JMAP
 REGENTS BY TYPE

The NY Algebra 2/Trigonometry Regents Exams

 Fall 2009-January 2014www.jmap.org

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions

1 Which graph does not represent a function?
1)

4)

2 What is the fifteenth term of the geometric sequence $-\sqrt{5}, \sqrt{10},-2 \sqrt{5}, \ldots$?

1) $-128 \sqrt{5}$
2) $128 \sqrt{10}$
3) $-16384 \sqrt{5}$
4) $16384 \sqrt{10}$

3 Which equation is represented by the graph below?

1) $y=\cot x$
2) $y=\csc x$
3) $y=\sec x$
4) $y=\tan x$

4 The sides of a parallelogram measure 10 cm and 18 cm . One angle of the parallelogram measures 46 degrees. What is the area of the parallelogram, to the nearest square centimeter?

1) 65
2) 125
3) 129
4) 162

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

5 The roots of the equation $2 x^{2}+7 x-3=0$ are

1) $-\frac{1}{2}$ and -3
2) $\frac{1}{2}$ and 3
3) $\frac{-7 \pm \sqrt{73}}{4}$
4) $\frac{7 \pm \sqrt{73}}{4}$

6 The expression $2 \log x-(3 \log y+\log z)$ is equivalent to

1) $\log \frac{x^{2}}{y^{3} z}$
2) $\log \frac{x^{2} z}{y^{3}}$
3) $\log \frac{2 x}{3 y z}$
4) $\log \frac{2 x z}{3 y}$

7 The function $\mathrm{f}(x)=\tan x$ is defined in such a way that $\mathrm{f}^{-1}(x)$ is a function. What can be the domain of $\mathrm{f}(x)$?

1) $\{x \mid 0 \leq x \leq \pi\}$
2) $\{x \mid 0 \leq x \leq 2 \pi\}$
3) $\left\{x \left\lvert\,-\frac{\pi}{2}<x<\frac{\pi}{2}\right.\right\}$
4) $\left\{x \left\lvert\,-\frac{\pi}{2}<x<\frac{3 \pi}{2}\right.\right\}$

8 Which graph represents a relation that is not a function?
1)

2)
3)

9 Which two functions are inverse functions of each other?

1) $\mathrm{f}(x)=\sin x$ and $\mathrm{g}(x)=\cos (x)$
2) $\mathrm{f}(x)=3+8 x$ and $\mathrm{g}(x)=3-8 x$
3) $\mathrm{f}(x)=e^{x}$ and $\mathrm{g}(x)=\ln x$
4) $\mathrm{f}(x)=2 x-4$ and $\mathrm{g}(x)=-\frac{1}{2} x+4$

10 What is the range of $\mathrm{f}(x)=(x+4)^{2}+7$?

1) $y \geq-4$
2) $y \geq 4$
3) $y=7$
4) $y \geq 7$

11 The minimum point on the graph of the equation $y=\mathrm{f}(x)$ is $(-1,-3)$. What is the minimum point on the graph of the equation $y=\mathrm{f}(x)+5$?

1) $(-1,2)$
2) $(-1,-8)$
3) $(4,-3)$
4) $(-6,-3)$

12 If $\angle A$ is acute and $\tan A=\frac{2}{3}$, then

1) $\cot A=\frac{2}{3}$
2) $\cot A=\frac{1}{3}$
3) $\cot \left(90^{\circ}-A\right)=\frac{2}{3}$
4) $\cot \left(90^{\circ}-A\right)=\frac{1}{3}$

13 If $\mathrm{f}(x)=\frac{1}{2} x-3$ and $\mathrm{g}(x)=2 x+5$, what is the value of $(g \circ f)(4)$?

1) -13
2) 3.5
3) 3
4) 6

14 Mrs. Hill asked her students to express the sum $1+3+5+7+9+\ldots+39$ using sigma notation.
Four different student answers were given. Which student answer is correct?

1) $\sum_{k=1}^{20}(2 k-1)$
2) $\sum_{k=2}^{40}(k-1)$
3) $\sum_{k=-1}^{37}(k+2)$
4) $\sum_{k=1}^{39}(2 k-1)$

15 The expression $x^{-\frac{2}{5}}$ is equivalent to

1) $-\sqrt[2]{x^{5}}$
2) $-\sqrt[5]{x^{2}}$
3) $\frac{1}{\sqrt[2]{x^{5}}}$
4) $\frac{1}{\sqrt[5]{x^{2}}}$

16 A dartboard is shown in the diagram below. The two lines intersect at the center of the circle, and the central angle in sector 2 measures $\frac{2 \pi}{3}$.

If darts thrown at this board are equally likely to land anywhere on the board, what is the probability that a dart that hits the board will land in either sector 1 or sector 3 ?

1) $\frac{1}{6}$
2) $\frac{1}{3}$
3) $\frac{1}{2}$
4) $\frac{2}{3}$

18 What is the solution of the equation $2 \log _{4}(5 x)=3$?

1) 6.4
2) 2.56
3) $\frac{9}{5}$
4) $\frac{8}{5}$

19 For which equation does the sum of the roots equal $\frac{3}{4}$ and the product of the roots equal -2 ?

1) $4 x^{2}-8 x+3=0$
2) $4 x^{2}+8 x+3=0$
3) $4 x^{2}-3 x-8=0$
4) $4 x^{2}+3 x-2=0$

20 The expression $(3-7 i)^{2}$ is equivalent to

1) $-40+0 i$
2) $-40-42 i$
3) $58+0 i$
4) $58-42 i$

21 If $f(x)=\frac{x}{x^{2}-16}$, what is the value of $f(-10)$?

1) $-\frac{5}{2}$
2) $-\frac{5}{42}$
3) $\frac{5}{58}$
4) $\frac{5}{18}$

22 In the diagram below of right triangle $K T W$, $K W=6, K T=5$, and $\mathrm{m} \angle K T W=90$.

What is the measure of $\angle K$, to the nearest minute?

1) $33^{\circ} 33^{\prime}$
2) $33^{\circ} 34^{\prime}$
3) $33^{\circ} 55^{\prime}$
4) $33^{\circ} 56^{\prime}$

23 The solution set of the equation $\sqrt{x+3}=3-x$ is

1) $\{1\}$
2) $\{0\}$
3) $\{1,6\}$
4) $\{2,3\}$

26 What are the values of θ in the interval $0^{\circ} \leq \theta<360^{\circ}$ that satisfy the equation $\tan \theta-\sqrt{3}=0$?

1) $60^{\circ}, 240^{\circ}$
2) $72^{\circ}, 252^{\circ}$
3) $72^{\circ}, 108^{\circ}, 252^{\circ}, 288^{\circ}$
4) $60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$

27 In simplest form, $\sqrt{-300}$ is equivalent to

1) $3 i \sqrt{10}$
2) $5 i \sqrt{12}$
3) $10 i \sqrt{3}$
4) $12 i \sqrt{5}$

28 The expression $\frac{2 x+4}{\sqrt{x+2}}$ is equivalent to

1) $\frac{(2 x+4) \sqrt{x-2}}{x-2}$
2) $\frac{(2 x+4) \sqrt{x-2}}{x-4}$
3) $2 \sqrt{x-2}$
4) $2 \sqrt{x+2}$

29 Which task is not a component of an observational study?

1) The researcher decides who will make up the sample.
2) The researcher analyzes the data received from the sample.
3) The researcher gathers data from the sample, using surveys or taking measurements.
4) The researcher divides the sample into two groups, with one group acting as a control group.

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

30 The table below shows the first-quarter averages for Mr. Harper's statistics class.

Statistics Class Averages

Quarter Averages	Frequency
99	1
97	5
95	4
92	4
90	7
87	2
84	6
81	2
75	1
70	2
65	1

What is the population variance for this set of data?

1) 8.2
2) 8.3
3) 67.3
4) 69.3

31 What is the formula for the nth term of the sequence $54,18,6, \ldots$?

1) $a_{n}=6\left(\frac{1}{3}\right)^{n}$
2) $a_{n}=6\left(\frac{1}{3}\right)^{n-1}$
3) $a_{n}=54\left(\frac{1}{3}\right)^{n}$
4) $a_{n}=54\left(\frac{1}{3}\right)^{n-1}$

32 On January 1, a share of a certain stock cost \$180. Each month thereafter, the cost of a share of this stock decreased by one-third. If x represents the time, in months, and y represents the cost of the stock, in dollars, which graph best represents the cost of a share over the following 5 months?
2)

3)

33 The lengths of 100 pipes have a normal distribution with a mean of 102.4 inches and a standard deviation of 0.2 inch. If one of the pipes measures exactly 102.1 inches, its length lies

1) below the $16^{\text {th }}$ percentile
2) between the $50^{\text {th }}$ and $84^{\text {th }}$ percentiles
3) between the $16^{\text {th }}$ and $50^{\text {th }}$ percentiles
4) above the $84^{\text {th }}$ percentile

34 Which relation is not a function?

1) $(x-2)^{2}+y^{2}=4$
2) $x^{2}+4 x+y=4$
3) $x+y=4$
4) $x y=4$

35 Brian correctly used a method of completing the square to solve the equation $x^{2}+7 x-11=0$. Brian's first step was to rewrite the equation as $x^{2}+7 x=11$. He then added a number to both sides of the equation. Which number did he add?

1) $\frac{7}{2}$
2) $\frac{49}{4}$
3) $\frac{49}{2}$
4) 49

36 Which values of x are in the solution set of the following system of equations?

$$
\begin{aligned}
& y=3 x-6 \\
& y=x^{2}-x-6
\end{aligned}
$$

1) $0,-4$
2) 0,4
3) $6,-2$
4) $-6,2$

37 What is the common ratio of the geometric sequence whose first term is 27 and fourth term is 64 ?

1) $\frac{3}{4}$
2) $\frac{64}{81}$
3) $\frac{4}{3}$
4) $\frac{37}{3}$

38 What are the domain and the range of the function shown in the graph below?

1) $\{x \mid x>-4\} ;\{y \mid y>2\}$
2) $\{x \mid x \geq-4\} ;\{y \mid y \geq 2\}$
3) $\{x \mid x>2\} ;\{y \mid y>-4\}$
4) $\{x \mid x \geq 2\} ;\{y \mid y \geq-4\}$

39 What is a formula for the nth term of sequence B shown below?

$$
B=10,12,14,16, \ldots
$$

1) $b_{n}=8+2 n$
2) $b_{n}=10+2 n$
3) $b_{n}=10(2)^{n}$
4) $b_{n}=10(2)^{n-1}$

40 What is the radian measure of an angle whose measure is -420° ?

1) $-\frac{7 \pi}{3}$
2) $-\frac{7 \pi}{6}$
3) $\frac{7 \pi}{6}$
4) $\frac{7 \pi}{3}$

41 The expression $\left(x^{2}-1\right)^{-\frac{2}{3}}$ is equivalent to

1) $\sqrt[3]{\left(x^{2}-1\right)^{2}}$
2) $\frac{1}{\sqrt[3]{\left(x^{2}-1\right)^{2}}}$
3) $\sqrt{\left(x^{2}-1\right)^{3}}$
4) $\frac{1}{\sqrt{\left(x^{2}-1\right)^{3}}}$

42 The equation $y-2 \sin \theta=3$ may be rewritten as

1) $\mathrm{f}(y)=2 \sin x+3$
2) $\mathrm{f}(\mathrm{y})=2 \sin \theta+3$
3) $\mathrm{f}(x)=2 \sin \theta+3$
4) $\mathrm{f}(\theta)=2 \sin \theta+3$

43 Which formula can be used to determine the total number of different eight-letter arrangements that can be formed using the letters in the word DEADLINE?

1) $8!$
2) $\frac{8!}{4!}$
3) $\frac{8!}{2!+2!}$
4) $\frac{8!}{2!\cdot 2!}$

44 The solution set of the inequality $x^{2}-3 x>10$ is

1) $\{x \mid-2<x<5\}$
2) $\{x \mid 0<x<3\}$
3) $\{x \mid x<-2$ or $x>5\}$
4) $\{x \mid x<-5$ or $x>2\}$

45 An auditorium has 21 rows of seats. The first row has 18 seats, and each succeeding row has two more seats than the previous row. How many seats are in the auditorium?

1) 540
2) 567
3) 760
4) 798

46 What is the fourth term in the expansion of $(3 x-2)^{5}$?

1) $-720 x^{2}$
2) $-240 x$
3) $720 x^{2}$
4) $1,080 x^{3}$

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

47 Which graph represents the equation $y=\cos ^{-1} x$?
1)

2)

3)

4)

48 The expression $\log _{8} 64$ is equivalent to

1) 8
2) 2
3) $\frac{1}{2}$
4) $\frac{1}{8}$

49 Which graph represents one complete cycle of the equation $y=\sin 3 \pi x$?
1)

2)

3)

50 In $\triangle A B C, a=3, b=5$, and $c=7$. What is $\mathrm{m} \angle C$?

1) 22
2) 38
3) 60
4) 120

51 In $\triangle A B C, a=15, b=14$, and $c=13$, as shown in the diagram below. What is the $\mathrm{m} \angle C$, to the nearest degree?

1) 53
2) 59
3) 67
4) 127

52 Which expression is equivalent to $\frac{\sqrt{3}+5}{\sqrt{3}-5}$?

1) $-\frac{14+5 \sqrt{3}}{11}$
2) $-\frac{17+5 \sqrt{3}}{11}$
3) $\frac{14+5 \sqrt{3}}{14}$
4) $\frac{17+5 \sqrt{3}}{14}$

53 In $\triangle A B C, \mathrm{~m} \angle A=74, a=59.2$, and $c=60.3$. What are the two possible values for $\mathrm{m} \angle C$, to the nearest tenth?

1) 73.7 and 106.3
2) 73.7 and 163.7
3) 78.3 and 101.7
4) 78.3 and 168.3

54 If $r=\sqrt[3]{\frac{A^{2} B}{C}}$, then $\log r$ can be represented by

1) $\frac{1}{6} \log A+\frac{1}{3} \log B-\log C$
2) $3\left(\log A^{2}+\log B-\log C\right)$
3) $\frac{1}{3} \log \left(A^{2}+B\right)-C$
4) $\frac{2}{3} \log A+\frac{1}{3} \log B-\frac{1}{3} \log C$

55 The expression $2 i^{2}+3 i^{3}$ is equivalent to

1) $-2-3 i$
2) $2-3 i$
3) $-2+3 i$
4) $2+3 i$

56 An amateur bowler calculated his bowling average for the season. If the data are normally distributed, about how many of his 50 games were within one standard deviation of the mean?

1) 14
2) 17
3) 34
4) 48

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

57 Which graph best represents the inequality $y+6 \geq x^{2}-x ?$
1)

2)

3)

58 In which graph is θ coterminal with an angle of -70° ?

2)

3)

4)

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

59 The fraction $\frac{3}{\sqrt{3 a^{2} b}}$ is equivalent to

1) $\frac{1}{a \sqrt{b}}$
2) $\frac{\sqrt{b}}{a b}$
3) $\frac{\sqrt{3 b}}{a b}$
4) $\frac{\sqrt{3}}{a}$

60 Which equation is represented by the graph below?

1) $y=5^{x}$
2) $y=0.5^{x}$
3) $y=5^{-x}$
4) $y=0.5^{-x}$

61 Which values of x are solutions of the equation $x^{3}+x^{2}-2 x=0$?

1) $0,1,2$
2) $0,1,-2$
3) $0,-1,2$
4) $0,-1,-2$

62 Factored completely, the expression $6 x-x^{3}-x^{2}$ is equivalent to

1) $x(x+3)(x-2)$
2) $x(x-3)(x+2)$
3) $-x(x-3)(x+2)$
4) $-x(x+3)(x-2)$

63 What is the solution set of the equation $|4 a+6|-4 a=-10$?

1) \varnothing
2) $\{0\}$
3) $\left\{\frac{1}{2}\right\}$
4) $\left\{0, \frac{1}{2}\right\}$

64 The product of $(3+\sqrt{5})$ and $(3-\sqrt{5})$ is

1) $4-6 \sqrt{5}$
2) $14-6 \sqrt{5}$
3) 14
4) 4

65 The expression $\frac{4}{5-\sqrt{13}}$ is equivalent to

1) $\frac{4 \sqrt{13}}{5 \sqrt{13}-13}$
2) $\frac{4(5-\sqrt{13})}{38}$
3) $\frac{5+\sqrt{13}}{3}$
4) $\frac{4(5+\sqrt{13})}{38}$

66 Factored completely, the expression
$12 x^{4}+10 x^{3}-12 x^{2}$ is equivalent to

1) $x^{2}(4 x+6)(3 x-2)$
2) $2\left(2 x^{2}+3 x\right)\left(3 x^{2}-2 x\right)$
3) $2 x^{2}(2 x-3)(3 x+2)$
4) $2 x^{2}(2 x+3)(3 x-2)$

67 What is the number of degrees in an angle whose radian measure is $\frac{11 \pi}{12}$?

1) 150
2) 165
3) 330
4) 518

68 The value of $\tan 126^{\circ} 43^{\prime}$ to the nearest ten-thousandth is

1) -1.3407
2) -1.3408
3) -1.3548
4) -1.3549

69 If $\sin A=\frac{2}{3}$ where $0^{\circ}<A<90^{\circ}$, what is the value of $\sin 2 A$?

1) $\frac{2 \sqrt{5}}{3}$
2) $\frac{2 \sqrt{5}}{9}$
3) $\frac{4 \sqrt{5}}{9}$
4) $-\frac{4 \sqrt{5}}{9}$

70 Akeem invests $\$ 25,000$ in an account that pays 4.75\% annual interest compounded continuously.

Using the formula $A=P e^{r t}$, where $A=$ the amount in the account after t years, $P=$ principal invested, and $r=$ the annual interest rate, how many years, to the nearest tenth, will it take for Akeem's investment to triple?

1) 10.0
2) 14.6
3) 23.1
4) 24.0

71 What is the fifteenth term of the sequence
$5,-10,20,-40,80, \ldots$?

1) $-163,840$
2) $-81,920$
3) 81,920
4) 327,680

72 The roots of the equation $x^{2}-10 x+25=0$ are

1) imaginary
2) real and irrational
3) real, rational, and equal
4) real, rational, and unequal

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

73 When simplified, the expression $\left(\frac{w^{-5}}{w^{-9}}\right)^{\frac{1}{2}}$ is equivalent to

1) w^{-7}
2) w^{2}
3) w^{7}
4) w^{14}

74 Which function is not one-to-one?

1) $\{(0,1),(1,2),(2,3),(3,4)\}$
2) $\{(0,0),(1,1),(2,2),(3,3)\}$
3) $\{(0,1),(1,0),(2,3),(3,2)\}$
4) $\{(0,1),(1,0),(2,0),(3,2)\}$

75 Which equation represents the circle shown in the graph below that passes through the point $(0,-1)$?

1) $(x-3)^{2}+(y+4)^{2}=16$
2) $(x-3)^{2}+(y+4)^{2}=18$
3) $(x+3)^{2}+(y-4)^{2}=16$
4) $(x+3)^{2}+(y-4)^{2}=18$

76 The graph below shows the function $\mathrm{f}(x)$.

Which graph represents the function $\mathrm{f}(x+2)$?
1)

2)

3)
4)

77 A doctor wants to test the effectiveness of a new drug on her patients. She separates her sample of patients into two groups and administers the drug to only one of these groups. She then compares the results. Which type of study best describes this situation?

1) census
2) survey
3) observation
4) controlled experiment

78 Three marbles are to be drawn at random, without replacement, from a bag containing 15 red marbles, 10 blue marbles, and 5 white marbles. Which expression can be used to calculate the probability of drawing 2 red marbles and 1 white marble from the bag?

1) $\frac{{ }_{15} C_{2}{ }_{5} C_{1}}{{ }_{30} C_{3}}$
2) $\frac{{ }_{15} P_{2} \cdot{ }_{5} P_{1}}{{ }_{30} C_{3}}$
3) $\frac{{ }_{15} C_{2} \cdot{ }_{5} C_{1}}{{ }_{30} P_{3}}$
4) $\frac{{ }_{15} P_{2} \cdot{ }_{5} P_{1}}{{ }_{30} P_{3}}$

79 What is the domain of the function
$\mathrm{f}(x)=\sqrt{x-2}+3$?

1) $(-\infty, \infty)$
2) $(2, \infty)$
3) $[2, \infty)$
4) $[3, \infty)$

80 Expressed as a function of a positive acute angle, $\cos \left(-305^{\circ}\right)$ is equal to

1) $-\cos 55^{\circ}$
2) $\cos 55^{\circ}$
3) $-\sin 55^{\circ}$
4) $\sin 55^{\circ}$

81 A circle has a radius of 4 inches. In inches, what is the length of the arc intercepted by a central angle of 2 radians?

1) 2π
2) 2
3) 8π
4) 8

82 Which equation is sketched in the diagram below?

1) $y=\csc x$
2) $y=\sec x$
3) $y=\cot x$
4) $y=\tan x$

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

83 If a function is defined by the equation $\mathrm{f}(x)=4^{x}$, which graph represents the inverse of this function?

84 The expression $\frac{a^{2} b^{-3}}{a^{-4} b^{2}}$ is equivalent to

1) $\frac{a^{6}}{b^{5}}$
2) $\frac{b^{5}}{a^{6}}$
3) $\frac{a^{2}}{b}$
4) $a^{-2} b^{-1}$

85 The solution set of $4^{x^{2}+4 x}=2^{-6}$ is

1) $\{1,3\}$
2) $\{-1,3\}$
3) $\{-1,-3\}$
4) $\{1,-3\}$

86 Which ratio represents $\csc A$ in the diagram below?

1) $\frac{25}{24}$
2) $\frac{25}{7}$
3) $\frac{24}{7}$
4) $\frac{7}{24}$

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

87 What is the principal value of $\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$?

1) -30°
2) 60°
3) 150°
4) 240°

88 The equation $x^{2}+y^{2}-2 x+6 y+3=0$ is equivalent to

1) $(x-1)^{2}+(y+3)^{2}=-3$
2) $(x-1)^{2}+(y+3)^{2}=7$
3) $(x+1)^{2}+(y+3)^{2}=7$
4) $(x+1)^{2}+(y+3)^{2}=10$

89 The solutions of the equation $y^{2}-3 y=9$ are

1) $\frac{3 \pm 3 i \sqrt{3}}{2}$
2) $\frac{3 \pm 3 i \sqrt{5}}{2}$
3) $\frac{-3 \pm 3 \sqrt{5}}{2}$
4) $\frac{3 \pm 3 \sqrt{5}}{2}$

90 What is the period of the function $\mathrm{f}(\theta)=-2 \cos 3 \theta$?

1) π
2) $\frac{2 \pi}{3}$
3) $\frac{3 \pi}{2}$
4) 2π

91 The graph of $y=\mathrm{f}(x)$ is shown below.

Which set lists all the real solutions of $\mathrm{f}(x)=0$?

1) $\{-3,2\}$
2) $\{-2,3\}$
3) $\{-3,0,2\}$
4) $\{-2,0,3\}$

92 If $\sin ^{-1}\left(\frac{5}{8}\right)=A$, then

1) $\sin A=\frac{5}{8}$
2) $\sin A=\frac{8}{5}$
3) $\cos A=\frac{5}{8}$
4) $\cos A=\frac{8}{5}$

93 What is the radian measure of the smaller angle formed by the hands of a clock at 7 o'clock?

1) $\frac{\pi}{2}$
2) $\frac{2 \pi}{3}$
3) $\frac{5 \pi}{6}$
4) $\frac{7 \pi}{6}$

94 Which graph represents the solution set of $|6 x-7| \leq 5$?
1)

2)

4)

95 A survey completed at a large university asked 2,000 students to estimate the average number of hours they spend studying each week. Every tenth student entering the library was surveyed. The data showed that the mean number of hours that students spend studying was 15.7 per week. Which characteristic of the survey could create a bias in the results?

1) the size of the sample
2) the size of the population
3) the method of analyzing the data
4) the method of choosing the students who were surveyed

96 In the diagram below of a unit circle, the ordered pair $\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$ represents the point where the terminal side of θ intersects the unit circle.

