JMAP
 REGENTS BY PERFORMANCE INDICATOR: TOPIC

NY Integrated Algebra Regents Exam Questions from Fall 2007 to June 2015 Sorted by PI: Topic www.jmap.org

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic

NUMBERS, OPERATIONS
AND PROPERTIES
A.N.6: EVALUATING EXPRESSIONS

1 What is the value of the expression $|-5 x+12|$
when $x=5$?
$\begin{array}{ll}1 & -37\end{array}$
$2-13$
313
437

2 The value of the expression $-|a-b|$ when $a=7$ and $b=-3$ is
1 -10
$2 \quad 10$
3 -4
44

3 What is the value of the expression $\left(a^{3}+b^{0}\right)^{2}$ when $a=-2$ and $b=4$?
164
249
$3-49$
$4-64$

4 What is the value of the expression $-3 x^{2} y+4 x$ when $x=-4$ and $y=2$?
1 -112
$2-80$
380
4272

5 What is the value of $\left|\frac{4(-6)+18}{4!}\right|$?
$1 \quad \frac{1}{4}$
$2-\frac{1}{4}$
312
$4-12$

6 If $x=-3$, what is the value of $|x-4|-x^{2}$?
1 -8
$2-2$
37
$4 \quad 16$

7 The value of the expression $6!+\frac{5!(3!)}{4!}-10$ is
150
2102
3740
4750

8 When $x=4$, the value of $2 x^{0}+x$! is
$1 \quad 24$
$2 \quad 25$
326
428

9 What is the value of the expression $3 a^{2}-4|a|+6$ when $a=-3$?
1 -24
2 -9
321
445

10 The value of the expression $|-20|-|6|$ is
126
214
3 - 14
$4-26$

A.N.1: IDENTIFYING PROPERTIES

11 Which property is illustrated by the equation $a x+a y=a(x+y)$?
1 associative
2 commutative
3 distributive
4 identity

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

12 The statement $2+0=2$ is an example of the use of which property of real numbers?
1 associative
2 additive identity
3 additive inverse
4 distributive

13 A method for solving $5(x-2)-2(x-5)=9$ is shown below. Identify the property used to obtain each of the two indicated steps.
$5(x-2)-2(x-5)=9$
(1) $5 x-10-2 x+10=9$
(1)
(2)
$3 x+0=9$
$3 x=9$
$x=3$

14 The equation $3(4 x)=(4 x) 3$ illustrates which property?
1 commutative
2 associative
3 distributive
4 multiplicative inverse
15 When solving for the value of x in the equation $4(x-1)+3=18$, Aaron wrote the following lines on the board.

[line 1]	$4(x-1)+3$	$=18$
[line 2]	$4(x-1)$	$=15$
[line 3]	$4 x-1$	$=15$
[line 4]	$4 x$	$=16$
[line 5]	x	$=4$

Which property was used incorrectly when going from line 2 to line 3 ?
1 distributive
2 commutative
3 associative
4 multiplicative inverse

16 A teacher asked the class to solve the equation $3(x+2)=21$. Robert wrote $3 x+6=21$ as his first step. Which property did he use?
1 associative property
2 commutative property
3 distributive property
4 zero property of addition

17 The equation
$(x-6)(8+x)=(x-6) \cdot(8)+(x-6) \cdot(x)$ illustrates the use of which property?
1 distributive property
2 associative property of addition
3 associative property of multiplication
4 commutative property of multiplication

A.N.1: PROPERTIES OF REALS

18 What is the additive inverse of the expression
$a-b$?
$1 a+b$
$2 a-b$
$3-a+b$
$4-a-b$

19 Perform the indicated operation: $-6(a-7)$ State the name of the property used.

20 Which equation illustrates the associative property?
$1 \quad x+y+z=x+y+z$
$2 x(y+z)=x y+x z$
$3 \quad x+y+z=z+y+x$
$4 \quad(x+y)+z=x+(y+z)$

21 Which equation is an example of the use of the associative property of addition?
$1 \quad x+7=7+x$
$23(x+y)=3 x+3 y$
$3(x+y)+3=x+(y+3)$
$4 \quad 3+(x+y)=(x+y)+3$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

22 Which statement illustrates the additive identity property?
$16+0=6$
$2-6+6=0$
$3 \quad 4(6+3)=4(6)+4(3)$
$4(4+6)+3=4+(6+3)$

23 Which equation illustrates the multiplicative inverse property?
$1 \quad a \cdot 1=a$
$2 \quad a \cdot 0=0$
$3 \quad a\left(\frac{1}{a}\right)=1$
$4 \quad(-a)(-a)=a^{2}$

A.N.1: PROPERTIES OF INTEGERS

24 The set of integers is not closed for
1 division
2 multiplication
3 addition
4 subtraction

A.A.29: SET THEORY

25 Which interval notation represents the set of all numbers from 2 through 7, inclusive?
1 (2,7]
$2(2,7)$
$3 \quad[2,7)$
$4 \quad[2,7]$

26 The set $\{1,2,3,4\}$ is equivalent to
$1 \quad\{x \mid 1<x<4$, where x is a whole number $\}$
$2\{x \mid 0<x<4$, where x is a whole number $\}$
$3\{x \mid 0<x \leq 4$, where x is a whole number $\}$
$4\{x \mid 1<x \leq 4$, where x is a whole number $\}$

27 The set $\{11,12\}$ is equivalent to
$1\{x \mid 11<x<12$, where x is an integer $\}$
$2\{x \mid 11<x \leq 12$, where x is an integer $\}$
$3\{x \mid 10 \leq x<12$, where x is an integer $\}$
$4\{x \mid 10<x \leq 12$, where x is an integer $\}$

28 Which interval notation represents the set of all numbers greater than or equal to 5 and less than 12 ?
$1 \quad[5,12)$
$2(5,12]$
$3(5,12)$
$4 \quad[5,12]$

29 Which set-builder notation describes
$\{-3,-2,-1,0,1,2\}$?
1 \{x|-3 $\leq x<2$, where x is an integer $\}$
$2\{x \mid-3<x \leq 2$, where x is an integer $\}$
$3\{x \mid-3<x<2$, where x is an integer $\}$
$4\{x \mid-3 \leq x \leq 2$, where x is an integer $\}$

30 Which interval notation represents the set of all real numbers greater than 2 and less than or equal to 20 ?
$1(2,20)$
$2(2,20]$
$3 \quad[2,20)$
$4 \quad[2,20]$

31 Which notation describes $\{1,2,3\}$?
$1 \quad\{x \mid 1 \leq x<3$, where x is an integer $\}$
$2\{x \mid 0<x \leq 3$, where x is an integer $\}$
$3\{x \mid 1<x<3$, where x is an integer $\}$
$4\{x \mid 0 \leq x \leq 3$, where x is an integer $\}$

32 In interval notation, the set of all real numbers greater than -6 and less than or equal to 14 is represented by
$1(-6,14)$
$2[-6,14)$
$3(-6,14]$
$4 \quad[-6,14]$

33 Which set builder notation describes $\{-2,-1,0,1,2,3\}$?
$1 \quad\{x \mid-3 \leq x \leq 3$, where x is an integer $\}$
$2\{x \mid-3<x \leq 4$, where x is an integer $\}$
$3\{x \mid-2<x<3$, where x is an integer $\}$
$4 \quad\{x \mid-2 \leq x<4$, where x is an integer $\}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

34 Which interval notation describes the set
$S=\{x \mid 1 \leq x<10\}$?
1 [1,10]
$2(1,10]$
$3 \quad[1,10)$
$4(1,10)$
35 The inequality $-2 \leq x \leq 3$ can be written as
$1(-2,3)$
$2 \quad[-2,3)$
$3(-2,3]$
$4 \quad[-2,3]$

36 Which interval notation represents $-3 \leq x \leq 3$?
$1 \quad[-3,3]$
$2(-3,3]$
$3 \quad[-3,3)$
$4(-3,3)$

37 Written in set-builder notation, $S=\{1,3,5,7,9\}$ is
$1 \quad\{x \mid 1<x<9$, where x is a prime number $\}$
$2\{x \mid 1 \leq x \leq 9$, where x is a prime number $\}$
$3\{x \mid 1<x<9$, where x is an odd integer $\}$
$4 \quad\{x \mid 1 \leq x \leq 9$, where x is an odd integer $\}$

38 Which notation is equivalent to the inequality
$-3<x \leq 7$?
1 [-3,7]
$2(-3,7]$
$3 \quad[-3,7)$
$4(-3,7)$

39 Which set of integers is included in ($-1,3$]?
1 \{0, 1,2,3\}
2 \{-1, 0, 1, 2\}
3 \{-1, 0, 1, 2, 3, 4\}
$4 \quad\{-2,-1,0,1,2,3\}$

40 The set of integers in $[6,10$) can be written as
1 \{6, 7, 8, 9, 10\}
$2\{7,8,9,10\}$
3 \{6, 7, 8, 9\}
$4 \quad\{7,8,9\}$

A.A.30: SET THEORY

41 Consider the set of integers greater than -2 and less than 6. A subset of this set is the positive factors of 5. What is the complement of this subset?

1 \{0,2,3,4\}
$2\{-1,0,2,3,4\}$
3 \{-2,-1, 0, 2, 3, 4, 6\}
$4 \quad\{-2,-1,0,1,2,3,4,5,6\}$
42 Twelve players make up a high school basketball team. The team jerseys are numbered 1 through 12. The players wearing the jerseys numbered 3,6 , 7,8 , and 11 are the only players who start a game. Using set notation, list the complement of this subset.

43 Given:
$A=\{$ All even integers from 2 to 20, inclusive $\}$
$B=\{10,12,14,16,18\}$
What is the complement of set B within the universe of set A ?
1 \{4,6,8\}
$2\{2,4,6,8\}$
3 \{4,6,8,20\}
$4\{2,4,6,8,20\}$

44 Given: Set $U=\{S, O, P, H, I, A\}$
Set $B=\{A, I, O\}$
If set B is a subset of set U, what is the complement of set B ?
$1\{O, P, S\}$
$2\{I, P, S\}$
$3\{A, H, P\}$
$4\{H, P, S\}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

45 Given: $U=\{1,2,3,4,5,6,7,8\}$
$B=\{2,3,5,6\}$
Set B is a subset of set U. What is the complement of set B ?
1 \{ \}
$2\{2,3,5,6\}$
$3\{1,4,7,8\}$
$4\{1,2,3,4,5,6,7,8\}$

46 If the universal set is \{pennies, nickels, dimes, quarters $\}$, what is the complement of the set \{nickels\}?
1 \{ \}
2 \{pennies, quarters\}
3 \{pennies, dimes, quarters\}
4 \{pennies, nickels, dimes, quarters\}

47 Given:
$A=\{$ perfect square integers from 4-100, inclusive $\}$
$B=\{16,36,49,64\}$
The complement of set B in the universal set A is
$1 \quad\{9,25,81\}$
$2\{4,9,25,81,100\}$
$3\{1,4,9,25,81,100\}$
$4 \quad\{4,16,36,49,64,100\}$

48 Given:
$A=$ \{all odd integers from 1 through 19, inclusive $\}$
$B=\{9,11,13,15,17\}$
What is the complement of set B within set A ?
$1\{3,5,7\}$
$2\{3,5,7,19\}$
$3\{1,3,5,7\}$
$4\{1,3,5,7,19\}$

49 Given: $U=\{x \mid 0<x<10$ and x is an integer $\}$
$S=\{x \mid 0<x<10$ and x is an odd integer $\}$
The complement of set S within the universal set U is
$1 \quad\{0,2,4,6,8,10\}$
$2\{2,4,6,8,10\}$
$3\{0,2,4,6,8\}$
$4 \quad\{2,4,6,8\}$

A.A.31: SET THEORY

50 Given:
Set $A=\{(-2,-1),(-1,0),(1,8)\}$
Set $B=\{(-3,-4),(-2,-1),(-1,2),(1,8)\}$.
What is the intersection of sets A and B ?
$1\{(1,8)\}$
$2\{(-2,-1)\}$
$3\{(-2,-1),(1,8)\}$
$4\{(-3,-4),(-2,-1),(-1,2),(-1,0),(1,8)\}$

51 Maureen tracks the range of outdoor temperatures over three days. She records the following information.

Express the intersection of the three sets as an inequality in terms of temperature, t.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

52 Given: $Q=\{0,2,4,6\}$

$$
\begin{aligned}
& W=\{0,1,2,3\} \\
& Z=\{1,2,3,4\}
\end{aligned}
$$

What is the intersection of sets Q, W, and Z ?
1 \{2\}
2 \{0,2\}
3 \{1,2,3\}
$4 \quad\{0,1,2,3,4,6\}$

53 Which set represents the intersection of sets A, B, and C shown in the diagram below?

$1\{3,4,5,6,7\}$
2 \{2\}
$3\{2,3,4,5,6,7\}$
$4\{1,2,3,4,5,6,7,8,9\}$

54 Given: $X=\{1,2,3,4\}$

$$
\begin{aligned}
& Y=\{2,3,4,5\} \\
& Z=\{3,4,5,6\}
\end{aligned}
$$

What is the intersection of sets X, Y, and Z ?
$1 \quad\{3,4\}$
$2\{2,3,4\}$
$3\{3,4,5\}$
$4\{1,2,3,4,5,6\}$

55 Given: $A=\{3,6,9,12,15\}$

$$
B=\{2,4,6,8,10,12\}
$$

What is the union of sets A and B ?
1 \{6\}
$2\{6,12\}$
$3\{2,3,4,8,9,10,15\}$
$4 \quad\{2,3,4,6,8,9,10,12,15\}$

56 Given: $A=\{2,4,5,7,8\}$

$$
B=\{3,5,8,9\}
$$

What is $A \cup B$?
1 \{5\}
$2 \quad\{5,8\}$
3 \{2, 3, 4, 7, 9\}
$4\{2,3,4,5,7,8,9\}$

57 If $A=\{0,1,3,4,6,7), B=\{0,2,3,5,6)$, and $C=\{0,1,4,6,7)$, then $A \cap B \cap C$ is
$1\{0,1,2,3,4,5,6,7\}$
$2\{0,3,6\}$
$3\{0,6\}$
$4 \quad\{0\}$

58 Given: $A=\{1,3,5,7,9\}$

$$
\begin{aligned}
& B=\{2,4,6,8,10\} \\
& C=\{2,3,5,7\} \\
& D=\{1,2,3,4,5,6,7,8,9,10\}
\end{aligned}
$$

What statement is false?
$1 \quad A \cup B \cup C=D$
$2 A \cap B \cap C=\{ \}$
$3 A \cup C=\{1,2,3,5,7\}$
$4 \quad A \cap C=\{3,5,7\}$

59 Given: $R=\{1,2,3,4\}$

$$
\begin{aligned}
& A=\{0,2,4,6\} \\
& P=\{1,3,5,7\}
\end{aligned}
$$

What is $R \cap P$?
$1\{0,1,2,3,4,5,6,7\}$
$2\{1,2,3,4,5,7\}$
$3\{1,3\}$
$4 \quad\{2,4\}$

60 Given: $M=$ \{green, red, yellow, black $\}$

$$
N=\{\text { blue, green, yellow }\}
$$

Which set represents $M \cup N$?
1 \{yellow\}
2 \{green, yellow\}
3 \{blue, red, black
4 \{green, red, yellow, blue, black\}

61 Given the following:

$$
\begin{aligned}
& A=\{\text { Charles, Kyle, Nakim, Jade }\} \\
& B=\{\text { Charles, Jade, Alicia, Kyle }\} \\
& C=\{\text { Kyle, Nakim, Jade, Dylan }\}
\end{aligned}
$$

What is the intersection of sets A, B, and C ?
1 \{Kyle, Nakim\}
2 \{Charles, Kyle\}
3 \{Jade, Nakim\}
4 \{Jade, Kyle\}

62 If $A=\{1,2,3,4,5,6,7,8\}$ and
$B=\{2,4,6,8,10,12\}$, the intersection of sets A and B is
$1 \quad\{10,12\}$
$2\{2,4,6,8\}$
3 \{1, 3, 5, 7\}
$4\{1,2,3,4,5,6,7,8,10,12\}$

63 If $A=\{1,2,3,4,5,6,7,8\}$ and
$B=\{2,4,6,8,10,12\}$, then the intersection of these two sets is
$1 \quad\{10,12\}$
$2\{1,3,5,7\}$
$3 \quad\{2,4,6,8\}$
$4\{1,2,3,4,5,6,7,8,10,12\}$

GRAPHS AND STATISTICS
 A.S.5: FREQUENCY HISTOGRAMS, BAR GRAPHS AND TABLES

64 Twenty students were surveyed about the number of days they played outside in one week. The results of this survey are shown below.
$\{6,5,4,3,0,7,1,5,4,4,3,2,2,3,2,4,3,4,0,7\}$
Complete the frequency table below for these data.

Interval	Tally	Frequency
$0-1$		
$2-3$		
$4-5$		
$6-7$		

Complete the cumulative frequency table below using these data.

Number of Days Outside

Interval	Cumulative Frequency
$0-1$	
$0-3$	
$0-5$	
$0-7$	

On the grid below, create a cumulative frequency histogram based on the table you made.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

65 The Fahrenheit temperature readings on 30 April mornings in Stormville, New York, are shown below.
$41^{\circ}, 58^{\circ}, 61^{\circ}, 54^{\circ}, 49^{\circ}, 46^{\circ}, 52^{\circ}, 58^{\circ}, 67^{\circ}, 43^{\circ}$,
$47^{\circ}, 60^{\circ}, 52^{\circ}, 58^{\circ}, 48^{\circ}, 44^{\circ}, 59^{\circ}, 66^{\circ}, 62^{\circ}, 55^{\circ}$,
$44^{\circ}, 49^{\circ}, 62^{\circ}, 61^{\circ}, 59^{\circ}, 54^{\circ}, 57^{\circ}, 58^{\circ}, 63^{\circ}, 60^{\circ}$
Using the data, complete the frequency table below.

Interval	Tally	Frequency
$40-44$		
$45-49$		
$50-54$		
$55-59$		
$60-64$		
$65-69$		

On the grid below, construct and label a frequency histogram based on the table.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

66 The test scores for 18 students in Ms. Mosher's class are listed below:

86, 81, 79, 71, 58, 87, 52, 71, 87,
87, 93, 64, 94, 81, 76, 98, 94, 68
Complete the frequency table below.

Interval	Tally	Frequency
$51-60$		
$61-70$		
$71-80$		
$81-90$		
$91-100$		

Draw and label a frequency histogram on the grid below.

67 Ms. Hopkins recorded her students' final exam scores in the frequency table below.

Interval	Tally	Frequency
$61-70$	HII	5
$71-80$	IIII	4
$81-90$	HII IIII	9
$91-100$	HII I	6

On the grid below, construct a frequency histogram based on the table.

68 Mr. Suppe recorded the height, in inches, of each student in his class. The results are recorded in the table below.

60	59	70	65	64
61	58	72	75	66
65	67	63	62	68
68	69	74	61	70

Which cumulative frequency histogram represents the data?

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

1
Interval

69 The following set of data represents the heights, in inches, of the 20 students in Ms. Fitzgerald's freshman class:

$$
\begin{aligned}
& 63,56,67,59,70,69,62,74,66,72 \\
& 67,60,70,66,67,58,68,72,63,67
\end{aligned}
$$

Complete the frequency table below.
Heights of Students

Interval	Tally	Frequency
$55-59$		
$60-64$		
$65-69$		
$70-74$		

On the grid below, draw and label a frequency histogram for these data.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A.S.9: FREQUENCY HISTOGRAMS, BAR GRAPHS AND TABLES

70 The table below shows a cumulative frequency distribution of runners' ages.

Cumulative Frequency Distribution
of Runners' Ages

Age Group	Total
$20-29$	8
$20-39$	18
$20-49$	25
$20-59$	31
$20-69$	35

According to the table, how many runners are in their forties?
125
$2 \quad 10$
37
46

71 The diagram below shows a cumulative frequency histogram of the students' test scores in Ms. Wedow's algebra class.

Determine the total number of students in the class. Determine how many students scored higher than 70. State which ten-point interval contains the median. State which two ten-point intervals contain the same frequency.

