JMAP
 REGENTS AT RANDOM
 The NY Geometry Regents Exams
 Fall 2008-January 2014
 www.jmap.org

Geometry Regents at Random

1 Which equation represents a line that is parallel to the line whose equation is $3 x-2 y=7$?

1) $y=-\frac{3}{2} x+5$
2) $y=-\frac{2}{3} x+4$
3) $y=\frac{3}{2} x-5$
4) $y=\frac{2}{3} x-4$

2 As shown in the diagram below, $\overline{C D}$ is a median of $\triangle A B C$.

Which statement is always true?

1) $\overline{A D} \cong \overline{D B}$
2) $\overline{A C} \cong \overline{A D}$
3) $\angle A C D \cong \angle C D B$
4) $\angle B C D \cong \angle A C D$

3 Triangle $A B C$ has vertices $A(0,0), B(6,8)$, and $C(8,4)$. Which equation represents the perpendicular bisector of $\overline{B C}$?

1) $y=2 x-6$
2) $y=-2 x+4$
3) $y=\frac{1}{2} x+\frac{5}{2}$
4) $y=-\frac{1}{2} x+\frac{19}{2}$

4 In the diagram of $\Delta U V W$ below, A is the midpoint of $\overline{U V}, B$ is the midpoint of $\overline{U W}, C$ is the midpoint of $\overline{V W}$, and $\overline{A B}$ and $\overline{A C}$ are drawn.

If $V W=7 x-3$ and $A B=3 x+1$, what is the length of $\overline{V C}$?

1) 5
2) 13
3) 16
4) 32

5 Given the statement: One is a prime number. What is the negation and the truth value of the negation?

1) One is not a prime number; true
2) One is not a prime number; false
3) One is a composite number; true
4) One is a composite number; false

6 What are the coordinates of A^{\prime}, the image of $A(-3,4)$, after a rotation of 180° about the origin?

1) $(4,-3)$
2) $(-4,-3)$
3) $(3,4)$
4) $(3,-4)$

7 As shown in the diagram below, a landscaper uses a cylindrical lawn roller on a lawn. The roller has a radius of 9 inches and a width of 42 inches.

To the nearest square inch, the area the roller covers in one complete rotation is

1) 2,374
2) 2,375
3) 10,682
4) 10,688

8 In trapezoid $R S T V$ with bases $\overline{R S}$ and $\overline{V T}$, diagonals $\overline{R T}$ and $\overline{S V}$ intersect at Q.

If trapezoid $R S T V$ is not isosceles, which triangle is equal in area to $\Delta R S V$?

1) $\triangle R Q V$
2) $\Delta R S T$
3) $\Delta R V T$
4) $\Delta S V T$

9 Write an equation of the line that is the perpendicular bisector of the line segment having endpoints $(3,-1)$ and $(3,5)$. [The use of the grid below is optional]

10 If distinct planes R and S are both perpendicular to line ℓ, which statement must always be true?

1) Plane R is parallel to plane S.
2) Plane R is perpendicular to plane S.
3) Planes R and S and line ℓ are all parallel.
4) The intersection of planes R and S is perpendicular to line ℓ.

11 Trapezoid QRST is graphed on the set of axes below.

Under which transformation will there be no invariant points?

1) $r_{y=0}$
2) $r_{x=0}$
3) $r_{(0,0)}$
4) $r_{y=x}$

12 Transversal $\overleftrightarrow{E F}$ intersects $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$, as shown in the diagram below.

Which statement could always be used to prove

$$
\overleftrightarrow{A B} \| \overleftrightarrow{C D} ?
$$

1) $\angle 2 \cong \angle 4$
2) $\angle 7 \cong \angle 8$
3) $\angle 3$ and $\angle 6$ are supplementary
4) $\angle 1$ and $\angle 5$ are supplementary

13 Two intersecting lines are shown in the diagram below. Sketch the locus of points that are equidistant from the two lines. Sketch the locus of points that are a given distance, d, from the point of intersection of the given lines. State the number of points that satisfy both conditions.

14 In the diagram of $\triangle M A H$ below, $\overline{M H} \cong \overline{A H}$ and medians $\overline{A B}$ and $\overline{M T}$ are drawn.
Prove: $\angle M B A \cong \angle A T M$

15 A right prism has a square base with an area of 12 square meters. The volume of the prism is 84 cubic meters. Determine and state the height of the prism, in meters.

16 After the transformation $r_{y=x}$, the image of $\triangle A B C$ is $\Delta A^{\prime} B^{\prime} C^{\prime}$. If $A B=2 x+13$ and $A^{\prime} B^{\prime}=9 x-8$, find the value of x.

17 The endpoints of $\overline{A B}$ are $A(3,-4)$ and $B(7,2)$.
Determine and state the length of $A B$ in simplest radical form.

18 Lines m and n are in plane \mathcal{A}. What is the converse of the statement "If lines m and n are parallel, then lines m and n do not intersect"?

1) If lines m and n are not parallel, then lines m and n intersect.
2) If lines m and n are not parallel, then lines m and n do not intersect
3) If lines m and n intersect, then lines m and n are not parallel.
4) If lines m and n do not intersect, then lines m and n are parallel.

19 The coordinates of point P are $(7,1)$. What are the coordinates of the image of P after $R_{90^{\circ}}$ about the origin?

1) $(1,7)$
2) $(-7,-1)$
3) $(1,-7)$
4) $(-1,7)$

20 In the diagram below, circles A and B are tangent at point C and $\overline{A B}$ is drawn. Sketch all common tangent lines.

21 In circle O shown in the diagram below, chords $\overline{A B}$ and $\overline{C D}$ are parallel.

If $\mathrm{m} \overparen{A B}=104$ and $\mathrm{m} \widehat{C D}=168$, what is $\mathrm{m} \widehat{B D}$?

1) 38
2) 44
3) 88
4) 96

22 What is the equation of circle O shown in the diagram below?

1) $(x+4)^{2}+(y-1)^{2}=3$
2) $(x-4)^{2}+(y+1)^{2}=3$
3) $(x+4)^{2}+(y-1)^{2}=9$
4) $(x-4)^{2}+(y+1)^{2}=9$

23 In $\triangle A B C$, the measure of angle A is fifteen less than twice the measure of angle B. The measure of angle C equals the sum of the measures of angle A and angle B. Determine the measure of angle B.

24 The equations $x^{2}+y^{2}=25$ and $y=5$ are graphed on a set of axes. What is the solution of this system?

1) $(0,0)$
2) $(5,0)$
3) $(0,5)$
4) $(5,5)$

25 Find, in simplest radical form, the length of the line segment with endpoints whose coordinates are $(-1,4)$ and $(3,-2)$.

26 How many points are 5 units from a line and also equidistant from two points on the line?

1) 1
2) 2
3) 3
4) 0

27 Triangle $A B C$ has vertices $A(6,6), B(9,0)$, and $C(3,-3)$. State and label the coordinates of $\Delta A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a dilation of $D_{\frac{1}{3}}$.

28 If line ℓ is perpendicular to distinct planes \mathscr{P} and Q, then planes P and Q

1) are parallel
2) contain line ℓ
3) are perpendicular
4) intersect, but are not perpendicular

29 Which set of equations represents two circles that have the same center?

1) $x^{2}+(y+4)^{2}=16$ and $(x+4)^{2}+y^{2}=16$
2) $(x+3)^{2}+(y-3)^{2}=16$ and
$(x-3)^{2}+(y+3)^{2}=25$
3) $(x-7)^{2}+(y-2)^{2}=16$ and $(x+7)^{2}+(y+2)^{2}=25$
4) $(x-2)^{2}+(y-5)^{2}=16$ and $(x-2)^{2}+(y-5)^{2}=25$

30 In circle O shown below, chords $\overline{A B}$ and $\overline{C D}$ and radius $\overline{O A}$ are drawn, such that $\overline{A B} \cong \overline{C D}$, $\overline{O E} \perp \overline{A B}, \overline{O F} \perp \overline{C D}, O F=16, C F=y+10$, and $C D=4 y-20$.

Determine the length of $\overline{D F}$. Determine the length of $\overline{O A}$.

31 On the set of axes below, graph the locus of points 4 units from the x-axis and equidistant from the points whose coordinates are $(-2,0)$ and $(8,0)$. Mark with an \mathbf{X} all points that satisfy both conditions.

Geometry Regents Exam Questions at Random www.jmap.org

32 Quadrilateral MATH has coordinates $M(-6,-3)$, $A(-1,-3), T(-2,-1)$, and $H(-4,-1)$. The image of quadrilateral MATH after the composition $r_{x \text {-xxis }}{ }^{\circ} T_{7,5}$ is quadrilateral $M " A " T " H$ ". State and label the coordinates of $M " A " T " H$ ". [The use of the set of axes below is optional.]

33 Given: $\triangle A B C, \overline{B D}$ bisects $\angle A B C, \overline{B D} \perp \overline{A C}$
Prove: $\overline{A B} \cong \overline{C B}$

34 In $\triangle A B C$ shown below, L is the midpoint of $\overline{B C}, M$ is the midpoint of $\overline{A B}$, and N is the midpoint of $\overline{A C}$.

If $M N=8, M L=5$, and $N L=6$, the perimeter of trapezoid BMNC is

1) 35
2) 31
3) 28
4) 26

35 Using a compass and straightedge, construct the perpendicular bisector of $\overline{A B}$. [Leave all construction marks.]

36 A right circular cylinder has a height of 7 inches and the base has a diameter of 6 inches. Determine the lateral area, in square inches, of the cylinder in terms of π.

Geometry Regents Exam Questions at Random www.jmap.org

37 Line segment $A B$ is a diameter of circle O whose center has coordinates $(6,8)$. What are the coordinates of point B if the coordinates of point A are $(4,2)$?

1) $(1,3)$
2) $(5,5)$
3) $(8,14)$
4) $(10,10)$

38 Triangle $A B C$ has vertices $A(5,1), B(1,4)$ and $C(1,1)$. State and label the coordinates of the vertices of $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the image of $\triangle A B C$, following the composite transformation $T_{1,-1} \circ D_{2}$. [The use of the set of axes below is optional.]

39 Triangle $A B C$ has vertices at $A(3,0), B(9,-5)$, and $C(7,-8)$. Find the length of $\overline{A C}$ in simplest radical form.

40 In the diagram below, $\overline{A C}$ and $\overline{A D}$ are tangent to circle B at points C and D, respectively, and $\overline{B C}$, $\overline{B D}$, and $\overline{B A}$ are drawn.

If $A C=12$ and $A B=15$, what is the length of $\overline{B D}$?

1) 5.5
2) 9
3) 12
4) 18

41 The diagram below shows the construction of an equilateral triangle.

Which statement justifies this construction?

1) $\angle A+\angle B+\angle C=180$
2) $\mathrm{m} \angle A=\mathrm{m} \angle B=\mathrm{m} \angle C$
3) $A B=A C=B C$
4) $A B+B C>A C$

42 If $\triangle M N P \cong \triangle V W X$ and $\overline{P M}$ is the shortest side of $\triangle M N P$, what is the shortest side of $\Delta V W X$?

1) $\overline{X V}$
2) $\overline{W X}$
3) $\overline{V W}$
4) $\overline{N P}$

43 Which graph represents a circle whose equation is $x^{2}+(y-2)^{2}=4$?
1)

2)

3)

44 In $\triangle A B C, \angle A \cong \angle B$ and $\angle C$ is an obtuse angle. Which statement is true?

1) $\overline{A C} \cong \overline{A B}$ and $\overline{B C}$ is the longest side.
2) $\overline{A C} \cong \overline{B C}$ and $\overline{A B}$ is the longest side.
3) $\overline{A C} \cong \overline{A B}$ and $\overline{B C}$ is the shortest side.
4) $\overline{A C} \cong \overline{B C}$ and $\overline{A B}$ is the shortest side.

45 As shown in the diagram below, when right triangle $D A B$ is reflected over the x-axis, its image is triangle $D C B$.

Which statement justifies why $\overline{A B} \cong \overline{C B}$?

1) Distance is preserved under reflection.
2) Orientation is preserved under reflection.
3) Points on the line of reflection remain invariant.
4) Right angles remain congruent under reflection.

46 In the diagram of $\triangle A B C$ below, $\overline{A B}$ is extended to point D.

If $\mathrm{m} \angle C A B=x+40, \mathrm{~m} \angle A C B=3 x+10$, $\mathrm{m} \angle C B D=6 x$, what is $\mathrm{m} \angle C A B$?

1) 13
2) 25
3) 53
4) 65

47 A student wrote the following equations:

$$
\begin{aligned}
& 3 y+6=2 x \\
& 2 y-3 x=6
\end{aligned}
$$

The lines represented by these equations are

1) parallel
2) the same line
3) perpendicular
4) intersecting, but not perpendicular

48 Triangle $A B C$ is similar to triangle $D E F$. The lengths of the sides of $\triangle A B C$ are 5,8 , and 11 . What is the length of the shortest side of $\triangle D E F$ if its perimeter is 60 ?

1) 10
2) 12.5
3) 20
4) 27.5

-

49 Based on the construction below, which conclusion is not always true?

1) $\overline{A B} \perp \overline{C D}$
2) $A B=C D$
3) $A E=E B$
4) $C E=D E$

50 Which diagram shows the construction of a 45° angle?
1)

2)

3)

4)

52 Lines p and q are intersected by line r, as shown below.

If $\mathrm{m} \angle 1=7 x-36$ and $\mathrm{m} \angle 2=5 x+12$, for which value of x would $p \| q$?

1) 17
2) 24
3) 83
4) 97

53 As shown below, the medians of $\triangle A B C$ intersect at D.

If the length of $\overline{B E}$ is 12 , what is the length of $\overline{B D}$?

1) 8
2) 9
3) 3
4) 4

51 If $\triangle R S T \sim \triangle A B C, \mathrm{~m} \angle A=x^{2}-8 x, \mathrm{~m} \angle C=4 x-5$, and $\mathrm{m} \angle R=5 x+30$, find $\mathrm{m} \angle C$. [Only an algebraic solution can receive full credit.]

Geometry Regents Exam Questions at Random
www.jmap.org
54 On the ray drawn below, using a compass and straightedge, construct an equilateral triangle with a vertex at R. The length of a side of the triangle must be equal to a length of the diagonal of rectangle $A B C D$.

55 State whether the lines represented by the equations $y=\frac{1}{2} x-1$ and $y+4=-\frac{1}{2}(x-2)$ are parallel, perpendicular, or neither. Explain your answer.

56 The equation of a circle is $(x-2)^{2}+(y+5)^{2}=32$. What are the coordinates of the center of this circle and the length of its radius?

1) $(-2,5)$ and 16
2) $(2,-5)$ and 16
3) $(-2,5)$ and $4 \sqrt{2}$
4) $(2,-5)$ and $4 \sqrt{2}$

57 The lateral area of a right circular cone is equal to $120 \pi \mathrm{~cm}^{2}$. If the base of the cone has a diameter of 24 cm , what is the length of the slant height, in centimeters?

1) 2.5
2) 5
3) 10
4) 15.7

Geometry Regents Exam Questions at Random www.jmap.org

58 The coordinates of the vertices of parallelogram SWAN are $S(2,-2), W(-2,-4), A(-4,6)$, and $N(0,8)$. State and label the coordinates of parallelogram $S^{\prime \prime} W^{\prime \prime} A^{\prime \prime} N$ ", the image of SWAN after the transformation $T_{4,-2} \circ D \frac{1}{2}$. [The use of the set of axes below is optional.]

60 In the diagram below of circle $O, \overline{P A C}$ and $\overline{P B D}$ are secants.

If $\mathrm{m} \widehat{C D}=70$ and $\mathrm{m} \overparen{A B}=20$, what is the degree measure of $\angle P$?

1) 25
2) 35
3) 45
4) 50

61 Square $A B C D$ has vertices $A(-2,-3), B(4,-1)$, $C(2,5)$, and $D(-4,3)$. What is the length of a side of the square?

1) $2 \sqrt{5}$
2) $2 \sqrt{10}$
3) $4 \sqrt{5}$
4) $10 \sqrt{2}$

62 If the vertices of $\triangle A B C$ are $A(-2,4), B(-2,8)$, and $C(-5,6)$, then $\triangle A B C$ is classified as

1) right
2) scalene
3) isosceles
4) equilateral

63 Which equation represents the circle whose center is $(-5,3)$ and that passes through the point $(-1,3)$?

1) $(x+1)^{2}+(y-3)^{2}=16$
2) $(x-1)^{2}+(y+3)^{2}=16$
3) $(x+5)^{2}+(y-3)^{2}=16$
4) $(x-5)^{2}+(y+3)^{2}=16$

64 What is the measure of the largest exterior angle that any regular polygon can have?

1) 60°
2) 90°
3) 120°
4) 360°

65 In the diagram below, $\triangle X Y V \cong \triangle T S V$.

Which statement can not be proven?

1) $\angle X V Y \cong \angle T V S$
2) $\angle V Y X \cong \angle V U T$
3) $\overline{X Y} \cong \overline{T S}$
4) $\overline{Y V} \cong \overline{S V}$

66 In the diagram of circle O below, diameter $\overline{R S}$, chord $\overline{A S}$, tangent $\overrightarrow{T S}$, and secant $\overline{T A R}$ are drawn.

Complete the following proof to show $(R S)^{2}=R A \cdot R T$

67 What is the converse of "If an angle measures 90 degrees, then it is a right angle"?

1) If an angle is a right angle, then it measures 90 degrees.
2) An angle is a right angle if it measures 90 degrees.
3) If an angle is not a right angle, then it does not measure 90 degrees.
4) If an angle does not measure 90 degrees, then it is not a right angle.

68 The solution of the system of equations $y=x^{2}-2$ and $y=x$ is

1) $(1,1)$ and $(-2,-2)$
2) $(2,2)$ and $(-1,-1)$
3) $(1,1)$ and $(2,2)$
4) $(-2,-2)$ and $(-1,-1)$

69 Determine, in degrees, the measure of each interior angle of a regular octagon.

70 Which equation represents circle A shown in the diagram below?

1) $(x-4)^{2}+(y-1)^{2}=3$
2) $(x+4)^{2}+(y+1)^{2}=3$
3) $(x-4)^{2}+(y-1)^{2}=9$
4) $(x+4)^{2}+(y+1)^{2}=9$

71 When the system of equations $y+2=(x-4)^{2}$ and $2 x+y-6=0$ is solved graphically, the solution is

1) $(-4,-2)$ and $(-2,2)$
2) $(4,-2)$ and $(2,2)$
3) $(-4,2)$ and $(-6,6)$
4) $(4,2)$ and $(6,6)$

72 Given: $\triangle A B D, \overline{B C}$ is the perpendicular bisector of $A D$

Which statement can not always be proven?

1) $\overline{A C} \cong \overline{D C}$
2) $\overline{B C} \cong \overline{C D}$
3) $\angle A C B \cong \angle D C B$
4) $\triangle A B C \cong \triangle D B C$

73 Using a compass and straightedge, construct a line perpendicular to line ℓ through point P. [Leave all construction marks.]

74 The diagram below shows rectangle $A B C D$ with points E and F on side $\overline{A B}$. Segments $C E$ and $D F$ intersect at G, and $\angle A D G \cong \angle B C G$. Prove: $\overline{A E} \cong \overline{B F}$

75 As shown in the diagram below, a right pyramid has a square base, $A B C D$, and $\overline{E F}$ is the slant height.

Which statement is not true?

1) $\overline{E A} \cong \overline{E C}$
2) $\overline{E B} \cong \overline{E F}$
3) $\triangle A E B \cong \triangle B E C$
4) $\triangle C E D$ is isosceles

76 The volume of a sphere is approximately 44.6022 cubic centimeters. What is the radius of the sphere, to the nearest tenth of a centimeter?

1) 2.2
2) 3.3
3) 4.4
4) 4.7

77 The diagram below shows the construction of line m, parallel to line ℓ, through point P.

Which theorem was used to justify this construction?

1) If two lines are cut by a transversal and the alternate interior angles are congruent, the lines are parallel.
2) If two lines are cut by a transversal and the interior angles on the same side are supplementary, the lines are parallel.
3) If two lines are perpendicular to the same line, they are parallel.
4) If two lines are cut by a transversal and the corresponding angles are congruent, they are parallel.

78 A right circular cylinder with a height of 5 cm has a base with a diameter of 6 cm . Find the lateral area of the cylinder to the nearest hundredth of a square centimeter. Find the volume of the cylinder to the nearest hundredth of a cubic centimeter.

79 If $\triangle A B C \cong \triangle J K L \cong \triangle R S T$, then $\overline{B C}$ must be congruent to

1) $\overline{J L}$
2) $\overline{J K}$
3) $\overline{S T}$
4) $\overline{R S}$

80 Two prisms have equal heights and equal volumes. The base of one is a pentagon and the base of the other is a square. If the area of the pentagonal base is 36 square inches, how many inches are in the length of each side of the square base?

1) 6
2) 9
3) 24
4) 36

81 In circle R shown below, diameter $\overline{D E}$ is perpendicular to chord $\overline{S T}$ at point L.

Which statement is not always true?

1) $\overline{S L} \cong \overline{T L}$
2) $R S=D R$
3) $\overline{R L} \cong \overline{L E}$
4) $(D L)(L E)=(S L)(L T)$

82 Quadrilateral $A B C D$ with vertices $A(-7,4)$, $B(-3,6), C(3,0)$, and $D(1,-8)$ is graphed on the set of axes below. Quadrilateral $M N P Q$ is formed by joining M, N, P, and Q, the midpoints of $\overline{A B}, \overline{B C}$, $\overline{C D}$, and $\overline{A D}$, respectively. Prove that quadrilateral $M N P Q$ is a parallelogram. Prove that quadrilateral $M N P Q$ is not a rhombus.

83 A circle with the equation $(x+6)^{2}+(y-7)^{2}=64$ does not include points in Quadrant

1) I
2) II
3) III
4) IV

84 The measure of an interior angle of a regular polygon is 120°. How many sides does the polygon have?

1) 5
2) 6
3) 3
4) 4

85 Which equation represents circle O shown in the graph below?

1) $x^{2}+(y-2)^{2}=10$
2) $x^{2}+(y+2)^{2}=10$
3) $x^{2}+(y-2)^{2}=25$
4) $x^{2}+(y+2)^{2}=25$

86 In $\triangle A B C, D$ is the midpoint of $\overline{A B}$ and E is the midpoint of $\overline{B C}$. If $A C=3 x-15$ and $D E=6$, what is the value of x ?

1) 6
2) 7
3) 9
4) 12

87 What is the difference between the sum of the measures of the interior angles of a regular pentagon and the sum of the measures of the exterior angles of a regular pentagon?

1) 36
2) 72
3) 108
4) 180

88 Line ℓ passes through the point $(5,3)$ and is parallel to line k whose equation is $5 x+y=6$. An equation of line ℓ is

1) $y=\frac{1}{5} x+2$
2) $y=-5 x+28$
3) $y=\frac{1}{5} x-2$
4) $y=-5 x-28$

89 In the diagram below, diameter $\overline{A B}$ bisects chord $\overline{C D}$ at point E in circle F.

If $A E=2$ and $F B=17$, then the length of $\overline{C E}$ is

1) 7
2) 8
3) 15
4) 16

90 Trapezoid TRAP, with median $\overline{M Q}$, is shown in the diagram below. Solve algebraically for x and y.

92 Triangle $A B C$ has the coordinates $A(1,2), B(5,2)$, and $C(5,5)$. Triangle $A B C$ is rotated 180° about the origin to form triangle $A^{\prime} B^{\prime} C^{\prime}$. Triangle $A^{\prime} B^{\prime} C^{\prime}$ is

1) acute
2) isosceles
3) obtuse
4) right

93 For which measures of the sides of $\triangle A B C$ is angle B the largest angle of the triangle?

1) $A B=2, B C=6, A C=7$
2) $A B=6, B C=12, A C=8$
3) $A B=16, B C=9, A C=10$
4) $A B=18, B C=14, A C=5$

94 The midpoint of $\overline{A B}$ is $M(4,2)$. If the coordinates of A are ($6,-4$), what are the coordinates of B ?

1) $(1,-3)$
2) $(2,8)$
3) $(5,-1)$
4) $(14,0)$

95 What is the equation of the circle with its center at $(-1,2)$ and that passes through the point $(1,2)$?

1) $(x+1)^{2}+(y-2)^{2}=4$
2) $(x-1)^{2}+(y+2)^{2}=4$
3) $(x+1)^{2}+(y-2)^{2}=2$
4) $(x-1)^{2}+(y+2)^{2}=2$

96 Secants $\overline{J K L}$ and $\overline{J M N}$ are drawn to circle O from an external point, J. If $J K=8, L K=4$, and $J M=6$, what is the length of $\overline{J N}$?

1) 16
2) 12
3) 10
4) 8

97 The sides of a triangle are 8,12 , and 15 . The longest side of a similar triangle is 18 . What is the ratio of the perimeter of the smaller triangle to the perimeter of the larger triangle?

1) $2: 3$
2) $4: 9$
3) $5: 6$
4) $25: 36$

98 In the diagram below of right triangle $A B C$, altitude $\overline{C D}$ is drawn to hypotenuse $\overline{A B}$.

If $A D=3$ and $D B=12$, what is the length of altitude $\overline{C D}$?

1) 6
2) $6 \sqrt{5}$
3) 3
4) $3 \sqrt{5}$

99 In $\triangle A B C, \mathrm{~m} \angle A=60, \mathrm{~m} \angle B=80$, and $\mathrm{m} \angle C=40$. Which inequality is true?

1) $A B>B C$
2) $A C>B C$
3) $A C<B A$
4) $B C<B A$

100 Consider the relationship between the two statements below.

$$
\begin{aligned}
& \text { If } \sqrt{16+9} \neq 4+3 \text {, then } 5 \neq 4+3 \\
& \text { If } \sqrt{16+9}=4+3 \text {, then } 5=4+3
\end{aligned}
$$

These statements are

1) inverses
2) converses
3) contrapositives
4) biconditionals

101 A rectangular right prism is shown in the diagram below.

Which pair of edges are not coplanar?

1) $\overline{B F}$ and $\overline{C G}$
2) $\overline{B F}$ and $\overline{D H}$
3) $\overline{E F}$ and $\overline{C D}$
4) $\overline{E F}$ and $\overline{B C}$

102 In the diagram below of quadrilateral $A B C D, E$ and F are points on $\overline{A B}$ and $\overline{C D}$, respectively, $\overline{B E} \cong \overline{D F}$, and $\overline{A E} \cong \overline{C F}$.

Which conclusion can be proven?

1) $\overline{E D} \cong \overline{F B}$
2) $\overline{A B} \cong \overline{C D}$
3) $\angle A \cong \angle C$
4) $\angle A E D \cong \angle C F B$

103 In the diagram below, $R C B T$ and $\triangle A B C$ are shown with $\mathrm{m} \angle A=60$ and $\mathrm{m} \angle A B T=125$.

What is $\mathrm{m} \angle A C R$?

1) 125
2) 115
3) 65
4) 55

104 Chords $\overline{A B}$ and $\overline{C D}$ intersect at point E in a circle with center at O. If $A E=8, A B=20$, and $D E=16$, what is the length of $\overline{C E}$?

1) 6
2) 9
3) 10
4) 12

105 On the set of axes below, graph the locus of points 4 units from $(0,1)$ and the locus of points 3 units from the origin. Label with an \mathbf{X} any points that satisfy both conditions.

106 The bases of a right triangular prism are $\triangle A B C$ and $\triangle D E F$. Angles A and D are right angles, $A B=6$, $A C=8$, and $A D=12$. What is the length of edge $B E$?

1) 10
2) 12
3) 14
4) 16

107 Which graph could be used to find the solution to the following system of equations?

$$
\begin{gathered}
y=(x+3)^{2}-1 \\
x+y=2
\end{gathered}
$$

1)

2)

3)

4)

108 In a park, two straight paths intersect. The city wants to install lampposts that are both equidistant from each path and also 15 feet from the intersection of the paths. How many lampposts are needed?

1) 1
2) 2
3) 3
4) 4

109 Plane \mathcal{A} and plane \mathscr{B} are two distinct planes that are both perpendicular to line ℓ. Which statement about planes \mathcal{A} and \mathscr{B} is true?

1) Planes \mathcal{A} and \mathscr{B} have a common edge, which forms a line.
2) Planes \mathcal{A} and \mathscr{B} are perpendicular to each other.
3) Planes \mathcal{A} and \mathscr{B} intersect each other at exactly one point.
4) Planes \mathcal{A} and \mathscr{B} are parallel to each other.

110 The diagram below shows $\triangle A B D$, with $\overrightarrow{A B C}$, $\overline{B E} \perp \overline{A D}$, and $\angle E B D \cong \angle C B D$.

If $\mathrm{m} \angle A B E=52$, what is $\mathrm{m} \angle D$?

1) 26
2) 38
3) 52
4) 64

111 Point A is on line m. How many distinct planes will be perpendicular to line m and pass through point A ?

1) one
2) two
3) zero
4) infinite

112 How many points in the coordinate plane are 3 units from the origin and also equidistant from both the x-axis and the y-axis?

1) 1
2) 2
3) 8
4) 4

113 As shown in the diagram below, $\overline{F D}$ and $\overline{C B}$ intersect at point A and $\overline{E T}$ is perpendicular to both $\overline{F D}$ and $\overline{C B}$ at A.

Which statement is not true?

1) $\overline{E T}$ is perpendicular to plane $B A D$.
2) $\overline{E T}$ is perpendicular to plane $F A B$.
3) $\overline{E T}$ is perpendicular to plane $C A D$.
4) $E T$ is perpendicular to plane BAT.

114 A rectangular prism has a base with a length of 25, a width of 9 , and a height of 12 . A second prism has a square base with a side of 15 . If the volumes of the two prisms are equal, what is the height of the second prism?

1) 6
2) 8
3) 12
4) 15

115 The equation of a line is $y=\frac{2}{3} x+5$. What is an equation of the line that is perpendicular to the given line and that passes through the point $(4,2)$?

1) $y=\frac{2}{3} x-\frac{2}{3}$
2) $y=\frac{3}{2} x-4$
3) $y=-\frac{3}{2} x+7$
4) $y=-\frac{3}{2} x+8$

116 Triangle $A B C$ shown below is a right triangle with altitude $\overline{A D}$ drawn to the hypotenuse $\overline{B C}$.

If $B D=2$ and $D C=10$, what is the length of $\overline{A B}$?

1) $2 \sqrt{2}$
2) $2 \sqrt{5}$
3) $2 \sqrt{6}$
4) $2 \sqrt{30}$

117 Which graph represents a circle whose equation is $x^{2}+(y-1)^{2}=9 ?$
1)

2)

3)

118 Write an equation of a circle whose center is $(-3,2)$ and whose diameter is 10 .

119 Points $A(5,3)$ and $B(7,6)$ lie on $\overleftrightarrow{A B}$. Points $C(6,4)$ and $D(9,0)$ lie on $\overleftrightarrow{C D}$. Which statement is true?

1) $\overleftrightarrow{A B} \| \overleftrightarrow{C D}$
2) $\overleftrightarrow{A B} \perp \overleftrightarrow{C D}$
3) $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ are the same line.
4) $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ intersect, but are not perpendicular.

120 What are the coordinates of the center and the length of the radius of the circle whose equation is $(x+1)^{2}+(y-5)^{2}=16$?

1) $(1,-5)$ and 16
2) $(-1,5)$ and 16
3) $(1,-5)$ and 4
4) $(-1,5)$ and 4

121 In the diagram of $\triangle B C D$ shown below, $\overline{B A}$ is drawn from vertex B to point A on $\overline{D C}$, such that $\overline{B C} \cong \overline{B A}$.

In $\triangle D A B, \mathrm{~m} \angle D=x, \mathrm{~m} \angle D A B=5 x-30$, and $\mathrm{m} \angle D B A=3 x-60$. In $\triangle A B C, A B=6 y-8$ and $B C=4 y-2$. [Only algebraic solutions can receive full credit.] Find $m \angle D$. Find $m \angle B A C$. Find the length of $\overline{B C}$. Find the length of $\overline{D C}$.

122 What is the perimeter of a square whose diagonal is $3 \sqrt{2}$?

1) 18
2) 12
3) 9
4) 6

123 In $\triangle A B C, \mathrm{~m} \angle A=3 x+1, \mathrm{~m} \angle B=4 x-17$, and $\mathrm{m} \angle C=5 x-20$. Which type of triangle is $\triangle A B C$?

1) right
2) scalene
3) isosceles
4) equilateral

124 In triangles $A B C$ and $D E F, A B=4, A C=5$, $D E=8, D F=10$, and $\angle A \cong \angle D$. Which method could be used to prove $\triangle A B C \sim \triangle D E F$?

1) AA
2) SAS
3) SSS
4) ASA

125 Using a compass and straightedge, construct the bisector of $\angle M J H$. [Leave all construction marks.]

126 The coordinates of the vertices of $\triangle A B C$ are $A(-6,5), B(-4,8)$, and $C(1,6)$. State and label the coordinates of the vertices of $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the image of $\triangle A B C$ after the composition of transformations $T_{(-4,5)}{ }^{\circ} r_{y \text {-axis }}$. The use of the set of axes below is optional.]

127 In the diagram of trapezoid $A B C D$ below, $\overline{A B} \| \overline{D C}$, $\overline{A D} \cong \overline{B C}, \mathrm{~m} \angle A=4 x+20$, and $\mathrm{m} \angle C=3 x-15$.

What is $\mathrm{m} \angle D$?

1) 25
2) 35
3) 60
4) 90

128 If $\triangle A B C$ and its image, $\Delta A^{\prime} B^{\prime} C^{\prime}$, are graphed on a set of axes, $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$ under each transformation except

1) D_{2}
2) R_{90}
3) $r_{y=x}$
4) $T_{(-2,3)}$

129 In the diagram below, under which transformation is $\triangle A^{\prime} B^{\prime} C^{\prime}$ the image of $\triangle A B C$?

1) D_{2}
2) $r_{x \text {-axis }}$
3) $r_{y \text {-xis }}$
4) $(x, y) \rightarrow(x-2, y)$

130 Which quadrilateral does not always have congruent diagonals?

1) isosceles trapezoid
2) rectangle
3) rhombus
4) square

131 Which set of numbers could not represent the lengths of the sides of a right triangle?

1) $\{1,3, \sqrt{10}\}$
2) $\{2,3,4\}$
3) $\{3,4,5\}$
4) $\{8,15,17\}$

132 A tree, T, is 6 meters from a row of corn, c, as represented in the diagram below. A farmer wants to place a scarecrow 2 meters from the row of corn and also 5 meters from the tree. Sketch both loci. Indicate, with an \mathbf{X}, all possible locations for the scarecrow.

133 The diameter of a sphere is 5 inches. Determine and state the surface area of the sphere, to the nearest hundredth of a square inch.