What is $\mathrm{m} \angle \theta$?

1) 45
2) 135
3) 225
4) 240

97 The expression $4 a b \sqrt{2 b}-3 a \sqrt{18 b^{3}}+7 a b \sqrt{6 b}$ is equivalent to

1) $2 a b \sqrt{6 b}$
2) $16 a b \sqrt{2 b}$
3) $-5 a b+7 a b \sqrt{6 b}$
4) $-5 a b \sqrt{2 b}+7 a b \sqrt{6 b}$

98 The expression $\log _{5}\left(\frac{1}{25}\right)$ is equivalent to

1) $\frac{1}{2}$
2) 2
3) $-\frac{1}{2}$
4) -2

99 The conjugate of $7-5 i$ is

1) $-7-5 i$
2) $-7+5 i$
3) $7-5 i$
4) $7+5 i$

100 Ms. Bell's mathematics class consists of 4 sophomores, 10 juniors, and 5 seniors. How many different ways can Ms. Bell create a four-member committee of juniors if each junior has an equal chance of being selected?

1) 210
2) 3,876
3) 5,040
4) 93,024

101 What is the conjugate of $-2+3 i$?

1) $-3+2 i$
2) $-2-3 i$
3) $2-3 i$
4) $3+2 i$

102 What is the value of x in the equation $\log _{5} x=4$?

1) 1.16
2) 20
3) 625
4) 1,024

103 Four points on the graph of the function $\mathrm{f}(x)$ are shown below.

$$
\{(0,1),(1,2),(2,4),(3,8)\}
$$

Which equation represents $\mathrm{f}(x)$?

1) $\mathrm{f}(x)=2^{x}$
2) $\mathrm{f}(x)=2 x$
3) $\mathrm{f}(x)=x+1$
4) $\mathrm{f}(x)=\log _{2} x$

104 The number of minutes students took to complete a quiz is summarized in the table below.

Minutes	14	15	16	17	18	19	20
Number of Students	5	3	x	5	2	10	1

If the mean number of minutes was 17 , which equation could be used to calculate the value of x ?

1) $17=\frac{119+x}{x}$
2) $17=\frac{119+16 x}{x}$
3) $17=\frac{446+x}{26+x}$
4) $17=\frac{446+16 x}{26+x}$

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

105 What is the value of x in the equation $9^{3 x+1}=27^{x+2}$?

1) 1
2) $\frac{1}{3}$
3) $\frac{1}{2}$
4) $\frac{4}{3}$

106 How many distinct triangles can be formed if $\mathrm{m} \angle A=35, a=10$, and $b=13$?

1) 1
2) 2
3) 3
4) 0

107 In the diagram below, the length of which line segment is equal to the exact value of $\sin \theta$?

1) $\overline{T O}$
2) $\overline{T S}$
3) $\overline{O R}$
4) $\overline{O S}$

108 For which equation does the sum of the roots equal -3 and the product of the roots equal 2 ?

1) $x^{2}+2 x-3=0$
2) $x^{2}-3 x+2=0$
3) $2 x^{2}+6 x+4=0$
4) $2 x^{2}-6 x+4=0$

109 The expression $\frac{\sin ^{2} \theta+\cos ^{2} \theta}{1-\sin ^{2} \theta}$ is equivalent to

1) $\cos ^{2} \theta$
2) $\sin ^{2} \theta$
3) $\sec ^{2} \theta$
4) $\csc ^{2} \theta$

110 Written in simplest form, the expression $\frac{\frac{x}{4}-\frac{1}{x}}{\frac{1}{2 x}+\frac{1}{4}}$ is equivalent to

1) $x-1$
2) $x-2$
3) $\frac{x-2}{2}$
4) $\frac{x^{2}-4}{x+2}$

111 Which value of r represents data with a strong negative linear correlation between two variables?

1) -1.07
2) -0.89
3) -0.14
4) 0.92

112 What is the coefficient of the fourth term in the expansion of $(a-4 b)^{9}$?

1) $-5,376$
2) -336
3) 336
4) 5,376

113 The value of the expression $2 \sum_{n=0}^{2}\left(n^{2}+2^{n}\right)$ is

1) 12
2) 22
3) 24
4) 26

114 The roots of the equation $9 x^{2}+3 x-4=0$ are

1) imaginary
2) real, rational, and equal
3) real, rational, and unequal
4) real, irrational, and unequal

115 The expression $\cos ^{2} \theta-\cos 2 \theta$ is equivalent to

1) $\sin ^{2} \theta$
2) $-\sin ^{2} \theta$
3) $\cos ^{2} \theta+1$
4) $-\cos ^{2} \theta-1$

116 The principal would like to assemble a committee of 8 students from the 15 -member student council. How many different committees can be chosen?

1) 120
2) 6,435
3) $32,432,400$
4) $259,459,200$

117 When $\frac{3}{2} x^{2}-\frac{1}{4} x-4$ is subtracted from $\frac{5}{2} x^{2}-\frac{3}{4} x+1$, the difference is

1) $-x^{2}+\frac{1}{2} x-5$
2) $x^{2}-\frac{1}{2} x+5$
3) $-x^{2}-x-3$
4) $x^{2}-x-3$

118 Which graph represents a one-to-one function?
1)

2)

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

119 A four-digit serial number is to be created from the digits 0 through 9 . How many of these serial numbers can be created if 0 can not be the first digit, no digit may be repeated, and the last digit must be 5 ?

1) 448
2) 504
3) 2,240
4) 2,520

120 In the diagram below of right triangle JTM, $J T=12, J M=6$, and $\mathrm{m} \angle J M T=90$.

What is the value of $\cot J$?

1) $\frac{\sqrt{3}}{3}$
2) 2
3) $\sqrt{3}$
4) $\frac{2 \sqrt{3}}{3}$

121 If $\mathrm{f}(x)=x^{2}-5$ and $\mathrm{g}(x)=6 x$, then $\mathrm{g}(\mathrm{f}(x))$ is equal to

1) $6 x^{3}-30 x$
2) $6 x^{2}-30$
3) $36 x^{2}-5$
4) $x^{2}+6 x-5$

122 The expression $\cos 4 x \cos 3 x+\sin 4 x \sin 3 x$ is equivalent to

1) $\sin x$
2) $\sin 7 x$
3) $\cos x$
4) $\cos 7 x$

123 What is the common difference of the arithmetic sequence $5,8,11,14$?

1) $\frac{8}{5}$
2) -3
3) 3
4) 9

124 Twenty different cameras will be assigned to several boxes. Three cameras will be randomly selected and assigned to box A . Which expression can be used to calculate the number of ways that three cameras can be assigned to box A?

1) 20 !
2) $\frac{20!}{3!}$
3) ${ }_{20} C_{3}$
4) ${ }_{20} P_{3}$

125 In $\triangle A B C, \mathrm{~m} \angle A=120, b=10$, and $c=18$. What is the area of $\triangle A B C$ to the nearest square inch?

1) 52
2) 78
3) 90
4) 156

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

126 The solution set of $\sqrt{3 x+16}=x+2$ is

1) $\{-3,4\}$
2) $\{-4,3\}$
3) $\{3\}$
4) $\{-4\}$

127 Which graph does not represent a function?

128 Which graph shows $y=\cos ^{-1} x$?
1)

2)
3)

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

129 The expression $\sqrt[4]{16 x^{2} y^{7}}$ is equivalent to

1) $2 x^{\frac{1}{2}} y^{\frac{7}{4}}$
2) $2 x^{8} y^{28}$
3) $4 x^{\frac{1}{2}} y^{\frac{7}{4}}$
4) $4 x^{8} y^{28}$

130 If $x^{2}+2=6 x$ is solved by completing the square, an intermediate step would be

1) $(x+3)^{2}=7$
2) $(x-3)^{2}=7$
3) $(x-3)^{2}=11$
4) $(x-6)^{2}=34$

131 The value of x in the equation $4^{2 x+5}=8^{3 x}$ is

1) 1
2) 2
3) 5
4) -10

132 What is the period of the function $y=\frac{1}{2} \sin \left(\frac{x}{3}-\pi\right)$?

1) $\frac{1}{2}$
2) $\frac{1}{3}$
3) $\frac{2}{3} \pi$
4) 6π

133 The graph of $y=x^{3}-4 x^{2}+x+6$ is shown below.

What is the product of the roots of the equation $x^{3}-4 x^{2}+x+6=0$?

1) -36
2) -6
3) 6
4) 4

134 If $a=3$ and $b=-2$, what is the value of the expression $\frac{a^{-2}}{b^{-3}}$?

1) $-\frac{9}{8}$
2) -1
3) $-\frac{8}{9}$
4) $\frac{8}{9}$

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions

135 What is the solution set for the equation $\sqrt{5 x+29}=x+3$?

1) $\{4\}$
2) $\{-5\}$
3) $\{4,5\}$
4) $\{-5,4\}$

136 Susie invests $\$ 500$ in an account that is compounded continuously at an annual interest rate of 5%, according to the formula $A=P e^{r t}$, where A is the amount accrued, P is the principal, r is the rate of interest, and t is the time, in years.
Approximately how many years will it take for Susie's money to double?

1) 1.4
2) 6.0
3) 13.9
4) 14.7

138 If $\sin A=\frac{1}{3}$, what is the value of $\cos 2 A$?

1) $-\frac{2}{3}$
2) $\frac{2}{3}$
3) $-\frac{7}{9}$
4) $\frac{7}{9}$

139 Which expression always equals 1?

1) $\cos ^{2} x-\sin ^{2} x$
2) $\cos ^{2} x+\sin ^{2} x$
3) $\cos x-\sin x$
4) $\cos x+\sin x$

140 A population of rabbits doubles every 60 days according to the formula $P=10(2)^{\frac{t}{60}}$, where P is the population of rabbits on day t. What is the value of t when the population is 320 ?

1) 240
2) 300
3) 660
4) 960

141 Liz has applied to a college that requires students to score in the top 6.7% on the mathematics portion of an aptitude test. The scores on the test are approximately normally distributed with a mean score of 576 and a standard deviation of 104. What is the minimum score Liz must earn to meet this requirement?

1) 680
2) 732
3) 740
4) 784

142 Expressed in simplest form, $\frac{3 y}{2 y-6}+\frac{9}{6-2 y}$ is equivalent to

1) $\frac{-6 y^{2}+36 y-54}{(2 y-6)(6-2 y)}$
2) $\frac{3 y-9}{2 y-6}$
3) $\frac{3}{2}$
4) $-\frac{3}{2}$

143 The simplest form of $\frac{1-\frac{4}{x}}{1-\frac{2}{x}-\frac{8}{x^{2}}}$ is

1) $\frac{1}{2}$
2) $\frac{x}{x+2}$
3) $\frac{x}{3}$
4) $-\frac{x}{x-2}$

144 If $\$ 5000$ is invested at a rate of 3% interest compounded quarterly, what is the value of the investment in 5 years? (Use the formula $A=P\left(1+\frac{r}{n}\right)^{n t}$, where A is the amount accrued, P is the principal, r is the interest rate, n is the number of times per year the money is compounded, and t is the length of time, in years.)

1) $\$ 5190.33$
2) $\$ 5796.37$
3) $\$ 5805.92$
4) $\$ 5808.08$

145 In $\triangle P Q R, p$ equals

1) $\frac{r \sin P}{\sin Q}$
2) $\frac{r \sin P}{\sin R}$
3) $\frac{r \sin R}{\sin P}$
4) $\frac{q \sin R}{\sin Q}$

146 Which ordered pair is in the solution set of the system of equations shown below?

$$
\begin{array}{r}
y^{2}-x^{2}+32=0 \\
3 y-x=0
\end{array}
$$

1) $(2,6)$
2) $(3,1)$
3) $(-1,-3)$
4) $(-6,-2)$

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

147 An angle, P, drawn in standard position, terminates in Quadrant II if

1) $\cos P<0$ and $\csc P<0$
2) $\sin P>0$ and $\cos P>0$
3) $\csc P>0$ and $\cot P<0$
4) $\tan P<0$ and $\sec P>0$

148 A math club has 30 boys and 20 girls. Which expression represents the total number of different 5 -member teams, consisting of 3 boys and 2 girls, that can be formed?

1) ${ }_{30} P_{3} \cdot{ }_{20} P_{2}$
2) ${ }_{30} C_{3} \cdot{ }_{20} C_{2}$
3) ${ }_{30} P_{3}+{ }_{20} P_{2}$
4) ${ }_{30} C_{3}+{ }_{20} C_{2}$

149 How many different six-letter arrangements can be made using the letters of the word "TATTOO"?

1) 60
2) 90
3) 120
4) 720

150 Which expression represents the third term in the expansion of $\left(2 x^{4}-y\right)^{3}$?

1) $-y^{3}$
2) $-6 x^{4} y^{2}$
3) $6 x^{4} y^{2}$
4) $2 x^{4} y^{2}$

151 What is the solution set for $2 \cos \theta-1=0$ in the interval $0^{\circ} \leq \theta<360^{\circ}$?

1) $\left\{30^{\circ}, 150^{\circ}\right\}$
2) $\left\{60^{\circ}, 120^{\circ}\right\}$
3) $\left\{30^{\circ}, 330^{\circ}\right\}$
4) $\left\{60^{\circ}, 300^{\circ}\right\}$

152 If $\mathrm{f}(x)=4 x-x^{2}$ and $\mathrm{g}(x)=\frac{1}{x}$, then $(\mathrm{f} \circ \mathrm{g})\left(\frac{1}{2}\right)$ is equal to

1) $\frac{4}{7}$
2) -2
3) $\frac{7}{2}$
4) 4

153 If n is a negative integer, then which statement is always true?

1) $6 n^{-2}<4 n^{-1}$
2) $\frac{n}{4}>-6 n^{-1}$
3) $6 n^{-1}<4 n^{-1}$
4) $4 n^{-1}>(6 n)^{-1}$

154 The expression $\frac{x^{2}+9 x-22}{x^{2}-121} \div(2-x)$ is equivalent to

1) $x-11$
2) $\frac{1}{x-11}$
3) $11-x$
4) $\frac{1}{11-x}$

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

155 The area of triangle $A B C$ is 42 . If $A B=8$ and $\mathrm{m} \angle B=61$, the length of $\overline{B C}$ is approximately

1) 5.1
2) 9.2
3) 12.0
4) 21.7

156 The points (2,3), $\left(4, \frac{3}{4}\right)$, and $(6, d)$ lie on the graph of a function. If y is inversely proportional to the square of x, what is the value of d ?

1) 1
2) $\frac{1}{3}$
3) 3
4) 27

157 The expression $4+\sum_{k=2}^{5} 3(k-x)$ is equal to

1) $58-4 x$
2) $46-4 x$
3) $58-12 x$
4) $46-12 x$

158 Which value of r represents data with a strong positive linear correlation between two variables?

1) 0.89
2) 0.34
3) 1.04
4) 0.01

159 What is the common ratio of the sequence
$\frac{1}{64} a^{5} b^{3},-\frac{3}{32} a^{3} b^{4}, \frac{9}{16} a b^{5}, \ldots$?

1) $-\frac{3 b}{2 a^{2}}$
2) $-\frac{6 b}{a^{2}}$
3) $-\frac{3 a^{2}}{b}$
4) $-\frac{6 a^{2}}{b}$

160 What is the conjugate of $\frac{1}{2}+\frac{3}{2} i$?

1) $-\frac{1}{2}+\frac{3}{2} i$
2) $\frac{1}{2}-\frac{3}{2} i$
3) $\frac{3}{2}+\frac{1}{2} i$
4) $-\frac{1}{2}-\frac{3}{2} i$

161 What is the number of degrees in an angle whose radian measure is $\frac{8 \pi}{5}$?

1) 576
2) 288
3) 225
4) 113

162 Which expression is equivalent to $\frac{x^{-1} y^{4}}{3 x^{-5} y^{-1}}$?

1) $\frac{x^{4} y^{5}}{3}$
2) $\frac{x^{5} y^{4}}{3}$
3) $3 x^{4} y^{5}$
4) $\frac{y^{4}}{3 x^{5}}$

163 Given $\triangle A B C$ with $a=9, b=10$, and $\mathrm{m} \angle B=70$, what type of triangle can be drawn?

1) an acute triangle, only
2) an obtuse triangle, only
3) both an acute triangle and an obtuse triangle
4) neither an acute triangle nor an obtuse triangle

164 What are the coordinates of the center of a circle whose equation is $x^{2}+y^{2}-16 x+6 y+53=0$?

1) $(-8,-3)$
2) $(-8,3)$
3) $(8,-3)$
4) $(8,3)$

165 What is the solution set of the equation $3 x^{5}-48 x=0$?

1) $\{0, \pm 2\}$
2) $\{0, \pm 2,3\}$
3) $\{0, \pm 2, \pm 2 i\}$
4) $\{ \pm 2, \pm 2 i\}$

166 If $\log 2=a$ and $\log 3=b$, the expression $\log \frac{9}{20}$ is equivalent to

1) $2 b-a+1$
2) $2 b-a-1$
3) $b^{2}-a+10$
4) $\frac{2 b}{a+1}$

167 If $\log x^{2}-\log 2 a=\log 3 a$, then $\log x$ expressed in terms of $\log a$ is equivalent to

1) $\frac{1}{2} \log 5 a$
2) $\frac{1}{2} \log 6+\log a$
3) $\log 6+\log a$
4) $\log 6+2 \log a$

168 What is the common ratio of the geometric sequence shown below?

$$
-2,4,-8,16, \ldots
$$

1) $-\frac{1}{2}$
2) 2
3) -2
4) -6

169 The value of $\sin (180+x)$ is equivalent to

1) $-\sin x$
2) $-\sin (90-x)$
3) $\sin x$
4) $\sin (90-x)$

170 What are the sum and product of the roots of the equation $6 x^{2}-4 x-12=0$?

1) sum $=-\frac{2}{3} ;$ product $=-2$
2) sum $=\frac{2}{3} ;$ product $=-2$
3) sum $=-2$; product $=\frac{2}{3}$
4) sum $=-2$; product $=-\frac{2}{3}$

171 Which summation represents
$5+7+9+11+\ldots+43$?

1) $\sum_{n=5}^{43} n$
2) $\sum_{n=1}^{20}(2 n+3)$
3) $\sum_{n=4}^{24}(2 n-3)$
4) $\sum_{n=3}^{23}(3 n-4)$

172 What is the product of $\left(\frac{x}{4}-\frac{1}{3}\right)$ and $\left(\frac{x}{4}+\frac{1}{3}\right)$?

1) $\frac{x^{2}}{8}-\frac{1}{9}$
2) $\frac{x^{2}}{16}-\frac{1}{9}$
3) $\frac{x^{2}}{8}-\frac{x}{6}-\frac{1}{9}$
4) $\frac{x^{2}}{16}-\frac{x}{6}-\frac{1}{9}$

173 In which interval of $\mathrm{f}(x)=\cos (x)$ is the inverse also a function?

1) $-\frac{\pi}{2}<x<\frac{\pi}{2}$
2) $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$
3) $0 \leq x \leq \pi$
4) $\frac{\pi}{2} \leq x \leq \frac{3 \pi}{2}$

174 A study finds that 80% of the local high school students text while doing homework. Ten students are selected at random from the local high school. Which expression would be part of the process used to determine the probability that, at most, 7 of the 10 students text while doing homework?

1) ${ }_{10} C_{6}\left(\frac{4}{5}\right)^{6}\left(\frac{1}{5}\right)^{4}$
2) ${ }_{10} C_{7}\left(\frac{4}{5}\right)^{10}\left(\frac{1}{5}\right)^{7}$
3) ${ }_{10} C_{8}\left(\frac{7}{10}\right)^{10}\left(\frac{3}{10}\right)^{2}$
4) ${ }_{10} C_{9}\left(\frac{7}{10}\right)^{9}\left(\frac{3}{10}\right)^{1}$

175 Which statement about the graph of the equation $y=e^{x}$ is not true?

1) It is asymptotic to the x-axis.
2) The domain is the set of all real numbers.
3) It lies in Quadrants I and II.
4) It passes through the point $(e, 1)$.

176 What is the range of the function shown below?

1) $x \leq 0$
2) $x \geq 0$
3) $y \leq 0$
4) $y \geq 0$

177 Which value of k satisfies the equation $8^{3 k+4}=4^{2 k-1}$?

1) -1
2) $-\frac{9}{4}$
3) -2
4) $-\frac{14}{5}$

178 In $\Delta K L M, K L=20, L M=13$, and $\mathrm{m} \angle K=40$. The measure of $\angle M$?

1) must be between 0° and 90°
2) must equal 90°
3) must be between 90° and 180°
4) is ambiguous

179 A circle is drawn to represent a pizza with a 12 inch diameter. The circle is cut into eight congruent pieces. What is the length of the outer edge of any one piece of this circle?

1) $\frac{3 \pi}{4}$
2) π
3) $\frac{3 \pi}{2}$
4) 3π

180 Given the relation $\{(8,2),(3,6),(7,5),(k, 4)\}$, which value of k will result in the relation not being a function?

1) 1
2) 2
3) 3
4) 4

181 When factored completely, $x^{3}+3 x^{2}-4 x-12$ equals

1) $(x+2)(x-2)(x-3)$
2) $(x+2)(x-2)(x+3)$
3) $\left(x^{2}-4\right)(x+3)$
4) $\left(x^{2}-4\right)(x-3)$

182 The expression $\sqrt[3]{64 a^{16}}$ is equivalent to

1) $8 a^{4}$
2) $8 a^{8}$
3) $4 a^{5} \sqrt[3]{a}$
4) $4 a \sqrt[3]{a^{5}}$

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

183 As shown in the table below, a person's target heart rate during exercise changes as the person gets older.

Age (years)	Target Heart Rate (beats per minute)
20	135
25	132
30	129
35	125
40	122
45	119
50	115

Which value represents the linear correlation coefficient, rounded to the nearest thousandth, between a person's age, in years, and that person's target heart rate, in beats per minute?

1) -0.999
2) -0.664
3) 0.998
4) 1.503

184 What is the solution set of the equation $-\sqrt{2} \sec x=2$ when $0^{\circ} \leq x<360^{\circ}$?

1) $\left\{45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ}\right\}$
2) $\left\{45^{\circ}, 315^{\circ}\right\}$
3) $\left\{135^{\circ}, 225^{\circ}\right\}$
4) $\left\{225^{\circ}, 315^{\circ}\right\}$

186 Which graph represents the solution set of $\left|\frac{4 x-5}{3}\right|>1$?
1)

187 What is the sum of the first 19 terms of the sequence $3,10,17,24,31, \ldots$?

1) 1188
2) 1197
3) 1254
4) 1292

188 What is the fourth term in the binomial expansion $(x-2)^{8}$?

1) $448 x^{5}$
2) $448 x^{4}$
3) $-448 x^{5}$
4) $-448 x^{4}$

189 The value of $\csc 138^{\circ} 23^{\prime}$ rounded to four decimal places is

1) -1.3376
2) -1.3408
3) 1.5012
4) 1.5057

185 Which function is one-to-one?

1) $\mathrm{f}(x)=|x|$
2) $\mathrm{f}(\mathrm{x})=2^{x}$
3) $\mathrm{f}(x)=x^{2}$
4) $\mathrm{f}(x)=\sin x$

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

190 Approximately how many degrees does five radians equal?

1) 286
2) 900
3) $\frac{\pi}{36}$
4) 5π

191 Which expression is equivalent to $\left(9 x^{2} y^{6}\right)^{-\frac{1}{2}}$?

1) $\frac{1}{3 x y^{3}}$
2) $3 x y^{3}$
3) $\frac{3}{x y^{3}}$
4) $\frac{x y^{3}}{3}$

192 Which expression represents the total number of different 11-letter arrangements that can be made using the letters in the word "MATHEMATICS"?

1) $\frac{11!}{3!}$
2) $\frac{11!}{2!+2!+2!}$
3) $\frac{11!}{8!}$
4) $\frac{11!}{2!\cdot 2!\cdot 2!}$

193 Which sketch shows the inverse of $y=a^{x}$, where $a>1$?

3)
2)

194 In parallelogram $B F L O, O L=3.8, L F=7.4$, and $\mathrm{m} \angle O=126$. If diagonal $B L$ is drawn, what is the area of $\triangle B L F$?