72 The cumulative frequency table below shows the length of time that 30 students spent text messaging on a weekend.

Minutes Used	Cumulative Frequency
$31-40$	2
$31-50$	5
$31-60$	10
$31-70$	19
$31-80$	30

Which 10-minute interval contains the first quartile?
1 31-40
2 41-50
3 51-60
4 61-70

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

73 The following cumulative frequency histogram shows the distances swimmers completed in a recent swim test.

Based on the cumulative frequency histogram, determine the number of swimmers who swam between 200 and 249 yards. Determine the number of swimmers who swam between 150 and 199 yards. Determine the number of swimmers who took the swim test.

74 The cumulative frequency table below shows the number of minutes 31 students spent text messaging on a weekend.

Text-Use Interval (minutes)	Cumulative Frequency
$41-50$	2
$41-60$	5
$41-70$	10
$41-80$	19
$41-90$	31

Determine which 10 -minute interval contains the median. Justify your choice.

A.S.5: BOX-AND-WHISKER PLOTS

75 The data set $5,6,7,8,9,9,9,10,12,14,17,17$, $18,19,19$ represents the number of hours spent on the Internet in a week by students in a mathematics class. Which box-and-whisker plot represents the data?

76 The test scores from Mrs. Gray's math class are shown below.
$72,73,66,71,82,85,95,85,86,89,91,92$
Construct a box-and-whisker plot to display these data.

77 The number of songs fifteen students have on their MP3 players is:

$$
\begin{gathered}
120,124,132,145,200,255,260,292, \\
308,314,342,407,421,435,452
\end{gathered}
$$

State the values of the minimum, 1st quartile, median, 3rd quartile, and maximum. Using these values, construct a box-and-whisker plot using an appropriate scale on the line below.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

78 Using the line provided, construct a box-and-whisker plot for the 12 scores below. $26,32,19,65,57,16,28,42,40,21,38,10$

Determine the number of scores that lie above the 75th percentile.

79 During the last 15 years of his baseball career, Andrew hit the following number of home runs each season.

$$
35,24,32,36,40,32,40,38,36,33,11,20,19,22,8
$$

State and label the values of the minimum, 1 st quartile, median, 3rd quartile, and maximum. Using the line below, construct a box-and-whisker plot for this set of data.

80 Using his data on annual deer population in a forest, Noj found the following information:

25th percentile: 12
50th percentile: 15
75th percentile: 22
Minimum population: 8
Maximum population: 27
Using the number line below, construct a box-and-whisker plot to display these data.

A.S.6: BOX-AND-WHISKER PLOTS

81 What is the value of the third quartile shown on the box-and-whisker plot below?

16
28.5

310
412

82 A movie theater recorded the number of tickets sold daily for a popular movie during the month of June. The box-and-whisker plot shown below represents the data for the number of tickets sold, in hundreds.

Which conclusion can be made using this plot?
1 The second quartile is 600 .
2 The mean of the attendance is 400 .
3 The range of the attendance is 300 to 600 .
4 Twenty-five percent of the attendance is between 300 and 400.

83 The box-and-whisker plot below represents students' scores on a recent English test.

What is the value of the upper quartile?

1	68
2	76
3	84
4	94

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

84 The box-and-whisker plot below represents the math test scores of 20 students.

What percentage of the test scores are less than 72?
125
250
375
4100

85 What is the range of the data represented in the box-and-whisker plot shown below?

140
245
360
4100

86 Based on the box-and-whisker plot below, which statement is false?

1 The median is 7.
2 The range is 12 .
3 The first quartile is 4 .
4 The third quartile is 11 .

87 The box-and-whisker plot below represents the ages of 12 people.

What percentage of these people are age 15 or older?
125
235
375
485

88 The box-and-whisker plot below represents the results of tests scores in a math class.

What do the scores 65,85 , and 100 represent?
$1 Q_{1}$, median, Q_{3}
$2 Q_{1}, Q_{3}$, maximum
3 median, Q_{1}, maximum
4 minimum, median, maximum
89 The box-and-whisker plot below represents a set of grades in a college statistics class.

Which interval contains exactly 50% of the grades?
1 63-88
2 63-95
3 75-81
4 75-88

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic

90 The box-and-whisker plot shown below represents the number of magazine subscriptions sold by members of a club.

Which statistical measures do points B, D, and E represent, respectively?
1 minimum, median, maximum
2 first quartile, median, third quartile
3 first quartile, third quartile, maximum
4 median, third quartile, maximum
91 In the box-and-whisker plot below, what is the 2nd quartile?

125
230
345
450

A.S.11: QUARTILES AND PERCENTILES

92 The freshman class held a canned food drive for 12 weeks. The results are summarized in the table below.

Canned Food Drive Results

Week	1	2	3	4	5	6	7	8	9	10	11	12
Number of Cans	20	35	32	45	58	46	28	23	31	79	65	62

Which number represents the second quartile of the number of cans of food collected?
129.5
230.5

340
460

93 Brianna's score on a national math assessment exceeded the scores of 95,000 of the 125,000 students who took the assessment. What was her percentile rank?
16
$2 \quad 24$
$3 \quad 31$
476
94 The weights of 40 students were recorded. If the 75th percentile of their weights was 140 pounds, what is the total number of students who weighed more than 140 pounds?
$1 \quad 10$
20
30
44

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A.S.7: SCATTER PLOTS

95 For 10 days, Romero kept a record of the number of hours he spent listening to music. The information is shown in the table below.

Day	1	2	3	4	5	6	7	8	9	10
Hours	9	3	2	6	8	6	10	4	5	2

Which scatter plot shows Romero's data graphically?

2

3

96 The school store did a study comparing the cost of a sweatshirt with the number of sweatshirts sold. The price was changed several times and the numbers of sweatshirts sold were recorded. The data are shown in the table below.

Cost of Sweatshirt	$\$ 10$	$\$ 25$	$\$ 15$	$\$ 20$	$\$ 5$
Number Sold	9	6	15	11	14

Which scatter plot represents the data?

Sweatshirt
(in dollars)
1

3 Sweatshirt

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

97 The maximum height and speed of various roller coasters in North America are shown in the table below.

Maximum Speed, in mph, (x)	45	50	54	60	65	70
Maximum Height, in feet, (y)	63	80	105	118	141	107

Which graph represents a correct scatter plot of the data?

1

2

A.S.8: SCATTER PLOTS

98 Which equation most closely represents the line of best fit for the scatter plot below?

$1 y=x$
$2 y=\frac{2}{3} x+1$
$3 \quad y=\frac{3}{2} x+4$
$4 \quad y=\frac{3}{2} x+1$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

99 The table below shows the number of prom tickets sold over a ten-day period.

Prom Ticket Sales

Day (x)	1	2	5	7	10
Number of Prom Tickets Sold (y)	30	35	55	60	70

Plot these data points on the coordinate grid below. Use a consistent and appropriate scale. Draw a reasonable line of best fit and write its equation.

100 A scatter plot was constructed on the graph below and a line of best fit was drawn.

What is the equation of this line of best fit?
$1 \quad y=x+5$
$2 y=x+25$
$3 y=5 x+5$
$4 y=5 x+25$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

101 There is a negative correlation between the number of hours a student watches television and his or her social studies test score. Which scatter plot below displays this correlation?

1

2

3

4

102 Which scatter plot shows the relationship between x and y if x represents a student score on a test and y represents the number of incorrect answers a student received on the same test?

1

2

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

103 What is the relationship between the independent and dependent variables in the scatter plot shown below?

1 undefined correlation
2 negative correlation
3 positive correlation
4 no correlation

104 The scatter plot below represents the relationship between the number of peanuts a student eats and the student's bowling score.

Which conclusion about the scatter plot is valid?
1 There is almost no relationship between eating peanuts and bowling score.
2 Students who eat more peanuts have higher bowling scores.
3 Students who eat more peanuts have lower bowling scores.
4 No bowlers eat peanuts.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

105 A set of data is graphed on the scatter plot below.

This scatter plot shows
1 no correlation
2 positive correlation
3 negative correlation
4 undefined correlation

106 The scatter plot shown below represents a relationship between x and y.

This type of relationship is
1 a positive correlation
2 a negative correlation
3 a zero correlation
4 not able to be determined

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

107 The number of hours spent on math homework during one week and the math exam grades for eleven students in Ms. Smith's algebra class are plotted below.

Ms. Smith's Class

Based on the plotted data, what is the correlation between the time spent on homework and the exam grade?
1 positive
2 negative
3 no correlation
4 cannot be determined

108 Which situation describes a negative correlation?
1 the amount of gas left in a car's tank and the amount of gas used from it
2 the number of gallons of gas purchased and the amount paid for the gas
3 the size of a car's gas tank and the number of gallons it holds
4 the number of miles driven and the amount of gas used

109 A positive correlation always exists on a scatter plot when
$1 y$ remains unchanged as x increases
$2 y$ changes randomly as x increases
$3 y$ decreases as x increases
$4 y$ increases as x increases

110 Which statement is true about the data shown in the scatter plot below?

1 There is no correlation between the two sets of data.
2 There is a positive correlation between the two sets of data.
3 There is a negative correlation between the two sets of data.
4 The correlation between the data is both positive and negative.

A.S.17: SCATTER PLOTS

111 The number of hours spent on math homework each week and the final exam grades for twelve students in Mr. Dylan's algebra class are plotted below.

Based on a line of best fit, which exam grade is the best prediction for a student who spends about 4 hours on math homework each week?
162
$2 \quad 72$
382
492

112 Megan and Bryce opened a new store called the Donut Pit. Their goal is to reach a profit of $\$ 20,000$ in their 18th month of business. The table and scatter plot below represent the profit, P, in thousands of dollars, that they made during the first 12 months.

t (months)	P (profit, in thousands of dollars)
1	3.0
2	2.5
3	4.0
4	5.0
5	6.5
6	5.5
7	7.0
8	6.0
9	7.5
10	7.0
11	9.0
12	9.5

Draw a reasonable line of best fit. Using the line of best fit, predict whether Megan and Bryce will reach their goal in the 18th month of their business. Justify your answer.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

113 The scatter plot below shows the profit, by month, for a new company for the first year of operation. Kate drew a line of best fit, as shown in the diagram.

Using this line, what is the best estimate for profit in the 18th month?
1 \$35,000
2 \$37,750
3 \$42,500
4 \$45,000

114 Based on the line of best fit drawn below, which value could be expected for the data in June 2015?

1230
2310
3480
4540

115 The graph below illustrates the number of acres used for farming in Smalltown, New York, over several years.

Using a line of best fit, approximately how many acres will be used for farming in the 5th year?
10
2200
3300
4400

A.S.4: CENTRAL TENDENCY

116 The values of 11 houses on Washington St. are shown in the table below.

Value per House	Number of Houses
$\$ 100,000$	1
$\$ 175,000$	5
$\$ 200,000$	4
$\$ 700,000$	1

Find the mean value of these houses in dollars. Find the median value of these houses in dollars. State which measure of central tendency, the mean or the median, best represents the values of these 11 houses. Justify your answer.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

117 The prices of seven race cars sold last week are listed in the table below.

Price per Race Car	Number of Race Cars
$\$ 126,000$	1
$\$ 140,000$	2
$\$ 180,000$	1
$\$ 400,000$	2
$\$ 819,000$	1

What is the mean value of these race cars, in dollars? What is the median value of these race cars, in dollars? State which of these measures of central tendency best represents the value of the seven race cars. Justify your answer.

118 Which statement is true about the data set $3,4,5,6$, 7, 7, 10?
1 mean = mode
2 mean $>$ mode
3 mean $=$ median
4 mean < median
119 Alex earned scores of $60,74,82,87,87$, and 94 on his first six algebra tests. What is the relationship between the measures of central tendency of these scores?
1 median < mode < mean
2 mean < mode < median
3 mode < median < mean
4 mean < median < mode

120 Sam's grades on eleven chemistry tests were 90 , $85,76,63,94,89,81,76,78,69$, and 97 . Which statement is true about the measures of central tendency?
1 mean > mode
2 mean < median
3 mode > median
4 median = mean

121 Which statement is true about the data set $4,5,6,6$, 7, 9, 12?
1 mean = mode
2 mode = median
3 mean < median
4 mode > mean
122 Kelsey scored the following points in her first six basketball games: $22,14,19,22,8$, and 17 . What is the relationship between the measures of central tendency of these data?
1 mode $>$ median $>$ mean
2 median $>$ mode $>$ mean
3 mean > median > mode
4 mode > mean > median
123 Mrs. Porter recorded her students' grades in the frequency table below.

Score	Frequency
96	2
92	5
88	3
84	2
78	4
60	1

Which statement is true for the data?
1 mean > median > mode
2 mean $>$ mode $>$ median
3 mode $>$ median $>$ mean
4 median $>$ mean $>$ mode

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A.S.16: CENTRAL TENDENCY

124 Ms. Mosher recorded the math test scores of six students in the table below.

Student	Student Score
Andrew	72
John	80
George	85
Amber	93
Betty	78
Roberto	80

Determine the mean of the student scores, to the nearest tenth. Determine the median of the student scores. Describe the effect on the mean and the median if Ms. Mosher adds 5 bonus points to each of the six students' scores.

125 Given the following list of students' scores on a quiz:

$$
5,12,7,15,20,14,7
$$

Determine the median of these scores. Determine the mode of these scores. The teacher decides to adjust these scores by adding three points to each score. Explain the effect, if any, that this will have on the median and mode of these scores.

126 Mr. Taylor raised all his students' scores on a recent test by five points. How were the mean and the range of the scores affected?
1 The mean increased by five and the range increased by five.
2 The mean increased by five and the range remained the same.
3 The mean remained the same and the range increased by five.
4 The mean remained the same and the range remained the same.

A.S.16: AVERAGE KNOWN WITH MISSING DATA

127 This year, John played in 10 baseball games. In these games he had hit the ball $2,3,0,1,3,2,4,0$, 2 , and 3 times. In the first 10 games he plays next year, John wants to increase his average (mean) hits per game by 0.5 . What is the total number of hits John needs over the first 10 games next year to achieve his goal?
15
22
320
425

128 Noj has the following test scores:
76, 84, 69, 74, 91
His teacher will allow him to retake the test on which he scored lowest. Noj wants an average of at least 82. Determine the least number of additional points Noj must score on the retest.

A.S.1: ANALYSIS OF DATA

129 Which data set describes a situation that could be classified as qualitative?
1 the elevations of the five highest mountains in the world
2 the ages of presidents at the time of their inauguration
3 the opinions of students regarding school lunches
4 the shoe sizes of players on the basketball team
130 Which data set describes a situation that could be classified as qualitative?
1 the ages of the students in Ms. Marshall's Spanish class
2 the test scores of the students in Ms. Fitzgerald's class
3 the favorite ice cream flavor of each of Mr. Hayden’s students
4 the heights of the players on the East High School basketball team

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

131 Which data set describes a situation that could be classified as quantitative?
1 the phone numbers in a telephone book
2 the addresses for students at Hopkins High School
3 the zip codes of residents in the city of Buffalo, New York
4 the time it takes each of Mr. Harper’s students to complete a test

132 Which set of data can be classified as qualitative?
1 scores of students in an algebra class
2 ages of students in a biology class
3 numbers of students in history classes
4 eye colors of students in an economics class

133 Which set of data can be classified as quantitative?
1 first names of students in a chess club
2 ages of students in a government class
3 hair colors of students in a debate club
4 favorite sports of students in a gym class

134 Craig sees an advertisement for a car in a newspaper. Which information would not be classified as quantitative?
1 the cost of the car
2 the car's mileage
3 the model of the car
4 the weight of the car

135 Which set of data describes a situation that could be classified as qualitative?
1 the colors of the birds at the city zoo
2 the shoe size of the zookeepers at the city zoo
3 the heights of the giraffes at the city zoo
4 the weights of the monkeys at the city zoo
136 An art studio has a list of information posted with each sculpture that is for sale. Each entry in the list could be classified as quantitative except for the
1 cost
2 height
3 artist
4 weight

137 Which data can be classified as quantitative?
1 favorite stores at which you shop
2 U.S. Representatives and their home states
3 sales tax rate in each New York county
4 opinion of a freshman on the color of Paul's shirt

138 Which set of data is qualitative?
1 laps swum in a race
2 number of swimmers on the team
3 swimmers' favorite swimsuit colors
4 temperature in Fahrenheit of the water in a pool
139 In a class, which data can be classified as qualitative?
1 age of students
2 weight of students
3 shoe size of students
4 hair color of students

140 For a class of students, which data set could be classified as qualitative?
1 political opinions
2 heights
3 weights
4 ages

A.S.2: ANALYSIS OF DATA

141 Which situation should be analyzed using bivariate data?
1 Ms. Saleem keeps a list of the amount of time her daughter spends on her social studies homework.
2 Mr. Benjamin tries to see if his students' shoe sizes are directly related to their heights.
3 Mr. DeStefan records his customers’ best video game scores during the summer.
4 Mr. Chan keeps track of his daughter's algebra grades for the quarter.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

142 Which data table represents univariate data?

Side Length of a Square	Area of Square
2	4
3	9
4	16
5	25

1

Hours Worked	Pay
20	$\$ 160$
25	$\$ 200$
30	$\$ 240$
35	$\$ 280$

2

Age Group	Frequency
$20-29$	9
$30-39$	7
$40-49$	10
$50-59$	4

3

People	Number of Fingers
2	20
3	30
4	40
5	50

143 Which table does not show bivariate data?

Height (inches)	Weight (pounds)
39	50
48	70
60	90

1

Gallons	Miles Driven
15	300
20	400
25	500

2

Quiz Average	Frequency
70	12
80	15
90	6

3

Speed (mph)	Distance (miles)
40	80
50	120
55	150

144 Which situation is an example of bivariate data?
1 the number of pizzas Tanya eats during her years in high school
2 the number of times Ezra puts air, in his bicycle tires during the summer
3 the number of home runs Elias hits per game and the number of hours he practices baseball
4 the number of hours Nellie studies for her mathematics tests during the first half of the school year

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

145 Which table shows bivariate data?

1

Age (yr)	Frequency
14	12
15	21
16	14
17	19
18	15

Type of Car	Average Gas Mileage (mpg)
van	25
SUV	23
luxury	26
compact	28
pickup	22

Time Spent Studying (hr)	Test Grade $(\%)$
1	65
2	72
3	83
4	85
5	92

Day	Temperature (degrees F)
Monday	63
Tuesday	58
Wednesday	72
Thursday	74
Friday	78

Which situation is represented by bivariate data?
1 A student lists her algebra quiz grades for one month.
2 A wrestler records his weight before each match.
3 A musician writes down how many minutes she practices her instrument each day.
4 An ice cream vendor tracks the daily high temperature and how many ice cream bars he sells each day.

147 Which situation is an example of bivariate data?
1 shoe sizes of a tennis team
2 goals scored in soccer games
3 Calories consumed in one day
4 hours studying compared to test scores

A.S.3: ANALYSIS OF DATA

148 A school wants to add a coed soccer program. To determine student interest in the program, a survey will be taken. In order to get an unbiased sample, which group should the school survey?
1 every third student entering the building
2 every member of the varsity football team
3 every member in Ms. Zimmer's drama classes
4 every student having a second-period French class

149 A survey is being conducted to determine which types of television programs people watch. Which survey and location combination would likely contain the most bias?
1 surveying 10 people who work in a sporting goods store
2 surveying the first 25 people who enter a grocery store
3 randomly surveying 50 people during the day in a mall
4 randomly surveying 75 people during the day in a clothing store

150 Erica is conducting a survey about the proposed increase in the sports budget in the Hometown School District. Which survey method would likely contain the most bias?
1 Erica asks every third person entering the Hometown Grocery Store.
2 Erica asks every third person leaving the Hometown Shopping Mall this weekend.
3 Erica asks every fifth student entering Hometown High School on Monday morning.
4 Erica asks every fifth person leaving Saturday's Hometown High School football game.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

151 Four hundred licensed drivers participated in the math club's survey on driving habits. The table below shows the number of drivers surveyed in each age group.

Ages of People in Survey on Driving Habits

Age Group	Number of Drivers
$16-25$	150
$26-35$	129
$36-45$	33
$46-55$	57
$56-65$	31

Which statement best describes a conclusion based on the data in the table?
1 It may be biased because no one younger than 16 was surveyed.
2 It would be fair because many different age groups were surveyed.
3 It would be fair because the survey was conducted by the math club students.
4 It may be biased because the majority of drivers surveyed were in the younger age intervals.

