
$42 y=-4 x-10$

617 Which equation is represented by the graph below?

$1 y=x^{2}-3$
$2 y=(x-3)^{2}$
$3 y=|x|-3$
$4 y=|x-3|$

A.G.3: DEFINING FUNCTIONS

618 Which relation is not a function?
$1\{(1,5),(2,6),(3,6),(4,7)\}$
$2\{(4,7),(2,1),(-3,6),(3,4)\}$
$3\{(-1,6),(1,3),(2,5),(1,7)\}$
$4\{(-1,2),(0,5),(5,0),(2,-1)\}$

619 Which relation represents a function?
$1\{(0,3),(2,4),(0,6)\}$
$2\{(-7,5),(-7,1),(-10,3),(-4,3)\}$
$3\{(2,0),(6,2),(6,-2)\}$
$4\{(-6,5),(-3,2),(1,2),(6,5)\}$
620 Which relation is a function?
$1 \quad\left\{\left(\frac{3}{4}, 0\right),(0,1),\left(\frac{3}{4}, 2\right)\right\}$
$2\left\{(-2,2),\left(-\frac{1}{2}, 1\right),(-2,4)\right\}$
$3\{(-1,4),(0,5),(0,4)\}$
$4\{(2,1),(4,3),(6,5)\}$
621 Which set of ordered pairs represents a function?
$1\{(0,4),(2,4),(2,5)\}$
$2\{(6,0),(5,0),(4,0)\}$
$3\{(4,1),(6,2),(6,3),(5,0)\}$
$4\{(0,4),(1,4),(0,5),(1,5)\}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org
624 Which graph represents a function?

1

2

3

4

625 Which graph does not represent a function?
1

2

3

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

626 Which graph represents a function?

1

2

3

627 Which graph represents a function?

2

3

4

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

628 Which graph does not represent the graph of a function?

1

2

3

629 Which statement is true about the relation shown on the graph below?

1 It is a function because there exists one x-coordinate for each y-coordinate.
2 It is a function because there exists one y-coordinate for each x-coordinate.
3 It is not a function because there are multiple y-values for a given x-value.
4 It is not a function because there are multiple x-values for a given y-value.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

TRIANGLES

A.A.45: PYTHAGOREAN THEOREM

630 Don placed a ladder against the side of his house as shown in the diagram below.

Which equation could be used to find the distance, x, from the foot of the ladder to the base of the house?
$1 \quad x=20-19.5$
$2 x=20^{2}-19.5^{2}$
$3 x=\sqrt{20^{2}-19.5^{2}}$
$4 \quad x=\sqrt{20^{2}+19.5^{2}}$

631 Tanya runs diagonally across a rectangular field that has a length of 40 yards and a width of 30 yards, as shown in the diagram below.

What is the length of the diagonal, in yards, that Tanya runs?
150
$2 \quad 60$
370
480

632 What is the value of x, in inches, in the right triangle below?

$\begin{array}{ll}1 & \sqrt{15} \\ 2 & 8 \\ 3 & \sqrt{34} \\ 4 & 4\end{array}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

633 Nancy's rectangular garden is represented in the diagram below.

If a diagonal walkway crosses her garden, what is its length, in feet?
$1 \quad 17$
222
$3 \sqrt{161}$
$4 \sqrt{529}$

634 The end of a dog's leash is attached to the top of a 5 -foot-tall fence post, as shown in the diagram below. The dog is 7 feet away from the base of the fence post.

How long is the leash, to the nearest tenth of a foot?
14.9
28.6
39.0
412.0

635 The rectangle shown below has a diagonal of 18.4 cm and a width of 7 cm .

To the nearest centimeter, what is the length, x, of the rectangle?
111
$2 \quad 17$
320
$4 \quad 25$

636 Campsite A and campsite B are located directly opposite each other on the shores of Lake Omega, as shown in the diagram below. The two campsites form a right triangle with Sam's position, S. The distance from campsite B to Sam's position is 1,300 yards, and campsite A is 1,700 yards from his position.

What is the distance from campsite A to campsite B, to the nearest yard?

1	1,095
2	1,096
3	2,140
4	2,141

1 1,095
2 1,096
4 2,141

637 The legs of an isosceles right triangle each measure 10 inches. What is the length of the hypotenuse of this triangle, to the nearest tenth of an inch?
16.3
27.1
314.1
$4 \quad 17.1$

638 The length of one side of a square is 13 feet. What is the length, to the nearest foot, of a diagonal of the square?
$1 \quad 13$
$2 \quad 18$
319
426

639 The length of the hypotenuse of a right triangle is 34 inches and the length of one of its legs is 16 inches. What is the length, in inches, of the other leg of this right triangle?
116
$2 \quad 18$
$3 \quad 25$
430

640 In triangle $R S T$, angle R is a right angle. If $T R=6$ and $T S=8$, what is the length of $\overline{R S}$?
110
22
$3 \quad 2 \sqrt{7}$
$4 \quad 7 \sqrt{2}$

641 In right triangle $A B C, \mathrm{~m} \angle C=90, A C=7$, and $A B=13$. What is the length of $\overline{B C}$?
16
220
$3 \sqrt{120}$
$4 \sqrt{218}$

TRIGONOMETRY
 A.A.42: TRIGONOMETRIC RATIOS

642 The diagram below shows right triangle $U P C$.

Which ratio represents the sine of $\angle U$?
$1 \quad \frac{15}{8}$
$2 \quad \frac{15}{17}$
$3 \quad \frac{8}{15}$
$4 \quad \frac{8}{17}$
643 Right triangle $A B C$ has legs of 8 and 15 and a hypotenuse of 17 , as shown in the diagram below.

The value of the tangent of $\angle B$ is
10.4706
20.5333
$3 \quad 0.8824$
$4 \quad 1.8750$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

644 Which ratio represents $\sin x$ in the right triangle shown below?

$1 \quad \frac{28}{53}$
$2 \quad \frac{28}{45}$
$3 \quad \frac{45}{53}$
$4 \quad \frac{53}{28}$

645 The diagram below shows right triangle $A B C$.

Which ratio represents the tangent of $\angle A B C$?
$1 \frac{5}{13}$
$2 \frac{5}{12}$
$3 \quad \frac{12}{13}$
$4 \quad \frac{12}{5}$

646 The diagram below shows right triangle $L M P$.

Which ratio represents the tangent of $\angle P L M$?
$1 \frac{3}{4}$
$2 \quad \frac{3}{5}$
$3 \quad \frac{4}{3}$
$4 \quad \frac{5}{4}$

647 In right triangle $A B C$ shown below, what is the value of $\cos A$?

$1 \quad \frac{12}{20}$
$2 \quad \frac{16}{20}$
$3 \quad \frac{20}{12}$
$4 \quad \frac{20}{16}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

648 Which ratio represents the cosine of angle A in the right triangle below?

$1 \quad \frac{3}{5}$
$2 \frac{5}{3}$
$3 \quad \frac{4}{5}$
$4 \quad \frac{4}{3}$

649 Which equation shows a correct trigonometric ratio for angle A in the right triangle below?

$1 \quad \sin A=\frac{15}{17}$
$2 \tan A=\frac{8}{17}$
$3 \quad \cos A=\frac{15}{17}$
$4 \tan A=\frac{5}{8}$

650 In triangle $M C T$, the measure of $\angle T=90^{\circ}$, $M C=85 \mathrm{~cm}, C T=84 \mathrm{~cm}$, and $T M=13 \mathrm{~cm}$. Which ratio represents the sine of $\angle C$?
$1 \quad \frac{13}{85}$
$2 \quad \frac{84}{85}$
$3 \quad \frac{13}{84}$
$4 \quad \frac{84}{13}$
651 In $\triangle A B C$, the measure of $\angle B=90^{\circ}, A C=50$, $A B=48$, and $B C=14$. Which ratio represents the tangent of $\angle A$?
$1 \quad \frac{14}{50}$
$2 \quad \frac{14}{48}$
$3 \quad \frac{48}{50}$
$4 \quad \frac{48}{14}$

652 In $\triangle A B C, \mathrm{~m} \angle C=90$. If $A B=5$ and $A C=4$, which statement is not true?
$1 \quad \cos A=\frac{4}{5}$
$2 \quad \tan A=\frac{3}{4}$
$3 \quad \sin B=\frac{4}{5}$
$4 \quad \tan B=\frac{5}{3}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A.A.44: USING TRIGONOMETRY TO FIND A SIDE

653 In the right triangle shown in the diagram below, what is the value of x to the nearest whole number?

$1 \quad 12$
$2 \quad 14$
$3 \quad 21$
$4 \quad 28$

654 A tree casts a 25 -foot shadow on a sunny day, as shown in the diagram below.

If the angle of elevation from the tip of the shadow to the top of the tree is 32°, what is the height of the tree to the nearest tenth of a foot?
$1 \quad 13.2$
215.6
$3 \quad 21.2$
440.0

655 An 8-foot rope is tied from the top of a pole to a stake in the ground, as shown in the diagram below.

If the rope forms a 57° angle with the ground, what is the height of the pole, to the nearest tenth of a foot?
14.4
26.7
39.5
$4 \quad 12.3$

656 A right triangle contains a 38° angle whose adjacent side measures 10 centimeters. What is the length of the hypotenuse, to the nearest hundredth of a centimeter?
17.88
$2 \quad 12.69$
$3 \quad 12.80$
$4 \quad 16.24$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

657 A metal pipe is used to hold up a 9 -foot fence, as shown in the diagram below. The pipe makes an angle of 48° with the ground.

Determine, to the nearest foot, how far the bottom of the pipe is from the base of the fence. Determine, to the nearest foot, the length of the metal pipe.

658 A stake is to be driven into the ground away from the base of a 50 -foot pole, as shown in the diagram below. A wire from the stake on the ground to the top of the pole is to be installed at an angle of elevation of 52°.

How far away from the base of the pole should the stake be driven in, to the nearest foot? What will be the length of the wire from the stake to the top of the pole, to the nearest foot?

659 A hot-air balloon is tied to the ground with two taut (straight) ropes, as shown in the diagram below. One rope is directly under the balloon and makes a right angle with the ground. The other rope forms an angle of 50° with the ground.

Determine the height, to the nearest foot, of the balloon directly above the ground. Determine the distance, to the nearest foot, on the ground between the two ropes.

660 As shown in the diagram below, a ladder 5 feet long leans against a wall and makes an angle of 65° with the ground. Find, to the nearest tenth of a foot, the distance from the wall to the base of the ladder.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org
A.A.43: USING TRIGONOMETRY TO FIND AN
ANGLE

661 Which equation could be used to find the measure of one acute angle in the right triangle shown below?

$1 \quad \sin A=\frac{4}{5}$
$2 \tan A=\frac{5}{4}$
$3 \cos B=\frac{5}{4}$
$4 \tan B=\frac{4}{5}$

662 Which equation could be used to find the measure of angle D in the right triangle shown in the diagram below?

$1 \quad \cos D=\frac{12}{13}$
$2 \quad \cos D=\frac{13}{12}$
$3 \quad \sin D=\frac{5}{13}$
$4 \quad \sin D=\frac{12}{13}$

663 In right triangle $A B C$ shown below, $A B=18.3$ and $B C=11.2$.

What is the measure of $\angle A$, to the nearest tenth of a degree?
131.5
$2 \quad 37.7$
352.3
458.5

664 The center pole of a tent is 8 feet long, and a side of the tent is 12 feet long as shown in the diagram below.

If a right angle is formed where the center pole meets the ground, what is the measure of angle A to the nearest degree?
134
242
348
456

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

665 In the diagram of $\triangle A B C$ shown below, $B C=10$ and $A B=16$.

To the nearest tenth of a degree, what is the measure of the largest acute angle in the triangle?
132.0
$2 \quad 38.7$
$3 \quad 51.3$
$4 \quad 90.0$

666 A communications company is building a 30 -foot antenna to carry cell phone transmissions. As shown in the diagram below, a 50 -foot wire from the top of the antenna to the ground is used to stabilize the antenna.

Find, to the nearest degree, the measure of the angle that the wire makes with the ground.

667 In right triangle $A B C$ shown below, $A C=29$ inches, $A B=17$ inches, and $\mathrm{m} \angle A B C=90$. Find the number of degrees in the measure of angle $B A C$, to the nearest degree.

Find the length of $\overline{B C}$ to the nearest inch.

668 A trapezoid is shown below.

Calculate the measure of angle x, to the nearest tenth of a degree.

669 In right triangle $A B C, A B=20, A C=12, B C=16$, and $\mathrm{m} \angle C=90$. Find, to the nearest degree, the measure of $\angle A$.

670 A 28 -foot ladder is leaning against a house. The bottom of the ladder is 6 feet from the base of the house. Find the measure of the angle formed by the ladder and the ground, to the nearest degree.

671 A man standing on level ground is 1000 feet away from the base of a 350 -foot-tall building. Find, to the nearest degree, the measure of the angle of elevation to the top of the building from the point on the ground where the man is standing.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

MEASURING IN THE PLANE AND SPACE

A.G.1: COMPOSITIONS OF POLYGONS AND CIRCLES

672 A playground in a local community consists of a rectangle and two semicircles, as shown in the diagram below.

Which expression represents the amount of fencing, in yards, that would be needed to completely enclose the playground?
$1 \quad 15 \pi+50$
$2 \quad 15 \pi+80$
$330 \pi+50$
$430 \pi+80$

673 A designer created a garden, as shown in the diagram below. The garden consists of four quarter-circles of equal size inside a square. The designer put a fence around both the inside and the outside of the garden.

Which expression represents the amount of fencing, in yards, that the designer used for the fence?
$140+10 \pi$
$240+25 \pi$
$3100+10 \pi$
$4100+25 \pi$

674 A garden is in the shape of an isosceles trapezoid and a semicircle, as shown in the diagram below. A fence will be put around the perimeter of the entire garden.

Which expression represents the length of fencing, in meters, that will be needed?
$1 \quad 22+6 \pi$
$222+12 \pi$
$315+6 \pi$
$4 \quad 15+12 \pi$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

675 What is the perimeter of the figure shown below, which consists of an isosceles trapezoid and a semicircle?

$1 \quad 20+3 \pi$
$2 \quad 20+6 \pi$
$326+3 \pi$
$426+6 \pi$
676 Serena's garden is a rectangle joined with a semicircle, as shown in the diagram below. Line segment $A B$ is the diameter of semicircle P. Serena wants to put a fence around her garden.

Calculate the length of fence Serena needs to the nearest tenth of a foot.

677 A window is made up of a single piece of glass in the shape of a semicircle and a rectangle, as shown in the diagram below. Tess is decorating for a party and wants to put a string of lights all the way around the outside edge of the window.

To the nearest foot, what is the length of the string of lights that Tess will need to decorate the window?

678 A figure is made up of a rectangle and a semicircle as shown in the diagram below.

What is the area of the figure, to the nearest tenth of a square centimeter?
$1 \quad 39.4$
244.1
348.8
$4 \quad 58.3$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

679 In the figure below, $A B C D$ is a square and semicircle O has a radius of 6 .

What is the area of the figure?
$136+6 \pi$
$236+18 \pi$
$3144+18 \pi$
$4 \quad 144+36 \pi$

680 Luis is going to paint a basketball court on his driveway, as shown in the diagram below. This basketball court consists of a rectangle and a semicircle.

Which expression represents the area of this basketball court, in square feet?
180
$2 \quad 80+8 \pi$
$380+16 \pi$
$480+64 \pi$

681 The figure shown below is composed of two rectangles and a quarter circle.

What is the area of this figure, to the nearest square centimeter?
133
$2 \quad 37$
344
458

682 In the diagram below, circle O is inscribed in square $A B C D$. The square has an area of 36 .

What is the area of the circle?
1 9?
2 6?
3 3?
4 36?

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

683 In the diagram below, MATH is a rectangle, $G B=4.6, M H=6$, and $H T=15$.

What is the area of polygon MBATH?
134.5
255.5
390.0
$4 \quad 124.5$

684 A designer created the logo shown below. The logo consists of a square and four quarter-circles of equal size.

Express, in terms of π, the exact area, in square inches, of the shaded region.

685 In the diagram below of rectangle $A F E B$ and a semicircle with diameter $\overline{C D}, A B=5$ inches, $A B=B C=D E=F E$, and $C D=6$ inches. Find the area of the shaded region, to the nearest hundredth of a square inch.

686 In the diagram below, the circumference of circle O is 16π inches. The length of $\overline{B C}$ is three-quarters of the length of diameter $\overline{A D}$ and $C E=4$ inches. Calculate the area, in square inches, of trapezoid $A B C D$.

A.G.2: VOLUME

687 Lenny made a cube in technology class. Each edge measured 1.5 cm . What is the volume of the cube in cubic centimeters?
12.25
$2 \quad 3.375$
39.0
$4 \quad 13.5$

688 How many cubes with 5-inch sides will completely fill a cube that is 10 inches on a side?
150
225
38
$4 \quad 4$

689 The diagram below represents Joe's two fish tanks.

Joe's larger tank is completely filled with water. He takes water from it to completely fill the small tank. Determine how many cubic inches of water will remain in the larger tank.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

690 A cylindrical container has a diameter of 12 inches and a height of 15 inches, as illustrated in the diagram below.

(Not drawn to scale)
What is the volume of this container to the nearest tenth of a cubic inch?
1 6,785.8
2 4,241.2
$3 \quad 2,160.0$
4 1,696.5
691 Oatmeal is packaged in a cylindrical container, as shown in the diagram below.

The diameter of the container is 13 centimeters and its height is 24 centimeters. Determine, in terms of π, the volume of the cylinder, in cubic centimeters.

692 A cylinder has a diameter of 10 inches and a height of 2.3 inches. What is the volume of this cylinder, to the nearest tenth of a cubic inch?
172.3
283.1
$3 \quad 180.6$
$4 \quad 722.6$

693 The volume of a cylindrical can in 32π cubic inches. If the height of the can is 2 inches, what is its radius, in inches?

1	8
2	2
3	16
4	4

694 A soup can is in the shape of a cylinder. The can has a volume of $342 \mathrm{~cm}^{3}$ and a diameter of 6 cm . Express the height of the can in terms of π. Determine the maximum number of soup cans that can be stacked on their base between two shelves if the distance between the shelves is exactly 36 cm . Explain your answer.

A.G.2: SURFACE AREA

695 The rectangular prism shown below has a length of 3.0 cm , a width of 2.2 cm , and a height of 7.5 cm .

What is the surface area, in square centimeters?
1

2	49.5
3	78.0
4	91.2

$3 \quad 78.0$
491.2

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

696 Mrs. Ayer is painting the outside of her son's toy box, including the top and bottom. The toy box measures 3 feet long, 1.5 feet wide, and 2 feet high. What is the total surface area she will paint?
$1 \quad 9.0 \mathrm{ft}^{2}$
$2 \quad 13.5 \mathrm{ft}^{2}$
$3 \quad 22.5 \mathrm{ft}^{2}$
$4 \quad 27.0 \mathrm{ft}^{2}$

697 How many square inches of wrapping paper are needed to entirely cover a box that is 2 inches by 3 inches by 4 inches?
$1 \quad 18$
$2 \quad 24$
$3 \quad 26$
452

698 The length and width of the base of a rectangular prism are 5.5 cm and 3 cm . The height of the prism is 6.75 cm . Find the exact value of the surface area of the prism, in square centimeters.