1) 11.4
2) 14.1
3) 22.7
4) 28.1

195 What is the graph of the solution set of $|2 x-1|>5$?
1)

196 Which problem involves evaluating ${ }_{6} P_{4}$?

1) How many different four-digit ID numbers can be formed using $1,2,3,4,5$, and 6 without repetition?
2) How many different subcommittees of four can be chosen from a committee having six members?
3) How many different outfits can be made using six shirts and four pairs of pants?
4) How many different ways can one boy and one girl be selected from a group of four boys and six girls?

197 The yearbook staff has designed a survey to learn student opinions on how the yearbook could be improved for this year. If they want to distribute this survey to 100 students and obtain the most reliable data, they should survey

1) every third student sent to the office
2) every third student to enter the library
3) every third student to enter the gym for the basketball game
4) every third student arriving at school in the morning

198 If d varies inversely as t, and $d=20$ when $t=2$, what is the value of t when $d=-5$?

1) 8
2) 2
3) -8
4) -2

199 Which equation is graphed in the diagram below?

1) $y=3 \cos \left(\frac{\pi}{30} x\right)+8$
2) $y=3 \cos \left(\frac{\pi}{15} x\right)+5$
3) $y=-3 \cos \left(\frac{\pi}{30} x\right)+8$
4) $y=-3 \cos \left(\frac{\pi}{15} x\right)+5$

200 Which equation has roots with the sum equal to $\frac{9}{4}$ and the product equal to $\frac{3}{4}$?

1) $4 x^{2}+9 x+3=0$
2) $4 x^{2}+9 x-3=0$
3) $4 x^{2}-9 x+3=0$
4) $4 x^{2}-9 x-3=0$

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

201 Which calculator output shows the strongest linear relationship between x and y ?

Lin Reg

$y=a+b x$
$a=59.026$
$b=6.767$

1) $r=.8643$

Lin Reg
$y=a+b x$
$a=.7$
$b=24.2$
2) $r=.8361$

Lin Reg
$y=a+b x$
$a=2.45$
$b=.95$
3) $r=.6022$

Lin Reg
$y=a+b x$
$a=-2.9$
$b=24.1$
4) $r=-.8924$

202 In $\triangle D E F, d=5, e=8$, and $\mathrm{m} \angle D=32$. How many distinct triangles can be drawn given these measurements?

1) 1
2) 2
3) 3
4) 0

203 For $y=\frac{3}{\sqrt{x-4}}$, what are the domain and range?

1) $\{x \mid x>4\}$ and $\{y \mid y>0\}$
2) $\{x \mid x \geq 4\}$ and $\{y \mid y>0\}$
3) $\{x \mid x>4\}$ and $\{y \mid y \geq 0\}$
4) $\{x \mid x \geq 4\}$ and $\{y \mid y \geq 0\}$

204 How many negative solutions to the equation $2 x^{3}-4 x^{2}+3 x-1=0$ exist?

1) 1
2) 2
3) 3
4) 0

205 Given angle A in Quadrant I with $\sin A=\frac{12}{13}$ and angle B in Quadrant II with $\cos B=-\frac{3}{5}$, what is the value of $\cos (A-B)$?

1) $\frac{33}{65}$
2) $-\frac{33}{65}$
3) $\frac{63}{65}$
4) $-\frac{63}{65}$

206 A school cafeteria has five different lunch periods. The cafeteria staff wants to find out which items on the menu are most popular, so they give every student in the first lunch period a list of questions to answer in order to collect data to represent the school. Which type of study does this represent?

1) observation
2) controlled experiment
3) population survey
4) sample survey

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

207 What is the domain of the function shown below?

1) $-1 \leq x \leq 6$
2) $-1 \leq y \leq 6$
3) $-2 \leq x \leq 5$
4) $-2 \leq y \leq 5$

208 Which equation represents the graph below?

1) $y=-2 \sin 2 x$
2) $y=-2 \sin \frac{1}{2} x$
3) $y=-2 \cos 2 x$
4) $y=-2 \cos \frac{1}{2} x$

209 The relationship between t, a student's test scores, and d, the student's success in college, is modeled by the equation $d=0.48 t+75.2$. Based on this linear regression model, the correlation coefficient could be

1) between - 1 and 0
2) between 0 and 1
3) equal to - 1
4) equal to 0

210 Which expression is equivalent to $\sum_{n=1}^{4}(a-n)^{2}$?

1) $2 a^{2}+17$
2) $4 a^{2}+30$
3) $2 a^{2}-10 a+17$
4) $4 a^{2}-20 a+30$

211 The conjugate of the complex expression $-5 x+4 i$ is

1) $5 x-4 i$
2) $5 x+4 i$
3) $-5 x-4 i$
4) $-5 x+4 i$

212 Which function is one-to-one?

1) $\mathrm{k}(x)=x^{2}+2$
2) $\mathrm{g}(x)=x^{3}+2$
3) $\mathrm{f}(x)=|x|+2$
4) $\mathrm{j}(x)=x^{4}+2$

213 When factored completely, the expression $3 x^{3}-5 x^{2}-48 x+80$ is equivalent to

1) $\left(x^{2}-16\right)(3 x-5)$
2) $\left(x^{2}+16\right)(3 x-5)(3 x+5)$
3) $(x+4)(x-4)(3 x-5)$
4) $(x+4)(x-4)(3 x-5)(3 x-5)$

214 In $\triangle M N P, m=6$ and $n=10$. Two distinct triangles can be constructed if the measure of angle M is

1) 35
2) 40
3) 45
4) 50

215 The sum of $\sqrt[3]{6 a^{4} b^{2}}$ and $\sqrt[3]{162 a^{4} b^{2}}$, expressed in simplest radical form, is

1) $\sqrt[6]{168 a^{8} b^{4}}$
2) $2 a^{2} b^{3} \sqrt{21 a^{2} b}$
3) $4 a \sqrt[3]{6 a b^{2}}$
4) $10 a^{2} b^{3} \sqrt{8}$

216 A sequence has the following terms: $a_{1}=4$, $a_{2}=10, a_{3}=25, a_{4}=62.5$. Which formula represents the nth term in the sequence?

1) $a_{n}=4+2.5 n$
2) $a_{n}=4+2.5(n-1)$
3) $a_{n}=4(2.5)^{n}$
4) $a_{n}=4(2.5)^{n-1}$

217 If $\tan \left(\operatorname{Arccos} \frac{\sqrt{3}}{k}\right)=\frac{\sqrt{3}}{3}$, then k is

1) 1
2) 2
3) $\sqrt{2}$
4) $3 \sqrt{2}$

218 When $x^{-1}+1$ is divided by $x+1$, the quotient equals

1) 1
2) $\frac{1}{x}$
3) x
4) $-\frac{1}{x}$

219 In the right triangle shown below, what is the measure of angle S, to the nearest minute?

1) $28^{\circ} 1^{\prime}$
2) $28^{\circ} 4^{\prime}$
3) $61^{\circ} 56^{\prime}$
4) $61^{\circ} 93^{\prime}$

220 If $\mathrm{g}(x)=\frac{1}{2} x+8$ and $\mathrm{h}(x)=\frac{1}{2} x-2$, what is the value of $\mathrm{g}(\mathrm{h}(-8))$?

1) 0
2) 9
3) 5
4) 4

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

221 A spinner is divided into eight equal sections. Five sections are red and three are green. If the spinner is spun three times, what is the probability that it lands on red exactly twice?

1) $\frac{25}{64}$
2) $\frac{45}{512}$
3) $\frac{75}{512}$
4) $\frac{225}{512}$

222 The expression $\frac{a+\frac{b}{c}}{d-\frac{b}{c}}$ is equivalent to

1) $\frac{c+1}{d-1}$
2) $\frac{a+b}{d-b}$
3) $\frac{a c+b}{c d-b}$
4) $\frac{a c+1}{c d-1}$

223 What is the middle term in the expansion of $\left(\frac{x}{2}-2 y\right)^{6}$?

1) $20 x^{3} y^{3}$
2) $-\frac{15}{4} x^{4} y^{2}$
3) $-20 x^{3} y^{3}$
4) $\frac{15}{4} x^{4} y^{2}$

224 If the amount of time students work in any given week is normally distributed with a mean of 10 hours per week and a standard deviation of 2 hours, what is the probability a student works between 8 and 11 hours per week?

1) 34.1%
2) 38.2%
3) 53.2%
4) 68.2%

225 When $x^{2}+3 x-4$ is subtracted from $x^{3}+3 x^{2}-2 x$, the difference is

1) $x^{3}+2 x^{2}-5 x+4$
2) $x^{3}+2 x^{2}+x-4$
3) $-x^{3}+4 x^{2}+x-4$
4) $-x^{3}-2 x^{2}+5 x+4$

226 The expression $\log 4 m^{2}$ is equivalent to

1) $2(\log 4+\log m)$
2) $2 \log 4+\log m$
3) $\log 4+2 \log m$
4) $\log 16+2 \log m$

227 If p varies inversely as q, and $p=10$ when $q=\frac{3}{2}$,
what is the value of p when $q=\frac{3}{5}$?

1) 25
2) 15
3) 9
4) 4

228 Which expression, when rounded to three decimal places, is equal to -1.155 ?

1) $\sec \left(\frac{5 \pi}{6}\right)$
2) $\tan \left(49^{\circ} 20^{\prime}\right)$
3) $\sin \left(-\frac{3 \pi}{5}\right)$
4) $\csc \left(-118^{\circ}\right)$

229 A market research firm needs to collect data on viewer preferences for local news programming in Buffalo. Which method of data collection is most appropriate?

1) census
2) survey
3) observation
4) controlled experiment

230 Max solves a quadratic equation by completing the square. He shows a correct step:

$$
(x+2)^{2}=-9
$$

What are the solutions to his equation?

1) $2 \pm 3 i$
2) $-2 \pm 3 i$
3) $3 \pm 2 i$
4) $-3 \pm 2 i$

231 If $x=3 i, y=2 i$, and $z=m+i$, the expression $x y^{2} z$ equals

1) $-12-12 \mathrm{mi}$
2) $-6-6 \mathrm{mi}$
3) $12-12 m i$
4) $6-6 \mathrm{mi}$

232 Which equation is represented by the graph below?

1) $y=2 \cos 3 x$
2) $y=2 \sin 3 x$
3) $y=2 \cos \frac{2 \pi}{3} x$
4) $y=2 \sin \frac{2 \pi}{3} x$

233 The discriminant of a quadratic equation is 24 .
The roots are

1) imaginary
2) real, rational, and equal
3) real, rational, and unequal
4) real, irrational, and unequal

234 What is the number of degrees in an angle whose measure is 2 radians?

1) $\frac{360}{\pi}$
2) $\frac{\pi}{360}$
3) 360
4) 90

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

235 The expression $\frac{1}{7-\sqrt{11}}$ is equivalent to

1) $\frac{7+\sqrt{11}}{38}$
2) $\frac{7-\sqrt{11}}{38}$
3) $\frac{7+\sqrt{11}}{60}$
4) $\frac{7-\sqrt{11}}{60}$

236 The table below displays the results of a survey regarding the number of pets each student in a class has. The average number of pets per student in this class is 2.

Number of Pets	0	1	2	3	4	5
Number of Students	4	6	10	0	k	2

What is the value of k for this table?

1) 9
2) 2
3) 8
4) 4

237 There are eight people in a tennis club. Which expression can be used to find the number of different ways they can place first, second, and third in a tournament?

1) ${ }_{8} P_{3}$
2) ${ }_{8} C_{3}$
3) ${ }_{8} P_{5}$
4) ${ }_{8} C_{5}$

238 If $\log _{b} x=3 \log _{b} p-\left(2 \log _{b} t+\frac{1}{2} \log _{b} r\right)$, then the value of x is

1) $\frac{p^{3}}{\sqrt{t^{2} r}}$
2) $p^{3} t^{2} r^{\frac{1}{2}}$
3) $\frac{p^{3} t^{2}}{\sqrt{r}}$
4) $\frac{p^{3}}{t^{2} \sqrt{r}}$

239 Which diagram represents a relation that is both one-to-one and onto?
1)

2)

3)

4)

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

240 What is the product of the roots of $x^{2}-4 x+k=0$ if one of the roots is 7 ?

1) 21
2) -11
3) -21
4) -77

241 Which is a graph of $y=\cot x$?
1)

2)

3)
4)

242 What is the range of $\mathrm{f}(x)=|x-3|+2$?

1) $\{x \mid x \geq 3\}$
2) $\{y \mid y \geq 2\}$
3) $\{x \mid x \in$ real numbers $\}$
4) $\{y \mid y \in$ real numbers $\}$

243 The quantities p and q vary inversely. If $p=20$ when $q=-2$, and $p=x$ when $q=-2 x+2$, then x equals

1) -4 and 5
2) $\frac{20}{19}$
3) -5 and 4
4) $-\frac{1}{4}$

244 If $\mathrm{f}(x)=\sqrt{9-x^{2}}$, what are its domain and range?

1) domain: $\{x \mid-3 \leq x \leq 3\}$; range: $\{y \mid 0 \leq y \leq 3\}$
2) domain: $\{x \mid x \neq \pm 3\}$; range: $\{y \mid 0 \leq y \leq 3\}$
3) domain: $\{x \mid x \leq-3$ or $x \geq 3\}$; range: $\{y \mid y \neq 0\}$
4) domain: $\{x \mid x \neq 3\}$; range: $\{y \mid y \geq 0\}$

245 Which expression is equivalent to $\frac{2 x^{-2} y^{-2}}{4 y^{-5}}$?

1) $\frac{y^{3}}{2 x^{2}}$
2) $\frac{2 y^{3}}{x^{2}}$
3) $\frac{2 x^{2}}{y^{3}}$
4) $\frac{x^{2}}{2 y^{3}}$

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

246 If $\mathrm{m} \angle \theta=-50$, which diagram represents θ drawn
in standard position?
1)

2)

247 What is a positive value of $\tan \frac{1}{2} x$, when $\sin x=0.8$?

1) 0.5
2) 0.4
3) 0.33
4) 0.25

248 Which equation is represented by the graph below?

1) $(x-3)^{2}+(y+1)^{2}=5$
2) $(x+3)^{2}+(y-1)^{2}=5$
3) $(x-1)^{2}+(y+3)^{2}=13$
4) $(x+3)^{2}+(y-1)^{2}=13$

249 If $\sin A=-\frac{7}{25}$ and $\angle A$ terminates in Quadrant IV, $\tan A$ equals

1) $-\frac{7}{25}$
2) $-\frac{7}{24}$
3) $-\frac{24}{7}$
4) $-\frac{24}{25}$

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

250 The sum of the first eight terms of the series $3-12+48-192+\ldots$ is

1) $-13,107$
2) $-21,845$
3) $-39,321$
4) $-65,535$

251 What is the equation of the graph shown below?

1) $y=2^{x}$
2) $y=2^{-x}$
3) $x=2^{y}$
4) $x=2^{-y}$

252 The expression $x^{2}(x+2)-(x+2)$ is equivalent to

1) x^{2}
2) $x^{2}-1$
3) $x^{3}+2 x^{2}-x+2$
4) $(x+1)(x-1)(x+2)$

253 Which graph represents the function $\log _{2} x=y$?
1)
2)
3)
4)

254 Which expression is equivalent to $\left(3 x^{2}\right)^{-1}$?

1) $\frac{1}{3 x^{2}}$
2) $-3 x^{2}$
3) $\frac{1}{9 x^{2}}$
4) $-9 x^{2}$

255 The expression $\left(\sqrt[3]{27 x^{2}}\right)\left(\sqrt[3]{16 x^{4}}\right)$ is equivalent to

1) $12 x^{23} \sqrt{2}$
2) $12 x^{3} \sqrt[3]{2 x}$
3) $6 x \sqrt[3]{2 x^{2}}$
4) $6 x^{23} \sqrt{2}$

256 Which ordered pair is a solution of the system of equations shown below? $x+y=5$

$$
(x+3)^{2}+(y-3)^{2}=53
$$

1) $(2,3)$
2) $(5,0)$
3) $(-5,10)$
4) $(-4,9)$

257 What is the common difference in the sequence $2 a+1,4 a+4,6 a+7,8 a+10, \ldots ?$

1) $2 a+3$
2) $-2 a-3$
3) $2 a+5$
4) $-2 a+5$

258 The expression $(x+i)^{2}-(x-i)^{2}$ is equivalent to

1) 0
2) -2
3) $-2+4 x i$
4) $4 x i$

259 Which relation is both one-to-one and onto?
1)

2)

3)

4)

260 The roots of the equation $2 x^{2}+4=9 x$ are

1) real, rational, and equal
2) real, rational, and unequal
3) real, irrational, and unequal
4) imaginary

261 What is the product of $\left(\frac{2}{5} x-\frac{3}{4} y^{2}\right)$ and $\left(\frac{2}{5} x+\frac{3}{4} y^{2}\right)$?

1) $\frac{4}{25} x^{2}-\frac{9}{16} y^{4}$
2) $\frac{4}{25} x-\frac{9}{16} y^{2}$
3) $\frac{2}{5} x^{2}-\frac{3}{4} y^{4}$
4) $\frac{4}{5} x$

262 Which equation represents a graph that has a period of 4π ?

1) $y=3 \sin \frac{1}{2} x$
2) $y=3 \sin 2 x$
3) $y=3 \sin \frac{1}{4} x$
4) $y=3 \sin 4 x$

263 If order does not matter, which selection of students would produce the most possible committees?

1) 5 out of 15
2) 5 out of 25
3) 20 out of 25
4) 15 out of 25

264 In the interval $0^{\circ} \leq x<360^{\circ}, \tan x$ is undefined when x equals

1) 0° and 90°
2) 90° and 180°
3) 180° and 270°
4) 90° and 270°

265 Which graph represents the solution set of $\frac{x+16}{x-2} \leq 7$?
1)
2)
3)
4)

266 Which expression is equivalent to $\left(\mathrm{n}^{\circ} \mathrm{m} \circ \mathrm{p}\right)(x)$, given $\mathrm{m}(x)=\sin x, \mathrm{n}(x)=3 x$, and $\mathrm{p}(x)=x^{2}$?

1) $\sin (3 x)^{2}$
2) $3 \sin x^{2}$
3) $\sin ^{2}(3 x)$
4) $3 \sin ^{2} x$

267 In a certain high school, a survey revealed the mean amount of bottled water consumed by students each day was 153 bottles with a standard deviation of 22 bottles. Assuming the survey represented a normal distribution, what is the range of the number of bottled waters that approximately 68.2% of the students drink?

1) 131-164
2) $131-175$
3) $142-164$
4) $142-175$

268 The expression $\sin (\theta+90)^{\circ}$ is equivalent to

1) $-\sin \theta$
2) $-\cos \theta$
3) $\sin \theta$
4) $\cos \theta$

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions www.jmap.org

269 When $x^{-1}-1$ is divided by $x-1$, the quotient is

1) -1
2) $-\frac{1}{x}$
3) $\frac{1}{x^{2}}$
4) $\frac{1}{(x-1)^{2}}$

270 Samantha constructs the scatter plot below from a set of data.

Based on her scatter plot, which regression model would be most appropriate?

1) exponential
2) linear
3) logarithmic
4) power

Algebra 2/Trigonometry 2 Point Regents Exam Questions

271 On the unit circle shown in the diagram below, sketch an angle, in standard position, whose degree measure is 240 and find the exact value of $\sin 240^{\circ}$.

272 The formula for continuously compounded interest is $A=P e^{r t}$, where A is the amount of money in the account, P is the initial investment, r is the interest rate, and t is the time in years. Using the formula, determine, to the nearest dollar, the amount in the account after 8 years if $\$ 750$ is invested at an annual rate of 3%.

273 Factor completely: $10 a x^{2}-23 a x-5 a$

274 In an arithmetic sequence, $a_{4}=19$ and $a_{7}=31$. Determine a formula for a_{n}, the $n^{\text {th }}$ term of this sequence.

275 The graph below represents the function $y=\mathrm{f}(x)$.

State the domain and range of this function.

276 Howard collected fish eggs from a pond behind his house so he could determine whether sunlight had an effect on how many of the eggs hatched. After he collected the eggs, he divided them into two tanks. He put both tanks outside near the pond, and he covered one of the tanks with a box to block out all sunlight. State whether Howard's investigation was an example of a controlled experiment, an observation, or a survey. Justify your response.

277 Simplify the expression $\frac{3 x^{-4} y^{5}}{\left(2 x^{3} y^{-7}\right)^{-2}}$ and write the answer using only positive exponents.

279 Solve algebraically for x : $4-\sqrt{2 x-5}=1$

If $\mathrm{f}(x)=x^{2}-6$, find $\mathrm{f}^{-1}(x)$.

282 Solve algebraically for x : $\log _{27}(2 x-1)=\frac{4}{3}$

283 Convert 3 radians to degrees and express the answer to the nearest minute.

284
Find, to the nearest tenth of a square foot, the area of a rhombus that has a side of 6 feet and an angle of 50°.

285 On a multiple-choice test, Abby randomly guesses on all seven questions. Each question has four choices. Find the probability, to the nearest thousandth, that Abby gets exactly three questions correct.

286 Determine the sum and the product of the roots of the equation $12 x^{2}+x-6=0$.

287 Find the third term in the recursive sequence $a_{k+1}=2 a_{k}-1$, where $a_{1}=3$.

288 The following is a list of the individual points scored by all twelve members of the Webster High School basketball team at a recent game:

22346791010111214
Find the interquartile range for this set of data.

289 Solve the equation $2 \tan C-3=3 \tan C-4$ algebraically for all values of C in the interval $0^{\circ} \leq C<360^{\circ}$.

290 For a given set of rectangles, the length is inversely proportional to the width. In one of these rectangles, the length is 12 and the width is 6 . For this set of rectangles, calculate the width of a rectangle whose length is 9 .

291 Evaluate: $\sum_{n=1}^{3}\left(-n^{4}-n\right)$

292 Express $\cos \theta(\sec \theta-\cos \theta)$, in terms of $\sin \theta$.

293 The graph of the equation $y=\left(\frac{1}{2}\right)^{x}$ has an asymptote. On the grid below, sketch the graph of $y=\left(\frac{1}{2}\right)^{x}$ and write the equation of this asymptote.

294 Express $\frac{\sqrt{108 x^{5} y^{8}}}{\sqrt{6 x y^{5}}}$ in simplest radical form.

295 Express the product of $\left(\frac{1}{2} y^{2}-\frac{1}{3} y\right)$ and $\left(12 y+\frac{3}{5}\right)$ as a trinomial.

296 If $\sec (a+15)^{\circ}=\csc (2 a)^{\circ}$, find the smallest positive value of a, in degrees.

297 Solve the equation $6 x^{2}-2 x-3=0$ and express the answer in simplest radical form.

298 The heights, in inches, of 10 high school varsity basketball players are $78,79,79,72,75,71,74,74$, 83 , and 71 . Find the interquartile range of this data set.

299 Find the sum and product of the roots of the equation $5 x^{2}+11 x-3=0$.

300 A cup of soup is left on a countertop to cool. The table below gives the temperatures, in degrees Fahrenheit, of the soup recorded over a 10 -minute period.

Time in Minutes (x)	Temperature in $^{\mathbf{0}} \mathbf{F}(y)$
0	180.2
2	165.8
4	146.3
6	135.4
8	127.7
10	110.5

Write an exponential regression equation for the data, rounding all values to the nearest thousandth.

301 Find, to the nearest tenth, the radian measure of 216°.

302 Determine the sum of the first twenty terms of the sequence whose first five terms are $5,14,23,32$, 41.

303 If $\mathrm{g}(x)=(a x \sqrt{1-x})^{2}$, express $\mathrm{g}(10)$ in simplest form.

304 Determine the sum and the product of the roots of $3 x^{2}=11 x-6$.

305 Express the sum $7+14+21+28+\ldots+105$ using sigma notation.

306 A committee of 5 members is to be randomly selected from a group of 9 teachers and 20 students. Determine how many different committees can be formed if 2 members must be teachers and 3 members must be students.