134 As shown in the diagram of rectangle $A B C D$ below, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E.

If $A E=x+2$ and $B D=4 x-16$, then the length of $\overline{A C}$ is

1) 6
2) 10
3) 12
4) 24

135 What are the coordinates of the center of a circle if the endpoints of its diameter are $A(8,-4)$ and $B(-3,2)$?

1) $(2.5,1)$
2) $(2.5,-1)$
3) $(5.5,-3)$
4) $(5.5,3)$

136 What is an equation of the circle with center $(-5,4)$ and a radius of 7 ?

1) $(x-5)^{2}+(y+4)^{2}=14$
2) $(x-5)^{2}+(y+4)^{2}=49$
3) $(x+5)^{2}+(y-4)^{2}=14$
4) $(x+5)^{2}+(y-4)^{2}=49$

137 In $\triangle A B C, \mathrm{~m} \angle A=x^{2}+12, \mathrm{~m} \angle B=11 x+5$, and $\mathrm{m} \angle C=13 x-17$. Determine the longest side of $\triangle A B C$.

138 What is the perimeter of a rhombus whose diagonals are 16 and 30 ?

1) 92
2) 68
3) 60
4) 17

139 In the diagram of circle O below, chord $\overline{C D}$ is parallel to diameter $\overline{A O B}$ and $\mathrm{m} \widehat{C D}=110$.

What is $\mathrm{m} \overparen{D B}$?

1) 35
2) 55
3) 70
4) 110

140 In right triangle $A B C$ below, $\overline{C D}$ is the altitude to hypotenuse $\overline{A B}$. If $C D=6$ and the ratio of $A D$ to $A B$ is $1: 5$, determine and state the length of $\overline{B D}$. [Only an algebraic solution can receive full credit.]

141 In right triangle $A B C$ shown in the diagram below, altitude $\overline{B D}$ is drawn to hypotenuse $\overline{A C}, C D=12$, and $A D=3$.

What is the length of $\overline{A B}$?

1) $5 \sqrt{3}$
2) 6
3) $3 \sqrt{5}$
4) 9

142 In the diagram below, $\overline{A C}$ and $\overline{B C}$ are tangent to circle O at A and B, respectively, from external point C.

If $\mathrm{m} \angle A C B=38$, what is $\mathrm{m} \angle A O B$?

1) 71
2) 104
3) 142
4) 161

143 Triangle $A B C$ is shown in the diagram below.

If $\overline{D E}$ joins the midpoints of $\overline{A D C}$ and $\overline{A E B}$, which statement is not true?

1) $D E=\frac{1}{2} C B$
2) $\overline{D E} \| \overline{C B}$
3) $\frac{A D}{D C}=\frac{D E}{C B}$
4) $\triangle A B C \sim \triangle A E D$

144 What is the equation of a line passing through the point $(6,1)$ and parallel to the line whose equation is $3 x=2 y+4$?

1) $y=-\frac{2}{3} x+5$
2) $y=-\frac{2}{3} x-3$
3) $y=\frac{3}{2} x-8$
4) $y=\frac{3}{2} x-5$

145 What is the slope of the line perpendicular to the line represented by the equation $2 x+4 y=12$?

1) -2
2) 2
3) $-\frac{1}{2}$
4) $\frac{1}{2}$

146 How many common tangent lines can be drawn to the circles shown below?

1) 1
2) 2
3) 3
4) 4

147 A circle has the equation $(x-3)^{2}+(y+4)^{2}=10$. Find the coordinates of the center of the circle and the length of the circle's radius.

148 Circle O with $\angle A O C$ and $\angle A B C$ is shown in the diagram below.

What is the ratio of $\mathrm{m} \angle A O C$ to $\mathrm{m} \angle A B C$?

1) $1: 1$
2) $2: 1$
3) $3: 1$
4) $1: 2$

149 The coordinates of two vertices of square $A B C D$ are $A(2,1)$ and $B(4,4)$. Determine the slope of side $\overline{B C}$.

150 In the diagram below, four pairs of triangles are shown. Congruent corresponding parts are labeled in each pair.

A

B

c

D

Using only the information given in the diagrams, which pair of triangles can not be proven congruent?

1) A
2) B
3) C
4) D

151 In circle O, diameter $\overline{A B}$ intersects chord $\overline{C D}$ at E. If $C E=E D$, then $\angle C E A$ is which type of angle?

1) straight
2) obtuse
3) acute
4) right

152 In the diagram of $\triangle A B C$ below, medians $\overline{A D}$ and $B E$ intersect at point F.

If $A F=6$, what is the length of $\overline{F D}$?

1) 6
2) 2
3) 3
4) 9

153 In the diagram below of $\triangle A B C, D$ is a point on $\overline{A B}$, $A C=7, A D=6$, and $B C=18$.

(Not drawn to scale)
The length of $\overline{D B}$ could be

1) 5
2) 12
3) 19
4) 25

Geometry Regents at Random

154 Triangle $A B C$ has vertices $A(1,3), B(0,1)$, and $C(4,0)$. Under a translation, A^{\prime}, the image point of A, is located at $(4,4)$. Under this same translation, point C^{\prime} is located at

1) $(7,1)$
2) $(5,3)$
3) $(3,2)$
4) $(1,-1)$

155 What is the equation of a line that is parallel to the line whose equation is $y=x+2$?

1) $x+y=5$
2) $2 x+y=-2$
3) $y-x=-1$
4) $y-2 x=3$

156 In $\triangle A B C$, point D is on $\overline{A B}$, and point E is on $\overline{B C}$ such that $\overline{D E} \| \overline{A C}$. If $D B=2, D A=7$, and $D E=3$, what is the length of $\overline{A C}$?

1) 8
2) 9
3) 10.5
4) 13.5

157 What is the image of point $A(4,2)$ after the composition of transformations defined by $R_{90^{\circ}} \circ r_{y=x}$?

1) $(-4,2)$
2) $(4,-2)$
3) $(-4,-2)$
4) $(2,-4)$

158 In the diagram below, $\triangle A B C$ is shown with $\overline{A C}$ extended through point D.

If $\mathrm{m} \angle B C D=6 x+2, \mathrm{~m} \angle B A C=3 x+15$, and $\mathrm{m} \angle A B C=2 x-1$, what is the value of x ?

1) 12
2) $14 \frac{10}{11}$
3) 16
4) $18 \frac{1}{9}$

159 A transformation of a polygon that always preserves both length and orientation is

1) dilation
2) translation
3) line reflection
4) glide reflection

160 What is the distance between the points $(-3,2)$ and $(1,0)$?

1) $2 \sqrt{2}$
2) $2 \sqrt{3}$
3) $5 \sqrt{2}$
4) $2 \sqrt{5}$

161 In the diagram of circle O below, chord $\overline{A B}$ intersects chord $\overline{C D}$ at $E, D E=2 x+8, E C=3$, $A E=4 x-3$, and $E B=4$.

What is the value of x ?

1) 1
2) 3.6
3) 5
4) 10.25

162 The diagram below shows the construction of the bisector of $\angle A B C$.

Which statement is not true?

1) $\mathrm{m} \angle E B F=\frac{1}{2} \mathrm{~m} \angle A B C$
2) $\mathrm{m} \angle D B F=\frac{1}{2} \mathrm{~m} \angle A B C$
3) $\mathrm{m} \angle E B F=\mathrm{m} \angle A B C$
4) $\mathrm{m} \angle D B F=\mathrm{m} \angle E B F$

163 In the diagram below, $\overline{P S}$ is a tangent to circle O at point $S, \overline{P Q R}$ is a secant, $P S=x, P Q=3$, and $P R=x+18$.

(Not drawn to scale)
What is the length of $\overline{P S}$?

1) 6
2) 9
3) 3
4) 27

164 In the diagram of circle O below, chord $\overline{C D}$ is parallel to diameter $\overline{A O B}$ and $\mathrm{m} \overparen{A C}=30$.

What is $\mathrm{m} \widehat{C D}$?

1) 150
2) 120
3) 100
4) 60

Geometry Regents Exam Questions at Random www.jmap.org

165 In the diagram below, quadrilateral $S T A R$ is a rhombus with diagonals $\overline{S A}$ and $\overline{T R}$ intersecting at E. $S T=3 x+30, S R=8 x-5, S E=3 z, T E=5 z+5$, $A E=4 z-8, \mathrm{~m} \angle R T A=5 y-2$, and $\mathrm{m} \angle T A S=9 y+8$. Find $S R, R T$, and $\mathrm{m} \angle T A S$.

166 Write an equation for circle O shown on the graph below.

167 In $\triangle A B C, \overline{A B} \cong \overline{B C}$. An altitude is drawn from B to $\overline{A C}$ and intersects $\overline{A C}$ at D. Which conclusion is not always true?

1) $\angle A B D \cong \angle C B D$
2) $\angle B D A \cong \angle B D C$
3) $\overline{A D} \cong \overline{B D}$
4) $\overline{A D} \cong \overline{D C}$

168 Find an equation of the line passing through the point $(5,4)$ and parallel to the line whose equation is $2 x+y=3$.

169 Point A is located at (4,-7). The point is reflected in the x-axis. Its image is located at

1) $(-4,7)$
2) $(-4,-7)$
3) $(4,7)$
4) $(7,-4)$

170 What is the slope of a line that is perpendicular to the line whose equation is $3 x+4 y=12$?

1) $\frac{3}{4}$
2) $-\frac{3}{4}$
3) $\frac{4}{3}$
4) $-\frac{4}{3}$

171 In the diagram below of regular pentagon $A B C D E$, $E B$ is drawn.

What is the measure of $\angle A E B$?

1) 36°
2) 54°
3) 72°
4) 108°

172 In the diagram below of $\triangle A C D, E$ is a point on $\overline{A D}$ and B is a point on $\overline{A C}$, such that $\overline{E B} \| \overline{D C}$. If $A E=3, E D=6$, and $D C=15$, find the length of $E B$.

173 Which expression represents the volume, in cubic centimeters, of the cylinder represented in the diagram below?

1) 162π
2) 324π
3) 972π
4) $3,888 \pi$

174 Using a compass and straightedge, construct the bisector of the angle shown below. [Leave all construction marks.]

175 What is the slope of a line perpendicular to the line whose equation is $5 x+3 y=8$?

1) $\frac{5}{3}$
2) $\frac{3}{5}$
3) $-\frac{3}{5}$
4) $-\frac{5}{3}$

176 What is the length, to the nearest tenth, of the line segment joining the points $(-4,2)$ and $(146,52)$?

1) 141.4
2) 150.5
3) 151.9
4) 158.1

177 In $\triangle P Q R, P Q=8, Q R=12$, and $R P=13$. Which statement about the angles of $\triangle P Q R$ must be true?

1) $\mathrm{m} \angle Q>\mathrm{m} \angle P>\mathrm{m} \angle R$
2) $\mathrm{m} \angle Q>\mathrm{m} \angle R>\mathrm{m} \angle P$
3) $\mathrm{m} \angle R>\mathrm{m} \angle P>\mathrm{m} \angle Q$
4) $\mathrm{m} \angle P>\mathrm{m} \angle R>\mathrm{m} \angle Q$

178 In a coordinate plane, how many points are both 5 units from the origin and 2 units from the x-axis?

1) 1
2) 2
3) 3
4) 4

179 Lines j and k intersect at point P. Line m is drawn so that it is perpendicular to lines j and k at point P. Which statement is correct?

1) Lines j and k are in perpendicular planes.
2) Line m is in the same plane as lines j and k.
3) Line m is parallel to the plane containing lines j and k.
4) Line m is perpendicular to the plane containing lines j and k.

180 Which transformation is not always an isometry?

1) rotation
2) dilation
3) reflection
4) translation

181 Triangle $X Y Z$, shown in the diagram below, is reflected over the line $x=2$. State the coordinates of $\Delta X^{\prime} Y^{\prime} Z^{\prime}$, the image of $\Delta X Y Z$.

182 In the diagram of $\triangle A B C$ and $\triangle D E F$ below, $\overline{A B} \cong \overline{D E}, \angle A \cong \angle D$, and $\angle B \cong \angle E$.

Which method can be used to prove
$\triangle A B C \cong \triangle D E F$?

1) SSS
2) SAS
3) ASA
4) HL

183 Point P is on line m. What is the total number of planes that are perpendicular to line m and pass through point P ?

1) 1
2) 2
3) 0
4) infinite

184 Given: Two is an even integer or three is an even integer.
Determine the truth value of this disjunction. Justify your answer.

185 If the surface area of a sphere is represented by 144π, what is the volume in terms of π ?

1) 36π
2) 48π
3) 216π
4) 288π

186 How many common tangent lines can be drawn to the two externally tangent circles shown below?

1) 1
2) 2
3) 3
4) 4

187 In the diagram below of circle O, chords $\overline{D F}, \overline{D E}$, $\overline{F G}$, and $\overline{E G}$ are drawn such that $\mathrm{m} \overparen{D F}: \mathrm{m} \overparen{F E}: \mathrm{m} \overparen{E G}: \mathrm{m} \overparen{G D}=5: 2: 1: 7$. Identify one pair of inscribed angles that are congruent to each other and give their measure.

188 Using a compass and straightedge, construct the angle bisector of $\angle A B C$ shown below. [Leave all construction marks.]

189
In the diagram below of $\triangle A C T, D$ is the midpoint of $\overline{A C}, O$ is the midpoint of $\overline{A T}$, and G is the midpoint of $\overline{C T}$.

If $A C=10, A T=18$, and $C T=22$, what is the perimeter of parallelogram $C D O G$?

1) 21
2) 25
3) 32
4) 40

190 Given $\triangle A B C$ with base $\overline{A F E D C}$, median $\overline{B F}$, altitude $\overline{B D}$, and $\overline{B E}$ bisects $\angle A B C$, which conclusion is valid?

1) $\angle F A B \cong \angle A B F$
2) $\angle A B F \cong \angle C B D$
3) $\overline{C E} \cong \overline{E A}$
4) $\overline{C F} \cong \overline{F A}$

191 Write an equation of the perpendicular bisector of the line segment whose endpoints are $(-1,1)$ and $(7,-5)$. [The use of the grid below is optional]

Geometry Regents Exam Questions at Random www.jmap.org

192 On the line segment below, use a compass and straightedge to construct equilateral triangle $A B C$. [Leave all construction marks.]

193 What is the length of the line segment with endpoints $(-6,4)$ and $(2,-5)$?

1) $\sqrt{13}$
2) $\sqrt{17}$
3) $\sqrt{72}$
4) $\sqrt{145}$

194 The endpoints of $\overline{C D}$ are $C(-2,-4)$ and $D(6,2)$. What are the coordinates of the midpoint of $\overline{C D}$?

1) $(2,3)$
2) $(2,-1)$
3) $(4,-2)$
4) $(4,3)$

195 What is the measure of an interior angle of a regular octagon?

1) 45°
2) 60°
3) 120°
4) 135°

196 What is the slope of a line perpendicular to the line whose equation is $2 y=-6 x+8$?

1) -3
2) $\frac{1}{6}$
3) $\frac{1}{3}$
4) -6

197 In the diagram of trapezoid $A B C D$ below, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E and $\triangle A B C \cong \triangle D C B$.

Which statement is true based on the given information?

1) $\overline{A C} \cong \overline{B C}$
2) $\overline{C D} \cong \overline{A D}$
3) $\angle C D E \cong \angle B A D$
4) $\angle C D B \cong \angle B A C$

Geometry Regents Exam Questions at Random www.jmap.org

198 Given $\triangle A B C \sim \triangle D E F$ such that $\frac{A B}{D E}=\frac{3}{2}$. Which statement is not true?

1) $\frac{B C}{E F}=\frac{3}{2}$
2) $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle D}=\frac{3}{2}$
3) $\frac{\text { area of } \triangle A B C}{\text { area of } \triangle D E F}=\frac{9}{4}$
4) $\frac{\text { perimeter of } \triangle A B C}{\text { perimeter of } \triangle D E F}=\frac{3}{2}$

199 The rectangle $A B C D$ shown in the diagram below will be reflected across the x-axis.

What will not be preserved?

1) slope of $\overline{A B}$
2) parallelism of $\overline{A B}$ and $\overline{C D}$
3) length of $\overline{A B}$
4) measure of $\angle A$

200 Write an equation of the circle whose diameter $\overline{A B}$ has endpoints $A(-4,2)$ and $B(4,-4)$. [The use of the grid below is optional.]

201 In the diagram below of $\triangle H Q P$, side $\overline{H P}$ is extended through P to $T, \mathrm{~m} \angle Q P T=6 x+20$, $\mathrm{m} \angle H Q P=x+40$, and $\mathrm{m} \angle P H Q=4 x-5$. Find $\mathrm{m} \angle Q P T$.

202 In the diagram below of parallelogram STUV, $S V=x+3, V U=2 x-1$, and $T U=4 x-3$.

What is the length of $\overline{S V}$?

1) 5
2) 2
3) 7
4) 4

203
Given: $J K L M$ is a parallelogram.
$\overline{J M} \cong \overline{L N}$
$\angle L M N \cong \angle L N M$
Prove: $J K L M$ is a rhombus.

204 Given: Quadrilateral $A B C D$, diagonal $\overline{A F E C}$, $\overline{A E} \cong \overline{F C}, \overline{B F} \perp \overline{A C}, \overline{D E} \perp \overline{A C}, \angle 1 \cong \angle 2$ Prove: $A B C D$ is a parallelogram.

205 In isosceles triangle $A B C, A B=B C$. Which statement will always be true?

1) $\mathrm{m} \angle B=\mathrm{m} \angle A$
2) $\mathrm{m} \angle A>\mathrm{m} \angle B$
3) $\mathrm{m} \angle A=\mathrm{m} \angle C$
4) $\mathrm{m} \angle C<\mathrm{m} \angle B$

206 In the diagram below, $\triangle R S T$ is a $3-4-5$ right triangle. The altitude, h, to the hypotenuse has been drawn. Determine the length of h.

207 In the diagram below of circle $C, \overline{Q R}$ is a diameter, and $Q(1,8)$ and $C(3.5,2)$ are points on a coordinate plane. Find and state the coordinates of point R.

In an equilateral triangle, what is the difference between the sum of the exterior angles and the sum of the interior angles?

1) 180°
2) 120°
3) 90°
4) 60°

209 What is the solution of the following system of equations?

$$
\begin{aligned}
& y=(x+3)^{2}-4 \\
& y=2 x+5
\end{aligned}
$$

1) $(0,-4)$
2) $(-4,0)$
3) $(-4,-3)$ and $(0,5)$
4) $(-3,-4)$ and $(5,0)$

210 Which diagram shows the construction of an equilateral triangle?
1)

2)

3)

211 Triangle $D E G$ has the coordinates $D(1,1), E(5,1)$, and $G(5,4)$. Triangle $D E G$ is rotated 90° about the origin to form $\Delta D^{\prime} E^{\prime} G^{\prime}$. On the grid below, graph and label $\triangle D E G$ and $\Delta D^{\prime} E^{\prime} G^{\prime}$. State the coordinates of the vertices D^{\prime}, E^{\prime}, and G^{\prime}. Justify that this transformation preserves distance.

212 In the diagram below of $\triangle T E M$, medians $\overline{T B}, \overline{E C}$, and $\overline{M A}$ intersect at D, and $T B=9$. Find the length of $\overline{T D}$.

213 Triangle $A B C$ has coordinates $A(-6,2), B(-3,6)$, and $C(5,0)$. Find the perimeter of the triangle.
Express your answer in simplest radical form. [The use of the grid below is optional.]

214 In the diagram below, the vertices of $\triangle D E F$ are the midpoints of the sides of equilateral triangle $A B C$, and the perimeter of $\triangle A B C$ is 36 cm .

What is the length, in centimeters, of $\overline{E F}$?

1) 6
2) 12
3) 18
4) 4

215 Side $\overline{P Q}$ of $\triangle P Q R$ is extended through Q to point
T. Which statement is not always true?

1) $\mathrm{m} \angle R Q T>\mathrm{m} \angle R$
2) $\mathrm{m} \angle R Q T>\mathrm{m} \angle P$
3) $\mathrm{m} \angle R Q T=\mathrm{m} \angle P+\mathrm{m} \angle R$
4) $\mathrm{m} \angle R Q T>\mathrm{m} \angle P Q R$

216 What are the center and the radius of the circle whose equation is $(x-3)^{2}+(y+3)^{2}=36$

1) center $=(3,-3)$; radius $=6$
2) center $=(-3,3)$; radius $=6$
3) center $=(3,-3)$; radius $=36$
4) center $=(-3,3)$; radius $=36$

217 In the diagram below of $\triangle A B C, \overline{C D}$ is the bisector of $\angle B C A, \overline{A E}$ is the bisector of $\angle C A B$, and $\overline{B G}$ is drawn.

Which statement must be true?

1) $D G=E G$
2) $A G=B G$
3) $\angle A E B \cong \angle A E C$
4) $\angle D B G \cong \angle E B G$

218 Based on the construction below, which statement must be true?

1) $\mathrm{m} \angle A B D=\frac{1}{2} \mathrm{~m} \angle C B D$
2) $\mathrm{m} \angle A B D=\mathrm{m} \angle C B D$
3) $\mathrm{m} \angle A B D=\mathrm{m} \angle A B C$
4) $\mathrm{m} \angle C B D=\frac{1}{2} \mathrm{~m} \angle A B D$

219 Which transformation produces a figure similar but not congruent to the original figure?

1) $T_{1,3}$
2) $D_{\frac{1}{2}}$
3) R_{90}
4) $r_{y=x}$

220 Juliann plans on drawing $\triangle A B C$, where the measure of $\angle A$ can range from 50° to 60° and the measure of $\angle B$ can range from 90° to 100°. Given these conditions, what is the correct range of measures possible for $\angle C$?

1) 20° to 40°
2) 30° to 50°
3) 80° to 90°
4) 120° to 130°

Geometry Regents Exam Questions at Random www.jmap.org

221 In the diagram of $\triangle A B C$ below, $\overline{A B} \cong \overline{A C}$. The measure of $\angle B$ is 40°.

What is the measure of $\angle A$?

1) 40°
2) 50°
3) 70°
4) 100°

222 In the diagram below of circle $C, \mathrm{mQT}=140$, and $\mathrm{m} \angle P=40$.

What is $\mathrm{m} \overparen{R S}$?

1) 50
2) 60
3) 90
4) 110

223 In the diagram below of circle O, chords $\overline{A D}$ and $\overline{B C}$ intersect at E.

Which relationship must be true?

1) $\triangle C A E \cong \triangle D B E$
2) $\triangle A E C \sim \triangle B E D$
3) $\angle A C B \cong \angle C B D$
4) $\overparen{C A} \cong \overparen{D B}$

224 A support beam between the floor and ceiling of a house forms a 90° angle with the floor. The builder wants to make sure that the floor and ceiling are parallel. Which angle should the support beam form with the ceiling?

1) 45°
2) 60°
3) 90°
4) 180°

225 In $\Delta K L M, \mathrm{~m} \angle K=36$ and $K M=5$. The transformation D_{2} is performed on $\Delta K L M$ to form $\Delta K^{\prime} L^{\prime} M^{\prime}$. Find $\mathrm{m} \angle K^{\prime}$. Justify your answer. Find the length of $\overline{K^{\prime} M^{\prime}}$. Justify your answer.

226 Which transformation of the line $x=3$ results in an image that is perpendicular to the given line?

1) $r_{x \text {-xis }}$
2) $r_{y \text {-axis }}$
3) $r_{y=x}$
4) $r_{x=1}$

227 Through a given point, P, on a plane, how many lines can be drawn that are perpendicular to that plane?

1) 1
2) 2
3) more than 2
4) none

228 In the diagram below, under which transformation will $\Delta A^{\prime} B^{\prime} C^{\prime}$ be the image of $\triangle A B C$?

1) rotation
2) dilation
3) translation
4) glide reflection

229 Given the system of equations: $y=x^{2}-4 x$

$$
x=4
$$

The number of points of intersection is

1) 1
2) 2
3) 3
4) 0

230 A regular pyramid with a square base is shown in the diagram below.

A side, s, of the base of the pyramid is 12 meters, and the height, h, is 42 meters. What is the volume of the pyramid in cubic meters?

231 Which statement is logically equivalent to "If it is warm, then I go swimming"

1) If I go swimming, then it is warm.
2) If it is warm, then I do not go swimming.
3) If I do not go swimming, then it is not warm.
4) If it is not warm, then I do not go swimming.

232 What is an equation for the circle shown in the graph below?

1) $x^{2}+y^{2}=2$
2) $x^{2}+y^{2}=4$
3) $x^{2}+y^{2}=8$
4) $x^{2}+y^{2}=16$

233 The equation of a circle is $x^{2}+(y-7)^{2}=16$. What are the center and radius of the circle?

1) center $=(0,7)$; radius $=4$
2) center $=(0,7)$; radius $=16$
3) center $=(0,-7)$; radius $=4$
4) center $=(0,-7)$; radius $=16$

234 Which transformation can map the letter S onto itself?

1) glide reflection
2) translation
3) line reflection
4) rotation

235 Two triangles are similar, and the ratio of each pair of corresponding sides is $2: 1$. Which statement regarding the two triangles is not true?

1) Their areas have a ratio of $4: 1$.
2) Their altitudes have a ratio of $2: 1$.
3) Their perimeters have a ratio of $2: 1$.
4) Their corresponding angles have a ratio of $2: 1$.

236 In the diagram below, a right circular cone has a diameter of 8 inches and a height of 12 inches.

What is the volume of the cone to the nearest cubic inch?

1) 201
2) 481
3) 603
4) 804

237 A polygon is transformed according to the rule: $(x, y) \rightarrow(x+2, y)$. Every point of the polygon moves two units in which direction?

1) $u p$
2) down
3) left
4) right

Geometry Regents Exam Questions at Random www.jmap.org

238 In the diagram below, circle A and circle B are shown.

What is the total number of lines of tangency that are common to circle A and circle B ?

1) 1
2) 2
3) 3
4) 4

239 In the diagram below of circle O, secant $\overline{A B}$ intersects circle O at D, secant $\overline{A O C}$ intersects circle O at $E, A E=4, A B=12$, and $D B=6$.

(Not drawn to scale)
What is the length of $\overline{O C}$?

1) 4.5
2) 7
3) 9
4) 14

240 The vertices of $\triangle A B C$ are $A(3,2), B(6,1)$, and $C(4,6)$. Identify and graph a transformation of $\triangle A B C$ such that its image, $\Delta A^{\prime} B^{\prime} C^{\prime}$, results in $\overline{A B} \| \overline{A^{\prime} B^{\prime}}$.

241 Given: $y=\frac{1}{4} x-3$

$$
y=x^{2}+8 x+12
$$

In which quadrant will the graphs of the given equations intersect?

1) I
2) II
3) III
4) IV

242 Which equation represents a line parallel to the line whose equation is $2 y-5 x=10$?

1) $5 y-2 x=25$
2) $5 y+2 x=10$
3) $4 y-10 x=12$
4) $2 y+10 x=8$

243 In $\triangle A B C, A B=7, B C=8$, and $A C=9$. Which list has the angles of $\triangle A B C$ in order from smallest to largest?

1) $\angle A, \angle B, \angle C$
2) $\angle B, \angle A, \angle C$
3) $\angle C, \angle B, \angle A$
4) $\angle C, \angle A, \angle B$

244 Which expression best describes the transformation shown in the diagram below?

1) same orientation; reflection
2) opposite orientation; reflection
3) same orientation; translation
4) opposite orientation; translation

245 Tim has a rectangular prism with a length of 10 centimeters, a width of 2 centimeters, and an unknown height. He needs to build another rectangular prism with a length of 5 centimeters and the same height as the original prism. The volume of the two prisms will be the same. Find the width, in centimeters, of the new prism.

246 The equation of a circle is $(x-2)^{2}+(y+4)^{2}=4$. Which diagram is the graph of the circle?
1)

3)

4)

247 In the diagram below, $\triangle A B C \sim \Delta E F G$, $\mathrm{m} \angle C=4 x+30$, and $\mathrm{m} \angle G=5 x+10$. Determine the value of x.

248 If two different lines are perpendicular to the same plane, they are

1) collinear
2) coplanar
3) congruent
4) consecutive

249 What is the inverse of the statement "If two triangles are not similar, their corresponding angles are not congruent"?

1) If two triangles are similar, their corresponding angles are not congruent.
2) If corresponding angles of two triangles are not congruent, the triangles are not similar.
3) If two triangles are similar, their corresponding angles are congruent.
4) If corresponding angles of two triangles are congruent, the triangles are similar.

250 Which graph represents a circle with the equation $(x-5)^{2}+(y+1)^{2}=9 ?$
1)

2)

3)

251 Lines k_{1} and k_{2} intersect at point E. Line m is perpendicular to lines k_{1} and k_{2} at point E.

Which statement is always true?

1) Lines k_{1} and k_{2} are perpendicular.
2) Line m is parallel to the plane determined by lines k_{1} and k_{2}.
3) Line m is perpendicular to the plane determined by lines k_{1} and k_{2}.
4) Line m is coplanar with lines k_{1} and k_{2}.

252 Line segment $A B$ has endpoints $A(2,-3)$ and $B(-4,6)$. What are the coordinates of the midpoint of $\overline{A B}$?

1) $(-2,3)$
2) $\left(-1,1 \frac{1}{2}\right)$
3) $(-1,3)$
4) $\left(3,4 \frac{1}{2}\right)$

253 A right circular cone has a base with a radius of 15 cm , a vertical height of 20 cm , and a slant height of 25 cm . Find, in terms of' π, the number of square centimeters in the lateral area of the cone.

254 In the diagram below of $\triangle A D B, \mathrm{~m} \angle B D A=90$, $A D=5 \sqrt{2}$, and $A B=2 \sqrt{15}$.

What is the length of $\overline{B D}$?

1) $\sqrt{10}$
2) $\sqrt{20}$
3) $\sqrt{50}$
4) $\sqrt{110}$

255 What is an equation of the line that passes through the point $(-2,5)$ and is perpendicular to the line whose equation is $y=\frac{1}{2} x+5$?

1) $y=2 x+1$
2) $y=-2 x+1$
3) $y=2 x+9$
4) $y=-2 x-9$

256 A transversal intersects two lines. Which condition would always make the two lines parallel?

1) Vertical angles are congruent.
2) Alternate interior angles are congruent.
3) Corresponding angles are supplementary.
4) Same-side interior angles are complementary.

Geometry Regents Exam Questions at Random www.jmap.org

257 In the diagram below of circle O, chords $\overline{A E}$ and $\overline{D C}$ intersect at point B, such that $\mathrm{m} \overparen{A C}=36$ and $\mathrm{m} \overparen{D E}=20$.

What is $\mathrm{m} \angle A B C$?

1) 56
2) 36
3) 28
4) 8

258 What is an equation of the line that passes through the point $(7,3)$ and is parallel to the line $4 x+2 y=10$?

1) $y=\frac{1}{2} x-\frac{1}{2}$
2) $y=-\frac{1}{2} x+\frac{13}{2}$
3) $y=2 x-11$
4) $y=-2 x+17$

259 If a line segment has endpoints $A(3 x+5,3 y)$ and $B(x-1,-y)$, what are the coordinates of the midpoint of $\overline{A B}$?

1) $(x+3,2 y)$
2) $(2 x+2, y)$
3) $(2 x+3, y)$
4) $(4 x+4,2 y)$

260 In the diagram of circle O below, chords $\overline{A B}$ and $\overline{C D}$ are parallel, and $\overline{B D}$ is a diameter of the circle.

If $\mathrm{m} \overparen{A D}=60$, what is $\mathrm{m} \angle C D B$?

1) 20
2) 30
3) 60
4) 120

261 Given: Quadrilateral $A B C D$ has vertices $A(-5,6)$, $B(6,6), C(8,-3)$, and $D(-3,-3)$.
Prove: Quadrilateral $A B C D$ is a parallelogram but is neither a rhombus nor a rectangle. [The use of the grid below is optional.]

262 Square $L M N O$ is shown in the diagram below.

What are the coordinates of the midpoint of diagonal $\overline{L N}$?

1) $\left(4 \frac{1}{2},-2 \frac{1}{2}\right)$
2) $\left(-3 \frac{1}{2}, 3 \frac{1}{2}\right)$
3) $\left(-2 \frac{1}{2}, 3 \frac{1}{2}\right)$
4) $\left(-2 \frac{1}{2}, 4 \frac{1}{2}\right)$

263 What is the slope of a line perpendicular to the line whose equation is $y=3 x+4$?

1) $\frac{1}{3}$
2) $-\frac{1}{3}$
3) 3
4) -3

264 If the diagonals of a quadrilateral do not bisect each other, then the quadrilateral could be a

1) rectangle
2) rhombus
3) square
4) trapezoid

265 The diagram below shows a right pentagonal prism.

Which statement is always true?

1) $\overline{B C} \| \overline{E D}$
2) $\overline{F G} \| \overline{C D}$
3) $\overline{F J} \| \overline{I H}$
4) $\overline{G B} \| \overline{H C}$

266 The diagram below shows the construction of the perpendicular bisector of $\overline{A B}$.

Which statement is not true?

1) $A C=C B$
2) $C B=\frac{1}{2} A B$
3) $A C=2 A B$
4) $A C+C B=A B$

267 What is the converse of the statement "If Bob does his homework, then George gets candy"?

1) If George gets candy, then Bob does his homework.
2) Bob does his homework if and only if George gets candy.
3) If George does not get candy, then Bob does not do his homework.
4) If Bob does not do his homework, then George does not get candy.

268 In the diagram below, tangent $\overline{A B}$ and secant $\overline{A C D}$ are drawn to circle O from an external point A, $A B=8$, and $A C=4$.

What is the length of $\overline{C D}$?

1) 16
2) 13
3) 12
4) 10

269 In the diagram of $\triangle A B C$ and $\triangle E D C$ below, $\overline{A E}$ and $\overline{B D}$ intersect at C, and $\angle C A B \cong \angle C E D$.

Which method can be used to show that $\triangle A B C$ must be similar to $\triangle E D C$?

1) SAS
2) $A A$
3) SSS
4) HL

270 A city is planning to build a new park. The park must be equidistant from school A at $(3,3)$ and school B at $(3,-5)$. The park also must be exactly 5 miles from the center of town, which is located at the origin on the coordinate graph. Each unit on the graph represents 1 mile. On the set of axes below, sketch the compound loci and label with an \mathbf{X} all possible locations for the new park.

271 The vertices of $\triangle A B C$ are $A(-1,-2), B(-1,2)$ and $C(6,0)$. Which conclusion can be made about the angles of $\triangle A B C$?