699 A plastic storage box in the shape of a rectangular prism has a length of $x+3$, a width of $x-4$, and a height of 5 . Represent the surface area of the box as a trinomial in terms of x.

700 Mike buys his ice cream packed in a rectangular prism-shaped carton, while Carol buys hers in a cylindrical-shaped carton. The dimensions of the prism are 5 inches by 3.5 inches by 7 inches. The cylinder has a diameter of 5 inches and a height of 7 inches. Which container holds more ice cream? Justify your answer. Determine, to the nearest tenth of a cubic inch, how much more ice cream the larger container holds.

701 Find the volume, in cubic centimeters, and the surface area, in square centimeters, of the rectangular prism shown below.

702 If the volume of a cube is 8 cubic centimeters, what is its surface area, in square centimeters?
132
$2 \quad 24$
312
44

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic Answer Section

1 ANS: 1
$\left|\frac{4(-6)+18}{4!}\right|=\left|\frac{-6}{24}\right|=\frac{1}{4}$
PTS: 2
REF: 081220ia
STA: A.N. 6
TOP: Evaluating Expressions
2 ANS: 3
$6!+\frac{5!(3!)}{4!}-10=720+5(6)-10=740$
PTS: 2
REF: 061309ia
STA: A.N. 6
TOP: Evaluating Expressions 3 ANS: 3
$|-5(5)+12|=|-13|=13$
PTS: 2 REF: 080923ia
4 ANS: 1
$-|a-b|=-|7-(-3)|=-|-10|=-10$
PTS: 2
REF: 011010ia
STA: A.N. 6
TOP: Evaluating Expressions
5 ANS: 2
$|-3-4|-(-3)^{2}=7-9=-2$
PTS: 2
REF: 011321ia
STA: A.N. 6
TOP: Evaluating Expressions
6 ANS: 1
$-3(-4)^{2}(2)+4(-4)=-96-16=-112$
PTS: 2 REF: 081113ia
7 ANS: 2
PTS: 2
STA: A.N. 6
REF: 011110ia
TOP: Evaluating Expressions
TOP: Evaluating Expressions
8 ANS: 3
PTS: 2
TOP: Identifying Properties
9 ANS: $2 \quad$ PTS: 2
TOP: Identifying Properties
10 ANS: $1 \quad$ PTS: 2
TOP: Identifying Properties
11 ANS:
(1) Distributive; (2) Commutative

PTS: 2 REF: 061132ia
12 ANS: 3
PTS: 2
STA: A.N. 1
REF: 060926ia
REF: 081209ia
TOP: Identifying Properties STA: A.N. 1
TOP: Properties of Reals
13 ANS: $1 \quad$ PTS: 2
TOP: Properties of Reals
REF: fall0705i
STA: A.N. 1
REF: 080802ia STA: A.N. 1
REF: 081319ia STA: A.N. 1

STA: A.N. 1

14 ANS: $4 \quad$ PTS: 2
TOP: Properties of Reals
15 ANS: 3 PTS: 2
TOP: Properties of Reals
16 ANS:
$-6 a+42$. distributive

	PTS: 2		061032ia				Properties of Reals
17	ANS: 4 TOP: Set Theory	PTS:	2	REF:	fall0704ia	STA:	A.A. 29
18	ANS: 1 TOP: Set Theory	PTS:	2	REF:	061021ia	STA:	A.A. 29
19	ANS: 2 TOP: Set Theory	PTS:	2	REF:	011119ia	STA:	A.A. 29
20	ANS: 3 TOP: Set Theory	PTS:	2	REF:	081117ia	STA:	A.A. 29
21	ANS: 3 TOP: Set Theory	PTS:	2	REF:	061217ia	STA:	A.A. 29
22	ANS: 1 TOP: Set Theory	PTS:	2	REF:	061310ia	STA:	A.A. 29
23	ANS: 4 TOP: Set Theory	PTS:	2	REF:	011318ia	STA:	A.A. 29
24	ANS: 3 TOP: Set Theory	PTS:	2	REF:	010917ia	STA:	A.A. 29
25	ANS: 4 TOP: Set Theory	PTS:	2	REF:	060930ia	STA:	A.A. 29
26	ANS: 4 TOP: Set Theory	PTS:	2	REF:	081022ia	STA:	A.A. 29
27	ANS: 2 TOP: Set Theory	PTS:	2	REF:	061128ia	STA:	A.A. 29
28	ANS: 4 TOP: Set Theory	PTS:	2	REF:	011222ia	STA:	A.A. 29
29	ANS: 4 TOP: Set Theory	PTS:	2	REF:	081321ia	STA:	A.A. 29
30	ANS: 4 TOP: Set Theory	PTS:	2	REF:	061001ia	STA:	A.A. 30
31	ANS: 3 TOP: Set Theory	PTS:	2	REF:	081009ia	STA:	A.A. 30
32 33	ANS: 3 TOP: Set Theory ANS: 2	PTS:	2	REF:	081103ia	STA:	A.A. 30

33 ANS: 2
The set of integers greater than -2 and less than 6 is $\{-1,0,1,2,3,4,5\}$. The subset of this set that is the positive factors of 5 is $\{1,5\}$. The complement of this subset is $\{-1,0,2,3,4\}$.

PTS: 2
REF: 060818ia
STA: A.A. 30 TOP: Set Theory

34 ANS: 4
$A=\{2,4,6,8,10,12,14,16,18,20\}$
PTS: 2 REF: 080912ia STA: A.A. 30 TOP: Set Theory
35 ANS: 2
$A=\{4,9,16,25,36,49,64,81,100\}$
PTS: 2 REF: 011326ia STA: A.A. 30 TOP: Set Theory
36 ANS: 4
$A=\{1,3,5,7,9,11,13,15,17,19\}$
PTS: 2 REF: 081306ia STA: A.A. 30 TOP: Set Theory
37 ANS:
\{1,2,4,5,9,10,12\}
PTS: 2 REF: 080833ia
38 ANS: 4
PTS: 2
TOP: Set Theory
39 ANS: 4 PTS: 2
TOP: Set Theory
40 ANS: 2
PTS: 2
TOP: Set Theory
41 ANS: 3
TOP: Set Theory
42 ANS: 1
43 ANS: 1
PTS: 2
STA: A.A. 30 TOP: Set Theory
REF: 061123ia STA: A.A. 31

REF: 011225ia STA: A.A. 31

REF: 081003ia STA: A.A. 31
PTS: 2 REF: fall0710ia STA: A.A. 31

PTS: 2 REF: 011004ia STA: A.A. 31

TOP: Set Theory
44 ANS: 3
TOP: Set Theory
45 ANS: 3
PTS: 2
TOP: Set Theory
46 ANS: 3
$A \cup C=\{1,2,3,5,7,9\}$
PTS: 2
REF: 081221ia
STA: A.A. 31 TOP: Set Theory
47 ANS:
$0 \leq t \leq 40$
PTS: 2
REF: 060833ia
STA: A.A. 31
TOP: Set Theory

ANS:

PTS: 2
REF: 081132ia STA: A.S. 5
TOP: Frequency Histograms, Bar Graphs and Tables
49 ANS:

PTS: 4
REF: 060938ia STA: A.S. 5
TOP: Frequency Histograms, Bar Graphs and Tables

KEY: frequency histograms

KEY: frequency histograms

ANS:

Interval	Tally	Frequency		
$51-60$	$\\|!$	2		
$61-70$	$\\|$	2		
$71-80$	$1\\|\\|$	4		
$81-90$	414	6		
$91-100$	$11 \\|$	4		

PTS: 3
REF: 011135ia
STA: A.S. 5
TOP: Frequency Histograms, Bar Graphs and Tables
51 ANS:

PTS: 4
REF: 080838ia STA: A.S. 5
TOP: Frequency Histograms, Bar Graphs and Tables
52 ANS: 3
$25-18=7$
PTS: 2
REF: 060822ia STA: A.S. 9
TOP: Frequency Histograms, Bar Graphs and Tables
ANS: 3
PTS: 2
REF: 061230ia
TOP: Frequency Histograms, Bar Graphs and Tables
54 ANS:
30, 20, 71-80, 81-90 and 91-100
PTS: 4
REF: 061038ia
STA: A.S. 9
TOP: Frequency Histograms, Bar Graphs and Tables

55 ANS:
$3,0,20.15-12=3.12-12=0$
PTS: 3 REF: 081234ia STA: A.S. 9
TOP: Frequency Histograms, Bar Graphs and Tables
56 ANS: 2
The median score, 10 , is the vertical line in the center of the box.
PTS: 2 REF: fall0709ia STA: A.S. 5 TOP: Box-and-Whisker Plots
57 ANS:

PTS: 4 REF: 080939ia STA: A.S. 5 TOP: Box-and-Whisker Plots
58 ANS:
minimum is 120 , 1st quartile is 145 , median is 292 , 3 rd quartile is 407 , and maximum is 452

PTS: 3 REF: 081034ia STA: A.S. 5 TOP: Box-and-Whisker Plots
59 ANS:

PTS: 4 REF: 011337ia STA: A.S. 5 TOP: Box-and-Whisker Plots
60 ANS: 3
$75-15=60$
PTS: 2 REF: 011113ia STA: A.S. 6 TOP: Box-and-Whisker Plots
61 ANS: 2
PTS: 2
REF: 061314ia
STA: A.S. 6
TOP: Box-and-Whisker Plots
62 ANS: 3
The value of the third quartile is the last vertical line of the box.
PTS: 2 REF: 080818ia STA: A.S. 6 TOP: Box-and-Whisker Plots
63 ANS: 3
The value of the upper quartile is the last vertical line of the box.
PTS: 2 REF: 060915ia STA: A.S. 6 TOP: Box-and-Whisker Plots
64 ANS: 1
PTS: 2
REF: 011001ia
TOP: Box-and-Whisker Plots
65 ANS: $3 \quad$ PTS: 2
REF: 011220ia
STA: A.S. 6

TOP: Box-and-Whisker Plots
66 ANS: 4
PTS: 2
REF: 081312ia
TOP: Box-and-Whisker Plots
67 ANS: $4 \quad$ PTS: 2
TOP: Box-and-Whisker Plots

ANS: 2
PTS: 2
TOP: Box-and-Whisker Plots
69 ANS: 3
PTS: 2
TOP: Quartiles and Percentiles
70 ANS: 4
$\frac{95000}{125000}=.76$

PTS: 2 REF: 061207ia
71 ANS: 2
PTS: 2
TOP: Scatter Plots
72 ANS: 3
TOP: Scatter Plots
73 ANS: $2 \quad$ PTS: 2
TOP: Scatter Plots
74 ANS: 4

PTS: 3
77 ANS: 4
TOP: Scatter Plots
78 ANS: 2
TOP: Scatter Plots
79 ANS: 3
TOP: Scatter Plots
80 ANS: 1 TOP: Scatter Plots

REF: 081106ia STA: A.S. 6

REF: 061017ia STA: A.S. 11

STA: A.S. 11
REF: fall0701ia

REF: 081001ia

REF: 061115ia
STA: A.S. 7

STA: A.S. 8
REF: 011229ia

TOP: Scatter Plots
STA: A.S. 8

STA: A.S. 8 TOP: Scatter Plots
REF: 060805ia STA: A.S. 12

REF: 011019ia

REF: 011103ia

REF: 081204ia

STA: A.S. 12

STA: A.S. 12

STA: A.S. 12

PTS: 3 REF: 061036ia STA: A.S. 17 TOP: Scatter Plots
89 ANS: 3
mean $=6$, median $=6$ and mode $=7$
PTS: 2 REF: 080804ia STA: A.S. 4 TOP: Central Tendency
90 ANS: 3
mean $=81 \frac{7}{11}$, median $=81$ and mode $=76$

PTS: 2 REF: 011118ia STA: A.S. 4 TOP: Central Tendency
91 ANS: 2
mean $=7$, median $=6$ and mode $=6$
PTS: 2 REF: 011329ia STA: A.S. 4 TOP: Central Tendency
92 ANS: 4
The mean is $80 . \overline{6}$, the median is 84.5 and the mode is 87 .
PTS: 2
REF: 010907ia
STA: A.S. 4
TOP: Central Tendency

93 ANS:
225000,175000 , the median better represents the value since it is closer to more values than the mean.
PTS: 4 REF: fall0737ia STA: A.S. 4
TOP: Frequency Histograms, Bar Graphs and Tables
94 ANS:
$315,000,180,000$, the median better represents value since it is closer to more prices than the mean.
PTS: 4 REF: 060839ia STA: A.S. 4
TOP: Frequency Histograms, Bar Graphs and Tables
95 ANS: 2 PTS: 2 REF: 081327ia STA: A.S. 16
TOP: Central Tendency
96 ANS:
81.3, 80, both increase

PTS: 3 REF: 011035ia STA: A.S. 16 TOP: Central Tendency
97 ANS:
12,7 . Both the median and the mode will increase.
PTS: 3 REF: 061134ia STA: A.S. 16 TOP: Central Tendency
98 ANS: 4
$\frac{2+3+0+1+3+2+4+0+2+3}{10}=\frac{20}{10}=2 \frac{x}{10}=2+0.5$ $x=25$

PTS: 2 REF: 081020ia STA: A.S. 16 TOP: Average Known with Missing Data
99 ANS: 3
The other situations are quantitative.
PTS: 2 REF: 060819ia STA: A.S. 1 TOP: Analysis of Data
100 ANS: 3
The other situations are quantitative.
PTS: 2 REF: 060905ia STA: A.S. 1 TOP: Analysis of Data
101 ANS: 4
The other situations are quantitative.
PTS: 2
REF: 081122ia
STA: A.S. 1
TOP: Analysis of Data
102 ANS: 1
The other situations are quantitative.
PTS: 2 REF: 061308ia STA: A.S. 1 TOP: Analysis of Data
103 ANS: 4
The other sets of data are qualitative.
PTS: 2
REF: 011116ia
STA: A.S. 1
TOP: Analysis of Data

104
ANS: 2
The other sets of data are qualitative.
PTS: 2 REF: 011211ia STA: A.S. 1 TOP: Analysis of Data
105 ANS: 3
The other situations are quantitative.
PTS: 2 REF: 081313ia STA: A.S. 1 TOP: Analysis of Data
106 ANS: 3
The other situations are qualitative.
PTS: 2 REF: 081213ia STA: A.S. 1 TOP: Analysis of Data
107 ANS: 2
The two values are shoe size and height.
PTS: 2 REF: fall0714ia STA: A.S. 2 TOP: Analysis of Data
108 ANS: $3 \quad$ PTS: 2
REF: 061206ia
STA: A.S. 2
TOP: Analysis of Data
109 ANS: 3
Frequency is not a variable.
PTS: 2 REF: 011014ia STA: A.S. 2 TOP: Analysis of Data
110 ANS: 3
PTS: 2
REF: 061011ia
STA: A.S. 2
TOP: Analysis of Data
111 ANS: 3
Due to lack of specificity in the wording, this 13th question was removed from the June, 2013 Regents Exam.
PTS: 2 REF: 061313ia STA: A.S. 2 TOP: Analysis of Data
112 ANS: 1
To determine student interest, survey the widest range of students.
PTS: 2 REF: 060803ia STA: A.S. 3 TOP: Analysis of Data
113 ANS: 2
People at a gym or football game and members of a soccer team are more biased towards sports.
PTS: 2 REF: 061202ia STA: A.S. 3 TOP: Analysis of Data
114 ANS: 2
To determine student opinion, survey the widest range of students.
PTS: 2 REF: 011313ia STA: A.S. 3 TOP: Analysis of Data
115 ANS: 1
Everyone eats, can shop in malls and wear clothes. People who work in a sporting goods store probably watch more sports television than most.

PTS: 2 REF: 010923ia STA: A.S. 3 TOP: Analysis of Data

116 ANS: 4
Surveying persons leaving a football game about a sports budget contains the most bias.
PTS: 2 REF: 080910ia STA: A.S. 3 TOP: Analysis of Data
117 ANS: 1
Asking school district employees about a school board candidate produces the most bias.
PTS: 2 REF: 061107ia STA: A.S. 3 TOP: Analysis of Data
118 ANS: 4
PTS: 2
REF: 061022ia
STA: A.S. 3
TOP: Analysis of Data
119 ANS: 3
The number of correct answers on a test causes the test score.
PTS: 2 REF: 080908ia STA: A.S. 13 TOP: Analysis of Data
120 ANS: 2 PTS: 2 REF: 081104ia STA: A.S. 13
TOP: Analysis of Data
121 ANS: 1
A rooster crows before sunrise, not because of the sun.
PTS: 2 REF: fall0707ia STA: A.S. 14 TOP: Analysis of Data
122 ANS: 3
The age of a child does not cause the number of siblings he has, or vice versa.
PTS: 2 REF: 011030ia STA: A.S. 14 TOP: Analysis of Data
123 ANS: 3
PTS: 2
REF: 081017a STA: A.S. 14
TOP: Analysis of Data
124 ANS: 2 PT
TOP: Analysis of Data
125 ANS: 1 PTS: 2 REF: fall0723ia STA: A.M. 3
TOP: Error KEY: area
126 ANS: 2
$\left|\frac{149.6-174.2}{149.6}\right| \approx 0.1644$
PTS: 2 REF: 080926ia STA: A.M. 3 TOP: Error
KEY: area
127 ANS: 2
$\left|\frac{55.42-50.27}{55.42}\right| \approx 0.093$
PTS: 2 REF: 081023ia STA: A.M. 3 TOP: Error
KEY: area

128 ANS: 3
$\frac{(12.3 \times 11.9)-(12.2 \times 11.8)}{12.3 \times 11.9} \approx 0.0165$
PTS: 2 REF: 061120ia STA: A.M. 3 TOP: Error
KEY: area
129 ANS: 2
$\left|\frac{13.5-12.8}{13.5}\right| \approx 0.093$
PTS: 2 REF: 081123ia STA: A.M. 3 TOP: Error
KEY: area
130 ANS: 2
$\left|\frac{(2.6 \times 6.9)-(2.5 \times 6.8)}{(2.6 \times 6.9)}\right| \approx 0.052$
PTS: 2 REF: 011209ia STA: A.M. 3 TOP: Error
KEY: area
131 ANS:
$618.45,613.44,0.008 .21 .7 \times 28.5=618.45 .21 .6 \times 28.4=613.44 .\left|\frac{618.45-613.44}{613.44}\right| \approx 0.008$. An error of less than 1% would seem to be insignificant.

PTS: 4 REF: 060838ia STA: A.M. 3 TOP: Error
KEY: area
132 ANS:
$1,512,1,551.25,0.025 .36 \times 42=1512.36 .5 \times 42.5=1551.25 . R E=\left|\frac{1512-1551.25}{1551.25}\right| \approx 0.025$.
PTS: 3
REF: 010934ia
STA: A.M. 3
TOP: Error
KEY: area
133
$\frac{8100-7678.5}{7678.5} \approx 0.055$
PTS: 2
REF: 061233ia
STA: A.M. 3
TOP: Error
KEY: area
134 ANS:
$\left|\frac{(24.2 \times 14.1)-(24 \times 14)}{(24.2 \times 14.1)}\right|=\frac{5.22}{341.22} \approx 0.015$
PTS: 3
REF: 011336ia
STA: A.M. 3
TOP: Error
KEY: area

135 ANS:
$\frac{(10.75)(12.5)-(10.5)(12.25)}{(10.75)(12.5)} \approx 0.043$

PTS: 3 REF: 081336ia STA: A.M. 3 TOP: Error
KEY: area
136 ANS: 1
$\left|\frac{289-282}{289}\right| \approx 0.024$
PTS: 2 REF: 080828ia STA: A.M. 3 TOP: Error
KEY: volume and surface area
137 ANS: 2
The volume of the cube using Ezra's measurements is $8\left(2^{3}\right)$. The actual volume is $9.261\left(2.1^{3}\right)$. The relative error is $\left|\frac{9.261-8}{9.261}\right| \approx 0.14$.