152 A survey is being conducted to determine which school board candidate would best serve the Yonkers community. Which group, when randomly surveyed, would likely produce the most bias?
115 employees of the Yonkers school district
225 people driving past Yonkers High School
375 people who enter a Yonkers grocery store
4100 people who visit the local Yonkers shopping mall

153 A survey is being conducted to determine if a cable company should add another sports channel to their schedule. Which random survey would be the least biased?
1 surveying 30 men at a gym
2 surveying 45 people at a mall
3 surveying 50 fans at a football game
4 surveying 20 members of a high school soccer team

154 A school newspaper will survey students about the quality of the school's lunch program. Which method will create the least biased results?
1 Twenty-five vegetarians are randomly surveyed.
2 Twenty-five students are randomly chosen from each grade level.
3 Students who dislike the school's lunch program are chosen to complete the survey.
4 A booth is set up in the cafeteria for the students to voluntarily complete the survey.

155 Which statement regarding biased sampling is false?
1 Online sampling is biased because only the people who happen to visit the web site will take the survey.
2 A radio call-in survey is biased because only people who feel strongly about the topic will respond.
3 A survey handed to every third person leaving a library is biased because everyone leaving the library was not asked to participate.
4 Asking for experts to take a survey is biased because they may have particular knowledge of the topic.

156 A local government is planning to increase the fee for use of a campsite. If a survey were taken, which group would be most biased in their opposition to the increase?
1 teachers
2 soccer players
3 postal workers
4 campers

A.S.13: ANALYSIS OF DATA

157 Which relationship can best be described as causal?
1 height and intelligence
2 shoe size and running speed
3 number of correct answers on a test and test score
4 number of students in a class and number of students with brown hair

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

158 Which situation does not describe a causal relationship?
1 The higher the volume on a radio, the louder the sound will be.
2 The faster a student types a research paper, the more pages the paper will have.
3 The shorter the distance driven, the less gasoline that will be used.
4 The slower the pace of a runner, the longer it will take the runner to finish the race.

159 Which relationship can best be described as causal?
1 The alarm goes off and the sun rises.
2 The car is moving slowly and the driver is singing.
3 The snow is falling and the stores run out of snow shovels.
4 The birds are chirping and the rain is coming down.

A.S.14: ANALYSIS OF DATA

160 Which situation describes a correlation that is not a causal relationship?
1 The rooster crows, and the Sun rises.
2 The more miles driven, the more gasoline needed
3 The more powerful the microwave, the faster the food cooks.
4 The faster the pace of a runner, the quicker the runner finishes.

161 Which situation describes a correlation that is not a causal relationship?
1 the length of the edge of a cube and the volume of the cube
2 the distance traveled and the time spent driving
3 the age of a child and the number of siblings the child has
4 the number of classes taught in a school and the number of teachers employed

162 Which phrase best describes the relationship between the number of miles driven and the amount of gasoline used?
1 causal, but not correlated
2 correlated, but not causal
3 both correlated and causal
4 neither correlated nor causal

163 A study showed that a decrease in the cost of carrots led to an increase in the number of carrots sold. Which statement best describes this relationship?
1 positive correlation and a causal relationship
2 negative correlation and a causal relationship
3 positive correlation and not a causal relationship
4 negative correlation and not a causal relationship

164 Which situation describes a correlation that is not a causal relationship?
1 the number of miles walked and the total Calories burned
2 the population of a country and the census taken every ten years
3 the number of hours a TV is on and the amount of electricity used
4 the speed of a car and the number of hours it takes to travel a given distance

A.M.3: ERROR

165 The groundskeeper is replacing the turf on a football field. His measurements of the field are 130 yards by 60 yards. The actual measurements are 120 yards by 54 yards. Which expression represents the relative error in the measurement?
$1 \frac{(130)(60)-(120)(54)}{(120)(54)}$
$2 \frac{(120)(54)}{(130)(60)-(120)(54)}$
$3 \frac{(130)(60)-(120)(54)}{(130)(60)}$
$4 \frac{(130)(60)}{(130)(60)-(120)(54)}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

166 Sophie measured a piece of paper to be 21.7 cm by 28.5 cm . The piece of paper is actually 21.6 cm by 28.4 cm . Determine the number of square centimeters in the area of the piece of paper using Sophie's measurements. Determine the number of square centimeters in the actual area of the piece of paper. Determine the relative error in calculating the area. Express your answer as a decimal to the nearest thousandth. Sophie does not think there is a significant amount of error. Do you agree or disagree? Justify your answer.

167 Ryan estimates the measurement of the volume of a popcorn container to be 282 cubic inches. The actual volume of the popcorn container is 289 cubic inches. What is the relative error of Ryan's measurement to the nearest thousandth?
10.024
20.025
30.096
41.025

168 Sarah measures her rectangular bedroom window for a new shade. Her measurements are 36 inches by 42 inches. The actual measurements of the window are 36.5 inches and 42.5 inches. Using the measurements that Sarah took, determine the number of square inches in the area of the window. Determine the number of square inches in the actual area of the window. Determine the relative error in calculating the area. Express your answer as a decimal to the nearest thousandth.

169 To calculate the volume of a small wooden cube, Ezra measured an edge of the cube as 2 cm . The actual length of the edge of Ezra's cube is 2.1 cm . What is the relative error in his volume calculation to the nearest hundredth?
10.13
20.14
$3 \quad 0.15$
$4 \quad 0.16$

170 Carrie bought new carpet for her living room. She calculated the area of the living room to be 174.2 square feet. The actual area was 149.6 square feet. What is the relative error of the area to the nearest ten-thousandth?
10.1412
20.1644
$3 \quad 1.8588$
$4 \quad 2.1644$
171 Using his ruler, Howell measured the sides of a rectangular prism to be 5 cm by 8 cm by 4 cm . The actual measurements are 5.3 cm by 8.2 cm by 4.1 cm . Find Howell's relative error in calculating the volume of the prism, to the nearest thousandth.

172 Alexis calculates the surface area of a gift box as 600 square inches. The actual surface area of the gift box is 592 square inches. Find the relative error of Alexis' calculation expressed as a decimal to the nearest thousandth.

173 Corinne calculated the area of a paper plate to be 50.27 square inches. If the actual area of the plate is 55.42 square inches, what is the relative error in calculating the area, to the nearest thousandth? 10.092 20.093
$3 \quad 0.102$
$4 \quad 0.103$

174 An oil company distributes oil in a metal can shaped like a cylinder that has an actual radius of 5.1 cm and a height of 15.1 cm . A worker incorrectly measured the radius as 5 cm and the height as 15 cm . Determine the relative error in calculating the surface area, to the nearest thousandth.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

175 The dimensions of a rectangle are measured to be 12.2 inches by 11.8 inches. The actual dimensions are 12.3 inches by 11.9 inches. What is the relative error, to the nearest ten-thousandth, in calculating the area of the rectangle?
10.0168
20.0167
$3 \quad 0.0165$
$4 \quad 0.0164$

176 Jack wants to replace the flooring in his rectangular kitchen. He calculates the area of the floor to be 12.8 square meters. The actual area of the floor is 13.5 square meters. What is the relative error in calculating the area of the floor, to the nearest thousandth?
10.051
20.052
$3 \quad 0.054$
40.055

177 The actual dimensions of a rectangle are 2.6 cm by 6.9 cm . Andy measures the sides as 2.5 cm by 6.8 cm . In calculating the area, what is the relative error, to the nearest thousandth?
10.055
20.052
$3 \quad 0.022$
$4 \quad 0.021$

178 Students calculated the area of a playing field to be 8,100 square feet. The actual area of the field is $7,678.5$ square feet. Find the relative error in the area, to the nearest thousandth.

179 Ashley measured the dimensions of a rectangular prism to be 6 cm by 10 cm by 1.5 cm . The actual dimensions are 5.9 cm by 10.3 cm by 1.7 cm . Determine the relative error, to the nearest thousandth, in calculating the volume of the prism.

180 Wendy measures the floor in her rectangular bedroom for new carpeting. Her measurements are 24 feet by 14 feet. The actual measurements are 24.2 feet by 14.1 feet. Determine the relative error in calculating the area of her bedroom. Express your answer as a decimal to the nearest thousandth.

181 Janis measures the dimensions of the floor in her rectangular classroom for a rug. Her measurements are 10.50 feet by 12.25 feet. The actual measurements of the floor are 10.75 feet by 12.50 feet. Determine the relative error in calculating the area, to the nearest thousandth.

182 Terry estimated the length of the edge of a cube to be 5 cm . The actual length of the side is 5.2 cm . Find the relative error of the surface area of the cube, to the nearest thousandth.

183 A storage container in the form of a rectangular prism is measured to be 12 inches by 8 inches by 4 inches. Its actual measurements are 11.75 inches by 7.75 inches by 4 inches. Find the relative error in calculating the volume of the container, to the nearest thousandth.

184 The actual side of a square tile is 4 inches. The manufacturers allow a relative error of 0.025 in the area of a tile. Two machines are used to cut the tiles. Machine A produces a square tile with a length of 3.97 inches. Machine B produces a square tile with a length of 4.12 inches. Determine which machine produces a tile whose area falls within the allowed relative error.

185 Linda measures her rectangular bedroom window for a new shade. The measurements she made are 36 inches by 42 inches. The actual measurements of the window are 36.5 inches and 42.5 inches. Determine the relative error in calculating the area. Express your answer as a decimal to the nearest thousandth.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

PROBABILITY

A.S.19: SAMPLE SPACE

186 Mr. Laub has three children: two girls (Sue and Karen) and one boy (David). After each meal, one child is chosen at random to wash dishes. If the same child can be chosen for both lunch and dinner, construct a tree diagram or list a sample space of all the possible outcomes of who will wash dishes after lunch and dinner on Saturday. Determine the probability that one boy and one girl will wash dishes after lunch and dinner on Saturday.

A restaurant sells kids' meals consisting of one main course, one side dish, and one drink, as shown in the table below.

Kids' Meal Choices

Main Course	Side Dish	Drink
hamburger	French fries	milk
chicken nuggets	applesauce	juice
turkey sandwich		soda

Draw a tree diagram or list the sample space showing all possible kids' meals. How many different kids' meals can a person order? Jose does not drink juice. Determine the number of different kids' meals that do not include juice. Jose's sister will eat only chicken nuggets for her main course. Determine the number of different kids' meals that include chicken nuggets.

188 Clayton has three fair coins. Find the probability that he gets two tails and one head when he flips the three coins.

189 An outfit Jennifer wears to school consists of a top, a bottom, and shoes. Possible choices are listed below.

Tops: T-shirt, blouse, sweater Bottoms: jeans, skirt, capris
Shoes: flip-flops, sneakers
List the sample space or draw a tree diagram to represent all possible outfits consisting of one type of top, one type of bottom, and one pair of shoes. Determine how many different outfits contain jeans and flip-flops. Determine how many different outfits do not include a sweater.

190 A sandwich consists of one type of bread, one type of meat, and one type of cheese. The possible choices are listed below.

Bread: white, rye
Meat: ham, turkey, beef
Cheese: American, Swiss
Draw a tree diagram or list a sample space of all the possible different sandwiches consisting of one type of bread, one type of meat, and one type of cheese. Determine the number of sandwiches that will not include turkey. Determine the number of sandwiches that will include rye bread and Swiss cheese.

191 A company is running a contest and offering a first, second, and third prize. First prize is a choice of a car or $\$ 15,000$ cash. Second prize is a choice of a motorbike, a trip to New York City, or $\$ 2,000$ cash. Third prize is a choice of a television or $\$ 500$ cash. If each prize is equally likely to be selected, list the sample space or draw a tree diagram of all possible different outcomes of first, second, and third prizes. Determine the number of ways that all three prizes selected could be cash. Determine the number of ways that none of the three prizes selected could be cash.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

192 In a game, a player must spin each spinner shown in the diagram below once.

Spinner 1

Spinner 2

Draw a tree diagram or list a sample space showing all possible outcomes. Determine the number of outcomes that consist of a prime number and a letter in the word "CAT."

193 A cube, with faces numbered 1 to 6 , is rolled, and a penny is tossed at the same time. How many elements in the sample space consist of an even number and a tail?
$1 \quad 12$
22
33
44

194 Doug has four baseball caps: one tan, one blue, one red, and one green. He also has three jackets: one blue, one red, and one white. Draw a tree diagram or list a sample space to show all possible outfits consisting of one baseball cap and one jacket. Find the number of Doug's outfits that consist of a cap and a jacket that are different colors. On Spirit Day, Doug wants to wear either green or white, his school's colors. Find the number of his outfits from which he can choose.

Clayton is performing some probability experiments consisting of flipping three fair coins. What is the probability that when Clayton flips the three coins, he gets two tails and one head?

196 A sandwich consists of one type of meat, one type of condiment, and one type of cheese. The possible choices are listed below:
Meat: beef, chicken, turkey
Condiment: ketchup, mustard, mayonnaise
Cheese: American, cheddar, provolone, mozzarella
In the sample space of all the possible different sandwiches consisting of one type of meat, one type of condiment, and one type of cheese, how many sandwiches do not include provolone cheese?
127
29
33
436

A.S.21: EXPERIMENTAL PROBABILITY

197 Students in Ms. Nazzeer's mathematics class tossed a six-sided number cube whose faces are numbered 1 to 6 . The results are recorded in the table below.

Result	Frequency
1	3
2	6
3	4
4	6
5	4
6	7

Based on these data, what is the empirical probability of tossing a 4 ?
$1 \quad \frac{8}{30}$
$2 \quad \frac{6}{30}$
$3 \quad \frac{5}{30}$
$4 \quad \frac{1}{30}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

Three high school juniors, Reese, Matthew, and Chris, are running for student council president. A survey is taken a week before the election asking 40 students which candidate they will vote for in the election. The results are shown in the table below.

Candidate's Name	Number of Students Supporting Candidate
Reese	15
Matthew	13
Chris	12

Based on the table, what is the probability that a student will vote for Reese?
$1 \quad \frac{1}{3}$
$2 \quad \frac{3}{5}$
$3 \quad \frac{3}{8}$
$4 \quad \frac{5}{8}$

199 A spinner that is equally divided into eight numbered sectors is spun 20 times. The table below shows the number of times the arrow landed in each numbered sector.

Spinner Sector	Number of Times
1	2
2	3
3	2
4	3
5	4
6	2
7	3
8	1

Based on the table, what is the empirical probability that the spinner will land on a prime number on the next spin?
$1 \quad \frac{9}{20}$
$2 \quad \frac{11}{20}$
$3 \quad \frac{12}{20}$
$4 \quad \frac{14}{20}$

200 Casey purchased a pack of assorted flower seeds and planted them in her garden. When the first 25 flowers bloomed, 11 were white, 5 were red, 3 were blue, and the rest were yellow. Find the empirical probability that a flower that blooms will be yellow.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

201 Two cubes with sides numbered 1 through 6 were rolled 20 times. Their sums are recorded in the table below.

4	9	8	9	2
9	4	6	12	10
8	7	9	11	10
8	7	9	3	5

What is the empirical probability of rolling a sum of 9 ?
$1 \quad \frac{4}{20}$
$2 \quad \frac{5}{20}$
$3 \quad \frac{4}{36}$
$4 \quad \frac{5}{36}$

202 Three students each rolled a wooden cube with faces painted red, white, and blue. The color of the top face is recorded each time the cube is rolled. The table below shows the results.

Student	Number of Rolls	Red	White	Blue
1	30	11	7	12
2	50	19	11	20
3	20	8	4	8

If a fourth student rolled the cube 75 times, based on these experimental data, approximately how many times can the cube be expected to land with blue on top?
125
$2 \quad 30$
$3 \quad 35$
440

203 There are 4 students running for Student Government President. A survey was taken asking 100 students which candidate they would vote for in the election. The results are shown in the table below:

Candidate's Name	Number of Supporters
Ashley	30
Britney	28
Lyshon	14
Walker	28

Based on the table, what is the probability that a student chosen at random will vote for Lyshon?
$1 \quad \frac{3}{10}$
$2 \quad \frac{7}{25}$
$3 \quad \frac{7}{50}$
$4 \quad \frac{43}{50}$

A.S.20: THEORETICAL PROBABILITY

204 A bag contains eight green marbles, five white marbles, and two red marbles. What is the probability of drawing a red marble from the bag?
$1 \quad \frac{1}{15}$
$2 \quad \frac{2}{15}$
$3 \quad \frac{2}{13}$
$4 \quad \frac{13}{15}$

A.S.22: THEORETICAL PROBABILITY

205 The faces of a cube are numbered from 1 to 6 . If the cube is rolled once, which outcome is least likely to occur?
1 rolling an odd number
2 rolling an even number
3 rolling a number less than 6
4 rolling a number greater than 4
206 Jon is buying tickets for himself for two concerts. For the jazz concert, 4 tickets are available in the front row, and 32 tickets are available in the other rows. For the orchestra concert, 3 tickets are available in the front row, and 23 tickets are available in the other rows. Jon is randomly assigned one ticket for each concert. Determine the concert for which he is more likely to get a front-row ticket. Justify your answer.

207 Each of the hats shown below has colored marbles placed inside. Hat A contains five green marbles and four red marbles. Hat B contains six blue marbles and five red marbles. Hat C contains five green marbles and five blue marbles.

If a student were to randomly pick one marble from each of these three hats, determine from which hat the student would most likely pick a green marble. Justify your answer. Determine the fewest number of marbles, if any, and the color of these marbles that could be added to each hat so that the probability of picking a green marble will be one-half in each of the three hats.

208 Maria has a set of 10 index cards labeled with the digits 0 through 9 . She puts them in a bag and selects one at random. The outcome that is most likely to occur is selecting
1 an odd number
2 a prime number
3 a number that is at most 5
4 a number that is divisible by 3
209 Three storage bins contain colored blocks. Bin 1 contains 15 red and 14 blue blocks. Bin 2 contains 16 white and 15 blue blocks. Bin 3 contains 15 red and 15 white blocks. All of the blocks from the three bins are placed into one box. If one block is randomly selected from the box, which color block would most likely be picked? Justify your answer.

210 A cube with faces numbered 1 through 6 is rolled 75 times, and the results are given in the table below.

Number	Frequency
1	7
2	22
3	14
4	6
5	20
6	6

Based on these results, which statement is true?
$1 \quad P($ odd $)<P($ even $)$
$2 \quad P$ (3 or less) $<P$ (odd)
$3 \quad P($ even $)<P(2$ or 4$)$
$4 \quad P(2$ or 4$)<P(3$ or less)

211 Which event is certain to happen?
1 Everyone walking into a room will have red hair.
2 All babies born in June will be males.
3 The Yankees baseball team will win the World Series.
4 The Sun will rise in the east.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A.S.23: THEORETICAL PROBABILITY

212 Throughout history, many people have contributed to the development of mathematics. These mathematicians include Pythagoras, Euclid, Hypatia, Euler, Einstein, Agnesi, Fibonacci, and Pascal. What is the probability that a mathematician's name selected at random from those listed will start with either the letter E or the letter A ?
$1 \frac{2}{8}$
$2 \quad \frac{3}{8}$
$3 \quad \frac{4}{8}$
$4 \quad \frac{6}{8}$

213 The faces of a cube are numbered from 1 to 6 . If the cube is tossed once, what is the probability that a prime number or a number divisible by 2 is obtained?
$1 \frac{6}{6}$
$2 \quad \frac{5}{6}$
$3 \quad \frac{4}{6}$
$4 \frac{1}{6}$

214 The probability that it will snow on Sunday is $\frac{3}{5}$.
The probability that it will snow on both Sunday and Monday is $\frac{3}{10}$. What is the probability that it will snow on Monday, if it snowed on Sunday?
$1 \frac{9}{50}$
22
$3 \quad \frac{1}{2}$
$4 \quad \frac{9}{10}$

215 Vince buys a box of candy that consists of six chocolate pieces, four fruit-flavored pieces, and two mint pieces. He selects three pieces of candy at random, without replacement. Calculate the probability that the first piece selected will be fruit flavored and the other two will be mint. Calculate the probability that all three pieces selected will be the same type of candy.

216 Three fair coins are tossed. What is the probability that two heads and one tail appear?
$1 \quad \frac{1}{8}$
$2 \quad \frac{3}{8}$
$3 \quad \frac{3}{6}$
$4 \quad \frac{2}{3}$

217 The probability it will rain tomorrow is $\frac{1}{2}$. The probability that our team will win tomorrow's basketball game is $\frac{3}{5}$. Which expression represents the probability that it will rain and that our team will not win the game?
$1 \quad \frac{1}{2}+\frac{3}{5}$
$2 \quad \frac{1}{2}+\frac{2}{5}$
$3 \quad \frac{1}{2} \times \frac{3}{5}$
$4 \quad \frac{1}{2} \times \frac{2}{5}$

218 A jar contains five red marbles and three green marbles. A marble is drawn at random and not replaced. A second marble is then drawn from the jar. Find the probability that the first marble is red and the second marble is green. Find the probability that both marbles are red. Find the probability that both marbles are the same color.