1) $\mathrm{m} \angle A=\mathrm{m} \angle B$
2) $\mathrm{m} \angle A=\mathrm{m} \angle C$
3) $\mathrm{m} \angle A C B=90$
4) $\mathrm{m} \angle A B C=60$

272 Which graph could be used to find the solution to the following system of equations?
1)
2)
3)

Geometry Regents Exam Questions at Random www.jmap.org

273 In the diagram below of circle O, chords $\overline{A B}$ and $C D$ intersect at E.

If $C E=10, E D=6$, and $A E=4$, what is the length of $\overline{E B}$?

1) 15
2) 12
3) 6.7
4) 2.4

274 In the diagram below of quadrilateral $A B C D$ with diagonal $\overline{B D}, \mathrm{~m} \angle A=93, \mathrm{~m} \angle A D B=43$, $\mathrm{m} \angle C=3 x+5, \mathrm{~m} \angle B D C=x+19$, and $\mathrm{m} \angle D B C=2 x+6$. Determine if $\overline{A B}$ is parallel to $\overline{D C}$. Explain your reasoning.

275 In the diagram below, $\triangle A B C$ is inscribed in circle P. The distances from the center of circle P to each side of the triangle are shown.

Which statement about the sides of the triangle is true?

1) $A B>A C>B C$
2) $A B<A C$ and $A C>B C$
3) $A C>A B>B C$
4) $A C=A B$ and $A B>B C$

276 Line segment $A B$ is tangent to circle O at A. Which type of triangle is always formed when points A, B, and O are connected?

1) right
2) obtuse
3) scalene
4) isosceles

277 In $\triangle A B C, \mathrm{~m} \angle A=x, \mathrm{~m} \angle B=2 x+2$, and $\mathrm{m} \angle C=3 x+4$. What is the value of x ?

1) 29
2) 31
3) 59
4) 61

278 Using a compass and straightedge, construct a line that passes through point P and is perpendicular to line m. [Leave all construction marks.]
$-P$

279 In the diagram below, which transformation was used to map $\triangle A B C$ to $\triangle A^{\prime} B^{\prime} C^{\prime}$?

1) dilation
2) rotation
3) reflection
4) glide reflection

280 Point A is not contained in plane \mathcal{B}. How many lines can be drawn through point A that will be perpendicular to plane \mathscr{B} ?

1) one
2) two
3) zero
4) infinite

281 In the diagram below, car A is parked 7 miles from car B. Sketch the points that are 4 miles from car A and sketch the points that are 4 miles from car B. Label with an \mathbf{X} all points that satisfy both conditions.

282 What is the equation of a line that passes through the point $(-3,-11)$ and is parallel to the line whose equation is $2 x-y=4$?

1) $y=2 x+5$
2) $y=2 x-5$
3) $y=\frac{1}{2} x+\frac{25}{2}$
4) $y=-\frac{1}{2} x-\frac{25}{2}$

283 The diagram below shows the construction of a line through point P perpendicular to line m.

Which statement is demonstrated by this construction?

1) If a line is parallel to a line that is perpendicular to a third line, then the line is also perpendicular to the third line.
2) The set of points equidistant from the endpoints of a line segment is the perpendicular bisector of the segment.
3) Two lines are perpendicular if they are equidistant from a given point.
4) Two lines are perpendicular if they intersect to form a vertical line.

284 In the diagram below of $\triangle A B C$, medians $\overline{A D}, \overline{B E}$, and $\overline{C F}$ intersect at G.

If $C F=24$, what is the length of $\overline{F G}$?

1) 8
2) 10
3) 12
4) 16

285 The coordinates of the vertices of $\triangle A B C A(1,3)$, $B(-2,2)$ and $C(0,-2)$. On the grid below, graph and label $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the result of the composite transformation $D_{2} \circ T_{3,-2}$. State the coordinates of $A^{\prime \prime}, B^{\prime \prime}$, and $C^{\prime \prime}$.

286 In the diagram below, tangent $\overline{P A}$ and secant $\overline{P B C}$ are drawn to circle O from external point P.

If $P B=4$ and $B C=5$, what is the length of $\overline{P A}$?

1) 20
2) 9
3) 8
4) 6

287 The endpoints of $\overline{P Q}$ are $P(-3,1)$ and $Q(4,25)$.
Find the length of $\overline{P Q}$.

What is an equation of the line that contains the point $(3,-1)$ and is perpendicular to the line whose equation is $y=-3 x+2$?

1) $y=-3 x+8$
2) $y=-3 x$
3) $y=\frac{1}{3} x$
4) $y=\frac{1}{3} x-2$

289 On the set of axes below, sketch the points that are 5 units from the origin and sketch the points that are 2 units from the line $y=3$. Label with an \mathbf{X} all points that satisfy both conditions.

290 The diameter of a circle has endpoints at $(-2,3)$ and $(6,3)$. What is an equation of the circle?

1) $(x-2)^{2}+(y-3)^{2}=16$
2) $(x-2)^{2}+(y-3)^{2}=4$
3) $(x+2)^{2}+(y+3)^{2}=16$
4) $(x+2)^{2}+(y+3)^{2}=4$

291 A rectangular prism has a volume of $3 x^{2}+18 x+24$. Its base has a length of $x+2$ and a width of 3 . Which expression represents the height of the prism?

1) $x+4$
2) $x+2$
3) 3
4) $x^{2}+6 x+8$

292 On the grid below, graph the points that are equidistant from both the x and y axes and the points that are 5 units from the origin. Label with an \mathbf{X} all points that satisfy both conditions.

293 The diagonal $\overline{A C}$ is drawn in parallelogram $A B C D$. Which method can not be used to prove that
$\triangle A B C \cong \triangle C D A$?

1) SSS
2) SAS
3) SSA
4) ASA

294 The lines $3 y+1=6 x+4$ and $2 y+1=x-9$ are

1) parallel
2) perpendicular
3) the same line
4) neither parallel nor perpendicular

295 A circle is represented by the equation $x^{2}+(y+3)^{2}=13$. What are the coordinates of the center of the circle and the length of the radius?

1) $(0,3)$ and 13
2) $(0,3)$ and $\sqrt{13}$
3) $(0,-3)$ and 13
4) $(0,-3)$ and $\sqrt{13}$

296 The endpoints of $\overline{A B}$ are $A(3,2)$ and $B(7,1)$. If $\overline{A^{\prime \prime} B^{\prime \prime}}$ is the result of the transformation of $\overline{A B}$ under $D_{2}{ }^{\circ} T_{-4,3}$ what are the coordinates of $A^{\prime \prime}$ and B"?

1) $A^{\prime \prime}(-2,10)$ and $B^{\prime \prime}(6,8)$
2) $A^{\prime \prime}(-1,5)$ and $B^{\prime \prime}(3,4)$
3) $A^{\prime \prime}(2,7)$ and $B^{\prime \prime}(10,5)$
4) $A^{\prime \prime}(14,-2)$ and $B^{\prime \prime}(22,-4)$

297 The diagram below shows isosceles trapezoid $A B C D$ with $\overline{A B} \| \overline{D C}$ and $\overline{A D} \cong \overline{B C}$. If $\mathrm{m} \angle B A D=2 x$ and $\mathrm{m} \angle B C D=3 x+5$, find $\mathrm{m} \angle B A D$.

298 A right circular cylinder has an altitude of 11 feet and a radius of 5 feet. What is the lateral area, in square feet, of the cylinder, to the nearest tenth?

1) 172.7
2) 172.8
3) 345.4
4) 345.6
$299 \Delta A B C$ is similar to $\triangle \underline{D E F}$. The ratio of the length of $A B$ to the length of $D E$ is $3: 1$. Which ratio is also equal to $3: 1$?
5) $\frac{m \angle A}{m \angle D}$
6) $\frac{m \angle B}{m \angle F}$
7) $\frac{\text { area of } \triangle A B C}{\text { area of } \triangle D E F}$
8) $\frac{\text { perimeter of } \triangle A B C}{\text { perimeter of } \triangle D E F}$

300 If $\triangle A B C \sim \Delta Z X Y, \mathrm{~m} \angle A=50$, and $\mathrm{m} \angle C=30$, what is $\mathrm{m} \angle X$?

1) 30
2) 50
3) 80
4) 100

301 In the diagram of $\triangle A B C$ below, $A B=10, B C=14$, and $A C=16$. Find the perimeter of the triangle formed by connecting the midpoints of the sides of $\triangle A B C$.

302 Which geometric principle is used to justify the construction below?

1) A line perpendicular to one of two parallel lines is perpendicular to the other.
2) Two lines are perpendicular if they intersect to form congruent adjacent angles.
3) When two lines are intersected by a transversal and alternate interior angles are congruent, the lines are parallel.
4) When two lines are intersected by a transversal and the corresponding angles are congruent, the lines are parallel.

303 Isosceles trapezoid $A B C D$ has diagonals $\overline{A C}$ and $B D$. If $A C=5 x+13$ and $B D=11 x-5$, what is the value of x ?

1) 28
2) $10 \frac{3}{4}$
3) 3
4) $\frac{1}{2}$

304 In the diagram below, $\overline{S Q}$ and $\overline{P R}$ intersect at $T, \overline{P Q}$ is drawn, and $\overline{P S} \| \overline{Q R}$.

What technique can be used to prove that $\Delta P S T \sim \Delta R Q T$?

1) SAS
2) SSS
3) ASA
4) AA

305 In $\triangle A B C, \mathrm{~m} \angle A=95, \mathrm{~m} \angle B=50$, and $\mathrm{m} \angle C=35$. Which expression correctly relates the lengths of the sides of this triangle?

1) $A B<B C<C A$
2) $A B<A C<B C$
3) $A C<B C<A B$
4) $B C<A C<A B$

306 What is the negation of the statement "The Sun is shining"?

1) It is cloudy.
2) It is daytime.
3) It is not raining.
4) The Sun is not shining.

307 In the diagram below of $\triangle A G E$ and $\triangle O L D$, $\angle G A E \cong \angle L O D$, and $\overline{A E} \cong \overline{O D}$.

To prove that $\triangle A G E$ and $\triangle O L D$ are congruent by SAS, what other information is needed?

1) $\overline{G E} \cong \overline{L D}$
2) $\overline{A G} \cong \overline{O L}$
3) $\angle A G E \cong \angle O L D$
4) $\angle A E G \cong \angle O D L$

308 In the diagram below, circle O has a radius of 5, and $C E=2$. Diameter $\overline{A C}$ is perpendicular to chord $\overline{B D}$ at E.

What is the length of $\overline{B D}$?

1) 12
2) 10
3) 8
4) 4

309 In the diagram below of parallelogram $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}, \mathrm{~m} \angle 1=45$ and $\mathrm{m} \angle D C B=120$.

What is the measure of $\angle 2$?

1) 15°
2) 30°
3) 45°
4) 60°

310 The diagram below shows a pennant in the shape of an isosceles triangle. The equal sides each measure 13 , the altitude is $x+7$, and the base is $2 x$.

What is the length of the base?

1) 5
2) 10
3) 12
4) 24

311 Which equation represents a line perpendicular to the line whose equation is $2 x+3 y=12$?

1) $6 y=-4 x+12$
2) $2 y=3 x+6$
3) $2 y=-3 x+6$
4) $3 y=-2 x+12$

312 In the diagram below of isosceles trapezoid $D E F G$, $\overline{D E} \| \overline{G F}, D E=4 x-2, E F=3 x+2, F G=5 x-3$, and $G D=2 x+5$. Find the value of x.

313 Which geometric principle is used in the construction shown below?

1) The intersection of the angle bisectors of a triangle is the center of the inscribed circle.
2) The intersection of the angle bisectors of a triangle is the center of the circumscribed circle.
3) The intersection of the perpendicular bisectors of the sides of a triangle is the center of the inscribed circle.
4) The intersection of the perpendicular bisectors of the sides of a triangle is the center of the circumscribed circle.

314 The coordinates of the vertices of parallelogram $A B C D$ are $A(-3,2), B(-2,-1), C(4,1)$, and $D(3,4)$. The slopes of which line segments could be calculated to show that $A B C D$ is a rectangle?

1) $\overline{A B}$ and $\overline{D C}$
2) $\overline{A B}$ and $\overline{B C}$
3) $\overline{A D}$ and $\overline{B C}$
4) $\overline{A C}$ and $\overline{B D}$

315 The base of a pyramid is a rectangle with a width of 6 cm and a length of 8 cm . Find, in centimeters, the height of the pyramid if the volume is $288 \mathrm{~cm}^{3}$.

316 In the diagram of $\triangle A B C$ below, Jose found centroid P by constructing the three medians. He measured $\overline{C F}$ and found it to be 6 inches.

If $P F=x$, which equation can be used to find x ?

1) $x+x=6$
2) $2 x+x=6$
3) $3 x+2 x=6$
4) $x+\frac{2}{3} x=6$

317 The pentagon in the diagram below is formed by five rays.

What is the degree measure of angle x ?

1) 72
2) 96
3) 108
4) 112

318 The diagram below shows $\overline{A B}$ and $\overline{D E}$.

Which transformation will move $\overline{A B}$ onto $\overline{D E}$ such that point D is the image of point A and point E is the image of point B ?

1) $T_{3,-3}$
2) $D \frac{1}{2}$
3) R_{90}
4) $r_{y=x}$

319 Which equation represents the circle whose center is $(-2,3)$ and whose radius is 5 ?

1) $(x-2)^{2}+(y+3)^{2}=5$
2) $(x+2)^{2}+(y-3)^{2}=5$
3) $(x+2)^{2}+(y-3)^{2}=25$
4) $(x-2)^{2}+(y+3)^{2}=25$

320 After a composition of transformations, the coordinates $A(4,2), B(4,6)$, and $C(2,6)$ become $A^{\prime \prime}(-2,-1), B^{\prime \prime}(-2,-3)$, and $C^{\prime \prime}(-1,-3)$, as shown on the set of axes below.

Which composition of transformations was used?

1) $R_{180^{\circ}} \circ D_{2}$
2) $R_{90^{\circ}} \circ D_{2}$
3) $D_{\frac{1}{2}}^{\circ} R_{180^{\circ}}$
4) $D_{\frac{1}{2}}^{\circ} \circ R_{90^{\circ}}$

321 What is the contrapositive of the statement, "If I am tall, then I will bump my head"?

1) If I bump my head, then I am tall.
2) If I do not bump my head, then I am tall.
3) If I am tall, then I will not bump my head.
4) If I do not bump my head, then I am not tall.

322 What is the negation of the statement "I am not going to eat ice cream"?

1) I like ice cream.
2) I am going to eat ice cream.
3) If I eat ice cream, then I like ice cream.
4) If I don't like ice cream, then I don't eat ice cream.

323 In the diagram below of right triangle $A C B$, altitude $\overline{C D}$ intersects $\overline{A B}$ at D. If $A D=3$ and $D B=4$, find the length of $\overline{C D}$ in simplest radical form.

324 In the diagram below, line k is perpendicular to plane \mathscr{P} at point T.

Which statement is true?

1) Any point in plane \mathscr{P} also will be on line k.
2) Only one line in plane \mathscr{P} will intersect line k.
3) All planes that intersect plane \mathscr{P} will pass through T.
4) Any plane containing line k is perpendicular to plane \mathscr{P}.

325 In three-dimensional space, two planes are parallel and a third plane intersects both of the parallel planes. The intersection of the planes is a

1) plane
2) point
3) pair of parallel lines
4) pair of intersecting lines

326 Which equation represents circle K shown in the graph below?

1) $(x+5)^{2}+(y-1)^{2}=3$
2) $(x+5)^{2}+(y-1)^{2}=9$
3) $(x-5)^{2}+(y+1)^{2}=3$
4) $(x-5)^{2}+(y+1)^{2}=9$

327 Find an equation of the line passing through the point $(6,5)$ and perpendicular to the line whose equation is $2 y+3 x=6$.

328 The diagram below shows the construction of the center of the circle circumscribed about $\triangle A B C$.

This construction represents how to find the intersection of

1) the angle bisectors of $\triangle A B C$
2) the medians to the sides of $\triangle A B C$
3) the altitudes to the sides of $\triangle A B C$
4) the perpendicular bisectors of the sides of $\triangle A B C$

329 What is the negation of the statement "Squares are parallelograms"?

1) Parallelograms are squares.
2) Parallelograms are not squares.
3) It is not the case that squares are parallelograms.
4) It is not the case that parallelograms are squares.

330 Write a statement that is logically equivalent to the statement "If two sides of a triangle are congruent, the angles opposite those sides are congruent." Identify the new statement as the converse, inverse, or contrapositive of the original statement.

331 In the diagram below, the length of the legs $\overline{A C}$ and $\overline{B C}$ of right triangle $A B C$ are 6 cm and 8 cm , respectively. Altitude $\overline{C D}$ is drawn to the hypotenuse of $\triangle A B C$.

What is the length of $\overline{A D}$ to the nearest tenth of a centimeter?

1) 3.6
2) 6.0
3) 6.4
4) 4.0

332 In the diagram below of circle O, chord $\overline{A B} \|$ chord $\overline{C D}$, and chord $\overline{C D} \|$ chord $\overline{E F}$.

Which statement must be true?

1) $\overparen{C E} \cong \overparen{D F}$
2) $\overparen{A C} \cong \overparen{D F}$
3) $\overparen{A C} \cong \overparen{C E}$
4) $\overparen{E F} \cong \overparen{C D}$

333 The coordinates of the vertices of parallelogram $A B C D$ are $A(-2,2), B(3,5), C(4,2)$, and $D(-1,-1)$. State the coordinates of the vertices of parallelogram $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ that result from the transformation $r_{y-\text { axis }}{ }^{\circ} T_{2,-3}$. [The use of the set of axes below is optional.]

334 One step in a construction uses the endpoints of $\overline{A B}$ to create arcs with the same radii. The arcs intersect above and below the segment. What is the relationship of $\overline{A B}$ and the line connecting the points of intersection of these arcs?

1) collinear
2) congruent
3) parallel
4) perpendicular

335 Write an equation of the line that passes through the point $(6,-5)$ and is parallel to the line whose equation is $2 x-3 y=11$.

336 A right circular cylinder has a volume of 1,000 cubic inches and a height of 8 inches. What is the radius of the cylinder to the nearest tenth of an inch?

1) 6.3
2) 11.2
3) 19.8
4) 39.8

Tim is going to paint a wooden sphere that has a diameter of 12 inches. Find the surface area of the sphere, to the nearest square inch.

In the diagram below, circles X and Y have two tangents drawn to them from external point T. The points of tangency are C, A, S, and E. The ratio of $T A$ to $A C$ is $1: 3$. If $T S=24$, find the length of $\overline{S E}$.

(Not drawn to scale)

339 The volume of a cylinder is $12,566.4 \mathrm{~cm}^{3}$. The height of the cylinder is 8 cm . Find the radius of the cylinder to the nearest tenth of a centimeter.

340 In the diagram below of trapezoid $R S U T, \overline{R S} \| \overline{T U}$, X is the midpoint of $\overline{R T}$, and V is the midpoint of
$\overline{S U}$.

If $R S=30$ and $X V=44$, what is the length of $\overline{T U}$?

1) 37
2) 58
3) 74
4) 118

341 Given: $\triangle A B C$ and $\triangle E D C, C$ is the midpoint of $\overline{B D}$ and $\overline{A E}$
Prove: $\overline{A B} \| \overline{D E}$

342 What are the center and radius of a circle whose equation is $(x-A)^{2}+(y-B)^{2}=C$?

1) center $=(A, B)$; radius $=C$
2) center $=(-A,-B)$; radius $=C$
3) center $=(A, B)$; radius $=\sqrt{C}$
4) center $=(-A,-B)$; radius $=\sqrt{C}$

Geometry Regents Exam Questions at Random
www.jmap.org

343 On the set of axes below, Geoff drew rectangle $A B C D$. He will transform the rectangle by using the translation $(x, y) \rightarrow(x+2, y+1)$ and then will reflect the translated rectangle over the x-axis.

What will be the area of the rectangle after these transformations?

1) exactly 28 square units
2) less than 28 square units
3) greater than 28 square units
4) It cannot be determined from the information given.

344 The lines represented by the equations $y+\frac{1}{2} x=4$ and $3 x+6 y=12$ are

1) the same line
2) parallel
3) perpendicular
4) neither parallel nor perpendicular

345 A quadrilateral whose diagonals bisect each other and are perpendicular is a

1) rhombus
2) rectangle
3) trapezoid
4) parallelogram

346 In the diagram below of $\triangle P R T, Q$ is a point on $\overline{P R}$, S is a point on $\overline{T R}, \overline{Q S}$ is drawn, and $\angle R P T \cong \angle R S Q$.

Which reason justifies the conclusion that $\Delta P R T \sim \Delta S R Q$?

1) AA
2) ASA
3) SAS
4) SSS

347 Towns A and B are 16 miles apart. How many points are 10 miles from town A and 12 miles from town B ?

1) 1
2) 2
3) 3
4) 0

348 Which set of numbers represents the lengths of the sides of a triangle?

1) $\{5,18,13\}$
2) $\{6,17,22\}$
3) $\{16,24,7\}$
4) $\{26,8,15\}$

Geometry Regents Exam Questions at Random www.jmap.org

349 Two lines are represented by the equations $-\frac{1}{2} y=6 x+10$ and $y=m x$. For which value of m will the lines be parallel?

1) -12
2) -3
3) 3
4) 12

350 On the set of axes below, solve the following system of equations graphically for all values of x and y.

$$
\begin{gathered}
y=(x-2)^{2}+4 \\
4 x+2 y=14
\end{gathered}
$$

351 Tangents $\overline{P A}$ and $\overline{P B}$ are drawn to circle O from an external point, P, and radii $\overline{O A}$ and $\overline{O B}$ are drawn. If $\mathrm{m} \angle A P B=40$, what is the measure of $\angle A O B$?

1) 140°
2) 100°
3) 70°
4) 50°

352 In the diagram below of $\triangle A C T, \overleftrightarrow{B E} \| \overrightarrow{A T}$.

If $C B=3, C A=10$, and $C E=6$, what is the length of $\overline{E T}$?

1) 5
2) 14
3) 20
4) 26

353 Using a compass and straightedge, and $\overline{A B}$ below, construct an equilateral triangle with all sides congruent to $\overline{A B}$. [Leave all construction marks.]

354 The lateral faces of a regular pyramid are composed of

1) squares
2) rectangles
3) congruent right triangles
4) congruent isosceles triangles

355 The figure in the diagram below is a triangular prism.

Which statement must be true?

1) $\overline{D E} \cong \overline{A B}$
2) $\overline{A D} \cong \overline{B C}$
3) $\overline{A D} \| \overline{C E}$
4) $\overline{D E} \| \overline{B C}$

356 In the diagram below of circle O, chords $\overline{A D}$ and $\overline{B C}$ intersect at $E, \mathrm{~m} \overparen{A C}=87$, and $\mathrm{m} \overparen{B D}=35$.

What is the degree measure of $\angle C E A$?

1) 87
2) 61
3) 43.5
4) 26

357 In which triangle do the three altitudes intersect outside the triangle?

1) a right triangle
2) an acute triangle
3) an obtuse triangle
4) an equilateral triangle

358 What is an equation of a circle with its center at $(-3,5)$ and a radius of 4 ?

1) $(x-3)^{2}+(y+5)^{2}=16$
2) $(x+3)^{2}+(y-5)^{2}=16$
3) $(x-3)^{2}+(y+5)^{2}=4$
4) $(x+3)^{2}+(y-5)^{2}=4$

359 If the endpoints of $\overline{A B}$ are $A(-4,5)$ and $B(2,-5)$, what is the length of $\overline{A B}$?

1) $2 \sqrt{34}$
2) 2
3) $\sqrt{61}$
4) 8

360 What is the slope of a line perpendicular to the line whose equation is $y=-\frac{2}{3} x-5$?

1) $-\frac{3}{2}$
2) $-\frac{2}{3}$
3) $\frac{2}{3}$
4) $\frac{3}{2}$

361 In the diagram below of $\triangle A B C$ with side $\overline{A C}$ extended through $D, \mathrm{~m} \angle A=37$ and $\mathrm{m} \angle B C D=117$. Which side of $\triangle A B C$ is the longest side? Justify your answer.

(Not drawn to scale)

362 The degree measures of the angles of $\triangle A B C$ are represented by $x, 3 x$, and $5 x-54$. Find the value of x.

363 Based on the diagram below, which statement is true?

1) $a \| b$
2) $a \| c$
3) $b \| c$
4) $d \| e$

364 Line k is drawn so that it is perpendicular to two distinct planes, P and R. What must be true about planes P and R ?

1) Planes P and R are skew.
2) Planes P and R are parallel.
3) Planes P and R are perpendicular.
4) Plane P intersects plane R but is not perpendicular to plane R.

365 In the diagram below of $\triangle A B C, \overline{D E}$ is a midsegment of $\triangle A B C, D E=7, A B=10$, and $B C=13$. Find the perimeter of $\triangle A B C$.

366 In isosceles trapezoid $A B C D, \overline{A B} \cong \overline{C D}$. If $B C=20, A D=36$, and $A B=17$, what is the length of the altitude of the trapezoid?

1) 10
2) 12
3) 15
4) 16

367 In right $\triangle D E F, \mathrm{~m} \angle D=90$ and $\mathrm{m} \angle F$ is 12 degrees less than twice $\mathrm{m} \angle E$. Find $\mathrm{m} \angle E$.

Geometry Regents Exam Questions at Random www.jmap.org

368 Two lines, $\overleftrightarrow{A B}$ and $\overleftrightarrow{C R D}$, are parallel and 10 inches apart. Sketch the locus of all points that are equidistant from $\overleftrightarrow{A B}$ and $\overleftrightarrow{C R D}$ and 7 inches from point R. Label with an \mathbf{X} each point that satisfies both conditions.

369
In the diagram below, $\triangle A B C \cong \triangle X Y Z$.

Which two statements identify corresponding congruent parts for these triangles?

1) $\overline{A B} \cong \overline{X Y}$ and $\angle C \cong \angle Y$
2) $\overline{A B} \cong \overline{Y Z}$ and $\angle C \cong \angle X$
3) $\overline{B C} \cong \overline{X Y}$ and $\angle A \cong \angle Y$
4) $\overline{B C} \cong \overline{Y Z}$ and $\angle A \cong \angle X$

370 On the set of axes below, graph and label $\triangle D E F$ with vertices at $D(-4,-4), E(-2,2)$, and $F(8,-2)$. If G is the midpoint of $\overline{E F}$ and H is the midpoint of $\overline{D F}$, state the coordinates of G and H and label each point on your graph. Explain why $\overline{G H} \| \overline{D E}$.

371 In the diagram below of right triangle $A C B$, altitude $\overline{C D}$ is drawn to hypotenuse $\overline{A B}$.

If $A B=36$ and $A C=12$, what is the length of $\overline{A D}$?

1) 32
2) 6
3) 3
4) 4

Geometry Regents Exam Questions at Random www.jmap.org

372 In $\triangle R S T, \mathrm{~m} \angle R S T=46$ and $\overline{R S} \cong \overline{S T}$. Find $\mathrm{m} \angle S T R$.

373 In plane \mathscr{P}, lines m and n intersect at point A. If line k is perpendicular to line m and line n at point A, then line k is

1) contained in plane \mathscr{P}
2) parallel to plane \mathscr{P}
3) perpendicular to plane \mathscr{P}
4) skew to plane \mathscr{P}

374 Which illustration shows the correct construction of an angle bisector?
1)

2)

3)

375 Given: Quadrilateral $A B C D$ with $\overline{A B} \cong \overline{C D}$, $\overline{A D} \cong \overline{B C}$, and diagonal $\overline{B D}$ is drawn Prove: $\angle B D C \cong \angle A B D$

376 In which polygon does the sum of the measures of the interior angles equal the sum of the measures of the exterior angles?

1) triangle
2) hexagon
3) octagon
4) quadrilateral

377 Given the equations: $y=x^{2}-6 x+10$

$$
y+x=4
$$

What is the solution to the given system of equations?

1) $(2,3)$
2) $(3,2)$
3) $(2,2)$ and $(1,3)$
4) $(2,2)$ and $(3,1)$

378 In the diagram below, quadrilateral $A B C D$ is inscribed in circle $O, \overline{A B} \| \overline{D C}$, and diagonals $\overline{A C}$ and $\overline{B D}$ are drawn. Prove that $\triangle A C D \cong \triangle B D C$.

Geometry Regents at Random

379 In the diagram below, LATE is an isosceles trapezoid with $\overline{L E} \cong \overline{A T}, L A=24, E T=40$, and $A T=10$. Altitudes $\overline{L F}$ and $\overline{A G}$ are drawn.

What is the length of $\overline{L F}$?

1) 6
2) 8
3) 3
4) 4

380 Given: $\overline{A D}$ bisects $\overline{B C}$ at E. $\overline{A B} \perp \overline{B C}$ $\overline{D C} \perp \overline{B C}$
Prove: $\overline{A B} \cong \overline{D C}$

381 A cylinder has a height of 7 cm and a base with a diameter of 10 cm . Determine the volume, in cubic centimeters, of the cylinder in terms of π.

382 As shown on the set of axes below, $\Delta G H S$ has vertices $G(3,1), H(5,3)$, and $S(1,4)$. Graph and state the coordinates of $\Delta G^{\prime \prime} H^{\prime \prime} S^{\prime \prime}$, the image of $\Delta G H S$ after the transformation $T_{-3,1}{ }^{\circ} D_{2}$.

383 In the diagram below, $\triangle A B C \sim \triangle D E F, D E=4$, $A B=x, A C=x+2$, and $D F=x+6$. Determine the length of $A B$. [Only an algebraic solution can receive full credit.]

384 A packing carton in the shape of a triangular prism is shown in the diagram below.

What is the volume, in cubic inches, of this carton?

1) 20
2) 60
3) 120
4) 240

385 In parallelogram $A B C D$ shown below, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E.

Which statement must be true?

1) $\overline{A C} \cong \overline{D B}$
2) $\angle A B D \cong \angle C B D$
3) $\triangle A E D \cong \triangle C E B$
4) $\triangle D C E \cong \triangle B C E$

386 Two lines are represented by the equations $x+2 y=4$ and $4 y-2 x=12$. Determine whether these lines are parallel, perpendicular, or neither. Justify your answer.

387 The coordinates of point A are $(-3 a, 4 b)$. If point A^{\prime} is the image of point A reflected over the line $y=x$, the coordinates of A^{\prime} are

1) $(4 b,-3 a)$
2) $(3 a, 4 b)$
3) $(-3 a,-4 b)$
4) $(-4 b,-3 a)$

388 What is the equation of the line that passes through the point $(-9,6)$ and is perpendicular to the line $y=3 x-5$?

1) $y=3 x+21$
2) $y=-\frac{1}{3} x-3$
3) $y=3 x+33$
4) $y=-\frac{1}{3} x+3$

389 As shown in the diagram below, $\overleftrightarrow{E F}$ intersects planes \mathscr{P}, Q, and \mathcal{R}.

If $\overleftrightarrow{E F}$ is perpendicular to planes \mathscr{P} and \mathbb{R}, which statement must be true?

1) Plane \mathscr{P} is perpendicular to plane Q.
2) Plane \mathbb{R} is perpendicular to plane \mathscr{P}.
3) Plane \mathscr{P} is parallel to plane Q.
4) Plane \mathbb{R} is parallel to plane \mathscr{P}.

Geometry Regents Exam Questions at Random www.jmap.org

390 On the set of axes below, graph the locus of points that are four units from the point $(2,1)$. On the same set of axes, graph the locus of points that are two units from the line $x=4$. State the coordinates of all points that satisfy both conditions.

391 What is the equation of a line passing through $(2,-1)$ and parallel to the line represented by the equation $y=2 x+1$?

1) $y=-\frac{1}{2} x$
2) $y=-\frac{1}{2} x+1$
3) $y=2 x-5$
4) $y=2 x-1$

392 In the diagram of $\triangle J E A$ below, $\mathrm{m} \angle J E A=90$ and $\mathrm{m} \angle E A J=48$. Line segment $M S$ connects points M and S on the triangle, such that $\mathrm{m} \angle E M S=59$.

What is $\mathrm{m} \angle J S M$?

1) 163
2) 121
3) 42
4) 17

393 Quadrilateral MATH has coordinates $M(1,1)$, $A(-2,5), T(3,5)$, and $H(6,1)$. Prove that quadrilateral MATH is a rhombus and prove that it is not a square. [The use of the grid is optional.]

Geometry Regents Exam Questions at Random www.jmap.org

394 The cylindrical tank shown in the diagram below is to be painted. The tank is open at the top, and the bottom does not need to be painted. Only the outside needs to be painted. Each can of paint covers 600 square feet. How many cans of paint must be purchased to complete the job?

395 The vertices of the triangle in the diagram below are $A(7,9), B(3,3)$, and $C(11,3)$.

What are the coordinates of the centroid of $\triangle A B C$?

1) $(5,6)$
2) $(7,3)$
3) $(7,5)$
4) $(9,6)$

396 What is an equation of the line that passes through the point $(-2,3)$ and is parallel to the line whose equation is $y=\frac{3}{2} x-4$?

1) $y=\frac{-2}{3} x$
2) $y=\frac{-2}{3} x+\frac{5}{3}$
3) $y=\frac{3}{2} x$
4) $y=\frac{3}{2} x+6$

397 In the diagram below of $\triangle A C E$, medians $\overline{A D}, \overline{E B}$, and $\overline{C F}$ intersect at G. The length of $\overline{F G}$ is 12 cm .

What is the length, in centimeters, of $\overline{G C}$?

1) 24
2) 12
3) 6
4) 4

398 Which line is parallel to the line whose equation is $4 x+3 y=7$ and also passes through the point $(-5,2)$?

1) $4 x+3 y=-26$
2) $4 x+3 y=-14$
3) $3 x+4 y=-7$
4) $3 x+4 y=14$

399 Which equation represents the line parallel to the line whose equation is $4 x+2 y=14$ and passing through the point $(2,2)$?

1) $y=-2 x$
2) $y=-2 x+6$
3) $y=\frac{1}{2} x$
4) $y=\frac{1}{2} x+1$

What is an equation of circle O shown in the graph below?

1) $(x+2)^{2}+(y-2)^{2}=9$
2) $(x+2)^{2}+(y-2)^{2}=3$
3) $(x-2)^{2}+(y+2)^{2}=9$
4) $(x-2)^{2}+(y+2)^{2}=3$

401 A straightedge and compass were used to create the construction below. Arc EF was drawn from point B, and arcs with equal radii were drawn from E and F.

Which statement is false?

1) $\mathrm{m} \angle A B D=\mathrm{m} \angle D B C$
2) $\frac{1}{2}(\mathrm{~m} \angle A B C)=\mathrm{m} \angle A B D$
3) $2(\mathrm{~m} \angle D B C)=\mathrm{m} \angle A B C$
4) $2(\mathrm{~m} \angle A B C)=\mathrm{m} \angle C B D$

402 In the diagram below of $\triangle A B C$, side $\overline{B C}$ is extended to point $D, \mathrm{~m} \angle A=x, \mathrm{~m} \angle B=2 x+15$, and $\mathrm{m} \angle A C D=5 x+5$.