PTS: 2 REF: 060928ia STA: A.M. 3 TOP: Error
KEY: volume and surface area
138 ANS:
$0.102 . \frac{(5.3 \times 8.2 \times 4.1)-(5 \times 8 \times 4)}{5.3 \times 8.2 \times 4.1}=\frac{178.16-160}{178.16}=0.102$
PTS: 3 REF: 011036ia STA: A.M. 3 TOP: Error
KEY: volume and surface area
139 ANS:
$\frac{600-592}{592} \approx 0.014$

PTS: 2 REF: 061031ia STA: A.M. 3 TOP: Error
KEY: volume and surface area
140 ANS:
0.029. $\frac{\left[2 \pi(5.1)^{2}+2 \pi(5.1)(15.1)\right]-\left[2 \pi(5)^{2}+2 \pi(5)(15)\right]}{2 \pi(5.1)^{2}+2 \pi(5.1)(15.1)} \approx \frac{647.294-628.319}{647.294} \approx 0.029$

PTS: 4 REF: 011137ia STA: A.M. 3 TOP: Error
KEY: volume and surface area
ANS:
$\frac{(5.9 \times 10.3 \times 1.7)-(6 \times 10 \times 1.5)}{5.9 \times 10.3 \times 1.7} \approx 0.129$
PTS: 3
REF: 081235ia
STA: A.M. 3
TOP: Error
KEY: volume and surface area

142 ANS: 3
$(2, T),(4, T),(6, T)$
PTS: 2 REF: 081324ia STA: A.S. 19 TOP: Sample Space
143 ANS:
$\frac{3}{8} \cdot(H, H, H),(H, H, T),(H, T, H),(\mathbf{H}, \mathbf{T}, \mathbf{T}),(T, H, H),(T, H, T),(T, T, H),(T, T, T)$
PTS: 2 REF: 080933ia STA: A.S. 19 TOP: Sample Space 144 ANS:
(S,S), (S,K), (S,D), (K,S), (K,K), (K,D), (D,S), (D,K), (D,D), $\frac{4}{9}$
PTS: 3 REF: fall0736ia STA: A.S. 19 TOP: Sample Space
145 ANS:
(H,F,M), (H,F,J), (H,F,S), (H,A,M), (H,A,J), (H,A,S), (C,F,M), (C,F,J), (C,F,S), (C,A,M), (C,A,J), (C,A,S),
(T,F,M), (T,F,J), (T,F,S), (T,A,M), (T,A,J), (T,A,S). There are 18 different kids' meals, 12 do not include juice and 6 include chicken nuggets.

PTS: 4 REF: 010939ia STA: A.S. 19 TOP: Sample Space
146 ANS:
(T,J,F), (T,J,N), (T,K,F), (T,K,N), (T,C,F), (T,C,N), (B,J,F), (B,J,N), (B,K,F), (B,K,N), (B,C,F), (B,C,N), (S,J,F), (S,J,N), (S,K,F), (S,K,N), (S,C,F), (S,C,N). 3, 12.

PTS: 4 REF: 061138ia STA: A.S. 19 TOP: Sample Space
147 ANS:
(W,H,A), (W,H,S), (W,T,A), (W,T,S), (W,B,A), (W,B,S), (R,H,A), (R,H,S), (R,T,A), (R,T,S), (R,B,A), (R,B,S).
8, 3
PTS: 4 REF: 011238ia STA: A.S. 19 TOP: Sample Space
148 ANS:
(C,B,T), (C,B,5), (C,N,T), (C,N,5), (C,2,T), (C,2,5), (F,B,T), (F,B,5), (F,N,T), (F,N,5), (F,2,T), (F,2,5). 1, 2.
PTS: 4 REF: 081237ia STA: A.S. 19 TOP: Sample Space
149 ANS:
$(1, A),(1, B),(1, C),(3, A),(3, B),(3, C),(5, A),(5, B),(5, C),(7, A),(7, B),(7, C),(9, A),(9, B),(9, C) .6$
PTS: 3 REF: 011334ia STA: A.S. 19 TOP: Sample Space
150 ANS: 2 PTS: 2 REF: 060908ia STA: A.S. 21
TOP: Empirical Probability
ANS: 3
$\frac{15}{15+13+12}=\frac{15}{40}=\frac{3}{8}$
PTS: 2 REF: 061006ia STA: A.S. 21 TOP: Experimental Probability

152 ANS: 3
$\frac{3+2+4+3}{20}=\frac{12}{20}$
PTS: 2 REF: 011129ia STA: A.S. 21 TOP: Experimental Probability 153 ANS:
$\frac{6}{25} \cdot \frac{25-(11+5+3)}{25}$
PTS: 2 REF: 011232ia STA: A.S. 21 TOP: Experimental Probability
154 ANS: 2 PTS: 2
REF: 011002ia
STA: A.S. 20
TOP: Theoretical Probability
155 ANS: 4 PTS: 2
TOP: Theoretical Probability
156 ANS: 3
$P(O)=\frac{5}{10}, P(P)=\frac{4}{10}, P(\leq 5)=\frac{6}{10}, P(/ 3)=\frac{4}{10}$
PTS: 2 REF: 081125ia STA: A.S. 22 TOP: Theoretical Probability
157 ANS: 4
$P(O)=\frac{3}{6}, P(E)=\frac{3}{6}, P(<6)=\frac{5}{6}, P(>4)=\frac{2}{6}$
PTS: 2 REF: 010903ia STA: A.S. 22 TOP: Theoretical Probability
158 ANS: 4
$P($ odd $)=\frac{7+14+20}{75}=\frac{41}{75} . P($ even $)=\frac{22+6+6}{75}=\frac{34}{75} . P(3$ or less $)=\frac{14+22+7}{75}=\frac{43}{75}$.
$P(2$ or 4$)=\frac{22+6}{75}=\frac{28}{75}$
PTS: 2 REF: 011325ia STA: A.S. 22 TOP: Theoretical Probability 159 ANS:
orchestra: $\frac{3}{26}>\frac{4}{36}$
PTS: 2
REF: 011033ia
STA: A.S. 22
TOP: Theoretical Probability
160 ANS:
Hat A, add 1 not green to Hat A, add 11 green to Hat B, and add none to Hat C.
PTS: 4 REF: 081038ia STA: A.S. 22 TOP: Theoretical Probability
161 ANS:
White. There are 31 white blocks, 30 red blocks and 29 blue blocks.
PTS: 2 REF: 061232ia STA: A.S. 22 TOP: Theoretical Probability
162 ANS: 3
PTS: 2
TOP: Theoretical Probability
REF: fall0702ia STA: A.S. 23
KEY: mutually exclusive events

163 ANS: 2
The events are not mutually exclusive: $\mathrm{P}($ prime $)=\frac{3}{6}, \mathrm{P}($ even $)=\frac{3}{6}, \mathrm{P}($ prime AND even $)=\frac{1}{6}$ $\mathrm{P}($ prime OR even $)=\frac{3}{6}+\frac{3}{6}-\frac{1}{6}=\frac{5}{6}$

PTS: 2 REF: 080830ia STA: A.S. 23 TOP: Theoretical Probability
KEY: not mutually exclusive events
164

$$
\begin{aligned}
P(S) \cdot P(M) & =P(S \text { and } M) \\
\frac{3}{5} \cdot P(M) & =\frac{3}{10} \\
P(M) & =\frac{1}{2}
\end{aligned}
$$

PTS: 2 REF: 081024ia
STA: A.S. 23 TOP: Theoretical Probability
KEY: independent events
165 ANS: 2 PTS: 2
REF: 011212ia
STA: A.S. 23
TOP: Theoretical Probability
KEY: independent events
166 ANS: 4 PTS: 2
REF: 081229ia STA: A.S. 23
TOP: Theoretical Probability
KEY: independent events
167 ANS:
$\frac{4}{12} \times \frac{2}{11} \times \frac{1}{10}=\frac{8}{1320} \frac{6}{12} \times \frac{5}{11} \times \frac{4}{10}+\frac{4}{12} \times \frac{3}{11} \times \frac{2}{10}=\frac{120}{1320}+\frac{24}{1320}=\frac{144}{1320}$
PTS: 4 REF: 081137ia STA: A.S. 23 TOP: Theoretical Probability
KEY: dependent events
168 ANS:
$\frac{5}{8} \times \frac{3}{7}=\frac{15}{56} \cdot \frac{5}{8} \times \frac{4}{7}=\frac{20}{56} \cdot \frac{20}{56}+\frac{3}{8} \times \frac{2}{7}=\frac{26}{56}$
PTS: 4 REF: 061338ia STA: A.S. 23 TOP: Theoretical Probability
KEY: dependent events
169 ANS:
$\frac{12}{20} \times \frac{8}{19}+\frac{8}{20} \times \frac{12}{19}=\frac{192}{380} \cdot 1-P(B B)=1-\left(\frac{8}{20} \times \frac{7}{19}\right)=\frac{380}{380}-\frac{56}{380}=\frac{324}{380}$
PTS: 4 REF: 081339ia STA: A.S. 23 TOP: Theoretical Probability
KEY: dependent events
170
ANS. 3
PTS: 2
REF: 080907ia
STA: A.S. 20
TOP: Geometric Probability
171 ANS: 3
PTS: 2
REF: 061218ia STA: A.S. 20
TOP: Geometric Probability

172 ANS:
$\frac{1375}{1600} \cdot \frac{40^{2}-15^{2}}{40^{2}}=\frac{1375}{1600}$
PTS: 2 REF: 011132ia STA: A.S. 20 TOP: Geometric Probability
173 ANS: 4
$P(G$ or $W)=\frac{4}{8}, P(G$ or $B)=\frac{3}{8}, P(Y$ or $B)=\frac{4}{8}, P(Y$ or $G)=\frac{5}{8}$
PTS: 2 REF: 060802ia STA: A.S. 22 TOP: Geometric Probability
174 ANS: 3
$P($ odd $)=\frac{3}{6}, P($ prime $)=\frac{3}{6}, P($ perfect square $)=\frac{2}{6}, P($ even $)=\frac{3}{6}$
PTS: 2
REF: 061104ia
STA: A.S. 22
TOP: Geometric Probability
175 ANS: 1
$\frac{1}{8} \times \frac{1}{8}=\frac{1}{64}$
PTS: 2 REF: 010928ia STA: A.S. 23 TOP: Geometric Probability
176 ANS:
$\frac{3}{8} . P\left(s_{1}<4\right) \times P\left(s_{2}=\right.$ back $)=\frac{3}{4} \times \frac{1}{2}=\frac{3}{8}$
PTS: 2
REF: 080832ia
ANS: 4
PTS: 2
STA: A.S. 23
REF: 011308ia
TOP: Geometric Probability
TOP: Conditional Probability
178 ANS: 1
$\frac{20-6}{(20-6)+15+7+8}=\frac{14}{44}$
PTS: 2 REF: 061302ia STA: A.S. 18 TOP: Conditional Probability
179 ANS:
$\frac{1}{8}$. After the English and social studies books are taken, 8 books are left and 1 is an English book.
PTS: 2 REF: 060933ia STA: A.S. 18 TOP: Conditional Probability
180 ANS: 3
$(3-1) \times 2 \times 3=12$
PTS: 2
REF: 080905ia
STA: A.N. 7
TOP: Conditional Probability
181 ANS: 4
$5 \times 2 \times 3=30$
PTS: 2
182 ANS: 3
REF: 061002ia
PTS: 2

STA: A.N. 7
REF: 060808ia

STA: A.S. 18

183 ANS: 1
${ }_{4} P_{4}=4 \times 3 \times 2 \times 1=24$
PTS: 2
REF: 080816ia
STA: A.N. 8
TOP: Permutations
184 ANS: 4
${ }_{5} P_{5}=5 \times 4 \times 3 \times 2 \times 1=120$
PTS: 2
REF: 061109ia
STA: A.N. 8
TOP: Permutations
185 ANS: 3
${ }_{18} P_{3}=4896$
PTS: 2
REF: 061328ia
STA: A.N. 8
TOP: Permutations
186 ANS: 4
${ }_{8} P_{3}=336$
PTS: 2
REF: 061026ia
STA: A.N. 8
TOP: Permutations
187 ANS: 3
${ }_{6} P_{4}=360$
PTS: 2
REF: 081028ia
STA: A.N. 8
TOP: Permutations
188 ANS:
60. ${ }_{5} P_{3}=60$

PTS: 2 REF: 060931ia STA: A.N. 8 TOP: Permutations
189 ANS:
$15,600,000,4,368,000.10 \times 10 \times 10 \times 26 \times 25 \times 24=15,600,000.10 \times 9 \times 8 \times 26 \times 25 \times 24=11,232,000$.
$15,600,000-11,232,000=4,368,000$.
PTS: 4 REF: 011037ia STA: A.N. 8 TOP: Permutations
190 ANS:
$5 \times 3 \times 5 \times 3=225.1 \times 3 \times 5 \times 3=45.1 \times 2 \times 5 \times 3=30$
PTS: 4 REF: 061334ia STA: A.N. 7 TOP: Multiplication Counting Principle
191 ANS:
$26 \times 25 \times 24 \times 23=358,800.10^{6}=1,000,000$. Use the numeric password since there are over 500,000 employees

PTS: 4 REF: 061239ia STA: A.N. 8 TOP: Permutations
192 ANS: 4
$25(x-3)=25 x-75$
PTS: 2
REF: 060823ia
STA: A.A. 1
TOP: Expressions
193 ANS: 4
$A=l w=(3 w-7)(w)=3 w^{2}-7 w$
PTS: 2 REF: 010924ia STA: A.A. 1 TOP: Expressions

194	ANS: 2	PTS:	2	REF:	060904ia	STA:	A.A. 1
	TOP: Expressions						
195	ANS: 4						
	$5(x+4)=5 x+20$						
	PTS: 2	REF:	081013ia	STA:	A.A. 1	TOP:	Expressions
196	ANS: 3	PTS:	2	REF:	011104ia	STA:	A.A. 1
	TOP: Expressions						
197	ANS: 1	PTS:	2	REF:	081110ia	STA:	A.A. 1
	TOP: Expressions						
198	ANS: 3	PTS:	2	REF:	011205ia	STA:	A.A. 1
	TOP: Expressions						
199	ANS: 1	PTS:	2	REF:	061204ia	STA:	A.A. 1
	TOP: Expressions						
200	ANS: 2	PTS:	2	REF:	081215ia	STA:	A.A. 1
	TOP: Expressions						
201	ANS: 1	PTS:	2	REF:	011303ia	STA:	A.A. 1
	TOP: Expressions						
202	ANS: 1	PTS:	2	REF:	061301ia	STA:	A.A. 1
	TOP: Expressions						
203	ANS: 3	PTS:	2	REF:	061323ia	STA:	A.A. 1
	TOP: Expressions						
204	ANS: 2	PTS:	2	REF:	081305ia	STA:	A.A. 1
	TOP: Expressions						
205	ANS: 4	PTS:	2	REF:	fall0729ia	STA:	A.A. 2
	TOP: Expressions						
206	ANS: 4	PTS:	2	REF:	061016ia	STA:	A.A. 2
	TOP: Expressions						
207	ANS: 3	PTS:	2	REF:	061119ia	STA:	A.A. 2
	TOP: Expressions						
208	ANS: 1	PTS:	2	REF:	011311ia	STA:	A.A. 2
	TOP: Expressions						
209	ANS: 2	PTS:	2	REF:	011027ia	STA:	A.A. 3
	TOP: Expressions						
210	ANS: 1	PTS:	2	REF:	081030ia	STA:	A.A. 3
	TOP: Expressions						
211	ANS: 2	PTS:	2	REF:	061121ia	STA:	A.A. 3
	TOP: Expressions						
212	ANS: 2	PTS:	2	REF:	011227ia	STA:	A.A. 3
	TOP: Expressions						
213	ANS:						

Not all of the homework problems are equations. The first problem is an expression.
PTS: 2 REF: 080931ia STA: A.A. 3 TOP: Expressions

214 ANS: 4

$$
\begin{aligned}
3 p & =21 \\
p & =7
\end{aligned}
$$

PTS: 2
REF: 080801ia
STA: A.A. 22
TOP: Solving Equations
215 ANS: 1

$$
\begin{aligned}
2(x-4) & =4(2 x+1) \\
2 x-8 & =8 x+4 \\
-12 & =6 x \\
-2 & =x
\end{aligned}
$$

PTS: 2
REF: 011106ia
STA: A.A. 22
TOP: Solving Equations
216 ANS: 4
$5-2 x=-4 x-7$
$2 x=-12$
$x=-6$
PTS: 2
REF: 011305ia
STA: A.A. 22
TOP: Solving Equations
217 ANS: 2
Debbie failed to distribute the 3 properly.
PTS: 2
REF: 011009ia
STA: A.A. 22
TOP: Solving Equations
218 ANS:

4. $3+2 g=5 g-9$

$$
\begin{aligned}
12 & =3 g \\
g & =4
\end{aligned}
$$

PTS: 2
REF: fall0732ia
STA: A.A. 22
TOP: Solving Equations

219 ANS:
4. $3(x+1)-5 x=12-(6 x-7)$

$$
\begin{aligned}
3 x+3-5 x & =12-6 x+7 \\
-2 x+3 & =-6 x+19 \\
4 x & =16 \\
x & =4
\end{aligned}
$$

PTS: 4
ANS: 4
REF: 061238ia
STA: A.A. 22

$\frac{(2 x \times 3)+(5 \times 1)}{5 \times 3}=\frac{7 x-2}{15}$

$$
\begin{aligned}
\frac{6 x+5}{15} & =\frac{7 x-2}{15} \\
6 x+5 & =7 x-2 \\
x & =7
\end{aligned}
$$

PTS: 2
REF: 080820ia STA: A.A. 25
TOP: Solving Equations with Fractional Expressions
221 ANS: 1

$$
\begin{aligned}
\frac{(2 x \times 6)+(3 \times x)}{3 \times 6} & =5 \\
\frac{12 x+3 x}{18} & =5 \\
15 x & =90 \\
x & =6
\end{aligned}
$$

PTS: 2
REF: 060907ia
STA: A.A. 25
TOP: Solving Equations with Fractional Expressions

222 ANS: 2

$$
\begin{aligned}
\frac{3}{5}(x+2) & =x-4 \\
3(x+2) & =5(x-4) \\
3 x+6 & =5 x-20 \\
26 & =2 x \\
x & =13
\end{aligned}
$$

PTS: 2 REF: 080909ia STA: A.A. 25
TOP: Solving Equations with Fractional Expressions
ANS: 3

$$
\begin{aligned}
\frac{x}{3}+\frac{x+1}{2} & =x \\
\frac{2 x+3(x+1)}{6} & =x \\
5 x+3 & =6 x \\
3 & =x
\end{aligned}
$$