219 A bottle contains 12 red marbles and 8 blue marbles. A marble is chosen at random and not replaced. Then, a second marble is chosen at random. Determine the probability that the two marbles are not the same color. Determine the probability that at least one of the marbles is red.

220 There are six apples, five oranges, and one pear in John's basket. His friend takes three pieces of fruit at random without replacement. Determine the probability that all three fruits taken are apples.

221 The probability that a student owns a dog is $\frac{1}{3}$. The probability that the same student owns a dog and a cat is $\frac{2}{15}$. Determine the probability that the student owns a cat.

A.S.20: GEOMETRIC PROBABILITY

222 The spinner below is divided into eight equal regions and is spun once. What is the probability of not getting red?

$1 \quad \frac{3}{5}$
$2 \quad \frac{3}{8}$
$3 \quad \frac{5}{8}$
$4 \quad \frac{7}{8}$

223 The square dart board shown below has a side that measures 40 inches. The shaded portion in the center is a square whose side is 15 inches. A dart thrown at the board is equally likely to land on any point on the dartboard.

Find the probability that a dart hitting the board will not land in the shaded area.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

224 The bull's-eye of a dartboard has a radius of 2 inches and the entire board has a radius of 9 inches, as shown in the diagram below.

If a dart is thrown and hits the board, what is the probability that the dart will land in the bull's-eye?
$1 \frac{2}{9}$
$2 \quad \frac{7}{9}$
$3 \quad \frac{4}{81}$
$4 \quad \frac{49}{81}$

A.S.22: GEOMETRIC PROBABILITY

225 A spinner is divided into eight equal regions as shown in the diagram below.

Which event is most likely to occur in one spin?
1 The arrow will land in a green or white area.
2 The arrow will land in a green or black area.
3 The arrow will land in a yellow or black area.
4 The arrow will land in a yellow or green area.
226 The spinner shown in the diagram below is divided into six equal sections.

Which outcome is least likely to occur on a single spin?
1 an odd number
2 a prime number
3 a perfect square
4 a number divisible by 2

A.S.23: GEOMETRIC PROBABILITY

227 Brianna is using the two spinners shown below to play her new board game. She spins the arrow on each spinner once. Brianna uses the first spinner to determine how many spaces to move. She uses the second spinner to determine whether her move from the first spinner will be forward or backward.

Find the probability that Brianna will move fewer than four spaces and backward.

228 Keisha is playing a game using a wheel divided into eight equal sectors, as shown in the diagram below. Each time the spinner lands on orange, she will win a prize.

If Keisha spins this wheel twice, what is the probability she will win a prize on both spins?
$1 \frac{1}{64}$
$2 \quad \frac{1}{56}$
$3 \quad \frac{1}{16}$
$4 \quad \frac{1}{4}$

A.S.18: CONDITIONAL PROBABILITY

229 Some books are laid on a desk. Two are English, three are mathematics, one is French, and four are social studies. Theresa selects an English book and Isabelle then selects a social studies book. Both girls take their selections to the library to read. If Truman then selects a book at random, what is the probability that he selects an English book?

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

230 A bag contains five green gumdrops and six red gumdrops. If Kim pulls a green gumdrop out of the bag and eats it, what is the probability that the next gumdrop she pulls out will be red?
$1 \frac{5}{11}$
$2 \frac{5}{10}$
$3 \quad \frac{6}{11}$
$4 \frac{6}{10}$

231 Gabriella has 20 quarters, 15 dimes, 7 nickels, and 8 pennies in a jar. After taking 6 quarters out of the jar, what will be the probability of Gabriella randomly selecting a quarter from the coins left in the jar?
$1 \quad \frac{14}{44}$
$2 \quad \frac{30}{44}$
$3 \quad \frac{14}{50}$
$4 \quad \frac{20}{50}$

A.N.7: MULTIPLICATION COUNTING PRINCIPLE

232 The local ice cream stand offers three flavors of soft-serve ice cream: vanilla, chocolate, and strawberry; two types of cone: sugar and wafer; and three toppings: sprinkles, nuts, and cookie crumbs. If Dawn does not order vanilla ice cream, how many different choices can she make that have one flavor of ice cream, one type of cone, and one topping?
17
28
$3 \quad 12$
418

233 How many different sandwiches consisting of one type of cheese, one condiment, and one bread choice can be prepared from five types of cheese, two condiments, and three bread choices?
$1 \quad 10$
$2 \quad 13$
$3 \quad 15$
430

234 The menu for the high school cafeteria is shown below.

Main Course	Vegetable	Dessert	Beverage
veggie burger	corn	gelatin	milk
pizza	green beans	fruit salad	juice
tuna sandwich	carrots	yogurt	bottled water
frankfurter		cookie	
chicken tenders		ice cream cup	

Determine the number of possible meals consisting of a main course, a vegetable, a dessert, and a beverage that can be selected from the menu. Determine how many of these meals will include chicken tenders. If a student chooses pizza, corn or carrots, a dessert, and a beverage from the menu, determine the number of possible meals that can be selected.

235 A school offers three classes of math and two classes of science, all of which meet at different times. What is the total number of ways a student can take a math class and a science class?
15
26
38
49

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A.N.8: PERMUTATIONS

236 The bowling team at Lincoln High School must choose a president, vice president, and secretary. If the team has 10 members, which expression could be used to determine the number of ways the officers could be chosen?
$1{ }_{3} \mathrm{P}_{10}$
$2{ }_{7} \mathrm{P}_{3}$
$3{ }_{10} \mathrm{P}_{3}$
$4{ }_{10} \mathrm{P}_{7}$

237 John is going to line up his four golf trophies on a shelf in his bedroom. How many different possible arrangements can he make?
$1 \quad 24$
$2 \quad 16$
310
$4 \quad 4$

238 Determine how many three-letter arrangements are possible with the letters A, N, G, L, and E if no letter may be repeated.

239 A password consists of three digits, 0 through 9, followed by three letters from an alphabet having 26 letters. If repetition of digits is allowed, but repetition of letters is not allowed, determine the number of different passwords that can be made. If repetition is not allowed for digits or letters, determine how many fewer different passwords can be made.

240 How many different three-letter arrangements can be formed using the letters in the word ABSOLUTE if each letter is used only once?
156
2112
3168
4336

241 How many different four-letter arrangements are possible with the letters G, A, R, D, E, N if each letter may be used only once?
115
$2 \quad 24$
3360
4720

242 How many different ways can five books be arranged on a shelf?
15
$2 \quad 15$
325
4120

243 A large company must chose between two types of passwords to log on to a computer. The first type is a four-letter password using any of the 26 letters of the alphabet, without repetition of letters. The second type is a six-digit password using the digits 0 through 9, with repetition of digits allowed. Determine the number of possible four-letter passwords. Determine the number of possible six-digit passwords. The company has 500,000 employees and needs a different password for each employee. State which type of password the company should choose. Explain your answer.

244 There are 18 students in a class. Each day, the teacher randomly selects three students to assist in a game: a leader, a recorder, and a timekeeper. In how many possible ways can the jobs be assigned?
1306
2816
34896
45832

245 How many different seven-letter arrangements of the letters in the word HEXAGON can be made if each letter is used only once?
128
249
3720
45040

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic

EXPRESSIONS AND EQUATIONS

A.A.1: EXPRESSIONS

246 Mr. Turner bought x boxes of pencils. Each box holds 25 pencils. He left 3 boxes of pencils at home and took the rest to school. Which expression represents the total number of pencils he took to school?
1 22x
2 25x-3
3 25-3x
4 25x-75

247 The length of a rectangular room is 7 less than three times the width, w, of the room. Which expression represents the area of the room?
$13 w-4$
$23 w-7$
$33 w^{2}-4 w$
$43 w^{2}-7 w$

248 Marie currently has a collection of 58 stamps. If she buys s stamps each week for w weeks, which expression represents the total number of stamps she will have?
1 58sw
$258+s w$
$358 s+w$
$458+s+w$

249 What is the perimeter of a regular pentagon with a side whose length is $x+4$?
$1 x^{2}+16$
$24 x+16$
$3 \quad 5 x+4$
$4 \quad 5 x+20$

250 Tim ate four more cookies than Alice. Bob ate twice as many cookies as Tim. If x represents the number of cookies Alice ate, which expression represents the number of cookies Bob ate?
$12+(x+4)$
$2 \quad 2 x+4$
3 2($x+4$)
$4 \quad 4(x+2)$

251 Which algebraic expression represents 15 less than x divided by 9 ?
$1 \frac{x}{9}-15$
$29 x-15$
$3 \quad 15-\frac{x}{9}$
$415-9 x$

252 Timmy bought a skateboard and two helmets for a total of d dollars. If each helmet cost h dollars, the cost of the skateboard could be represented by
1 2dh
$2 \frac{d h}{2}$
$3 d-2 h$
$4 d-\frac{h}{2}$

253 Marcy determined that her father's age is four less than three times her age. If x represents Marcy's age, which expression represents her father's age?
$13 x-4$
$23(x-4)$
$34 x-3$
$4-4-3 x$

254 A correct translation of "six less than twice the value of x " is
$1 \quad 2 x<6$
$2 \quad 2 x-6$
$36<2 x$
4 6-2x

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

255 If Angelina's weekly allowance is d dollars, which expression represents her allowance, in dollars, for x weeks?
$1 d x$
$27 d x$
$3 x+7 d$
$4 \frac{d}{x}$

256 Which expression represents " 5 less than twice x "?
$1 \quad 2 x-5$
$25-2 x$
3 2(5-x)
4 2($x-5$)

257 Which expression represents the number of hours in w weeks and d days?
$17 w+12 d$
$284 w+24 d$
$3168 w+24 d$
$4168 w+60 d$
258 Marie currently has a collection of 58 stamps. If she buys s stamps each week for w weeks, which expression represents the total number of stamps she will have?
1 58sw
$258+s w$
$358 s+w$
$458+s+w$

259 Julie has three children whose ages are consecutive odd integers. If x represents the youngest child's age, which expression represents the sum of her children's ages?
$1 \quad 3 x+3$
$2 \quad 3 x+4$
$3 \quad 3 x+5$
$43 x+6$

260 Jose wants to ride his bike a total of 50 miles this weekend. If he rides m miles on Saturday, which expression represents the number of miles he must ride on Sunday?
$1 \quad m-50$
$2 m+50$
$350-m$
450 m

261 Owino gets paid \$280 per week plus 5\% commission on all sales for selling electronic equipment. If he sells n dollars worth of electronic equipment in one week, which algebraic expression represents the amount of money he will earn that week?
$1 \quad 280 n+5$
$2280 n+0.05$
$3280+0.05 n$
$4 \quad 280+5 n$

A.A.2: EXPRESSIONS

262 Which verbal expression represents $2(n-6)$?
1 two times n minus six
2 two times six minus n
3 two times the quantity n less than six
4 two times the quantity six less than n
263 Which verbal expression is represented by
$\frac{1}{2}(n-3)$?
1 one-half n decreased by 3
2 one-half n subtracted from 3
3 the difference of one-half n and 3
4 one-half the difference of n and 3

264 Which verbal expression can be represented by $2(x-5)$?
15 less than 2 times x
22 multiplied by x less than 5
3 twice the difference of x and 5
4 the product of 2 and x, decreased by 5

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

265 Which verbal expression is represented by $2(x+4)$?
1 twice the sum of a number and four
2 the sum of two times a number and four
3 two times the difference of a number and four
4 twice the product of a number and four

A.A.3: EXPRESSIONS

266 Chad complained to his friend that he had five equations to solve for homework. Are all of the homework problems equations? Justify your answer.

	Math Homework
1.	$3 x^{2} \cdot 2 x^{4}$
2.	$5-2 x=3 x$
3.	$3(2 x+7)$
4.	$7 x^{2}+2 x-3 x^{2}-9$
5.	$\frac{2}{3}=\frac{x+2}{6}$
Name	

267 An example of an algebraic expression is
$1 \quad \frac{2 x+3}{7}=\frac{13}{x}$
$2(2 x+1)(x-7)$
$3 \quad 4 x-1=4$
$4 \quad x=2$

268 An example of an algebraic expression is
$1 \quad x+2$
$2 y=x+2$
$3 y<x+2$
$4 y=x^{2}+2 x$

269 An example of an algebraic expression is
$1 \quad y=m x+b$
$2 \quad 3 x+4 y-7$
$3 \quad 2 x+3 y \leq 18$
$4 \quad(x+y)(x-y)=25$

270 Mr. Stanton asked his students to write an algebraic expression on a piece of paper. He chose four students to go to the board and write their expression.

Robert wrote: $4(2 x+5) \geq 17$
Meredith wrote: $3 y-7+11 z$
Steven wrote: $9 w+2=20$
Cynthia wrote: $8+10-4=14$
Which student wrote an algebraic expression?
1 Robert
2 Meredith
3 Steven
4 Cynthia
271 An example of an equation is
$12 x^{2}-4 x+12$
$2|x-6|$
$3 \quad 4(x+6)(x-2)$
$42 x=x^{2}+3$

272 An example of an algebraic equation is
$1 \quad r^{2}+1$
$22 a+(n-1) d$
$3 \quad 5 x=7$
$4-25 \pi+100$

273 Four students are playing a math game at home. One of the math game questions asked them to write an algebraic equation.

Brandon wrote: $3(5 x-0)$
William wrote: $7<2(6+x)$
Alice wrote: $15 x$
Kayla wrote: $11=2 x+3$
Which student wrote an algebraic equation?
1 Brandon
2 William
3 Alice
4 Kayla

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A.A.22: SOLVING EQUATIONS

274 Solve for $g: 3+2 g=5 g-9$

275 Which value of p is the solution of $5 p-1=2 p+20$?
$1 \frac{19}{7}$
$2 \quad \frac{19}{3}$
3 3
$4 \quad 7$
276 Debbie solved the linear equation $3(x+4)-2=16$ as follows:
[Line 1] $3(x+4)-2=16$
[Line 2] $3(x+4)=18$
[Line 3] $3 x+4=18$
[Line 4] $\quad 3 x=14$
[Line 5] $x=4 \frac{2}{3}$
She made an error between lines
$1 \quad 1$ and 2
22 and 3
$3 \quad 3$ and 4
44 and 5

277 What is the value of x in the equation $2(x-4)=4(2 x+1)$?
1 -2
22
$3-\frac{1}{2}$
$4 \quad \frac{1}{2}$

278 Solve algebraically for x : $3(x+1)-5 x=12-(6 x-7)$

279 The solution of the equation $5-2 x=-4 x-7$ is
$1 \quad 1$
$2 \quad 2$
$3-2$
$4-6$

280 Which value of x is the solution of the equation $2(x-4)+7=3$?
11
22
36
40
A.A.25: SOLVING EQUATIONS WITH FRACTIONAL EXPRESSIONS

281 Which value of x is the solution of $\frac{2 x}{5}+\frac{1}{3}=\frac{7 x-2}{15}$?
$1 \frac{3}{5}$
$2 \quad \frac{31}{26}$
33
47

282 Which value of x is the solution of the equation $\frac{2 x}{3}+\frac{x}{6}=5$?
16
$2 \quad 10$
$3 \quad 15$
430

283 Solve for $x: \frac{3}{5}(x+2)=x-4$
18
$2 \quad 13$
315
423

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

284 Which value of x is the solution of $\frac{x}{3}+\frac{x+1}{2}=x$?
11
$2-1$
33
$4-3$

285 Which value of x is the solution of the equation $\frac{2}{3} x+\frac{1}{2}=\frac{5}{6}$?
$1 \quad \frac{1}{2}$
22
$3 \quad \frac{2}{3}$
$4 \quad \frac{3}{2}$

286 Solve for $m: \frac{m}{5}+\frac{3(m-1)}{2}=2(m-3)$

287 Which value of x is the solution of the equation $\frac{1}{7}+\frac{2 x}{3}=\frac{15 x-3}{21}$?
16
20
$3 \quad \frac{4}{13}$
$4 \quad \frac{6}{29}$

A.A.25: SOLVING EQUATIONS WITH
 DECIMALS

288 The value of y in the equation
$0.06 y+200=0.03 y+350$ is
1500
2 1,666. $\overline{6}$
3 5,000
4 18,333. 3

289 What is the value of n in the equation $0.2(n-6)=2.8$?
18
22
$3 \quad 20$
444

A.A.4: MODELING EQUATIONS

290 If h represents a number, which equation is a correct translation of "Sixty more than 9 times a number is 375 "?
$1 \quad 9 h=375$
$29 h+60=375$
$39 h-60=375$
$4 \quad 60 h+9=375$

291 The width of a rectangle is 4 less than half the length. If ℓ represents the length, which equation could be used to find the width, w ?
$1 \quad w=\frac{1}{2}(4-\ell)$
$2 \quad w=\frac{1}{2}(\ell-4)$
$3 \quad w=\frac{1}{2} \ell-4$
$4 \quad w=4-\frac{1}{2} \ell$

292 Three times the sum of a number and four is equal to five times the number, decreased by two. If x represents the number, which equation is a correct translation of the statement?

$$
\begin{array}{ll}
1 & 3(x+4)=5 x-2 \\
2 & 3(x+4)=5(x-2) \\
3 & 3 x+4=5 x-2 \\
4 & 3 x+4=5(x-2)
\end{array}
$$

293 The product of a number and 3 , increased by 5 , is 7 less than twice the number. Which equation can be used to find this number, n ?

$$
\begin{array}{ll}
1 & 3 n+5=2 n-7 \\
2 & 3 n+5=7-2 n \\
3 & 3(n+5)=2 n-7 \\
4 & 3(n+5)=7-2 n
\end{array}
$$

A.A.5: MODELING EQUATIONS

294 The length of a rectangular window is 5 feet more than its width, w. The area of the window is 36 square feet. Which equation could be used to find the dimensions of the window?
$1 w^{2}+5 w+36=0$
$2 w^{2}-5 w-36=0$
$3 \quad w^{2}-5 w+36=0$
$4 \quad w^{2}+5 w-36=0$
295 Rhonda has \$1.35 in nickels and dimes in her pocket. If she has six more dimes than nickels, which equation can be used to determine x, the number of nickels she has?
$1 \quad 0.05(x+6)+0.10 x=1.35$
$2 \quad 0.05 x+0.10(x+6)=1.35$
$3 \quad 0.05+0.10(6 x)=1.35$
$4 \quad 0.15(x+6)=1.35$

296 The width of a rectangle is 3 less than twice the length, x. If the area of the rectangle is 43 square feet, which equation can be used to find the length, in feet?

$$
\begin{array}{ll}
1 & 2 x(x-3)=43 \\
2 & x(3-2 x)=43 \\
3 & 2 x+2(2 x-3)=43 \\
4 & x(2 x-3)=43
\end{array}
$$

297 If n is an odd integer, which equation can be used to find three consecutive odd integers whose sum is -3 ?
$1 \quad n+(n+1)+(n+3)=-3$
$2 n+(n+1)+(n+2)=-3$
$3 n+(n+2)+(n+4)=-3$
$4 \quad n+(n+2)+(n+3)=-3$

298 Byron has 72 coins in his piggy bank. The piggy bank contains only dimes and quarters. If he has $\$ 14.70$ in his piggy bank, which equation can be used to determine q, the number of quarters he has?
$1 \quad 14.70+0.25 q=72$
$2 \quad 0.10(q-72)+0.25 q=14.70$
$3 \quad 0.10(72-q)+0.25 q=14.70$
$4 \quad 0.10 q+0.25(72-q)=14.70$

A.A.6: MODELING EQUATIONS

299 The ages of three brothers are consecutive even integers. Three times the age of the youngest brother exceeds the oldest brother's age by 48 years. What is the age of the youngest brother?
114
$2 \quad 18$
$3 \quad 22$
426

300 The sum of three consecutive odd integers is 18 less than five times the middle number. Find the three integers. [Only an algebraic solution can receive full credit.]