What is $\mathrm{m} \angle B$?

1) 5
2) 20
3) 25
4) 55

403 In the diagram below, $\triangle A B C \sim \Delta R S T$.

Which statement is not true?

1) $\angle A \cong \angle R$
2) $\frac{A B}{R S}=\frac{B C}{S T}$
3) $\frac{A B}{B C}=\frac{S T}{R S}$
4) $\frac{A B+B C+A C}{R S+S T+R T}=\frac{A B}{R S}$

404 On the diagram below, use a compass and straightedge to construct the bisector of $\angle A B C$.
[Leave all construction marks.]

405 What is the equation of a circle whose center is 4 units above the origin in the coordinate plane and whose radius is 6 ?

1) $x^{2}+(y-6)^{2}=16$
2) $(x-6)^{2}+y^{2}=16$
3) $x^{2}+(y-4)^{2}=36$
4) $(x-4)^{2}+y^{2}=36$

406 What is an equation of the line that is perpendicular to the line whose equation is $y=\frac{3}{5} x-2$ and that passes through the point $(3,-6)$?

1) $y=\frac{5}{3} x-11$
2) $y=-\frac{5}{3} x+11$
3) $y=-\frac{5}{3} x-1$
4) $y=\frac{5}{3} x+1$

407 In the diagram below of circle O, diameter $\overline{A B}$ is perpendicular to chord $\overline{C D}$ at E. If $A O=10$ and $B E=4$, find the length of $C E$.

408 Plane \mathbb{R} is perpendicular to line k and plane \mathscr{D} is perpendicular to line k. Which statement is correct?

1) Plane R is perpendicular to plane \mathscr{D}.
2) Plane \mathbb{R} is parallel to plane \mathscr{D}.
3) Plane \mathbb{R} intersects plane \mathscr{D}.
4) Plane \mathbb{R} bisects plane \mathscr{D}.

409 The diagram below represents a rectangular solid.

Which statement must be true?

1) $\overline{E H}$ and $\overline{B C}$ are coplanar
2) $\overline{F G}$ and $\overline{A B}$ are coplanar
3) $\overline{E H}$ and $\overline{A D}$ are skew
4) $\overline{F G}$ and $\overline{C G}$ are skew

410 What is the length of the line segment whose endpoints are $(1,-4)$ and $(9,2)$?

1) 5
2) $2 \sqrt{17}$
3) 10
4) $2 \sqrt{26}$

411 When a quadrilateral is reflected over the line $y=x$, which geometric relationship is not preserved?

1) congruence
2) orientation
3) parallelism
4) perpendicularity

412 The angles of triangle $A B C$ are in the ratio of $8: 3: 4$. What is the measure of the smallest angle?

1) 12°
2) 24°
3) 36°
4) 72°

413 On the diagram of $\triangle A B C$ shown below, use a compass and straightedge to construct the perpendicular bisector of $\overline{A C}$. [Leave all construction marks.]

414 In the diagram below, $\ell \| m$ and $\overline{Q R} \perp \overline{S T}$ at R.

If $\mathrm{m} \angle 1=63$, find $\mathrm{m} \angle 2$.

415 In the diagram of $\Delta K L M$ below, $\mathrm{m} \angle L=70$, $\mathrm{m} \angle M=50$, and $\overline{M K}$ is extended through N.

What is the measure of $\angle L K N$?

1) 60°
2) 120°
3) 180°
4) 300°

416 As shown in the diagram below, lines m and n are cut by transversal p.

If $\mathrm{m} \angle 1=4 x+14$ and $\mathrm{m} \angle 2=8 x+10$, lines m and n are parallel when x equals

1) 1
2) 6
3) 13
4) 17

417 As shown in the diagram of $\triangle A C D$ below, B is a point on $\overline{A C}$ and $\overline{D B}$ is drawn.

If $\mathrm{m} \angle A=66, \mathrm{~m} \angle C D B=18$, and $\mathrm{m} \angle C=24$, what is the longest side of $\triangle A B D$?

1) $\overline{A B}$
2) $\overline{D C}$
3) $\overline{A D}$
4) $\overline{B D}$

418 The diagram below shows a rectangular prism.

Which pair of edges are segments of lines that are coplanar?

1) $\overline{A B}$ and $\overline{D H}$
2) $\overline{A E}$ and $\overline{D C}$
3) $\overline{B C}$ and $\overline{E H}$
4) $\overline{C G}$ and $\overline{E F}$

Geometry Regents Exam Questions at Random www.jmap.org

419 Triangle $A B C$ has vertices $A(3,3), B(7,9)$, and $C(11,3)$. Determine the point of intersection of the medians, and state its coordinates. [The use of the set of axes below is optional.]

420 In the diagram below, point P is the centroid of $\triangle A B C$.

If $P M=2 x+5$ and $B P=7 x+4$, what is the length of $\overline{P M}$?

1) 9
2) 2
3) 18
4) 27

421 What is an equation of circle O shown in the graph below?

1) $(x+1)^{2}+(y-3)^{2}=25$
2) $(x-1)^{2}+(y+3)^{2}=25$
3) $(x-5)^{2}+(y+6)^{2}=25$
4) $(x+5)^{2}+(y-6)^{2}=25$

422 In the diagram below of $\triangle A B C, \overleftrightarrow{T V} \| \overrightarrow{B C}, A T=5$, $T B=7$, and $A V=10$.

What is the length of $\overline{V C}$?

1) $3 \frac{1}{2}$
2) $7 \frac{1}{7}$
3) 14
4) 24

423 The equation of a circle with its center at $(-3,5)$ and a radius of 4 is

1) $(x+3)^{2}+(y-5)^{2}=4$
2) $(x-3)^{2}+(y+5)^{2}=4$
3) $(x+3)^{2}+(y-5)^{2}=16$
4) $(x-3)^{2}+(y+5)^{2}=16$

424 Quadrilateral $M N O P$ is a trapezoid with $\overline{M N} \| \overline{O P}$. If $M^{\prime} N^{\prime} O^{\prime} P^{\prime}$ is the image of $M N O P$ after a reflection over the x-axis, which two sides of quadrilateral $M^{\prime} N^{\prime} O^{\prime} P^{\prime}$ are parallel?

1) $\overline{M^{\prime} N^{\prime}}$ and $\overline{O^{\prime} P^{\prime}}$
2) $\overline{M^{\prime} N^{\prime}}$ and $\overline{N^{\prime} O^{\prime}}$
3) $\overline{P^{\prime} M^{\prime}}$ and $\overline{O^{\prime} P^{\prime}}$
4) $\overline{P^{\prime} M^{\prime}}$ and $\overline{N^{\prime} O^{\prime}}$

425 In the diagram below of circle O, diameter $\overline{A O B}$ is perpendicular to chord $\overline{C D}$ at point $E, O A=6$, and $O E=2$.

What is the length of $\overline{C E}$?

1) $4 \sqrt{3}$
2) $2 \sqrt{3}$
3) $8 \sqrt{2}$
4) $4 \sqrt{2}$

426 The diagram below shows $\triangle A B C$, with $\overline{A E B}$, $\overline{A D C}$, and $\angle A C B \cong \angle A E D$. Prove that $\triangle A B C$ is similar to $\triangle A D E$.

427 Which equation represents circle O with center $(2,-8)$ and radius 9 ?

1) $(x+2)^{2}+(y-8)^{2}=9$
2) $(x-2)^{2}+(y+8)^{2}=9$
3) $(x+2)^{2}+(y-8)^{2}=81$
4) $(x-2)^{2}+(y+8)^{2}=81$

428 In $\triangle D E F, \mathrm{~m} \angle D=3 x+5, \mathrm{~m} \angle E=4 x-15$, and $\mathrm{m} \angle F=2 x+10$. Which statement is true?

1) $D F=F E$
2) $D E=F E$
3) $\mathrm{m} \angle E=\mathrm{m} \angle F$
4) $\mathrm{m} \angle D=\mathrm{m} \angle F$

429 The volume of a rectangular prism is 144 cubic inches. The height of the prism is 8 inches. Which measurements, in inches, could be the dimensions of the base?

1) 3.3 by 5.5
2) 2.5 by 7.2
3) 12 by 8
4) 9 by 9

Geometry Regents Exam Questions at Random www.jmap.org

430 In the diagram below, $\triangle A B C \cong \triangle X Y Z$.

Which statement must be true?

1) $\angle C \cong \angle Y$
2) $\angle A \cong \angle X$
3) $\overline{A C} \cong \overline{Y Z}$
4) $\overline{C B} \cong \overline{X Z}$

431 A pentagon is drawn on the set of axes below. If the pentagon is reflected over the y-axis, determine if this transformation is an isometry. Justify your answer. [The use of the set of axes is optional.]

432 In the diagram below of $\triangle P A O, \overline{A P}$ is tangent to circle O at point $A, O B=7$, and $B P=18$.

What is the length of $\overline{A P}$?

1) 10
2) 12
3) 17
4) 24

433 Solve the following system of equations graphically.

$$
\begin{gathered}
2 x^{2}-4 x=y+1 \\
x+y=1
\end{gathered}
$$

434 What is an equation of a circle with center $(7,-3)$ and radius 4 ?

1) $(x-7)^{2}+(y+3)^{2}=4$
2) $(x+7)^{2}+(y-3)^{2}=4$
3) $(x-7)^{2}+(y+3)^{2}=16$
4) $(x+7)^{2}+(y-3)^{2}=16$

435 The coordinates of the vertices of $\triangle A B C$ are $A(1,2), B(-4,3)$, and $C(-3,-5)$. State the coordinates of $\Delta A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a rotation of 90° about the origin. [The use of the set of axes below is optional.]

436 For a triangle, which two points of concurrence could be located outside the triangle?

1) incenter and centroid
2) centroid and orthocenter
3) incenter and circumcenter
4) circumcenter and orthocenter

437 Given the true statement, "The medians of a triangle are concurrent," write the negation of the statement and give the truth value for the negation.

438 In $\triangle F G H, \mathrm{~m} \angle F=42$ and an exterior angle at vertex H has a measure of 104 . What is $\mathrm{m} \angle G$?

1) 34
2) 62
3) 76
4) 146

439 In the diagram below, tangent $\overline{M L}$ and secant $\overline{M N K}$ are drawn to circle O. The ratio $\mathrm{m} \overparen{L N}: \mathrm{m} \overparen{N K}: \mathrm{m} \overparen{K L}$ is $3: 4: 5$. Find $\mathrm{m} \angle L M K$.

440 The number of degrees in the sum of the interior angles of a pentagon is

1) 72
2) 360
3) 540
4) 720

441 As shown in the diagram below, a kite needs a vertical and a horizontal support bar attached at opposite corners. The upper edges of the kite are 7 inches, the side edges are x inches, and the vertical support bar is $(x+1)$ inches.

What is the measure, in inches, of the vertical support bar?

1) 23
2) 24
3) 25
4) 26

442 Given three distinct quadrilaterals, a square, a rectangle, and a rhombus, which quadrilaterals must have perpendicular diagonals?

1) the rhombus, only
2) the rectangle and the square
3) the rhombus and the square
4) the rectangle, the rhombus, and the square

444 In $\triangle R S T, \mathrm{~m} \angle R=58$ and $\mathrm{m} \angle S=73$. Which inequality is true?

1) $R T<T S<R S$
2) $R S<R T<T S$
3) $R T<R S<T S$
4) $R S<T S<R T$

445 In the diagram below of $\triangle A B C, \overline{B C}$ is extended to D.

If $\mathrm{m} \angle A=x^{2}-6 x, \mathrm{~m} \angle B=2 x-3$, and $\mathrm{m} \angle A C D=9 x+27$, what is the value of x ?

1) 10
2) 2
3) 3
4) 15

446 Scalene triangle $A B C$ is similar to triangle $D E F$. Which statement is false?

1) $A B: B C=D E: E F$
2) $A C: D F=B C: E F$
3) $\angle A C B \cong \angle D F E$
4) $\angle A B C \cong \angle E D F$

443 Find the slope of a line perpendicular to the line whose equation is $2 y-6 x=4$.

Geometry Regents Exam Questions at Random www.jmap.org

447 The coordinates of trapezoid $A B C D$ are $A(-4,5)$, $B(1,5), C(1,2)$, and $D(-6,2)$. Trapezoid $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ is the image after the composition $r_{x-\text { axis }}{ }^{\circ} r_{y=x}$ is performed on trapezoid $A B C D$.
State the coordinates of trapezoid $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$. [The use of the set of axes below is optional.]

448 If two distinct planes, \mathcal{A} and \mathscr{B}, are perpendicular to line c, then which statement is true?

1) Planes \mathcal{A} and \mathscr{B} are parallel to each other.
2) Planes \mathcal{A} and \mathscr{B} are perpendicular to each other.
3) The intersection of planes \mathcal{A} and \mathscr{B} is a line parallel to line c.
4) The intersection of planes \mathcal{A} and \mathscr{B} is a line perpendicular to line c.

449 In circle O shown below, diameter $\overline{D B}$ is perpendicular to chord $\overline{A C}$ at E.

If $D B=34, A C=30$, and $D E>B E$, what is the length of $\overline{B E}$?

1) 8
2) 9
3) 16
4) 25

450 In the diagram below, quadrilateral JUMP is inscribed in a circle..

Opposite angles J and M must be

1) right
2) complementary
3) congruent
4) supplementary

451 A paint can is in the shape of a right circular cylinder. The volume of the paint can is 600π cubic inches and its altitude is 12 inches. Find the radius, in inches, of the base of the paint can. Express the answer in simplest radical form. Find, to the nearest tenth of a square inch, the lateral area of the paint can.

452 The point $(3,-2)$ is rotated 90° about the origin and then dilated by a scale factor of 4 . What are the coordinates of the resulting image?

1) $(-12,8)$
2) $(12,-8)$
3) $(8,12)$
4) $(-8,-12)$

453 In the diagram below of circle O, chord $\overline{A B}$ is parallel to chord $\overline{G H}$. Chord $\overline{C D}$ intersects $\overline{A B}$ at E and $\overline{G H}$ at F.

Which statement must always be true?

1) $\overparen{A C} \cong \overparen{C B}$
2) $\overparen{D H} \cong \overparen{B H}$
3) $\overparen{A B} \cong \overparen{G H}$
4) $\overparen{A G} \cong \overparen{B H}$

454 What is the length of the line segment whose endpoints are $A(-1,9)$ and $B(7,4)$?

1) $\sqrt{61}$
2) $\sqrt{89}$
3) $\sqrt{205}$
4) $\sqrt{233}$

455 In circle O, diameter $R S$ has endpoints $R(3 a, 2 b-1)$ and $S(a-6,4 b+5)$. Find the coordinates of point O, in terms of a and b. Express your answer in simplest form.

456 In the diagram below of isosceles trapezoid $A B C D$, $A B=C D=25, A D=26$, and $B C=12$.

What is the length of an altitude of the trapezoid?

1) 7
2) 14
3) 19
4) 24

Geometry Regents Exam Questions at Random www.jmap.org

457 What is the slope of a line that is perpendicular to the line whose equation is $3 x+5 y=4$?

1) $-\frac{3}{5}$
2) $\frac{3}{5}$
3) $-\frac{5}{3}$
4) $\frac{5}{3}$

458 Write an equation of the circle graphed in the diagram below.

459 In the diagram below, $\overline{B F C E}, \overline{A B} \perp \overline{B E}, \overline{D E} \perp \overline{B E}$, and $\angle B F D \cong \angle E C A$. Prove that $\triangle A B C \sim \triangle D E F$.

460 In the diagram below of right triangle $A B C, \overline{C D}$ is the altitude to hypotenuse $\overline{A B}, C B=6$, and $A D=5$.

What is the length of $\overline{B D}$?

1) 5
2) 9
3) 3
4) 4

461 In the diagram below, $\Delta A^{\prime} B^{\prime} C^{\prime}$ is a transformation of $\triangle A B C$, and $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is a transformation of $\triangle A^{\prime} B^{\prime} C^{\prime}$.

The composite transformation of $\triangle A B C$ to $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is an example of a

1) reflection followed by a rotation
2) reflection followed by a translation
3) translation followed by a rotation
4) translation followed by a reflection

462 Segment $A B$ is the diameter of circle M. The coordinates of A are $(-4,3)$. The coordinates of M are $(1,5)$. What are the coordinates of B ?

1) $(6,7)$
2) $(5,8)$
3) $(-3,8)$
4) $(-5,2)$

463 Given: $\triangle A B C$ with vertices $A(-6,-2), B(2,8)$, and $C(6,-2) . \overline{A B}$ has midpoint $D, \overline{B C}$ has midpoint E, and $\overline{A C}$ has midpoint F.
Prove: $A D E F$ is a parallelogram $A D E F$ is not a rhombus
[The use of the grid is optional.]

464 How many points are both 4 units from the origin and also 2 units from the line $y=4$?

1) 1
2) 2
3) 3
4) 4

465 In the diagram below of $\triangle A C D, B$ is a point on $\overline{A C}$ such that $\triangle A D B$ is an equilateral triangle, and $\triangle D B C$ is an isosceles triangle with $\overline{D B} \cong \overline{B C}$. Find $\mathrm{m} \angle C$.

466 In $\triangle P Q R, \angle P R Q$ is a right angle and $\overline{R T}$ is drawn perpendicular to hypotenuse $\overline{P Q}$. If $P T=x$, $R T=6$, and $T Q=4 x$, what is the length of $\overline{P Q}$?

1) 9
2) 12
3) 3
4) 15

467 The angle formed by the radius of a circle and a tangent to that circle has a measure of

1) 45°
2) 90°
3) 135°
4) 180°

468 When a dilation is performed on a hexagon, which property of the hexagon will not be preserved in its image?

1) parallelism
2) orientation
3) length of sides
4) measure of angles

469 Triangle $A B C$ has vertices $A(-2,2), B(-1,-3)$, and $C(4,0)$. Find the coordinates of the vertices of $\Delta A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after the transformation $r_{\text {x-xis }}$. [The use of the grid is optional.]

470 In $\triangle A E D$ with $\overline{A B C D}$ shown in the diagram below, $\overline{E B}$ and $\overline{E C}$ are drawn.

If $\overline{A B} \cong \overline{C D}$, which statement could always be proven?

1) $\overline{A C} \cong \overline{D B}$
2) $\overline{A E} \cong \overline{E D}$
3) $\overline{A B} \cong \overline{B C}$
4) $\overline{E C} \cong \overline{E A}$

471 Point A lies in plane \mathscr{B}. How many lines can be drawn perpendicular to plane \mathscr{B} through point A ?

1) one
2) two
3) zero
4) infinite

472 In the diagram below, two parallel lines intersect circle O at points A, B, C, and D, with $\mathrm{m} \overparen{A B}=x+20$ and $\mathrm{m} \overparen{D C}=2 x-20$. Find $\mathrm{m} \overparen{A B}$.

473 Triangle $A B C$ has vertices $A(0,0), B(3,2)$, and $C(0,4)$. The triangle may be classified as

1) equilateral
2) isosceles
3) right
4) scalene

474 A line segment has endpoints $A(7,-1)$ and $B(-3,3)$. What are the coordinates of the midpoint of $\overline{A B}$?

1) $(1,2)$
2) $(2,1)$
3) $(-5,2)$
4) $(5,-2)$

Geometry Regents Exam Questions at Random

 www.jmap.org475 As shown in the diagram below of $\triangle A B C$, a compass is used to find points D and E, equidistant from point A. Next, the compass is used to find point F, equidistant from points D and E. Finally, a straightedge is used to draw $\overrightarrow{A F}$. Then, point G, the intersection of $\overrightarrow{A F}$ and side $\overline{B C}$ of $\triangle A B C$, is labeled.

Which statement must be true?

1) $\overrightarrow{A F}$ bisects side $\overrightarrow{B C}$
2) $\overrightarrow{A F}$ bisects $\angle B A C$
3) $\overrightarrow{A F} \perp \overrightarrow{B C}$
4) $\triangle A B G \sim \triangle A C G$

476 If $\overleftrightarrow{A B}$ is contained in plane \mathcal{P}, and $\overleftrightarrow{A B}$ is perpendicular to plane \mathbb{R}, which statement is true?

1) $\overleftrightarrow{A B}$ is parallel to plane R
2) Plane \mathscr{P} is parallel to plane \mathbb{R}.
3) $\overleftrightarrow{A B}$ is perpendicular to plane \mathscr{P}.
4) Plane \mathscr{P} is perpendicular to plane \mathbb{R}.

477 In the diagram below of circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E.

If $\mathrm{m} \angle A E C=34$ and $\mathrm{m} \overparen{A C}=50$, what is $\mathrm{m} \overparen{D B}$?

1) 16
2) 18
3) 68
4) 118

478 In the diagram below, parallelogram $A B C D$ has diagonals $\overline{A C}$ and $\overline{B D}$ that intersect at point E.

Which expression is not always true?

1) $\angle D A E \cong \angle B C E$
2) $\angle D E C \cong \angle B E A$
3) $\overline{A C} \cong \overline{D B}$
4) $\overline{D E} \cong \overline{E B}$

479 The Parkside Packing Company needs a rectangular shipping box. The box must have a length of 11 inches and a width of 8 inches. Find, to the nearest tenth of an inch, the minimum height of the box such that the volume is at least 800 cubic inches.

480 For which polygon does the sum of the measures of the interior angles equal the sum of the measures of the exterior angles?

1) hexagon
2) pentagon
3) quadrilateral
4) triangle

481 In the diagram below of $\triangle A D E, B$ is a point on $\overline{A E}$ and C is a point on $\overline{A D}$ such that $\overline{B C} \| \overline{E D}$, $A C=x-3, B E=20, A B=16$, and $A D=2 x+2$.
Find the length of $\overline{A C}$.

482 In scalene triangle $A B C, \mathrm{~m} \angle B=45$ and $\mathrm{m} \angle C=55$. What is the order of the sides in length, from longest to shortest?

1) $\overline{A B}, \overline{B C}, \overline{A C}$
2) $\overline{B C}, \overline{A C}, \overline{A B}$
3) $\overline{A C}, \overline{B C}, \overline{A B}$
4) $\overline{B C}, \overline{A B}, \overline{A C}$

483 The diameter of a sphere is 15 inches. What is the volume of the sphere, to the nearest tenth of a cubic inch?

1) 706.9
2) 1767.1
3) 2827.4
4) $14,137.2$

484 The two lines represented by the equations below are graphed on a coordinate plane.

$$
\begin{gathered}
x+6 y=12 \\
3(x-2)=-y-4
\end{gathered}
$$

Which statement best describes the two lines?

1) The lines are parallel.
2) The lines are the same line.
3) The lines are perpendicular.
4) The lines intersect at an angle other than 90°.

485 What is an equation of the circle shown in the graph below?

1) $(x-3)^{2}+(y-4)^{2}=25$
2) $(x+3)^{2}+(y+4)^{2}=25$
3) $(x-3)^{2}+(y-4)^{2}=10$
4) $(x+3)^{2}+(y+4)^{2}=10$

486 In the diagram below, $\overline{E F}$ is the median of trapezoid $A B C D$.

If $A B=5 x-9, D C=x+3$, and $E F=2 x+2$, what is the value of x ?

1) 5
2) 2
3) 7
4) 8

487 Line segment $A B$ is shown in the diagram below.

Which two sets of construction marks, labeled I, II, III, and IV, are part of the construction of the perpendicular bisector of line segment $A B$?

1) I and II
2) I and III
3) II and III
4) II and IV

488 What is the slope of a line that is perpendicular to the line represented by the equation $x+2 y=3$?

1) -2
2) 2
3) $-\frac{1}{2}$
4) $\frac{1}{2}$

489 What is the volume, in cubic centimeters, of a cylinder that has a height of 15 cm and a diameter of 12 cm ?

1) 180π
2) 540π
3) 675π
4) $2,160 \pi$

490 Point P lies on line m. Point P is also included in distinct planes $Q, R S$, and \mathcal{T}. At most, how many of these planes could be perpendicular to line m ?

1) 1
2) 2
3) 3
4) 4

491 Pentagon $P Q R S T$ has $\overline{P Q}$ parallel to $\overline{T S}$. After a translation of $T_{2,-5}$, which line segment is parallel to $\overline{P^{\prime} Q^{\prime}}$?

1) $\overline{R^{\prime} Q^{\prime}}$
2) $\overline{R^{\prime} S^{\prime}}$
3) $\overline{T^{\prime} S^{\prime}}$

Geometry Regents Exam Questions at Random www.jmap.org

492 In the diagram below of quadrilateral $A B C D$, $\overline{A D} \cong \overline{B C}$ and $\angle D A E \cong \angle B C E$. Line segments $A C$, $D B$, and $F G$ intersect at E.
Prove: $\triangle A E F \cong \triangle C E G$

493 When $\triangle A B C$ is dilated by a scale factor of 2 , its image is $\Delta A^{\prime} B^{\prime} C^{\prime}$. Which statement is true?

1) $\overline{A C} \cong \overline{A^{\prime} C^{\prime}}$
2) $\angle A \cong \angle A^{\prime}$
3) perimeter of $\triangle A B C=$ perimeter of $\Delta A^{\prime} B^{\prime} C^{\prime}$
4) 2 (area of $\triangle A B C)=$ area of $\Delta A^{\prime} B^{\prime} C^{\prime}$

494 Which equation of a circle will have a graph that lies entirely in the first quadrant?

1) $(x-4)^{2}+(y-5)^{2}=9$
2) $(x+4)^{2}+(y+5)^{2}=9$
3) $(x+4)^{2}+(y+5)^{2}=25$
4) $(x-5)^{2}+(y-4)^{2}=25$

495 Which compound statement is true?

1) A triangle has three sides and a quadrilateral has five sides.
2) A triangle has three sides if and only if a quadrilateral has five sides.
3) If a triangle has three sides, then a quadrilateral has five sides.
4) A triangle has three sides or a quadrilateral has five sides.

496 On the set of axes below, solve the system of equations graphically and state the coordinates of all points in the solution.

$$
\begin{gathered}
y=(x-2)^{2}-3 \\
2 y+16=4 x
\end{gathered}
$$

497 In the diagram below, $\overline{A B}, \overline{B C}$, and $\overline{A C}$ are tangents to circle O at points F, E, and D, respectively, $A F=6, C D=5$, and $B E=4$.

What is the perimeter of $\triangle A B C$?

1) 15
2) 25
3) 30
4) 60

Geometry Regents Exam Questions at Random www.jmap.org

498 On the set of axes below, graph the locus of points that are 4 units from the line $x=3$ and the locus of points that are 5 units from the point $(0,2)$. Label with an \mathbf{X} all points that satisfy both conditions.

In the diagram below of $\triangle A B C, D$ is a point on $\overline{A B}$, E is a point on $\overline{B C}, \overline{A C} \| \overline{D E}, C E=25$ inches, $A D=18$ inches, and $D B=12$ inches. Find, to the nearest tenth of an inch, the length of $\overline{E B}$.

500 Triangle $H K L$ has vertices $H(-7,2), K(3,-4)$, and $L(5,4)$. The midpoint of $H L$ is M and the midpoint of $\overline{L K}$ is N. Determine and state the coordinates of points M and N. Justify the statement: $\overline{M N}$ is parallel to $\overline{H K}$. [The use of the set of axes below is optional.]

501 In the diagram below, trapezoid $A B C D$, with bases $A B$ and $D C$, is inscribed in circle O, with diameter $\overline{D C}$. If $\mathrm{m} \overparen{A B}=80$, find $\mathrm{m} \overparen{B C}$.

502 Which graph represents a circle whose equation is $(x+2)^{2}+y^{2}=16 ?$
1)

3)

503 Plane \mathcal{A} is parallel to plane \mathscr{B}. Plane C intersects plane \mathcal{A} in line m and intersects plane \mathscr{B} in line n. Lines m and n are

1) intersecting
2) parallel
3) perpendicular
4) skew

504 In the diagram below of $\triangle D A E$ and $\triangle B C E, \overline{A B}$ and $\overline{C D}$ intersect at E, such that $\overline{A E} \cong \overline{C E}$ and $\angle B C E \cong \angle D A E$.

Triangle DAE can be proved congruent to triangle BCE by

1) ASA
2) SAS
3) SSS
4) HL

505 In a given triangle, the point of intersection of the three medians is the same as the point of intersection of the three altitudes. Which classification of the triangle is correct?

1) scalene triangle
2) isosceles triangle
3) equilateral triangle
4) right isosceles triangle

506 What is the length of $\overline{A B}$ with endpoints $A(-1,0)$ and $B(4,-3)$?

1) $\sqrt{6}$
2) $\sqrt{18}$
3) $\sqrt{34}$
4) $\sqrt{50}$

Geometry Regents Exam Questions at Random www.jmap.org

507 Parallelogram $A B C D$ has coordinates $A(1,5)$, $B(6,3), C(3,-1)$, and $D(-2,1)$. What are the coordinates of E, the intersection of diagonals $\overline{A C}$ and $\overline{B D}$?

1) $(2,2)$
2) $(4.5,1)$
3) $(3.5,2)$
4) $(-1,3)$

508 The diagram below illustrates the construction of $\overleftrightarrow{P S}$ parallel to $\overleftrightarrow{R Q}$ through point P.

Which statement justifies this construction?

1) $\mathrm{m} \angle 1=\mathrm{m} \angle 2$
2) $\mathrm{m} \angle 1=\mathrm{m} \angle 3$
3) $\overline{P R} \cong \overline{R Q}$
4) $\overline{P S} \cong \overline{R Q}$

509 Which statement is the negation of "Two is a prime number" and what is the truth value of the negation?

1) Two is not a prime number; false
2) Two is not a prime number; true
3) A prime number is two; false
4) A prime number is two; true

510 In the diagram below of circle O, chord $\overline{A B}$ bisects chord $\overline{C D}$ at E. If $A E=8$ and $B E=9$, find the length of $\overline{C E}$ in simplest radical form.

511 In $\triangle A B C, A B=5$ feet and $B C=3$ feet. Which inequality represents all possible values for the length of $\overline{A C}$, in feet?

1) $2 \leq A C \leq 8$
2) $2<A C<8$
3) $3 \leq A C \leq 7$
4) $3<A C<7$

512 Which reason could be used to prove that a parallelogram is a rhombus?

1) Diagonals are congruent.
2) Opposite sides are parallel.
3) Diagonals are perpendicular.
4) Opposite angles are congruent.

513 The statement " x is a multiple of 3 , and x is an even integer" is true when x is equal to

1) 9
2) 8
3) 3
4) 6

514 In the diagram below of circle O, chord $\overline{A B}$ is parallel to chord $\overline{C D}$.

Which statement must be true?

1) $\overparen{A C} \cong \overparen{B D}$
2) $\overparen{A B} \cong \overparen{C D}$
3) $\overline{A B} \cong \overline{C D}$
4) $\widehat{A B D} \cong \widehat{C D B}$

515 In the diagram below of circle O, radius $\overline{O C}$ is 5 cm . Chord $\overline{A B}$ is 8 cm and is perpendicular to $\overline{O C}$ at point P.

What is the length of $\overline{O P}$, in centimeters?

1) 8
2) 2
3) 3
4) 4

516 Which diagram shows the construction of the perpendicular bisector of $\overline{A B}$?
1)

2)
3)
4)

517 In the diagram below, $\overleftrightarrow{A B}$ is perpendicular to plane AEFG.

Which plane must be perpendicular to plane $A E F G$?

1) $A B C E$
2) $B C D H$
3) $C D F E$
4) $H D F G$

518 Triangle $P Q R$ has angles in the ratio of 2:3:5. Which type of triangle is $\triangle P Q R$?

1) acute
2) isosceles
3) obtuse
4) right

519 When solved graphically, what is the solution to the following system of equations?

$$
\begin{gathered}
y=x^{2}-4 x+6 \\
y=x+2
\end{gathered}
$$

1) $(1,4)$
2) $(4,6)$
3) $(1,3)$ and $(4,6)$
4) $(3,1)$ and $(6,4)$

520 Which equation represents the line that is perpendicular to $2 y=x+2$ and passes through the point (4, 3)?

1) $y=\frac{1}{2} x-5$
2) $y=\frac{1}{2} x+1$
3) $y=-2 x+11$
4) $y=-2 x-5$

521 The graph below shows the locus of points equidistant from the x-axis and y-axis. On the same set of axes, graph the locus of points 3 units from the line $x=0$. Label with an \mathbf{X} all points that satisfy both conditions.

522 In the diagram below, point M is located on $\overleftrightarrow{A B}$.
Sketch the locus of points that are 1 unit from $\overleftrightarrow{A B}$ and the locus of points 2 units from point M. Label with an \mathbf{X} all points that satisfy both conditions.

524 The graph below shows $\overline{J T}$ and its image, $\overline{J^{\prime} T^{\prime}}$, after a transformation.

Which transformation would map $\overline{J T}$ onto $\overline{J^{\prime} T^{\prime}}$?

1) translation
2) glide reflection
3) rotation centered at the origin
4) reflection through the origin

525 In the diagram below, MATH is a rhombus with diagonals $\overline{A H}$ and $\overline{M T}$.

If $\mathrm{m} \angle H A M=12$, what is $\mathrm{m} \angle A M T$?

1) 12
2) 78
3) 84
4) 156

526 The vertices of $\triangle R S T$ are $R(-6,5), S(-7,-2)$, and $T(1,4)$. The image of $\triangle R S T$ after the composition $T_{-2,3}{ }^{\circ} r_{y=x}$ is $\Delta R " S " T "$. State the coordinates of $\Delta R " S " T$ ". [The use of the set of axes below is optional.]

527 In the diagram below, $\overline{P A}$ and $\overline{P B}$ are tangent to circle $O, \overline{O A}$ and $\overline{O B}$ are radii, and $\overline{O P}$ intersects the circle at C. Prove: $\angle A O P \cong \angle B O P$

528 Triangle $A B C$ is graphed on the set of axes below.

Which transformation produces an image that is similar to, but not congruent to, $\triangle A B C$?

1) $T_{2,3}$
2) D_{2}
3) $r_{y=x}$
4) R_{90}

529 In the diagram below of circle O, diameter $\overline{A B}$ is parallel to chord $\overline{C D}$.

If $m \widehat{C D}=70$, what is $m \overparen{A C}$?

1) 110
2) 70
3) 55
4) 35

530 A man wants to place a new bird bath in his yard so that it is 30 feet from a fence, f, and also 10 feet from a light pole, P. As shown in the diagram below, the light pole is 35 feet away from the fence.

How many locations are possible for the bird bath?

1) 1
2) 2
3) 3
4) 0

531 Which statement is true about every parallelogram?

1) All four sides are congruent.
2) The interior angles are all congruent.
3) Two pairs of opposite sides are congruent.
4) The diagonals are perpendicular to each other.