PTS: 2 REF: 061019ia STA: A.A. 25 TOP: Solving Equations with Fractional Expressions
ANS: 1
$\frac{2 x}{3}+\frac{1}{2}=\frac{5}{6}$
$\frac{2 x}{3}=\frac{1}{3}$
$6 x=3$
$x=\frac{1}{2}$
PTS: 2 REF: 011112ia STA: A.A. 25
TOP: Solving Equations with Fractional Expressions
225
ANS: 1
$\frac{1}{7}+\frac{2 x}{3}=\frac{15 x-3}{21}$
$\frac{14 x+3}{21}=\frac{15 x-3}{21}$
$14 x+3=15 x-3$
$x=6$
PTS: 2
REF: 011328ia STA: A.A. 25
TOP: Solving Equations with Fractional Expressions

226 ANS:

$$
\begin{aligned}
\frac{m}{5}+\frac{3(m-1)}{2} & =2(m-3) \\
\frac{2 m}{10}+\frac{15(m-1)}{10} & =2 m-6 \\
\frac{17 m-15}{10} & =2 m-6 \\
17 m-15 & =20 m-60 \\
45 & =3 m \\
15 & =m
\end{aligned}
$$

PTS: 4
REF: 081139ia
STA: A.A. 25
TOP: Solving Equations with Fractional Expressions
227 ANS: 3
$0.06 y+200=0.03 y+350$

$$
\begin{aligned}
0.03 y & =150 \\
y & =5,000
\end{aligned}
$$

PTS: 2 REF: 081203ia STA: A.A. 25
228 ANS: 2
PTS: 2
REF: 080901ia STA: A.A. 4
TOP: Modeling Equations
229 ANS: 4
$w(w+5)=36$
$w^{2}+5 w-36=0$
PTS: 2
ANS: 2
REF: fall0726ia
PTS: 2
TOP: Modeling Equations
ANS: 4 PTS: 2
TOP: Modeling Equations
232 ANS: $3 \quad$ PTS: 2
TOP: Modeling Equations
233 ANS: 4
Let $x=$ youngest brother and $x+4=$ oldest brother. $3 x-(x+4)=48$.

$$
\begin{aligned}
2 x-4 & =48 \\
x & =26
\end{aligned}
$$

PTS: 2
REF: 080928ia
STA: A.A. 6
TOP: Modeling Equations

234 ANS:
7, $9,11 . x+(x+2)+(x+4)=5(x+2)-18$
$3 x+6=5 x-8$
$14=2 x$
$7=x$
PTS: 4
REF: 011237ia
STA: A.A. 6
TOP: Modeling Equations
235 ANS: 4
$3+2-1=4$
PTS: 2
REF: 081320ia
STA: A.A. 6
TOP: Venn Diagrams
236 ANS: 3
$3 a x+b=c$

$$
\begin{aligned}
3 a x & =c-b \\
x & =\frac{c-b}{3 a}
\end{aligned}
$$

PTS: 2
REF: 080808ia
STA: A.A. 23
TOP: Transforming Formulas
237 ANS: 2

$$
P=2 l+2 w
$$

$P-2 l=2 w$
$\frac{P-2 l}{2}=w$

PTS: 2
REF: 010911ia
STA: A.A. 23
TOP: Transforming Formulas
238 ANS: 3

$$
\begin{aligned}
a+a r & =b+r \\
a(1+r) & =b+r \\
a & =\frac{b+r}{1+r}
\end{aligned}
$$

PTS: 2
ANS: 4
REF: 060913ia
PTS: 2
TOP: Transforming Formulas
240 ANS: 2
PTS: 2
TOP: Transforming Formulas

STA: A.A. 23
REF: 011016ia
REF: 061023ia

TOP: Transforming Formulas
STA: A.A. 23
STA: A.A. 23

241 ANS: 4

$$
\begin{aligned}
\frac{e y}{n}+k & =t \\
\frac{e y}{n} & =t-k \\
y & =\frac{n(t-k)}{e}
\end{aligned}
$$

PTS: 2
242 ANS: 1

$$
\begin{aligned}
s & =\frac{2 x+t}{r} \\
r s & =2 x+t \\
r s-t & =2 x \\
\frac{r s-t}{2} & =x
\end{aligned}
$$

PTS: 2 REF: 011228ia STA: A.A. 23 TOP: Transforming Formulas

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic

Answer Section

243 ANS: 1

$$
\begin{aligned}
k & =a m+3 m x \\
k & =m(a+3 x) \\
\frac{k}{a+3 x} & =m
\end{aligned}
$$

PTS: 2 REF: 061215ia
STA: A.A. 23
REF: 081230ia
PTS: 2
TOP: Transforming Formulas
245 ANS: 1
$r x-s t=r$

$$
\begin{aligned}
r x & =r+s t \\
x & =\frac{r+s t}{r}
\end{aligned}
$$

PTS: 2
REF: 061316ia
STA: A.A. 23 TOP: Transforming Formulas
246 ANS: 2
$2 y+2 w=x$
$2 w=x-2 y$
$w=\frac{x-2 y}{2}$
PTS: 2
REF: 081330ia
STA: A.A. 23
TOP: Transforming Formulas
247 ANS:

$$
b c+a c=a b
$$

$c(b+a)=a b$

$$
c=\frac{a b}{b+a}
$$

PTS: 2
REF: 081131ia
STA: A.A. 23
TOP: Transforming Formulas
248 ANS: 3
0.75 hours $=45$ minutes. $\frac{120}{1}=\frac{x}{45}$

$$
x=5400
$$

PTS: 2
REF: 080814ia
STA: A.M. 1
TOP: Using Rate

249 ANS: 3

$$
\begin{aligned}
\frac{120}{60} & =\frac{m}{150} \\
m & =300
\end{aligned}
$$

PTS: 2
REF: 081202ia
STA: A.M. 1
TOP: Using Rate
250 ANS: 2

$$
\begin{aligned}
\frac{20}{3.98} & =\frac{180}{x} \\
20 x & =716.4 \\
x & =35.82 \approx 36
\end{aligned}
$$

PTS: 2
REF: 011302ia
STA: A.M. 1
TOP: Using Rate
251 ANS:
$2,160 \frac{1,200}{25}=\frac{x}{45}$

$$
\begin{aligned}
25 x & =54,000 \\
x & =2,160
\end{aligned}
$$

PTS: 2
REF: 081032ia
STA: A.M. 1
TOP: Using Rate
252 ANS:
Ann's. $\frac{225}{15}=15 \mathrm{mpg}$ is greater than $\frac{290}{23.2}=12.5 \mathrm{mpg}$
PTS: 2 REF: 060831ia STA: A.M. 1 TOP: Using Rate
253 ANS: 4
$\frac{\text { distance }}{\text { time }}=\frac{24}{6}=4$
PTS: 2
REF: 010902ia
STA: A.M. 1
TOP: Speed
254 ANS: 4

$$
\frac{5}{45}=\frac{8}{x}
$$

$$
\begin{aligned}
5 x & =360 \\
x & =72
\end{aligned}
$$

PTS: 2
REF: 060901ia
STA: A.M. 1
TOP: Speed
$s=\frac{d}{t}=\frac{150 \mathrm{~m}}{1.5 \mathrm{~min}} \cdot \frac{60 \mathrm{~min}}{1 \mathrm{hr}}=6,000 \frac{\mathrm{~m}}{\mathrm{hr}}$
PTS: 2
REF: 061025ia
STA: A.M. 1
TOP: Speed

256 ANS: 1
$\frac{12.8+17.2}{3+5}=3.75$
PTS: 2 REF: 061117ia STA: A.M. 1 TOP: Speed
257 ANS: 1
$\frac{\text { distance }}{\text { time }}=\frac{350.7}{4.2}=83.5$
PTS: 2 REF: 061201ia STA: A.M. 1 TOP: Speed 258 ANS:
111.25. $\frac{\text { distance }}{\text { time }}=\frac{89}{0.8}=111.25$

PTS: 2 REF: 080831ia STA: A.M. 1 TOP: Speed
259 ANS:
Greg's rate of 5.5 is faster than Dave's rate of 5.3. $\frac{\text { distance }}{\text { time }}=\frac{11}{2}=5.5 \cdot \frac{16}{3}=5 . \overline{3}$
PTS: 3 REF: 080936ia STA: A.M. 1 TOP: Speed
260 ANS:
$t=\frac{d}{s}=\frac{136,000,000}{31,000} \approx 4387.1$ hours. $\frac{4387.1}{24} \approx 183$
PTS: 2 REF: 061333ia STA: A.M. 1 TOP: Speed
261 ANS:
The turtle won by . 5 minutes. Turtle: $\frac{d}{s}=\frac{100}{20}=5$. Rabbit: $\frac{d}{s}=\frac{100}{40}=2.5+3=5.5$
PTS: 3 REF: 011236ia STA: A.M. 1 TOP: Speed
262 ANS:
$50,1.5,10 . \frac{\text { distance }}{\text { time }}=\frac{60}{1.2}=50 . \frac{\text { distance }}{\text { time }}=\frac{60}{40}=1.5$. speed \times time $=55 \times 2=110.120-110=10$
PTS: 3 REF: fall0734ia STA: A.M. 1 TOP: Speed
ANS: 3
$F=\frac{9}{5} C+32=\frac{9}{5}(15)+32=59$
PTS: 2
REF: 010901ia
STA: A.M. 2
TOP: Conversions
KEY: formula
264 ANS: 3
PTS: 2
REF: 011317ia STA: A.M. 2
TOP: Conversions KEY: dimensional analysis

ANS: 4
$8900 \mathrm{ft} \times \frac{1 \mathrm{mi}}{5280 \mathrm{ft}} \approx 1.7 \mathrm{mi}$
PTS: 2
REF: 081210ia
STA: A.M. 2
TOP: Conversions
KEY: dimensional analysis
ANS: 4
$\frac{344 \mathrm{~m}}{\mathrm{sec}} \times \frac{60 \mathrm{sec}}{1 \mathrm{~min}} \times \frac{60 \mathrm{~min}}{1 \mathrm{hr}}=1,238,400 \frac{\mathrm{~m}}{\mathrm{hr}}$
PTS: 2 REF: 060911ia STA: A.M. 2 TOP: Conversions
KEY: dimensional analysis
ANS: 4
$5.5 \mathrm{~g} \times \frac{4 \mathrm{q}}{1 \mathrm{~g}} \times \frac{32 \mathrm{oz}}{1 \mathrm{q}}=704 \mathrm{oz}$
PTS: 2
REF: 061305ia
STA: A.M. 2
TOP: Conversions
KEY: dimensional analysis
ANS:
$77120+33500=110620$ sq. ft. $\times \frac{1 \text { acre }}{43560 \text { sq. ft. }} \approx 2.54$ acres
PTS: 2
REF: 081133ia
STA: A.M. 2
TOP: Conversions
KEY: dimensional analysis
270 ANS:
$\frac{5.4 \text { miles }}{\text { hour }} \times \frac{5280 \text { feet }}{\text { mile }} \times \frac{1 \text { hour }}{60 \mathrm{~min}}=\frac{475.2 \mathrm{ft}}{\mathrm{min}}$
PTS: 2
REF: 081331ia
STA: A.M. 2
TOP: Conversions
KEY: dimensional analysis
271
ANS:
16. 12 feet equals 4 yards. $4 \times 4=16$.

PTS: 2 REF: 011031ia STA: A.M. 2 TOP: Conversions
KEY: dimensional analysis
272
ANS:
5. 48 inches $\times \frac{1 \text { yard }}{36 \text { inches }}=\frac{4}{3}$ yards $\times \$ 3.75=\$ 5.00$

PTS: 2 REF: 011131ia STA: A.M. 2 TOP: Conversions
KEY: dimensional analysis

273 ANS: 2
Candidate B received $45 \% .45 \% \times 1860=837$
PTS: 2 REF: 081007ia STA: A.N. 5 TOP: Percents
274 ANS:
$\frac{1}{6}, 16.67 \%, \$ 13.50 . \frac{18-15}{18}=\frac{1}{6} .18 \times 0.75=13.5$
PTS: 3 REF: 060835ia STA: A.N. 5 TOP: Percents
275 ANS:
30.4%; no, $23.3 \% . \frac{7.50-5.75}{5.75}=30.4 \% . \frac{7.50-5.75}{7.50}=23.3 \%$
PTS: 3 REF: 080935ia STA: A.N. 5 TOP: Percents
276 ANS:
$259.99 \times 1.07-259.99(1-0.3) \times 1.07=83.46$
PTS: 4 REF: 011239ia STA: A.N. 5 TOP: Percents
277 ANS:
$800-(895)(0.75)(1.08)=75.05$
PTS: 3
REF: 081334ia
STA: A.N. 5
TOP: Percents
278 ANS: 4
$\frac{150}{20}=\frac{x}{30}$
$20 x=4500$
$x=225$
PTS: 2
REF: 081101ia
STA: A.N. 5
TOP: Direct Variation
279 ANS:
$d=6.25 h, 250 . d=6.25(40)=250$
PTS: 2
280 ANS: 2
REF: 010933ia
STA: A.N. 5
TOP: Slope
281 ANS: 2
PTS: 2
REF: 080823ia
TOP: Direct Variation
STA: A.A. 32
REF: 081223ia
STA: A.A. 32
TOP: Slope
282 ANS: 1
PTS: 2
REF: 081115ia
STA: A.A. 32 TOP: Slope
283 ANS: 3
$m=\frac{4-10}{3-(-6)}=-\frac{2}{3}$
PTS: 2
REF: fall0716ia
STA: A.A. 33
TOP: Slope

284 ANS: 3
$m=\frac{1-(-4)}{-6-4}=-\frac{1}{2}$
PTS: 2 REF: 060820ia STA: A.A. 33 TOP: Slope
ANS: 2
$m=\frac{5-3}{2-7}=-\frac{2}{5}$
PTS: 2 REF: 010913ia STA: A.A. 33 TOP: Slope 286 ANS: 1
$m=\frac{4-(-4)}{-5-15}=-\frac{2}{5}$
PTS: 2 REF: 080915ia STA: A.A. 33 TOP: Slope
287 ANS: 2
$m=\frac{5-2}{3-(-2)}=\frac{3}{5}$
PTS: 2
REF: 061004ia
STA: A.A. 33
TOP: Slope 288 ANS: 3
$m=\frac{6-4}{3-(-2)}=\frac{2}{5}$
PTS: 2
289 ANS: 4
$m=\frac{-3-1}{2-5}=\frac{-4}{-3}=\frac{4}{3}$
PTS: 2 REF: 011215ia STA: A.A. 33 TOP: Slope 290 ANS: 2
$m=\frac{-7-1}{4-9}=\frac{-8}{-5}=\frac{8}{5}$
PTS: 2
REF: 081310ia STA: A.A. 33
TOP: Slope
ANS: 4
$A(-3,4)$ and $B(5,8) . m=\frac{4-8}{-3-5}=\frac{-4}{-8}=\frac{1}{2}$
PTS: 2
REF: 011007ia
STA: A.A. 33
TOP: Slope
ANS: 2
$A(-3,8)$ and $B(3,6) . m=\frac{8-6}{-3-3}=\frac{2}{-6}=-\frac{1}{3}$
PTS: 2
REF: 081005ia
STA: A.A. 33
TOP: Slope

293 ANS: 2
$m=\frac{-A}{B}=\frac{-3}{-7}=\frac{3}{7}$
PTS: 2 REF: 011122ia STA: A.A. 37 TOP: Slope
294 ANS: 4
$m=\frac{-A}{B}=\frac{-4}{3}$
PTS: 2 REF: 061319ia STA: A.A. 37 TOP: Slope
295 ANS: 4
$m=\frac{-A}{B}=\frac{-(-3)}{2}=\frac{3}{2}$
PTS: 2 REF: 061212ia STA: A.A. 37 TOP: Slope
296 ANS: 2
If the car can travel 75 miles on 4 gallons, it can travel 300 miles on 16 gallons. $\frac{75}{4}=\frac{x}{16}$.

$$
x=300
$$

PTS: 2 REF: 080807ia STA: A.G. 4 TOP: Graphing Linear Functions
297 ANS: 1
$y=m x+b$
$-6=(-3)(4)+b$
$b=6$
PTS: 2
REF: 060922ia
STA: A.A. 34
TOP: Writing Linear Equations
298 ANS: 4
$y=m x+b$
$-1=(2)(3)+b$
$b=-7$
PTS: 2 REF: 080927ia STA: A.A. 34 TOP: Writing Linear Equations
299 ANS: 1
$y=m x+b$
$5=(-2)(1)+b$
$b=7$
PTS: 2 REF: 081108ia STA: A.A. 34 TOP: Writing Linear Equations

300
ANS: 3
$y=m x+b \quad y=\frac{3}{4} x-\frac{1}{2}$
$1=\left(\frac{3}{4}\right)(2)+b \quad 4 y=3 x-2$
$1=\frac{3}{2}+b$
$b=-\frac{1}{2}$

PTS: 2 REF: 081219ia STA: A.A. 34 TOP: Writing Linear Equations 301

$$
\begin{aligned}
y=\frac{3}{4} x+10 . \quad y & =m x+b \\
4 & =\frac{3}{4}(-8)+b \\
4 & =-6+b \\
10 & =b
\end{aligned}
$$

PTS: 3 REF: 011134ia STA: A.A. 34 TOP: Writing Linear Equations ANS: 1 $m=\frac{3-0}{0-2}=-\frac{3}{2}$. Using the given y-intercept $(0,3)$ to write the equation of the line $y=-\frac{3}{2} x+3$.
PTS: 2 REF: fall0713ia STA: A.A. 35 TOP: Writing Linear Equations ANS: 3

PTS: 2
REF: 010910ia
STA: A.A. 35
TOP: Writing Linear Equations
ANS: 3

$$
m=\frac{7-3}{-3-3}=\frac{4}{-6}=-\frac{2}{3} \quad \begin{aligned}
y & =m x+b \\
3 & =-\frac{2}{3}(3)+b \\
3 & =-2+b \\
5 & =b
\end{aligned}
$$

PTS: 2
REF: 011013ia
STA: A.A. 35
TOP: Writing Linear Equations ANS: 2

$$
\begin{aligned}
m=\frac{5-3}{8-1}=\frac{2}{7} \quad y-y_{1} & =m\left(x-x_{i}\right) \\
y-5 & =\frac{2}{7}(x-8)
\end{aligned}
$$

PTS: 2
REF: 081029ia
STA: A.A. 35
TOP: Writing Linear Equations

306 ANS:

$$
\begin{aligned}
y=\frac{2}{5} x+2 . m=\frac{4-0}{5-(-5)}=\frac{2}{5} . y & =m x+b . \\
4 & =\frac{2}{5}(5)+b \\
b & =2
\end{aligned}
$$

PTS: 3
REF: 080836ia
STA: A.A. 35
TOP: Writing Linear Equations
307 ANS: 1
$4 y-2 x=0$
$4(-1)-2(-2)=0$
$-4+4=0$
PTS: 2
ANS: 4

$$
2 x-3 y=9
$$

$2(0)-3(-3)=9$

$$
0+9=9
$$

PTS: 2
REF: 081016ia
STA: A.A. 39
TOP: Identifying Points on a Line
309 ANS: 4

$$
\begin{aligned}
3 y+2 x & =8 \\
3(-2)+2(7) & =8 \\
-6+14 & =8
\end{aligned}
$$

PTS: 2
REF: 011218ia
STA: A.A. 39
TOP: Identifying Points on a Line
310 ANS: 4
$2(2)-(-7)=11$
PTS: 2
311 ANS: 3
$2(5)+k=9$

$$
\begin{aligned}
10+k & =9 \\
k & =-1
\end{aligned}
$$

PTS: 2
REF: 061304ia
STA: A.A. 39
TOP: Identifying Points on a Line
312 ANS: 3
$2(1)+3=5$
PTS: 2
REF: 061007ia
STA: A.A. 39
REF: 080810ia
TOP: Parallel and Perpendicular Lines
314 ANS: 1
PTS: 2
TOP: Parallel and Perpendicular Lines
REF: 080911ia
STA: A.A. 36

315	ANS: 2	PTS: 2	REF: 081014 ia	STA: A.A. 36
	TOP: Parallel and Perpendicular Lines			
316	ANS: 4	REF: 061112 ia	STA: A.A. 36	
	TOP: Parallel and Perpendicular Lines			
317	ANS: 3	PTS: 2	REF: 011324ia	STA: A.A. 36
	TOP: Parallel and Perpendicular Lines			
318	ANS: 2 PTS: 2	REF: 061327ia	STA: A.A. 36	
	TOP: Parallel and Perpendicular Lines			
319	ANS: 1			
	The slope of both is -4.			