A.A.6: VENN DIAGRAMS

301 Monique has three sons who play football, two sons who play baseball, and one son who plays both sports. If all of her sons play baseball or football, how many sons does she have?
15
26
$3 \quad 3$
$4 \quad 4$

A.A.23: TRANSFORMING FORMULAS

302 If $3 a x+b=c$, then x equals
$1 c-b+3 a$
$2 c+b-3 a$
$3 \frac{c-b}{3 a}$
$4 \quad \frac{b-c}{3 a}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

303 If the formula for the perimeter of a rectangle is $P=2 l+2 w$, then w can be expressed as
$1 \quad w=\frac{2 l-P}{2}$
$2 \quad w=\frac{P-2 l}{2}$
$3 w=\frac{P-l}{2}$
$4 \quad w=\frac{P-2 w}{2 l}$

304 If $a+a r=b+r$, the value of a in terms of b and r can be expressed as
$1 \quad \frac{b}{r}+1$
$2 \frac{1+b}{r}$
$3 \frac{b+r}{1+r}$
$4 \frac{1+b}{r+b}$

305 The members of the senior class are planning a dance. They use the equation $r=p n$ to determine the total receipts. What is n expressed in terms of r and p ?
$1 n=r+p$
$2 n=r-p$
$3 n=\frac{p}{r}$
$4 \quad n=\frac{r}{p}$

306 A formula used for calculating velocity is $v=\frac{1}{2} a t^{2}$. What is a expressed in terms of v and t ?
$1 \quad a=\frac{2 v}{t}$
$2 a=\frac{2 v}{t^{2}}$
$3 \quad a=\frac{v}{t}$
$4 \quad a=\frac{v}{2 t^{2}}$

307 If $\frac{e y}{n}+k=t$, what is y in terms of e, n, k, and t ?
$1 y=\frac{t n+k}{e}$
$2 y=\frac{t n-k}{e}$
$3 y=\frac{n(t+k)}{e}$
$4 y=\frac{n(t-k)}{e}$

308 Solve for c in terms of a and $b: b c+a c=a b$

309 If $s=\frac{2 x+t}{r}$, then x equals
$1 \frac{r s-t}{2}$
$2 \frac{r s+1}{2}$
3 2rs-t
$4 \quad r s-2 t$

310 If $k=a m+3 m x$, the value of m in terms of a, k, and x can be expressed as
$1 \frac{k}{a+3 x}$
$2 \frac{k-3 m x}{a}$
$3 \frac{k-a m}{3 x}$
$4 \quad \frac{k-a}{3 x}$

311 The formula for the volume of a pyramid is $V=\frac{1}{3} B h$. What is h expressed in terms of B and V ?
$1 \quad h=\frac{1}{3} V B$
$2 h=\frac{V}{3 B}$
$3 h=\frac{3 V}{B}$
$4 h=3 V B$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

312 If $r x-s t=r$, which expression represents x ?
$1 \frac{r+s t}{r}$
$2 \frac{r}{r+s t}$
$3 \frac{r}{r-s t}$
$4 \frac{r-s t}{r}$

313 If $2 y+2 w=x$, then w, in terms of x and y, is equal to
$1 x-y$
$2 \frac{x-2 y}{2}$
$3 x+y$
$4 \frac{x+2 y}{2}$

314 If $a b x-5=0$, what is x in terms of a and b ?
$1 \quad x=\frac{5}{a b}$
$2 x=-\frac{5}{a b}$
$3 x=5-a b$
$4 \quad x=a b-5$
315 If $a x+3=7-b x$, what is x expressed in terms of a and b ?
$1 \quad \frac{4}{a b}$
$2-\frac{4}{a b}$
$3 \frac{4}{a+b}$
$4 \quad-\frac{4}{a+b}$

316 If $z+y=x+x y^{2}$, what is x expressed in terms of y and z ?
$1 \frac{z}{y}$
$2 \frac{z}{1+y}$
$3 \frac{z+1}{y}$
$4 \frac{z+y}{1+y^{2}}$

RATE

A.M.1: USING RATE

317 Tom drove 290 miles from his college to home and used 23.2 gallons of gasoline. His sister, Ann, drove 225 miles from her college to home and used 15 gallons of gasoline. Whose vehicle had better gas mileage? Justify your answer.

318 Nicole's aerobics class exercises to fast-paced music. If the rate of the music is 120 beats per minute, how many beats would there be in a class that is 0.75 hour long?
190
2160
3 5,400
4 7,200

319 Joseph typed a 1,200-word essay in 25 minutes. At this rate, determine how many words he can type in 45 minutes.

320 A cell phone can receive 120 messages per minute. At this rate, how many messages can the phone receive in 150 seconds?
148
275
3300
4 18,000

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

321 A car uses one gallon of gasoline for every 20 miles it travels. If a gallon of gasoline costs $\$ 3.98$, how much will the gas cost, to the nearest dollar, to travel 180 miles?
19
$2 \quad 36$
345
480

322 A student spent 15 minutes painting a 2-foot by 3 -foot bulletin board. To the nearest tenth of a minute, how long did it take the student to paint 1 square foot?
10.4
$2 \quad 1.5$
$3 \quad 2.5$
43.5

A.M.1: SPEED

323 Hannah took a trip to visit her cousin. She drove 120 miles to reach her cousin's house and the same distance back home. It took her 1.2 hours to get halfway to her cousin's house. What was her average speed, in miles per hour, for the first 1.2 hours of the trip? Hannah's average speed for the remainder of the trip to her cousin's house was 40 miles per hour. How long, in hours, did it take her to drive the remaining distance? Traveling home along the same route, Hannah drove at an average rate of 55 miles per hour. After 2 hours her car broke down. How many miles was she from home?

324 In a game of ice hockey, the hockey puck took 0.8 second to travel 89 feet to the goal line. Determine the average speed of the puck in feet per second.

325 What is the speed, in meters per second, of a paper airplane that flies 24 meters in 6 seconds?
1144
230
318
$4 \quad 4$

326 It takes Tammy 45 minutes to ride her bike 5 miles. At this rate, how long will it take her to ride 8 miles?
10.89 hour
21.125 hours

348 minutes
472 minutes

327 The chart below compares two runners.

Runner	Distance, in miles	Time, in hours
Greg	11	2
Dave	16	3

Based on the information in this chart, state which runner has the faster rate. Justify your answer.

328 Steve ran a distance of 150 meters in $1 \frac{1}{2}$ minutes. What is his speed in meters per hour?
16
260
3100
4 6,000
329 A hiker walked 12.8 miles from 9:00 a.m. to noon. He walked an additional 17.2 miles from 1:00 p.m. to 6:00 p.m. What is his average rate for the entire walk, in miles per hour?
$1 \quad 3.75$
23.86
$3 \quad 4.27$
$4 \quad 7.71$

330 A turtle and a rabbit are in a race to see who is first to reach a point 100 feet away. The turtle travels at a constant speed of 20 feet per minute for the entire 100 feet. The rabbit travels at a constant speed of 40 feet per minute for the first 50 feet, stops for 3 minutes, and then continues at a constant speed of 40 feet per minute for the last 50 feet. Determine which animal won the race and by how much time.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

331 In a baseball game, the ball traveled 350.7 feet in 4.2 seconds. What was the average speed of the ball, in feet per second?
183.5
$\begin{array}{ll}2 & 177.5\end{array}$
$3 \quad 354.9$
4 1,472.9

332 The distance from Earth to Mars is $136,000,000$ miles. A spaceship travels at 31,000 miles per hour. Determine, to the nearest day, how long it will take the spaceship to reach Mars.

333 Jonathan drove to the airport to pick up his friend. A rainstorm forced him to drive at an average speed of 45 mph , reaching the airport in 3 hours. He drove back home at an average speed of 55 mph. How long, to the nearest tenth of an hour, did the trip home take him?
$1 \quad 2.0$ hours
$2 \quad 2.5$ hours
$3 \quad 2.8$ hours
43.7 hours

334 It takes a snail 500 hours to travel 15 miles. At this rate, how many hours will it take the snail to travel 6 miles?
10.18
25.56

3150
4200

335 Jen traveled a distance of 170 miles in 2 hours and 45 minutes. Express her speed, in miles per hour, to the nearest tenth.

A.M.2: CONVERSIONS

336 On a certain day in Toronto, Canada, the temperature was 15° Celsius (C). Using the formula $F=\frac{9}{5} C+32$, Peter converts this temperature to degrees Fahrenheit (F). Which temperature represents $15^{\circ} \mathrm{C}$ in degrees Fahrenheit?
$1 \quad-9$
235
359
485
337 If the speed of sound is 344 meters per second, what is the approximate speed of sound, in meters per hour?

60 seconds $=1$ minute
60 minutes $=1$ hour

1	20,640
2	41,280
3	123,840
4	$1,238,400$

338 Angela wants to purchase carpeting for her living room. The dimensions of her living room are 12 feet by 12 feet. If carpeting is sold by the square yard, determine how many square yards of carpeting she must purchase.

$$
\begin{aligned}
3 \text { feet } & =1 \text { yard } \\
9 \text { square feet } & =1 \text { square yard }
\end{aligned}
$$

339 Roberta needs ribbon for a craft project. The ribbon sells for $\$ 3.75$ per yard. Find the cost, in dollars, for 48 inches of the ribbon.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

340 Mrs. Chen owns two pieces of property. The areas of the properties are 77,120 square feet and 33,500 square feet.

$$
43,560 \text { square feet }=1 \text { acre }
$$

Find the total number of acres Mrs. Chen owns, to the nearest hundredth of an acre.

341 Elizabeth is baking chocolate chip cookies. A single batch uses $\frac{3}{4}$ teaspoon of vanilla. If Elizabeth is mixing the ingredients for five batches at the same time, how many tablespoons of vanilla will she use?

$$
3 \text { teaspoons }=1 \text { tablespoon }
$$

$1 \quad 1 \frac{1}{4}$
$2 \quad 1 \frac{3}{4}$
$3 \quad 3 \frac{3}{4}$
$4 \quad 5 \frac{3}{4}$

342 Peter walked 8,900 feet from home to school.

$$
1 \text { mile }=5,280 \text { feet }
$$

How far, to the nearest tenth of a mile, did he walk?
10.5
20.6
31.6
41.7

343 Which expression can be used to change 75 kilometers per hour to meters per minute?
$1 \frac{75 \mathrm{~km}}{1 \mathrm{hr}} \times \frac{1 \mathrm{~km}}{1,000 \mathrm{~m}} \times \frac{1 \mathrm{hr}}{60 \mathrm{~min}}$
$2 \frac{75 \mathrm{~km}}{1 \mathrm{hr}} \times \frac{1 \mathrm{~km}}{1,000 \mathrm{~m}} \times \frac{60 \mathrm{~min}}{1 \mathrm{hr}}$
$3 \quad \frac{75 \mathrm{~km}}{1 \mathrm{hr}} \times \frac{1,000 \mathrm{~m}}{1 \mathrm{~km}} \times \frac{1 \mathrm{hr}}{60 \mathrm{~min}}$
$4 \frac{75 \mathrm{~km}}{1 \mathrm{hr}} \times \frac{1,000 \mathrm{~m}}{1 \mathrm{~km}} \times \frac{60 \mathrm{~min}}{1 \mathrm{hr}}$

344 A soda container holds $5 \frac{1}{2}$ gallons of soda. How many ounces of soda does this container hold?

$$
\begin{aligned}
& 1 \text { quart }=32 \text { ounces } \\
& 1 \text { gallon }=4 \text { quarts }
\end{aligned}
$$

1	44
2	176
3	640
4	704

345 A jogger ran at a rate of 5.4 miles per hour. Find the jogger's exact rate, in feet per minute.

$$
1 \text { mile }=5,280 \text { feet }
$$

346 A parking lot is 100 yards long. What is the length of $\frac{3}{4}$ of the parking lot, in feet?

$$
1 \text { yard }=3 \text { feet }
$$

$$
1300
$$

2225
375
425

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

347 Last year, Nick rode his bicycle a total of 8000 miles. To the nearest yard, Nick rode an average of how many yards per day?

$$
\begin{gathered}
1 \text { mile }=1760 \text { yards } \\
1 \text { year }=365 \text { days }
\end{gathered}
$$

$1 \quad 22$
2236
31659
4 38,575

348 A total of 1680 ounces of pet food have to be packed in 5 -pound bags. How many 5 -pound bags of pet food can be packed?

1 pound = 16 ounces
$1 \quad 21$
$2 \quad 28$
3105
4336

A.N.5: PERCENTS

349 The Hudson Record Store is having a going-out-of-business sale. CDs normally sell for $\$ 18.00$. During the first week of the sale, all CDs will sell for $\$ 15.00$. Written as a fraction, what is the rate of discount? What is this rate expressed as a percent? Round your answer to the nearest hundredth of a percent. During the second week of the sale, the same CDs will be on sale for 25% off the original price. What is the price of a CD during the second week of the sale?

350 At the end of week one, a stock had increased in value from $\$ 5.75$ a share to $\$ 7.50$ a share. Find the percent of increase at the end of week one to the nearest tenth of a percent. At the end of week two, the same stock had decreased in value from $\$ 7.50$ to $\$ 5.75$. Is the percent of decrease at the end of week two the same as the percent of increase at the end of week one? Justify your answer.

351 In a recent town election, 1,860 people voted for either candidate A or candidate B for the position of supervisor. If candidate A received 55% of the votes, how many votes did candidate B receive?
186
2837
3 1,023
4 1,805

352 Shana wants to buy a new bicycle that has a retail price of $\$ 259.99$. She knows that it will be on sale next week for 30% off the retail price. If the tax rate is 7%, find the total amount, to the nearest cent, that she will save by waiting until next week.

353 Miller's Department Store is having a sale with a 25% discount on mattresses. If the sales tax rate is 8\%, how much change will Frank receive from $\$ 800$ if he purchases a mattress regularly priced at $\$ 895$ during this sale?

354 Carla bought a dress at a sale for 20% off the original price. The sale price of the dress was $\$ 28.80$. Find the original price of the dress, in dollars.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A.N.5: DIRECT VARIATION

355 The table below represents the number of hours a student worked and the amount of money the student earned.

Number of Hours (h)	Dollars Earned (d)
8	$\$ 50.00$
15	$\$ 93.75$
19	$\$ 118.75$
30	$\$ 187.50$

Write an equation that represents the number of dollars, d, earned in terms of the number of hours, h, worked. Using this equation, determine the number of dollars the student would earn for working 40 hours.

356 The number of calories burned while jogging varies directly with the number of minutes spent jogging. If George burns 150 calories by jogging for 20 minutes, how many calories does he burn by jogging for 30 minutes?
1100
2180
3200
4225

LINEAR EQUATIONS

A.A.32: SLOPE

357 In a linear equation, the independent variable increases at a constant rate while the dependent variable decreases at a constant rate. The slope of this line is
1 zero
2 negative
3 positive
4 undefined

358 The data in the table below are graphed, and the slope is examined.

\mathbf{x}	\mathbf{y}
0.5	9.0
1	8.75
1.5	8.5
2	8.25
2.5	8.0

The rate of change represented in this table can be described as
1 negative
2 positive
3 undefined
4 zero

359 In a given linear equation, the value of the independent variable decreases at a constant rate while the value of the dependent variable increases at a constant rate. The slope of this line is
1 positive
2 negative
3 zero
4 undefined

A.A.33: SLOPE

360 What is the slope of the line containing the points $(3,4)$ and $(-6,10)$?
$1 \quad \frac{1}{2}$
22
$3-\frac{2}{3}$
$4-\frac{3}{2}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

361 What is the slope of the line that passes through the points $(-6,1)$ and $(4,-4)$?
1 -2
22
$3-\frac{1}{2}$
$4 \quad \frac{1}{2}$

362 What is the slope of the line that passes through the points $(2,5)$ and $(7,3)$?
$1-\frac{5}{2}$
$2-\frac{2}{5}$
$3 \quad \frac{8}{9}$
$4 \quad \frac{9}{8}$

363 What is the slope of the line that passes through the points $(-5,4)$ and $(15,-4)$?
$1-\frac{2}{5}$
20
$3-\frac{5}{2}$
4 undefined

364 In the diagram below, what is the slope of the line passing through points A and B ?

$1 \quad-2$
22
$3-\frac{1}{2}$
$4 \quad \frac{1}{2}$

365 What is the slope of the line that passes through the points $(3,5)$ and $(-2,2)$?
$1 \frac{1}{5}$
$2 \quad \frac{3}{5}$
$3 \quad \frac{5}{3}$
45

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

366 What is the slope of the line passing through the points A and B, as shown on the graph below?

$1 \quad-3$
$2-\frac{1}{3}$
33
$4 \quad \frac{1}{3}$

367 What is the slope of the line passing through the points $(-2,4)$ and $(3,6)$?
$1-\frac{5}{2}$
$2-\frac{2}{5}$
$3 \quad \frac{2}{5}$
$4 \quad \frac{5}{2}$

368 What is the slope of the line that passes through the points $(2,-3)$ and $(5,1)$?
$1-\frac{2}{3}$
$2 \quad \frac{2}{3}$
$3-\frac{4}{3}$
$4 \quad \frac{4}{3}$

369 What is the slope of the line that passes through the points ($4,-7$) and $(9,1)$?
$1 \quad \frac{5}{8}$
$2 \quad \frac{8}{5}$
$3-\frac{6}{12}$
$4-\frac{13}{6}$

370 What is the slope of a line that passes through the points ($-2,-7$) and ($-6,-2$)?
$1-\frac{4}{5}$
$2-\frac{5}{4}$
$3 \quad \frac{8}{9}$
$4 \quad \frac{9}{8}$

371 What is the slope of a line passing through points $(-7,5)$ and $(5,-3)$?
$1-\frac{3}{2}$
$2-\frac{2}{3}$
$3 \quad \frac{2}{3}$
$4 \quad \frac{3}{2}$

A.A.37: SLOPE

372 What is the slope of the line whose equation is $3 x-7 y=9$?
$1-\frac{3}{7}$
$2 \quad \frac{3}{7}$
$3-\frac{7}{3}$
$4 \quad \frac{7}{3}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

373 The line represented by the equation $2 y-3 x=4$ has a slope of
$1-\frac{3}{2}$
22
33
$4 \quad \frac{3}{2}$

374 What is the slope of the line represented by the equation $4 x+3 y=12$?
$1 \frac{4}{3}$
$2 \quad \frac{3}{4}$
$3-\frac{3}{4}$
$4 \quad-\frac{4}{3}$

375 What is the slope of a line represented by the equation $2 y=x-4$?
11
$2 \quad \frac{1}{2}$
$3-1$
$4-\frac{1}{2}$

376 What is the slope of the line represented by the equation $4 x+3 y=7$?
$1 \quad \frac{7}{4}$
$2 \quad \frac{7}{3}$
$3-\frac{3}{4}$
$4 \quad-\frac{4}{3}$

377 Which linear equation represents a line that has a slope of $\frac{2}{3}$?
$1 \quad-2 y=-3 x+6$
$2-3 y=2 x+6$
$3 \quad 3 y=-2 x+6$
$43 y=2 x+6$

A.G.4: GRAPHING LINEAR FUNCTIONS

378 The gas tank in a car holds a total of 16 gallons of gas. The car travels 75 miles on 4 gallons of gas. If the gas tank is full at the beginning of a trip, which graph represents the rate of change in the amount of gas in the tank?

1

2
Distance (miles)

3

A.A.34: WRITING LINEAR EQUATIONS

379 What is an equation of the line that passes through the point $(4,-6)$ and has a slope of -3 ?
$1 \quad y=-3 x+6$
$2 \quad y=-3 x-6$
$3 y=-3 x+10$
$4 y=-3 x+14$

380 What is an equation of the line that passes through the point $(3,-1)$ and has a slope of 2 ?
$1 y=2 x+5$
$2 y=2 x-1$
$3 \quad y=2 x-4$
$4 y=2 x-7$

381 A line having a slope of $\frac{3}{4}$ passes through the point $(-8,4)$. Write the equation of this line in slope-intercept form.