532 What is the measure of each interior angle of a regular hexagon?

1) 60°
2) 120°
3) 135°
4) 270°

533 In the diagram below of right triangle $A B C$, altitude $\overline{B D}$ is drawn to hypotenuse $\overline{A C}, A C=16$, and $C D=7$.

What is the length of $\overline{B D}$?

1) $3 \sqrt{7}$
2) $4 \sqrt{7}$
3) $7 \sqrt{3}$
4) 12

534 In the diagram below of $\triangle A B C, \overline{A E} \cong \overline{B E}$, $\overline{A F} \cong \overline{C F}$, and $\overline{C D} \cong \overline{B D}$.

Point P must be the

1) centroid
2) circumcenter
3) Incenter
4) orthocenter

Geometry Regents Exam Questions at Random www.jmap.org

535 Chords $\overline{A B}$ and $\overline{C D}$ intersect at E in circle O, as shown in the diagram below. Secant $\overline{F D A}$ and tangent $\overline{F B}$ are drawn to circle O from external point F and chord $\overline{A C}$ is drawn. The $\mathrm{m} \widehat{D A}=56$, $\mathrm{m} \overparen{D B}=112$, and the ratio of $\mathrm{m} \overparen{A C}: \mathrm{m} \overparen{C B}=3: 1$.

Determine $\mathrm{m} \angle C E B$. Determine $\mathrm{m} \angle F$. Determine $\mathrm{m} \angle D A C$.

536 The coordinates of the endpoints of $\overline{F G}$ are $(-4,3)$ and $(2,5)$. Find the length of $\overline{F G}$ in simplest radical form.

537 In the diagram below, $\triangle L M O$ is isosceles with $L O=M O$.

If $\mathrm{m} \angle L=55$ and $\mathrm{m} \angle N O M=28$, what is $\mathrm{m} \angle N$?

1) 27
2) 28
3) 42
4) 70

538 Lines m and n intersect at point A. Line k is perpendicular to both lines m and n at point A. Which statement must be true?

1) Lines m, n, and k are in the same plane.
2) Lines m and n are in two different planes.
3) Lines m and n are perpendicular to each other.
4) Line k is perpendicular to the plane containing lines m and n.

539 In the diagram of quadrilateral $A B C D, \overline{A B} \| \overline{C D}$, $\angle A B C \cong \angle C D A$, and diagonal $\overline{A C}$ is drawn.

Which method can be used to prove $\triangle A B C$ is congruent to $\triangle C D A$?

1) AAS
2) SSA
3) SAS
4) SSS

540 What are the center and the radius of the circle whose equation is $(x-5)^{2}+(y+3)^{2}=16$?

1) $(-5,3)$ and 16
2) $(5,-3)$ and 16
3) $(-5,3)$ and 4
4) $(5,-3)$ and 4

541 In the diagram below of $\triangle B C D$, side $\overline{D B}$ is extended to point A.

Which statement must be true?

1) $\mathrm{m} \angle C>\mathrm{m} \angle D$
2) $\mathrm{m} \angle A B C<\mathrm{m} \angle D$
3) $\mathrm{m} \angle A B C>\mathrm{m} \angle C$
4) $\mathrm{m} \angle A B C>\mathrm{m} \angle C+\mathrm{m} \angle D$

542 The coordinates of the vertices of $\triangle R S T$ are $R(-2,3), S(4,4)$, and $T(2,-2)$. Triangle $R^{\prime} S^{\prime} T^{\prime}$ is the image of $\Delta R S T$ after a rotation of 90° about the origin. State the coordinates of the vertices of $\Delta R^{\prime} S^{\prime} T^{\prime}$. [The use of the set of axes below is optional.]

543 As shown on the graph below, $\Delta R^{\prime} S^{\prime} T^{\prime}$ is the image of $\triangle R S T$ under a single transformation.

Which transformation does this graph represent?

1) glide reflection
2) line reflection
3) rotation
4) translation

544 Which equation represents a line that is parallel to the line whose equation is $y=\frac{3}{2} x-3$ and passes through the point $(1,2)$?

1) $y=\frac{3}{2} x+\frac{1}{2}$
2) $y=\frac{2}{3} x+\frac{4}{3}$
3) $y=\frac{3}{2} x-2$
4) $y=-\frac{2}{3} x+\frac{8}{3}$

545 Write the negation of the statement " 2 is a prime number," and determine the truth value of the negation.

546 A sphere is inscribed inside a cube with edges of 6 cm . In cubic centimeters, what is the volume of the sphere, in terms of π ?

1) 12π
2) 36π
3) 48π
4) 288π

547 If $\Delta J K L \cong \triangle M N O$, which statement is always true?

1) $\angle K L J \cong \angle N M O$
2) $\angle K J L \cong \angle M O N$
3) $\overline{J L} \cong \overline{M O}$
4) $\overline{J K} \cong \overline{O N}$

548 The slope of line ℓ is $-\frac{1}{3}$. What is an equation of a line that is perpendicular to line ℓ ?

1) $y+2=\frac{1}{3} x$
2) $-2 x+6=6 y$
3) $9 x-3 y=27$
4) $3 x+y=0$

549 The vertices of parallelogram $A B C D$ are $A(2,0)$, $B(0,-3), C(3,-3)$, and $D(5,0)$. If $A B C D$ is reflected over the x-axis, how many vertices remain invariant?

1) 1
2) 2
3) 3
4) 0

550 A sphere has a diameter of 18 meters. Find the volume of the sphere, in cubic meters, in terms of π.

551 The coordinates of the endpoints of $\overline{A B}$ are $A(0,0)$ and $B(0,6)$. The equation of the perpendicular bisector of $\overline{A B}$ is

1) $x=0$
2) $x=3$
3) $y=0$
4) $y=3$

552 In the diagram below of $\triangle A B C, D$ is the midpoint of $\overline{A B}$, and E is the midpoint of $\overline{B C}$.

If $A C=4 x+10$, which expression represents $D E$?

1) $x+2.5$
2) $2 x+5$
3) $2 x+10$
4) $8 x+20$

553 Which type of triangle can be drawn using the points ($-2,3$), ($-2,-7$), and ($4,-5$)?

1) scalene
2) isosceles
3) equilateral
4) no triangle can be drawn

554 If the vertex angles of two isosceles triangles are congruent, then the triangles must be

1) acute
2) congruent
3) right
4) similar

555 In the diagram below of circle O, chords $\overline{R T}$ and $\overline{Q S}$ intersect at M. Secant $\overline{P T R}$ and tangent $\overline{P S}$ are drawn to circle O. The length of $\overline{R M}$ is two more than the length of $\overline{T M}, Q M=2, S M=12$, and $P T=8$.

Find the length of $\overline{R T}$. Find the length of $\overline{P S}$.

556 What is the image of the point $(2,-3)$ after the transformation $r_{y \text {-axis }}$?

1) $(2,3)$
2) $(-2,-3)$
3) $(-2,3)$
4) $(-3,2)$

557 Lines a and b intersect at point P. Line c passes through P and is perpendicular to the plane containing lines a and b. Which statement must be true?

1) Lines a, b, and c are coplanar.
2) Line a is perpendicular to line b.
3) Line c is perpendicular to both line a and line b.
4) Line c is perpendicular to line a or line b, but not both.

558 In the diagram below of circle $O, \overline{P A}$ is tangent to circle O at A, and $\overline{P B C}$ is a secant with points B and C on the circle.

If $P A=8$ and $P B=4$, what is the length of $\overline{B C}$?

1) 20
2) 16
3) 15
4) 12

559 Point M is the midpoint of $\overline{A B}$. If the coordinates of A are $(-3,6)$ and the coordinates of M are $(-5,2)$, what are the coordinates of B ?

1) $(1,2)$
2) $(7,10)$
3) $(-4,4)$
4) $(-7,-2)$

Geometry Regents Exam Questions at Random www.jmap.org

560 Triangle $A B C$ has coordinates $A(2,-2), B(2,1)$, and $C(4,-2)$. Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ under $T_{5,-2}$. On the set of axes below, graph and label $\triangle A B C$ and its image, $\Delta A^{\prime} B^{\prime} C^{\prime}$. Determine the relationship between the area of $\triangle A B C$ and the area of $\Delta A^{\prime} B^{\prime} C^{\prime}$. Justify your response.

561 In the diagram below of $\triangle A B C, \overline{A B} \cong \overline{A C}$, $\mathrm{m} \angle A=3 x$, and $\mathrm{m} \angle B=x+20$.

What is the value of x ?

1) 10
2) 28
3) 32
4) 40

562 In the diagram below, $\overline{D E}$ joins the midpoints of two sides of $\triangle A B C$.

Which statement is not true?

1) $C E=\frac{1}{2} C B$
2) $D E=\frac{1}{2} A B$
3) area of $\triangle C D E=\frac{1}{2}$ area of $\triangle C A B$
4) perimeter of $\triangle C D E=\frac{1}{2}$ perimeter of $\triangle C A B$

563 The volume, in cubic centimeters, of a sphere whose diameter is 6 centimeters is

1) 12π
2) 36π
3) 48π
4) 288π

564 Which equation represents the perpendicular bisector of $\overline{A B}$ whose endpoints are $A(8,2)$ and $B(0,6)$?

1) $y=2 x-4$
2) $y=-\frac{1}{2} x+2$
3) $y=-\frac{1}{2} x+6$
4) $y=2 x-12$

Geometry Regents Exam Questions at Random www.jmap.org

565 Find, in degrees, the measures of both an interior angle and an exterior angle of a regular pentagon.

566 Using a compass and straightedge, construct a line perpendicular to $\overline{A B}$ through point P. [Leave all construction marks.]

567 Using a compass and straightedge, construct the bisector of $\angle C B A$. [Leave all construction marks.]

568 In $\triangle A B C$ shown below, P is the centroid and $B F=18$.

What is the length of $\overline{B P}$?

1) 6
2) 9
3) 3
4) 12

569 The diagram below shows a pair of congruent triangles, with $\angle A D B \cong \angle C D B$ and $\angle A B D \cong \angle C B D$.

Which statement must be true?

1) $\angle A D B \cong \angle C B D$
2) $\angle A B C \cong \angle A D C$
3) $\overline{A B} \cong \overline{C D}$
4) $\overline{A D} \cong \overline{C D}$

570 In circle O, a diameter has endpoints $(-5,4)$ and $(3,-6)$. What is the length of the diameter?

1) $\sqrt{2}$
2) $2 \sqrt{2}$
3) $\sqrt{10}$
4) $2 \sqrt{41}$

571 In the diagram below, line p intersects line m and line n.

If $\mathrm{m} \angle 1=7 x$ and $\mathrm{m} \angle 2=5 x+30$, lines m and n are parallel when x equals

1) 12.5
2) 15
3) 87.5
4) 105

572 What is the slope of a line perpendicular to the line whose equation is $20 x-2 y=6$?

1) -10
2) $-\frac{1}{10}$
3) 10
4) $\frac{1}{10}$

573 In rhombus $A B C D$, the diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E. If $A E=5$ and $B E=12$, what is the length of $\overline{A B}$?

1) 7
2) 10
3) 13
4) 17

574 An equation of the line that passes through $(2,-1)$ and is parallel to the line $2 y+3 x=8$ is

1) $y=\frac{3}{2} x-4$
2) $y=\frac{3}{2} x+4$
3) $y=-\frac{3}{2} x-2$
4) $y=-\frac{3}{2} x+2$

575 As shown in the diagram below, $\overline{A C}$ bisects $\angle B A D$ and $\angle B \cong \angle D$.

Which method could be used to prove $\triangle A B C \cong \triangle A D C$?

1) SSS
2) $A A A$
3) SAS
4) AAS

576 A line segment has endpoints $(4,7)$ and $(1,11)$.
What is the length of the segment?

1) 5
2) 7
3) 16
4) 25

577 Given that $A B C D$ is a parallelogram, a student wrote the proof below to show that a pair of its opposite angles are congruent.

What is the reason justifying that $\angle B \cong \angle D$?

1) Opposite angles in a quadrilateral are congruent.
2) Parallel lines have congruent corresponding angles.
3) Corresponding parts of congruent triangles are congruent.
4) Alternate interior angles in congruent triangles are congruent.

578 The diagram below shows the construction of $\overleftrightarrow{A B}$ through point P parallel to $\overleftrightarrow{C D}$.

Which theorem justifies this method of construction?

1) If two lines in a plane are perpendicular to a transversal at different points, then the lines are parallel.
2) If two lines in a plane are cut by a transversal to form congruent corresponding angles, then the lines are parallel.
3) If two lines in a plane are cut by a transversal to form congruent alternate interior angles, then the lines are parallel.
4) If two lines in a plane are cut by a transversal to form congruent alternate exterior angles, then the lines are parallel.

579 In $\triangle A B C$ and $\triangle D E F, \frac{A C}{D F}=\frac{C B}{F E}$. Which additional information would prove
$\triangle A B C \sim \triangle D E F$?

1) $A C=D F$
2) $C B=F E$
3) $\angle A C B \cong \angle D F E$
4) $\angle B A C \cong \angle E D F$

Geometry Regents Exam Questions at Random www.jmap.org

580 In the diagram below of rhombus $A B C D$, $\mathrm{m} \angle C=100$.

What is $\mathrm{m} \angle D B C$?

1) 40
2) 45
3) 50
4) 80

581 As shown in the diagram below, $\triangle A B C \sim \triangle D E F$, $A B=7 x, B C=4, D E=7$, and $E F=x$.

What is the length of $\overline{A B}$?

1) 28
2) 2
3) 14
4) 4

582 Which quadrilateral has diagonals that always bisect its angles and also bisect each other?

1) rhombus
2) rectangle
3) parallelogram
4) isosceles trapezoid

583 Triangle TAP has coordinates $T(-1,4), A(2,4)$, and $P(2,0)$. On the set of axes below, graph and label $\Delta T^{\prime} A^{\prime} P^{\prime}$, the image of $\Delta T A P$ after the translation $(x, y) \rightarrow(x-5, y-1)$.

584 Which set of numbers does not represent the sides of a right triangle?

1) $\{6,8,10\}$
2) $\{8,15,17\}$
3) $\{8,24,25\}$
4) $\{15,36,39\}$

585 Using a compass and straightedge, on the diagram below of $\overleftrightarrow{R S}$, construct an equilateral triangle with $\overline{R S}$ as one side. [Leave all construction marks.]

586 On the diagram below, use a compass and straightedge to construct the bisector of $\angle X Y Z$. [Leave all construction marks.]

587 The sum of the interior angles of a polygon of n sides is

1) 360
2) $\frac{360}{n}$
3) $(n-2) \cdot 180$
4) $\frac{(n-2) \cdot 180}{n}$

588 A circle has the equation $(x-2)^{2}+(y+3)^{2}=36$. What are the coordinates of its center and the length of its radius?

1) $(-2,3)$ and 6
2) $(2,-3)$ and 6
3) $(-2,3)$ and 36
4) $(2,-3)$ and 36

589 In the diagram below, lines n and m are cut by transversals p and q.

What value of x would make lines n and m parallel?

1) 110
2) 80
3) 70
4) 50

590 Determine whether the two lines represented by the equations $y=2 x+3$ and $2 y+x=6$ are parallel, perpendicular, or neither. Justify your response.

591 In the diagram below, $\triangle A B C$ is circumscribed about circle O and the sides of $\triangle A B C$ are tangent to the circle at points D, E, and F.

If $A B=20, A E=12$, and $C F=15$, what is the length of $\overline{A C}$?

1) 8
2) 15
3) 23
4) 27

592 A student wrote the sentence " 4 is an odd integer." What is the negation of this sentence and the truth value of the negation?

1) 3 is an odd integer; true
2) 4 is not an odd integer; true
3) 4 is not an even integer; false
4) 4 is an even integer; false

593 On the set of axes below, solve the following system of equations graphically and state the coordinates of all points in the solution.

$$
\begin{gathered}
(x+3)^{2}+(y-2)^{2}=25 \\
2 y+4=-x
\end{gathered}
$$

594 As shown in the diagram below, the diagonals of parallelogram $Q R S T$ intersect at E. If $Q E=x^{2}+6 x$, $S E=x+14$, and $T E=6 x-1$, determine $T E$ algebraically.

595 Which diagram represents a correct construction of equilateral $\triangle A B C$, given side $\overline{A B}$?
1)

3)

4)

596 Line n intersects lines l and m, forming the angles shown in the diagram below.

Which value of x would prove $l \| m$?

1) 2.5
2) 4.5
3) 6.25
4) 8.75

597 As shown in the diagram below, $\overline{F J}$ is contained in plane $\mathcal{R}, \overline{B C}$ and $\overline{D E}$ are contained in plane S, and $\overline{F J}, \overline{B C}$, and $\overline{D E}$ intersect at A.

Which fact is sufficient to show that planes \mathbb{R} and S are perpendicular?

1) $\overline{F A} \perp \overline{D E}$
2) $\overline{A D} \perp \overline{A F}$
3) $\overline{B C} \perp \overline{F J}$
4) $\overline{D E} \perp \overline{B C}$

Geometry Regents Exam Questions at Random www.jmap.org

598 Which graph represents a circle with the equation $(x-3)^{2}+(y+1)^{2}=4$?
1)

2)

3)

4)

599 What is an equation of the circle with a radius of 5 and center at $(1,-4)$?

1) $(x+1)^{2}+(y-4)^{2}=5$
2) $(x-1)^{2}+(y+4)^{2}=5$
3) $(x+1)^{2}+(y-4)^{2}=25$
4) $(x-1)^{2}+(y+4)^{2}=25$

600 The diagonals of a quadrilateral are congruent but do not bisect each other. This quadrilateral is

1) an isosceles trapezoid
2) a parallelogram
3) a rectangle
4) a rhombus

601 The equation of line k is $y=\frac{1}{3} x-2$. The equation of line m is $-2 x+6 y=18$. Lines k and m are

1) parallel
2) perpendicular
3) the same line
4) neither parallel nor perpendicular

602 In the diagram below of $\overline{A B C D}, \overline{A C} \cong \overline{B D}$.

Using this information, it could be proven that

1) $B C=A B$
2) $A B=C D$
3) $A D-B C=C D$
4) $A B+C D=A D$

603 What is the image of the point $(-5,2)$ under the translation $T_{3,-4}$?

1) $(-9,5)$
2) $(-8,6)$
3) $(-2,-2)$
4) $(-15,-8)$

604 When writing a geometric proof, which angle relationship could be used alone to justify that two angles are congruent?

1) supplementary angles
2) linear pair of angles
3) adjacent angles
4) vertical angles

605 On the set of coordinate axes below, graph the locus of points that are equidistant from the lines $y=6$ and $y=2$ and also graph the locus of points that are 3 units from the y-axis. State the coordinates of all points that satisfy both conditions.

606 In the diagram of $\triangle A B C$ shown below, $\overline{D E} \| \overline{B C}$.

If $A B=10, A D=8$, and $A E=12$, what is the length of $\overline{E C}$?

1) 6
2) 2
3) 3
4) 15

607 In the diagram of $\triangle A B C$ shown below, D is the midpoint of $\overline{A B}, E$ is the midpoint of $\overline{B C}$, and F is the midpoint of $\overline{A C}$.

If $A B=20, B C=12$, and $A C=16$, what is the perimeter of trapezoid $A B E F$?

1) 24
2) 36
3) 40
4) 44

Geometry Regents Exam Questions at Random
www.jmap.org
608 The length of $\overline{A B}$ is 3 inches. On the diagram below, sketch the points that are equidistant from A and B and sketch the points that are 2 inches from A. Label with an \mathbf{X} all points that satisfy both conditions.
$A \bullet \longrightarrow B$

Geometry Regents at Random
 Answer Section

1 ANS: 3
$m=\frac{-A}{B}=\frac{-3}{-2}=\frac{3}{2}$
PTS: 2 REF: 011324ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
2 ANS: 1
PTS: 2
REF: 011303ge
STA: G.G. 24
TOP: Statements
3 ANS: 3
midpoint: $\left(\frac{6+8}{2}, \frac{8+4}{2}\right)=(7,6)$. slope: $\frac{8-4}{6-8}=\frac{4}{-2}=-2 ; m_{\perp}=\frac{1}{2} . \quad 6=\frac{1}{2}(7)+b$

$$
\begin{aligned}
& \frac{12}{2}=\frac{7}{2}+b \\
& \frac{5}{12}=b
\end{aligned}
$$

PTS: 2
4 ANS: 3
TOP: Midsegments
5 ANS: 1
TOP: Negations
6 ANS: 4
$(x, y) \rightarrow(-x,-y)$
PTS: 2
7 ANS: 2
$18 \pi \cdot 42 \approx 2375$
PTS: 2 REF: 011418ge STA: G.G. 14 TOP: Volume and Lateral Area
8 ANS: 2
Isosceles or not, $\triangle R S V$ and $\triangle R S T$ have a common base, and since $\overline{R S}$ and $\overline{V T}$ are bases, congruent altitudes.
PTS: 2 REF: 061301ge STA: G.G. 40 TOP: Trapezoids
9 ANS:
$M=\left(\frac{3+3}{2}, \frac{-1+5}{2}\right)=(3,2) . y=2$.
PTS: 2
10 ANS: 1
TOP: Planes
REF: 081327ge
PTS: 2

PTS: 2
REF: 081303ge
STA: G.G. 68
REF: 081320ge
STA: G.G. 24
TOP: Perpendicular Bisector
STA: G.G. 42

11 ANS: $3 \quad$ PTS: 2
TOP: Identifying Transformations
12 ANS: 3 PTS: 2
TOP: Parallel Lines and Transversals
13 ANS:

PTS: 2 REF: 081334ge STA: G.G. 22 TOP: Locus
14 ANS:
$\triangle M A H, \overline{M H} \cong \overline{A H}$ and medians $\overline{A B}$ and $\overline{M T}$ are given. $\overline{M A} \cong \overline{A M}$ (reflexive property). $\triangle M A H$ is an isosceles triangle (definition of isosceles triangle). $\angle A M B \cong \angle M A T$ (isosceles triangle theorem). B is the midpoint of $\overline{M H}$ and T is the midpoint of $\overline{A H}$ (definition of median). $\mathrm{m} \overline{M B}=\frac{1}{2} \mathrm{~m} \overline{M H}$ and $\mathrm{m} \overline{A T}=\frac{1}{2} \mathrm{~m} \overline{A H}$ (definition of midpoint). $\overline{M B} \cong \overline{A T}$ (multiplication postulate). $\triangle M B A \cong \triangle A T M$ (SAS). $\angle M B A \cong \angle A T M$ (CPCTC).

PTS: 6 REF: 061338ge STA: G.G. 27 TOP: Triangle Proofs
15 ANS:

$$
\begin{aligned}
B h & =V \\
12 h & =84 \\
h & =7
\end{aligned}
$$

PTS: 2 REF: 011432ge STA: G.G. 12 TOP: Volume
16 ANS:
Distance is preserved after the reflection. $2 x+13=9 x-8$

$$
\begin{aligned}
21 & =7 x \\
3 & =x
\end{aligned}
$$

PTS: 2 REF: 011329ge STA: G.G. 55 TOP: Properties of Transformations
17 ANS:
$\sqrt{(3-7)^{2}+(-4-2)^{2}}=\sqrt{16+36}=\sqrt{52}=\sqrt{4} \sqrt{13}=2 \sqrt{13}$.

PTS: 2	REF: 011431ge	STA: G.G. 67	TOP: Distance	
ANS: 4	PTS: 2	REF: 081318ge	STA:	G.G. 26
TOP: Converse and Biconditional				
ANS: 4	PTS: 2	REF: 011421ge	STA: G.G. 54	
TOP: Rotations				

20 ANS:

PTS: 2 REF: 011330ge STA: G.G. 50 TOP: Tangents
KEY: common tangency
21 ANS: 2
Parallel chords intercept congruent arcs. $\frac{360-(104+168)}{2}=44$
PTS: 2 REF: 011302ge STA: G.G. 52 TOP: Chords
22 ANS: 3 PTS: 2 REF: 081312ge STA: G.G. 72
TOP: Equations of Circles
23 ANS:
$A=2 B-15 \quad .2 B-15+B+2 B-15+B=180$
$C=A+B$

$$
\begin{aligned}
6 B-30 & =180 \\
6 B & =210 \\
B & =35
\end{aligned}
$$

$C=2 B-15+B$

PTS: 2 REF: 081332ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
24 ANS: 3
$x^{2}+5^{2}=25$
$x=0$
PTS: 2 REF: 011312ge STA: G.G. 70 TOP: Quadratic-Linear Systems
25 ANS:
$\sqrt{(-1-3)^{2}+(4-(-2))^{2}}=\sqrt{16+36}=\sqrt{52}=\sqrt{4} \sqrt{13}=2 \sqrt{13}$

PTS: 2
26 ANS: 2
TOP: Locus
27 ANS:
$A^{\prime}(2,2), B^{\prime}(3,0), C(1,-1)$
PTS: 2
28 ANS: 1 TOP: Planes
29 ANS: 4
TOP: Equations of Circles
PTS: 2
PTS: 2
PTS: 2
\qquad
\qquad

REF: 081329ge
\qquad
REF: 081331ge
STA: G.G. 67
REF: 011317ge
TOP: Distance
STA: G.G. 22

30 ANS:

$$
\begin{aligned}
2(y+10) & =4 y-20 . \overline{D F}=y+10=20+10=30 . \overline{O A}=\overline{O D}=\sqrt{16^{2}+30^{2}}=34 \\
2 y+20 & =4 y-20 \\
40 & =2 y \\
20 & =y
\end{aligned}
$$

PTS: 4 REF: 061336ge STA: G.G. 49 TOP: Chords
31 ANS:

PTS: 2 REF: 061333ge STA: G.G. 23 TOP: Locus
ANS:

$$
M^{\prime \prime}(1,-2), A^{\prime \prime}(6,-2), T^{\prime \prime}(5,-4), H^{\prime \prime}(3,-4)
$$

PTS: 4
REF: 081336ge
STA: G.G. 58
TOP: Compositions of Transformations
KEY: grids
33 ANS:
$\triangle A B C, \overline{B D}$ bisects $\angle A B C, \overline{B D} \perp \overline{A C}$ (Given). $\angle C B D \cong \angle A B D$ (Definition of angle bisector). $\overline{B D} \cong \overline{B D}$
(Reflexive property). $\angle C D B$ and $\angle A D B$ are right angles (Definition of perpendicular). $\angle C D B \cong \angle A D B$ (All right angles are congruent). $\triangle C D B \cong \triangle A D B$ (SAS). $\overline{A B} \cong \overline{C B}$ (СРСТС).

PTS: 4
REF: 081335ge
STA: G.G. 27
TOP: Triangle Proofs
34 ANS: 1

PTS: 2
REF: 011413ge
STA: G.G. 42
TOP: Midsegments

35 ANS:

PTS: 2
REF: 011430ge
STA: G.G. 18
TOP: Constructions
36 ANS:
$L=2 \pi r h=2 \pi \cdot 3 \cdot 7=42 \pi$
PTS: 2
REF: 061329ge
STA: G.G. 14
TOP: Volume and Lateral Area
37 ANS: 3

$$
\begin{array}{rlrl}
6 & =\frac{4+x}{2} . & 8 & =\frac{2+y}{2} . \\
4+x & =12 & 2+y & =16 \\
x & =8 & y & =14
\end{array}
$$

PTS: 2
REF: 011305ge
STA: G.G. 66
TOP: Midpoint
38 ANS:

$$
A^{\prime \prime}(11,1), B^{\prime \prime}(3,7), C^{\prime \prime}(3,1)
$$

PTS: 4
REF: 011336ge STA: G.G. 58
39 ANS:
$\sqrt{(7-3)^{2}+(-8-0)^{2}}=\sqrt{16+64}=\sqrt{80}=4 \sqrt{5}$
PTS: 2
REF: 061331ge STA: G.G. 69
40 ANS: 2
$\sqrt{15^{2}-12^{2}}=9$
PTS: 2
REF: 081325ge
STA: G.G. 50
KEY: point of tangency
41 ANS: 3
PTS: 2
REF: 011309ge
TOP: Constructions
42 ANS: 1
PTS: 2
REF: 011301ge STA: G.G. 29

TOP: Tangents
STA: G.G. 20
TOP: Compositions of Transformations

TOP: Triangles in the Coordinate Plane

43 ANS: 1
PTS: 2
TOP: Graphing Circles
44 ANS: $2 \quad$ PTS: 2
TOP: Angle Side Relationship
45 ANS: 1
PTS: 2
TOP: Properties of Transformations
46 ANS: 4
$6 x=x+40+3 x+10 . \mathrm{m} \angle C A B=25+40=65$
$6 x=4 x+50$
$2 x=50$
$x=25$

PTS: 2
REF: 081310ge
STA: G.G. 32
TOP: Exterior Angle Theorem
47 ANS: 4

$$
\begin{array}{rlrl}
3 y+6 & =2 x & 2 y-3 x & =6 \\
3 y & =2 x-6 & 2 y & =3 x+6 \\
y & =\frac{2}{3} x-2 & y & =\frac{3}{2} x+3 \\
m & =\frac{2}{3} & m & =\frac{3}{2}
\end{array}
$$

PTS: 2
REF: 081315ge STA: G.G. 63
TOP: Parallel and Perpendicular Lines
48 ANS: 2
Perimeter of $\triangle D E F$ is $5+8+11=24 . \frac{5}{24}=\frac{x}{60}$

$$
\begin{aligned}
24 x & =300 \\
x & =12.5
\end{aligned}
$$

PTS: 2
REF: 011307ge
STA: G.G. 45
TOP: Similarity
KEY: perimeter and area
49 ANS: 2
PTS: 2
REF: 061305ge
STA: G.G. 18
TOP: Constructions
50 ANS: 3
PTS: 2
REF: 011402ge
STA: G.G. 17
TOP: Constructions
51 ANS:

$$
\begin{aligned}
x^{2}-8 x & =5 x+30 . \mathrm{m} \angle C=4(15)-5=55 \\
x^{2}-13 x-30 & =0 \\
(x-15)(x+2) & =0 \\
x & =15
\end{aligned}
$$

PTS: 4
REF: 061337ge
STA: G.G. 45
KEY: basic

52 ANS: 1
$7 x-36+5 x+12=180$

$$
12 x-24=180
$$

$$
12 x=204
$$

$$
x=17
$$

PTS: 2 REF: 011422ge STA: G.G. 35 TOP: Parallel Lines and Transversals
53 ANS: 1
$2 x+x=12 . \overline{B D}=2(4)=8$
$3 x=12$
$x=4$

PTS: 2
REF: 011408ge
STA: G.G. 43
TOP: Centroid
54 ANS:

PTS: 2 REF: 061332ge STA: G.G. 20 TOP: Constructions
55 ANS:
Neither. The slope of $y=\frac{1}{2} x-1$ is $\frac{1}{2}$. The slope of $y+4=-\frac{1}{2}(x-2)$ is $-\frac{1}{2}$. The slopes are neither the same nor opposite reciprocals.

PTS: 2 REF: 011433ge
STA: G.G. 63
REF: 011318ge
TOP: Parallel and Perpendicular Lines
56 ANS: 4
PTS: 2
STA: G.G. 73
TOP: Equations of Circles
57 ANS: 3
$120 \pi=\pi(12)(l)$
$10=l$

PTS: 2
REF: 081314ge
STA: G.G. 15
TOP: Volume and Lateral Area

58 ANS:

$$
S^{\prime \prime}(5,-3), W^{\prime \prime}(3,-4), A^{\prime \prime}(2,1) \text {, and } N^{\prime \prime}(4,2)
$$

PTS: 4 REF: 061335ge STA: G.G. 58 TOP: Compositions of Transformations
KEY: grids
59 ANS: 2 PTS: 2 REF: 081316ge STA: G.G. 23
TOP: Locus
60 ANS: 1
$\frac{70-20}{2}=25$
PTS: 2 REF: 011325ge STA: G.G. 51 TOP: Arcs Determined by Angles
KEY: outside circle
61 ANS: 2
$\sqrt{(-2-4)^{2}+(-3-(-1))^{2}}=\sqrt{40}=\sqrt{4} \sqrt{10}=2 \sqrt{10}$
PTS: 2 REF: 011313ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane
62 ANS: 3
$A B=8-4=4 . B C=\sqrt{(-2-(-5))^{2}+(8-6)^{2}}=\sqrt{13} \cdot A C=\sqrt{(-2-(-5))^{2}+(4-6)^{2}}=\sqrt{13}$
PTS: 2 REF: 011328ge STA: G.G. 69 TOP: Triangles in the Coordinate Plane
63 ANS: 3 PTS: 2 REF: 061306ge STA: G.G. 71
TOP: Equations of Circles
64 ANS: 3
The regular polygon with the smallest interior angle is an equilateral triangle, with $60^{\circ} .180^{\circ}-60^{\circ}=120^{\circ}$
PTS: 2 REF: 011417ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons
65 ANS: 2
(1) is true because of vertical angles. (3) and (4) are true because СРСТС.

PTS: 2 REF: 061302ge STA: G.G. 29 TOP: Triangle Congruency
66 ANS:
2. The diameter of a circle is \perp to a tangent at the point of tangency. 4. An angle inscribed in a semicircle is a right angle. 5. All right angles are congruent. 7. AA. 8. Corresponding sides of congruent triangles are in proportion. 9. The product of the means equals the product of the extremes.
$\begin{array}{llll}\text { PTS: } 6 & \text { REF: 011438ge } & \text { STA: G.G. } 27 & \text { TOP: Circle Proofs } \\ \text { ANS: } 1 & \text { PTS: } 2 & \text { REF: 061314ge } & \text { STA: G.G. } 26\end{array}$
TOP: Converse and Biconditional

68 ANS: 2

$$
\begin{aligned}
x^{2}-2 & =x \\
x^{2}-x-2 & =0 \\
(x-2)(x+1) & =0 \\
x & =2,-1
\end{aligned}
$$

PTS: 2 REF: 011409ge STA: G.G. 70 TOP: Quadratic-Linear Systems
69 ANS:
$(n-2) 180=(8-2) 180=1080 . \frac{1080}{8}=135$.
$\begin{array}{lllll}\text { PTS: } 2 & \text { REF: 061330ge } & \text { STA: G.G. } 37 & \text { TOP: Interior and Exterior Angles of Polygons } \\ \text { ANS: } 4 & \text { PTS: } 2 & \text { REF: 011323ge } & \text { STA: G.G. } 72\end{array}$
70 ANS: 4
TOP: Equations of Circles
71 ANS: 2

$$
\begin{aligned}
(x-4)^{2}-2 & =-2 x+6 . \quad y=-2(4)+6=-2 \\
x^{2}-8 x+16-2 & =-2 x+6 \quad y=-2(2)+6=2 \\
x^{2}-6 x+8 & =0 \\
(x-4)(x-2) & =0 \\
x & =4,2
\end{aligned}
$$

PTS: 2
72 ANS: 2
TOP: Statements
73 ANS:

PTS: 2 REF: 011333ge STA: G.G. 19 TOP: Constructions
74 ANS:
Rectangle $A B C D$ with points E and F on side $\overline{A B}$, segments $C E$ and $D F$ intersect at G, and $\angle A D G \cong \angle B C E$ are given. $\overline{A D} \cong \overline{B C}$ because opposite sides of a rectangle are congruent. $\angle A$ and $\angle B$ are right angles and congruent because all angles of a rectangle are right and congruent. $\triangle A D F \cong \triangle B C E$ by ASA. $\overline{A F} \cong \overline{B E}$ per CPCTC. $\overline{E F} \cong \overline{F E}$ under the Reflexive Property. $\overline{A F}-\overline{E F} \cong \overline{B E}-\overline{F E}$ using the Subtraction Property of Segments. $\overline{A E} \cong \overline{B F}$ because of the Definition of Segments.