PTS: 2 REF: 060814ia STA: A.A. 38 TOP: Parallel and Perpendicular Lines
ANS: 1
The slope of $y=3-2 x$ is -2 . Using $m=-\frac{A}{B}$, the slope of $4 x+2 y=5$ is $-\frac{4}{2}=-2$.
PTS: 2 REF: 010926ia STA: A.A. 38 TOP: Parallel and Perpendicular Lines
321 ANS: 1
The slope of $2 x-4 y=16$ is $\frac{-A}{B}=\frac{-2}{-4}=\frac{1}{2}$
PTS: 2 REF: 011026ia STA: A.A. 38 TOP: Parallel and Perpendicular Lines
322 ANS: 1
Using $m=-\frac{A}{B}$, the slope of $2 x-3 y=9$ is $\frac{2}{3}$.
PTS: 2
REF: 011322ia
STA: A.A. 38
TOP: Parallel and Perpendicular Lines
323 ANS: 1
$m=-3$
PTS: 2
REF: 081307ia
STA: A.A. 38
TOP: Parallel and Perpendicular Lines
$y-k x=7$ may be rewritten as $y=k x+7$
PTS: 2
REF: 061015ia
STA: A.A. 38
TOP: Parallel and Perpendicular Lines
325 ANS: 1
$3(2 m-1) \leq 4 m+7$
$6 m-3 \leq 4 m+7$
$2 m \leq 10$
$m \leq 5$
PTS: 2
REF: 081002ia
STA: A.A. 24
TOP: Solving Inequalities

326 ANS: 4
$-6 x-17 \geq 8 x+25$
$-42 \geq 14 x$
$-3 \geq x$
PTS: 2
REF: 081121ia
STA: A.A. 24
TOP: Solving Inequalities
327 ANS:

$$
\begin{aligned}
2(x-4) & \geq \frac{1}{2}(5-3 x) \\
4(x-4) & \geq 5-3 x \\
4 x-16 & \geq 5-3 x \\
7 x & \geq 21 \\
x & \geq 3
\end{aligned}
$$

PTS: 3
REF: 011234ia
STA: A.A. 24
TOP: Solving Inequalities
328 ANS:

$$
\begin{aligned}
-5(x-7) & <15 \\
x-7 & >-3 \\
x & >4
\end{aligned}
$$

PTS: 2
REF: 061331ia
STA: A.A. 24
TOP: Solving Inequalities
329 ANS: 1 $-2 x+5>17$
$-2 x>12$
$x<-6$
PTS: 2
330 ANS: 4
$-4 x+2>10$
$-4 x>8$
$x<-2$
PTS: 2
REF: 080805ia
STA: A.A. 21
TOP: Interpreting Solutions
331 ANS: 1
$\frac{4}{3} x+5<17$

$$
\begin{aligned}
\frac{4}{3} x & <12 \\
4 x & <36 \\
x & <9
\end{aligned}
$$

PTS: 2
REF: 060914ia
STA: A.A. 21
TOP: Interpreting Solutions

332 ANS: 4
$-2(x-5)<4$
$-2 x+10<4$

$$
\begin{aligned}
-2 x & <-6 \\
x & >3
\end{aligned}
$$

PTS: 2
REF: 080913ia
STA: A.A. 21
TOP: Interpreting Solutions
333 ANS: 1
$-3 x+8 \geq 14$
$-3 x \geq 6$
$x \leq-2$
PTS: 2 REF: 081309
STA: A.A. 21 TOP: Interpreting Solutions
334 ANS: 3
PTS: 2
TOP: Interpreting Solutions
335 ANS:
-12. $3\left(\frac{2}{3} x+3<-2 x-7\right)$

$$
x+9<-6 x-21
$$

$7 x<-30$
$x<\frac{-30}{7}$
PTS: 3 REF: 061034ia
STA: A.A. 21
REF: 080803ia
TOP: Interpreting Solutions
336 ANS: 1
PTS: 2
REF: 081317ia
STA: A.A. 21

TOP: Modeling Inequalities
337 ANS: 4
PTS: 2
TOP: Modeling Inequalities
338 ANS: 4
PTS: 2
TOP: Modeling Inequalities
339 ANS: 2
PTS: 2
TOP: Modeling Inequalities
340
ANS: 2 PTS: 2
TOP: Modeling Inequalities
341 ANS: 4
PTS: 2
TOP: Modeling Inequalities
342 ANS: 2
PTS: 2
TOP: Modeling Inequalities
343 ANS: $4 \quad$ PTS: 2
TOP: Modeling Inequalities

STA: A.A. 4

REF: fall0715ia STA: A.A. 5
REF: 060821ia STA: A.A. 5

REF: 011005ia STA: A.A. 5
REF: 081107ia STA: A.A. 5
REF: 081212ia STA: A.A. 5

REF: 061321ia STA: A.A. 5

344 ANS: 1

$$
\begin{aligned}
0.07 m+19 & \leq 29.50 \\
0.07 m & \leq 10.50 \\
m & \leq 150
\end{aligned}
$$

PTS: 2
REF: 010904ia
STA: A.A. 6
TOP: Modeling Inequalities
345 ANS: 1
$13.95+0.49 s \leq 50.00$
$0.49 s \leq 36.05$
$s \leq 73.57$
PTS: 2
REF: 080904ia
STA: A.A. 6
TOP: Modeling Inequalities
346 ANS: 3
$5 x<55$
$x<11$
PTS: 2
REF: 061211ia
STA: A.A. 6
TOP: Modeling Inequalities
347 ANS: 4
$375+155 w \geq 900$
$155 w \geq 525$ $w \geq 3.4$

PTS: 2
REF: 081206ia
STA: A.A. 6
TOP: Modeling Inequalities
348 ANS:
7. $15 x+22 \geq 120$

$$
x \geq 6.5 \overline{3}
$$

PTS: 3
REF: fall0735ia
STA: A.A. 6
TOP: Modeling Inequalities
349 ANS:
$10+2 d \geq 75,33.10+2 d \geq 75$

$$
d \geq 32.5
$$

PTS: 3
REF: 060834ia
STA: A.A. 6
TOP: Modeling Inequalities
350 ANS:
$0.65 x+35 \leq 45$
$0.65 x \leq 10$
$x \leq 15$
PTS: 3
REF: 061135ia
STA: A.A. 6
REF: 061028ia
TOP: Modeling Inequalities
351 ANS: 4
PTS: 2
TOP: Linear Inequalities

352 ANS: 2

The slope of the inequality is $-\frac{1}{2}$.

PTS:	2	REF:	fa	STA:	A.G. 6	TOP:	Linea
ANS:	4	PTS:	2	REF:	061320ia	STA:	A.G. 6
TOP: Linear Inequalities							
ANS:	-	PTS:	2	REF:	011210ia	STA:	A.G. 6
TOP: Linear Inequalities							
ANS:	1	PTS:	2	REF:	060920ia	STA:	A.G. 6
TOP: Linear Inequalities							
ANS:	2	PTS:	2	REF:	081314ia	STA:	A.G. 6
TOP:		lities					

357 ANS:

$(1,-3)$ is in the solution set. $4(1)-3(-3)>9$

$$
4+9>9
$$

PTS: 4
358 ANS: 3
REF: 011038ia
PTS: 2
STA: A.G. 6
REF: 011117ia
TOP: Linear Inequalities
TOP: Graphing Absolute Value Functions
ANS:

PTS: 2
REF: 011333ia
STA: A.G. 4
TOP: Graphing Absolute Value Functions
360 ANS: 4
The transformation is a reflection in the x-axis.
PTS: 2
REF: fall0722ia STA: A.G. 5
TOP: Graphing Absolute Value Functions
ANS: 3 PTS: 2 REF: 011017ia STA: A.G. 5

TOP: Graphing Absolute Value Functions
The transformation is a reflection in the x-axis.
PTS: 2 REF: 011206ia STA: A.G. 5 TOP: Graphing Absolute Value Functions

. Graph becomes wider as the coefficient approaches 0 .
PTS: 3
REF: 061035ia
STA: A.G. 5
TOP: Graphing Absolute Value Functions
364 ANS:

The graph becomes steeper.

PTS: 3
ANS: 2
REF: 081134ia
PTS: 2
STA: A.G. 5
REF: 061105ia
TOP: Graphing Absolute Value Functions STA: A.A. 20

TOP: Factoring Polynomials
ANS: 2
$2 x^{2}+10 x-12=2\left(x^{2}+5 x-6\right)=2(x+6)(x-1)$
PTS: 2
REF: 080806ia
STA: A.A. 20
TOP: Factoring Polynomials

367 ANS: $2 \quad$ PTS: 2
TOP: Factoring Polynomials
368 ANS: 4
$3 x^{3}-33 x^{2}+90 x=3 x\left(x^{2}-11 x+30\right)=3 x(x-5)(x-6)$
PTS: 2 REF: 061227ia STA: A.A. 20 TOP: Factoring Polynomials
369 ANS:
$5 x^{3}-20 x^{2}-60 x$
$5 x\left(x^{2}-4 x-12\right)$
$5 x(x+2)(x-6)$
$\begin{array}{lllll}\text { PTS: } 2 & \text { REF: } 011332 \mathrm{ia} & \text { STA: A.A. } 20 & \text { TOP: Factoring Polynomials } \\ \text { ANS: } 2 & \text { PTS: } 2 & \text { REF: } 011022 \mathrm{ia} & \text { STA: A.A. } 19\end{array}$
TOP: Factoring the Difference of Perfect Squares
ANS: 3 PTS: 2 REF:
TOP: Factoring the Difference of Perfect Squares
TOP. 1
PTS: 2
REF: 011306ia
TOP: Factoring the Difference of Perfect Squares
ANS: 2
PTS: 2
REF: 011201ia
STA: A.A. 19
TOP: Factoring the Difference of Perfect Squares
374
TOP: Factoring the Difference of Perfect Squares
375
TOP: Factoring the Difference of Perfect Squares
376
ANS: 2 PTS: 2 REF:
TOP: Factoring the Difference of Perfect Squares
377
REF: 080902ia
TOP: Factoring the Difference of Perfect Squares
378
TOP: Factoring the Difference of Perfect Squares
379 ANS: 2
$36 x^{2}-100 y^{6}=4\left(9 x^{2}-25 y^{6}\right)=4\left(3 x+5 y^{3}\right)\left(3 x-5 y^{3}\right)$
PTS: 2 REF: 081129ia STA: A.A. 19
TOP: Factoring the Difference of Perfect Squares
380
ANS: 3
PTS: 2
REF: 081207ia
STA: A.A. 19
TOP: Factoring the Difference of Perfect Squares
381
ANS: 2
$a^{3}-4 a=a\left(a^{2}-4\right)=a(a-2)(a+2)$
PTS: 2 REF: 011108ia STA: A.A. 19
TOP: Factoring the Difference of Perfect Squares

382 ANS:
$4 x(x+3)(x-3) \cdot 4 x^{3}-36 x=4 x\left(x^{2}-9\right)=4 x(x+3)(x-3)$
PTS: 2 REF: 060932ia STA: A.A. 19
TOP: Factoring the Difference of Perfect Squares
383 ANS: 2

$$
\begin{aligned}
x^{2}-16 x+28 & =0 \\
(x-14)(x-2) & =0 \\
x & =14,2
\end{aligned}
$$

PTS: 2
384 ANS: 3
$x^{2}-6 x=0$
$x(x-6)=0$
$x=0 x=6$
PTS: 2
REF: 080921ia
STA: A.A. 27
TOP: Solving Quadratics by Factoring
385 ANS: 3
$x^{2}-10 x+21=0$
$(x-7)(x-3)=0$ $x=7 \quad x=3$

PTS: 2
REF: 010914ia
STA: A.A. 28
TOP: Roots of Quadratics
386 ANS: 4

$$
\begin{gathered}
x^{2}-7 x+6=0 \\
(x-6)(x-1)=0 \\
x=6 \quad x=1
\end{gathered}
$$

PTS: 2
REF: 060902ia
STA: A.A. 28
TOP: Roots of Quadratics
387 ANS: 2

$$
\begin{gathered}
x^{2}-2 x-15=0 \\
(x-5)(x+3)=0 \\
x=5 x=-3
\end{gathered}
$$

PTS: 2
REF: 011128ia
STA: A.A. 28
TOP: Roots of Quadratics
388 ANS: 2

$$
\begin{gathered}
x^{2}-5 x+6=0 \\
(x-3)(x-2)=0 \\
x=3 x=2
\end{gathered}
$$

PTS: 2
REF: 081120ia
STA: A.A. 28
TOP: Roots of Quadratics

389 ANS: 1

$$
\begin{aligned}
3 x^{2}-27 x & =0 \\
3 x(x-9) & =0 \\
x & =0,9
\end{aligned}
$$

PTS: 2
REF: 011223ia
STA: A.A. 28
TOP: Roots of Quadratics
390 ANS: 4

$$
\begin{gathered}
x^{2}-14 x+48=0 \\
(x-6)(x-8)=0 \\
x=6,8
\end{gathered}
$$

PTS: 2
REF: 011320ia
391 ANS: 2
PTS: 2
TOP: Roots of Quadratics
392 ANS:
$-2,3 . \quad x^{2}-x=6$

$$
\begin{aligned}
x^{2}-x-6 & =0 \\
(x-3)(x+2) & =0 \\
x & =3 \text { or }-2
\end{aligned}
$$

PTS: 3
REF: 011034ia STA: A.A. 28

TOP: Roots of Quadratics 393 ANS:

$$
\begin{aligned}
-15,2 \quad x^{2}+13 x-30 & =0 \\
(x+15)(x-2) & =0 \\
x & =-15,2
\end{aligned}
$$

PTS: 3
REF: 081036ia
394 ANS: 4
PTS: 2
TOP: Graphing Quadratic Functions
395 ANS: 2
PTS: 2
TOP: Graphing Quadratic Functions
396 ANS: 2
PTS: 2
TOP: Graphing Quadratic Functions
PTS: 2
TOP: Graphing Quadratic Functions
ANS: 1 PTS: 2
TOP: Graphing Quadratic Functions
399 ANS: 3
PTS: 2
TOP: Solving Quadratics by Graphing
400
ANS: 2 PTS: 2
TOP: Solving Quadratics by Graphing
401 ANS: 4
PTS: 2
TOP: Solving Quadratics by Graphing

STA: A.A. 28
REF: 060829ia
REF: 061113ia
REF: 081218ia
REF: 011330ia
REF: 081015ia
REF: 060924ia
REF: 080916ia

REF: 011111ia STA: A.G. 8

402
ANS: $3 \quad$ PTS: 2
TOP: Solving Quadratics by Graphing
403 ANS:

PTS: 3
REF: 061234ia ANS:

PTS: 3
REF: 060836ia ANS: 1

$$
\begin{aligned}
x^{2}-36 & =5 x \\
x^{2}-5 x-36 & =0 \\
(x-9)(x+4) & =0 \\
x & =9
\end{aligned}
$$

PTS: 2
REF: 061020ia
406 ANS: 3
$b=3+d \quad(3+d) d=40$
$b d=40 \quad d^{2}+3 d-40=0$

$$
(d+8)(d-5)=0
$$

$$
d=5
$$

PTS: 2
REF: 011208ia

REF: 061306ia
STA: A.G. 8

STA: A.G. 8
TOP: Solving Quadratics by Graphing

STA: A.A. 8

STA: A.G. 8

STA: A.A. 8 TOP: Writing Quadratics
TOP: Solving Quadratics by Graphing

TOP: Writing Quadratics

407 ANS: 3
$N=5+J \quad N(N-5)=84$
$J=N-5 \quad N^{2}-5 N-84=0$
$N J=84 \quad(N-12)(N+7)=0$

$$
N=12
$$

PTS: 2
REF: 081304ia
STA: A.A. 8
TOP: Writing Quadratics
ANS:
6, 8, 10. Three consecutive even integers are $x, x+2$ and $x+4 .(x+2)(x+4)=10 x+20$

$$
\begin{aligned}
x^{2}+6 x+8 & =10 x+20 \\
x^{2}-4 x-12 & =0 \\
(x-6)(x+2) & =0 \\
x & =6
\end{aligned}
$$

PTS: 4
REF: 011039ia
STA: A.A. 8
TOP: Writing Quadratics
409 ANS: 2

$$
\begin{aligned}
l(l-5) & =24 \\
l^{2}-5 l-24 & =0 \\
(l-8)(l+3) & =0 \\
l & =8
\end{aligned}
$$

PTS: 2
REF: 080817ia
STA: A.A. 8
TOP: Geometric Applications of Quadratics
410 ANS: 2

$$
\begin{aligned}
l(l-3) & =40 \\
l^{2}-3 l-40 & =0 \\
(l-8)(l+5) & =0 \\
l & =8
\end{aligned}
$$

PTS: 2
REF: 081116ia
STA: A.A. 8
TOP: Geometric Applications of Quadratics
411 ANS:
$w(w+15)=54,3,18 . \quad w(w+15)=54$

$$
\begin{aligned}
w^{2}+15 w-54 & =0 \\
(w+18)(w-3) & =0 \\
w & =3
\end{aligned}
$$

PTS: 4
REF: 060837ia
STA: A.A. 8
412 ANS: 1
PTS: 2
REF: 060811ia
TOP: Geometric Applications of Quadratics
TOP: Identifying the Vertex of a Quadratic Given Graph
413
TOP: Identifying the Vertex of a Quadratic Given Graph

414 ANS: 2 PTS: 2 REF: 010916ia
TOP: Identifying the Vertex of a Quadratic Given Graph
415 ANS: 2
PTS: 2
REF: 011015ia
TOP: Identifying the Vertex of a Quadratic Given Graph
416
REF: 061005ia
TOP: Identifying the Vertex of a Quadratic Given Graph
417 ANS: 2 PTS: 2 REF: 081111i
TOP: Identifying the Vertex of a Quadratic Given Graph
418 ANS: 4
PTS: 2
REF: 081214ia
TOP: Identifying the Vertex of a Quadratic Given Graph
419 ANS: 4 PTS: 2 REF: 081322i
TOP: Identifying the Vertex of a Quadratic Given Graph
420 ANS:
$x=1 ;(1,-5)$
PTS: 2 REF: 061133ia STA: A.G. 10
TOP: Identifying the Vertex of a Quadratic Given Graph
421 ANS: 1
$x=\frac{-b}{2 a}=\frac{-(-16)}{2(1)}=8 . y=(8)^{2}-16(8)+63=-1$
PTS: 2 REF: 060918ia STA: A.A. 41
TOP: Identifying the Vertex of a Quadratic Given Equation
422 ANS: 3
$x=\frac{-b}{2 a}=\frac{-10}{2(-1)}=5$.
PTS: 2 REF: 081018ia STA: A.A. 41
TOP: Identifying the Vertex of a Quadratic Given Equation
423 ANS: 1
$x=\frac{-b}{2 a}=\frac{-6}{2(-1)}=3$.