308 Show that sec $\theta \sin \theta \cot \theta=1$ is an identity.

309 Find the number of possible different 10-letter arrangements using the letters of the word "STATISTICS."

310 Use the discriminant to determine all values of k that would result in the equation $x^{2}-k x+4=0$ having equal roots.

311 Express in simplest form: $\sqrt[3]{\frac{a^{6} b^{9}}{-64}}$

312 Express the product of $\cos 30^{\circ}$ and $\sin 45^{\circ}$ in simplest radical form.

313 The number of bacteria present in a Petri dish can be modeled by the function $N=50 e^{3 t}$, where N is the number of bacteria present in the Petri dish after t hours. Using this model, determine, to the nearest hundredth, the number of hours it will take for N to reach 30,700.

314 Express the exact value of $\csc 60^{\circ}$, with a rational denominator.

315 Solve for $x: \frac{4 x}{x-3}=2+\frac{12}{x-3}$

316 The two sides and included angle of a parallelogram are 18,22 , and 60°. Find its exact area in simplest form.

317 A circle shown in the diagram below has a center of $(-5,3)$ and passes through point $(-1,7)$.

Write an equation that represents the circle.

318 Determine algebraically the x-coordinate of all points where the graphs of $x y=10$ and $y=x+3$ intersect.

319 Express $\left(\frac{2}{3} x-1\right)^{2}$ as a trinomial.

320 A blood bank needs twenty people to help with a blood drive. Twenty-five people have volunteered. Find how many different groups of twenty can be formed from the twenty-five volunteers.

321 If $\mathrm{f}(x)=x^{2}-6$ and $g(x)=2^{x}-1$, determine the value of $(g \circ f)(-3)$.

322 Circle O shown below has a radius of 12 centimeters. To the nearest tenth of a centimeter, determine the length of the arc, x, subtended by an angle of $83^{\circ} 50^{\prime}$.

323 If θ is an angle in standard position and its terminal side passes through the point $(-3,2)$, find the exact value of $\csc \theta$.

324 In a study of 82 video game players, the researchers found that the ages of these players were normally distributed, with a mean age of 17 years and a standard deviation of 3 years. Determine if there were 15 video game players in this study over the age of 20. Justify your answer.

325 Determine the solution of the inequality $|3-2 x| \geq 7$. [The use of the grid below is optional.]

326 Assume that the ages of first-year college students are normally distributed with a mean of 19 years and standard deviation of 1 year. To the nearest integer, find the percentage of first-year college students who are between the ages of 18 years and 20 years, inclusive. To the nearest integer, find the percentage of first-year college students who are 20 years old or older.

327 Find the first four terms of the recursive sequence defined below.

$$
\begin{gathered}
a_{1}=-3 \\
a_{n}=a_{(n-1)}-n
\end{gathered}
$$

328 Matt places \$1,200 in an investment account earning an annual rate of 6.5%, compounded continuously. Using the formula $V=P e^{r t}$, where V is the value of the account in t years, P is the principal initially invested, e is the base of a natural logarithm, and r is the rate of interest, determine the amount of money, to the nearest cent, that Matt will have in the account after 10 years.

329 Two sides of a parallelogram are 24 feet and 30 feet. The measure of the angle between these sides is 57°. Find the area of the parallelogram, to the nearest square foot.

330 Find, algebraically, the measure of the obtuse angle, to the nearest degree, that satisfies the equation $5 \csc \theta=8$.

331 Write an equation for the graph of the trigonometric function shown below.

332 Express $5 \sqrt{3 x^{3}}-2 \sqrt{27 x^{3}}$ in simplest radical form.

333 Write an equation of the circle shown in the graph below.

334 Find the total number of different twelve-letter arrangements that can be formed using the letters in the word PENNSYLVANIA.

335 Starting with $\sin ^{2} A+\cos ^{2} A=1$, derive the formula $\tan ^{2} A+1=\sec ^{2} A$.

336 Express $4 x i+5 y i^{8}+6 x i^{3}+2 y i^{4}$ in simplest $a+b i$ form.

337 Express $\frac{\cot x \sin x}{\sec x}$ as a single trigonometric function, in simplest form, for all values of x for which it is defined.

338 The scores of one class on the Unit 2 mathematics test are shown in the table below.
Unit 2 Mathematics Test

Test Score	Frequency
96	1
92	2
84	5
80	3
76	6
72	3
68	2

Find the population standard deviation of these scores, to the nearest tenth.

339 Find, to the nearest minute, the angle whose measure is 3.45 radians.

340 Evaluate $e^{x \ln y}$ when $x=3$ and $y=2$.

341 Express $\frac{5}{3-\sqrt{2}}$ with a rational denominator, in simplest radical form.

Algebra 2/Trigonometry 2 Point Regents Exam Questions www.jmap.org

342
On the axes below, for $-2 \leq x \leq 2$, graph $y=2^{x+1}-3$.

343 Write an equation of the circle shown in the diagram below.

344 Express in simplest form: $\frac{\frac{1}{2}-\frac{4}{d}}{\frac{1}{d}+\frac{3}{2 d}}$

345 The table below shows the number of new stores in a coffee shop chain that opened during the years 1986 through 1994.

Year	Number of New Stores
1986	14
1987	27
1988	48
1989	80
1990	110
1991	153
1992	261
1993	403
1994	681

Using $x=1$ to represent the year 1986 and y to represent the number of new stores, write the exponential regression equation for these data. Round all values to the nearest thousandth.

346 Solve $|-4 x+5|<13$ algebraically for x.

347 Write a quadratic equation such that the sum of its roots is 6 and the product of its roots is -27 .

348 Solve algebraically for $x: 16^{2 x+3}=64^{x+2}$

349 Find the solution of the inequality $x^{2}-4 x>5$, algebraically.

Algebra 2/Trigonometry 2 Point Regents Exam Questions www.jmap.org

350 Determine the value of n in simplest form:
$i^{13}+i^{18}+i^{31}+n=0$

Algebra 2/Trigonometry 4 Point Regents Exam Questions

351 A population of single-celled organisms was grown in a Petri dish over a period of 16 hours. The number of organisms at a given time is recorded in the table below.

Time, hrs (x)	Number of Organisms (y)
0	25
2	36
4	52
6	68
8	85
10	104
12	142
16	260

Determine the exponential regression equation model for these data, rounding all values to the nearest ten-thousandth. Using this equation, predict the number of single-celled organisms, to the nearest whole number, at the end of the 18th hour.

352
The probability that a professional baseball player will get a hit is $\frac{1}{3}$. Calculate the exact probability that he will get at least 3 hits in 5 attempts.

353 The measures of the angles between the resultant and two applied forces are 60° and 45°, and the magnitude of the resultant is 27 pounds. Find, to the nearest pound, the magnitude of each applied force.

354 A ranch in the Australian Outback is shaped like triangle $A C E$, with $\mathrm{m} \angle A=42, \mathrm{~m} \angle E=103$, and $A C=15$ miles. Find the area of the ranch, to the nearest square mile.

355 Write the binomial expansion of $(2 x-1)^{5}$ as a polynomial in simplest form.

356 Solve algebraically for all values of x : $\log _{(x+4)}(17 x-4)=2$

357 Solve $2 x^{2}-12 x+4=0$ by completing the square, expressing the result in simplest radical form.

358 Solve the equation $8 x^{3}+4 x^{2}-18 x-9=0$ algebraically for all values of x.

359 In $\triangle A B C, \mathrm{~m} \angle A=32, a=12$, and $b=10$. Find the measures of the missing angles and side of $\triangle A B C$. Round each measure to the nearest tenth.

360 If $\log _{4} x=2.5$ and $\log _{y} 125=-\frac{3}{2}$, find the numerical value of $\frac{x}{y}$, in simplest form.

361 Express as a single fraction the exact value of $\sin 75^{\circ}$.

362 Solve algebraically for all exact values of x in the interval $0 \leq x<2 \pi: 2 \sin ^{2} x+5 \sin x=3$

363 Express in simplest form: $\frac{\frac{4-x^{2}}{x^{2}+7 x+12}}{\frac{2 x-4}{x+3}}$

364 If $\tan A=\frac{2}{3}$ and $\sin B=\frac{5}{\sqrt{41}}$ and angles A and B are in Quadrant I , find the value of $\tan (A+B)$.

365
Graph the inequality $-3|6-x|<-15$ for x. Graph the solution on the line below.
\qquad

366
Two sides of a parallelogram measure 27 cm and 32 cm . The included angle measures 48°. Find the length of the longer diagonal of the parallelogram, to the nearest centimeter.

367 Find all values of θ in the interval $0^{\circ} \leq \theta<360^{\circ}$ that satisfy the equation $\sin 2 \theta=\sin \theta$.

368 The members of a men's club have a choice of wearing black or red vests to their club meetings. A study done over a period of many years determined that the percentage of black vests worn is 60%. If there are 10 men at a club meeting on a given night, what is the probability, to the nearest thousandth, that at least 8 of the vests worn will be black?

369 A study shows that 35% of the fish caught in a local lake had high levels of mercury. Suppose that 10 fish were caught from this lake. Find, to the nearest tenth of a percent, the probability that at least 8 of the 10 fish caught did not contain high levels of mercury.

370 The letters of any word can be rearranged. Carol believes that the number of different 9-letter arrangements of the word "TENNESSEE" is greater than the number of different 7-letter arrangements of the word "VERMONT." Is she correct? Justify your answer.

371 Because Sam's backyard gets very little sunlight, the probability that a geranium planted there will flower is 0.28 . Sam planted five geraniums. Determine the probability, to the nearest thousandth, that at least four geraniums will flower.

372 Solve algebraically for $x: \frac{1}{x+3}-\frac{2}{3-x}=\frac{4}{x^{2}-9}$

373 The probability that the Stormville Sluggers will win a baseball game is $\frac{2}{3}$. Determine the probability, to the nearest thousandth, that the Stormville Sluggers will win at least 6 of their next 8 games.

374 During a particular month, a local company surveyed all its employees to determine their travel times to work, in minutes. The data for all 15 employees are shown below.

25	55	40	65	29
45	59	35	25	37
52	30	8	40	55

Determine the number of employees whose travel time is within one standard deviation of the mean.

375 Solve the equation below algebraically, and express the result in simplest radical form:

$$
\frac{13}{x}=10-x
$$

376 Ten teams competed in a cheerleading competition at a local high school. Their scores were 29, 28, $39,37,45,40,41,38,37$, and 48 . How many scores are within one population standard deviation from the mean? For these data, what is the interquartile range?

377 The diagram below shows the plans for a cell phone tower. A guy wire attached to the top of the tower makes an angle of 65 degrees with the ground. From a point on the ground 100 feet from the end of the guy wire, the angle of elevation to the top of the tower is 32 degrees. Find the height of the tower, to the nearest foot.

378 As shown in the diagram below, fire-tracking station A is 100 miles due west of fire-tracking station B. A forest fire is spotted at F, on a bearing 47° northeast of station A and 15° northeast of station B. Determine, to the nearest tenth of a mile, the distance the fire is from both station A and station B. [N represents due north.]

Algebra 2/Trigonometry 4 Point Regents Exam Questions www.jmap.org

379 The table below shows the results of an experiment involving the growth of bacteria.

Time (x) (in minutes)	1	3	5	7	9	11
Number of Bacteria (\boldsymbol{y})	2	25	81	175	310	497

Write a power regression equation for this set of data, rounding all values to three decimal places. Using this equation, predict the bacteria's growth, to the nearest integer, after 15 minutes.

380 The data collected by a biologist showing the growth of a colony of bacteria at the end of each hour are displayed in the table below.

Time, hour, (x)	Population (y)
0	250
1	330
2	580
3	800
4	1650
5	3000

Write an exponential regression equation to model these data. Round all values to the nearest thousandth. Assuming this trend continues, use this equation to estimate, to the nearest ten, the number of bacteria in the colony at the end of 7 hours.

Algebra 2/Trigonometry 6 Point Regents Exam Questions

Solve algebraically for x :

$$
\sqrt{x^{2}+x-1}+11 x=7 x+3
$$

382 Solve algebraically for $x: \log _{x+3} \frac{x^{3}+x-2}{x}=2$

383
Two forces of 25 newtons and 85 newtons acting on a body form an angle of 55°. Find the magnitude of the resultant force, to the nearest hundredth of a newton. Find the measure, to the nearest degree, of the angle formed between the resultant and the larger force.

384
Solve algebraically for all values of x :
$81^{x^{3}+2 x^{2}}=27^{\frac{5 x}{3}}$

385 Perform the indicated operations and simplify completely:

$$
\frac{x^{3}-3 x^{2}+6 x-18}{x^{2}-4 x} \cdot \frac{2 x-4}{x^{4}-3 x^{3}} \div \frac{x^{2}+2 x-8}{16-x^{2}}
$$

387 Solve algebraically for all values of x : $\log _{(x+3)}(2 x+3)+\log _{(x+3)}(x+5)=2$

388 In a triangle, two sides that measure 6 cm and 10 cm form an angle that measures 80°. Find, to the nearest degree, the measure of the smallest angle in the triangle.

389 Solve algebraically for all values of x : $x^{4}+4 x^{3}+4 x^{2}=-16 x$

390 The temperature, T, of a given cup of hot chocolate after it has been cooling for t minutes can best be modeled by the function below, where T_{0} is the temperature of the room and k is a constant.

$$
\ln \left(T-T_{0}\right)=-k t+4.718
$$

A cup of hot chocolate is placed in a room that has a temperature of 68°. After 3 minutes, the temperature of the hot chocolate is 150°. Compute the value of k to the nearest thousandth. [Only an algebraic solution can receive full credit.] Using this value of k, find the temperature, T, of this cup of hot chocolate if it has been sitting in this room for a total of 10 minutes. Express your answer to the nearest degree. [Only an algebraic solution can receive full credit.]

386 Solve the following systems of equations algebraically: $5=y-x$

$$
4 x^{2}=-17 x+y+4
$$

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions Answer Section

1 ANS: 4 PTS: 2 REF: 011101a2 STA: A2.A. 38
TOP: Defining Functions
KEY: graphs
2 ANS: 1
$a_{n}=-\sqrt{5}(-\sqrt{2})^{n-1}$
$a_{15}=-\sqrt{5}(-\sqrt{2})^{15-1}=-\sqrt{5}(-\sqrt{2})^{14}=-\sqrt{5} \cdot 2^{7}=-128 \sqrt{5}$
PTS: 2 REF: 061109a2 STA: A2.A. 32 TOP: Sequences
3 ANS: 3

PTS: 2 REF: 061020a2 STA: A2.A. 71 TOP: Graphing Trigonometric Functions
4 ANS: 3
$K=(10)(18) \sin 46 \approx 129$
PTS: 2 REF: 081021a2 STA: A2.A. 74 TOP: Using Trigonometry to Find Area
KEY: parallelograms
5 ANS: 3
$\frac{-7 \pm \sqrt{7^{2}-4(2)(-3)}}{2(2)}=\frac{-7 \pm \sqrt{73}}{4}$
PTS: 2 REF: 081009a2 STA: A2.A. 25 TOP: Quadratic Formula
6 ANS: 1
$2 \log x-(3 \log y+\log z)=\log x^{2}-\log y^{3}-\log z=\log \frac{x^{2}}{y^{3} z}$

PTS: 2
REF: 061010a2
PTS: 2
TOP: Domain and Range
8 ANS: $3 \quad$ PTS: 2
TOP: Defining Functions
9 ANS: 3 PTS: 2
TOP: Inverse of Functions
10 ANS: $4 \quad$ PTS: 2
TOP: Domain and Range
11 ANS: $1 \quad$ PTS: 2
ANS. 1
TOP: Transformations with Functions and Relations
KEY: graphs

STA: A2.A. 19 TOP: Properties of Logarithms
REF: 061022a2 STA: A2.A. 63
REF: 061114a2 STA: A2.A. 38
REF: 081027a2
KEY: equations
REF: 061112a2 STA: A2.A. 39
KEY: real domain
REF: 081022a2 STA: A2.A. 46
STA: A2.A. 44
STA. A2.A. 39

12 ANS: 3
Cofunctions tangent and cotangent are complementary
PTS: 2 REF: 061014a2 STA: A2.A. 58 TOP: Cofunction Trigonometric Relationships
13 ANS: 3
$f(4)=\frac{1}{2}(4)-3=-1 . g(-1)=2(-1)+5=3$
PTS: 2 REF: fall0902a2
KEY: numbers
14 ANS: $1 \quad$ PTS: 2
TOP: Sigma Notation
15 ANS: 4
$x^{-\frac{2}{5}}=\frac{1}{x^{\frac{2}{5}}}=\frac{1}{\sqrt[5]{x^{2}}}$
PTS: 2
REF: 011118a2 STA: A2.A. 10
ANS: 2

$$
\frac{\frac{\pi}{3}+\frac{\pi}{3}}{2 \pi}=\frac{\frac{2 \pi}{3}}{2 \pi}=\frac{1}{3}
$$

PTS: 2
REF: 011108a2
STA: A2.S. 13
TOP: Geometric Probability
17 ANS: 1

n	3	4	5	Σ
$-r^{2}+r$	$-3^{2}+3=-6$	$-4^{2}+4=-12$	$-5^{2}+5=-20$	-38

PTS: 2
REF: 061118a2 STA: A2.N. 10
KEY: basic

STA: A2.A. 42
REF: 061025a2
STA: A2.A. 34
TOP: Compositions of Functions

18 ANS: 4
$\begin{aligned} 2 \log _{4}(5 x) & =3 \\ \log _{4}(5 x) & =\frac{3}{2}\end{aligned}$

$$
\begin{aligned}
5 x & =4^{\frac{3}{2}} \\
5 x & =8 \\
x & =\frac{8}{5}
\end{aligned}
$$

PTS: 2 REF: fall0921a2 STA: A2.A. 28 TOP: Logarithmic Equations
KEY: advanced
19 ANS: 3
$S=\frac{-b}{a}=\frac{-(-3)}{4}=\frac{3}{4} . \quad P=\frac{c}{a}=\frac{-8}{4}=-2$

PTS: 2 REF: fall0912a2 STA: A2.A. 21 TOP: Roots of Quadratics
KEY: basic
20 ANS: 2
$(3-7 i)(3-7 i)=9-21 i-21 i+49 i^{2}=9-42 i-49=-40-42 i$
PTS: 2
REF: fall0901a2 STA: A2.N.9
TOP: Multiplication and Division of Complex Numbers
21 ANS: 2
$f(10)=\frac{-10}{(-10)^{2}-16}=\frac{-10}{84}=-\frac{5}{42}$

PTS: 2
REF: 061102a2
STA: A2.A. 41
TOP: Functional Notation
22 ANS: 1

$\cos K=\frac{5}{6}$
$K=\cos ^{-1} \frac{5}{6}$
$K \approx 33^{\circ} 33^{\prime}$
PTS: 2
23 ANS: 1
REF: 061023a2

TOP: Solving Radicals
STA: A2.A. 55 TOP: Trigonometric Ratios
REF: 061018a2 STA: A2.A. 22
KEY: extraneous solutions
REF: 061019a2 STA: A2.N.7
TOP: Imaginary Numbers

25 ANS: 3
TOP: Sequences
26 ANS: 1
$\tan \theta-\sqrt{3}=0$
PTS: 2
REF: 011110a2
STA: A2.A. 30

$$
\begin{aligned}
\tan \theta & =\sqrt{3} \\
\theta & =\tan ^{-1} \sqrt{3} \\
\theta & =60,240
\end{aligned}
$$

PTS: 2
REF: fall0903a2 STA: A2.A. 68
KEY: basic
27 ANS: 3
$\sqrt{-300}=\sqrt{100} \sqrt{-1} \sqrt{3}$
PTS: 2
REF: 061006a2 STA: A2.N.6
TOP: Square Roots of Negative Numbers
28 ANS: 4
$\frac{2 x+4}{\sqrt{x+2}} \cdot \frac{\sqrt{x+2}}{\sqrt{x+2}}=\frac{2(x+2) \sqrt{x+2}}{x+2}=2 \sqrt{x+2}$
PTS: 2
REF: 011122a2 STA: A2.A. 15
TOP: Rationalizing Denominators
KEY: index = 2
29 ANS: 4 PTS: 2 REF: 011127a2 STA: A2.S. 1
TOP: Analysis of Data
30 ANS: 3

PTS: 2
REF: fall0924a2 STA: A2.S. 4
KEY: range, quartiles, interquartile range, variance
31
ANS: 4
PTS: 2
REF: 061026a2
STA: A2.A. 29
TOP: Sequences
32 ANS: 3
PTS: 2
REF: 011119a2
STA: A2.A. 52
TOP: Families of Functions

33

PTS: 2
KEY: interval
34 ANS: 1
REF: fall0915a2
STA: A2.S. 5
TOP: Normal Distributions

TOP: Defining Functions
35 ANS: $2 \quad$ PTS:
TOP: Completing the Square
36 ANS: 2
$x^{2}-x-6=3 x-6$

$$
\begin{aligned}
x^{2}-4 x & =0 \\
x(x-4) & =0 \\
x & =0,4
\end{aligned}
$$

PTS: 2
REF: 081015a2
STA: A2.A. 3
TOP: Quadratic-Linear Systems
KEY: equations
37 ANS: 3
$27 r^{4-1}=64$

$$
\begin{aligned}
r^{3} & =\frac{64}{27} \\
r & =\frac{4}{3}
\end{aligned}
$$

PTS: 2
38 ANS: 2
REF: 081025a2
TOP: Domain and Range
39 ANS: 1
common difference is $2 . b_{n}=x+2 n$

$$
\begin{aligned}
10 & =x+2(1) \\
8 & =x
\end{aligned}
$$

PTS: 2
REF: 081014a2
STA: A2.A. 29
TOP: Sequences

40 ANS: 1
$-420\left(\frac{\pi}{180}\right)=-\frac{7 \pi}{3}$

PTS: 2 REF: 081002a2 STA: A2.M. 2 TOP: Radian Measure
KEY: radians
41 ANS: 2
PTS: 2
REF: 061011a2 STA: A2.A. 10
TOP: Fractional Exponents as Radicals
42 ANS: 4
$y-2 \sin \theta=3$

$$
\begin{array}{r}
y=2 \sin \theta+3 \\
\mathrm{f}(\theta)=2 \sin \theta+3
\end{array}
$$

PTS: 2
43 ANS: 4
REF: fall0927a2
STA: A2.A. 40
REF: fall0925a2
TOP: Functional Notation
TOP: Permutations
44 ANS: 3

$$
\begin{array}{cc}
x^{2}-3 x-10>0 & \text { or } \\
(x-5)(x+2)>0 & x-5<0 \text { and } x+2<0 \\
x-5>0 \text { and } x+2>0 & x<5 \text { and } x<-2 \\
x>5 \text { and } x>-2 & x<-2 \\
x>5 &
\end{array}
$$

PTS: 2
REF: 011115a2 STA: A2.A. 4
TOP: Quadratic Inequalities
KEY: one variable
45 ANS: 4
$S_{n}=\frac{n}{2}[2 a+(n-1) d]=\frac{21}{2}[2(18)+(21-1) 2]=798$
PTS: 2
REF: 061103a2 STA: A2.A. 35
TOP: Series
KEY: arithmetic
46 ANS: 1
${ }_{5} C_{3}(3 x)^{2}(-2)^{3}=10 \cdot 9 x^{2} \cdot-8=-720 x^{2}$
PTS: 2
REF: fall0919a2
STA: A2.A. 36
REF: fall0913a2
TOP: Binomial Expansions
47 ANS: 3
PTS: 2
TOP: Graphing Trigonometric Functions
48 ANS: 2
$8^{2}=64$
PTS: 2 REF: fall0909a2 STA: A2.A. 18 TOP: Evaluating Logarithmic Expressions