382 Which equation represents the line that passes through the point $(1,5)$ and has a slope of -2 ?
$1 \quad y=-2 x+7$
$2 y=-2 x+11$
$3 y=2 x-9$
$4 y=2 x+3$

383 Which equation represents a line that has a slope of $\frac{3}{4}$ and passes through the point $(2,1)$?
$13 y=4 x-5$
$2 \quad 3 y=4 x+2$
$3 \quad 4 y=3 x-2$
$4 \quad 4 y=3 x+5$

384 What is an equation of the line that passes through the point $(-2,-8)$ and has a slope of 3 ?

$$
\begin{array}{ll}
1 & y=3 x-2 \\
2 & y=3 x-22 \\
3 & y=3 x+2 \\
4 & y=3 x+22
\end{array}
$$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

385 What is the equation of the line that passes through the point $(3,-7)$ and has a slope of $-\frac{4}{3}$?
$1 y=-\frac{4}{3} x+3$
$2 y=-\frac{4}{3} x-3$
$3 y=\frac{37}{3} x-\frac{4}{3}$
$4 \quad y=-\frac{59}{9} x-\frac{4}{3}$

A.A.35: WRITING LINEAR EQUATIONS

386 What is an equation for the line that passes through the coordinates $(2,0)$ and $(0,3)$?
$1 \quad y=-\frac{3}{2} x+3$
$2 y=-\frac{3}{2} x-3$
$3 y=-\frac{2}{3} x+2$
$4 \quad y=-\frac{2}{3} x-2$
387 Write an equation that represents the line that passes through the points $(5,4)$ and $(-5,0)$.

388 What is an equation of the line that passes through the points $(3,-3)$ and $(-3,-3)$?
$1 \quad y=3$
$2 x=-3$
$3 y=-3$
$4 x=y$

389 Which equation represents the line that passes through the points $(-3,7)$ and $(3,3)$?
$1 \quad y=\frac{2}{3} x+1$
$2 y=\frac{2}{3} x+9$
$3 y=-\frac{2}{3} x+5$
$4 \quad y=-\frac{2}{3} x+9$

390 What is an equation of the line that passes through the points $(1,3)$ and $(8,5)$?
$1 \quad y+1=\frac{2}{7}(x+3)$
$2 \quad y-5=\frac{2}{7}(x-8)$
$3 y-1=\frac{2}{7}(x+3)$
$4 \quad y+5=\frac{2}{7}(x-8)$

391 Which equation represents the line that passes through the points $(1,1)$ and $(-2,7)$?
$1 y=-2 x+9$
$2 y=-2 x+3$
$3 y=-\frac{1}{2} x+8$
$4 \quad y=-\frac{1}{2} x+6$

392 What is an equation of the line that passes through the points $(2,1)$ and $(6,-5)$?
$1 y=-\frac{3}{2} x-2$
$2 y=-\frac{3}{2} x+4$
$3 y=-\frac{2}{3} x-1$
$4 \quad y=-\frac{2}{3} x+\frac{7}{3}$

393 Which equation represents the line that passes through the points $(-1,-2)$ and $(3,10)$?
$1 y=3 x+1$
$2 y=3 x-1$
$3 y=4 x+2$
$4 y=4 x-2$

A.A.39: IDENTIFYING POINTS ON A LINE

394 Which point is on the line $4 y-2 x=0$?
$1(-2,-1)$
$2(-2,1)$
$3(-1,-2)$
$4(1,2)$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

395 Which linear equation represents a line containing the point $(1,3)$?
$1 x+2 y=5$
$2 x-2 y=5$
$3 \quad 2 x+y=5$
$4 \quad 2 x-y=5$

396 Which point lies on the line whose equation is
$2 x-3 y=9$?
$1 \quad(-1,-3)$
$2(-1,3)$
$3(0,3)$
$4(0,-3)$

397 Which point lies on the graph represented by the equation $3 y+2 x=8$?
$1(-2,7)$
$2(0,4)$
$3(2,4)$
$4(7,-2)$
398 Which set of coordinates is a solution of the equation $2 x-y=11$?
$1(-6,1)$
$2(-1,9)$
$3(0,11)$
$4(2,-7)$

399 If the point $(5, k)$ lies on the line represented by the equation $2 x+y=9$, the value of k is
11
22
$3-1$
$4-2$

A.A.36: PARALLEL AND PERPENDICULAR LINES

400 Which equation represents a line parallel to the x-axis?
$1 \quad x=5$
$2 y=10$
$3 x=\frac{1}{3} y$
$4 \quad y=5 x+17$

401 Which equation represents a line parallel to the x-axis?
$1 \quad y=-5$
$2 y=-5 x$
$3 x=3$
$4 x=3 y$

402 Which equation represents a line parallel to the y-axis?
$1 x=y$
$2 x=4$
$3 y=4$
$4 y=x+4$

403 Which equation represents a line parallel to the y-axis?
$1 y=x$
$2 y=3$
$3 x=-y$
$4 x=-4$

404 Which equation represents the line that passes through the point $(3,4)$ and is parallel to the x-axis?
$1 x=4$
$2 x=-3$
$3 y=4$
$4 y=-3$

405 Which equation represents a line that is parallel to the y-axis and passes through the point $(4,3)$?
$1 x=3$
$2 \quad x=4$
$3 y=3$
$4 y=4$

406 Which equation represents a line that is parallel to the y-axis?
$1 x=5$
$2 x=5 y$
$3 y=5$
$4 y=5 x$

407 Which equation represents a vertical line?
$1 y=-x$
$2 y=12$
$3 x=y$
$4 \quad x=12$

408 The graph of the equation $y=-2$ is a line
1 parallel to the x-axis
2 parallel to the y-axis
3 passing through the origin
4 passing through the point $(-2,0)$

A.A.38: PARALLEL AND PERPENDICULAR LINES

409 Which equation represents a line that is parallel to the line $y=-4 x+5$?
$1 y=-4 x+3$
$2 y=-\frac{1}{4} x+5$
$3 y=\frac{1}{4} x+3$
$4 \quad y=4 x+5$

410 Which equation represents a line that is parallel to the line $y=3-2 x$?

$$
\begin{array}{ll}
1 & 4 x+2 y=5 \\
2 & 2 x+4 y=1 \\
3 & y=3-4 x \\
4 & y=4 x-2
\end{array}
$$

411 Which equation represents a line parallel to the graph of $2 x-4 y=16$?
$1 \quad y=\frac{1}{2} x-5$
$2 y=-\frac{1}{2} x+4$
$3 y=-2 x+6$
$4 \quad y=2 x+8$

412 The graphs of the equations $y=2 x-7$ and $y-k x=7$ are parallel when k equals
$1-2$
22
$3-7$
47

413 Which equation represents a line that is parallel to the line whose equation is $2 x-3 y=9$?
$1 \quad y=\frac{2}{3} x-4$
$2 y=-\frac{2}{3} x+4$
$3 y=\frac{3}{2} x-4$
$4 \quad y=-\frac{3}{2} x+4$

414 Which equation represents a line that is parallel to the line whose equation is $y=-3 x-7$?
$1 y=-3 x+4$
$2 y=-\frac{1}{3} x-7$
$3 y=\frac{1}{3} x+5$
$4 y=3 x-2$

415 Which equation represents a line that is parallel to the line whose equation is $y=-3 x$?
$1 \quad \frac{1}{3} x+y=4$
$2-\frac{1}{3} x+y=4$
$3 \quad 6 x+2 y=4$
$4-6 x+2 y=4$

INEQUALITIES

A.A.24: SOLVING INEQUALITIES

416 What is the solution of $3(2 m-1) \leq 4 m+7$?
$1 \quad m \leq 5$
$2 m \geq 5$
$3 m \leq 4$
$4 \quad m \geq 4$

417 What is the solution of the inequality
$-6 x-17 \geq 8 x+25$?
$1 \quad x \geq 3$
$2 x \leq 3$
$3 x \geq-3$
$4 \quad x \leq-3$

418 Solve algebraically for $x: 2(x-4) \geq \frac{1}{2}(5-3 x)$

419 Solve the inequality $-5(x-7)<15$ algebraically for x.

420 Which graph represents the solution set of $2 x-5<3$?

1

421 What is the solution of $4 x-30 \geq-3 x+12$?
$1 \quad x \geq 6$
$2 x \leq 6$
$3 \quad x \geq-6$
$4 \quad x \leq-6$

A.A.21: INTERPRETING SOLUTIONS

422 Which value of x is in the solution set of the inequality $-2 x+5>17$?
1 -8
2 -6
3 -4
412

423 Which value of x is in the solution set of the inequality $-4 x+2>10$?
1 -2
22
3 3
$4-4$

424 Which value of x is in the solution set of $\frac{4}{3} x+5<17$?
18
29
312
416

425 Which value of x is in the solution set of the inequality $-2(x-5)<4$?
10
22
3 3
45

426 Given: $A=\{18,6,-3,-12\}$
Determine all elements of set A that are in the solution of the inequality $\frac{2}{3} x+3<-2 x-7$.

427 Which value of x is in the solution set of $-3 x+8 \geq 14$?
$1-3$
2 -1
30
43

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

428 The statement $|-15|<x<|-20|$ is true when x is equal to
1 -16
$2-14$
$3 \quad 17$
421

429 Which value of x is a solution of the inequality $25 x-100<250$?
$1 \quad 13$
$2 \quad 14$
315
$4 \quad 16$

A.A.4: MODELING INEQUALITIES

430 Mrs. Smith wrote "Eight less than three times a number is greater than fifteen" on the board. If x represents the number, which inequality is a correct translation of this statement?
$13 x-8>15$
$2 \quad 3 x-8<15$
$3 \quad 8-3 x>15$
$4 \quad 8-3 x<15$

431 The sign shown below is posted in front of a roller coaster ride at the Wadsworth County Fairgrounds.

If h represents the height of a rider in inches, what is a correct translation of the statement on this sign?
$1 \quad h<48$
$2 h>48$
$3 \quad h \leq 48$
$4 \quad h \geq 48$

432 If Rosa's age is represented by R, which inequality represents the statement "Rosa is at most 29 years old"?
$1 \quad R<29$
$2 \quad R>29$
$3 \quad R \leq 29$
$4 \quad R \geq 29$

A.A.5: MODELING INEQUALITIES

433 An electronics store sells DVD players and cordless telephones. The store makes a $\$ 75$ profit on the sale of each DVD player (d) and a $\$ 30$ profit on the sale of each cordless telephone (c). The store wants to make a profit of at least $\$ 255.00$ from its sales of DVD players and cordless phones. Which inequality describes this situation?
$175 d+30 c<255$
$275 d+30 c \leq 255$
$375 d+30 c>255$
$4 \quad 75 d+30 c \geq 255$

434 Students in a ninth grade class measured their heights, h, in centimeters. The height of the shortest student was 155 cm , and the height of the tallest student was 190 cm . Which inequality represents the range of heights?
$1 \quad 155<h<190$
$2 \quad 155 \leq h \leq 190$
$3 \quad h \geq 155$ or $h \leq 190$
$4 h>155$ or $h<190$

435 Roger is having a picnic for 78 guests. He plans to serve each guest at least one hot dog. If each package, p, contains eight hot dogs, which inequality could be used to determine how many packages of hot dogs Roger will need to buy?
$1 \quad p \geq 78$
$2 \quad 8 p \geq 78$
$3 \quad 8+p \geq 78$
$4 \quad 78-p \geq 8$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

436 The ninth grade class at a local high school needs to purchase a park permit for $\$ 250.00$ for their upcoming class picnic. Each ninth grader attending the picnic pays $\$ 0.75$. Each guest pays $\$ 1.25$. If 200 ninth graders attend the picnic, which inequality can be used to determine the number of guests, x, needed to cover the cost of the permit?
$10.75 x-(1.25)(200) \geq 250.00$
$2 \quad 0.75 x+(1.25)(200) \geq 250.00$
3 (0.75)(200)-1.25x ≥ 250.00
4 (0.75)(200) $+1.25 x \geq 250.00$

437 The length of a rectangle is 15 and its width is w. The perimeter of the rectangle is, at most, 50 . Which inequality can be used to find the longest possible width?
$130+2 w<50$
$230+2 w \leq 50$
$3 \quad 30+2 w>50$
$4 \quad 30+2 w \geq 50$

438 Carol plans to sell twice as many magazine subscriptions as Jennifer. If Carol and Jennifer need to sell at least 90 subscriptions in all, which inequality could be used to determine how many subscriptions, x, Jennifer needs to sell?
$1 \quad x \geq 45$
$2 \quad 2 x \geq 90$
$3 \quad 2 x-x \geq 90$
$4 \quad 2 x+x \geq 90$

439 Jeremy is hosting a Halloween party for 80 children. He will give each child at least one candy bar. If each bag of candy contains 18 candy bars, which inequality can be used to determine how many bags, c, Jeremy will need to buy?
$1 \quad 18 c \geq 80$
$2 \quad 18 c \leq 80$
$3 \quad \frac{c}{18} \geq 80$
$4 \quad \frac{c}{18} \leq 80$

440 The length of a rectangle is three feet less than twice its width. If x represents the width of the rectangle, in feet, which inequality represents the area of the rectangle that is at most 30 square feet?
$1 \quad x(2 x-3) \leq 30$
$2 x(2 x-3) \geq 30$
$3 x(3-2 x) \leq 30$
$4 \quad x(3-2 x) \geq 30$

A.A.6: MODELING INEQUALITIES

441 A prom ticket at Smith High School is $\$ 120$. Tom is going to save money for the ticket by walking his neighbor's dog for $\$ 15$ per week. If Tom already has saved $\$ 22$, what is the minimum number of weeks Tom must walk the dog to earn enough to pay for the prom ticket?

442 Peter begins his kindergarten year able to spell 10 words. He is going to learn to spell 2 new words every day. Write an inequality that can be used to determine how many days, d, it takes Peter to be able to spell at least 75 words. Use this inequality to determine the minimum number of whole days it will take for him to be able to spell at least 75 words.

443 Tamara has a cell phone plan that charges $\$ 0.07$ per minute plus a monthly fee of $\$ 19.00$. She budgets $\$ 29.50$ per month for total cell phone expenses without taxes. What is the maximum number of minutes Tamara could use her phone each month in order to stay within her budget?
1150
2271
3421
4692

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

444 An online music club has a one-time registration fee of $\$ 13.95$ and charges $\$ 0.49$ to buy each song. If Emma has $\$ 50.00$ to join the club and buy songs, what is the maximum number of songs she can buy?
173
$2 \quad 74$
3130
4131

445 Chelsea has $\$ 45$ to spend at the fair. She spends $\$ 20$ on admission and $\$ 15$ on snacks. She wants to play a game that costs $\$ 0.65$ per game. Write an inequality to find the maximum number of times, x, Chelsea can play the game. Using this inequality, determine the maximum number of times she can play the game.

446 If five times a number is less than 55 , what is the greatest possible integer value of the number?
112
211
310
49

447 Jason's part-time job pays him $\$ 155$ a week. If he has already saved $\$ 375$, what is the minimum number of weeks he needs to work in order to have enough money to buy a dirt bike for $\$ 900$?
18
29
3 3
44

448 Tony makes a phone call at a pay phone. The charge is 25 cents for the first four minutes, and 10 cents for each additional minute. Tony has $\$ 2.10$ in change in his pocket. Write an inequality that can be used to find m, the maximum number of minutes that Tony can talk on the phone. Solve this inequality algebraically to find the maximum number of whole minutes he can talk on the phone.

A.G.6: LINEAR INEQUALITIES

449 Which inequality is represented by the graph below?

$1 . y<2 x+1$
$2 y<-2 x+1$
$3 \quad y<\frac{1}{2} x+1$
$4 y<-\frac{1}{2} x+1$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

450 Which graph represents the solution of $3 y-9 \leq 6 x$?

1

3

4

451 Graph the solution set for the inequality $4 x-3 y>9$ on the set of axes below. Determine if the point $(1,-3)$ is in the solution set. Justify your answer.

452 Which quadrant will be completely shaded in the graph of the inequality $y \leq 2 x$?
1 Quadrant I
2 Quadrant II
3 Quadrant III
4 Quadrant IV

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

453 Which graph represents the inequality $y>3$?

1

3

4

454 The diagram below shows the graph of which inequality?

$1 y>x-1$
$2 y \geq x-1$
$3 y<x-1$
$4 y \leq x-1$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

455 Which graph represents the inequality $y \geq x+3$?

1

2

3

456 Which graph represents the solution of $2 y+6>4 x$?

2

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

457 Which inequality is shown in the graph below?

$1 \quad y \leq \frac{4}{3} x+3$
$2 y \geq \frac{4}{3} x+3$
$3 \quad y \leq \frac{4}{3} x-4$
$4 \quad y \geq \frac{4}{3} x-4$

ABSOLUTE VALUE

A.G.4: GRAPHING ABSOLUTE VALUE FUNCTIONS

458 Which is the graph of $y=|x|+2$?

1

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

459 On the set of axes below, graph $y=2|x+3|$. Include the interval $-7 \leq x \leq 1$.

460 Which graph represents the equation $y=|x-2|$?

1

2

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org
A.G.5: GRAPHING ABSOLUTE VALUE FUNCTIONS

461 The diagram below shows the graph of $y=|x-3|$.

Which diagram shows the graph of $y=-|x-3|$?

1

3

462 The graph of the equation $y=|x|$ is shown in the diagram below.

Which diagram could represent a graph of the equation $y=a|x|$ when $-1<a<0$?

1

2

3

4

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

463 Graph and label the following equations on the set of axes below.

$$
\begin{aligned}
& y=|x| \\
& y=\left|\frac{1}{2} x\right|
\end{aligned}
$$

Explain how decreasing the coefficient of x affects the graph of the equation $y=|x|$.

464 On the set of axes below, graph and label the equations $y=|x|$ and $y=3|x|$ for the interval $-3 \leq x \leq 3$.

Explain how changing the coefficient of the absolute value from 1 to 3 affects the graph.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

465 The graph of $y=|x+2|$ is shown below.

Which graph represents $y=-|x+2|$?

1

2

4

466 Graph and label the functions $y=|x|$ and $y=|2 x|$ on the set of axes below.

Explain how increasing the coefficient of x affects the graph of $y=|x|$.