PTS: 2 REF: 011127ia STA: A.A. 41
TOP: Identifying the Vertex of a Quadratic Given Equation
424 ANS: 1
$x=\frac{-b}{2 a}=\frac{-(-3)}{2(2)}=\frac{3}{4}$.
PTS: 2 REF: 011219ia STA: A.A. 41
TOP: Identifying the Vertex of a Quadratic Given Equation
425 ANS: 3
$x=\frac{-b}{2 a}=\frac{-24}{2(-2)}=6 . y=-2(6)^{2}+24(6)-100=-28$
PTS: 2 REF: 061214ia STA: A.A. 41
TOP: Identifying the Vertex of a Quadratic Given Equation

STA: A.G. 10

STA: A.G. 10
STA: A.G. 10

STA: A.G. 10
STA: A.G. 10
STA: A.G. 10

426 ANS: 3
$x=\frac{-b}{2 a}=\frac{-8}{2(1)}=-4 \cdot y=(-4)^{2}+8(-4)+10=-6 \cdot(-4,-6)$
PTS: 2 REF: 011314ia STA: A.A. 41
TOP: Identifying the Vertex of a Quadratic Given Equation
427 ANS:
$(-2,11)$.

$$
\begin{aligned}
& x=\frac{-b}{2 a}=\frac{-(-8)}{2(-2)}=-2 \\
& y=-2(-2)^{2}-8(-2)+3=11
\end{aligned}
$$

PTS: 3 REF: 080934ia STA: A.A. 41
TOP: Identifying the Vertex of a Quadratic Given Equation
428
ANS: 3
$5 x+2 y=48$
$3 x+2 y=32$
$2 x=16$
$x=8$
PTS: 2
REF: fall0708ia STA: A.A. 10
TOP: Solving Linear Systems
429
ANS: 2
$x+2 y=9$

$$
\begin{aligned}
x-y & =3 \\
3 y & =6 \\
y & =2
\end{aligned}
$$

PTS: 2
REF: 060925ia
STA: A.A. 10
TOP: Solving Linear Systems
430 ANS: 1
$x-2 y=1$
$x+4 y=7$

$$
\begin{aligned}
-6 y & =-6 \\
y & =1
\end{aligned}
$$

PTS: 2 REF: 080920ia STA: A.A. 10 TOP: Solving Linear Systems
431 ANS: 3

$$
\begin{aligned}
c+3 d & =8 & & c=4 d-6 \\
4 d-6+3 d & =8 & & c=4(2)-6 \\
7 d & =14 & & c=2 \\
d & =2 & &
\end{aligned}
$$

PTS: 2
REF: 061012ia
STA: A.A. 10
TOP: Solving Linear Systems

432 ANS: 2

$$
\begin{aligned}
2(x-3 y & =-3) \\
2 x+y & =8 \\
2 x-6 y & =-6 \\
7 y & =14 \\
y & =2
\end{aligned}
$$

PTS: 2 REF: 081021ia STA: A.A. 10 TOP: Solving Linear Systems
433 ANS: 3

$$
\begin{array}{rlrl}
2 x-5 y & =11 & 2 x-5(-1) & =11 \\
-2 x+3 y & =-9 & 2 x & =6 \\
-2 y & =2 & x & =3 \\
y & =-1 &
\end{array}
$$

PTS: 2
REF: 081109ia
STA: A.A. 10
REF: 081315ia
TOP: Solving Linear Systems
434 ANS: 1
PTS: 2
STA: A.A. 10
TOP: Solving Linear Systems
435 ANS:
$(-2,5) .3 x+2 y=4 \quad 12 x+8 y=16 . \quad 3 x+2 y=4$

$$
4 x+3 y=7 \quad 12 x+9 y=21 \quad 3 x+2(5)=4
$$

$$
y=5 \quad 3 x=-6
$$

$$
x=-2
$$

PTS: 4
REF: 010937ia
STA: A.A. 10
TOP: Solving Linear Systems
436 ANS:
2. Subtracting the equations: $3 y=6$

$$
y=2
$$

PTS: 2
437 ANS: 3
REF: 061231ia
PTS: 2
STA: A.A. 10
REF: 081201ia
REF: 011304ia

TOP: Solving Linear Systems STA: A.G. 7

STA: A.G. 7

439 ANS:

PTS: 4
REF: 080938ia
ANS:

PTS: 3
REF: 011235ia
STA: A.G. 7
TOP: Solving Linear Systems
441 ANS: 2
$L+S=47$
$L-S=15$
$2 L=62$
$L=31$
PTS: 2
REF: 060912ia
STA: A.A. 7
TOP: Writing Linear Systems
442
ANS: 2
$3 c+4 m=12.50$
$3 c+2 m=8.50$

$$
\begin{aligned}
2 m & =4.00 \\
m & =2.00
\end{aligned}
$$

PTS: 2
REF: 060806ia
STA: A.A. 7
TOP: Writing Linear Systems

443 ANS: 3

$$
\begin{array}{rlrl}
b=42-r & & r & =2 b+3 \\
r=2 b+3 & & r & =2(42-r)+3 \\
r & =84-2 r+3 \\
3 r & =87 \\
r & =29
\end{array}
$$

PTS: 2
REF: 060812ia
STA: A.A. 7
TOP: Writing Linear Systems
444 ANS: 2
$s+o=126 . s+2 s=126$

$$
o=2 s \quad s=42
$$

PTS: 2 REF: 080811ia STA: A.A. 7 TOP: Writing Linear Systems
445 ANS: 1
so $=f+60 j=2 f-50$ se $=3 f . f+(f+60)+(2 f-50)+3 f=1424$

$$
7 f+10=1424
$$

$$
f=202
$$

PTS: 2
REF: 060917ia
STA: A.A. 7
TOP: Writing Linear Systems
446 ANS: 1
$1 P+2 C=5$
$1 P+4 C=6$
$2 C=1$
$C=0.5$

PTS: 2
REF: 011003ia
STA: A.A. 7
TOP: Writing Linear Systems
ANS: 2
$J-M=3$
$8 J+8 M=120$
$8 J-8 M=24$
$16 J=144$
$J=9$
PTS: 2
REF: 011115ia
STA: A.A. 7
TOP: Writing Linear Systems
448 ANS: 1
$f+m=53$
$f-m=25$

$$
2 m=28
$$

$$
m=14
$$

PTS: 2
REF: 061126ia
STA: A.A. 7
TOP: Writing Linear Systems

449 ANS: 1

$$
\begin{array}{rlrl}
b & =2 j+4 & 2 j+4 & =31-j \\
b+j & =31 & 3 j & =27 \\
b & =31-j & j & =9
\end{array}
$$

PTS: 2 REF: 081119ia STA: A.A. 7 TOP: Writing Linear Systems
450 ANS: 2
$W+L=72$
$W-L=12$

$$
2 W=84
$$

$$
W=42
$$

PTS: 2 REF: 081227ia STA: A.A. 7 TOP: Writing Linear Systems 451 ANS:
$m=50 \phi, p=15 \phi .3 m+2 p=1.80 .9 m+6 p=5.40 .4(.50)+6 p=2.90$

$$
\begin{array}{rlrl}
4 m+6 p=2.90 & 4 m+6 p & =2.90 & \\
5 m & =2.50 & p & =\$ 0 \\
m & =\$ 0.50 & &
\end{array}
$$

PTS: 4
REF: 080837ia STA: A.A. 7
TOP: Writing Linear Systems
ANS:
$3 n+4 p=8.50 .3(2.50)+4 p=8.50$
$5 n+8 p=14.50 \quad 4 p=1$
$6 n+8 p=17 \quad p=0.25$
$n=2.50$
PTS: 3 REF: 011335ia STA: A.A. 7 TOP: Writing Linear Systems
453 ANS:
$L-S=28 \quad .2 S-8=S+28$
$L=2 S-8 \quad S=36$
$L=S+28 \quad L=36+28=64$
PTS: 3
ANS: 1 REF: 081335ia \quad STA: A.A. 7 TOP: Writing Linear Systems

ANS: 4
PTS: 2
TOP: Systems of Linear Inequalities
459
ANS: 2
$-1 \leq 3(2)+1.2-(-1)>1$
$-1 \leq 7$
$3>1$
PTS: 2
REF: 011323ia ANS:

PTS: 4
REF: 010938ia
461
ANS:

REF: 081037ia
STA: A.G. 7
TOP: Systems of Linear Inequalities

462 ANS:

PTS: 4
ANS:

PTS: 4
REF: 061139ia
ANS:

REF: 081239ia STA: A.G. 7
TOP: Systems of Linear Inequalities

465 ANS: 4
$x^{2}-2=x \quad$ Since $y=x$, the solutions are $(2,2)$ and $(-1,-1)$.

$$
x^{2}-x-2=0
$$

$$
(x-2)(x+1)=0
$$

$$
x=2 \text { or }-1
$$

PTS: 2
REF: 060810ia STA: A.A. 11
TOP: Quadratic-Linear Systems
466
ANS: 2

$$
\begin{array}{cll}
x^{2}+5 x+6=-x+1 . & y & =-x+1 \\
x^{2}+6 x+5=0 & & =-(-5)+1 \\
(x+5)(x+1)=0 & & =6 \\
x=-5 \text { or }-1 & &
\end{array}
$$

PTS: 2 REF: 080812ia STA: A.A. 11 TOP: Quadratic-Linear Systems
467 ANS: 2

$$
\begin{array}{cll}
x^{2}-x-20=3 x-15 . & y & =3 x-15 . \\
x^{2}-4 x-6=0 & & =3(-1)-15 \\
(x=5)(x+1)=0 & & =-18 \\
x=5 \text { or }-1 & &
\end{array}
$$

PTS: 2
REF: 010922ia
STA: A.A. 11
TOP: Quadratic-Linear Systems
$x^{2}-x=x+3$. Since $y=x+3$, the solutions are $(3,6)$ and $(-1,2)$.

$x^{2}-2 x-3=0$
$(x-3)(x+1)=0$
$x=3$ or -1
PTS: 2
REF: 061118ia
STA: A.A. 11
TOP: Quadratic-Linear Systems

469 ANS: 2
$y=-x+5 .-x+5=x^{2}-25 \quad$. $y=-(-6)+5=11$.

$$
0=x^{2}+x-30 \quad y=-5+5=0
$$

$$
0=(x+6)(x-5)
$$

$$
x=-6,5
$$

PTS: 2
REF: 061213ia STA: A.A. 11
TOP: Quadratic-Linear Systems
$(-3,-5),(3,7) . x^{2}+2 x-8=2 x+1 . y=2(3)+1=7$

$$
\begin{aligned}
x^{2}-9 & =0 \\
x & = \pm 3
\end{aligned}
$$

PTS: 3
REF: 081236ia
STA: A.A. 11
471 ANS: 2
PTS: 2
REF: 011012ia
TOP: Quadratic-Linear Systems
TOP: Quadratic-Linear Systems
472 ANS: 1
PTS: 2
REF: 011207ia
STA: A.G. 9
TOP: Quadratic-Linear Systems
473 ANS: 1
$2 y-2 x=10 \quad$ axis of symmetry: $x=\frac{-b}{2 a}=\frac{-2}{2(1)}=-1$
$2 y=2 x+10$
$y=x+5$
PTS: 2
REF: 081010ia
STA: A.G. 9
REF: 011102ia
TOP: Quadratic-Linear Systems STA: A.G. 9
474 ANS: 4
PTS: 2
TOP: Quadratic-Linear Systems
475 ANS: 1
$x^{2}-5 x+3=x-6 \quad y=3-6=-3(3,-3)$
$x^{2}-6 x+9=0$

$$
(x-3)^{2}=0
$$

$$
x=3
$$

PTS: 2
REF: 061330ia
STA: A.G. 9
TOP: Quadratic-Linear Systems

476 ANS:

PTS: 4
REF: fall0738ia
STA: A.G. 9
TOP: Quadratic-Linear Systems
477 ANS:

PTS: 4
REF: 080839ia STA: A.G. 9
TOP: Quadratic-Linear Systems

PTS: 4
REF: 060939ia STA: A.G. 9
TOP: Quadratic-Linear Systems

479 ANS:

PTS: 4 480 ANS:

PTS: 4 REF: 081138ia STA: A.G. 9 TOP: Quadratic-Linear Systems 481 ANS:

PTS: 4
REF: 011339ia
STA: A.G. 9
TOP: Quadratic-Linear Systems

482 ANS:

PTS: 4 REF: 081337ia STA: A.G. 9 TOP: Quadratic-Linear Systems
483 ANS: 4
$-3 x(x-4)-2 x(x+3)=-3 x^{2}+12 x-2 x^{2}-6 x=-5 x^{2}+6 x$
PTS: 2
REF: 081114ia
STA: A.A. 13
TOP: Addition and Subtraction of Monomials

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic Answer Section

501 ANS: $4 \quad$ PTS: 2
TOP: Multiplication of Powers
502 ANS: 4
$\frac{2^{6}}{2^{1}}=2^{5}$
PTS: 2
REF: 060813ia
ANS: 3
$\frac{3^{6}}{3^{1}}=3^{5}$
PTS: 2
504 ANS: 1
TOP: Division of Powers
505
ANS: 4 PTS: 2
TOP: Division of Powers
506 ANS: 1
PTS: 2
TOP: Division of Powers
507 ANS: 3
$\frac{\left(2 x^{3}\right)\left(8 x^{5}\right)}{4 x^{6}}=\frac{16 x^{8}}{4 x^{6}}=4 x^{2}$
PTS: 2
REF: fall0703ia
508 ANS: 2
PTS: 2
TOP: Division of Powers
509 ANS:
$\frac{3 k^{2} m^{6}}{4}$

PTS: 2
REF: 010932ia
PTS: 2
TOP: Powers of Powers
511 ANS: 3
$\frac{\left(10 w^{3}\right)^{2}}{5 w}=\frac{100 w^{6}}{5 w}=20 w^{5}$
PTS: 2
REF: 011124ia
512 ANS: 4
$\frac{\left(4 x^{3}\right)^{2}}{2 x}=\frac{16 x^{6}}{2 x}=8 x^{5}$
PTS: 2
513
ANS: 2
REF: 011216ia
PTS: 2
TOP: Powers of Powers

REF: 080903ia
STA: A.A. 12
STA. A.

STA: A.A. 12 TOP: Division of Powers
STA: A.A. 12

STA: A.A. 12
REF: 060903ia
REF: 061018ia STA: A.A. 12
REF: 061103ia STA: A.A. 12

STA: A.A. 12
REF: 081311ia

STA: A.A. 12
REF: 080827ia

STA: A.A. 12
TOP: Powers of Powers

TOP: Division of Powers STA: A.A. 12

STA: A.A. 12 TOP: Powers of Powers
REF: 061312ia STA: A.A. 12

514	ANS: 2 PTS: 2 TOP: Powers of Powers		081318ia	STA:	A.A. 12
515	ANS: 2 PTS: 2 TOP: Operations with Scientific Notation	REF:	061127ia	STA:	A.N. 4
516	ANS: 4 PTS: 2 TOP: Operations with Scientific Notation	REF:	010927ia	STA:	A.N. 4
517	ANS: 4 PTS: 2 TOP: Operations with Scientific Notation	REF:	060927ia	STA:	A.N. 4
518	ANS: 4 $\frac{9.2 \times 10^{6}}{2.3 \times 10^{2}}=4 \times 10^{4}$				
519	PTS: 2 REF: 081006ia ANS: 2 PTS: 2 TOP: Operations with Scientific Notation	STA: REF:	A.N. 4 fall0725ia	$\begin{aligned} & \text { TOP: } \\ & \text { STA: } \end{aligned}$	Operations with Scientific Notation A.N. 4
520	ANS: 3 PTS: 2 TOP: Operations with Scientific Notation	REF:	011319ia	STA:	A.N. 4
521	ANS: 6.56×10^{-2}				
	PTS: 2 REF: 081231ia	STA:	A.N. 4	TOP:	Operations with Scientific Notation
522	ANS: 3 PTS: 2 TOP: Exponential Functions	REF:	011310ia	STA:	A.A. 9
523	ANS: 3 $500(1+0.06)^{3} \approx 596$				
524	PTS: 2 REF: 080929ia	STA:	A.A. 9	TOP:	Exponential Functions
	ANS: 1				
	$15000(1.2)^{\frac{6}{3}}=21,600 \cdot 21,600-15,000=$				
	PTS: 2 REF: 061030ia	STA:	A.A. 9	TOP:	Exponential Functions
525	ANS: 2				
	$2000(1+0.04)^{3} \approx 2249$				
	PTS: 2 REF: 081124ia	STA:	A.A. 9	TOP:	Exponential Functions
526	ANS: 1 PTS: 2 TOP: Exponential Functions	REF:	011202ia	STA:	A.A. 9
527	ANS: $\text { 5,583.86. } A=P(1+R)^{t}=5000(1+0.0375)^{3}$	$)^{3} \approx 558$			
	PTS: 3 REF: 060935ia	STA:	A.A. 9	TOP:	Exponential Functions

528 ANS:
$A=P(1+R)^{t}=2000(1+0.035)^{4} \approx 2295$
PTS: 2 REF: 081333ia STA: A.A. 9 TOP: Exponential Functions
ANS: 2 PTS: 2
TOP: Exponential Functions
530 ANS: 4 PTS: 2
REF: 010908ia STA: A.A. 9
TOP: Exponential Functions
531 ANS: 2 PTS: 2
REF: 061229ia STA: A.A. 9
TOP: Exponential Functions
532 ANS: $3 \quad$ PTS: 2
REF: 081211ia STA: A.A. 9
TOP: Exponential Functions
533 ANS: 3
$35000(1-0.05)^{4} \approx 28507.72$
PTS: 2
REF: fall0719i
STA: A.A. 9
TOP: Exponential Functions
534 ANS: 2
$20000(.88)^{3}=13629.44$
PTS: 2
REF: 061124ia
STA: A.A. 9
TOP: Exponential Functions
535 ANS: 2
$R=0.5^{d-1}$
PTS: 2
REF: 011006ia
STA: A.A. 9
TOP: Exponential Functions
536 ANS:
24,435.19. $30000(.95)^{4} \approx 24435.19$
PTS: 4
REF: 011138ia
STA: A.A. 9
TOP: Exponential Functions
537 ANS:

The graph will never intersect the x-axis as $2^{x}>0$ for all values of x.
PTS: 3
REF: 080835ia
STA: A.G. 4
TOP: Graphing Exponential Functions