49 ANS: 3
period $=\frac{2 \pi}{b}=\frac{2 \pi}{3 \pi}=\frac{2}{3}$
PTS: 2 REF: 081026a2 STA: A2.A. 70 TOP: Graphing Trigonometric Functions
KEY: recognize
50 ANS: 4
$7^{2}=3^{2}+5^{2}-2(3)(5) \cos A$
$49=34-30 \cos A$
$15=-30 \cos A$
$-\frac{1}{2}=\cos A$
$120=A$
PTS: 2 REF: 081017a2 STA: A2.A. 73 TOP: Law of Cosines
KEY: angle, without calculator
51 ANS: 1

$$
\begin{aligned}
13^{2} & =15^{2}+14^{2}-2(15)(14) \cos C \\
169 & =421-420 \cos C \\
-252 & =-420 \cos C \\
\frac{252}{420} & =\cos C \\
53 & \approx C
\end{aligned}
$$

PTS: 2 REF: 061110a2 STA: A2.A. 73 TOP: Law of Cosines
KEY: find angle
52 ANS: 1
$\frac{\sqrt{3}+5}{\sqrt{3}-5} \cdot \frac{\sqrt{3}+5}{\sqrt{3}+5}=\frac{3+5 \sqrt{3}+5 \sqrt{3}+25}{3-25}=\frac{28+10 \sqrt{3}}{-22}=-\frac{14+5 \sqrt{3}}{11}$
PTS: 2 REF: 061012a2 STA: A2.N. 5 TOP: Rationalizing Denominators
53 ANS: 3
$\frac{59.2}{\sin 74}=\frac{60.3}{\sin C} \quad 180-78.3=101.7$

$$
C \approx 78.3
$$

PTS: 2
REF: 081006a2
STA: A2.A. 75
TOP: Law of Sines - The Ambiguous Case
54 ANS: 4
PTS: 2
TOP: Properties of Logarithms
REF: 061120a2 STA: A2.A. 19
KEY: splitting logs
55 ANS: 1
$2 i^{2}+3 i^{3}=2(-1)+3(-i)=-2-3 i$
PTS: 2
REF: 081004a2
STA: A2.N. 7 TOP: Imaginary Numbers

56 ANS: 3
$68 \% \times 50=34$
PTS: 2 REF: 081013a2 STA: A2.S. 5 TOP: Normal Distributions
KEY: predict
57 ANS: 1
$y \geq x^{2}-x-6$
$y \geq(x-3)(x+2)$
PTS: 2
REF: 061017a2
STA: A2.A. 4
TOP: Quadratic Inequalities
KEY: two variables
58 ANS: 4 PTS: 2 REF: 081005a2 STA: A2.A. 60
TOP: Unit Circle
59 ANS: 3
$\frac{3}{\sqrt{3 a^{2} b}}=\frac{3}{a \sqrt{3 b}} \cdot \frac{\sqrt{3 b}}{\sqrt{3 b}}=\frac{3 \sqrt{3 b}}{3 a b}=\frac{\sqrt{3 b}}{a b}$
PTS: 2
REF: 081019a2
STA: A2.A. 15
TOP: Rationalizing Denominators
KEY: index = 2
60 ANS: 2
PTS: 2
REF: 061108a2
STA: A2.A. 52
TOP: Identifying the Equation of a Graph
61 ANS: 2

$$
\begin{gathered}
x^{3}+x^{2}-2 x=0 \\
x\left(x^{2}+x-2\right)=0 \\
x(x+2)(x-1)=0 \\
x=0,-2,1
\end{gathered}
$$

PTS: 2 REF: 011103a2 STA: A2.A. 26 TOP: Solving Polynomial Equations
62 ANS: 4
$6 x-x^{3}-x^{2}=-x\left(x^{2}+x-6\right)=-x(x+3)(x-2)$
PTS: 2 REF: fall0917a2 STA: A2.A. 7 TOP: Factoring Polynomials
KEY: single variable
63 ANS: 1

$$
\begin{array}{rlrl}
4 a+6=4 a-10.4 a+6 & =-4 a+10 . & \left|4\left(\frac{1}{2}\right)+6\right|-4\left(\frac{1}{2}\right) & =-10 \\
6 \neq-10 & 8 a & =4 & 8-2 \neq-10 \\
a & =\frac{4}{8}=\frac{1}{2} &
\end{array}
$$

PTS: 2
REF: 011106a2 STA: A2.A. 1
TOP: Absolute Value Equations

64 ANS: 4
$(3+\sqrt{5})(3-\sqrt{5})=9-\sqrt{25}=4$
PTS: 2
REF: 081001a2
STA: A2.N. 4
TOP: Operations with Irrational Expressions
KEY: without variables | index $=2$
65 ANS: 3
$\frac{4}{5-\sqrt{13}} \cdot \frac{5+\sqrt{13}}{5+\sqrt{13}}=\frac{4(5+\sqrt{13})}{25-13}=\frac{5+\sqrt{13}}{3}$
PTS: 2
REF: 061116a2 STA: A2.N. 5
TOP: Rationalizing Denominators
66 ANS: 4
$12 x^{4}+10 x^{3}-12 x^{2}=2 x^{2}\left(6 x^{2}+5 x-6\right)=2 x^{2}(2 x+3)(3 x-2)$
PTS: 2
REF: 061008a2 STA: A2.A. 7
TOP: Factoring Polynomials
KEY: single variable
67 ANS: 2
$\frac{11 \pi}{12} \cdot \frac{180}{\pi}=165$
PTS: 2
REF: 061002a2
STA: A2.M. 2
TOP: Radian Measure
KEY: degrees
68 ANS: 2
$\tan \left(126^{\circ} 43^{1}\right) \quad-1.340758784$

PTS: 2
REF: 061115a2
STA: A2.A. 66
69 ANS: 3
$\left(\frac{2}{3}\right)^{2}+\cos ^{2} A=1$

$$
\sin 2 A=2 \sin A \cos A
$$

$\cos ^{2} A=\frac{5}{9}$
$=2\left(\frac{2}{3}\right)\left(\frac{\sqrt{5}}{3}\right)$
$\cos A=+\frac{\sqrt{5}}{3}, \sin A$ is acute. $\quad=\frac{4 \sqrt{5}}{9}$
PTS: 2
REF: 011107a2 STA: A2.A. 77
TOP: Double Angle Identities
KEY: evaluating

70 ANS: 3

$$
\begin{aligned}
75000 & =25000 e^{.0475 t} \\
3 & =e^{.0475 t} \\
\ln 3 & =\ln e^{.0475 t} \\
\frac{\ln 3}{.0475} & =\frac{.0475 t \cdot \ln e}{.0475} \\
23.1 & \approx t
\end{aligned}
$$

PTS: 2 REF: 061117a2 STA: A2.A. 6 TOP: Exponential Growth
71 ANS: 3
$a_{n}=5(-2)^{n-1}$
$a_{15}=5(-2)^{15-1}=81,920$
PTS: 2 REF: 011105a2 STA: A2.A. 32 TOP: Sequences
72 ANS: 3
$b^{2}-4 a c=(-10)^{2}-4(1)(25)=100-100=0$
PTS: 2 REF: 011102a2 STA: A2.A. 2 TOP: Using the Discriminant
KEY: determine nature of roots given equation
73 ANS: 2
$\left(\frac{w^{-5}}{w^{-9}}\right)^{\frac{1}{2}}=\left(w^{4}\right)^{\frac{1}{2}}=w^{2}$
PTS: 2 REF: 081011a2 STA: A2.A. 8 TOP: Negative and Fractional Exponents
74 ANS: 4
(4) fails the horizontal line test. Not every element of the range corresponds to only one element of the domain.

PTS: 2 REF: fall0906a2 STA: A2.A. 43 TOP: Defining Functions
75 ANS: 2
PTS: 2
REF: 011126a2 STA: A2.A. 49
TOP: Equations of Circles
76 ANS: $2 \quad$ PTS: 2
REF: fall0926a2 STA: A2.A. 46
TOP: Transformations with Functions and Relations
77 ANS: $4 \quad$ PTS: 2
TOP: Analysis of Data
78 ANS: 1 PTS: 2 REF: 011117a2 STA: A2.S.9
TOP: Differentiating Permutations and Combinations
79 PTS: 2 REF: fall0923a2 STA: A2.A. 39
TOP: Domain and Range
KEY: real domain
80 ANS: 2
$\cos \left(-305^{\circ}+360^{\circ}\right)=\cos \left(55^{\circ}\right)$
PTS: 2 REF: 061104a2 STA: A2.A. 57 TOP: Reference Angles

81 ANS: 4
$s=\theta r=2 \cdot 4=8$
PTS: 2 REF: fall0922a2 STA: A2.A. 61 TOP: Arc Length
KEY: arc length
82 ANS: 1

PTS: 2
REF: 011123a2
STA: A2.A. 71
TOP: Graphing Trigonometric Functions
83 ANS: 2
$\mathrm{f}^{-1}(x)=\log _{4} x$
PTS: 2
REF: fall0916a2
STA: A2.A. 54
TOP: Graphing Logarithmic Functions
84 ANS: 1
PTS: 2
REF: fall0914a2 STA: A2.A. 9
TOP: Negative and Fractional Exponents
85 ANS: 3

$$
\begin{array}{rlrl}
4^{x^{2}+4 x} & =2^{-6} . & 2 x^{2}+8 x & =-6 \\
\left(2^{2}\right)^{x^{2}+4 x} & =2^{-6} & 2 x^{2}+8 x+6 & =0 \\
2^{2 x^{2}+8 x} & =2^{-6} & x^{2}+4 x+3 & =0 \\
(x+3)(x+1) & =0 \\
x & =-3 x=-1
\end{array}
$$

PTS: 2
REF: 061015a2 STA: A2.A. 27
TOP: Exponential Equations
KEY: common base shown
86 ANS: 2 PTS:
REF: 081010a2
STA: A2.A. 55
TOP: Trigonometric Ratios
87 ANS: $3 \quad$ PTS: 2
REF: 081007a2
STA: A2.A. 64
TOP: Using Inverse Trigonometric Functions
KEY: basic
88 ANS: 2
$x^{2}-2 x+y^{2}+6 y=-3$
$x^{2}-2 x+1+y^{2}+6 y+9=-3+1+9$
$(x-1)^{2}+(y+3)^{2}=7$
PTS: 2 REF: 061016a2 STA: A2.A. 47 TOP: Equations of Circles
89 ANS: 4
$\frac{3 \pm \sqrt{(-3)^{2}-4(1)(-9)}}{2(1)}=\frac{3 \pm \sqrt{45}}{2}=\frac{3 \pm 3 \sqrt{5}}{2}$
PTS: 2
REF: 061009a2
STA: A2.A. 25
TOP: Quadratic Formula

90 ANS: 2
$\frac{2 \pi}{b}=\frac{2 \pi}{3}$
PTS: 2 REF: 061111a2 STA: A2.A. 69
TOP: Properties of Graphs of Trigonometric Functions KEY: period
91 ANS: 4 PTS: 2 REF: 061005a2 STA: A2.A. 50
TOP: Solving Polynomial Equations
92 ANS: 1 PTS: 2 REF: 011112a2
TOP: Using Inverse Trigonometric Functions
STA: A2.A. 64
ANS: 3
$2 \pi \cdot \frac{5}{12}=\frac{10 \pi}{12}=\frac{5 \pi}{6}$
PTS: 2 REF: 061125a2 STA: A2.M. 1 TOP: Radian Measure
94 ANS: 1
$6 x-7 \leq 5 \quad 6 x-7 \geq-5$
$6 x \leq 12 \quad 6 x \geq 2$
$x \leq 2 \quad x \geq \frac{1}{3}$
PTS: 2 REF: fall0905a2 STA: A2.A. 1 TOP: Absolute Value Inequalities
KEY: graph
95 ANS: 4
Students entering the library are more likely to spend more time studying, creating bias.
PTS: 2 REF: fall0904a2 STA: A2.S. 2 TOP: Analysis of Data
96 ANS: 3
PTS: 2
REF: 011104a2
STA: A2.A. 64
TOP: Using Inverse Trigonometric Functions
KEY: unit circle
97 ANS: 4
$4 a b \sqrt{2 b}-3 a \sqrt{9 b^{2}} \sqrt{2 b}+7 a b \sqrt{6 b}=4 a b \sqrt{2 b}-9 a b \sqrt{2 b}+7 a b \sqrt{6 b}=-5 a b \sqrt{2 b}+7 a b \sqrt{6 b}$
PTS: 2
REF: fall0918a2
STA: A2.A. 14
TOP: Operations with Radicals
KEY: with variables | index $=2$
98 ANS: 4 PTS: 2
REF: 011124a2 STA: A2.A. 18
TOP: Evaluating Logarithmic Expressions
99 PTS: 2 REF: 011111a2 STA: A2.N.8
TOP: Conjugates of Complex Numbers
100 ANS: 1
${ }_{10} C_{4}=210$
PTS: 2 REF: 061113a2 STA: A2.S. 11 TOP: Combinations
101 ANS: 2
PTS: 2
REF: 081024a2 STA: A2.N. 8
TOP: Conjugates of Complex Numbers

102 ANS: 3
$x=5^{4}=625$
PTS: 2
REF: 061106a2
KEY: basic
103
ANS: 1
PTS: 2
STA: A2.A. 28
TOP: Logarithmic Equations

TOP: Identifying the Equation of a Graph
104 ANS: 4
PTS: 2
TOP: Average Known with Missing Data
105 ANS: 4

$$
\begin{aligned}
9^{3 x+1} & =27^{x+2} . \\
\left(3^{2}\right)^{3 x+1} & =\left(3^{3}\right)^{x+2} \\
3^{6 x+2} & =3^{3 x+6} \\
6 x+2 & =3 x+6 \\
3 x & =4 \\
x & =\frac{4}{3}
\end{aligned}
$$

PTS: 2
REF: 081008a2
STA: A2.A. 27
TOP: Exponential Equations
KEY: common base not shown
106 ANS: 2
$\frac{10}{\sin 35}=\frac{13}{\sin B} .35+48<180$

$$
B \approx 48,132 \quad 35+132<180
$$

PTS: 2
REF: 011113a2
STA: A2.A. 75
REF: 011315a2
TOP: Law of Sines - The Ambiguous Case
107 ANS: 2
PTS: 2
STA: A2.A. 55
TOP: Trigonometric Ratios
ANS: 3
$\frac{-b}{a}=\frac{-6}{2}=-3 . \frac{c}{a}=\frac{4}{2}=2$
PTS: 2
REF: 011121a2
STA: A2.A. 21
TOP: Roots of Quadratics
KEY: basic
109 ANS: 3
$\frac{\sin ^{2} \theta+\cos ^{2} \theta}{1-\sin ^{2} \theta}=\frac{1}{\cos ^{2} \theta}=\sec ^{2} \theta$
PTS: 2
REF: 061123a2
STA: A2.A. 58
TOP: Reciprocal Trigonometric Relationships

110 ANS: 2
$\frac{\frac{x}{4}-\frac{1}{x}}{\frac{1}{2 x}+\frac{1}{4}}=\frac{\frac{x^{2}-4}{4 x}}{\frac{2 x+4}{8 x}}=\frac{(x+2)(x-2)}{4 x} \times \frac{8 x}{2(x+2)}=x-2$
PTS: 2 REF: fall0920a2 STA: A2.A. 17 TOP: Complex Fractions
111 ANS: 2 PTS: 2 REF: 061021a2 STA: A2.S.8
TOP: Correlation Coefficient
112 ANS: 1
${ }_{9} C_{3} a^{6}(-4 b)^{3}=-5376 a^{6} b^{3}$
PTS: 2 REF: 061126a2 STA: A2.A. 36 TOP: Binomial Expansions
113 ANS: 3

n	0	1	2	Σ
$n^{2}+2^{n}$	$0^{2}+2^{0}=1$	$1^{2}+2^{2}=3$	$2^{2}+2^{2}=8$	12

PTS: 2 REF: fall0911a2 STA: A2.N. 10 TOP: Sigma Notation
KEY: basic
114 ANS: 4
$b^{2}-4 a c=3^{2}-4(9)(-4)=9+144=153$
PTS: 2 REF: 081016a2 STA: A2.A. 2 TOP: Using the Discriminant
KEY: determine nature of roots given equation
115 ANS: 1
$\cos ^{2} \theta-\cos 2 \theta=\cos ^{2} \theta-\left(\cos ^{2} \theta-\sin ^{2} \theta\right)=\sin ^{2} \theta$
PTS: 2 REF: 061024a2 STA: A2.A. 77 TOP: Double Angle Identities
KEY: simplifying
116 ANS: 2
${ }_{15} C_{8}=6,435$
PTS: 2 REF: 081012a2 STA: A2.S. 11 TOP: Combinations
117 ANS: 2
PTS: 2
REF: 011114a2 STA: A2.N. 3
TOP: Operations with Polynomials
118 ANS: 3
(1) and (4) fail the horizontal line test and are not one-to-one. Not every element of the range corresponds to only one element of the domain. (2) fails the vertical line test and is not a function. Not every element of the domain corresponds to only one element of the range.

PTS: 2 REF: 081020a2 STA: A2.A. 43 TOP: Defining Functions

119 ANS: 1
$8 \times 8 \times 7 \times 1=448$. The first digit cannot be 0 or 5 . The second digit cannot be 5 or the same as the first digit. The third digit cannot be 5 or the same as the first or second digit.

PTS: 2 REF: 011125a2 STA: A2.S. 10 TOP: Permutations
120 ANS: 1
$\sqrt{12^{2}-6^{2}}=\sqrt{108}=\sqrt{36} \sqrt{3}=6 \sqrt{3} . \cot J=\frac{A}{O}=\frac{6}{6 \sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3}$
PTS: 2 REF: 011120a2 STA: A2.A. 55 TOP: Trigonometric Ratios
121 ANS: 2
$6\left(x^{2}-5\right)=6 x^{2}-30$
PTS: 2 REF: 011109a2 STA: A2.A. 42 TOP: Compositions of Functions
KEY: variables
122 ANS: 3 PTS: 2
REF: fall0910a2 STA: A2.A.76
TOP: Angle Sum and Difference Identities KEY: simplifying
123 ANS: 3
PTS: 2
REF: 061001a2
STA: A2.A. 30
TOP: Sequences
124 ANS: $3 \quad$ PTS: 2
REF: 061007a2
STA: A2.S. 9
TOP: Differentiating Permutations and Combinations
125 ANS: 2
$K=\frac{1}{2}(10)(18) \sin 120=45 \sqrt{3} \approx 78$
PTS: 2 REF: fall0907a2 STA: A2.A.74 TOP: Using Trigonometry to Find Area
KEY: basic
126 ANS: 3
$3 x+16=(x+2)^{2} \quad .-4$ is an extraneous solution.
$3 x+16=x^{2}+4 x+4$
$0=x^{2}+x-12$
$0=(x+4)(x-3)$
$x=-4 x=3$
PTS: 2
REF: 061121a2
STA: A2.A. 22
TOP: Solving Radicals
KEY: extraneous solutions
127 ANS: 4
PTS: 2
REF: fall0908a2 STA: A2.A.38
TOP: Defining Functions
KEY: graphs
128 ANS: $3 \quad$ PTS: 2
REF: 061119a2
STA: A2.A. 65
TOP: Graphing Trigonometric Functions
ANS: 1
$\sqrt[4]{16 x^{2} y^{7}}=16^{\frac{1}{4}} x^{\frac{2}{4}} y^{\frac{7}{4}}=2 x^{\frac{1}{2}} y^{\frac{7}{4}}$
PTS: 2
REF: 061107a2
STA: A2.A. 11
TOP: Radicals as Fractional Exponents

130 ANS: 2

$$
\begin{aligned}
x^{2}+2 & =6 x \\
x^{2}-6 x & =-2 \\
x^{2}-6 x+9 & =-2+9 \\
(x-3)^{2} & =7
\end{aligned}
$$

PTS: 2 REF: 011116a2 STA: A2.A. 24 TOP: Completing the Square
131 ANS: 2
$4^{2 x+5}=8^{3 x}$
$\left(2^{2}\right)^{2 x+5}=\left(2^{3}\right)^{3 x}$
$2^{4 x+10}=2^{9 x}$
$4 x+10=9 x$
$10=5 x$
$2=x$
PTS: 2
REF: 061105a2
STA: A2.A. 27
TOP: Exponential Equations
KEY: common base not shown
132 ANS: 4
$\frac{2 \pi}{b}=\frac{2 \pi}{\frac{1}{3}}=6 \pi$
PTS: 2
REF: 061027a2 STA: A2.A. 69
TOP: Properties of Graphs of Trigonometric Functions
KEY: period
133 ANS: 2
The roots are $-1,2,3$.
PTS: 2
REF: 081023a2
STA: A2.A. 50
TOP: Solving Polynomial Equations
134
ANS: 3
$\frac{3^{-2}}{(-2)^{-3}}=\frac{\frac{1}{9}}{-\frac{1}{8}}=-\frac{8}{9}$
PTS: 2
REF: 061003a2
STA: A2.N. 1
TOP: Negative and Fractional Exponents

Algebra 2/Trigonometry Multiple Choice Regents Exam Questions

Answer Section

135
ANS: 1
$5 x+29=(x+3)^{2} \quad \cdot(-5)+3$ shows an extraneous solution.
$5 x+29=x^{2}+6 x+9$
$0=x^{2}+x-20$
$0=(x+5)(x-4)$
$x=-5,4$

PTS: 2 REF: 061213a2 STA: A2.A. 22 TOP: Solving Radicals
KEY: extraneous solutions
136 ANS: 3

$$
\begin{aligned}
1000 & =500 e^{.05 t} \\
2 & =e^{.05 t} \\
\ln 2 & =\ln e^{.05 t} \\
\frac{\ln 2}{.05} & =\frac{.05 t \cdot \ln e}{.05}
\end{aligned}
$$

$$
13.9 \approx t
$$

PTS: 2 REF: 061313a2 STA: A2.A. 6 TOP: Exponential Growth

137

138
ANS: 4
$\frac{x}{x-\sqrt{x}} \times \frac{x+\sqrt{x}}{x+\sqrt{x}}=\frac{x^{2}+x \sqrt{x}}{x^{2}-x}=\frac{x(x+\sqrt{x})}{x(x-1)}=\frac{x+\sqrt{x}}{x-1}$
PTS: 2 REF: 061325a2 STA: A2.A. 15 TOP: Rationalizing Denominators
KEY: index $=2$
ANS: 4
$\cos 2 A=1-2 \sin ^{2} A=1-2\left(\frac{1}{3}\right)^{2}=1-\frac{2}{9}=\frac{7}{9}$
PTS: 2
KEY: evaluating
139 ANS: 2
REF: 011311a2
STA: A2.A. 77
TOP: Double Angle Identities
ANS: 2 PTS: 2
TOP: Proving Trigonometric Identities

140 ANS: 2

$$
\begin{aligned}
320 & =10(2)^{\frac{t}{60}} \\
32 & =(2)^{\frac{t}{60}} \\
\log 32 & =\log (2)^{\frac{t}{60}} \\
\log 32 & =\frac{t \log 2}{60} \\
\frac{60 \log 32}{\log 2} & =t \\
300 & =t
\end{aligned}
$$

PTS: 2
REF: 011205a2 STA: A2.A. 6
TOP: Exponential Growth
ANS: 2
Top $6.7 \%=1.5$ s.d. $+\sigma=1.5(104)+576=732$
PTS: 2
REF: 011420a2 STA: A2.S. 5
TOP: Normal Distributions
KEY: predict
142
$\frac{3 y}{2 y-6}+\frac{9}{6-2 y}=\frac{3 y}{2 y-6}-\frac{9}{2 y-6}=\frac{3 y-9}{2 y-6}=\frac{3(y-3)}{2(y-3)}=\frac{3}{2}$
PTS: 2
REF: 011325a2 STA: A2.A. 16
TOP: Addition and Subtraction of Rationals
143 ANS: 2
$\frac{1-\frac{4}{x}}{1-\frac{2}{x}-\frac{8}{x^{2}}} \times \frac{x^{2}}{x^{2}}=\frac{x^{2}-4 x}{x^{2}-2 x-8}=\frac{x(x-4)}{(x-4)(x+2)}=\frac{x}{x+2}$
PTS: 2
REF: 061305a2 STA: A2.A. 17
ANS: 3
$5000\left(1+\frac{.03}{4}\right)^{4 \cdot 5}=5000(1.0075)^{20} \approx 5805.92$
PTS: 2
145
ANS: 2
TOP: Law of Sines
REF: 011410a2 STA: A2.A. 12
PTS: 2
REF: 061322a2
KEY: modeling