PTS: 6 REF: 011338ge STA: G.G. 27 TOP: Quadrilateral Proofs

75 ANS: 2 PTS: 2 REF: 061315ge STA: G.G. 13
TOP: Solids
76 ANS: 1

$$
V=\frac{4}{3} \pi r^{3}
$$

$44.6022=\frac{4}{3} \pi r^{3}$
$10.648 \approx r^{3}$
$2.2 \approx r$
PTS: 2
77 ANS: 4
REF: 061317ge STA: G.G. 16
TOP: Constructions
78 ANS:
$L=2 \pi r h=2 \pi \cdot 3 \cdot 5 \approx 94.25 . V=\pi r^{2} h=\pi(3)^{2}(5) \approx 141.37$
$\begin{array}{lllll}\text { PTS: } 4 & \text { REF: 011335ge } & \text { STA: G.G. } 14 & \text { TOP: Volume and Lateral Area } \\ \text { ANS: } 3 & \text { PTS: } 2 & \text { REF: 081309ge } & \text { STA: G.G. } 29\end{array}$
TOP: Triangle Congruency
80 ANS: 1
If two prisms have equal heights and volume, the area of their bases is equal.

PTS: 2
81 ANS: 3
TOP: Chords

REF: 081321ge
PTS: 2

STA: G.G. 11
REF: 011322ge

TOP: Volume
STA: G.G. 49

82 ANS:
$M\left(\frac{-7+-3}{2}, \frac{4+6}{2}\right)=M(-5,5) . m_{M N}=\frac{5-3}{-5-0}=\frac{2}{-5}$. Since both opposite sides have equal slopes and are
$N\left(\frac{-3+3}{2}, \frac{6+0}{2}\right)=N(0,3) \quad m_{P Q}=\frac{-4--2}{2--3}=\frac{-2}{5}$
$P\left(\frac{3+1}{2}, \frac{0+-8}{2}\right)=P(2,-4) \quad m_{N A}^{-}=\frac{3--4}{0-2}=\frac{7}{-2}$
$Q\left(\frac{-7+1}{2}, \frac{4+-8}{2}\right)=Q(-3,-2)$ $m_{Q M}=\frac{-2-5}{-3--5}=\frac{-7}{2}$
parallel, $M N P Q$ is a parallelogram. $\overline{M N}=\sqrt{(-5-0)^{2}+(5-3)^{2}}=\sqrt{29} \cdot \overline{M N}$ is not congruent to $\overline{N P}$, so $M N P Q$

$$
\overline{N A}=\sqrt{(0-2)^{2}+(3--4)^{2}}=\sqrt{53}
$$

is not a rhombus since not all sides are congruent.

PTS: 6
REF: 081338ge
STA: G.G. 69
83 ANS: 4
PTS: 2
REF: 011426ge
TOP: Quadrilaterals in the Coordinate Plane
TOP: Equations of Circles
84 ANS: 2
$\frac{(n-2) 180}{n}=120$.
$180 n-360=120 n$

$$
\begin{aligned}
60 n & =360 \\
n & =6
\end{aligned}
$$

PTS: 2
REF: 011326ge
STA: G.G. 37
85 ANS: 4
PTS: 2
REF: 011415ge
TOP: Interior and Exterior Angles of Polygons
TOP: Equations of Circles
86 ANS: 3
$3 x-15=2(6)$

$$
\begin{aligned}
3 x & =27 \\
x & =9
\end{aligned}
$$

PTS: 2
REF: 061311ge
STA: G.G. 42
TOP: Midsegments

87 ANS: 4
$(n-2) 180-n\left(\frac{(n-2) 180}{n}\right)=180 n-360-180 n+180 n-360=180 n-720$.
180(5) $-720=180$
PTS: 2 REF: 081322ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons
88 ANS: 2

$$
\begin{aligned}
m=\frac{-A}{B}=\frac{-5}{1}=-5 \quad y & =m x+b \\
3 & =-5(5)+b \\
28 & =b
\end{aligned}
$$

PTS: 2 REF: 011410ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
89 ANS: 2
$\sqrt{17^{2}-15^{2}}=\sqrt{289-225}=\sqrt{64}=8$
PTS: 2 REF: 011424ge STA: G.G. 49 TOP: Chords
90 ANS:
$12 x-4+180-6 x+6 x+7 x+13=360.16 y+1=\frac{12 y+1+18 y+6}{2}$

$$
\begin{array}{rlrl}
19 x+189 & =360 & 32 y+2 & =30 y+7 \\
19 x & =171 & 2 y & =5 \\
x & =9 & y & =\frac{5}{2}
\end{array}
$$

$\begin{array}{lllll}\text { PTS: } 4 & \text { REF: } 081337 \mathrm{ge} & \text { STA: G.G. } 40 & \text { TOP: Trapezoids } \\ \text { ANS: } 3 & \text { PTS: } 2 & \text { REF: 061309ge } & \text { STA: G.G. } 72\end{array}$
91 ANS: $3 \quad$ PTS: 2
TOP: Equations of Circles
92 ANS: 4
Distance is preserved after a rotation.
PTS: 2 REF: 081304ge
93 ANS: 1
PTS: 2
STA: G.G. 55
REF: 011416ge
TOP: Properties of Transformations
TOP: Angle Side Relationship
94 ANS: 2

$$
\begin{array}{rlrl}
\frac{6+x}{2} & =4 \cdot & \frac{-4+y}{2} & =2 \\
x & =2 & y & =8
\end{array}
$$

PTS: 2 REF: 011401ge
STA: G.G. 66 TOP: Midpoint
ANS: 1
PTS: 2
REF: 011423ge STA: G.G. 71
TOP: Equations of Circles

96 ANS: 1
$12(8)=x(6)$
$96=6 x$
$16=x$
PTS: 2 REF: 061328ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: two secants
97 ANS: 3
$\frac{15}{18}=\frac{5}{6}$

PTS: 2
REF: 081317ge
STA: G.G. 45
TOP: Similarity
KEY: perimeter and area
98 ANS: 1
$x^{2}=3 \times 12$
$x=6$

PTS: 2
REF: 011308ge
STA: G.G. 47
TOP: Similarity
KEY: altitude
99 ANS: 2
PTS: 2
TOP: Angle Side Relationship
100 ANS: 1 PTS: 2
TOP: Conditional Statements
101 ANS: 4
PTS: 2
TOP: Solids
102 ANS: 2
PTS: 2
TOP: Quadrilateral Proofs
103 ANS: 2
$\mathrm{m} \angle A B C=55$, so $\mathrm{m} \angle A C R=60+55=115$
PTS: 2
REF: 011414ge
STA: G.G. 32
TOP: Exterior Angle Theorem
104 ANS: 1
$8 \times 12=16 x$
$6=x$
PTS: 2
REF: 081328ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: two chords
105
ANS:

PTS: 2
REF: 011331ge
STA: G.G. 23
TOP: Locus

106 ANS: 2
TOP: Solids
107 ANS: 2
TOP: Quadratic-Linear Systems
108 ANS: 4 PTS: 2
TOP: Locus
109 ANS: 4 TOP: Planes
110 ANS: 1
$\frac{180-52}{2}=64.180-(90+64)=26$
PTS: 2
111 ANS: 1
TOP: Planes
112 ANS: 4
TOP: Locus
113 ANS: 4
TOP: Planes
114 ANS: 3

$$
\begin{aligned}
25 \times 9 \times 12 & =15^{2} h \\
2700 & =15^{2} h \\
12 & =h
\end{aligned}
$$

PTS: 2
REF: 061323ge
115 ANS: 4
$m=\frac{2}{3} \quad .2=-\frac{3}{2}(4)+b$
$m_{\perp}=-\frac{3}{2} \quad \begin{aligned} & 2=-6+b \\ & 8=b\end{aligned}$
PTS: 2
REF: 011319ge
ANS: 3
$x^{2}=2(2+10)$
$x^{2}=24$
$x=\sqrt{24}=\sqrt{4} \sqrt{6}=2 \sqrt{6}$
PTS: 2
KEY: leg
117 ANS: 1
REF: 081326ge
PTS: 2
TOP: Graphing Circles

REF: 081311ge STA: G.G. 10
REF: 061313ge STA: G.G. 70
REF: 061303ge STA: G.G. 22
REF: 011306ge STA: G.G. 9

STA: G.G. 11
STA: G.G. 30
REF: 061310ge
REF: 011407ge
REF: 011315ge

STA: G.G. 64

STA: G.G. 47 TOP: Similarity
REF: 061325ge STA: G.G. 74

118 ANS:
If $r=5$, then $r^{2}=25 .(x+3)^{2}+(y-2)^{2}=25$
PTS: 2 REF: 011332ge STA: G.G. 71 TOP: Equations of Circles
119 ANS: 4
$m_{A B}^{\leftrightarrows}=\frac{6-3}{7-5}=\frac{3}{2} \cdot m_{C D}^{\leftrightarrows}=\frac{4-0}{6-9}=\frac{4}{-3}$

PTS: 2
120 ANS: 4
TOP: Equations of Circles
121 ANS:

PTS: 3
REF: 011435ge
STA: G.G. 31
TOP: Isosceles Triangle Theorem
122 ANS: 2

$$
\begin{aligned}
s^{2}+s^{2} & =(3 \sqrt{2})^{2} \\
2 s^{2} & =18 \\
s^{2} & =9 \\
s & =3
\end{aligned}
$$

PTS: 2 REF: 011420ge STA: G.G. 39 TOP: Special Parallelograms
123 ANS: 3
$3 x+1+4 x-17+5 x-20=180.3(18)+1=55$

$$
\begin{aligned}
12 x-36 & =180 \quad 4(18)-17=55 \\
12 x & =216 \quad 5(18)-20=70 \\
x & =18
\end{aligned}
$$

PTS: 2
124
ANS: 2

REF: 061308ge
PTS: 2
STA: G.G. 30
REF: 061324ge
TOP: Similarity Proofs

STA: G.G. 63
REF: 011403ge

TOP: Parallel and Perpendicular Lines STA: G.G. 73
$x+3 x-60+5 x-30=180$
$5(30)-30=120$
$6 y-8=4 y-2 \quad \overline{D C}=10+10=20$
$9 x=270$
$\mathrm{m} \angle \mathrm{BAC}=180-120=60$
$2 y=6$
$y=3$
$x=30=\mathrm{m} \angle D$
4(3) $-2=10=\overline{B C}$

125 ANS:

PTS: 2
REF: 081330ge
STA: G.G. 17
ANS:

PTS: 3
REF: 011436ge STA: G.G. 58
TOP: Compositions of Transformations
KEY: grids
127 ANS: 3
$2(4 x+20)+2(3 x-15)=360 . \angle D=3(25)-15=60$
$8 x+40+6 x-30=360$
$14 x+10=360$

$$
14 x=350
$$

$$
x=25
$$

PTS: 2
128 ANS: 1
REF: 011321ge
STA: G.G. 40
REF: 011405ge
REF: 011304ge
STA: G.G. 56
TOP: Identifying Transformations
130 ANS: 3
PTS: 2
REF: 011425ge
STA: G.G. 39
TOP: Special Parallelograms
131 ANS: 2
$2^{2}+3^{2} \neq 4^{2}$
PTS: 2
REF: 011316ge
STA: G.G. 48
TOP: Pythagorean Theorem

132 ANS:

- --........-. .. .-.......................

PTS: 2 REF: 011434ge STA: G.G. 22 TOP: Locus
133 ANS:
$S A=4 \pi r^{2}=4 \pi \cdot 2.5^{2}=25 \pi \approx 78.54$
PTS: 2 REF: 011429ge STA: G.G. 16 TOP: Volume and Surface Area
134 ANS: 4
$2 x-8=x+2 . A E=10+2=12 . A C=2(A E)=2(12)=24$

$$
x=10
$$

PTS: 2 REF: 011327ge STA: G.G. 39 TOP: Special Parallelograms
135 ANS: 2
$M_{x}=\frac{8+(-3)}{2}=2.5 . M_{Y}=\frac{-4+2}{2}=-1$.
$\begin{array}{lllll}\text { PTS: } 2 & \text { REF: 061312ge } & \text { STA: G.G. } 66 & \text { TOP: Midpoint } \\ \text { ANS: } 4 & \text { PTS: } 2 & \text { REF: 081305ge } & \text { STA: G.G. } 71\end{array}$
TOP: Equations of Circles
137 ANS:
$x^{2}+12+11 x+5+13 x-17=180 . \mathrm{m} \angle A=6^{2}+12=48 . \angle B$ is the largest angle, so $\overline{A C}$ in the longest side.

$$
\begin{array}{rlrl}
x^{2}+24 x-180 & =0 & & \mathrm{~m} \angle B=11(6)+5=71 \\
(x+30)(x-6) & =0 & \mathrm{~m} \angle C=13(6)-7=61 \\
x & =6 & &
\end{array}
$$

PTS: 4 REF: 011337ge STA: G.G. 34 TOP: Angle Side Relationship
138 ANS: 2
$\sqrt{8^{2}+15^{2}}=17$
PTS: 2 REF: 061326ge STA: G.G. 39 TOP: Special Parallelograms
139 ANS: 1
Parallel chords intercept congruent arcs. $\mathrm{m} \overparen{A C}=\mathrm{m} \widehat{B D} . \frac{180-110}{2}=35$.
PTS: 2
REF: 081302ge STA: G.G. 52 TOP: Chords

140 ANS:
$4 x \cdot x=6^{2}$

$$
\begin{aligned}
4 x^{2} & =36 \\
x^{2} & =9 \\
x & =3 \\
\overline{B D} & =4(3)=12
\end{aligned}
$$

PTS: 4 REF: 011437ge STA: G.G. 47 TOP: Similarity
KEY: leg
141 ANS: 3
$x^{2}=3 \times 12 . \sqrt{6^{2}+3^{2}}=\sqrt{45}=\sqrt{9} \sqrt{5}=3 \sqrt{5}$
$x=6$

PTS: 2
REF: 061327ge
STA: G.G. 47
TOP: Similarity
KEY: altitude
142 ANS: 3
$180-38=142$
PTS: 2
REF: 011419ge
STA: G.G. 50
TOP: Tangents
KEY: two tangents
143 ANS: 3
PTS: 2
REF: 011311ge
STA: G.G. 42
TOP: Midsegments
144 ANS: 3
$2 y=3 x-4 . \quad 1=\frac{3}{2}(6)+b$
$y=\frac{3}{2} x-2 \quad 1=9+b$
$-8=b$
PTS: 2
REF: 061316ge STA: G.G. 65
TOP: Parallel and Perpendicular Lines
145 ANS: 2
The slope of $2 x+4 y=12$ is $m=\frac{-A}{B}=\frac{-2}{4}=-\frac{1}{2} . m_{\perp}=2$.
PTS: 2
146 ANS: 4
REF: 011310ge
STA: G.G. 62
TOP: Tangents
KEY: common tangency
147 ANS:
center: $(3,-4)$; radius: $\sqrt{10}$
PTS: 2
REF: 081333ge
STA: G.G. 73
REF: 061322ge
KEY: inscribed

TOP: Equations of Circles
STA: G.G. 51

149 ANS:
$m_{A B}^{-}=\frac{4-1}{4-2}=\frac{3}{2} \cdot m_{B C}=-\frac{2}{3}$

PTS: 4
150 ANS: 1
TOP: Triangle Congruency
151 ANS: 4 PTS: 2
TOP: Chords
152 ANS: 3
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.
PTS: 2
REF: 081307ge
$7+18>6+12$
PTS: 2
REF: fall0819ge
STA: G.G. 33

STA: G.G. 69
REF: 011412ge

REF: 081308ge

PTS. 2
REF: 061334ge

STA: G.G.49

\author{

}

TOP: Quadrilaterals in the Coordinate Plane STA: G.G. 28

STA: G.G. 49

Geometry Regents at Random

Answer Section

154 ANS: 1
$(x, y) \rightarrow(x+3, y+1)$
PTS: 2 REF: fall0803ge STA: G.G. 54 TOP: Translations
155 ANS: 3
The slope of $y=x+2$ is 1 . The slope of $y-x=-1$ is $\frac{-A}{B}=\frac{-(-1)}{1}=1$.
PTS: 2 REF: 080909ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
156 ANS: 4
$\triangle A B C \sim \triangle D B E . \frac{\overline{A B}}{\overline{D B}}=\frac{\overline{A C}}{\overline{D E}}$

$$
\begin{aligned}
\frac{9}{2} & =\frac{x}{3} \\
x & =13.5
\end{aligned}
$$

PTS: 2 REF: 060927ge STA: G.G. 46 TOP: Side Splitter Theorem
$A^{\prime}(2,4)$
PTS: 2
REF: 011023ge STA: G.G. 54 TOP: Compositions of Transformations KEY: basic

158 ANS: 1

PTS: 2 REF: 011021ge STA: G.G. 32
159 ANS: 2
PTS: 2
REF: 081015ge

TOP: Exterior Angle Theorem
STA: G.G. 56

TOP: Identifying Transformations
160 ANS: 4
$d=\sqrt{(-3-1)^{2}+(2-0)^{2}}=\sqrt{16+4}=\sqrt{20}=\sqrt{4} \cdot \sqrt{5}=2 \sqrt{5}$
PTS: 2 REF: 011017ge STA: G.G. 67 TOP: Distance
KEY: general
161 ANS: 2
$4(4 x-3)=3(2 x+8)$
$16 x-12=6 x+24$

$$
10 x=36
$$

$$
x=3.6
$$

PTS: 2 REF: 080923ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: two chords
162 ANS: 3
PTS: 2
REF: 080902ge STA: G.G. 17
TOP: Constructions
163 ANS: 2
$x^{2}=3(x+18)$
$x^{2}-3 x-54=0$
$(x-9)(x+6)=0$

$$
x=9
$$

PTS: 2 REF: fall0817ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: tangent and secant
164
ANS: 2
Parallel chords intercept congruent arcs. $\mathrm{m} \overparen{A C}=\mathrm{m} \overparen{B D}=30.180-30-30=120$.
PTS: 2 REF: 080904ge STA: G.G. 52 TOP: Chords

165 ANS:

$$
\begin{array}{rlrl}
8 x-5 & =3 x+30 . & 4 z-8 & =3 z . \\
5 x & =35+8+5 y-2 & =90 . \\
x & =7 & & =8 \\
14 y+6 & =90 \\
14 y & =84 \\
y & =6
\end{array}
$$

PTS: 6 REF: 061038ge STA: G.G. 39 TOP: Special Parallelograms
166 ANS:
$(x+1)^{2}+(y-2)^{2}=36$
$\begin{array}{lllll}\text { PTS: } 2 & \text { REF: } 081034 g e & \text { STA: G.G.72 } & \text { TOP: Equations of Circles } \\ \text { ANS: } 3 & \text { PTS: } 2 & \text { REF: 011007ge } & \text { STA: } & \text { G.G. } 31\end{array}$
TOP: Isosceles Triangle Theorem
168 ANS:
$y=-2 x+14$. The slope of $2 x+y=3$ is $\frac{-A}{B}=\frac{-2}{1}=-2 . \quad y=m x+b$

$$
\begin{aligned}
& 4=(-2)(5)+b \\
& b=14
\end{aligned}
$$

PTS: 2
ANS: 3 TOP: Reflections
ANS: 3
$m=\frac{-A}{B}=-\frac{3}{4}$
PTS: 2
REF: 011025ge STA: G.G. 62
TOP: Parallel and Perpendicular Lines
171 ANS: 1
$\angle A=\frac{(n-2) 180}{n}=\frac{(5-2) 180}{5}=108 \angle A E B=\frac{180-108}{2}=36$
PTS: 2
REF: 081022ge
STA: G.G. 37
TOP: Interior and Exterior Angles of Polygons
172 ANS:
5. $\frac{3}{x}=\frac{6+3}{15}$
$9 x=45$
$x=5$
PTS: 2 REF: 011033ge STA: G.G. 46 TOP: Side Splitter Theorem

173 ANS: 3
$V=\pi r^{2} h=\pi \cdot 6^{2} \cdot 27=972 \pi$
PTS: 2 REF: 011027ge STA: G.G. 14 TOP: Volume and Lateral Area
174 ANS:

PTS: 2 REF: fall0832ge STA: G.G. 17 TOP: Constructions
175 ANS: 2
The slope of a line in standard form is $-\frac{A}{B}$ so the slope of this line is $-\frac{5}{3}$ Perpendicular lines have slope that are the opposite and reciprocal of each other.

PTS: 2 REF: fall0828ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
176 ANS: 4
$d=\sqrt{(146-(-4))^{2}+(52-2)^{2}}=\sqrt{25,000} \approx 158.1$

PTS: 2
KEY: general
ANS: 1
TOP: Angle Side Relationship
ANS: 4 PTS: 2
TOP: Locus
179
ANS:
TOP: Planes
180
ANS: 2 PTS: 2

REF: 061021ge
STA: G.G. 67
REF: 061010ge
STA: G.G. 34
REF: 060912ge STA: G.G. 23
REF: 011012ge STA: G.G. 1
REF: 011006ge STA: G.G. 56

TOP: Identifying Transformations

181 ANS:

PTS: 2
REF: 061032ge
STA: G.G. 54
TOP: Reflections
KEY: grids
182
ANS: 3

PTS: 2
183 ANS: 1
REF: 060902ge
STA: G.G. 28
PTS: 2
REF: 060918ge
TOP: Triangle Congruency
TOP: Planes
184 ANS:
True. The first statement is true and the second statement is false. In a disjunction, if either statement is true, the disjunction is true.

PTS: 2 REF: 060933ge STA: G.G. 25 TOP: Compound Statements
KEY: disjunction
185 ANS: 4
$\mathrm{SA}=4 \pi r^{2} \quad V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot 6^{3}=288 \pi$
$144 \pi=4 \pi r^{2}$
$36=r^{2}$
$6=r$
PTS: 2
186 ANS: 3
REF: 081020ge
STA: G.G. 16
PTS: 2
REF: 080928ge
TOP: Surface Area
TOP: Tangents
KEY: common tangency

187
ANS:
$\angle D, \angle G$ and 24° or $\angle E, \angle F$ and $84^{\circ} . \mathrm{m} \overparen{F E}=\frac{2}{15} \times 360=48$. Since the chords forming $\angle D$ and $\angle G$ are intercepted by $\overparen{F E}$, their measure is 24°. m $\overparen{G D}=\frac{7}{15} \times 360=168$. Since the chords forming $\angle E$ and $\angle F$ are intercepted by $\widehat{G D}$, their measure is 84°.

PTS: 4 REF: fall0836ge STA: G.G. 51 TOP: Arcs Determined by Angles KEY: inscribed
188 ANS:

PTS: 2
REF: 080932ge STA: G.G. 17
ANS: 3

PTS: 2
REF: 080920ge
STA: G.G. 42 TOP: Midsegments
190 ANS: 4
Median $\overline{B F}$ bisects $\overline{A C}$ so that $\overline{C F} \cong \overline{F A}$.
PTS: 2
REF: fall0810ge
STA: G.G. 24
TOP: Statements

191
ANS:
$y=\frac{4}{3} x-6 . \quad M_{x}=\frac{-1+7}{2}=3 \quad$ The perpendicular bisector goes through $(3,-2)$ and has a slope of $\frac{4}{3}$.

$$
\begin{aligned}
& M_{y}=\frac{1+(-5)}{2}=-2 \\
& m=\frac{1-(-5)}{-1-7}=-\frac{3}{4}
\end{aligned}
$$

$y-y_{M}=m\left(x-x_{M}\right)$.

$$
y-1=\frac{4}{3}(x-2)
$$

PTS: 4
REF: 080935ge
STA: G.G. 68 ANS:

PTS: 2
REF: 081032ge
STA: G.G. 20
TOP: Constructions

PTS: 2
REF: 081013ge
STA: G.G. 67
TOP: Distance
KEY: general
ANS: 2
$M_{x}=\frac{-2+6}{2}=2 . M_{y}=\frac{-4+2}{2}=-1$
PTS: 2
REF: 080910ge
STA: G.G. 66
KEY: general
195 ANS: 4
$(n-2) 180=(8-2) 180=1080 . \frac{1080}{8}=135$.
PTS: 2
REF: fall0827ge STA: G.G. 37

196 ANS: 3
$2 y=-6 x+8$ Perpendicular lines have slope the opposite and reciprocal of each other.

$$
y=-3 x+4
$$

$m=-3$
$m_{\perp}=\frac{1}{3}$
PTS: 2 REF: 081024ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
197 ANS: 4
PTS: 2
REF: 080905ge
STA: G.G. 29
TOP: Triangle Congruency
198 ANS: 2
Because the triangles are similar, $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle D}=1$
PTS: 2 REF: 011022ge STA: G.G. 45 TOP: Similarity
KEY: perimeter and area
199 ANS: $1 \quad$ PTS: 2
REF: 061005ge STA: G.G. 55
TOP: Properties of Transformations
200 ANS:
Midpoint: $\left(\frac{-4+4}{2}, \frac{2+(-4)}{2}\right)=(0,-1)$. Distance: $d=\sqrt{(-4-4)^{2}+(2-(-4))^{2}}=\sqrt{100}=10$

$$
\begin{aligned}
r & =5 \\
r^{2} & =25
\end{aligned}
$$

$x^{2}+(y+1)^{2}=25$
PTS: 4 REF: 061037ge STA: G.G. 71 TOP: Equations of Circles
201 ANS:
110. $6 x+20=x+40+4 x-5$

$$
\begin{aligned}
6 x+20 & =5 x+35 \\
x & =15 \\
6((15)+20 & =110
\end{aligned}
$$

PTS: 2 REF: 081031ge STA: G.G. 32 TOP: Exterior Angle Theorem
ANS: 1
Opposite sides of a parallelogram are congruent. $4 x-3=x+3 . S V=(2)+3=5$.

$$
\begin{aligned}
3 x & =6 \\
x & =2
\end{aligned}
$$

PTS: 2 REF: 011013ge STA: G.G. 38 TOP: Parallelograms

203 ANS:
$\overline{J K} \cong \overline{L M}$ because opposite sides of a parallelogram are congruent. $\overline{L M} \cong \overline{L N}$ because of the Isosceles Triangle Theorem. $\overline{L M} \cong \overline{J M}$ because of the transitive property. JKLM is a rhombus because all sides are congruent.

PTS: 4 REF: 011036ge STA: G.G. 27 TOP: Quadrilateral Proofs
204 ANS:

$\overline{F E} \cong \overline{F E}$ (Reflexive Property); $\overline{A E}-\overline{F E} \cong \overline{F C}-\overline{E F}$ (Line Segment Subtraction Theorem); $\overline{A F} \cong \overline{C E}$ (Substitution); $\angle B F A \cong \angle D E C$ (All right angles are congruent); $\triangle B F A \cong \triangle D E C$ (AAS); $\overline{A B} \cong \overline{C D}$ and $\overline{B F} \cong \overline{D E}$ (СРСТС); $\angle B F C \cong \angle D E A$ (All right angles are congruent); $\triangle B F C \cong \triangle D E A$ (SAS); $\overline{A D} \cong \overline{C B}$ (CPCTC); $A B C D$ is a parallelogram (opposite sides of quadrilateral $A B C D$ are congruent)

PTS: 6	REF: 080938ge	STA: G.G. 27	TOP: Quadrilateral Proofs
ANS: 3	PTS: 2	REF: 061004ge	STA: G.G. 31

TOP: Isosceles Triangle Theorem
206 ANS:
2.4. $5 a=4^{2} \quad 5 b=3^{2} \quad h^{2}=a b$

$$
\begin{array}{ll}
a=3.2 \quad b=1.8 & h^{2}=3.2 \cdot 1.8 \\
& h=\sqrt{5.76}=2.4
\end{array}
$$

PTS: 4 REF: 081037ge STA: G.G. 47 TOP: Similarity
KEY: altitude

PTS: 2 REF: 011031ge STA: G.G. 66 TOP: Midpoint
KEY: graph
ANS: 1
In an equilateral triangle, each interior angle is 60° and each exterior angle is $120^{\circ}\left(180^{\circ}-120^{\circ}\right)$. The sum of the three interior angles is 180° and the sum of the three exterior angles is 360°.

PTS: 2 REF: 060909ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles

209 ANS: 3

$$
\begin{aligned}
(x+3)^{2}-4 & =2 x+5 \\
x^{2}+6 x+9-4 & =2 x+5 \\
x^{2}+4 x & =0 \\
x(x+4) & =0 \\
x & =0,-4
\end{aligned}
$$

PTS: 2
210 ANS: 1
TOP: Constructions
211 ANS:

PTS: 4
REF: 080937ge
STA: G.G. 55
ANS:
6. The centroid divides each median into segments whose lengths are in the ratio $2: 1 . \overline{T D}=6$ and $\overline{D B}=3$

PTS: 2
REF: 011034ge
STA: G.G. 43
TOP: Centroid
213 ANS:
$15+5 \sqrt{5}$.

PTS: 4
REF: 060936ge
STA: G.G. 69
TOP: Triangles in the Coordinate Plane

214 ANS: 1

PTS: 2 REF: 081003ge STA: G.G. 42 TOP: Midsegments
215 ANS: 4
(4) is not true if $\angle P Q R$ is obtuse.

	PTS: 2	REF: 060924ge	STA: G.G.32	TOP: Exterior Angle Theorem	
216	ANS: 1	PTS: 2	REF: $080911 g e$	STA:	G.G. 73

217 ANS: 4
$\overline{B G}$ is also an angle bisector since it intersects the concurrence of $\overline{C D}$ and $\overline{A E}$
PTS: 2 REF: 061025ge STA: G.G. 21
KEY: Centroid, Orthocenter, Incenter and Circumcenter
218 ANS: 2 PTS: 2 REF: 011004ge STA: G.G. 17
TOP: Constructions
219 ANS: 2
A dilation affects distance, not angle measure.
PTS: 2 REF: 080906ge STA: G.G. 60 TOP: Identifying Transformations
220 ANS: 1
If $\angle A$ is at minimum $\left(50^{\circ}\right)$ and $\angle B$ is at minimum $\left(90^{\circ}\right), \angle C$ is at maximum of $40^{\circ}\left(180^{\circ}-\left(50^{\circ}+90^{\circ}\right)\right.$). If $\angle A$ is at maximum $\left(60^{\circ}\right)$ and $\angle B$ is at maximum $\left(100^{\circ}\right), \angle C$ is at minimum of $20^{\circ}\left(180^{\circ}-\left(60^{\circ}+100^{\circ}\right)\right.$).