ANS:

PTS: 2
REF: 081233ia
STA: A.G. 4
ANS: 3
$\sqrt{72}=\sqrt{36} \sqrt{2}=6 \sqrt{2}$
PTS: 2
REF: 010920ia
STA: A.N. 2
ANS: 2
$\sqrt{32}=\sqrt{16} \sqrt{2}=4 \sqrt{2}$
PTS: 2
REF: 060910ia
STA: A.N. 2
TOP: Simplifying Radicals
541 ANS: 2
$5 \sqrt{20}=5 \sqrt{4} \sqrt{5}=10 \sqrt{5}$
PTS: 2
REF: 080922ia
STA: A.N. 2
ANS: 3
$3 \sqrt{250}=3 \sqrt{25} \sqrt{10}=15 \sqrt{10}$
PTS: 2
REF: 061106ia
STA: A.N. 2
TOP: Simplifying Radicals
543 ANS: 3
$2 \sqrt{45}=2 \sqrt{9} \sqrt{5}=6 \sqrt{5}$
PTS: 2
REF: 011203ia
STA: A.N. 2
TOP: Simplifying Radicals
544
$\frac{\sqrt{32}}{4}=\frac{\sqrt{16} \sqrt{2}}{4}=\sqrt{2}$
PTS: 2
REF: 060828ia
ANS:
$30 \sqrt{2} .5 \sqrt{72}=5 \sqrt{36} \sqrt{2}=30 \sqrt{2}$
PTS: 2
REF: fall0731ia
STA: A.N. 2
TOP: Simplifying Radicals
546 ANS:
$-3 \sqrt{48}=-3 \sqrt{16} \sqrt{3}=-12 \sqrt{3}$
PTS: 2
REF: 081033ia
STA: A.N. 2
TOP: Graphing Exponential Functions

TOP: Simplifying Radicals

TOP: Simplify Radical

TOP: Simplifying Radicals

STA: A.N. 2 TOP: Simplifying Radicals ,
\qquad
$4 \sqrt{75}=4 \sqrt{25} \sqrt{3}=20 \sqrt{3}$
PTS: 2
REF: 011331ia
STA: A.N. 2
TOP: Simplifying Radicals
548
ANS.
$2 \sqrt{108}=2 \sqrt{36} \sqrt{3}=12 \sqrt{3}$
PTS: 2
REF: 081332ia
STA: A.N. 2
TOP: Simplifying Radicals
549 ANS: 4
$6 \sqrt{50}+6 \sqrt{2}=6 \sqrt{25} \sqrt{2}+6 \sqrt{2}=30 \sqrt{2}+6 \sqrt{2}=36 \sqrt{2}$
PTS: 2
REF: 011024ia STA: A.N. 3
TOP: Operations with Radicals
KEY: addition
550 ANS: 3
$\sqrt{72}-3 \sqrt{2}=\sqrt{36} \sqrt{2}-3 \sqrt{2}=6 \sqrt{2}-3 \sqrt{2}=3 \sqrt{2}$
PTS: 2
REF: 061008ia STA: A.N. 3
TOP: Operations with Radicals
KEY: subtraction
551 ANS: 3
$3 \sqrt{2}+\sqrt{8}=3 \sqrt{2}+\sqrt{4} \sqrt{2}=3 \sqrt{2}+2 \sqrt{2}=5 \sqrt{2}$
PTS: 2 REF: 011121ia STA: A.N. 3 TOP: Operations with Radicals
KEY: addition
552
$6 \sqrt{3} \frac{3 \sqrt{75}+\sqrt{27}}{3}=\frac{3 \sqrt{25} \sqrt{3}+\sqrt{9} \sqrt{3}}{3}=\frac{15 \sqrt{3}+3 \sqrt{3}}{3}=\frac{18 \sqrt{3}}{3}=6 \sqrt{3}$
PTS: 3 REF: 061236ia STA: A.N. 3 TOP: Operations with Radicals 553 ANS:
$5-2 \sqrt{3}+\sqrt{9} \sqrt{3}+2(3)=5-2 \sqrt{3}+3 \sqrt{3}+6=11+\sqrt{3}$
PTS: 3 REF: 061336ia STA: A.N. 3 TOP: Operations with Radicals
554 ANS:
$60-42 \sqrt{5} \cdot 3 \sqrt{20}(2 \sqrt{5}-7)=6 \sqrt{100}-21 \sqrt{20}=60-21 \sqrt{4} \sqrt{5}=60-42 \sqrt{5}$
PTS: 3 REF: 080834ia STA: A.N. 3 TOP: Operations with Radicals
KEY: multiplication
555 ANS:
$-2 \sqrt{3} \frac{16 \sqrt{21}}{2 \sqrt{7}}-5 \sqrt{12}=8 \sqrt{3}-5 \sqrt{4} \sqrt{3}=8 \sqrt{3}-10 \sqrt{3}=-2 \sqrt{3}$
PTS: 3
REF: 081136ia
STA: A.N. 3
TOP: Operations with Radicals

556

PTS: 2
REF: fall0718ia
KEY: a > 0
ANS: 2
$\frac{2 x^{2}-12 x}{x-6}=\frac{2 x(x-6)}{x-6}=2 x$

PTS: 2
REF: 060824ia
KEY: a > 0
$\frac{25 x-125}{x^{2}-25}=\frac{25(x-5)}{(x+5)(x-5)}=\frac{25}{x+5}$

PTS: 2 REF: 080821ia
STA: A.A. 16
TOP: Rational Expressions
KEY: a >0
559 ANS: 2
$\frac{x^{2}-2 x-15}{x^{2}+3 x}=\frac{(x-5)(x+3)}{x(x+3)}=\frac{x-5}{x}$

PTS: 2
REF: 060921ia
STA: A.A. 16
KEY: a > 0
$\frac{x^{2}-x-6}{x^{2}-5 x+6}=\frac{(x-3)(x+2)}{(x-3)(x+2)}=\frac{x+2}{x-2}$

PTS: 2 REF: 011130i
STA: A.A. 16
TOP: Rational Expressions
KEY: a >0
$\frac{x^{2}-3 x-10}{x^{2}-25}=\frac{(x-5)(x+2)}{(x+5)(x-5)}=\frac{x+2}{x+5}$

PTS: 2
REF: 061216ia
STA: A.A. 16
TOP: Rational Expressions
KEY: a > 0
562
$\frac{2 x^{2}\left(x^{4}-9 x^{2}+1\right)}{2 x^{2}}$
PTS: 2
REF: 081222ia
STA: A.A. 16
TOP: Rational Expressions

563 ANS: 1
$\frac{2 x^{2}+10 x-28}{4 x+28}=\frac{2\left(x^{2}+5 x-14\right)}{4 x+28}=\frac{2(x+7)(x-2)}{4(x+7)}=\frac{x-2}{2}$
PTS: 2 REF: 011327ia STA: A.A. 16 TOP: Rational Expressions
KEY: $a>0$
564
ANS: 1
$\frac{(x+5)(x+3)}{x+5}=x+3$
PTS: 2
REF: 0613071a
STA: A.A. 16
TOP: Rational Expressions
KEY: $a>0$
565 ANS:
$\frac{x^{2}-5 x-24}{x-8}=\frac{(x-8)(x+3)}{x-8}=x+3$
PTS: 2
REF: 061131ia
STA: A.A. 16
TOP: Rational Expressions
KEY: $\mathrm{a}>0$
566 ANS:
$\frac{x-1}{x+2} \cdot \frac{x^{2}-1}{x^{2}+3 x+2}=\frac{(x+1)(x-1)}{(x+2)(x+1)}$
PTS: 2 REF: 011233ia
STA: A.A. 16
KEY: a>0
567 ANS: 3
PTS: 2
REF: 060817ia
STA: A.A. 15
TOP: Undefined Rationals
568 ANS: $1 \quad$ PTS: 2
TOP: Undefined Rationals
569
ANS: 4 PTS: 2
TOP: Undefined Rationals
570 ANS: 1
PTS: 2
REF: 061315ia
STA: A.A. 15
REF: 060916ia STA: A.A. 15
REF: fall0728ia STA: A.A. 15
TOP: Undefined Rationals
571 ANS: 2 PTS: 2
TOP: Undefined Rationals
572 ANS: 3

$$
\begin{aligned}
x^{2}-9 & =0 \\
(x+3)(x-3) & =0 \\
x & = \pm 3
\end{aligned}
$$

PTS: 2
REF: 061014ia
STA: A.A. 15
TOP: Undefined Rationals

573
ANS: 3

$$
x^{2}-4=0
$$

$(x+2)(x-2)=0$

$$
x= \pm 2
$$

PTS: 2
REF: 081225ia
STA: A.A. 15
TOP: Undefined Rationals

$$
\begin{gathered}
x^{2}+7 x+10=0 \\
(x+5)(x+2)=0 \\
x=-5 \text { or }-2
\end{gathered}
$$

PTS: 2
ANS: 4

$$
\begin{gathered}
x^{2}-4 x-12=0 \\
(x-6)(x+2)=0 \\
x=6 x=-2
\end{gathered}
$$

PTS: 2
576 ANS: 1

$$
\begin{gathered}
x^{2}+5 x-6=0 \\
(x+6)(x-1)=0 \\
x=-6,1
\end{gathered}
$$

PTS: 2
577 ANS: 4

$$
\begin{gathered}
x^{2}-2 x-15=0 \\
(x+3)(x-5)=0 \\
x=-3,5
\end{gathered}
$$

PTS: 2
ANS: 4

$$
\frac{x^{2}-1}{x+1} \cdot \frac{x+3}{3 x-3}=\frac{(x+1)(x-1)}{x+1} \cdot \frac{x+3}{3(x-1)}=\frac{x+3}{3}
$$

PTS: 2
REF: 060815ia STA: A.A. 18
KEY: multiplication
579
ANS: 1
$\frac{4 x}{x-1} \cdot \frac{x^{2}-1}{3 x+3}=\frac{4 x}{x-1} \cdot \frac{(x+1)(x-1)}{3(x+1)}=\frac{4 x}{3}$
PTS: 2
REF: 080826ia
STA: A.A. 18
TOP: Multiplication and Division of Rationals KEY: multiplication

ANS:
$\frac{x+2}{2} \times \frac{4(x+5)}{(x+4)(x+2)}=\frac{2(x+5)}{x+4}$
PTS: 2
REF: 081232ia
STA: A.A. 18
TOP: Multiplication and Division of Rationals
KEY: multiplication

PTS: 2
REF: 081130ia
STA: A.A. 18
TOP: Multiplication and Division of Rationals
KEY: division
ANS:
$\frac{x^{2}+9 x+14}{x^{2}-49} \div \frac{3 x+6}{x^{2}+x-56}=\frac{(x+7)(x+2)}{(x+7)(x-7)} \cdot \frac{(x+8)(x-7)}{3(x+2)}=\frac{x+8}{3}$
PTS: 4 REF: 061037ia STA: A.A. 18 TOP: Multiplication and Division of Rationals KEY: division
ANS:
$\frac{x-7}{3 x} \cdot \frac{2 x^{2}-8 x-42}{6 x^{2}} \div \frac{x^{2}-9}{x^{2}-3 x}=\frac{2\left(x^{2}-4 x-21\right)}{6 x^{2}} \cdot \frac{x(x-3)}{(x+3)(x-3)}=\frac{(x-7)(x+3)}{3 x} \cdot \frac{1}{x+3}=\frac{x-7}{3 x}$
PTS: 4 REF: 080937ia STA: A.A. 18 TOP: Multiplication and Division of Rationals
KEY: division
584
ANS:
$\frac{3}{4 x-8} \cdot \frac{3 x+6}{4 x+12} \div \frac{x^{2}-4}{x+3}=\frac{3(x+2)}{4(x+3)} \cdot \frac{x+3}{(x+2)(x-2)}=\frac{3}{4(x-2)}$
PTS: 3 REF: 010935ia STA: A.A. 18 TOP: Multiplication and Division of Rationals
KEY: division
585
ANS:
$\frac{3 x(x+3)}{(x+3)(x+2)} \times \frac{(x-3)(x+2)}{(x+3)(x-3)}=\frac{3 x}{x+3}$
PTS: 4
REF: 081338ia
STA: A.A. 18
TOP: Multiplication and Division of Rationals
KEY: division
586 ANS: 4
$\frac{(d \times 3)+(2 \times 2 d)}{2 \times 3}=\frac{3 d+4 d}{6}=\frac{7 d}{6}$
PTS: 2
REF: fall0727ia
STA: A.A. 17
TOP: Addition and Subtraction of Rationals

587
ANS: 2
$\frac{3}{2 x}+\frac{4}{3 x}=\frac{9 x+8 x}{6 x^{2}}=\frac{17 x}{6 x^{2}}=\frac{17}{6 x}$
PTS: 2
REF: 080917ia
ANS: 2
$\frac{3}{2 x}+\frac{7}{4 x}=\frac{12 x+14 x}{8 x^{2}}=\frac{26 x}{8 x^{2}}=\frac{13}{4 x}$
PTS: 2
REF: 011120ia
STA: A.A. 17
TOP: Addition and Subtraction of Rationals
589 ANS: 3
$\frac{2+x}{5 x}-\frac{x-2}{5 x}=\frac{2+x-x+2}{5 x}=\frac{4}{5 x}$
PTS: 2
REF: 081027ia
STA: A.A. 17
TOP: Addition and Subtraction of Rationals
ANS: 2
$\frac{6}{5 x}-\frac{2}{3 x}=\frac{18 x-10 x}{15 x^{2}}=\frac{8 x}{15 x^{2}}=\frac{8}{15 x}$
PTS: 2
REF: 010921ia
STA: A.A. 17
TOP: Addition and Subtraction of Rationals
591 ANS: 2
$\frac{6}{4 a}-\frac{2}{3 a}=\frac{18 a-8 a}{12 a^{2}}=\frac{10 a}{12 a^{2}}=\frac{5}{6 a}$
PTS: 2
REF: 060929ia
STA: A.A. 17
TOP: Addition and Subtraction of Rationals
592 ANS: 3
$\frac{4}{3 a}-\frac{5}{2 a}=\frac{8}{6 a}-\frac{15}{6 a}=-\frac{7}{6 a}$
PTS: 2
REF: 081328ia
STA: A.A. 17
TOP: Addition and Subtraction of Rationals
593 ANS: 4
$\frac{7}{12 x}-\frac{y}{6 x^{2}}=\frac{42 x^{2}-12 x y}{72 x^{3}}=\frac{6 x(7 x-2 y)}{72 x^{3}}=\frac{7 x-2 y}{12 x^{2}}$
PTS: 2
REF: 061129ia
STA: A.A. 17
594 ANS: 4
PTS: 2
REF: 011025ia
TOP: Addition and Subtraction of Rationals
595 ANS: 1
PTS: 2
REF: 061024ia
TOP: Addition and Subtraction of Rationals
596 ANS: 2
$\frac{2 y}{y+5}+\frac{10}{y+5}=\frac{2 y+10}{y+5}=\frac{2(y+5)}{y+5}=2$

PTS: 2
597 ANS: 1
TOP: Addition and Subtraction of Rationals

STA: A.A. 17
TOP: Addition and Subtraction of Rationals STA: A.A. 17

TOP: Addition and Subtraction of Rationals STA: A.A. 17

598 ANS: 4

PTS: 2
REF: 060826ia
STA: A.A. 26
TOP: Solving Rationals
599 ANS: 3

PTS: 2
REF: 010906ia
STA: A.A. 26
TOP: Solving Rationals
600

ANS: 1

$$
\frac{2}{x}-3=\frac{26}{x}
$$

$$
-3=\frac{24}{x}
$$

$$
x=-8
$$

PTS: 2
REF: 010918ia
STA: A.A. 26
TOP: Solving Rationals

$$
\begin{aligned}
& \frac{k+4}{2}=\frac{k+9}{3} \quad \text { Intariscotioh } \\
& 3(k+4)=2(k+9) \\
& 3 k+12=2 k+18 \\
& k=6
\end{aligned}
$$

601 ANS: 4

$$
\begin{aligned}
x(x+2) & =-3(x-2) \\
x^{2}+2 x & =-3 x+6 \\
x^{2}+5 x-6 & =0 \\
(x+6)(x-1) & =0 \\
x & =-6 \text { or } 1
\end{aligned}
$$

PTS: 2
REF: 011028ia
STA: A.A. 26
TOP: Solving Rationals

$$
\frac{2 x-3}{x-4}=\frac{2}{3}
$$

$$
3(2 x-3)=2(x-4)
$$

$$
6 x-9=2 x-8
$$

$$
4 x=1
$$

$$
x=\frac{1}{4}
$$

PTS: 2
REF: 081012ia
STA: A.A. 26
TOP: Solving Rationals
603 ANS: 3

$$
\begin{aligned}
\frac{2}{x+1} & =\frac{x+1}{2} \\
x^{2}+2 x+1 & =4 \\
x^{2}+2 x-3 & =0 \\
(x+3)(x-1) & =3 \\
x & =-3,1
\end{aligned}
$$

PTS: 2
REF: 081226ia
STA: A.A. 26
TOP: Solving Rationals

604 ANS: 2

$$
\begin{aligned}
\frac{x+2}{2} & =\frac{4}{x} \\
x^{2}+2 x & =8 \\
x^{2}+2 x-8 & =0 \\
(x+4)(x-2) & =0 \\
x & =-4,2
\end{aligned}
$$

PTS: 2
REF: 061317ia STA: A.A. 26 TOP: Solving Rationals

605
ANS:
$6,-2 . \quad \frac{x+1}{x}=\frac{-7}{x-12}$

$$
\begin{gathered}
(x+1)(x-12)=-7 x \\
x^{2}-11 x-12=-7 x \\
x^{2}-4 x-12=0 \\
(x-6)(x+2)=0 \\
x=6 \text { or }-2
\end{gathered}
$$

PTS: 4
REF: fall0739ia
STA: A.A. 26
TOP: Solving Rationals 606 ANS:

4, $-5 . \quad \frac{x+2}{6}=\frac{3}{x-1}$

$$
(x+2)(x-1)=18
$$

$$
x^{2}-x+2 x-2=18
$$

$$
x^{2}+x-20=0
$$

$$
(x+5)(x-4)=0
$$

$$
x=-5 \text { or } 4
$$

PTS: 3
REF: 011136ia
STA: A.A. 26
TOP: Solving Rationals

607 ANS:

$$
\begin{aligned}
-\frac{9}{4} . \quad \frac{3}{4} & =\frac{-(x+11)}{4 x}+\frac{1}{2 x} \\
\frac{3}{4} & =\frac{-x-11}{4 x}+\frac{2}{4 x} \\
\frac{3}{4} & =\frac{-x-9}{4 x} \\
12 x & =-4 x-36 \\
16 x & =-36 \\
x & =-\frac{9}{4}
\end{aligned}
$$

PTS: 4 REF: 061137ia STA: A.A. 26 TOP: Solving Rationals
608 ANS:

$$
\begin{aligned}
\frac{2}{3 x}+\frac{12}{3 x} & =\frac{7}{x+1} \\
\frac{14}{3 x} & =\frac{7}{x+1} \\
21 x & =14 x+14 \\
7 x & =14 \\
x & =2
\end{aligned}
$$