TOP: Evaluating Exponential Expressions STA: A2.A. 73

146 ANS: 4
$x=2 y \cdot y^{2}-(3 y)^{2}+32=0 \quad . \quad x=3(-2)=-6$

$$
\begin{aligned}
y^{2}-9 y^{2} & =-32 \\
-8 y^{2} & =-32 \\
y^{2} & =4 \\
y & = \pm 2
\end{aligned}
$$

PTS: 2
REF: 061312a2 STA: A2.A. 3 TOP: Quadratic-Linear Systems
KEY: equations
147 ANS: 3
If $\csc P>0, \sin P>0$. If $\cot P<0$ and $\sin P>0, \cos P<0$

148 ANS: 2
TOP: Differentiati
149 ANS: 1

$\quad \frac{{ }_{6} P_{6}}{3!2!}=\frac{720}{12}=60$
PTS: 2 REF: 011324a2 STA: A2.S. 10 TOP: Permutations
150 ANS: 3
${ }_{3} C_{2}\left(2 x^{4}\right)^{1}(-y)^{2}=6 x^{4} y^{2}$
PTS: 2
REF: 011215a2
STA: A2.A. 36
TOP: Binomial Expansions
151
ANS: 4
$2 \cos \theta=1$

$$
\cos \theta=\frac{1}{2}
$$

$$
\theta=\cos ^{-1} \frac{1}{2}=60,300
$$

PTS: 2
REF: 061203a2
STA: A2.A. 68
TOP: Trigonometric Equations
KEY: basic
152 ANS: 4
$g\left(\frac{1}{2}\right)=\frac{1}{\frac{1}{2}}=2 . f(2)=4(2)-2^{2}=4$
PTS: 2
REF: 011204a2
STA: A2.A. 42
TOP: Compositions of Functions
KEY: numbers

153 ANS: 3
$6 n^{-1}<4 n^{-1}$. Flip sign when multiplying each side of the inequality by n, since a negative number.
$\frac{6}{n}<\frac{4}{n}$
$6>4$
PTS: 2 REF: 061314a2 STA: A2.N. 1 TOP: Negative and Fractional Exponents
154 ANS: 4
$\frac{x^{2}+9 x-22}{x^{2}-121} \div(2-x)=\frac{(x+11)(x-2)}{(x+11)(x-11)} \cdot \frac{-1}{x-2}=\frac{-1}{x-11}$
PTS: 2 REF: 011423a2 STA: A2.A. 16 TOP: Multiplication and Division of Rationals
KEY: Division
155 ANS: 3
$42=\frac{1}{2}(a)(8) \sin 61$
$42 \approx 3.5 a$
$12 \approx a$
PTS: 2 REF: 011316a2 STA: A2.A. 74 TOP: Using Trigonometry to Find Area
KEY: basic
156 ANS: 2
$2^{2} \cdot 3=12.6^{2} d=12$
$4^{2} \cdot \frac{3}{4}=12 \quad 36 d=12$

$$
d=\frac{1}{3}
$$

PTS: 2
REF: 061310a2
STA: A2.A. 5
TOP: Inverse Variation
157 ANS: 4

$$
\begin{gathered}
4+3(2-x)+3(3-x)+3(4-x)+3(5-x) \\
4+6-3 x+9-3 x+12-3 x+15-3 x \\
46-12 x
\end{gathered}
$$

PTS: 2
KEY: advanced
158 ANS: 1
REF: 061315a2
STA: A2.N. 10
TOP: Sigma Notation
PTS: 2
REF: 061316a2
STA: A2.S. 8
TOP: Correlation Coefficient
159
ANS: 2
$\frac{-\frac{3}{32} a^{3} b^{4}}{\frac{1}{64} a^{5} b^{3}}=-\frac{6 b}{a^{2}}$
PTS: 2
REF: 061326a2
STA: A2.A. 31
TOP: Sequences

160 ANS: $2 \quad$ PTS: 2
TOP: Conjugates of Complex Numbers
161 ANS: 2
$\frac{8 \pi}{5} \cdot \frac{180}{\pi}=288$
PTS: 2
REF: 061302a2
KEY: degrees
162 ANS: 1
PTS: 2
STA: A2.M. 2 TOP: Radian Measure

TOP: Negative Exponents
ANS: 1
$\frac{9}{\sin A}=\frac{10}{\sin 70} .58^{\circ}+70^{\circ}$ is possible. $122^{\circ}+70^{\circ}$ is not possible.

$$
A=58
$$

PTS: 2 REF: 011210a2 STA: A2.A. 75 TOP: Law of Sines - The Ambiguous Case
ANS: 3

$$
x^{2}+y^{2}-16 x+6 y+53=0
$$

$x^{2}-16 x+64+y^{2}+6 y+9=-53+64+9$

$$
(x-8)^{2}+(y+3)^{2}=20
$$

PTS: 2
REF: 011415a2
STA: A2.A. 47
TOP: Equations of Circles
ANS: 3

$$
\begin{array}{r}
3 x^{5}-48 x=0 \\
3 x\left(x^{4}-16\right)=0 \\
3 x\left(x^{2}+4\right)\left(x^{2}-4\right)=0 \\
3 x\left(x^{2}+4\right)(x+2)(x-2)=0
\end{array}
$$

PTS: 2
REF: 011216a2
STA: A2.A. 26
TOP: Solving Polynomial Equations
166

$$
\begin{aligned}
& \text { ANS: } 2 \\
& \log 9-\log 20 \\
& \log 3^{2}-\log (10 \cdot 2) \\
& 2 \log 3-(\log 10+\log 2) \\
& 2 b-(1+a) \\
& 2 b-a-1
\end{aligned}
$$

PTS: 2
REF: 011326a2
STA: A2.A. 19 TOP: Properties of Logarithms
KEY: expressing logs algebraically

167
ANS: 2
$\log x^{2}=\log 3 a+\log 2 a$
$2 \log x=\log 6 a^{2}$

$$
\log x=\frac{\log 6}{2}+\frac{\log a^{2}}{2}
$$

$$
\log x=\frac{1}{2} \log 6+\frac{2 \log a}{2}
$$

$$
\log x=\frac{1}{2} \log 6+\log a
$$

PTS: 2 REF: 011224a2 STA: A2.A. 19 TOP: Properties of Logarithms
KEY: splitting logs
168 ANS: 3
$\frac{4}{-2}=-2$
PTS: 2 REF: 011304a2 STA: A2.A. 31 TOP: Sequences
169 ANS: 1
$\sin (180+x)=(\sin 180)(\cos x)+(\cos 180)(\sin x)=0+(-\sin x)=-\sin x$

PTS: 2 REF: 011318a2 STA: A2.A. 76 TOP: Angle Sum and Difference Identities
KEY: identities
170 ANS: 2
sum: $\frac{-b}{a}=\frac{4}{6}=\frac{2}{3}$. product: $\frac{c}{a}=\frac{-12}{6}=-2$
PTS: 2 REF: 011209a2 STA: A2.A. 20 TOP: Roots of Quadratics
171 ANS: 2 PTS: 2 REF: 061205a2 STA: A2.A. 34
TOP: Sigma Notation
172 ANS: 2
The binomials are conjugates, so use FL.

	PTS: 2	REF: 011206a2	STA: A2.N.3	TOP: Operations with Polynomials
173	ANS: 3	PTS: 2	REF: 061224a2	STA: A2.A.63
	TOP: Domain and Range			
174	ANS: 1	PTS: 2	REF: 061223a2	STA: A2.S.15
	TOP: Binomial Probability	KEY: modeling		
175	ANS: 4	PTS: 2	REF: 011219a2	STA: A2.A.52
TOP: Properties of Graphs of Functions and Relations				
176	ANS: 3	PTS: 2	REF: 061308ge	STA: A2.A.51
TOP: Domain and Range				

177 ANS: 4

$$
\begin{aligned}
8^{3 k+4} & =4^{2 k-1} . \\
\left(2^{3}\right)^{3 k+4} & =\left(2^{2}\right)^{2 k-1} \\
2^{9 k+12} & =2^{4 k-2} \\
9 k+12 & =4 k-2 \\
5 k & =-14 \\
k & =-\frac{14}{5}
\end{aligned}
$$

PTS: 2
REF: 011309a2
STA: A2.A. 27
TOP: Exponential Equations
KEY: common base not shown
178 ANS: 4
$\frac{13}{\sin 40}=\frac{20}{\sin M} .81+40<180 .(180-81)+40<180$

$$
M \approx 81
$$

PTS: 2
REF: 061327a2 STA: A2.A.75
TOP: Law of Sines - The Ambiguous Case
179 ANS: 3
$s=\theta r=\frac{2 \pi}{8} \cdot 6=\frac{3 \pi}{2}$

PTS: 2
REF: 061212a2
STA: A2.A. 61
TOP: Arc Length
KEY: arc length
180 ANS: 3
PTS: 2
REF: 011305a2 STA: A2.A. 38
TOP: Defining Functions
KEY: graphs
181
ANS: 2
$x^{3}+3 x^{2}-4 x-12$
$x^{2}(x+3)-4(x+3)$
$\left(x^{2}-4\right)(x+3)$
$(x+2)(x-2)(x+3)$
PTS: 2
REF: 061214a2
STA: A2.A. 7
TOP: Factoring by Grouping
182
ANS: 3
$\sqrt[3]{4^{3} a^{15} a}=4 a^{5} \sqrt[3]{a}$
PTS: 2
REF: 061204a2
STA: A2.A. 13
TOP: Simplifying Radicals
KEY: index > 2

183 ANS: 1

PTS: 2
REF: 061225a2
STA: A2.S. 8
184 ANS: 3
$-\sqrt{2} \sec x=2$

$$
\begin{aligned}
\sec x & =-\frac{2}{\sqrt{2}} \\
\cos x & =-\frac{\sqrt{2}}{2} \\
x & =135,225
\end{aligned}
$$

PTS: 2
REF: 011322a2
STA: A2.A. 68
TOP: Trigonometric Equations
KEY: reciprocal functions
185 ANS: 2
PTS: 2
REF: 011225a2
STA: A2.A. 43
TOP: Defining Functions
186 ANS: 3
$\frac{4 x-5}{3}>1$ or $\frac{4 x-5}{3}<-1$

$$
\begin{array}{rlrl}
4 x-5 & >3 & 4 x-5 & <-3 \\
4 x & >8 & 4 x & <2 \\
x & >2 & x & <\frac{1}{2}
\end{array}
$$

PTS: 2 REF: 061209a2 STA: A2.A. 1 TOP: Absolute Value Inequalities
KEY: graph
ANS: 3
$S_{n}=\frac{n}{2}[2 a+(n-1) d]=\frac{19}{2}[2(3)+(19-1) 7]=1254$

PTS: 2 REF: 011202a2 STA: A2.A. 35 TOP: Summations
KEY: arithmetic
188 ANS: 3
${ }_{8} C_{3} \cdot x^{8-3} \cdot(-2)^{3}=56 x^{5} \cdot(-8)=-448 x^{5}$
PTS: 2 REF: 011308a2 STA: A2.A. 36 TOP: Binomial Expansions

189 ANS: 4

PTS: 2 REF: 061217a2 STA: A2.A. 66 TOP: Determining Trigonometric Functions
190 ANS: 1
$5 \cdot \frac{180}{\pi} \approx 286$
PTS: 2 REF: 011427a2 STA: A2.M. 2 TOP: Radian Measure
KEY: degrees
191 ANS: $1 \quad$ PTS: 2
TOP: Negative and Fractional Exponents
192 ANS: 4 PTS: 2 REF: 011409a2 STA: A2.S. 10
TOP: Permutations
193 ANS: $3 \quad$ PTS: 2
REF: 011422a2 STA: A2.A.54
TOP: Graphing Logarithmic Functions
194 ANS: 1
$\frac{1}{2}(7.4)(3.8) \sin 126 \approx 11.4$
PTS: 2 REF: 011218a2 STA: A2.A.74 TOP: Using Trigonometry to Find Area
KEY: basic
195 ANS: 1
$2 x-1>5.2 x-1<-5$

$$
\begin{array}{rlrl}
2 x & >6 & 2 x & >-4 \\
x & >3 & x & <-2
\end{array}
$$

PTS: 2 REF: 061307a2 STA: A2.A. 1 TOP: Absolute Value Inequalities
KEY: graph
ANS: 1 PTS: 2
REF: 061317a2 STA: A2.S.9
TOP: Differentiating Permutations and Combinations
197 ANS: $4 \quad$ PTS: 2
REF: 011201a2
STA: A2.S. 2
TOP: Analysis of Data
198 ANS: 3
$20 \cdot 2=-5 t$

$$
-8=t
$$

PTS: 2 REF: 011412a2 STA: A2.A. 5 TOP: Inverse Variation

199 ANS: 4
$\frac{2 \pi}{b}=30$
$b=\frac{\pi}{15}$
PTS: 2 REF: 011227a2 STA: A2.A. 72
TOP: Identifying the Equation of a Trigonometric Graph
200 ANS: 3
sum of the roots, $\frac{-b}{a}=\frac{-(-9)}{4}=\frac{9}{4}$. product of the roots, $\frac{c}{a}=\frac{3}{4}$
PTS: 2 REF: 061208a2 STA: A2.A. 21 TOP: Roots of Quadratics
KEY: basic
201 ANS: 1
(4) shows the strongest linear relationship, but if $r<0, b<0$. The Regents announced that a correct solution was not provided for this question and all students should be awarded credit.

PTS: 2
REF: 011223a2
STA: A2.S. 8
TOP: Correlation Coefficient
202 ANS: 2
$\begin{array}{rrr}\frac{5}{\sin 32} & =\frac{8}{\sin E} & 57.98+32<180 \\ E & \approx 57.98 & (180-57.98)+32<180\end{array}$
PTS: 2
REF: 011419a2
203 ANS: 1
PTS: 2
STA: A2.A. 75
REF: 011416a2
KEY: real domain
TOP: Law of Sines - The Ambiguous Case
TOP: Domain and Range
STA: A2.A. 39

ANS: 4

PTS: 2 REF: 061222a2 STA: A2.A. 50 TOP: Solving Polynomial Equations
205 ANS: 1
$\cos (A-B)=\left(\frac{5}{13}\right)\left(-\frac{3}{5}\right)+\left(\frac{12}{13}\right)\left(\frac{4}{5}\right)=-\frac{15}{65}+\frac{48}{65}=\frac{33}{65}$
PTS: 2
REF: 011214a2 STA: A2.A. 76
TOP: Angle Sum and Difference Identities
KEY: evaluating
206 ANS: 4
PTS: 2
REF: 011406a2
TOP: Analysis of Data
207 ANS: $1 \quad$ PTS: 2
REF: 061202a2
STA: A2.S. 1

TOP: Domain and Range
PTS: 2
REF: 061306a2 STA: A2.A.72
TOP: Identifying the Equation of a Trigonometric Graph

209 ANS: 2
Since the coefficient of t is greater than $0, r>0$.
PTS: 2
REF: 011303a2 STA: A2.S. 8
TOP: Correlation Coefficient
210 ANS: 4

$$
(a-1)^{2}+(a-2)^{2}+(a-3)^{2}+(a-4)^{2}
$$

$\left(a^{2}-2 a+1\right)+\left(a^{2}-4 a+4\right)+\left(a^{2}-6 a+9\right)+\left(a^{2}-8 a+16\right)$

$$
4 a^{2}-20 a+30
$$

PTS: 2
REF: 011414a2 STA: A2.N. 10
KEY: advanced
211 ANS: 3
PTS: 2
REF: 061219a2
STA: A2.N. 8
TOP: Conjugates of Complex Numbers
212 ANS: 2 PTS: 2
TOP: Defining Functions
213 ANS: 3

$$
\begin{gathered}
3 x^{3}-5 x^{2}-48 x+80 \\
x^{2}(3 x-5)-16(3 x-5) \\
\left(x^{2}-16\right)(3 x-5) \\
(x+4)(x-4)(3 x-5)
\end{gathered}
$$

PTS: 2
REF: 011317a2
STA: A2.A. 7
TOP: Factoring by Grouping
214 ANS: 1

$$
\begin{aligned}
\frac{6}{\sin 35} & =\frac{10}{\sin N} \\
N & \approx 73 \\
73+35 & <180 \\
(180-73)+35 & <180
\end{aligned}
$$

PTS: 2
REF: 061226a2
STA: A2.A. 75
TOP: Law of Sines - The Ambiguous Case
215 ANS: 3
$\sqrt[3]{6 a^{4} b^{2}}+\sqrt[3]{(27 \cdot 6) a^{4} b^{2}}$

$$
\begin{gathered}
a \sqrt[3]{6 a b^{2}}+3 a \sqrt[3]{6 a b^{2}} \\
4 a \sqrt[3]{6 a b^{2}}
\end{gathered}
$$

PTS: 2
REF: 011319a2
STA: A2.N. 2
TOP: Operations with Radicals
216
ANS: 4
$\frac{10}{4}=2.5$
PTS: 2
REF: 011217a2
STA: A2.A. 29
TOP: Sequences

217 ANS: 2
$\tan 30=\frac{\sqrt{3}}{3} . \operatorname{Arccos} \frac{\sqrt{3}}{k}=30$
$\frac{\sqrt{3}}{k}=\cos 30$

$$
k=2
$$

PTS: 2
REF: 061323a2
STA: A2.A. 64
TOP: Using Inverse Trigonometric Functions
KEY: advanced
218 ANS: 2
$\frac{x^{-1}+1}{x+1}=\frac{\frac{1}{x}+1}{x+1}=\frac{\frac{1+x}{x}}{x+1}=\frac{1}{x}$
PTS: 2
REF: 011211a2
STA: A2.A. 9
TOP: Negative Exponents
219 ANS: 2
$\sin S=\frac{8}{17}$

$S=\sin ^{-1} \frac{8}{17}$
$S \approx 28^{\circ} 4^{\prime}$
PTS: 2 REF: 061311a2 STA: A2.A. 55 TOP: Trigonometric Ratios
220 ANS: 3
$h(-8)=\frac{1}{2}(-8)-2=-4-2=-6 . g(-6)=\frac{1}{2}(-6)+8=-3+8=5$
PTS: 2 REF: 011403a2 STA: A2.A. 42 TOP: Compositions of Functions
KEY: numbers
221 ANS: 4
${ }_{3} C_{2}\left(\frac{5}{8}\right)^{2}\left(\frac{3}{8}\right)^{1}=\frac{225}{512}$
PTS: 2
REF: 011221a2
STA: A2.S. 15
TOP: Binomial Probability
KEY: spinner

222 ANS: 3
$\frac{a+\frac{b}{c}}{d-\frac{b}{c}}=\frac{\frac{a c+b}{c}}{\frac{c d-b}{c}}=\frac{a c+b}{c} \cdot \frac{c}{c d-b}=\frac{a c+b}{c d-b}$

PTS: 2 REF: 011405a2 STA: A2.A. 17 TOP: Complex Fractions
223 ANS: 3
${ }_{6} C_{3}\left(\frac{x}{2}\right)^{3}(-2 y)^{3}=20 \cdot \frac{x^{3}}{8} \cdot-8 y^{3}=-20 x^{3} y^{3}$
PTS: 2 REF: 061215a2 STA: A2.A. 36 TOP: Binomial Expansions
224 ANS: 3
$34.1 \%+19.1 \%=53.2 \%$
PTS: 2 REF: 011212a2 STA: A2.S.5 TOP: Normal Distributions
KEY: probability
225 ANS: 1
PTS: 2
REF: 011314a2 STA: A2.N. 3
TOP: Operations with Polynomials
226 ANS: 3
$\log 4 m^{2}=\log 4+\log m^{2}=\log 4+2 \log m$
PTS: 2 REF: 061321a2 STA: A2.A. 19 TOP: Properties of Logarithms
227
KEY: splitting logs
ANS: 1
$10 \cdot \frac{3}{2}=\frac{3}{5} p$

$$
15=\frac{3}{5} p
$$

$$
25=p
$$

PTS: 2
REF: 011226a2
STA: A2.A. 5
TOP: Inverse Variation
228 ANS: 1

PTS: 2
REF: 011203a2
STA: A2.A. 66
REF: 061301a2
TOP: Determining Trigonometric Functions
ANS: 2 PTS: 2
TOP: Analysis of Data

230 ANS: 2
$(x+2)^{2}=-9$
$x+2= \pm \sqrt{-9}$

$$
x=-2 \pm 3 i
$$

PTS: 2 REF: 011408a2 STA: A2.A. 24 TOP: Completing the Square
231 ANS: 3
(3i) $(2 i)^{2}(m+i)$
$(3 i)\left(4 i^{2}\right)(m+i)$
$(3 i)(-4)(m+i)$
$(-12 i)(m+i)$
$-12 m i-12 i^{2}$
$-12 m i+12$
PTS: 2
REF: 061319a2 STA: A2.N.9
TOP: Multiplication and Division of Complex Numbers
232 ANS: 1 PTS: 2 REF: 011320a2
STA: A2.A. 72
TOP: Identifying the Equation of a Trigonometric Graph
233 ANS: $4 \quad$ PTS: 2
REF: 011323a2 STA: A2.A. 2
KEY: determine nature of roots given equation
234 ANS: 1
$2 \cdot \frac{180}{\pi}=\frac{360}{\pi}$
PTS: 2 REF: 011220a2 STA: A2.M. 2 TOP: Radian Measure
KEY: degrees
235 ANS: 1
$\frac{1}{7-\sqrt{11}} \cdot \frac{7+\sqrt{11}}{7+\sqrt{11}}=\frac{7+\sqrt{11}}{49-11}=\frac{7+\sqrt{11}}{38}$
PTS: 2 REF: 011404a2 STA: A2.N. 5 TOP: Rationalizing Denominators
236 ANS: 4
$\frac{4 \cdot 0+6 \cdot 1+10 \cdot 2+0 \cdot 3+4 k+2 \cdot 5}{4+6+10+0+k+2}=2$

$$
\begin{aligned}
\frac{4 k+36}{k+22} & =2 \\
4 k+36 & =2 k+44 \\
2 k & =8 \\
k & =4
\end{aligned}
$$

PTS: 2
REF: 061221a2 STA: A2.S. 3
TOP: Average Known with Missing Data

ANS: 1
PTS: 2
REF: 011310a2
STA: A2.S. 9
TOP: Differentiating Permutations and Combinations
238 ANS: 4
PTS: 2
REF: 061207a2 STA: A2.A. 19
TOP: Properties of Logarithms
KEY: antilogarithms
239 ANS: 4 PTS: 2
REF: 061303a2
STA: A2.A. 43
TOP: Defining Functions
240 ANS: 3
$\frac{-b}{a}=\frac{-(-4)}{1}=4$. If the sum is 4 , the roots must be 7 and -3 .
PTS: 2
REF: 011418a2
STA: A2.A. 21 TOP: Roots of Quadratics
KEY: advanced
241 ANS: 3

PTS: 2
REF: 011207a2
ANS: 2
PTS: 2
TOP: Domain and Range
243 ANS: 1

$$
\begin{aligned}
20(-2) & =x(-2 x+2) \\
-40 & =-2 x^{2}+2 x \\
2 x^{2}-2 x-40 & =0 \\
x^{2}-x-20 & =0 \\
(x+4)(x-5) & =0 \\
x & =-4,5
\end{aligned}
$$

	PTS:	2	REF:	011321a2	STA:	A2.A. 5	TOP:	Inverse Variation
244	ANS:	1	PTS:	2	REF:	011313a2	STA:	A2.A. 39
	TOP:	Domain and	Range		KEY:	real domain		
245	ANS:	1	PTS:	2	REF:	061324a2	STA:	A2.A. 9
	TOP:	Negative Exp	onents					
246	ANS:	4	PTS:	2	REF:	061206a2	STA:	A2.A. 60
	TOP:	Unit Circle						
24	ANS:	1						
	If $\sin x$	$=0.8$, then \cos	$=0.6$	6. $\tan \frac{1}{2} x=$	$\sqrt{\frac{1-0.6}{1+0.6}}$	$=\sqrt{\frac{0.4}{1.6}}=$		