PTS: 2 REF: 060901ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
221 ANS: 4
$180-(40+40)=100$
PTS: 2 REF: 080903ge STA: G.G. 31 TOP: Isosceles Triangle Theorem

222 ANS: 2

$$
\begin{aligned}
\frac{140-\overline{R S}}{2} & =40 \\
140-\overline{R S} & =80 \\
\overline{R S} & =60
\end{aligned}
$$

PTS: 2 REF: 081025ge STA: G.G. 51 TOP: Arcs Determined by Angles
KEY: outside circle
223 ANS: 2

PTS: 2
KEY: inscribed
224 ANS: 3
TOP: Planes
225 ANS:
36, because a dilation does not affect angle measure. 10 , because a dilation does affect distance.
PTS: 4
226 ANS: 3
REF: 011024ge STA: G.G. 3
ANS: 1 PTS: 2
TOP: Planes
228 ANS: 1 TOP: Identifying Transformations
229 ANS: 1

REF: 011035ge
STA: G.G. 59
REF: 081021ge
REF: 061026GE
STA: G.G. 51
REF: 081002ge
PTS: 2

PTS: 2

PTS: 2
REF: 060903ge

TOP: Arcs Determined by Angles
STA: G.G. 9

TOP: Properties of Transformations
STA: G.G. 57
TOP: Properties of Trans

$y=x^{2}-4 x=(4)^{2}-4(4)=0 .(4,0)$ is the only intersection.
PTS: 2
REF: 060923ge
STA: G.G. 70

TOP: Quadratic-Linear Systems

230 ANS:
2016. $V=\frac{1}{3} B h=\frac{1}{3} s^{2} h=\frac{1}{3} 12^{2} \cdot 42=2016$

PTS: 2
231 ANS: 3
TOP: Contrapositive
232 ANS: 4
The radius is 4. $r^{2}=16$.
PTS: 2
233 ANS: 1
REF: 061014ge
STA: G.G. 72
REF: 081009ge
REF: 061015ge
STA: G.G. 56
TOP: Equations of Circles
234 ANS: 4
PTS: 2
TOP: Identifying Transformations
235 ANS: 4
Corresponding angles of similar triangles are congruent.
PTS: 2
REF: fall0826ge STA: G.G. 45
TOP: Similarity
KEY: perimeter and area
236 ANS: 1
$V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi \cdot 4^{2} \cdot 12 \approx 201$
PTS: 2
237 ANS: 4
STA: G.G. 15
TOP: Volume
TOP: Analytical Representations of Transformations
238 ANS: 4
PTS: 2
REF: fall0824ge
STA: G.G. 50
TOP: Tangents KEY: common tangency
239 ANS: 2
$(d+4) 4=12(6)$
$4 d+16=72$
$d=14$
$r=7$
PTS: 2 REF: 061023ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: two secants

REF: 080930ge
PTS: 2
STA: G.G. 13
REF: 081026ge
TOP: Volume
STA: G.G. 26
信

240
ANS:

PTS: 2
REF: fall0830ge
ANS: 3

PTS: 2 REF: 061011ge STA: G.G. 70 TOP: Quadratic-Linear Systems
242 ANS: 3
$m=\frac{-A}{B}=\frac{5}{2} . m=\frac{-A}{B}=\frac{10}{4}=\frac{5}{2}$
PTS: 2 REF: 011014ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
243 ANS: 4
Longest side of a triangle is opposite the largest angle. Shortest side is opposite the smallest angle.
PTS: 2
REF: 081011ge
STA: G.G. 34
REF: 011003ge
TOP: Angle Side Relationship
ANS: 2
PTS: 2
TOP: Properties of Transformations
245
ANS:
4. $l_{1} w_{1} h_{1}=l_{2} w_{2} h_{2}$
$10 \times 2 \times h=5 \times w_{2} \times h$
$20=5 w_{2}$
$w_{2}=4$
PTS: 2
246
ANS. 2
REF: 011030ge
PTS: 2
STA: G.G. 11
REF: 011020ge
TOP: Volume
STA: G.G. 74
TOP: Graphing Circles

247 ANS:
20. $5 x+10=4 x+30$

$$
x=20
$$

PTS: 2
REF: 060934ge
STA: G.G. 45 TOP: Similarity
KEY: basic
248 ANS: 2
PTS: 2
REF: 080927ge
STA: G.G. 4
TOP: Planes
249 ANS: 3
PTS: 2
REF: 011028ge
STA: G.G. 26
TOP: Conditional Statements
250 ANS: 1
PTS: 2
REF: 060920ge STA: G.G. 74
TOP: Graphing Circles
251 ANS: $3 \quad$ PTS: 2
TOP: Planes
252 ANS: 2
$M_{x}=\frac{2+(-4)}{2}=-1 . M_{Y}=\frac{-3+6}{2}=\frac{3}{2}$.
PTS: 2
REF: fall0813ge
STA: G.G. 66
TOP: Midpoint
KEY: general
253 ANS:
$375 \pi L=\pi r l=\pi(15)(25)=375 \pi$
PTS: 2 REF: 081030ge STA: G.G. 15 TOP: Lateral Area
254 ANS: 1
$a^{2}+(5 \sqrt{2})^{2}=(2 \sqrt{15})^{2}$
$a^{2}+(25 \times 2)=4 \times 15$

$$
a^{2}+50=60
$$

$$
a^{2}=10
$$

$$
a=\sqrt{10}
$$

PTS: 2 REF: 011016ge STA: G.G. 48 TOP: Pythagorean Theorem
255 ANS: 2
The slope of $y=\frac{1}{2} x+5$ is $\frac{1}{2}$. The slope of a perpendicular line is -2 . $y=m x+b$

$$
\begin{aligned}
& 5=(-2)(-2)+b \\
& b=1
\end{aligned}
$$

PTS: 2
256 ANS: 2

TOP: Parallel Lines and Transversals
REF: 060907ge
PTS: 2

STA: G.G. 64
REF: 061007ge

TOP: Parallel and Perpendicular Lines
STA: G.G. 35

257
ANS: 3
$\frac{36+20}{2}=28$

PTS: 2 REF: 061019ge STA: G.G. 51 TOP: Arcs Determined by Angles
KEY: inside circle
258 ANS: 4
The slope of a line in standard form is $-\frac{A}{B}$, so the slope of this line is $\frac{-4}{2}=-2$. A parallel line would also have a slope of -2 . Since the answers are in slope intercept form, find the y-intercept: $\quad y=m x+b$

$$
\begin{aligned}
3 & =-2(7)+b \\
17 & =b
\end{aligned}
$$

PTS: 2 REF: 081010ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
259 ANS: 2
$M_{x}=\frac{3 x+5+x-1}{2}=\frac{4 x+4}{2}=2 x+2 . M_{Y}=\frac{3 y+(-y)}{2}=\frac{2 y}{2}=y$.
PTS: 2 REF: 081019ge STA: G.G. 66 TOP: Midpoint
KEY: general
260 ANS: 2
Parallel chords intercept congruent arcs. $\mathrm{m} \overparen{A D}=\mathrm{m} \overparen{B C}=60 . \mathrm{m} \angle C D B=\frac{1}{2} \mathrm{~m} \overparen{B C}=30$.
PTS: 2 REF: 060906ge STA: G.G. 52 TOP: Chords
261 ANS:
$\overline{A B} \| \overline{C D}$ and $\overline{A D} \| \overline{C B}$ because their slopes are equal. $A B C D$ is a parallelogram
because opposite side are parallel. $\overline{A B} \neq \overline{B C} . A B C D$ is not a rhombus because all sides are not equal. $\overline{A B} \sim \perp \overline{B C}$ because their slopes are not opposite reciprocals. $A B C D$ is not a rectangle because $\angle A B C$ is not a right angle.

PTS: 4 REF: 081038ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane
262 ANS: 4
$M_{x}=\frac{-6+1}{2}=-\frac{5}{2} . M_{y}=\frac{1+8}{2}=\frac{9}{2}$.
PTS: 2
REF: 060919ge
KEY: graph
263

264 ANS: 4
PTS: 2
REF: 061008ge STA: G.G. 40
TOP: Trapezoids
265
ANS: 4
PTS: 2
REF: 061003ge STA: G.G. 10
TOP: Solids
266
ANS:
TOP: Constructions
267 ANS: $1 \quad$ PTS: 2
TOP: Converse and Biconditional
268 ANS: 3

$$
\begin{aligned}
4(x+4) & =8^{2} \\
4 x+16 & =64 \\
x & =12
\end{aligned}
$$

PTS: 2
REF: 060916ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: tangent and secant
269 ANS: 2
$\angle A C B$ and $\angle E C D$ are congruent vertical angles and $\angle C A B \cong$

PTS: 2
REF: 060917ge
STA: G.G. 44
TOP: Similarity Proofs
270 ANS:

PTS: 4
REF: fall0837ge
STA: G.G. 23
TOP: Locus
271 ANS: 1
Since $\overline{A C} \cong \overline{B C}, \mathrm{~m} \angle A=\mathrm{m} \angle B$ under the Isosceles Triangle Theorem.
PTS: 2 REF: fall0809ge STA: G.G. 69 TOP: Triangles in the Coordinate Plane

272 ANS: 3

PTS: 2 REF: fall0805ge STA: G.G. 70 TOP: Quadratic-Linear Systems
273 ANS: 1
$4 x=6 \cdot 10$
$x=15$
PTS: 2 REF: 081017ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: two chords
274
ANS:
Yes, $\mathrm{m} \angle A B D=\mathrm{m} \angle B D C=44180-(93+43)=44 x+19+2 x+6+3 x+5=180$. Because alternate interior

$$
\begin{aligned}
6 x+30 & =180 \\
6 x & =150 \\
x & =25 \\
x+19 & =44
\end{aligned}
$$

angles $\angle A B D$ and $\angle C D B$ are congruent, $\overline{A B}$ is parallel to $\overline{D C}$.
PTS: 4 REF: 081035ge STA: G.G. 35 TOP: Parallel Lines and Transversals
275 ANS: 1
The closer a chord is to the center of a circle, the longer the chord.
PTS: 2 REF: 011005ge STA: G.G. 49 TOP: Chords
276 ANS: 1
PTS: 2
REF: 061013ge
TOP: Tangents
KEY: point of tangency
277

ANS: 1

$x+2 x+2+3 x+4=180$

$$
\begin{aligned}
6 x+6 & =180 \\
x & =29
\end{aligned}
$$

PTS: 2
REF: 011002ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles

ANS:

PTS: 2
279 ANS: 4 TOP: Identifying Transformations
280 ANS: 1
TOP: Planes
281 ANS:
REF: 060930ge
PTS: 2

PTS: 2

PTS: 2 ANS: 2
The slope of a line in standard form is $-\frac{A}{B}$, so the slope of this line is $\frac{-2}{-1}=2$. A parallel line would also have a slope of 2 . Since the answers are in slope intercept form, find the y-intercept:

$$
\begin{aligned}
y & =m x+b \\
-11 & =2(-3)+b \\
-5 & =b
\end{aligned}
$$

PTS: 2
283
ANS: 2

TOP: Constructions

REF: fall0812ge STA: G.G. 65
PTS: 2
REF: 061020ge

TOP: Parallel and Perpendicular Lines
STA: G.G. 19

284
ANS: 1
The centroid divides each median into segments whose lengths are in the ratio $2: 1 . \quad \overline{G C}=2 \overline{F G}$

$$
\begin{aligned}
\overline{G C}+\overline{F G} & =24 \\
2 \overline{F G}+\overline{F G} & =24 \\
3 \overline{F G} & =24 \\
\overline{F G} & =8
\end{aligned}
$$

PTS: 2 REF: 081018ge STA: G.G. 43 TOP: Centroid
285 ANS:

$A^{\prime \prime}(8,2), B^{\prime \prime}(2,0), C^{\prime \prime}(6,-8)$
PTS: 4
REF: 081036ge STA: G.G. 58
TOP: Compositions of Transformations
286
ANS: 4
$x^{2}=(4+5) \times 4$
$x^{2}=36$
$x=6$
PTS: 2 REF: 011008ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: tangent and secant
287 ANS:
25. $d=\sqrt{(-3-4)^{2}+(1-25)^{2}}=\sqrt{49+576}=\sqrt{625}=25$.

PTS: 2 REF: fall0831ge STA: G.G. 67 TOP: Distance
KEY: general
288 ANS: 4
The slope of $y=-3 x+2$ is -3 . The perpendicular slope is $\frac{1}{3} \cdot-1=\frac{1}{3}(3)+b$

$$
\begin{aligned}
-1 & =1+b \\
b & =-2
\end{aligned}
$$

PTS: 2 REF: 011018ge STA: G.G. 64 TOP: Parallel and Perpendicular Lines

ANS:

PTS: 4 REF: 080936ge STA: G.G. 23 TOP: Locus
290
ANS: 1
$M_{x}=\frac{-2+6}{2}=2 . M_{y}=\frac{3+3}{2}=3$. The center is (2,3). $d=\sqrt{(-2-6)^{2}+(3-3)^{2}}=\sqrt{64+0}=8$. If the diameter is 8 , the radius is 4 and $r^{2}=16$.

PTS: 2 REF: fall0820ge STA: G.G. 71 TOP: Equations of Circles
291 ANS: 1
$3 x^{2}+18 x+24$
$3\left(x^{2}+6 x+8\right)$
$3(x+4)(x+2)$
PTS: 2 REF: fall0815ge STA: G.G. 12 TOP: Volume
292 ANS:

PTS: 4
293 ANS: 3
REF: 011037ge
STA: G.G. 23
REF: 080913ge
TOP: Locus
TOP: Triangle Congruency
294
ANS: 4
$3 y+1=6 x+4.2 y+1=x-9$

$$
\begin{array}{rlrl}
3 y & =6 x+3 & 2 y & =x-10 \\
y & =2 x+1 & y & =\frac{1}{2} x-5
\end{array}
$$

PTS: 2
REF: fall0822ge
STA: G.G. 63
TOP: Parallel and Perpendicular Lines

295 ANS: $4 \quad$ PTS: 2
REF: 060922ge STA: G.G.73
TOP: Equations of Circles
296 ANS: 1
After the translation, the coordinates are $A^{\prime}(-1,5)$ and $B^{\prime}(3,4)$. After the dilation, the coordinates are $A^{\prime \prime}(-2,10)$ and $B^{\prime \prime}(6,8)$.

PTS: 2 REF: fall0823ge STA: G.G. 58 TOP: Compositions of Transformations
297 ANS:
70. $3 x+5+3 x+5+2 x+2 x=180$

$$
\begin{aligned}
10 x+10 & =360 \\
10 x & =350 \\
x & =35 \\
2 x & =70
\end{aligned}
$$

PTS: 2 REF: 081029ge STA: G.G. 40 TOP: Trapezoids
298 ANS: 4
$L=2 \pi r h=2 \pi \cdot 5 \cdot 11 \approx 345.6$
PTS: 2 REF: 061006ge STA: G.G. 14 TOP: Volume and Lateral Area
ANS: 4 PTS: 2 REF: 081023ge STA: G.G. 45
TOP: Similarity KEY: perimeter and area
300 ANS: 4
$180-(50+30)=100$
PTS: 2
REF: 081006ge
STA: G.G. 45 TOP: Similarity
KEY: basic
301 ANS:
20. The sides of the triangle formed by connecting the midpoints are half the sides of the original triangle.
$5+7+8=20$.

PTS: 2
302 ANS: 4
REF: 060929ge
STA: G.G. 42
TOP: Midsegments
PTS: 2
REF: 011009ge
STA: G.G. 19
TOP: Constructions
303 ANS: 3
The diagonals of an isosceles trapezoid are congruent. $5 x+3=11 x-5$.

$$
\begin{aligned}
6 x & =18 \\
x & =3
\end{aligned}
$$

$\begin{array}{lllll}\text { PTS: } 2 & \text { REF: fall0801ge } & \text { STA: G.G. } 40 & \text { TOP: Trapezoids } \\ \text { ANS: } 4 & \text { PTS: } 2 & \text { REF: } 011019 g e & \text { STA: G.G. } 44\end{array}$
TOP: Similarity Proofs

305 ANS: 2
Longest side of a triangle is opposite the largest angle. Shortest side is opposite the smallest angle.
PTS: 2 REF: 060911ge STA: G.G. 34 TOP: Angle Side Relationship
306 ANS: 4
PTS: 2
REF: fall0802ge
STA: G.G. 24
TOP: Negations
307 ANS: 2

PTS: 2

ANS: 3
Because $\overline{O C}$ is a radius, its length is 5. Since $C E=2 O E=3 . \Delta E D O$ is a 3-4-5 triangle. If $E D=4, B D=8$.
PTS: 2 REF: fall0811ge STA: G.G. 49 TOP: Chords
309 ANS: 1
$\angle D C B$ and $\angle A D C$ are supplementary adjacent angles of a parallelogram. $180-120=60 . \angle 2=60-45=15$.
PTS: 2
REF: 080907ge
STA: G.G. 38
TOP: Parallelograms
310 ANS: 2

$$
\begin{aligned}
x^{2}+(x+7)^{2} & =13^{2} \\
x^{2}+x^{2}+7 x+7 x+49 & =169 \\
2 x^{2}+14 x-120 & =0 \\
x^{2}+7 x-60 & =0 \\
(x+12)(x-5) & =0 \\
x & =5 \\
2 x & =10
\end{aligned}
$$

PTS: 2 REF: 061024ge STA: G.G. 48 TOP: Pythagorean Theorem
311 ANS: 2
The slope of $2 x+3 y=12$ is $-\frac{A}{B}=-\frac{2}{3}$. The slope of a perpendicular line is $\frac{3}{2}$. Rewritten in slope intercept form,
(2) becomes $y=\frac{3}{2} x+3$.

PTS: 2 REF: 060926ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines

312 ANS:
3. The non-parallel sides of an isosceles trapezoid are congruent. $2 x+5=3 x+2$

$$
x=3
$$

PTS: 2 REF: 080929ge STA: G.G. 40
313 ANS: 1
PTS: 2
REF: 081028ge
TOP: Trapezoids
TOP: Centroid, Orthocenter, Incenter and Circumcenter
314 ANS: 2
Adjacent sides of a rectangle are perpendicular and have opposite and reciprocal slopes.
PTS: 2 REF: 061028ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane
315 ANS:
18. $V=\frac{1}{3} B h=\frac{1}{3} l w h$

$$
\begin{aligned}
288 & =\frac{1}{3} \cdot 8 \cdot 6 \cdot h \\
288 & =16 h \\
18 & =h
\end{aligned}
$$

PTS: 2 REF: 061034ge STA: G.G. 13 TOP: Volume
316 ANS: 2
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.
PTS: 2 REF: 060914ge STA: G.G. 43 TOP: Centroid
317 ANS: 3

. The sum of the interior angles of a pentagon is $(5-2) 180=540$.
PTS: 2 REF: 011023ge STA: G.G. 36 TOP: Interior and Exterior Angles of Polygons
318 ANS: 4
PTS: 2
TOP: Identifying Transformations
319
ANS: 3 PTS: 2
TOP: Equations of Circles
320 ANS: $3 \quad$ PTS: 2
TOP: Identifying Transformations
321 ANS: 4 PTS: 2
TOP: Conditional Statements
322
ANS: 2
TOP: Negations
PTS: 2

REF: 061002ge STA: G.G. 24
REF: 061018ge STA: G.G. 56
REF: 011010ge STA: G.G. 71
REF: 060908ge STA: G.G. 60
REF: 060913ge STA: G.G. 26

323 ANS:
$2 \sqrt{3} . x^{2}=3 \cdot 4$

$$
x=\sqrt{12}=2 \sqrt{3}
$$

PTS: 2
REF: fall0829ge
STA: G.G. 47
TOP: Similarity
KEY: altitude
324 ANS: 4
PTS: 2
REF: 080914ge STA: G.G. 7
TOP: Planes
325
ANS: 3
PTS.
REF: 060928ge
STA: G.G. 8
TOP: Planes
326 ANS: 2
PTS: 2
REF: 080921ge
STA: G.G. 72
TOP: Equations of Circles
327 ANS:

$$
\begin{aligned}
& y=\frac{2}{3} x+1.2 y+3 x=6 \quad . y=m x+b \\
& 2 y=-3 x+6 \quad 5=\frac{2}{3}(6)+b \\
& y=-\frac{3}{2} x+3 \quad 5=4+b \\
& m=-\frac{3}{2} \quad 1=b \\
& m_{\perp}=\frac{2}{3} \quad y=\frac{2}{3} x+1
\end{aligned}
$$

PTS: 4
REF: 061036ge
STA: G.G. 64
PTS: 2 REF: 080925ge
TOP: Parallel and Perpendicular Lines
328 ANS: 4
STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
329
ANS: 3
PTS: 2
REF: 080924ge
STA: G.G. 24
TOP: Negations
330 ANS:
Contrapositive-If two angles of a triangle are not congruent, the sides opposite those angles are not congruent.
PTS: 2 REF: fall0834ge STA: G.G. 26 TOP: Conditional Statements
331 ANS: 1
$\overline{A B}=10$ since $\triangle A B C$ is a 6-8-10 triangle. $6^{2}=10 x$

$$
3.6=x
$$

PTS: 2 REF: 060915ge STA: G.G. 47 TOP: Similarity
KEY: leg
332 ANS: 1
Parallel lines intercept congruent arcs.
PTS: 2
REF: 061001ge
STA: G.G. 52
TOP: Chords

333
ANS:

PTS: 4
REF: 060937ge
STA: G.G. 54
TOP: Compositions of Transformations
KEY: grids
334
ANS: 4
PTS: 2
REF: 081005ge
STA: G.G. 18
TOP: Constructions
335 ANS:
$y=\frac{2}{3} x-9$. The slope of $2 x-3 y=11$ is $-\frac{A}{B}=\frac{-2}{-3}=\frac{2}{3} .-5=\left(\frac{2}{3}\right)(6)+b$

$$
\begin{aligned}
-5 & =4+b \\
b & =-9
\end{aligned}
$$

PTS: 2
REF: 080931ge
STA: G.G. 65 TOP: Parallel and Perpendicular Lines
336 ANS: 1

$$
\begin{aligned}
V & =\pi r^{2} h \\
1000 & =\pi r^{2} \cdot 8 \\
r^{2} & =\frac{1000}{8 \pi} \\
r & \approx 6.3
\end{aligned}
$$

PTS: 2
REF: 080926ge
STA: G.G. 14
TOP: Volume and Lateral Area
337 ANS:
452. $S A=4 \pi r^{2}=4 \pi \cdot 6^{2}=144 \pi \approx 452$

PTS: 2
REF: 061029ge
STA: G.G. 16
TOP: Volume and Surface Area
338 ANS:
18. If the ratio of $T A$ to $A C$ is $1: 3$, the ratio of $T E$ to $E S$ is also 1:3. $x+3 x=24.3(6)=18$.

$$
x=6
$$

PTS: 4
REF: 060935ge
STA: G.G. 50
TOP: Tangents
KEY: common tangency

339 ANS:
22.4. $\quad V=\pi r^{2} h$
$12566.4=\pi r^{2} \cdot 8$

$$
\begin{aligned}
r^{2} & =\frac{12566.4}{8 \pi} \\
r & \approx 22.4
\end{aligned}
$$

PTS: 2
REF: fall0833ge
STA: G.G. 14
TOP: Volume and Lateral Area
ANS: 2
The length of the midsegment of a trapezoid is the average of the lengths of its bases. $\frac{x+30}{2}=44$.

$$
\begin{aligned}
x+30 & =88 \\
x & =58
\end{aligned}
$$

PTS: 2 REF: 011001ge STA: G.G. 40 TOP: Trapezoids
341 ANS:
$\overline{A C} \cong \overline{E C}$ and $\overline{D C} \cong \overline{B C}$ because of the definition of midpoint. $\angle A C B \cong \angle E C D$ because of vertical angles.
$\triangle A B C \cong \triangle E D C$ because of SAS. $\angle C D E \cong \angle C B A$ because of CPCTC. $\overline{B D}$ is a transversal intersecting $\overline{A B}$ and
$\overline{E D}$. Therefore $\overline{A B} \| \overline{D E}$ because $\angle C D E$ and $\angle C B A$ are congruent alternate interior angles.

PTS: 6 REF: 060938ge STA: G.G. 27 TOP: Triangle Proofs
342 ANS: 3
PTS: 2
REF: fall0814ge
STA: G.G. 73
TOP: Equations of Circles
343 ANS: 1
Translations and reflections do not affect distance.
PTS: 2
REF: 080908ge STA: G.G. 61
TOP: Analytical Representations of Transformations
344 ANS: 2
$y+\frac{1}{2} x=4 \quad 3 x+6 y=12$
$y=-\frac{1}{2} x+4$

$$
6 y=-3 x+12
$$

$y=\frac{1}{2}$

$$
y=-\frac{3}{6} x+2
$$

$m=-\frac{1}{2}$

$$
y=-\frac{1}{2} x+2
$$

PTS: 2
345 ANS: 1
REF: 081014ge
PTS: 2
TOP: Special Quadrilaterals

STA: G.G. 63
REF: 080918ge

TOP: Parallel and Perpendicular Lines
STA: G.G. 41

346 ANS: 1
$\triangle P R T$ and $\triangle S R Q$ share $\angle R$ and it is given that $\angle R P T \cong \angle R S Q$.
PTS: 2
347 ANS: 2
TOP: Locus
348
ANS: 2
$6+17>22$
PTS: 2
REF: 080916ge
STA: G.G. 33

$$
\begin{aligned}
-2\left(-\frac{1}{2} y\right. & =6 x+10) \\
y & =-12 x-20
\end{aligned}
$$

PTS: 2
350

PTS: 6
351 ANS: 1
TOP: Tangents
352 ANS: 2
$\frac{3}{7}=\frac{6}{x}$
$3 x=42$
$x=14$

PTS: 2
REF: 081027ge
STA: G.G. 46
TOP: Side Splitter Theorem

353
ANS:

PTS: 2
354 ANS: 4
TOP: Solids
355 ANS: 3
The lateral edges of a prism are parallel.
PTS: 2 REF: fall0808ge STA: G.G. 10 TOP: Solids
356 ANS: 2
$\frac{87+35}{2}=\frac{122}{2}=61$
PTS: 2
REF: 011015ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inside circle
357 ANS: 3
PTS: 2
REF: fall0825ge
STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
358 ANS: 2 PTS: 2 REF: 060910
ANS. 2 REF: 060910ge STA: G.G. 71
TOP: Equations of Circles
359 ANS: 1
$d=\sqrt{(-4-2)^{2}+(5-(-5))^{2}}=\sqrt{36+100}=\sqrt{136}=\sqrt{4} \cdot \sqrt{34}=2 \sqrt{34}$.
PTS: 2 REF: 080919ge STA: G.G. 67 TOP: Distance
KEY: general
360 ANS: 4
The slope of $y=-\frac{2}{3} x-5$ is $-\frac{2}{3}$. Perpendicular lines have slope that are opposite reciprocals.
PTS: 2 REF: 080917ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
361 ANS:
$\overline{A C} . \mathrm{m} \angle B C A=63$ and $\mathrm{m} \angle A B C=80 . \overline{A C}$ is the longest side as it is opposite the largest angle.
PTS: 2 REF: 080934ge STA: G.G. 34 TOP: Angle Side Relationship
362 ANS:
26. $x+3 x+5 x-54=180$

$$
\begin{aligned}
9 x & =234 \\
x & =26
\end{aligned}
$$

PTS: 2
REF: 080933ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles

363 ANS: 4
The marked 60° angle and the angle above it are on the same straight line and supplementary. This unmarked supplementary angle is 120°. Because the unmarked 120° angle and the marked 120° angle are alternate exterior angles and congruent, $d \| e$.

PTS: 2 REF: 080901ge STA: G.G. 35 TOP: Parallel Lines and Transversals
ANS: 2 PTS: 2 REF: fall0806ge STA: G.G. 9
TOP: Planes
365 ANS:
37. Since $\overline{D E}$ is a midsegment, $A C=14.10+13+14=37$

PTS: 2 REF: 061030ge STA: G.G. 42 TOP: Midsegments
366 ANS: 3

PTS: 2 REF: 061016ge STA: G.G. 40 TOP: Trapezoids
367 ANS:
34. $2 x-12+x+90=180$

$$
\begin{aligned}
3 x+78 & =90 \\
3 x & =102 \\
x & =34
\end{aligned}
$$

PTS: 2 REF: 061031ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
368 ANS:

PTS: 2
REF: 061033ge
STA: G.G. 22 TOP: Locus

369 ANS: 4

PTS: 2
REF: 081001ge
STA: G.G. 29
TOP: Triangle Congruency
370 ANS:

PTS: 4
REF: fall0835ge
STA: G.G. 42
TOP: Midsegments
371 ANS: 4
Let $\overline{A D}=x . \quad 36 x=12^{2}$

$$
x=4
$$

PTS: 2
REF: 080922ge
STA: G.G. 47
TOP: Similarity
KEY: leg
372 ANS:
67. $\frac{180-46}{2}=67$

PTS: 2
373 ANS: 3
TOP: Planes
374 ANS: 3
TOP: Constructions

REF: 011029ge
PTS: 2
PTS: 2

ANS:
$\overline{B D} \cong \overline{D B}$ (Reflexive Property); $\triangle A B D \cong \triangle C D B$ (SSS); $\angle B D C \cong \angle A B D$ (СРСТС).

PTS: 4
REF: 061035ge
STA: G.G. 27
TOP: Quadrilateral Proofs
ANS: 4
sum of interior $\angle \mathrm{s}=$ sum of exterior $\angle \mathrm{s}$

$$
\begin{aligned}
(n-2) 180 & =n\left(180-\frac{(n-2) 180}{n}\right) \\
180 n-360 & =180 n-180 n+360 \\
180 n & =720 \\
n & =4
\end{aligned}
$$

PTS: 2
REF: 081016ge
STA: G.G. 36
TOP: Interior and Exterior Angles of Polygons

$$
\text { ANS: } 4
$$

377 ANS: 4

$$
\begin{array}{cccc}
y+x=4 . x^{2}-6 x+10=-x+4 . & y+x=4 . & y+2=4 \\
y=-x+4 & x^{2}-5 x+6=0 & y+3=4 & y=2 \\
(x-3)(x-2)=0 & y=1 \\
x=3 \text { or } 2 &
\end{array}
$$

PTS: 2
REF: 080912ge
STA: G.G. 70
TOP: Quadratic-Linear Systems
378 ANS:
Because $\overline{A B} \| \overline{D C}, \overparen{A D} \cong \overparen{B C}$ since parallel chords intersect congruent arcs. $\angle B D C \cong \angle A C D$ because inscribed angles that intercept congruent arcs are congruent. $\overline{A D} \cong \overline{B C}$ since congruent chords intersect congruent arcs. $\angle D A C \cong \angle D B C$ because inscribed angles that intercept the same arc are congruent. Therefore, $\triangle A C D \cong \triangle B D C$ because of AAS.

PTS: 6 REF: fall0838ge STA: G.G. 27 TOP: Circle Proofs

Geometry Regents at Random

Answer Section

379 ANS: 1
$\frac{40-24}{2}=8 . \quad \sqrt{10^{2}-8^{2}}=6$.

PTS: 2 REF: 061204ge STA: G.G. 40 TOP: Trapezoids
380 ANS:
$\angle B$ and $\angle C$ are right angles because perpendicular lines form right angles. $\angle B \cong \angle C$ because all right angles are congruent. $\angle A E B \cong \angle D E C$ because vertical angles are congruent. $\triangle A B E \cong \triangle D C E$ because of ASA. $\overline{A B} \cong \overline{D C}$ because СРСТС.

PTS: 4 REF: 061235ge STA: G.G. 27 TOP: Triangle Proofs
ANS:
$V=\pi r^{2} h=\pi(5)^{2} \cdot 7=175 \pi$

PTS: 2
REF: 081231ge
STA: G.G. 14
TOP: Volume and Lateral Area
382 ANS:

$$
G^{\prime \prime}(3,3), H^{\prime \prime}(7,7), S^{\prime \prime}(-1,9)
$$

PTS: 4
REF: 081136ge STA: G.G. 58
TOP: Compositions of Transformations

383
ANS:
$2 \quad \frac{x+2}{x}=\frac{x+6}{4}$

$$
x^{2}+6 x=4 x+8
$$

$$
x^{2}+2 x-8=0
$$

$$
(x+4)(x-2)=0
$$

$$
x=2
$$

PTS: 4
REF: 081137ge
STA: G.G. 45
TOP: Similarity
KEY: basic
ANS: 3
PTS: 2
REF: 081123ge
STA: G.G. 12

TOP: Volume
385 ANS: 3

. Opposite sides of a parallelogram are congruent and the diagonals of a parallelogram bisect each other.

PTS: 2 REF: 061222ge STA: G.G. 28 TOP: Triangle Congruency
386 ANS:
The slope of $x+2 y=4$ is $m=\frac{-A}{B}=\frac{-1}{2}$. The slope of $4 y-2 x=12$ is $\frac{-A}{B}=\frac{2}{4}=\frac{1}{2}$. Since the slopes are neither equal nor opposite reciprocals, the lines are neither parallel nor perpendicular.

PTS: 2
387
ANS: 1
TOP: Reflections
REF: 061231ge
STA: G.G. 63
REF: 081113ge
TOP: Parallel and Perpendicular Lines
PTS: 2
KEY: basic
388 ANS: 4

$$
\begin{aligned}
m_{\perp}=-\frac{1}{3} \cdot y & =m x+b \\
6 & =-\frac{1}{3}(-9)+b \\
6 & =3+b \\
3 & =b
\end{aligned}
$$

PTS: 2
389 ANS: 4
TOP: Planes

REF: 061215ge
PTS: 2
STA: G.G. 64
REF: 061203ge

TOP: Parallel and Perpendicular Lines STA: G.G. 9

390 ANS:

PTS: 4
REF: 011135ge
STA: G.G. 23 TOP: Locus
391 ANS: 3
$y=m x+b$
$-1=2(2)+b$
$-5=b$
$\begin{array}{llll}\text { PTS: } 2 & \text { REF: 011224ge } & \text { STA: G.G. } 65 & \text { TOP: Parallel and Perpendicular Lines } \\ \text { ANS: } 4 & \text { PTS: } 2 & \text { REF: 081206ge } & \text { STA: G.G. } 30\end{array}$
TOP: Interior and Exterior Angles of Triangles
ANS:

The length of each side of quadrilateral is 5 . Since each side is congruent, quadrilateral $M A T H$ is a rhombus. The slope of $\overline{M H}$ is 0 and the slope of $\overline{H T}$ is $-\frac{4}{3}$. Since the slopes are not negative reciprocals, the sides are not perpendicular and do not form rights angles. Since adjacent sides are not perpendicular, quadrilateral MATH is not a square.