PTS: 4
609 ANS: 3
TOP: Families of Functions
610 ANS: 4
PTS: 2
TOP: Families of Functions
611 ANS: 4
PTS: 2
TOP: Families of Functions
612 ANS: $3 \quad$ PTS: 2
TOP: Families of Functions
613 ANS: 1
PTS: 2
TOP: Families of Functions
614 ANS: 4
PTS: 2
TOP: Families of Functions
615 ANS: 1
PTS: 2
TOP: Families of Functions
616 ANS: 4
PTS: 2
TOP: Identifying the Equation of a Graph
617 ANS: $3 \quad$ PTS: 2
TOP: Identifying the Equation of a Graph

STA: A.A. 26 TOP: Solving Rationals
REF: 081118ia

REF: fall0717ia
REF: 061111ia

REF: 061318ia
REF: 060801ia
REF: 081025ia

REF: 010905ia
REF: 061221ia STA: A.G. 4
REF: 080925ia

618 ANS: 3
An element of the domain, 1 , is paired with two different elements of the range, 3 and 7.
PTS: 2 REF: 080919ia STA: A.G. 3 TOP: Defining Functions
KEY: ordered pairs
619 ANS: 4
In (4), each element in the domain corresponds to a unique element in the range.
PTS: 2 REF: 011018ia STA: A.G. 3 TOP: Defining Functions
KEY: ordered pairs
620 ANS: 4
In (4), each element in the domain corresponds to a unique element in the range.
PTS: 2 REF: 011105ia STA: A.G. 3 TOP: Defining Functions
KEY: ordered pairs
621 ANS: 2
In (2), each element in the domain corresponds to a unique element in the range.
PTS: 2 REF: 061116ia STA: A.G. 3 TOP: Defining Functions
KEY: ordered pairs
622 ANS: 4 PTS: 2 REF: fall0730ia STA: A.G. 3
TOP: Defining Functions KEY: graphs
623 ANS: 4 PTS: 2 REF: 010930ia STA: A.G. 3
TOP: Defining Functions
KEY: graphs
REF: 061013ia STA: A.G. 3
KEY: graphs
REF: 011204ia STA: A.G. 3
KEY: graphs
REF: 061209ia STA: A.G. 3
KEY: graphs
REF: 011309ia STA: A.G. 3
KEY: graphs
REF: 081308ia STA: A.G. 3
KEY: graphs
REF: 060919ia STA: A.G. 3
KEY: graphs
REF: 060825ia STA: A.A. 45
630 ANS: 3 PTS: 2
TOP: Pythagorean Theorem
631 ANS: 1
$30^{2}+40^{2}=c^{2} .30,40,50$ is a multiple of $3,4,5$.

$$
2500=c^{2}
$$

$$
50=c
$$

PTS: 2 REF: fall0711ia STA: A.A. 45 TOP: Pythagorean Theorem

632 ANS: 3

$$
\begin{aligned}
3^{2}+5^{2} & =x^{2} \\
34 & =x^{2} \\
\sqrt{34} & =x
\end{aligned}
$$

PTS: 2 REF: 060909ia STA: A.A. 45 TOP: Pythagorean Theorem
633 ANS: 1
$8^{2}+15^{2}=c^{2}$

$$
\begin{aligned}
c^{2} & =289 \\
c & =17
\end{aligned}
$$

PTS: 2
REF: 080906ia
STA: A.A. 45
TOP: Pythagorean Theorem
ANS: 2
$\sqrt{5^{2}+7^{2}} \approx 8.6$
PTS: 2
REF: 081004ia
STA: A.A. 45
TOP: Pythagorean Theorem
635 ANS: 2
$\sqrt{18.4^{2}-7^{2}} \approx 17$
PTS: 2
REF: 011107ia
STA: A.A. 45
TOP: Pythagorean Theorem
636 ANS: 1
$\sqrt{1700^{2}-1300^{2}} \approx 1095$
PTS: 2
REF: 011221ia
STA: A.A. 45
TOP: Pythagorean Theorem
637 ANS: 3

$$
10^{2}+10^{2}=c^{2}
$$

$$
c^{2}=200
$$

$$
c \approx 14.1
$$

PTS: 2
REF: 061102ia
STA: A.A. 45
TOP: Pythagorean Theorem
638
ANS: 2

$$
13^{2}+13^{2}=x^{2}
$$

$$
338=x^{2}
$$

$$
\sqrt{338}=x
$$

$$
18 \approx x
$$

PTS: 2
REF: 061223ia
STA: A.A. 45
TOP: Pythagorean Theorem

639 ANS: 4

$$
\begin{aligned}
16^{2}+b^{2} & =34^{2} \\
b^{2} & =900 \\
b & =30
\end{aligned}
$$

PTS: 2
REF: 080809ia
STA: A.A. 45
TOP: Pythagorean Theorem
640 ANS: 3
$\sqrt{8^{2}-6^{2}}=\sqrt{28}=\sqrt{4} \sqrt{7}=2 \sqrt{7}$
PTS: 2
REF: 061329ia
STA: A.A. 45
TOP: Pythagorean Theorem
641 ANS: 3
$\sqrt{13^{2}-7^{2}}=\sqrt{120}$
PTS: 2
REF: 081323ia
STA: A.A. 45
TOP: Pythagorean Theorem
642 ANS: 2
$\sin U=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{15}{17}$
PTS: 2
REF: 010919ia
STA: A.A. 42
TOP: Trigonometric Ratios
643 ANS: 2
$\tan B=\frac{\text { opposite }}{\text { adjacent }}=\frac{8}{15}=0.5 \overline{3}$
PTS: 2
REF: 081026ia
STA: A.A. 42
TOP: Trigonometric Ratios
644 ANS: 1
$\sin x=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{28}{53}$

PTS: 2
REF: 011109ia
STA: A.A. 42
TOP: Trigonometric Ratios
645 ANS: 2
$\tan A B C=\frac{\text { opposite }}{\text { adjacent }}=\frac{5}{12}$
PTS: 2
REF: 081112ia
STA: A.A. 42
TOP: Trigonometric Ratios
646 ANS: 3
$\tan P L M=\frac{\text { opposite }}{\text { adjacent }}=\frac{4}{3}$

PTS: 2
REF: 011226ia
STA: A.A. 42
TOP: Trigonometric Ratios
$\cos x=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{16}{20}$
PTS: 2
REF: 011307ia
STA: A.A. 42
TOP: Trigonometric Ratios

648 ANS: 1
$\cos A=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{3}{5}$
PTS: 2 REF: 081329ia STA: A.A. 42 TOP: Trigonometric Ratios
649 ANS: 3
$\cos A=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{15}{17}$
PTS: 2
REF: 011008ia
STA: A.A. 42
TOP: Trigonometric Ratios
650 ANS: 1
$\sin C=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{13}{85}$
PTS: 2
REF: fall0721ia
STA: A.A. 42
TOP: Trigonometric Ratios
651 ANS: 2
$\tan A=\frac{\text { opposite }}{\text { adjacent }}=\frac{14}{48}$
PTS: 2 REF: 061009ia STA: A.A. 42 TOP: Trigonometric Ratios
652 ANS: 4
If $\mathrm{m} \angle C=90$, then $\overline{A B}$ is the hypotenuse, and the triangle is a 3-4-5 triangle.
PTS: 2
REF: 061224ia
STA: A.A. 42
TOP: Trigonometric Ratios
653 ANS: 3

$$
\cos 30=\frac{x}{24}
$$

$$
x \approx 21
$$

PTS: 2
REF: 010912ia
STA: A.A. 44
TOP: Using Trigonometry to Find a Side
654
ANS: 2
$\tan 32=\frac{x}{25}$

$$
x \approx 15.6
$$

PTS: 2
REF: 080914ia
STA: A.A. 44
TOP: Using Trigonometry to Find a Side
655 ANS: 2

$$
\begin{aligned}
\sin 57 & =\frac{x}{8} \\
x & \approx 6.7
\end{aligned}
$$

PTS: 2
REF: 061108ia
STA: A.A. 44
TOP: Using Trigonometry to Find a Side

656
ANS: 2
$\cos 38=\frac{10}{x}$

$$
x=\frac{10}{\cos 38} \approx 12.69
$$

PTS: 2 REF: 081126ia STA: A.A. 44 TOP: Using Trigonometry to Find a Side 657 ANS:

$$
\begin{aligned}
\tan 48 & =\frac{9}{x} \cdot \sin 48 \\
x & =\frac{9}{y} \\
x & \approx 8 \quad y
\end{aligned}
$$

PTS: 4
REF: 011338ia
STA: A.A. 44
TOP: Using Trigonometry to Find a Side 658 ANS:

39, 63. $\tan 52=\frac{50}{x} \cdot \sin 52=\frac{50}{x}$

$$
x \approx 39 \quad x \approx 63
$$

PTS: 4
REF: 060937ia
STA: A.A. 44
TOP: Using Trigonometry to Find a Side 659 ANS:

$$
\begin{aligned}
84,71 \sin 50 & =\frac{x}{110} \quad \cos 50
\end{aligned}=\frac{y}{110}
$$

PTS: 4
REF: 081039ia
STA: A.A. 44
TOP: Using Trigonometry to Find a Side 660 ANS:
2.1. $\cos 65=\frac{x}{5}$

$$
x \approx 2.1
$$

PTS: 2 REF: 011133ia STA: A.A. 44
661 ANS: 1
PTS: 2
REF: 080824ia
TOP: Using Trigonometry to Find a Side STA: A.A. 43
TOP: Using Trigonometry to Find an Angle
662 ANS: 4
$\sin D=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{12}{13}$
PTS: 2
REF: 061325ia
STA: A.A. 43
663 ANS: 1
PTS: 2
REF: 061114ia
TOP: Using Trigonometry to Find an Angle

664 ANS: 2
$\sin A=\frac{8}{12}$

$$
A \approx 42
$$

PTS: 2 REF: 060816ia STA: A.A. 43 TOP: Using Trigonometry to Find an Angle
665 ANS: 3
$\sin A=\frac{10}{16} \quad B=180-(90=38.7)=51.3 . \quad$ A 90° angle is not acute.

$$
A \approx 38.7
$$

PTS: 2 REF: 080829ia STA: A.A. 43 TOP: Using Trigonometry to Find an Angle
666 ANS:
$\sin x=\frac{30}{50}$

$$
x=\sin ^{-1} \frac{3}{5}
$$

$$
x \approx 37
$$

PTS: 2
REF: 061033ia
STA: A.A. 43
TOP: Using Trigonometry to Find an Angle 667 ANS:

54, 23. $\cos A=\frac{17}{29} \cdot \sqrt{29^{2}-17^{2}} \approx 23$

$$
x \approx 54
$$

PTS: 4
668 ANS:
41.8. $\sin x=\frac{8}{12}$

$$
A \approx 41.8
$$

PTS: 3
REF: 081135ia
STA: A.A. 43
TOP: Using Trigonometry to Find an Angle 669 ANS:
53. $\sin A=\frac{16}{20}$

$$
A \approx 53
$$

PTS: 2
REF: 011032ia
STA: A.A. 43
TOP: Using Trigonometry to Find an Angle
670 ANS:
78. $\cos x=\frac{6}{28}$

$$
x \approx 78
$$

PTS: 3
REF: 061235ia
STA: A.A. 43
TOP: Using Trigonometry to Find an Angle

671
ANS:
$\tan x=\frac{350}{1000}$

$$
x \approx 19
$$

PTS: 3 REF: 061335ia STA: A.A. 43 TOP: Using Trigonometry to Find an Angle 672 ANS: 1

PTS: 2
REF: 080924ia
TOP: Compositions of Polygons and Circles
673 ANS: 1
$4(5+5)+10 \pi=40+10 \pi$
PTS: 2 REF: 081326ia STA: A.G. 1 TOP: Compositions of Polygons and Circles
KEY: perimeter
674 ANS: 1
$7+8+7+\frac{12 \pi}{2}=22+6 \pi$
PTS: 2 REF: 081128ia STA: A.G. 1 TOP: Compositions of Polygons and Circles
KEY: perimeter
ANS: 1
$4+6+10+\frac{6 \pi}{2}=20+3 \pi$
PTS: 2
REF: 081228ia
STA: A.G. 1
TOP: Compositions of Polygons and Circles
KEY: perimeter
676
ANS:
33.4. Serena needs $24(9+6+9)$ feet of fencing to surround the rectangular portion of the garden. The length of the fencing needed for the semicircular portion of the garden is $\frac{1}{2} \pi d=3 \pi \approx 9.4$ feet.

PTS: 2
REF: fall0733ia STA: A.G. 1
TOP: Compositions of Polygons and Circles
KEY: perimeter
677
ANS:
50. $12+10+12+\frac{1}{2}(10 \pi) \approx 50$

PTS: 2 REF: 010931ia STA: A.G. 1 TOP: Compositions of Polygons and Circles
KEY: perimeter
678
ANS: 2
$A=l w+\frac{\pi r^{2}}{2}=6 \cdot 5+\frac{\pi \cdot 3^{2}}{2} \approx 44.1$
PTS: 2
REF: 061029ia
STA: A.G. 1
TOP: Compositions of Polygons and Circles
KEY: area
679

680 681

ANS: 2
PTS: 2
TOP: Compositions of Polygons and Circles
REF: 080815ia

ANS: 2
$A=l w+l w+\frac{\pi r^{2}}{4}=5 \cdot 3+5 \cdot 3+\frac{\pi \cdot 3^{2}}{4} \approx 37$

PTS: 2 REF: 011123ia STA: A.G. 1 TOP: Compositions of Polygons and Circles
KEY: area
682 ANS: 1
If the area of the square is 36 , a side is 6 , the diameter of the circle is 6 , and its radius is $3 . A=\pi r^{2}=3^{2} \pi=9 \pi$
PTS: 2 REF: 011217ia STA: A.G. 1 TOP: Compositions of Polygons and Circles
KEY: area
683 ANS: 2
shaded $=$ whole - unshaded
$=$ rectangle-triangle
$=l w-\frac{1}{2} b h$
$=15 \times 6-\frac{1}{2} \times 15 \times 4.6$
$=90-34.5$
$=55.5$

PTS: 2 REF: 081019ia STA: A.G. 1 TOP: Compositions of Polygons and Circles KEY: area
ANS:
$36-9 \pi$. 15.6. Area of square-area of 4 quarter circles. $(3+3)^{2}-3^{2} \pi=36-9 \pi$
PTS: 2 REF: 060832ia STA: A.G. 1 TOP: Compositions of Polygons and Circles
KEY: area
ANS:
Area of rectangle minus area of semicircle: $(5+6+5) \times 5-\frac{\pi \times 3^{2}}{2} \approx 65.86$

PTS: 4 REF: 061339ia STA: A.G. 1 TOP: Compositions of Polygons and Circles KEY: area
ANS:
56. If the circumference of circle O is $16 \varnothing$ inches, the diameter, $\overline{A D}$, is 16 inches and the length of $\overline{B C}$ is 12 inches $\frac{3}{4} \times 16$. The area of trapezoid $A B C D$ is $\frac{1}{2} \times 4(12+16)=56$.

PTS: 3 REF: 060934ia STA: A.G. 1 TOP: Compositions of Polygons and Circles
KEY: area

687 ANS: 2
$1.5^{3}=3.375$
PTS: 2 REF: 060809ia STA: A.G. 2 TOP: Volume
688 ANS: 3
$\frac{10^{3}}{5^{3}}=\frac{1000}{125}=8$

PTS: 2
REF: 011312ia
STA: A.G. 2
TOP: Volume
689 ANS:
5,112. $(12 \times 30 \times 16)-(6 \times 12 \times 9)=5112$
PTS: 2
REF: 080932ia
STA: A.G. 2
TOP: Volume
690 ANS: 4
$V=\pi r^{2} h=\pi \cdot 6^{2} \cdot 15 \approx 1696.5$
PTS: 2
REF: fall0712ia
STA: A.G. 2
TOP: Volume
691 ANS:
$V=\pi r^{2} h=\pi \cdot 6.5^{2} \cdot 24=1014 \pi$
PTS: 2 REF: 061332ia STA: A.G. 2 TOP: Volume
692 ANS: 3
$V=\pi r^{2} h=\pi \cdot 5^{2} \cdot 2.3 \approx 180.6$
PTS: 2
REF: 081105ia
STA: A.G. 2
TOP: Volume
693 ANS: 4

$$
\begin{aligned}
V & =\pi r^{2} h \\
32 \pi & =\pi r^{2}(2) \\
16 & =r^{2} \\
4 & =r
\end{aligned}
$$

PTS: 2
REF: 081224ia
STA: A.G. 2
TOP: Volume
694 ANS:

$$
\begin{aligned}
\frac{38}{\pi}, 2 . & =\pi r^{2} h \cdot \frac{36}{\left(\frac{38}{\pi}\right)} \approx 2.97 . \text { Three cans will not fit. The maximum number is } 2 . \\
342 & =\pi\left(\frac{6}{2}\right)^{2} h \\
\frac{342}{9 \pi} & =h \\
\frac{38}{\pi} & =h
\end{aligned}
$$

PTS: 3
REF: 010936ia
STA: A.G. 2
TOP: Volume

695 ANS: 4
$\mathrm{SA}=2 l w+2 h w+2 l h=2(3)(2.2)+2(7.5)(2.2)+2(3)(7.5)=91.2$
PTS: 2 REF: 081216ia STA: A.G. 2 TOP: Surface Area
696 ANS: 4
$\mathrm{SA}=2 l w+2 h w+2 l h=2(3)(1.5)+2(2)(1.5)+2(3)(2)=27$
PTS: 2 REF: 060827ia STA: A.G. 2 TOP: Surface Area
697 ANS: 4
$\mathrm{SA}=2 l w+2 h w+2 l h=2(2)(3)+2(4)(3)+2(2)(4)=52$
PTS: 2 REF: 011029ia STA: A.G. 2 TOP: Surface Area 698 ANS:
$147.752 \times 5.5 \times 3+2 \times 6.75 \times 3+2 \times 5.5 \times 6.75=147.75$
PTS: 2 REF: 011231ia STA: A.G. 2 TOP: Surface Area
699 ANS:

$$
\begin{gathered}
2(x+3)(x-4)+2(5)(x-4)+2(x+3)(5) \\
2\left(x^{2}-4 x+3 x-12\right)+10(x-4)+10(x+3) \\
2 x^{2}-2 x-24+10 x-40+10 x+30 \\
2 x^{2}+18 x-34
\end{gathered}
$$

PTS: 3 REF: 061136ia STA: A.G. 2 TOP: Surface Area 700 ANS:

Carol's, by 14.9. $V_{M}=5 \times 3.5 \times 7=122.5 . V_{C}=\pi \times 2.5^{2} \times 7 \approx 137.4 . \quad 137.4-122.5=14.9$
PTS: 4
REF: 061237ia
STA: A.G. 2
TOP: Volume
ANS.
$80,136 V=l w h=10 \cdot 2 \cdot 4=80 \quad S A=2 l w+2 h w+2 l h=2 \cdot 10 \cdot 2+2 \cdot 4 \cdot 2+2 \cdot 10 \cdot 4=136$
PTS: 3
REF: 081035ia
STA: A.G. 2
TOP: Surface Area
ANS: 2
$s^{3}=8.6 \times(2 \times 2)=24$
$s=2$
PTS: 2
REF: 081325ia
STA: A.G. 2
TOP: Surface Area