467 Dominick graphs the equation $y=a|x|$ where a is a positive integer. If Gina multiplies a by -3 , the new graph will become
1 narrower and open downward
2 narrower and open upward
3 wider and open downward
4 wider and open upward

QUADRATICS

A.A.20: FACTORING POLYNOMIALS

468 Factored completely, the expression $2 x^{2}+10 x-12$ is equivalent to
$12(x-6)(x+1)$
$22(x+6)(x-1)$
3 2(x+2)(x+3)
$42(x-2)(x-3)$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

469 Factored completely, the expression $3 x^{2}-3 x-18$ is equivalent to
$13\left(x^{2}-x-6\right)$
$23(x-3)(x+2)$
$3(3 x-9)(x+2)$
$4 \quad(3 x+6)(x-3)$

470 What are the factors of the expression $x^{2}+x-20$?
$1 \quad(x+5)$ and $(x+4)$
$2(x+5)$ and $(x-4)$
$3(x-5)$ and $(x+4)$
$4(x-5)$ and $(x-4)$

471 Factored completely, the expression
$3 x^{3}-33 x^{2}+90 x$ is equivalent to
$13 x\left(x^{2}-33 x+90\right)$
$23 x\left(x^{2}-11 x+30\right)$
$33 x(x+5)(x+6)$
$43 x(x-5)(x-6)$

472 Factor completely: $5 x^{3}-20 x^{2}-60 x$

473 The greatest common factor of $3 m^{2} n+12 m n^{2}$ is?

1 3n
2 3m
3 3mn
$43 m n^{2}$

474 When factored completely, the expression
$3 x^{2}-9 x+6$ is equivalent to
$1(3 x-3)(x-2)$
$2 \quad(3 x+3)(x-2)$
$33(x+1)(x-2)$
$43(x-1)(x-2)$

A.A.19: FACTORING THE DIFFERENCE OF PERFECT SQUARES

475 The expression $x^{2}-16$ is equivalent to
$1(x+2)(x-8)$
$2(x-2)(x+8)$
$3(x+4)(x-4)$
$4 \quad(x+8)(x-8)$

476 Factored, the expression $16 x^{2}-25 y^{2}$ is equivalent to
$1(4 x-5 y)(4 x+5 y)$
$2(4 x-5 y)(4 x-5 y)$
$3(8 x-5 y)(8 x+5 y)$
$4(8 x-5 y)(8 x-5 y)$

477 The expression $9 x^{2}-100$ is equivalent to
$1(9 x-10)(x+10)$
$2(3 x-10)(3 x+10)$
$3(3 x-100)(3 x-1)$
$4(9 x-100)(x+1)$

478 Factor completely: $4 x^{3}-36 x$

479 Which expression is equivalent to $9 x^{2}-16$?
$1(3 x+4)(3 x-4)$
$2(3 x-4)(3 x-4)$
$3(3 x+8)(3 x-8)$
$4(3 x-8)(3 x-8)$

480 If Ann correctly factors an expression that is the difference of two perfect squares, her factors could be
$1 \quad(2 x+y)(x-2 y)$
$2(2 x+3 y)(2 x-3 y)$
$3(x-4)(x-4)$
$4(2 y-5)(y-5)$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

481 Which expression is equivalent to $121-x^{2}$?
$1(x-11)(x-11)$
$2(x+11)(x-11)$
$3(11-x)(11+x)$
$4(11-x)(11-x)$

482 When $a^{3}-4 a$ is factored completely, the result is $1(a-2)(a+2)$
$2 a(a-2)(a+2)$
$3 \quad a^{2}(a-4)$
$4 a(a-2)^{2}$

483 The expression $x^{2}-36 y^{2}$ is equivalent to
$1(x-6 y)(x-6 y)$
$2(x-18 y)(x-18 y)$
$3(x+6 y)(x-6 y)$
$4 \quad(x+18 y)(x-18 y)$

484 Which expression represents $36 x^{2}-100 y^{6}$ factored completely?
$12\left(9 x+25 y^{3}\right)\left(9 x-25 y^{3}\right)$
$24\left(3 x+5 y^{3}\right)\left(3 x-5 y^{3}\right)$
$3\left(6 x+10 y^{3}\right)\left(6 x-10 y^{3}\right)$
$4\left(18 x+50 y^{3}\right)\left(18 x-50 y^{3}\right)$

485 Which expression is equivalent to $64-x^{2}$?
$1(8-x)(8-x)$
$2(8-x)(8+x)$
$3(x-8)(x-8)$
$4(x-8)(x+8)$

486 The expression $9 a^{2}-64 b^{2}$ is equivalent to
$1(9 a-8 b)(a+8 b)$
$2(9 a-8 b)(a-8 b)$
$3(3 a-8 b)(3 a+8 b)$
$4(3 a-8 b)(3 a-8 b)$

487 The expression $100 n^{2}-1$ is equivalent to
$1(10 n+1)(10 n-1)$
$2(10 n-1)(10 n-1)$
$3(50 n+1)(50 n-1)$
$4(50 n-1)(50 n-1)$

488 When $9 x^{2}-100$ is factored, it is equivalent to $(3 x-b)(3 x+b)$. What is a value for b ?
150
$2 \quad 10$
33
4100

489 Which expression is equivalent to $81-16 x^{2}$?
$1 \quad(9-8 x)(9+8 x)$
$2(9-8 x)(9+2 x)$
$3(9-4 x)(9+4 x)$
$4(9-4 x)(9-4 x)$

A.A.27: SOLVING QUADRATICS BY FACTORING

490 The solution to the equation $x^{2}-6 x=0$ is
1 0, only
2 6, only
30 and 6
$4 \pm \sqrt{6}$

491 The solutions of $x^{2}=16 x-28$ are
1 -2 and -14
$2 \quad 2$ and 14
$3-4$ and -7
$4 \quad 4$ and 7

A.A.28: ROOTS OF QUADRATICS

492 What are the roots of the equation
$x^{2}-10 x+21=0$?
$1 \quad 1$ and 21
$2-5$ and -5
$3 \quad 3$ and 7
$4 \quad-3$ and -7

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic

493 What are the roots of the equation $x^{2}-7 x+6=0$?
$1 \quad 1$ and 7
$2-1$ and 7
$3-1$ and -6
$4 \quad 1$ and 6

494 Find the roots of the equation $x^{2}-x=6$ algebraically.

495 Find the roots of the equation $x^{2}=30-13 x$ algebraically.

496 Which equation has roots of -3 and 5 ?
$1 x^{2}+2 x-15=0$
$2 x^{2}-2 x-15=0$
$3 x^{2}+2 x+15=0$
$4 x^{2}-2 x+15=0$

497 What are the roots of the equation $x^{2}-5 x+6=0$?
$1 \quad 1$ and -6
22 and 3
$3-1$ and 6
$4-2$ and -3

498 The roots of the equation $3 x^{2}-27 x=0$ are
10 and 9
20 and -9
30 and 3
40 and -3

499 The roots of the equation $x^{2}-14 x+48=0$ are
$1-6$ and -8
$2-6$ and 8
36 and -8
46 and 8

500 If the roots of a quadratic equation are -2 and 3 , the equation can be written as
$1(x-2)(x+3)=0$
$2(x+2)(x-3)=0$
$3(x+2)(x+3)=0$
$4(x-2)(x-3)=0$

501 The roots of the equation $2 x^{2}-8 x=0$ are
$1 \quad-2$ and 2
$20,-2$ and 2
30 and -4
$4 \quad 0$ and 4

502 If the roots of a quadratic equation are -4 and 2 , the equation is equivalent to
$1(x+4)(x-2)=0$
$2(x-4)(x+2)=0$
$3 \quad(x+4)(x+2)=0$
$4(x-4)(x-2)=0$

503 Write a quadratic equation in standard form that has roots of -12 and 2 .

A.G.5: GRAPHING QUADRATIC FUNCTIONS

504 Consider the graph of the equation $y=a x^{2}+b x+c$, when $a \neq 0$. If a is multiplied by 3 , what is true of the graph of the resulting parabola?
1 The vertex is 3 units above the vertex of the original parabola.
2 The new parabola is 3 units to the right of the original parabola.
3 The new parabola is wider than the original parabola.
4 The new parabola is narrower than the original parabola.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

505 The diagram below shows the graph of $y=-x^{2}-c$.

Which diagram shows the graph of $y=x^{2}-c$?

1

506 Melissa graphed the equation $y=x^{2}$ and Dave graphed the equation $y=-3 x^{2}$ on the same coordinate grid. What is the relationship between the graphs that Melissa and Dave drew?
1 Dave's graph is wider and opens in the opposite direction from Melissa's graph.
2 Dave's graph is narrower and opens in the opposite direction from Melissa's graph.
3 Dave's graph is wider and is three units below Melissa's graph.
4 Dave's graph is narrower and is three units to the left of Melissa's graph.

507 The graph of a parabola is represented by the equation $y=a x^{2}$ where a is a positive integer. If a is multiplied by 2 , the new parabola will become
1 narrower and open downward
2 narrower and open upward
3 wider and open downward
4 wider and open upward

508 How is the graph of $y=x^{2}+4 x+3$ affected when the coefficient of x^{2} is changed to a smaller positive number?
1 The graph becomes wider, and the y-intercept changes.
2 The graph becomes wider, and the y-intercept stays the same.
3 The graph becomes narrower, and the y-intercept changes.
4 The graph becomes narrower, and the y-intercept stays the same.

509 Which is the equation of a parabola that has the same vertex as the parabola represented by $y=x^{2}$, but is wider?
$1 y=x^{2}+2$
$2 y=x^{2}-2$
$3 y=2 x^{2}$
$4 y=\frac{1}{2} x^{2}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

510 The graph of the equation $y=x^{2}$ is shown below.

Which statement best describes the change in this graph when the coefficient of x^{2} is multiplied by 4 ?
1 The parabola becomes wider.
2 The parabola becomes narrower.
3 The parabola will shift up four units.
4 The parabola will shift right four units.

511 The graph of $y=x^{2}$ is shown below.

Which graph represents $y=2 x^{2}$?

1

2

3

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org
A.G.8: SOLVING QUADRATICS BY GRAPHING

512 Graph the equation $y=x^{2}-2 x-3$ on the accompanying set of axes. Using the graph, determine the roots of the equation $x^{2}-2 x-3=0$.

513 The equation $y=x^{2}+3 x-18$ is graphed on the set of axes below.

Based on this graph, what are the roots of the equation $x^{2}+3 x-18=0$?
$1 \quad-3$ and 6
20 and -18
3 and -6
$4 \quad 3$ and -18

514 The equation $y=-x^{2}-2 x+8$ is graphed on the set of axes below.

Based on this graph, what are the roots of the equation $-x^{2}-2 x+8=0$?
18 and 0
2 2and -4
3 9and -1
44 and -2

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

515 A student correctly graphed the parabola shown below to solve a given quadratic equation.

What are the roots of the quadratic equation associated with this graph?
$1-6$ and 3
$2-6$ and 0
$3-3$ and 2
$4-2$ and 3

516 On the set of axes below, graph the equation $y=x^{2}+2 x-8$. Using the graph, determine and state the roots of the equation $x^{2}+2 x-8=0$.

517 The roots of a quadratic equation can be found using the graph below.

What are the roots of this equation?
$1-4$, only
2 -4 and -1
$3-1$ and 4
$4-4,-1$, and 4

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

518 The equation $y=a x^{2}+b x+c$ is graphed on the set of axes below.

Based on the graph, what are the roots of the equation $a x^{2}+b x+c=0$?
10 and 5
$2 \quad 1$ and 0
31 and 5
43 and -4

519 The graph of $f(x)$ is shown below.

Based on this graph, what are the roots of the equation $f(x)=0$?
$1 \quad 1$ and -5
$2-1$ and 5
3 2 and -9
$4-1$ and -5 and 5

520 On the set of axes below, graph $y=2 x^{2}-4 x-6$. State the roots of $0=2 x^{2}-4 x-6$.

A.A.8: QUADRATIC FUNCTIONS

521 The equation $P=0.0089 t^{2}+1.1149 t+78.4491$ models the United States population, P, in millions since 1900. If t represents the number of years after 1900, then what is the estimated population in 2025 to the nearest tenth of a million?
1217.8
$2 \quad 219.0$
$3 \quad 343.9$
4356.9

522 A model rocket is launched into the air from ground level. The height, in feet, is modeled by $p(x)=-16 x^{2}+32 x$, where x is the number of elapsed seconds. What is the total number of seconds the model rocket will be in the air?
11
22
30
416

A.A.8: WRITING QUADRATICS

523 Find three consecutive positive even integers such that the product of the second and third integers is twenty more than ten times the first integer. [Only an algebraic solution can receive full credit.]

524 When 36 is subtracted from the square of a number, the result is five times the number. What is the positive solution?
19
26
33
44

525 Byron is 3 years older than Doug. The product of their ages is 40 . How old is Doug?
110
28
35
44

526 Noj is 5 years older than Jacob. The product of their ages is 84. How old is Noj?
16
27
$3 \quad 12$
$4 \quad 14$

527 The square of a positive number is 24 more than 5 times the number. What is the value of the number?
16
28
$3 \quad 3$
44

A.A.8: GEOMETRIC APPLICATIONS OF QUADRATICS

528 A contractor needs 54 square feet of brick to construct a rectangular walkway. The length of the walkway is 15 feet more than the width. Write an equation that could be used to determine the dimensions of the walkway. Solve this equation to find the length and width, in feet, of the walkway.

529 A rectangle has an area of 24 square units. The width is 5 units less than the length. What is the length, in units, of the rectangle?
16
28
33
419

530 The length of a rectangle is 3 inches more than its width. The area of the rectangle is 40 square inches. What is the length, in inches, of the rectangle?
15
28
38.5
$4 \quad 11.5$

A.G.10: IDENTIFYING THE VERTEX OF A

 QUADRATIC GIVEN GRAPH531 What are the vertex and the axis of symmetry of the parabola shown in the diagram below?

1 The vertex is ($-2,-3$), and the axis of symmetry is $x=-2$.
2 The vertex is ($-2,-3$), and the axis of symmetry is $y=-2$.
3 The vertex is ($-3,-2$), and the axis of symmetry is $y=-2$.
4 The vertex is ($-3,-2$), and the axis of symmetry is $x=-2$.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

532 A swim team member performs a dive from a 14 -foot-high springboard. The parabola below shows the path of her dive.

Which equation represents the axis of symmetry?
$1 x=3$
$2 \quad y=3$
$3 x=23$
$4 y=23$

533 Which equation represents the axis of symmetry of the graph of the parabola below?

$1 \quad y=-3$
$2 x=-3$
$3 y=-25$
$4 x=-25$

534 What is the equation of the axis of symmetry of the parabola shown in the diagram below?

$1 x=-0.5$
$2 x=2$
$3 x=4.5$
$4 x=13$

535 What are the vertex and axis of symmetry of the parabola shown in the diagram below?

1 vertex: (1,-4); axis of symmetry: $x=1$
2 vertex: $(1,-4)$; axis of symmetry: $x=-4$
3 vertex: $(-4,1)$; axis of symmetry: $x=1$
4 vertex: $(-4,1)$; axis of symmetry: $x=-4$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

536 State the equation of the axis of symmetry and the coordinates of the vertex of the parabola graphed below.

537 What are the vertex and the axis of symmetry of the parabola shown in the graph below?

1 vertex: (1,6); axis of symmetry: $y=1$
2 vertex: (1,6); axis of symmetry: $x=1$
3 vertex: $(6,1)$; axis of symmetry: $y=1$
4 vertex: $(6,1)$; axis of symmetry: $x=1$

538 What are the coordinates of the vertex and the equation of the axis of symmetry of the parabola shown in the graph below?

$1(0,2)$ and $y=2$
$2(0,2)$ and $x=2$
$3(-2,6)$ and $y=-2$
$4 \quad(-2,6)$ and $x=-2$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

539 Which parabola has an axis of symmetry of $x=1$?

1

2

3

540 The graph below represents the parabolic path of a ball kicked by a young child. What are the vertex and the axis of symmetry for the parabola?

1 vertex: $(3,8)$; axis of symmetry: $x=3$
2 vertex: $(3,8)$; axis of symmetry: $y=3$
3 vertex: $(8,3)$; axis of symmetry: $x=3$
4 vertex: $(8,3)$; axis of symmetry: $y=3$

A.A.41: IDENTIFYING THE VERTEX OF A QUADRATIC GIVEN EQUATION

541 What are the vertex and axis of symmetry of the parabola $y=x^{2}-16 x+63$?
1 vertex: $(8,-1)$; axis of symmetry: $x=8$
2 vertex: $(8,1)$; axis of symmetry: $x=8$
3 vertex: $(-8,-1)$; axis of symmetry: $x=-8$
4 vertex: $(-8,1)$; axis of symmetry: $x=-8$

542 Find algebraically the equation of the axis of symmetry and the coordinates of the vertex of the parabola whose equation is $y=-2 x^{2}-8 x+3$.

543 The height, y, of a ball tossed into the air can be represented by the equation $y=-x^{2}+10 x+3$, where x is the elapsed time. What is the equation of the axis of symmetry of this parabola?
$1 \quad y=5$
$2 y=-5$
$3 x=5$
$4 x=-5$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

544 What is an equation of the axis of symmetry of the parabola represented by $y=-x^{2}+6 x-4$?
$1 x=3$
$2 y=3$
$3 x=6$
$4 y=6$

545 The equation of the axis of symmetry of the graph of $y=2 x^{2}-3 x+7$ is
$1 x=\frac{3}{4}$
$2 y=\frac{3}{4}$
$3 x=\frac{3}{2}$
$4 y=\frac{3}{2}$

546 What is the vertex of the parabola represented by the equation $y=-2 x^{2}+24 x-100$?
$1 \quad x=-6$
$2 x=6$
3 (6,-28)
$4(-6,-316)$

547 The vertex of the parabola $y=x^{2}+8 x+10$ lies in Quadrant
1 I
2 II
3 III
4 IV

548 What is the vertex of the graph of the equation $y=3 x^{2}+6 x+1$?
$1(-1,-2)$
$2(-1,10)$
$3(1,-2)$
$4(1,10)$

549 Which equation represents the axis of symmetry of the graph of the equation $y=x^{2}+4 x-5$?
$1 \quad x=-2$
$2 x=4$
$3 y=-2$
$4 y=4$

550 Find algebraically the equation of the axis of symmetry and the vertex of the parabola represented by the equation $y=-x^{2}-2 x+1$.

A.A.10: SOLVING LINEAR SYSTEMS

551 The equations $5 x+2 y=48$ and $3 x+2 y=32$ represent the money collected from school concert ticket sales during two class periods. If x represents the cost for each adult ticket and y represents the cost for each student ticket, what is the cost for each adult ticket?
$1 \quad \$ 20$
$2 \quad \$ 10$
3 \$8
4 \$4

552 Solve the following system of equations algebraically:

$$
\begin{aligned}
& 3 x+2 y=4 \\
& 4 x+3 y=7
\end{aligned}
$$

[Only an algebraic solution can receive full credit.]

553 What is the value of the y-coordinate of the solution to the system of equations $x+2 y=9$ and $x-y=3$?
16
22
$3 \quad 3$
45

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

554 What is the value of the y-coordinate of the solution to the system of equations $x-2 y=1$ and $x+4 y=7$?
11
$2-1$
3
44

555 What is the solution of the system of equations
$c+3 d=8$ and $c=4 d-6$?
$1 \quad c=-14, d=-2$
$2 c=-2, d=2$
$3 c=2, d=2$
$4 \quad c=14, d=-2$

556 What is the value of the y-coordinate of the solution to the system of equations $2 x+y=8$ and $x-3 y=-3$?
1 -2
22
$3 \quad 3$
$4-3$

557 What is the solution of the system of equations $2 x-5 y=11$ and $-2 x+3 y=-9$?
$1(-3,-1)$
$2(-1,3)$
$3(3,-1)$
$4(3,1)$

558 Solve the following system of equations algebraically for y :

$$
\begin{gathered}
2 x+2 y=9 \\
2 x-y=3
\end{gathered}
$$

559 Using the substitution method, Ken solves the following system of equations algebraically.

$$
\begin{aligned}
2 x-y & =5 \\
3 x+2 y & =-3
\end{aligned}
$$

Which equivalent equation could Ken use?
$13 x+2(2 x-5)=-3$
$23 x+2(5-2 x)=-3$
$33\left(y+\frac{5}{2}\right)+2 y=-3$
$43\left(\frac{5}{2}-y\right)+2 y=-3$

560 What is the solution of the system of equations below?

$$
\begin{gathered}
2 x+3 y=7 \\
x+y=3
\end{gathered}
$$

$1(1,2)$
$2(2,1)$
$3(4,-1)$
$4(4,1)$
561 What is the value of x in the solution of the system of equations $3 x+2 y=12$ and $5 x-2 y=4$?
18
$2 \quad 2$
$3 \quad 3$
$4 \quad 4$

562 The equations $6 x+5 y=300$ and $3 x+7 y=285$ represent the money collected from selling gift baskets in a school fundraising event. If x represents the cost for each snack gift basket and y represents the cost for each chocolate gift basket, what is the cost for each chocolate gift basket?

1	$\$ 20$
2	$\$ 25$
3	$\$ 30$
4	$\$ 54$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

563 What is the solution of the following system of equations? $2 a+3 b=12$

$$
a=\frac{1}{2} b-6
$$

$1 \quad a=-6$ and $b=0$
$2 a=-4.5$ and $b=3$
$3 \quad a=-3$ and $b=6$
$4 \quad a=24$ and $b=6$

A.G.7: SOLVING LINEAR SYSTEMS

564 On the grid below, solve the system of equations graphically for x and y.

$$
\begin{aligned}
& 4 x-2 y=10 \\
& y=-2 x-1
\end{aligned}
$$

565 On the set of axes below, solve the following system of equations graphically. State the coordinates of the solution.

$$
\begin{aligned}
& y=4 x-1 \\
& 2 x+y=5
\end{aligned}
$$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

566
A system of equations is graphed on the set of axes below.

The solution of this system is
$1(0,4)$
$2(2,4)$
$3(4,2)$
$4(8,0)$

567 What is the solution of the system of equations shown in the graph below?

$1(1,0)$ and $(-3,0)$
$2(0,-3)$ and $(0,-1)$
$3(-1,-2)$
$4(-2,-1)$

A.A.7: WRITING LINEAR SYSTEMS

568 Jack bought 3 slices of cheese pizza and 4 slices of mushroom pizza for a total cost of $\$ 12.50$. Grace bought 3 slices of cheese pizza and 2 slices of mushroom pizza for a total cost of $\$ 8.50$. What is the cost of one slice of mushroom pizza?
$1 \quad \$ 1.50$
$2 \quad \$ 2.00$
$3 \quad \$ 3.00$
$4 \quad \$ 3.50$

569 Pam is playing with red and black marbles. The number of red marbles she has is three more than twice the number of black marbles she has. She has 42 marbles in all. How many red marbles does Pam have?
113
215
329
433

570 Sam and Odel have been selling frozen pizzas for a class fundraiser. Sam has sold half as many pizzas as Odel. Together they have sold a total of 126 pizzas. How many pizzas did Sam sell?
121
242
363
484

571 The cost of 3 markers and 2 pencils is $\$ 1.80$. The cost of 4 markers and 6 pencils is $\$ 2.90$. What is the cost of each item? Include appropriate units in your answer.