PTS: 6 REF: 011138ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane
ANS:
$L=2 \pi r h=2 \pi \cdot 12 \cdot 22 \approx 1659 . \frac{1659}{600} \approx 2.8 .3$ cans are needed.
PTS: 2 REF: 061233ge STA: G.G. 14 TOP: Volume and Lateral Area
395 ANS: 3
PTS: 2
REF: 011110ge
STA: G.G. 21
KEY: Centroid, Orthocenter, Incenter and Circumcenter

396 ANS: 4
$y=m x+b$
$3=\frac{3}{2}(-2)+b$
$3=-3+b$
$6=b$
PTS: 2 REF: 011114ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
397 ANS: 1
PTS: 2
REF: 061104ge
STA: G.G. 43
TOP: Centroid
398 ANS: 2
The slope of a line in standard form is $\frac{-A}{B}$, so the slope of this line is $\frac{-4}{3}$. A parallel line would also have a slope
of $\frac{-4}{3}$. Since the answers are in standard form, use the point-slope formula. $y-2=-\frac{4}{3}(x+5)$

$$
\begin{aligned}
3 y-6 & =-4 x-20 \\
4 x+3 y & =-14
\end{aligned}
$$

PTS: 2
REF: 061123ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines
399 ANS: 2
$m=\frac{-A}{B}=\frac{-4}{2}=-2 \quad y=m x+b$
$2=-2(2)+b$
$6=b$
PTS: 2
REF: 081112ge
STA: G.G. 65
REF: 011220ge
TOP: Parallel and Perpendicular Lines
ANS: 1
PTS: 2
TOP: Equations of Circles
401 ANS: 4
PTS: 2
REF: 081106ge STA: G.G. 17
TOP: Constructions
402 ANS: 3

$$
\begin{aligned}
x+2 x+15 & =5 x+15 \quad 2(5)+15=25 \\
3 x+15 & =5 x+5 \\
10 & =2 x \\
5 & =x
\end{aligned}
$$

PTS: 2
403 ANS: 3
TOP: Similarity

REF: 011127ge
PTS: 2
KEY: basic

STA: G.G. 32
REF: 061224ge

TOP: Exterior Angle Theorem
STA: G.G. 45

404 ANS:

PTS: 2
REF: 011133ge
PTS: 2
TOP: Equations of Circles
406 ANS: 3
PTS: 2
STA: G.G. 17
REF: 061210ge
TOP: Constructions
STA: G.G. 71
REF: 011217ge STA: G.G. 64
TOP: Parallel and Perpendicular Lines
407 ANS:
$E O=6 . C E=\sqrt{10^{2}-6^{2}}=8$

PTS: 2
408 ANS: 2
TOP: Planes
409 ANS: 1
TOP: Solids
410 ANS: 3
$d=\sqrt{(1-9)^{2}+(-4-2)^{2}}=\sqrt{64+36}=\sqrt{100}=10$
PTS: 2
REF: 081107ge
STA: G.G. 67
REF: 011211ge
STA: G.G. 55
KEY: general
411 ANS: 2
PTS: 2
TOP: Properties of Transformations
412 ANS: 3
$\frac{3}{8+3+4} \times 180=36$
PTS: 2
REF: 011210ge
STA: G.G. 30

TOP: Interior and Exterior Angles of Triangles

413 ANS:

PTS: 2
REF: 081130ge
STA: G.G. 18
414 ANS:
$180-(90+63)=27$
PTS: 2
415 ANS: 2
REF: 061230ge
PTS: 2
TOP: Exterior Angle Theorem
416 ANS: 3
$4 x+14+8 x+10=180$

$$
\begin{aligned}
12 x & =156 \\
x & =13
\end{aligned}
$$

PTS: 2
REF: 081213ge
STA: G.G. 35
TOP: Parallel Lines and Transversals
417 ANS: 1

PTS: 2
418 ANS: 3
TOP: Solids

REF: 081219ge
PTS: 2
STA: G.G. 34
REF: 011105ge

TOP: Angle Side Relationship STA: G.G. 10

419 ANS:
$(7,5) m_{\overline{A B}}=\left(\frac{3+7}{2}, \frac{3+9}{2}\right)=(5,6) m_{B C}=\left(\frac{7+11}{2}, \frac{9+3}{2}\right)=(9,6)$

PTS: 2
REF: 081134ge STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
420 ANS: 1
$7 x+4=2(2 x+5) . \quad P M=2(2)+5=9$
$7 x+4=4 x+10$
$3 x=6$
$x=2$

PTS: 2	REF: 011226ge	STA: G.G.43	TOP: Centroid	
421	ANS: 1	PTS: 2	REF: 061110ge	STA: G.G.72
TOP: Equations of Circles				
422				
$\frac{5}{7}=\frac{10}{x}$				
$5 x=70$				
$x=14$				

PTS: 2 REF: 081103ge STA: G.G. 46 TOP: Side Splitter Theorem
423 ANS: 3
PTS: 2 REF: 081209ge
STA: G.G. 71
TOP: Equations of Circles
424 ANS: 1
PTS: 2
REF: 011102ge STA: G.G. 55
TOP: Properties of Transformations
425 ANS: 4
$\sqrt{6^{2}-2^{2}}=\sqrt{32}=\sqrt{16} \sqrt{2}=4 \sqrt{2}$
PTS: 2
REF: 081124ge
STA: G.G. 49 TOP: Chords
426 ANS:
$\angle A C B \cong \angle A E D$ is given. $\angle A \cong \angle A$ because of the reflexive property. Therefore $\triangle A B C \sim \triangle A D E$ because of AA.
PTS: 2 REF: 081133ge STA: G.G. 44 TOP: Similarity Proofs
427 ANS: 4
PTS: 2
REF: 011212ge STA: G.G. 71
TOP: Equations of Circles

428 ANS: 1
$3 x+5+4 x-15+2 x+10=180 . \mathrm{m} \angle D=3(20)+5=65 . \mathrm{m} \angle E=4(20)-15=65$.

$$
\begin{aligned}
9 x & =180 \\
x & =20
\end{aligned}
$$

PTS: 2
429 ANS: 2
TOP: Volume
430
ANS: 2
TOP: Triangle Congruency
431 ANS:
Yes. A reflection is an isometry.
PTS: 2
432 ANS: 4
$\sqrt{25^{2}-7^{2}}=24$
PTS: 2
REF: 081105ge
STA: G.G. 50
TOP: Tangents
KEY: point of tangency
433 ANS:

PTS: 4
434

REF: 061132ge
STA: G.G. 55
TOP: Properties of Transformations
REF: 061119ge
PTS: 2
PTS: 2
(
STA: G.G. 30
REF: 011215ge
REF: 081102ge
TOP: Interior and Exterior Angles of Triangles
STA: G.G. 12
STA: G.G. 29

ANS: 3
REF: 061137ge

STA: G.G. 70
REF: 011116ge

TOP: Quadratic-Linear Systems STA: G.G. 71

TOP: Equations of Circles

435 ANS:

$$
A^{\prime}(-2,1), B^{\prime}(-3,-4) \text {, and } C^{\prime}(5,-3)
$$

PTS: 2
REF: 081230ge STA: G.G. 54
436 ANS: 4
PTS: 2
REF: 081224ge
TOP: Rotations
TOP: Centroid, Orthocenter, Incenter and Circumcenter
437 ANS:
The medians of a triangle are not concurrent. False.
PTS: 2 REF: 061129ge STA: G.G. 24 TOP: Negations
438 ANS: 2
PTS: 2
REF: 011206ge STA: G.G. 32
TOP: Exterior Angle Theorem
439 ANS:
30. $3 x+4 x+5 x=360 . \mathrm{m} \overparen{L N}: \overparen{\mathrm{m} K}: \widehat{\mathrm{m} L}=90: 120: 150 . \frac{150-90}{2}=30$

$$
x=20
$$

PTS: 4
REF: 061136ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: outside circle
440 ANS: 3
$(n-2) 180=(5-2) 180=540$
PTS: 2 REF: 011223ge STA: G.G. 36 TOP: Interior and Exterior Angles of Polygons
441 ANS: 3
$x^{2}+7^{2}=(x+1)^{2} \quad x+1=25$
$x^{2}+49=x^{2}+2 x+1$
$48=2 x$
$24=x$
PTS: 2
442 ANS: 3
REF: 081127ge
STA: G.G. 48
REF: 081128ge
TOP: Pythagorean Theorem
TOP: Special Parallelograms
443 ANS:
$m=\frac{-A}{B}=\frac{6}{2}=3 . m_{\perp}=-\frac{1}{3}$.
PTS: 2
REF: 011134ge
STA: G.G. 62
TOP: Parallel and Perpendicular Lines

444 ANS: 4
PTS: 2
REF: 011222ge
STA: G.G. 34
TOP: Angle Side Relationship
445 ANS: 4

$$
\begin{aligned}
x^{2}-6 x+2 x-3 & =9 x+27 \\
x^{2}-4 x-3 & =9 x+27 \\
x^{2}-13 x-30 & =0 \\
(x-15)(x+2) & =0 \\
x & =15,-2
\end{aligned}
$$

PTS: 2
446
ANS: 4
TOP: Similarity
447 ANS:

PTS: 4
KEY: grids
448
ANS: 1 TOP: Planes
449

$\sqrt{17^{2}-15^{2}}=8 . \quad 17-8=9$
PTS: 2
450 ANS: 4
TOP: Arcs Determined by Angles
REF: 061236ge
PTS: 2

REF: 061221ge

REF: 061225ge
PTS: 2
KEY: basic

$$
A^{\prime}(5,-4), B^{\prime}(5,1), C^{\prime}(2,1), D^{\prime}(2,-6) ; A^{\prime \prime}(5,4), B^{\prime \prime}(5,-1), C^{\prime \prime}(2,-1), D^{\prime \prime}(2,6)
$$

REF: 061108ge
STA: G.G. 9
sIA: G.G. 32
REF: 081216ge
TOP: Exterior Angle Theorem
STA: G.G. 45

STA: G.G. 49
REF: 011124ge
KEY: inscribed

STA: G.G. 51

451 ANS:

$$
\begin{aligned}
V & =\pi r^{2} h \quad . L=2 \pi r h=2 \pi \cdot 5 \sqrt{2} \cdot 12 \approx 533.1 \\
600 \pi & =\pi r^{2} \cdot 12 \\
50 & =r^{2} \\
\sqrt{25} \sqrt{2} & =r \\
5 \sqrt{2} & =r
\end{aligned}
$$

PTS: 4 REF: 011236ge STA: G.G. 14 TOP: Volume and Lateral Area
452 ANS: 3
$(3,-2) \rightarrow(2,3) \rightarrow(8,12)$
PTS: 2 REF: 011126ge STA: G.G. 54 TOP: Compositions of Transformations
KEY: basic
453 ANS: 4
Parallel lines intercept congruent arcs.
PTS: 2 REF: 081201ge STA: G.G. 52 TOP: Chords
454 ANS: 2
$d=\sqrt{(-1-7)^{2}+(9-4)^{2}}=\sqrt{64+25}=\sqrt{89}$
PTS: 2 REF: 061109ge STA: G.G. 67 TOP: Distance
KEY: general
455 ANS:
$(2 a-3,3 b+2) .\left(\frac{3 a+a-6}{2}, \frac{2 b-1+4 b+5}{2}\right)=\left(\frac{4 a-6}{2}, \frac{6 b+4}{2}\right)=(2 a-3,3 b+2)$
PTS: 2 REF: 061134ge STA: G.G. 66 TOP: Midpoint
456 ANS: 4
$\sqrt{25^{2}-\left(\frac{26-12}{2}\right)^{2}}=24$
PTS: 2 REF: 011219ge STA: G.G. 40 TOP: Trapezoids
457 ANS: 4
The slope of $3 x+5 y=4$ is $m=\frac{-A}{B}=\frac{-3}{5} . m_{\perp}=\frac{5}{3}$.
PTS: 2 REF: 061127ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
458 ANS:
$(x-5)^{2}+(y+4)^{2}=36$
PTS: 2
REF: 081132ge
STA: G.G. 72
TOP: Equations of Circles

459 ANS:
$\angle B$ and $\angle E$ are right angles because of the definition of perpendicular lines. $\angle B \cong \angle E$ because all right angles are congruent. $\angle B F D$ and $\angle D F E$ are supplementary and $\angle E C A$ and $\angle A C B$ are supplementary because of the definition of supplementary angles. $\angle D F E \cong \angle A C B$ because angles supplementary to congruent angles are congruent. $\triangle A B C \sim \triangle D E F$ because of AA.

PTS: 4 REF: 011136ge STA: G.G. 44 TOP: Similarity Proofs
460 ANS: 4
$6^{2}=x(x+5)$
$36=x^{2}+5 x$
$0=x^{2}+5 x-36$
$0=(x+9)(x-4)$
$x=4$
PTS: 2 REF: 011123ge STA: G.G. 47 TOP: Similarity
KEY: leg
461 ANS: 4
PTS: 2
REF: 061103ge STA: G.G. 60
TOP: Identifying Transformations
462 ANS: 1

$$
\begin{array}{rlrl}
1 & =\frac{-4+x}{2} . & 5 & =\frac{3+y}{2} . \\
-4+x & =2 & 3+y & =10 \\
x & =6 & y & =7
\end{array}
$$

PTS: 2 REF: 081115ge STA: G.G. 66 TOP: Midpoint
463 ANS: $m_{\overline{A B}}=\left(\frac{-6+2}{2}, \frac{-2+8}{2}\right)=D(2,3) m_{B C}=\left(\frac{2+6}{2}, \frac{8+-2}{2}\right)=E(4,3) F(0,-2)$. To prove that $A D E F$ is a parallelogram, show that both pairs of opposite sides of the parallelogram are parallel by showing the opposite sides have the same slope: $\mathrm{m}_{\overline{A D}}=\frac{3--2}{-2--6}=\frac{5}{4} \overline{A F} \| \overline{D E}$ because all horizontal lines have the same slope. $A D E F$

$$
\mathrm{m}_{F E}=\frac{3--2}{4-0}=\frac{5}{4}
$$

is not a rhombus because not all sides are congruent. $A D=\sqrt{5^{2}+4^{2}}=\sqrt{41} \quad A F=6$
$\begin{array}{llll}\text { PTS: } 6 & \text { REF: 081138ge } & \text { STA: G.G. } 69 & \text { TOP: Quadrilaterals in the Coordinate Plane } \\ \text { ANS: } 2 & \text { PTS: } 2 & \text { REF: 081117ge } & \text { STA: G.G. } 23\end{array}$ TOP: Locus

465 ANS:
30.

PTS: 2 REF: 011129ge STA: G.G. 31 TOP: Isosceles Triangle Theorem
466 ANS: 4
$x \cdot 4 x=6^{2} . P Q=4 x+x=5 x=5(3)=15$

$$
\begin{aligned}
4 x^{2} & =36 \\
x & =3
\end{aligned}
$$

PTS: 2
REF: 011227ge
STA: G.G. 47
TOP: Similarity
KEY: leg
467 ANS: 2
TOP: Tangents
PTS: 2
REF: 081214ge
KEY: point of tangency
ANS: 3
PTS: 2
REF: 081204ge
STA: G.G. 59
TOP: Properties of Transformations
469 ANS:

PTS: 2
REF: 011130ge
STA: G.G. 54
TOP: Reflections
KEY: grids
470 ANS: 1

$$
A B=C D
$$

$A B+B C=C D+B C$
$A C=B D$

PTS: 2
471
ANS: 1 TOP: Planes
472 ANS:

$$
\begin{aligned}
2 x-20 & =x+20 . \mathrm{m} \overparen{A B}=x+20=40+20=60 \\
x & =40
\end{aligned}
$$

PTS: 2
REF: 011229ge
STA: G.G. 52

REF: 081207ge
STA: G.G. 27
REF: 011218ge
PTS: 2
-

TOP: Triangle Proofs
STA: G.G. 3

473 ANS: $2 \quad$ PTS: 2
REF: 061115ge STA: G.G. 69
TOP: Triangles in the Coordinate Plane
474 ANS: 2
$M_{x}=\frac{7+(-3)}{2}=2 . M_{Y}=\frac{-1+3}{2}=1$.

PTS: 2
REF: 011106ge
STA: G.G. 66
ANS: 2
PTS: 2
TOP: Constructions
476 ANS: 4
PTS: 2
TOP: Planes
477 ANS: 2
$\frac{50+x}{2}=34$
$50+x=68$
$x=18$
PTS: 2
REF: 011214ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inside circle
478 ANS: 3
PTS: 2
REF: 061111ge
STA: G.G. 38
TOP: Parallelograms
479 ANS:
9.1. $(11)(8) h=800$

$$
h \approx 9.1
$$

PTS: 2
REF: 061131ge
STA: G.G. 12
TOP: Volume
480 ANS: 3

$$
\begin{aligned}
180(n-2) & =n\left(180-\frac{180(n-2)}{n}\right) \\
180 n-360 & =180 n-180 n+360 \\
180 n & =720 \\
n & =4
\end{aligned}
$$

PTS: 2
REF: 081223ge
STA: G.G. 36
TOP: Interior and Exterior Angles of Polygons
481 ANS:
32. $\frac{16}{20}=\frac{x-3}{x+5} \cdot \overline{A C}=x-3=35-3=32$
$16 x+80=20 x-60$

$$
\begin{aligned}
140 & =4 x \\
35 & =x
\end{aligned}
$$

PTS: 4
REF: 011137ge
STA: G.G. 46
TOP: Side Splitter Theorem

482 ANS: 4
$\mathrm{m} \angle A=80$
PTS: 2 REF: 011115ge STA: G.G. 34 TOP: Angle Side Relationship
483 ANS: 2
$V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot\left(\frac{15}{2}\right)^{3} \approx 1767.1$
PTS: 2
REF: 061207ge
STA: G.G. 16
TOP: Volume and Surface Area
484 ANS: 4

$$
\begin{array}{rlrl}
x+6 y & =12 & 3(x-2) & =-y-4 \\
6 y & =-x+12 & -3(x-2) & =y+4 \\
y & =-\frac{1}{6} x+2 & m & =-3 \\
m & =-\frac{1}{6} & &
\end{array}
$$

PTS: 2
REF: 011119ge
STA: G.G. 63
REF: 081212ge
TOP: Parallel and Perpendicular Lines
485 ANS: 2
PTS: 2
STA: G.G. 72
TOP: Equations of Circles
486 ANS: 1
The length of the midsegment of a trapezoid is the average of the lengths of its bases. $\frac{x+3+5 x-9}{2}=2 x+2$.

$$
\begin{aligned}
6 x-6 & =4 x+4 \\
2 x & =10 \\
x & =5
\end{aligned}
$$

PTS: 2
REF: 081221ge
STA: G.G. 40
PTS: 2
REF: 061101ge
TOP: Trapezoids
ANS: 2
STA: G.G. 18
TOP: Constructions
488 ANS: 2
The slope of $x+2 y=3$ is $m=\frac{-A}{B}=\frac{-1}{2} . \quad m_{\perp}=2$.
PTS: 2 REF: 081122ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
489 ANS: 2
$V=\pi r^{2} h=\pi \cdot 6^{2} \cdot 15=540 \pi$
PTS: 2
REF: 011117ge
STA: G.G. 14
REF: 011128ge
TOP: Volume and Lateral Area
ANS: 1
PTS: 2
STA: G.G. 2
TOP: Planes
491 ANS: 3
PTS: 2
REF: 081104ge STA: G.G. 55
TOP: Properties of Transformations

492 ANS:
Quadrilateral $A B C D, \overline{A D} \cong \overline{B C}$ and $\angle D A E \cong \angle B C E$ are given. $\overline{A D} \| \overline{B C}$ because if two lines are cut by a transversal so that a pair of alternate interior angles are congruent, the lines are parallel. $A B C D$ is a parallelogram because if one pair of opposite sides of a quadrilateral are both congruent and parallel, the quadrilateral is a parallelogram. $\overline{A E} \cong \overline{C E}$ because the diagonals of a parallelogram bisect each other. $\angle F E A \cong \angle G E C$ as vertical angles. $\triangle A E F \cong \triangle C E G$ by ASA.

PTS: 6
REF: 061238ge
ANS: 3

PTS: 2
REF: 011101ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: two tangents
498

PTS: 2
REF: 061234ge
STA: G.G. 23
TOP: Locus

499 ANS:
16.7. $\frac{x}{25}=\frac{12}{18}$

$$
\begin{aligned}
18 x & =300 \\
x & \approx 16.7
\end{aligned}
$$

PTS: 2
REF: 061133ge
STA: G.G. 46
TOP: Side Splitter Theorem
500 ANS:
$M\left(\frac{-7+5}{2}, \frac{2+4}{2}\right)=M(-1,3) . N\left(\frac{3+5}{2}, \frac{-4+4}{2}\right)=N(4,0) . \overline{M N}$ is a midsegment.

PTS: 4
REF: 011237ge STA: G.G. 42
TOP: Midsegments
501 ANS:
$\frac{180-80}{2}=50$
PTS: 2
502 ANS: 3
REF: 081129ge
STA: G.G. 52
REF: 061220ge
TOP: Graphing Circles
503
ANS: 2
PTS: 2
REF: 081120ge
TOP: Chords

TOP: Planes
504 ANS: 1

PTS: 2
505 ANS: 3
PTS: 2
STA: G.G. 28
REF: 011202ge
TOP: Triangle Congruency
STA: G.G. 21
IOP: Centroid, Orthocenter, Incenter and Circumcenter
ANS: 3
$d=\sqrt{(-1-4)^{2}+(0-(-3))^{2}}=\sqrt{25+9}=\sqrt{34}$
PTS: 2
REF: 061217ge
STA: G.G. 67
TOP: Distance
KEY: general

507 ANS: 1
The diagonals of a parallelogram intersect at their midpoints. $M_{A C}^{-}\left(\frac{1+3}{2}, \frac{5+(-1)}{2}\right)=(2,2)$

PTS: 2
508 ANS: 1
TOP: Constructions
509 ANS: 1
TOP: Negations
510 ANS:
$x^{2}=9 \cdot 8$
$x=\sqrt{72}$
$x=\sqrt{36} \sqrt{2}$
$x=6 \sqrt{2}$
PTS: 2
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: two chords
511 ANS: 2

	PTS: 2	REF: 011228ge
512	ANS: 3	PTS: 2
	TOP: Special Parallelograms	
513	ANS: 4	PTS: 2
	TOP: Compound Statements	
514	ANS: 1	
	Parallel lines intercept congruent arcs.	

PTS: 2 REF: 061105ge STA: G.G. 52 TOP: Chords
515 ANS: 3

PTS: 2
516 ANS: 1
REF: 011112ge
TOP: Constructions

STA: G.G. 69
REF: fall0807ge
REF: 011213ge
STA: G.G. 24
STA: G.G. 19

TOP: Quadrilaterals in the Coordinate Plane

REF: 011132ge
REF: 061209ge
PTS: 2
PTS: 2
-

$$
5-3=2,5+3=8
$$

(
STA: G.G. 33
REF: 061228ge
TOP: Triangle Inequality Theorem
STA: G.G. 39
REF: 081101ge STA: G.G. 25
KEY: conjunction

STA. G.G. 2

TOP: Constructions

STA: G.G. 49
REF: 011120ge

TOP: Chords
STA: G.G. 18

517 ANS: 1
PTS: 2
REF: 081116ge
STA: G.G. 7
TOP: Planes
518 ANS: 4
$\frac{5}{2+3+5} \times 180=90$
PTS: 2 REF: 081119ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
519 ANS: 3

PTS: 2 REF: 081118ge STA: G.G. 70 TOP: Quadratic-Linear Systems
520 ANS: 3
The slope of $2 y=x+2$ is $\frac{1}{2}$, which is the opposite reciprocal of $-2 . \quad 3=-2(4)+b$
$11=b$
PTS: 2
521 ANS:

PTS: 2
REF: 081234ge
STA: G.G. 23
TOP: Locus
522 ANS:

PTS: 2
REF: 011230ge
STA: G.G. 22
TOP: Locus

523 ANS:

No, $\angle K G H$ is not congruent to $\angle G K H$.

PTS: 2
REF: 081135ge
STA: G.G. 31
TOP: Isosceles Triangle Theorem
524
ANS: 2
PTS: 2
REF: 061227ge
STA: G.G. 56
TOP: Identifying Transformations
525 ANS: 2
The diagonals of a rhombus are perpendicular. $180-(90+12)=78$
PTS: 2 REF: 011204ge STA: G.G. 39 TOP: Special Parallelograms
526 ANS:

PTS: 4
REF: 081236ge
STA: G.G. 58
TOP: Compositions of Transformations
KEY: grids
527 ANS:
$\overline{O A} \cong \overline{O B}$ because all radii are equal. $\overline{O P} \cong \overline{O P}$ because of the reflexive property. $\overline{O A} \perp \overline{P A}$ and $\overline{O B} \perp \overline{P B}$ because tangents to a circle are perpendicular to a radius at a point on a circle. $\angle P A O$ and $\angle P B O$ are right angles because of the definition of perpendicular. $\angle P A O \cong \angle P B O$ because all right angles are congruent. $\triangle A O P \cong \triangle B O P$ because of $\mathrm{HL} . \angle A O P \cong \angle B O P$ because of CPCTC.

PTS: 6
REF: 061138ge
STA: G.G. 27
REF: 061201ge
TOP: Circle Proofs
528 ANS: 2
PTS: 2
STA: G.G. 59
TOP: Properties of Transformations
529 ANS: 3
$\frac{180-70}{2}=55$
PTS: 2
530 ANS: 2
REF: 061205ge
STA: G.G. 52
REF: 061121ge
TOP: Chords
TOP: Locus
PTS: 2
STA: G.G. 22

531 ANS: 3 PTS: 2 REF: 011104ge STA: G.G. 38
TOP: Parallelograms
532 ANS: 2
$(n-2) 180=(6-2) 180=720 . \frac{720}{6}=120$.
PTS: 2 REF: 081125ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons
533 ANS: 1
$x^{2}=7(16-7)$
$x^{2}=63$
$x=\sqrt{9} \sqrt{7}$
$x=3 \sqrt{7}$
PTS: 2 REF: 061128ge STA: G.G. 47 TOP: Similarity
KEY: altitude
534
ANS: 1 PTS: 2 REF: 061214ge STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
535 ANS:
52, 40, 80. $360-(56+112)=192 . \frac{192-112}{2}=40 . \frac{112+48}{2}=80$

$$
\begin{aligned}
& \frac{1}{4} \times 192=48 \\
& \frac{56+48}{2}=52
\end{aligned}
$$

PTS: 6 REF: 081238ge STA: G.G. 51 TOP: Arcs Determined by Angles
KEY: mixed
536 ANS:
$\sqrt{(-4-2)^{2}+(3-5)^{2}}=\sqrt{36+4}=\sqrt{40}=\sqrt{4} \sqrt{10}=2 \sqrt{10}$.
PTS: 2 REF: 081232ge STA: G.G. 67 TOP: Distance
537 ANS: 1

PTS: 2
538 ANS: 4
TOP: Planes
539 ANS: 1
TOP: Triangle Congruency

STA: G.G. 31
REF: 061118ge
REF: 011122ge

TOP: Isosceles Triangle Theorem
STA: G.G. 1
STA: G.G. 28

540 ANS: $4 \quad$ PTS: 2
TOP: Equations of Circles
541 ANS: 3 PTS: 2
REF: 061114ge
STA: G.G. 73

TOP: Exterior Angle Theorem
542 ANS:
$R^{\prime}(-3,-2), S^{\prime}(-4,4)$, and $T^{\prime}(2,2)$.
PTS: 2 REF: 011232g
STA: G.G. 54
TOP: Rotations
543 ANS: 3
PTS: 2
REF: 061122ge
STA: G.G. 56
TOP: Identifying Transformations
544 ANS: 1

$$
\begin{aligned}
m=\frac{3}{2} \quad y & =m x+b \\
2 & =\frac{3}{2}(1)+b \\
\frac{1}{2} & =b
\end{aligned}
$$

PTS: 2
REF: 081217ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines
545 ANS:
2 is not a prime number, false.
PTS: 2
REF: 081229ge
STA: G.G. 24
TOP: Negations
546 ANS: 2
$V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot\left(\frac{6}{2}\right)^{3} \approx 36 \pi$

PTS: 2
547 ANS: 3
REF: 081215ge
STA: G.G. 16
REF: 061102ge
TOP: Volume and Surface Area STA: G.G. 29
TOP: Triangle Congruency
548 ANS: 3
The slope of $9 x-3 y=27$ is $m=\frac{-A}{B}=\frac{-9}{-3}=3$, which is the opposite reciprocal of $-\frac{1}{3}$.
PTS: 2 REF: 081225ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
549 ANS: 2
PTS: 2
REF: 081202ge
STA: G.G. 55
TOP: Properties of Transformations
550 ANS:
$V=\frac{4}{3} \pi \cdot 9^{3}=972 \pi$

PTS: 2 REF: 081131ge STA: G.G. 16 TOP: Volume and Surface Area
551 ANS: 4
$\overline{A B}$ is a vertical line, so its perpendicular bisector is a horizontal line through the midpoint of $\overline{A B}$, which is $(0,3)$.
PTS: 2 REF: 011225ge STA: G.G. 68 TOP: Perpendicular Bisector

552 ANS: 2
$\frac{4 x+10}{2}=2 x+5$
PTS: 2
553 ANS: 2
REF: 011103ge
TOP: Triangles in the Coordinate Plane
554 ANS: 4
PTS: 2
TOP: Isosceles Triangle Theorem
555 ANS:

STA: G.G. 42
REF: 081226ge

REF: 061124ge
STA: G.G. 31
$x(x+2)=12 \cdot 2 . \overline{R T}=6+4=10 . y \cdot y=18 \cdot 8$

$$
\begin{aligned}
x^{2}+2 x-24 & =0 \\
(x+6)(x-4) & =0 \\
x & =4
\end{aligned}
$$

$$
y^{2}=144
$$

$$
y=12
$$

PTS: 4
REF: 061237ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: tangent and secant
556 ANS: 2
PTS: 2
REF: 081108ge
STA: G.G. 54
TOP: Reflections
KEY: basic
557 ANS: 3
PTS: 2
REF: 081218ge
STA: G.G. 1
TOP: Planes
558
ANS: 4
$4(x+4)=8^{2}$
$4 x+16=64$
$4 x=48$
$x=12$
PTS: 2
REF: 061117ge
STA: G.G. 53
TOP: Segments Intercepted by Circle KEY: tangent and secant

559 ANS: 4

$$
\begin{array}{rlrl}
-5 & =\frac{-3+x}{2}, & 2 & =\frac{6+y}{2} \\
-10 & =-3+x & 4 & =6+y \\
-7 & =x & -2 & =y
\end{array}
$$

PTS: 2 REF: 081203ge STA: G.G. 66 TOP: Midpoint 560 ANS:
$A^{\prime}(7,-4), B^{\prime}(7,-1) \cdot C^{\prime}(9,-4)$. The areas are equal because translations preserve distance.

PTS: 4 REF: 011235ge STA: G.G. 55 TOP: Properties of Transformations
561 ANS: 2
$3 x+x+20+x+20=180$

$$
\begin{aligned}
5 x & =40 \\
x & =28
\end{aligned}
$$

PTS: 2
REF: 081222ge
ANS: 3
PTS: 2
STA: G.G. 31
REF: 081227ge
TOP: Isosceles Triangle Theorem
TOP: Midsegments
ANS: 2
$V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot 3^{3}=36 \pi$
PTS: 2 REF: 061112ge STA: G.G. 16 TOP: Volume and Surface Area
564

$$
\begin{aligned}
& m=\left(\frac{8+0}{2}, \frac{2+6}{2}\right)=(4,4) m=\frac{6-2}{0-8}=\frac{4}{-8}=-\frac{1}{2} m_{\perp}=2 \quad y \\
&=m x+b \\
& 4=2(4)+b \\
&-4=b
\end{aligned}
$$

PTS: 2 REF: 081126ge STA: G.G. 68 TOP: Perpendicular Bisector
565 ANS:
$(5-2) 180=540 . \frac{540}{5}=108$ interior. $180-108=72$ exterior
PTS: 2 REF: 011131ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons

566 ANS:

PTS: 2 REF: 081233ge STA: G.G. 19 TOP: Constructions
567 ANS:

PTS: 2 REF: 061232ge STA: G.G. 17 TOP: Constructions
568 ANS: 4
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.
PTS: 2 REF: 081220ge STA: G.G. 43 TOP: Centroid
ANS: 4 PTS: 2 REF: 011216ge STA: G.G. 29
TOP: Triangle Congruency
570 ANS: 4
$d=\sqrt{(-5-3)^{2}+(4-(-6))^{2}}=\sqrt{64+100}=\sqrt{164}=\sqrt{4} \sqrt{41}=2 \sqrt{41}$
PTS: 2 REF: 011121ge STA: G.G. 67 TOP: Distance
KEY: general
571 ANS: 2
$7 x=5 x+30$
$2 x=30$
$x=15$
PTS: 2 REF: 061106ge STA: G.G. 35 TOP: Parallel Lines and Transversals
572 ANS: 2
$m=\frac{-A}{B}=\frac{-20}{-2}=10 . m_{\perp}=-\frac{1}{10}$
PTS: 2 REF: 061219ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
573 ANS: 3
$\sqrt{5^{2}+12^{2}}=13$
PTS: 2
REF: 061116ge
STA: G.G. 39
TOP: Special Parallelograms

574 ANS: 4

$$
\begin{aligned}
& m=\frac{-A}{B}=\frac{-3}{2} . \quad y=m x+b \\
& -1=\left(\frac{-3}{2}\right)(2)+b \\
& -1=-3+b \\
& 2=b
\end{aligned}
$$

PTS: 2
REF: 061226ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines
575 ANS: 4

PTS: 2
REF: 081114ge
STA: G.G. 28
TOP: Triangle Congruency
576 ANS: 1
$d=\sqrt{(4-1)^{2}+(7-11)^{2}}=\sqrt{9+16}=\sqrt{25}=5$
PTS: 2
REF: 011205ge
STA: G.G. 67
TOP: Distance
KEY: general
577 ANS: 3
PTS: 2
REF: 081208ge
STA: G.G. 27
TOP: Quadrilateral Proofs
578
ANS: 2 PTS: 2
REF: 061208ge
STA: G.G. 19
TOP: Constructions
579 ANS: 3
PTS: 2
REF: 011209ge
STA: G.G. 44
TOP: Similarity Proofs
580 ANS: 1
PTS: 2
REF: 011112ge STA: G.G. 39
TOP: Special Parallelograms
581 ANS: 3
$\frac{7 x}{4}=\frac{7}{x} .7(2)=14$
$7 x^{2}=28$
$x=2$
PTS: 2
REF: 061120ge
STA: G.G. 45
KEY: basic
582
ANS: 1
PTS: 2
REF: 061125ge
STA: G.G. 39
TOP: Special Parallelograms

583 ANS:
C

$$
T^{\prime}(-6,3), A^{\prime}(-3,3), P^{\prime}(-3,-1)
$$

PTS: 2
REF: 061229ge STA: G.G. 54
TOP: Translations
584 ANS: 3
$8^{2}+24^{2} \neq 25^{2}$
PTS: 2
REF: 011111ge
STA: G.G. 48
TOP: Pythagorean Theorem
585 ANS:

PTS: 2
REF: 061130ge
STA: G.G. 20
TOP: Constructions
586 ANS:

PTS: 2
REF: 011233ge
STA: G.G. 17
ANS: 3
PTS: 2
REF: 061218ge
TOP: Interior and Exterior Angles of Polygons

TOP: Constructions STA: G.G. 36

588 ANS: $2 \quad$ PTS: 2
REF: 011203ge STA: G.G. 73
TOP: Equations of Circles
589 ANS: 3
$7 x=5 x+30$
$2 x=30$
$x=15$
PTS: 2 REF: 081109ge STA: G.G. 35 TOP: Parallel Lines and Transversals
590 ANS:
The slope of $y=2 x+3$ is 2 . The slope of $2 y+x=6$ is $\frac{-A}{B}=\frac{-1}{2}$. Since the slopes are opposite reciprocals, the lines are perpendicular.

PTS: 2
591 ANS: 4
REF: 011231ge
PTS: 2
TOP: Segments Intercepted by Circle
592 ANS: 2
TOP: Negations
593 ANS:
(
PTS: 4
REF: 081237ge
STA: G.G. 70
TOP: Quadratic-Linear Systems
594 ANS:
11. $x^{2}+6 x=x+14.6(2)-1=11$
$x^{2}+5 x-14=0$
$(x+7)(x-2)=0$
$x=2$
PTS: 2
595 ANS: 1
TOP: Constructions
596 ANS: 2

$$
\begin{aligned}
6 x+42 & =18 x-12 \\
54 & =12 x \\
x & =\frac{54}{12}=4.5
\end{aligned}
$$

PTS: 2
REF: 011201ge
STA: G.G. 35
TOP: Parallel Lines and Transversals

597 ANS: 3
As originally administered, this question read, "Which fact is not sufficient to show that planes \mathbb{R} and S are perpendicular?" The State Education Department stated that since a correct solution was not provided for Question 11, all students shall be awarded credit for this question.

	PTS: 2	REF: 081211ge	STA: G.G. 5	TOP: Planes	
598	ANS: 2	PTS: 2	REF: 011125ge	STA: G.G. 74	
	TOP: Graphing Circles				
599	ANS: 4	PTS: 2	REF: 081110ge	STA: G.G. 71	
	TOP: Equations of Circles				
600	ANS: 1	PTS: 2	REF: 081121ge	STA: G.G. 39	
	TOP: Special Parallelograms				
601	ANS: 1	PTS: 2	REF: 061113ge	STA: G.G. 63	
	TOP: Parallel and Perpendicular Lines				

ANS: 3
603 ANS: 3
$-5+3=-2 \quad 2+-4=-2$
PTS: 2
REF: 011107ge
STA: G.G. 54
REF: 011108ge
TOP: Translations
STA: G.G. 27
TOP: Angle Proofs
605 ANS:

PTS: 4
REF: 061135ge
STA: G.G. 23
TOP: Locus

606 ANS: 3

$8 x=24$
$x=3$
PTS: 2 REF: 061216ge STA: G.G. 46 TOP: Side Splitter Theorem
607 ANS: 4
$20+8+10+6=44$.

PTS: 2
REF: 061211ge
STA: G.G. 42
TOP: Midsegments
608 ANS:

PTS: 2
REF: 060932ge
STA: G.G. 22
TOP: Locus