PTS: 2 REF: 061220a2 STA: A2.A. 77 TOP: Half Angle Identities
248 ANS: 4
PTS: 2
REF: 061318a2 STA: A2.A. 49
TOP: Equations of Circles

249 ANS: 2
If $\sin A=-\frac{7}{25}, \cos A=\frac{24}{25}$, and $\tan A=\frac{\sin A}{\cos A}=\frac{-\frac{7}{25}}{\frac{24}{25}}=-\frac{7}{24}$
PTS: 2
KEY: advanced
250 ANS: 3
$S_{8}=\frac{3\left(1-(-4)^{8}\right)}{1-(-4)}=\frac{196,605}{5}=-39,321$
PTS: 2
REF: 061304a2
STA: A2.A. 35
TOP: Summations
KEY: geometric
251 ANS: 2
PTS: 2
REF: 011301a2
STA: A2.A. 53
TOP: Graphing Exponential Functions
252 ANS: 4
$x^{2}(x+2)-(x+2)$
$\left(x^{2}-1\right)(x+2)$
$(x+1)(x-1)(x+2)$

PTS: 2
253 ANS: 1
TOP: Graphing Logarithmic Functions
254 ANS: 1
TOP: Negative and Fractional Exponents
255 ANS: 4
$\left(\sqrt[3]{27 x^{2}}\right)\left(\sqrt[3]{16 x^{4}}\right)=\sqrt[3]{3^{3} \cdot 2^{4} \cdot x^{6}}=3 \cdot 2 \cdot x^{23} \sqrt{2}=6 x^{23} \sqrt{2}$
PTS: 2
REF: 011421a2
STA: A2.N. 2
TOP: Operations with Radicals

256 ANS: 3

$$
\begin{aligned}
x+y & =5 \quad .-5+y \\
y & =5 \\
& =-x+5 \quad y=10 \\
(x+3)^{2}+(-x+5-3)^{2} & =53 \\
x^{2}+6 x+9+x^{2}-4 x+4 & =53 \\
2 x^{2}+2 x-40 & =0 \\
x^{2}+x-20 & =0 \\
(x+5)(x-4) & =0 \\
x & =-5,4
\end{aligned}
$$

PTS: 2 REF: 011302a2 STA: A2.A. 3 TOP: Quadratic-Linear Systems
KEY: equations
257 ANS: 1
$(4 a+4)-(2 a+1)=2 a+3$
PTS: 2 REF: 011401a2 STA: A2.A. 30 TOP: Sequences
258 ANS: 4
$(x+i)^{2}-(x-i)^{2}=x^{2}+2 x i+i^{2}-\left(x^{2}-2 x i+i^{2}\right)=4 x i$
PTS: 2
REF: 011327a2 STA: A2.N.9
TOP: Multiplication and Division of Complex Numbers
259
ANS: 2
PTS: 2
REF: 011407a2
STA: A2.A. 43
TOP: Defining Functions
260 ANS: 2
$b^{2}-4 a c=(-9)^{2}-4(2)(4)=81-32=49$
PTS: 2 REF: 011411a2 STA: A2.A. 2 TOP: Using the Discriminant
KEY: determine nature of roots given equation
261 ANS: 1
The binomials are conjugates, so use FL.
PTS: 2 REF: 061201a2 STA: A2.N. 3 TOP: Operations with Polynomials
262 ANS: 1
$\frac{2 \pi}{b}=4 \pi$

$$
b=\frac{1}{2}
$$

PTS: 2
REF: 011425a2 STA: A2.A. 69
TOP: Properties of Graphs of Trigonometric Functions
KEY: period

263 ANS: 4
${ }_{15} C_{5}=3,003 .{ }_{25} C_{5}={ }_{25} C_{20}=53,130 .{ }_{25} C_{15}=3,268,760$.
PTS: 2
REF: 061227a2
STA: A2.S. 11
TOP: Combinations
ANS: 4
PTS: 1
REF: 011312a2
STA: A2.A. 56
TOP: Determining Trigonometric Functions
KEY: degrees, common angles
265 ANS: 3
$\frac{x+16}{x-2}-\frac{7(x-2)}{x-2} \leq 0-6 x+30=0 \quad x-2=0$. Check points such that $x<2,2<x<5$, and $x>5$. If $x=1$,

$$
\begin{array}{rlrl}
\frac{-6 x+30}{x-2} \leq 0 & -6 x & =-30 & x=2 \\
x & =5
\end{array}
$$

$\frac{-6(1)+30}{1-2}=\frac{24}{-1}=-24$, which is less than 0 . If $x=3, \frac{-6(3)+30}{3-2}=\frac{12}{1}=12$, which is greater than 0 . If $x=6$,
$\frac{-6(6)+30}{6-2}=\frac{-6}{4}=-\frac{3}{2}$, which is less than 0 .

	PTS: 2
266	ANS: 2
	TOP: Con
267	ANS: 2
	$\bar{x} \pm \sigma$
	153 ± 22
	$131-175$

PTS: 2 REF: 011307a2 STA: A2.S. 5 TOP: Normal Distributions
KEY: interval
268 ANS: 4
$\sin (\theta+90)=\sin \theta \cdot \cos 90+\cos \theta \cdot \sin 90=\sin \theta \cdot(0)+\cos \theta \cdot(1)=\cos \theta$
PTS: 2 REF: 061309a2 STA: A2.A.76 TOP: Angle Sum and Difference Identities
KEY: identities
269 ANS: 2
$\frac{x^{-1}-1}{x-1}=\frac{\frac{1}{x}-1}{x-1}=\frac{\frac{1-x}{x}}{x-1}=\frac{\frac{-(x-1)}{x}}{x-1}=-\frac{1}{x}$
$\begin{array}{llll}\text { PTS: } 2 & \text { REF: 081018a2 } & \text { STA: A2.A. } 9 & \text { TOP: Negative Exponents } \\ \text { ANS: } 3 & \text { PTS: } 2 & \text { REF: 061127a2 } & \text { STA: A2.S. } 6\end{array}$
270 ANS: 3
REF: 061127a2 STA: A2.S. 6
TOP: Regression

Algebra 2/Trigonometry 2 Point Regents Exam Questions

Answer Section

271 ANS:

PTS: 2 REF: 061033a2 STA: A2.A. 60 TOP: Unit Circle
272 ANS:
$A=750 e^{(0.03)(8)} \approx 953$
PTS: 2 REF: 061229a2 STA: A2.A. 12 TOP: Evaluating Exponential Expressions
273 ANS:
$10 a x^{2}-23 a x-5 a=a\left(10 x^{2}-23 x-5\right)=a(5 x+1)(2 x-5)$
PTS: 2
REF: 081028a
STA: A2.A. 7
TOP: Factoring Polynomials
KEY: multiple variables
274 ANS:

$$
\begin{aligned}
\frac{31-19}{7-4}=\frac{12}{3}=4 x+(4-1) 4 & =19 \quad a_{n}=7+(n-1) 4 \\
x+12 & =19 \\
x & =7
\end{aligned}
$$

PTS: 2 REF: 011434a2 STA: A2.A. 29 TOP: Sequences
275 ANS:
D: $-5 \leq x \leq 8$. R: $-3 \leq y \leq 2$
PTS: 2 REF: 011132a2 STA: A2.A. 51 TOP: Domain and Range
276 ANS:
Controlled experiment because Howard is comparing the results obtained from an experimental sample against a control sample.

PTS: 2 REF: 081030a2 STA: A2.S. 1 TOP: Analysis of Data

277 ANS:
$\frac{12 x^{2}}{y^{9}} \cdot \frac{3 x^{-4} y^{5}}{\left(2 x^{3} y^{-7}\right)^{-2}}=\frac{3 y^{5}\left(2 x^{3} y^{-7}\right)^{2}}{x^{4}}=\frac{3 y^{5}\left(4 x^{6} y^{-14}\right)}{x^{4}}=\frac{12 x^{6} y^{-9}}{x^{4}}=\frac{12 x^{2}}{y^{9}}$
PTS: 2 REF: 061134a2 STA: A2.A. 9 TOP: Negative Exponents
278 ANS:
$12 t^{8}-75 t^{4}=3 t^{4}\left(4 t^{4}-25\right)=3 t^{4}\left(2 t^{2}+5\right)\left(2 t^{2}-5\right)$
PTS: 2
REF: 061133a2 STA: A2.A.7
TOP: Factoring the Difference of Perfect Squares KEY: binomial
279 ANS:
7. $4-\sqrt{2 x-5}=1$

$$
\begin{aligned}
-\sqrt{2 x-5} & =-3 \\
2 x-5 & =9 \\
2 x & =14 \\
x & =7
\end{aligned}
$$

PTS: 2 REF: 011229a2 STA: A2.A. 22 TOP: Solving Radicals
KEY: basic
280
ANS:
$2.5 \cdot \frac{180}{\pi} \approx 143.2^{\circ}$
PTS: 2 REF: 011129a2 STA: A2.M. 2 TOP: Radian Measure
KEY: degrees
281 ANS:

$$
\begin{aligned}
y & =x^{2}-6 . \mathrm{f}^{-1}(x) \text { is not a function. } \\
x & =y^{2}-6 \\
x+6 & =y^{2} \\
\pm \sqrt{x+6} & =y
\end{aligned}
$$

PTS: 2
REF: 061132a2
STA: A2.A. 44
TOP: Inverse of Functions
KEY: equations
ANS:

$$
\begin{aligned}
2 x-1 & =27^{\frac{4}{3}} \\
2 x-1 & =81 \\
2 x & =82 \\
x & =41
\end{aligned}
$$

PTS: 2
REF: 061329a2
STA: A2.A. 28
TOP: Logarithmic Equations
KEY: advanced

283 ANS:
$\left(\begin{array}{l}\left.3 * \frac{180}{\pi}\right)+D^{\prime} S \\ 171^{5} 5314.419 \prime \prime\end{array}\right.$
$3 \times \frac{180}{\pi} \approx 171.89^{\circ} \approx 171^{\circ} 53^{\prime}$.
PTS: 2
REF: 011335a2
STA: A2.M. 2
TOP: Radian Measure
KEY: degrees
284 ANS:
$K=a b \sin C=6 \cdot 6 \sin 50 \approx 27.6$
PTS: 2 REF: 011429a2 STA: A2.A. 74 TOP: Using Trigonometry to Find Area
KEY: Parallelograms
285 ANS:
${ }_{7} C_{3}\left(\frac{1}{4}\right)^{3}\left(\frac{3}{4}\right)^{4}=35\left(\frac{1}{64}\right)\left(\frac{81}{256}\right)=\frac{2835}{16384} \approx 0.173$
PTS: 2 REF: 061335a2 STA: A2.S. 15 TOP: Binomial Probability
KEY: exactly
286
ANS:
Sum $\frac{-b}{a}=-\frac{1}{12}$. Product $\frac{c}{a}=-\frac{1}{2}$
PTS: 2 REF: 061328a2 STA: A2.A. 20 TOP: Roots of Quadratics 287 ANS:
$a_{1}=3 . a_{2}=2(3)-1=5 . a_{3}=2(5)-1=9$.
PTS: 2
REF: 061233a2 STA: A2.A. 33
TOP: Recursive Sequences
288 ANS:
$Q_{1}=3.5$ and $Q_{3}=10.5 .10 .5-3.5=7$.
PTS: 2
REF: 011430a2 STA: A2.S. 4
TOP: Dispersion
KEY: range, quartiles, interquartile range, variance
289 ANS:
45, $2252 \tan C-3=3 \tan C-4$

$$
\begin{aligned}
1 & =\tan C \\
\tan ^{-1} 1 & =C \\
C & =45,225
\end{aligned}
$$

PTS: 2
REF: 081032a2 STA: A2.A. 68
TOP: Trigonometric Equations
KEY: basic

290 ANS:

$$
\begin{aligned}
12 \cdot 6 & =9 w \\
8 & =w
\end{aligned}
$$

PTS: 2 REF: 011130a2 STA: A2.A. 5 TOP: Inverse Variation
291 ANS:

PTS: 2
REF: 011230a2
STA: A2.N. 10
TOP: Sigma Notation
KEY: basic
292
ANS:
$\cos \theta \cdot \frac{1}{\cos \theta}-\cos ^{2} \theta=1-\cos ^{2} \theta=\sin ^{2} \theta$
PTS: 2
REF: 061230a2
STA: A2.A. 58
TOP: Reciprocal Trigonometric Relationships
293
ANS:

$$
y=0
$$

PTS: 2
REF: 061031a2
STA: A2.A. 53
TOP: Graphing Exponential Functions
294 ANS:
$\frac{\sqrt{108 x^{5} y^{8}}}{\sqrt{6 x y^{5}}}=\sqrt{18 x^{4} y^{3}}=3 x^{2} y \sqrt{2 y}$

PTS: 2
REF: 011133a2
STA: A2.A. 14
TOP: Operations with Radicals
KEY: with variables \mid index $=2$

295 ANS:
$6 y^{3}-\frac{37}{10} y^{2}-\frac{1}{5} y \cdot\left(\frac{1}{2} y^{2}-\frac{1}{3} y\right)\left(12 y+\frac{3}{5}\right)=6 y^{3}+\frac{3}{10} y^{2}-4 y^{2}-\frac{1}{5} y=6 y^{3}-\frac{37}{10} y^{2}-\frac{1}{5} y$
PTS: 2 REF: 061128a2 STA: A2.N. 3 TOP: Operations with Polynomials
296 ANS:
$a+15+2 a=90$
$3 a+15=90$

$$
\begin{aligned}
3 a & =75 \\
a & =25
\end{aligned}
$$

PTS: 2 REF: 011330a2 STA: A2.A. 58 TOP: Cofunction Trigonometric Relationships 297 ANS:
$\frac{2 \pm \sqrt{(-2)^{2}-4(6)(-3)}}{2(6)}=\frac{2 \pm \sqrt{76}}{12}=\frac{2 \pm \sqrt{4} \sqrt{19}}{12}=\frac{2 \pm 2 \sqrt{19}}{12}=\frac{1 \pm \sqrt{19}}{6}$

PTS: 2 REF: 011332a2 STA: A2.A. 25 TOP: Quadratics with Irrational Solutions 298 ANS:

Ordered, the heights are $71,71,72,74,74,75,78,79,79,83 . Q_{1}=72$ and $Q_{3}=79.79-72=7$.
PTS: 2 REF: 011331a2 STA: A2.S. 4 TOP: Dispersion
KEY: range, quartiles, interquartile range, variance
299 ANS:
Sum $\frac{-b}{a}=-\frac{11}{5}$. Product $\frac{c}{a}=-\frac{3}{5}$
PTS: 2
REF: 061030a2
STA: A2.A. 20
TOP: Roots of Quadratics
300 ANS:
$y=180.377(0.954)^{x}$
PTS: 2 REF: 061231a2 STA: A2.S. 7 TOP: Exponential Regression
301 ANS:
$216\left(\frac{\pi}{180}\right) \approx 3.8$
PTS: 2
REF: 061232a2
STA: A2.M. 2 TOP: Radian Measure
KEY: radians

302
$a_{n}=9 n-4 \quad . S_{n}=\frac{20(5+176)}{2}=1810$
$a_{1}=9(1)-4=5$
$a_{20}=9(20)-4=176$
PTS: 2 REF: 011328a2 STA: A2.A. 35 TOP: Summations
KEY: arithmetic
303 ANS:
$\mathrm{g}(10)=(a(10) \sqrt{1-x})^{2}=100 a^{2}(-9)=-900 a^{2}$

PTS: 2 REF: 061333a2 STA: A2.A. 41 TOP: Functional Notation
304 ANS:
$3 x^{2}-11 x+6=0$. Sum $\frac{-b}{a}=\frac{11}{3}$. Product $\frac{c}{a}=\frac{6}{3}=2$
PTS: 2 REF: 011329a2 STA: A2.A. 20 TOP: Roots of Quadratics
ANS:
$\sum_{n=1}^{15} 7 n$

PTS: 2
REF: 081029a2
STA: A2.A. 34
TOP: Sigma Notation ANS:

41,040.

PTS: 2
REF: fall0935a2
STA: A2.S. 12
TOP: Sample Space
ANS:
230. $10+\left(1^{3}-1\right)+\left(2^{3}-1\right)+\left(3^{3}-1\right)+\left(4^{3}-1\right)+\left(5^{3}-1\right)=10+0+7+26+63+124=230$

PTS: 2
REF: 011131a2
STA: A2.N. 10
TOP: Sigma Notation
KEY: basic
ANS:
$\sec \theta \sin \theta \cot \theta=\frac{1}{\cos \theta} \cdot \sin \theta \cdot \frac{\cos \theta}{\sin \theta}=1$
PTS: 2
REF: 011428a2
STA: A2.A. 58
TOP: Reciprocal Trigonometric Relationships

309 ANS:
$\frac{{ }_{10} P_{10}}{3!\cdot 3!\cdot 2!}=\frac{3,628,800}{72}=50,400$
PTS: 2 REF: 061330a2 STA: A2.S. 10 TOP: Permutations
310 ANS:

$$
\begin{aligned}
b^{2}-4 a c & =0 \\
k^{2}-4(1)(4) & =0 \\
k^{2}-16 & =0 \\
(k+4)(k-4) & =0 \\
k & = \pm 4
\end{aligned}
$$

PTS: 2
REF: 061028a2 STA: A2.A. 2
KEY: determine equation given nature of roots
311 ANS:
$-\frac{a^{2} b^{3}}{4}$
PTS: 2
REF: 011231a2
STA: A2.A. 13
TOP: Simplifying Radicals
KEY: index > 2
312 ANS:
$\frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2}=\frac{\sqrt{6}}{4}$
PTS: 2
REF: 061331a2
STA: A2.A. 56
TOP: Determining Trigonometric Functions
KEY: degrees, common angles
313 ANS:

$$
\begin{aligned}
30700 & =50 e^{3 t} \\
614 & =e^{3 t} \\
\ln 614 & =\ln e^{3 t} \\
\ln 614 & =3 t \ln e \\
\ln 614 & =3 t \\
2.14 & \approx t
\end{aligned}
$$

PTS: 2
REF: 011333a2 STA: A2.A. 6
TOP: Exponential Growth
314 ANS:
$\frac{2 \sqrt{3}}{3}$. If $\sin 60=\frac{\sqrt{3}}{2}$, then $\csc 60=\frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}$
PTS: 2
REF: 011235a2 STA: A2.A.59
TOP: Reciprocal Trigonometric Relationships

315 ANS:
no solution. $\quad \frac{4 x}{x-3}=2+\frac{12}{x-3}$

$$
\begin{aligned}
\frac{4 x-12}{x-3} & =2 \\
\frac{4(x-3)}{x-3} & =2 \\
4 & \neq 2
\end{aligned}
$$

PTS: 2 REF: fall0930a2 STA: A2.A. 23 TOP: Solving Rationals
KEY: rational solutions
316 ANS:
$K=a b \sin C=18 \cdot 22 \sin 60=396 \frac{\sqrt{3}}{2}=198 \sqrt{3}$
PTS: 2 REF: 061234a2 STA: A2.A. 74 TOP: Using Trigonometry to Find Area
KEY: Parallelograms
317 ANS:
$(x+5)^{2}+(y-3)^{2}=32$
PTS: 2
REF: 081033a2
STA: A2.A. 49
TOP: Writing Equations of Circles
318
ANS:

$$
\begin{aligned}
x(x+3) & =10 \\
x^{2}+3 x-10 & =0 \\
(x+5)(x-2) & =0 \\
x & =-5,2
\end{aligned}
$$

PTS: 2 REF: 011431a2 STA: A2.A. 3 TOP: Quadratic-Linear Systems
KEY: equations
319 ANS:
$\frac{4}{9} x^{2}-\frac{4}{3} x+1 .\left(\frac{2}{3} x-1\right)^{2}=\left(\frac{2}{3} x-1\right)\left(\frac{2}{3} x-1\right)=\frac{4}{9} x^{2}-\frac{2}{3} x-\frac{2}{3} x+1=\frac{4}{9} x^{2}-\frac{4}{3} x+1$
PTS: 2 REF: 081034a2 STA: A2.N. 3 TOP: Operations with Polynomials
320 ANS:
${ }_{25} C_{20}=53,130$
PTS: 2 REF: 011232a2 STA: A2.S. 11 TOP: Combinations
321 ANS:
7. $f(-3)=(-3)^{2}-6=3 . g(x)=2^{3}-1=7$.

PTS: 2
REF: 061135a2
STA: A2.A. 42
TOP: Compositions of Functions
KEY: numbers

322 ANS:
$83^{\circ} 50^{\prime} \cdot \frac{\pi}{180} \approx 1.463$ radians $s=\theta r=1.463 \cdot 12 \approx 17.6$
PTS: 2 REF: 011435a2 STA: A2.A. 61 TOP: Arc Length
KEY: arc length
323 ANS:
$\frac{\sqrt{13}}{2} \cdot \sin \theta=\frac{y}{\sqrt{x^{2}+y^{2}}}=\frac{2}{\sqrt{(-3)^{2}+2^{2}}}=\frac{2}{\sqrt{13}} . \csc \theta=\frac{\sqrt{13}}{2}$.
PTS: 2 REF: fall0933a2 STA: A2.A. 62 TOP: Determining Trigonometric Functions
324 ANS:
no. over 20 is more than 1 standard deviation above the mean. $0.159 \cdot 82 \approx 13.038$
PTS: 2 REF: 061129a2 STA: A2.S. 5 TOP: Normal Distributions
KEY: predict
325 ANS:
$3-2 x \geq 7$ or $3-2 x \leq-7$

$$
\begin{array}{rlrl}
-2 x & \geq 4 & -2 x & \leq-10 \\
x & \leq-2 & x & \geq 5
\end{array}
$$

PTS: 2 REF: 011334a2 STA: A2.A. 1 TOP: Absolute Value Inequalities
KEY: graph
ANS:
68% of the students are within one standard deviation of the mean. 16% of the students are more than one standard deviation above the mean.

PTS: 2 REF: 011134a2 STA: A2.S. 5 TOP: Normal Distributions
KEY: percent
327 ANS:
$-3,-5,-8,-12$
PTS: 2
REF: fall0934a2
STA: A2.A. 33
TOP: Recursive Sequences
ANS:

PTS: 2
REF: fall0932a2
STA: A2.A. 12
TOP: Evaluating Exponential Expressions

329 ANS:
$K=a b \sin C=24 \cdot 30 \sin 57 \approx 604$
PTS: 2 REF: 061034a2 STA: A2.A.74 TOP: Using Trigonometry to Find Area
KEY: parallelograms
330 ANS:
$5 \csc \theta=8$

$$
\csc \theta=\frac{8}{5}
$$

$$
\sin \theta=\frac{5}{8}
$$

$$
\theta \approx 141
$$

PTS: 2 REF: 061332a2 STA: A2.A. 68 TOP: Trigonometric Equations
KEY: reciprocal functions
331 ANS:
$y=-3 \sin 2 x$. The period of the function is π, the amplitude is 3 and it is reflected over the x-axis.
PTS: 2 REF: 061235a2 STA: A2.A. 72
TOP: Identifying the Equation of a Trigonometric Graph
332 ANS:
$5 \sqrt{3 x^{3}}-2 \sqrt{27 x^{3}}=5 \sqrt{x^{2}} \sqrt{3 x}-2 \sqrt{9 x^{2}} \sqrt{3 x}=5 x \sqrt{3 x}-6 x \sqrt{3 x}=-x \sqrt{3 x}$
PTS: 2 REF: 061032a2 STA: A2.N. 2 TOP: Operations with Radicals
333 ANS:
$(x+3)^{2}+(y-4)^{2}=25$
PTS: 2 REF: fall0929a2 STA: A2.A. 49 TOP: Writing Equations of Circles
334 ANS:
39,916,800. $\frac{{ }_{22} P_{12}}{3!\cdot 2!}=\frac{479,001,600}{12}=39,916,800$
PTS: 2 REF: 081035a2 STA: A2.S. 10 TOP: Permutations
335 ANS:
$\frac{\sin ^{2} A}{\cos ^{2} A}+\frac{\cos ^{2} A}{\cos ^{2} A}=\frac{1}{\cos ^{2} A}$
$\tan ^{2} A+1=\sec ^{2} A$
PTS: 2 REF: 011135a2 STA: A2.A. 67 TOP: Proving Trigonometric Identities
336 ANS:
$4 x i+5 y i^{8}+6 x i^{3}+2 y i^{4}=4 x i+5 y-6 x i+2 y=7 y-2 x i$
PTS: 2 REF: 011433a2 STA: A2.N. 7 TOP: Imaginary Numbers

337 ANS:
$\frac{\cot x \sin x}{\sec x}=\frac{\frac{\cos x}{\sin x} \sin x}{\frac{1}{\cos x}}=\cos ^{2} x$
PTS: 2 REF: 061334a2 STA: A2.A. 58 TOP: Reciprocal Trigonometric Relationships 338 ANS:
7.4

PTS: 2
REF: 061029a2 STA: A2.S. 4
TOP: Dispersion
KEY: basic, group frequency distributions
339 ANS:

PTS: 2 REF: fall0931a2 STA: A2.M. 2 TOP: Radian Measure
KEY: degrees
340 ANS:
$e^{3 \ln 2}=e^{\ln 2^{3}}=e^{\ln 8}=8$
PTS: 2 REF: 061131a2 STA: A2.A. 12 TOP: Evaluating Exponential Expressions
341 ANS:
$\frac{5(3+\sqrt{2})}{7} \cdot \frac{5}{3-\sqrt{2}} \times \frac{3+\sqrt{2}}{3+\sqrt{2}}=\frac{5(3+\sqrt{2})}{9-2}=\frac{5(3+\sqrt{2})}{7}$
PTS: 2 REF: fall0928a2 STA: A2.N. 5 TOP: Rationalizing Denominators
342 ANS:

PTS: 2
REF: 011234a2
STA: A2.A. 53
TOP: Graphing Exponential Functions

343 ANS:
$r=\sqrt{2^{2}+3^{2}}=\sqrt{13} \cdot(x+5)^{2}+(y-2)^{2}=13$
PTS: 2 REF: 011234a2 STA: A2.A. 49 TOP: Writing Equations of Circles
344 ANS:
$\frac{\frac{1}{2}-\frac{4}{d}}{\frac{1}{d}+\frac{3}{2 d}}=\frac{\frac{d-8}{2 d}}{\frac{2 d+3 d}{2 d^{2}}}=\frac{d-8}{2 d} \times \frac{2 d^{2}}{5 d}=\frac{d-8}{5}$
PTS: 2 REF: 061035a2 STA: A2.A. 17 TOP: Complex Fractions
345 ANS:
$y=10.596(1.586)^{x}$
PTS: 2 REF: 081031a2 STA: A2.S. 7 TOP: Exponential Regression
346 ANS:

$$
\begin{array}{rlrl}
-4 x+5 & <13 & -4 x+5 & >-13 \\
-4 x & <8 & -2<x<4.5 \\
x & >-2 & & >-18 \\
x & x & <4.5
\end{array}
$$

PTS: 2 REF: 011432a2 STA: A2.A. 1 TOP: Absolute Value Inequalities
347 ANS:
$x^{2}-6 x-27=0, \frac{-b}{a}=6 . \frac{c}{a}=-27$. If $a=1$ then $b=-6$ and $c=-27$
PTS: 4 REF: 061130a2 STA: A2.A. 21 TOP: Roots of Quadratics KEY: basic
348
ANS:

$$
\begin{aligned}
16^{2 x+3} & =64^{x+2} \\
\left(4^{2}\right)^{2 x+3} & =\left(4^{3}\right)^{x+2} \\
4 x+6 & =3 x+6 \\
x & =0
\end{aligned}
$$

PTS: 2 REF: 011128a2 STA: A2.A. 27 TOP: Exponential Equations KEY: common base not shown
349 ANS:

$$
\begin{aligned}
& \begin{array}{lcc}
x<-1 \text { or } x>5 . & x^{2}-4 x-5>0 . & x-5>0 \text { and } x+1>0 \text { or } x-5<0 \text { and } x+1<0 \\
(x-5)(x+1)>0 & x>5 \text { and } x>-1 & x<5 \text { and } x<-1 \\
& x>5 & x<-1
\end{array} \\
& \\
& \text { PTS: 2 } 2 \\
& \text { KEY: one variable }
\end{aligned}
$$

350 ANS:

$$
\begin{array}{r}
i^{13}+i^{18}+i^{31}+n=0 \\
i+(-1)-i+n=0 \\
-1+n=0 \\
n=1
\end{array}
$$

PTS: 2
REF: 061228a2 STA: A2.N. 7 TOP: Imaginary Numbers

Algebra 2/Trigonometry 4 Point Regents Exam Questions www.jmap.org

379 The table below shows the results of an experiment involving the growth of bacteria.

Time (x) (in minutes)	1	3	5	7	9	11
Number of Bacteria (\boldsymbol{y})	2	25	81	175	310	497

Write a power regression equation for this set of data, rounding all values to three decimal places. Using this equation, predict the bacteria's growth, to the nearest integer, after 15 minutes.

380 The data collected by a biologist showing the growth of a colony of bacteria at the end of each hour are displayed in the table below.

Time, hour, (x)	Population (y)
0	250
1	330
2	580
3	800
4	1650
5	3000

Write an exponential regression equation to model these data. Round all values to the nearest thousandth. Assuming this trend continues, use this equation to estimate, to the nearest ten, the number of bacteria in the colony at the end of 7 hours.

Algebra 2/Trigonometry 4 Point Regents Exam Questions

Answer Section

351 ANS:
$y=27.2025(1.1509)^{x} . y=27.2025(1.1509)^{18} \approx 341$
PTS: 4 REF: 011238a2 STA: A2.S. 7 TOP: Exponential Regression
352 ANS:

$$
\begin{array}{r}
\frac{51}{243} \cdot{ }_{5} C_{3}\left(\frac{1}{3}\right)^{3}\left(\frac{2}{3}\right)^{2}=\frac{40}{243} \\
{ }_{5} C_{4}\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)^{1}=\frac{10}{243} \\
{ }_{5} C_{3}\left(\frac{1}{3}\right)^{5}\left(\frac{2}{3}\right)^{0}=\frac{1}{243}
\end{array}
$$

PTS: 4 REF: 061138a2 STA: A2.S. 15 TOP: Binomial Probability
KEY: at least or at most
353 ANS:

$\frac{27}{\sin 75}=\frac{F_{1}}{\sin 60} \cdot \frac{27}{\sin 75}=\frac{F_{2}}{\sin 45}$.

$$
F_{1} \approx 24 \quad F_{1} \approx 20
$$

PTS: 4 REF: 061238a2 STA: A2.A. 73 TOP: Vectors
354 ANS:
$\frac{15}{\sin 103}=\frac{a}{\sin 42} \cdot \frac{1}{2}(15)(10.3) \sin 35 \approx 44$

$$
a \approx 10.3
$$

PTS: 4 REF: 061337a2 STA: A2.A.74 TOP: Using Trigonometry to Find Area
KEY: advanced
355
ANS:
$32 x^{5}-80 x^{4}+80 x^{3}-40 x^{2}+10 x-1 .{ }_{5} C_{0}(2 x)^{5}(-1)^{0}=32 x^{5} .{ }_{5} C_{1}(2 x)^{4}(-1)^{1}=-80 x^{4} .{ }_{5} C_{2}(2 x)^{3}(-1)^{2}=80 x^{3}$.
${ }_{5} C_{3}(2 x)^{2}(-1)^{3}=-40 x^{2} .{ }_{5} C_{4}(2 x)^{1}(-1)^{4}=10 x .{ }_{5} C_{5}(2 x)^{0}(-1)^{5}=-1$
PTS: 4
REF: 011136a2 STA: A2.A. 36
TOP: Binomial Expansions

356 ANS:

$$
\begin{aligned}
(x+4)^{2} & =17 x-4 \\
x^{2}+8 x+16 & =17 x-4 \\
x^{2}-9 x+20 & =0 \\
(x-4)(x-5) & =0 \\
x & =4,5
\end{aligned}
$$

PTS: 4 REF: 011336a2 STA: A2.A. 28 TOP: Logarithmic Equations
KEY: basic
357 ANS:
$3 \pm \sqrt{7} \cdot 2 x^{2}-12 x+4=0$

$$
\begin{aligned}
x^{2}-6 x+2 & =0 \\
x^{2}-6 x & =-2 \\
x^{2}-6 x+9 & =-2+9 \\
(x-3)^{2} & =7 \\
x-3 & = \pm \sqrt{7} \\
x & =3 \pm \sqrt{7}
\end{aligned}
$$

PTS: 4
REF: fall0936a2 STA: A2.A. 24
TOP: Completing the Square
358 ANS:
$\pm \frac{3}{2},-\frac{1}{2} . \quad 8 x^{3}+4 x^{2}-18 x-9=0$

$$
4 x^{2}(2 x+1)-9(2 x+1)=0
$$

$$
\left(4 x^{2}-9\right)(2 x+1)=0
$$

$$
4 x^{2}-9=0 \text { or } 2 x+1=0
$$

$$
(2 x+3)(2 x-3)=0 \quad x=-\frac{1}{2}
$$

$$
x= \pm \frac{3}{2}
$$

PTS: 4
REF: fall0937a2 STA: A2.A. 26
TOP: Solving Polynomial Equations
359 ANS:

$$
\begin{array}{rl}
\frac{12}{\sin 32}=\frac{10}{\sin B} \quad . C \approx 180-(32+26.2) \approx 121.8 . \frac{12}{\sin 32}=\frac{c}{\sin 121.8} \\
B=\sin ^{-1} \frac{10 \sin 32}{12} \approx 26.2 & c=\frac{12 \sin 121.8}{\sin 32} \approx 19.2
\end{array}
$$

PTS: 4
REF: 011137a2 STA: A2.A.73
TOP: Law of Sines KEY: basic

360 ANS:
800. $x=4^{2.5}=32 . y^{-\frac{3}{2}}=125 \quad \cdot \frac{x}{y}=\frac{32}{\frac{1}{25}}=800$

$$
y=125^{-\frac{2}{3}}=\frac{1}{25}
$$

PTS: 4
REF: 011237a2 STA: A2.A. 28 TOP: Logarithmic Equations
KEY: advanced
361 ANS:
$\sin (45+30)=\sin 45 \cos 30+\cos 45 \sin 30$

$$
=\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2} \cdot \frac{1}{2}=\frac{\sqrt{6}}{4}+\frac{\sqrt{2}}{4}=\frac{\sqrt{6}+\sqrt{2}}{4}
$$

PTS: 4 REF: 061136a2 STA: A2.A. 76 TOP: Angle Sum and Difference Identities
KEY: evaluating
362 ANS:

$$
\begin{aligned}
2 \sin ^{2} x+5 \sin x-3 & =0 \\
(2 \sin x-1)(\sin x+3) & =0 \\
\sin x & =\frac{1}{2} \\
x & =\frac{\pi}{6}, \frac{5 \pi}{6}
\end{aligned}
$$

PTS: 4 REF: 011436a2 STA: A2.A. 68 TOP: Trigonometric Equations
KEY: quadratics
363 ANS:
$\frac{-\left(x^{2}-4\right)}{(x+4)(x+3)} \times \frac{x+3}{2(x-2)}=\frac{-(x+2)(x-2)}{x+4} \times \frac{1}{2(x-2)}=\frac{-(x+2)}{2(x+4)}$
PTS: 4
REF: 061236a2 STA: A2.A. 16 TOP: Multiplication and Division of Rationals
KEY: division

364
ANS:

$$
\begin{gathered}
\frac{23}{2} \cos ^{2} B+\sin ^{2} B=1 \quad \tan B=\frac{\sin B}{\cos B}=\frac{\frac{5}{\sqrt{41}}}{\frac{4}{\sqrt{41}}}=\frac{5}{4} \\
\cos ^{2} B+\left(\frac{5}{\sqrt{41}}\right)^{2}=1 \\
\cos ^{2} B+\frac{25}{41}=\frac{41}{41} \\
\cos ^{2} B=\frac{16}{41} \\
\cos B=\frac{4}{\sqrt{41}} \\
\frac{2}{3}+\frac{5}{4} \\
\tan (A+B)=\frac{\frac{8+15}{12}}{1-\left(\frac{2}{3}\right)\left(\frac{5}{4}\right)}=\frac{\frac{12}{12}-\frac{10}{12}}{\frac{2}{12}}=\frac{23}{2}
\end{gathered}
$$

PTS: 4
REF: 081037a2 STA: A2.A. 76
KEY: evaluating
365
ANS:

$$
\begin{gathered}
-3|6-x|<-15 \\
|6-x|>5
\end{gathered}
$$

$6-x>5$ or $6-x<-5$
$1>x$ or $11<x$
PTS: 2
REF: 061137a2 STA: A2.A. 1
KEY: graph
366
ANS:
$\sqrt{27^{2}+32^{2}-2(27)(32) \cos 132} \approx 54$
PTS: 4
REF: 011438a2 STA: A2.A. 73 TOP: Law of Cosines
KEY: applied

ANS:
$0,60,180,300 . \quad \sin 2 \theta=\sin \theta$
$\sin 2 \theta-\sin \theta=0$
$2 \sin \theta \cos \theta-\sin \theta=0$
$\sin \theta(2 \cos \theta-1)=0$
$\sin \theta=0 \quad 2 \cos \theta-1=0$
$\theta=0,180 \cos \theta=\frac{1}{2}$

$$
\theta=60,300
$$

PTS: 4 REF: 061037a2 STA: A2.A. 68 TOP: Trigonometric Equations
KEY: double angle identities
ANS:
0.167. ${ }_{10} C_{8} \cdot 0.6^{8} \cdot 0.4^{2}+{ }_{10} C_{9} \cdot 0.6^{9} \cdot 0.4^{1}+{ }_{10} C_{10} \cdot 0.6^{10} \cdot 0.4^{0} \approx 0.167$

PTS: 4 REF: 061036a2 STA: A2.S. 15 TOP: Binomial Probability
KEY: at least or at most
369 ANS:
$26.2 \% .{ }_{10} C_{8} \cdot 0.65^{8} \cdot 0.35^{2}+{ }_{10} C_{9} \cdot 0.65^{9} \cdot 0.35^{1}+{ }_{10} C_{10} \cdot 0.65^{10} \cdot 0.35^{0} \approx 0.262$
PTS: 4 REF: 081038a2 STA: A2.S. 15 TOP: Binomial Probability
KEY: at least or at most
ANS:
No. TENNESSEE: $\frac{{ }_{9} P_{9}}{4!\cdot 2!\cdot 2!}=\frac{362,880}{96}=3,780$. VERMONT: ${ }_{7} P_{7}=5,040$
PTS: 4 REF: 061038a2 STA: A2.S. 10 TOP: Permutations
371 ANS:
${ }_{5} C_{4} \cdot 0.28^{4} \cdot 0.72^{1}+{ }_{5} C_{5} \cdot 0.28^{5} \cdot 0.72^{0} \approx 0.024$
PTS: 4 REF: 011437a2 STA: A2.S. 15 TOP: Binomial Probability KEY: at least or at most

372
ANS:
$\frac{1}{3} \quad \frac{1}{x+3}-\frac{2}{3-x}=\frac{4}{x^{2}-9}$

$$
\frac{1}{x+3}+\frac{2}{x-3}=\frac{4}{x^{2}-9}
$$

$$
\frac{x-3+2(x+3)}{(x+3)(x-3)}=\frac{4}{(x+3)(x-3)}
$$

$$
x-3+2 x+6=4
$$

$$
3 x=1
$$

$$
x=\frac{1}{3}
$$

PTS: 4 REF: 081036a2 STA: A2.A. 23 TOP: Solving Rationals
KEY: rational solutions
373 ANS:
0.468. ${ }_{8} C_{6}\left(\frac{2}{3}\right)^{6}\left(\frac{1}{3}\right)^{2} \approx 0.27313 .{ }_{8} C_{7}\left(\frac{2}{3}\right)^{7}\left(\frac{1}{3}\right)^{1} \approx 0.15607 .{ }_{8} C_{8}\left(\frac{2}{3}\right)^{8}\left(\frac{1}{3}\right)^{0} \approx 0.03902$.

PTS: 4 REF: 011138a2 STA: A2.S. 15 TOP: Binomial Probability
KEY: at least or at most
374 ANS:
$\sigma_{x}=14.9 . \bar{x}=40$. There are 8 scores between 25.1 and 54.9.

PTS: 4 REF: 061237a2 STA: A2.S.4 TOP: Dispersion
KEY: advanced
375
ANS:
$\frac{13}{x}=10-x \quad . x=\frac{10 \pm \sqrt{100-4(1)(13)}}{2(1)}=\frac{10 \pm \sqrt{48}}{2}=\frac{10 \pm 4 \sqrt{3}}{2}=5 \pm 2 \sqrt{3}$
$13=10 x-x^{2}$
$x^{2}-10 x+13=0$

PTS: 4 REF: 061336a2 STA: A2.A. 23 TOP: Solving Rationals
KEY: irrational and complex solutions
376
ANS:
$\sigma_{x} \approx 6.2$. 6 scores are within a population standard deviation of the mean. $Q_{3}-Q_{1}=41-37=4$ $\bar{x} \approx 38.2$

PTS: 4
REF: 061338a2
STA: A2.S. 4
TOP: Dispersion
KEY: advanced

377 ANS:
88. $\frac{100}{\sin 33}=\frac{x}{\sin 32} \cdot \sin 66 \approx \frac{T}{97.3}$

$$
x \approx 97.3 \quad t \approx 88
$$

PTS: 4 REF: 011236a2 STA: A2.A.73 TOP: Law of Sines
KEY: advanced
378 ANS:
$\frac{100}{\sin 32}=\frac{b}{\sin 105} \cdot \frac{100}{\sin 32}=\frac{a}{\sin 43}$
$b \approx 182.3 \quad a \approx 128.7$
PTS: 4 REF: 011338a2 STA: A2.A. 73 TOP: Law of Sines
KEY: basic
379 ANS:
$y=2.001 x^{2.298}, 1,009 . y=2.001(15)^{2.298} \approx 1009$
PTS: 4 REF: fall0938a2 STA: A2.S. 7 TOP: Power Regression
380 ANS:
$y=215.983(1.652)^{x} .215 .983(1.652)^{7} \approx 7250$
PTS: 4 REF: 011337a2 STA: A2.S. 7 TOP: Exponential Regression

Algebra 2/Trigonometry 6 Point Regents Exam Questions

Answer Section

381 ANS:

$$
\begin{array}{rlrl}
\sqrt{x^{2}+x-1} & =-4 x+3 & -4\left(\frac{2}{3}\right)+3 \geq 0 \\
x^{2}+x-1 & =16 x^{2}-24 x+9 & & \\
0 & =15 x^{2}-25 x+10 & & \geq 0 \\
0 & =3 x^{2}-5 x+2 & -4(1)+3<0 \\
0 & =(3 x-2)(x-1) & & 1 \text { is extraneous } \\
x & =\frac{2}{3}, x \neq 1 &
\end{array}
$$

PTS: 6 REF: 011339a2 STA: A2.A. 22 TOP: Solving Radicals
KEY: extraneous solutions
382 ANS:
$x=-\frac{1}{3},-1 \log _{x+3} \frac{x^{3}+x-2}{x}=2$

$$
\begin{aligned}
\frac{x^{3}+x-2}{x} & =(x+3)^{2} \\
\frac{x^{3}+x-2}{x} & =x^{2}+6 x+9 \\
x^{3}+x-2 & =x^{3}+6 x^{2}+9 x \\
0 & =6 x^{2}+8 x+2 \\
0 & =3 x^{2}+4 x+1 \\
0 & =(3 x+1)(x+1) \\
x & =-\frac{1}{3},-1
\end{aligned}
$$

PTS: 6
REF: 081039a2 STA: A2.A. 28
TOP: Logarithmic Equations KEY: basic

383 ANS:
101.43, 12.

$$
r^{2}=25^{2}+85^{2}-2(25)(85) \cos 125
$$

$$
r^{2} \approx 10287.7
$$

$$
r \approx 101.43
$$

$\frac{2.5}{\sin x}=\frac{101.43}{\sin 125}$

$$
x \approx 12
$$

PTS: 6 REF: fall0939a2 STA: A2.A. 73 TOP: Vectors
384 ANS:

$$
\begin{aligned}
81^{x^{3}+2 x^{2}} & =27^{\frac{5 x}{3}} \\
\left(3^{4}\right)^{x^{3}+2 x^{2}} & =\left(3^{3}\right)^{\frac{5 x}{3}} \\
3^{4 x^{3}+8 x^{2}} & =3^{5 x} \\
4 x^{3}+8 x^{2}-5 x & =0 \\
x\left(4 x^{2}+8 x-5\right) & =0 \\
x(2 x-1)(2 x+5) & =0 \\
x & =0, \frac{1}{2},-\frac{5}{2}
\end{aligned}
$$

PTS: 6 REF: 061239a2 STA: A2.A. 27 TOP: Exponential Equations
KEY: common base not shown
ANS:

$$
\begin{gathered}
\frac{-2\left(x^{2}+6\right)}{x^{4}} \cdot \frac{x^{2}(x-3)+6(x-3)}{x^{2}-4 x} \cdot \frac{2 x-4}{x^{4}-3 x^{3}} \div \frac{x^{2}+2 x-8}{16-x^{2}} \\
\frac{\left(x^{2}+6\right)(x-3)}{x(x-4)} \cdot \frac{2(x-2)}{x^{3}(x-3)} \cdot \frac{(4+x)(4-x)}{(x+4)(x-2)} \\
\frac{-2\left(x^{2}+6\right)}{x^{4}}
\end{gathered}
$$

PTS: 6
REF: 011239a2 STA: A2.A. 16
TOP: Multiplication and Division of Rationals
KEY: division

386

PTS: 6
KEY: equations

$$
\begin{aligned}
\log _{(x+3)}(2 x+3)(x+5) & =2 \\
(x+3)^{2} & =(2 x+3)(x+5) \\
x^{2}+6 x+9 & =2 x^{2}+13 x+15 \\
x^{2}+7 x+6 & =0 \\
(x+6)(x+1) & =0 \\
x & =-1
\end{aligned}
$$

$$
-6 \text { is extraneous }
$$

PTS: 6 REF: 011439a2 STA: A2.A. 28 TOP: Logarithmic Equations
KEY: applying properties of logarithms
ANS:
33. $a=\sqrt{10^{2}+6^{2}-2(10)(6) \cos 80} \approx 10.7 . \angle C$ is opposite the shortest side. $\frac{6}{\sin C}=\frac{10.7}{\sin 80}$

$$
C \approx 33
$$

PTS: 6
REF: 061039a2
STA: A2.A. 73
TOP: Law of Cosines
KEY: advanced
ANS:

$$
\begin{aligned}
x^{4}+4 x^{3}+4 x^{2}+16 x & =0 \\
x\left(x^{3}+4 x^{2}+4 x+16\right) & =0 \\
x\left(x^{2}(x+4)+4(x+4)\right) & =0 \\
x\left(x^{2}+4\right)(x+4) & =0 \\
x & =0, \pm 2 i,-4
\end{aligned}
$$

PTS: 6
REF: 061339a2
STA: A2.A. 26
TOP: Solving Polynomial Equations

390 ANS:

$$
\begin{array}{rlrl}
\ln \left(T-T_{0}\right) & =-k t+4.718 & \cdot \ln (T-68) & =-0.104(10)+4.718 . \\
\ln (150-68) & =-k(3)+4.718 & \ln (T-68) & =3.678 \\
4.407 & \approx-3 k+4.718 & T-68 & \approx 39.6 \\
k & \approx 0.104 & T & \approx 108
\end{array}
$$

PTS: 6 REF: 011139a2 STA: A2.A. 28 TOP: Logarithmic Equations KEY: advanced