572 The sum of two numbers is 47, and their difference is 15 . What is the larger number?
116
231
332
436

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

573 At Genesee High School, the sophomore class has 60 more students than the freshman class. The junior class has 50 fewer students than twice the students in the freshman class. The senior class is three times as large as the freshman class. If there are a total of 1,424 students at Genesee High School, how many students are in the freshman class?
1202
2205
3235
4236

574 Julia went to the movies and bought one jumbo popcorn and two chocolate chip cookies for $\$ 5.00$. Marvin went to the same movie and bought one jumbo popcorn and four chocolate chip cookies for $\$ 6.00$. How much does one chocolate chip cookie cost?
$1 \quad \$ 0.50$
$2 \quad \$ 0.75$
$3 \quad \$ 1.00$
$4 \quad \$ 2.00$

575 Josh and Mae work at a concession stand. They each earn $\$ 8$ per hour. Josh worked three hours more than Mae. If Josh and Mae earned a total of \$120, how many hours did Josh work?
16
29
312
415

576 Michael is 25 years younger than his father. The sum of their ages is 53 . What is Michael's age?
$1 \quad 14$
$2 \quad 25$
328
439

577 Ben has four more than twice as many CDs as Jake. If they have a total of 31 CDs, how many CDs does Jake have?
19
$2 \quad 13$
$3 \quad 14$
422

578 The total score in a football game was 72 points. The winning team scored 12 points more than the losing team. How many points did the winning team score?
130
$2 \quad 42$
$3 \quad 54$
$4 \quad 60$

579 The cost of three notebooks and four pencils is $\$ 8.50$. The cost of five notebooks and eight pencils is $\$ 14.50$. Determine the cost of one notebook and the cost of one pencil. [Only an algebraic solution can receive full credit.]

580 The difference between two numbers is 28 . The larger number is 8 less than twice the smaller number. Find both numbers. [Only an algebraic solution can receive full credit.]

581 During its first week of business, a market sold a total of 108 apples and oranges. The second week, five times the number of apples and three times the number of oranges were sold. A total of 452 apples and oranges were sold during the second week. Determine how many apples and how many oranges were sold the first week. [Only an algebraic solution can receive full credit.]

582 A DVD costs twice as much as a music CD. Jack buys 2 DVDs and 2 CDs and spends $\$ 45$. Determine how much one CD costs, in dollars. [Only an algebraic solution can receive full credit.]

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

583 The local deli charges a fee for delivery. On Monday, they delivered two dozen bagels to an office at a total cost of $\$ 8$. On Tuesday, three dozen bagels were delivered at a total cost of $\$ 11$. Which system of equations could be used to find the cost of a dozen bagels, b, if the delivery fee is f ?
$1 \quad b+2 f=8$
$b+3 f=11$
$2 \quad 2 b+f=8$
$b+3 f=11$
$3 \quad b+2 f=8$
$3 b+f=11$
$4 \quad 2 b+f=8$
$3 b+f=11$

A.A.40: SYSTEMS OF LINEAR INEQUALITIES

584 Which ordered pair is in the solution set of the following system of inequalities?

$$
\begin{aligned}
& y<\frac{1}{2} x+4 \\
& y \geq-x+1
\end{aligned}
$$

$1(-5,3)$
$2(0,4)$
$3(3,-5)$
$4(4,0)$

585 Which ordered pair is in the solution set of the following system of linear inequalities?

$$
\begin{aligned}
& y<2 x+2 \\
& y \geq-x-1
\end{aligned}
$$

$1(0,3)$
$2(2,0)$
$3(-1,0)$
$4(-1,-4)$

586 Which ordered pair is in the solution set of the system of linear inequalities graphed below?

$1(1,-4)$
$2(-5,7)$
$3(5,3)$
$4(-7,-2)$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

587
Which ordered pair is in the solution set of the system of inequalities shown in the graph below?

$1 \quad(-2,-1)$
$2(-2,2)$
$3(-2,-4)$
$4(2,-2)$

Which coordinates represent a point in the solution set of the system of inequalities shown below?

$$
\begin{gathered}
y \leq \frac{1}{2} x+13 \\
4 x+2 y>3
\end{gathered}
$$

$1(-4,1)$
$2(-2,2)$
$3(1,-4)$
$4(2,-2)$
589 Which ordered pair is in the solution set of the system of inequalities $y \leq 3 x+1$ and $x-y>1$?
$1(-1,-2)$
$2(2,-1)$
$3(1,2)$
$4(-1,2)$

A.G.7: SYSTEMS OF LINEAR INEQUALITIES

590 On the set of axes below, graph the following system of inequalities and state the coordinates of a point in the solution set.

$$
\begin{gathered}
2 x-y \geq 6 \\
x>2
\end{gathered}
$$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

591 On the set of axes below, solve the following system of inequalities graphically.

$$
\begin{gathered}
y<2 x+1 \\
y \geq-\frac{1}{3} x+4
\end{gathered}
$$

State the coordinates of a point in the solution set.

592 Graph the following systems of inequalities on the set of axes shown below and label the solution set S:

$$
\begin{aligned}
& y>-x+2 \\
& y \leq \frac{2}{3} x+5
\end{aligned}
$$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

593 Solve the following system of inequalities graphically on the set of axes below.

$$
\begin{gathered}
3 x+y<7 \\
y \geq \frac{2}{3} x-4
\end{gathered}
$$

State the coordinates of a point in the solution set.

594 On the set of axes below, graph the following system of inequalities.

$$
\begin{gathered}
y+x \geq 3 \\
5 x-2 y>10
\end{gathered}
$$

State the coordinates of one point that satisfies $y+x \geq 3$, but does not satisfy $5 x-2 y>10$.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

595 On the set of axes below, solve the following system of inequalities graphically. Label the solution set S.

$$
\begin{gathered}
2 x+3 y<-3 \\
y-4 x \geq 2
\end{gathered}
$$

596 On the set of axes below, solve the following system of inequalities graphically.

$$
\begin{gathered}
y+3<2 x \\
-2 y \leq 6 x-10
\end{gathered}
$$

State the coordinates of a point in the solution set.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

597 Graph $y<x$ and $x>5$ on the axes below.

State the coordinates of a point in the solution set.

A.A.11: QUADRATIC-LINEAR SYSTEMS

Which ordered pair is a solution to the system of equations $y=x$ and $y=x^{2}-2$?
1 (-2,-2)
$2(-1,1)$
$3(0,0)$
$4(2,2)$
599 Which ordered pair is in the solution set of the system of equations $y=-x+1$ and $y=x^{2}+5 x+6$?
$1(-5,-1)$
$2(-5,6)$
$3(5,-4)$
$4(5,2)$

600 Which ordered pair is a solution of the system of equations $y=x^{2}-x-20$ and $y=3 x-15$?
$1(-5,-30)$
$2(-1,-18)$
$3(0,5)$
$4(5,-1)$

601 Which ordered pair is a solution to the system of equations $y=x+3$ and $y=x^{2}-x$?
$1(6,9)$
$2(3,6)$
$3(3,-1)$
$4(2,5)$

602 What is the solution set of the system of equations $x+y=5$ and $y=x^{2}-25$?
$1\{(0,5),(11,-6)\}$
$2\{(5,0),(-6,11)\}$
$3\{(-5,0),(6,11)\}$
$4\{(-5,10),(6,-1)\}$

603 Solve the following system of equations algebraically for all values of x and y.

$$
\begin{aligned}
& y=x^{2}+2 x-8 \\
& y=2 x+1
\end{aligned}
$$

604 Solve the following system of equations algebraically for all values of x and y.

$$
\begin{aligned}
& y=x^{2}+2 x-8 \\
& y=2 x+1
\end{aligned}
$$

605 Solve the following system of equations algebraically: $y=x^{2}-6 x+9$

$$
y=-9 x+19
$$

606 Solve the following system of equations algebraically: $y=x^{2}+5 x-17$

$$
y=x-5
$$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A.G.9: QUADRATIC-LINEAR SYSTEMS

607 Solve the following systems of equations graphically, on the set of axes below, and state the coordinates of the point(s) in the solution set.

$$
\begin{gathered}
y=x^{2}-6 x+5 \\
2 x+y=5
\end{gathered}
$$

608 On the set of axes below, solve the following system of equations graphically and state the coordinates of all points in the solution set.

$$
\begin{gathered}
y=x^{2}+4 x-5 \\
y=x-1
\end{gathered}
$$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

609 On the set of axes below, solve the following system of equations graphically for all values of x and y.

$$
\begin{gathered}
y=x^{2}-6 x+1 \\
y+2 x=6
\end{gathered}
$$

610 Which ordered pair is a solution of the system of equations shown in the graph below?

$1(-3,1)$
$2(-3,5)$
$3(0,-1)$
$4(0,-4)$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

611 On the set of axes below, solve the following system of equations graphically for all values of x and y.

$$
\begin{gathered}
y=-x^{2}-4 x+12 \\
y=-2 x+4
\end{gathered}
$$

612 Which graph can be used to find the solution of the following system of equations?

$$
y=x^{2}+2 x+3
$$

$$
2 y-2 x=10
$$

1

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

613 Which graph could be used to find the solution of the system of equations $y=2 x+6$ and
$y=x^{2}+4 x+3$?

1

2

3

614 On the set of axes below, solve the following system of equations graphically and state the coordinates of all points in the solution set.

$$
\begin{gathered}
y=-x^{2}+6 x-3 \\
x+y=7
\end{gathered}
$$

615 Two equations were graphed on the set of axes below.

Which point is a solution of the system of equations shown on the graph?
$1(8,9)$
$2(5,0)$
$3(0,3)$
$4(2,-3)$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

616 On the set of axes below, graph the following system of equations.

$$
\begin{gathered}
y+2 x=x^{2}+4 \\
y-x=4
\end{gathered}
$$

Using the graph, determine and state the coordinates of all points in the solution set for the system of equations.

617 How many solutions are there for the following system of equations?

$$
\begin{gathered}
y=x^{2}-5 x+3 \\
y=x-6
\end{gathered}
$$

$1 \quad 1$
2
33
40

618 On the set of axes below, graph the following system of equations. Using the graph, determine and state all solutions of the system of equations.

$$
\begin{gathered}
y=-x^{2}-2 x+3 \\
y+1=-2 x
\end{gathered}
$$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

619 On the set of axes below, solve the following system of equations graphically for all values of x and y. State the coordinates of all solutions.

$$
\begin{gathered}
y=x^{2}+4 x-5 \\
y=2 x+3
\end{gathered}
$$

POWERS

A.A.13: ADDITION AND SUBTRACTION OF MONOMIALS

620 Which expression is equivalent to
$-3 x(x-4)-2 x(x+3)$?
$1-x^{2}-1$
$2-x^{2}+18 x$
$3-5 x^{2}-6 x$
$4-5 x^{2}+6 x$

A.A.13: ADDITION AND SUBTRACTION OF POLYNOMIALS

621 When $3 g^{2}-4 g+2$ is subtracted from $7 g^{2}+5 g-1$, the difference is
$1-4 g^{2}-9 g+3$
$2 \quad 4 g^{2}+g+1$
$3 \quad 4 g^{2}+9 g-3$
$4 \quad 10 g^{2}+g+1$

622 When $4 x^{2}+7 x-5$ is subtracted from $9 x^{2}-2 x+3$, the result is
$15 x^{2}+5 x-2$
$25 x^{2}-9 x+8$
$3-5 x^{2}+5 x-2$
$4-5 x^{2}+9 x-8$

623 The sum of $4 x^{3}+6 x^{2}+2 x-3$ and
$3 x^{3}+3 x^{2}-5 x-5$ is
$17 x^{3}+3 x^{2}-3 x-8$
$27 x^{3}+3 x^{2}+7 x+2$
$3 \quad 7 x^{3}+9 x^{2}-3 x-8$
$4 \quad 7 x^{6}+9 x^{4}-3 x^{2}-8$

624 What is the result when $2 x^{2}+3 x y-6$ is subtracted from $x^{2}-7 x y+2$?
$1-x^{2}-10 x y+8$
$2 x^{2}+10 x y-8$
$3-x^{2}-4 x y-4$
$4 \quad x^{2}-4 x y-4$

625 When $5 x+4 y$ is subtracted from $5 x-4 y$, the difference is
10
2 10x
$38 y$
$4-8 y$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

626 What is the sum of $-3 x^{2}-7 x+9$ and $-5 x^{2}+6 x-4$?
$1-8 x^{2}-x+5$
$2-8 x^{4}-x+5$
$3-8 x^{2}-13 x+13$
$4-8 x^{4}-13 x^{2}+13$

627 When $8 x^{2}+3 x+2$ is subtracted from $9 x^{2}-3 x-4$, the result is
$1 \quad x^{2}-2$
$2 \quad 17 x^{2}-2$
$3-x^{2}+6 x+6$
$4 x^{2}-6 x-6$

628 The sum of $3 x^{2}+5 x-6$ and $-x^{2}+3 x+9$ is
$12 x^{2}+8 x-15$
$2 \quad 2 x^{2}+8 x+3$
$32 x^{4}+8 x^{2}+3$
$4 \quad 4 x^{2}+2 x-15$

629 When $2 x^{2}-3 x+2$ is subtracted from $4 x^{2}-5 x+2$, the result is
$1 \quad 2 x^{2}-2 x$
$2-2 x^{2}+2 x$
$3-2 x^{2}-8 x+4$
$4 \quad 2 x^{2}-8 x+4$

630 The sum of $8 n^{2}-3 n+10$ and $-3 n^{2}-6 n-7$ is
$15 n^{2}-9 n+3$
$25 n^{2}-3 n-17$
$3-11 n^{2}-9 n-17$
$4-11 n^{2}-3 n+3$

631 What is the result when $4 x^{2}-17 x+36$ is subtracted from $2 x^{2}-5 x+25$?
$16 x^{2}-22 x+61$
$2 \quad 2 x^{2}-12 x+11$
$3-2 x^{2}-22 x+61$
$4-2 x^{2}+12 x-11$

632 When $6 x^{2}-4 x+3$ is subtracted from $3 x^{2}-2 x+3$, the result is
$13 x^{2}-2 x$
$2-3 x^{2}+2 x$
$3 \quad 3 x^{2}-6 x+6$
$4-3 x^{2}-6 x+6$

633 What is the result when $6 x^{2}-13 x+12$ is subtracted from $-3 x^{2}+6 x+7$?
$13 x^{2}-7 x+19$
$29 x^{2}-19 x+5$
$39 x^{2}-7 x+19$
$4-9 x^{2}+19 x-5$

A.A.13: MULTIPLICATION OF POLYNOMIALS

634 What is the product of $-3 x^{2} y$ and $\left(5 x y^{2}+x y\right)$?
$1-15 x^{3} y^{3}-3 x^{3} y^{2}$
$2-15 x^{3} y^{3}-3 x^{3} y$
$3-15 x^{2} y^{2}-3 x^{2} y$
$4-15 x^{3} y^{3}+x y$

635 What is the product of $(3 x+2)$ and $(x-7)$?
$13 x^{2}-14$
$23 x^{2}-5 x-14$
$33 x^{2}-19 x-14$
$43 x^{2}-23 x-14$

636 The length of a rectangle is represented by
$x^{2}+3 x+2$, and the width is represented by $4 x$.
Express the perimeter of the rectangle as a trinomial. Express the area of the rectangle as a trinomial.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A.A.14: DIVISION OF POLYNOMIALS

637 Which expression represents $\frac{12 x^{3}-6 x^{2}+2 x}{2 x}$ in simplest form?
$16 x^{2}-3 x$
$210 x^{2}-4 x$
$3 \quad 6 x^{2}-3 x+1$
$410 x^{2}-4 x+1$

638 Express in simplest form: $\frac{45 a^{4} b^{3}-90 a^{3} b}{15 a^{2} b}$

639 The quotient of $\frac{8 x^{5}-2 x^{4}+4 x^{3}-6 x^{2}}{2 x^{2}}$ is
$1 \quad 16 x^{7}-4 x^{6}+8 x^{5}-12 x^{4}$
$2 \quad 4 x^{7}-x^{6}+2 x^{5}-3 x^{4}$
$34 x^{3}-x^{2}+2 x-3 x$
$4 \quad 4 x^{3}-x^{2}+2 x-3$

640 What is $24 x^{2} y^{6}-16 x^{6} y^{2}+4 x y^{2}$ divided by $4 x y^{2}$?
$16 x y^{4}-4 x^{5}$
$2 \quad 6 x y^{4}-4 x^{5}+1$
$36 x^{2} y^{3}-4 x^{6} y$
$46 x^{2} y^{3}-4 x^{6} y+1$

641 When $16 x^{3}-12 x^{2}+4 x$ is divided by $4 x$, the quotient is
$112 x^{2}-8 x$
$212 x^{2}-8 x+1$
$3 \quad 4 x^{2}-3 x$
$4 \quad 4 x^{2}-3 x+1$

A.A.12: MULTIPLICATION OF POWERS

642 Which expression represents $\left(3 x^{2} y^{4}\right)\left(4 x y^{2}\right)$ in simplest form?
$1 \quad 12 x^{2} y^{8}$
$212 x^{2} y^{6}$
$3 \quad 12 x^{3} y^{8}$
$4 \quad 12 x^{3} y^{6}$

643 Which expression is equivalent to $3^{3} \cdot 3^{4}$?
$1 \quad 9^{12}$
29^{7}
$3 \quad 3^{12}$
$4 \quad 3^{7}$

644 The product of $6 x^{3} y^{3}$ and $2 x^{2} y$ is
$13 x y^{2}$
$28 x^{5} y^{4}$
$312 x^{5} y^{4}$
$4 \quad 12 x^{6} y^{3}$

645 What is the product of $3 a^{2} b$ and $-2 a b^{3}$?
$1 a^{2} b^{3}$
$2 a^{3} b^{4}$
$3-6 a^{2} b^{3}$
$4-6 a^{3} b^{4}$

A.A.12: DIVISION OF POWERS

646 Which expression represents $\frac{\left(2 x^{3}\right)\left(8 x^{5}\right)}{4 x^{6}}$ in simplest form?
$1 x^{2}$
$2 x^{9}$
$34 x^{2}$
$4 \quad 4 x^{9}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

647 What is half of 2^{6} ?
11^{3}
$2 \quad 1^{6}$
$3 \quad 2^{3}$
$4 \quad 2^{5}$

648 Simplify: $\frac{27 k^{5} m^{8}}{\left(4 k^{3}\right)\left(9 m^{2}\right)}$

649 Which expression represents $\frac{27 x^{18} y^{5}}{9 x^{6} y}$ in simplest form?
$13 x^{12} y^{4}$
$23 x^{3} y^{5}$
$3 \quad 18 x^{12} y^{4}$
$4 \quad 18 x^{3} y^{5}$

650 Which expression represents $\frac{-14 a^{2} c^{8}}{7 a^{3} c^{2}}$ in simplest form?
$1 \quad-2 a c^{4}$
$2-2 a c^{6}$
$3 \quad \frac{-2 c^{4}}{a}$
$4 \quad \frac{-2 c^{6}}{a}$

651 The expression $\frac{12 w^{9} y^{3}}{-3 w^{3} y^{3}}$ is equivalent to
$1-4 w^{6}$
$2-4 w^{3} y$
$39 w^{6}$
$4 \quad 9 w^{3} y$

652 What is one-third of 3^{6} ?
11^{2}
23^{2}
$3 \quad 3^{5}$
$4 \quad 9^{6}$

653 The product of $\frac{4 x^{2}}{7 y^{2}}$ and $\frac{21 y^{3}}{20 x^{4}}$, expressed in simplest form, is
$10.6 x^{2} y$
$2 \frac{3 y}{5 x^{2}}$
$3 \frac{12 x^{2} y^{3}}{20 x^{4} y^{2}}$
$4 \frac{84 x^{2} y^{3}}{140 x^{4} y^{2}}$

654 The expression $\frac{24 x^{6} y^{3}}{-6 x^{3} y}$ is equivalent to
$1-4 x^{2} y^{3}$
$2-4 x^{3} y^{3}$
$3-4 x^{9} y^{4}$
$4-4 x^{3} y^{2}$

A.A.12: POWERS OF POWERS

655 Which expression is equivalent to $\left(3 x^{2}\right)^{3}$?
$19 x^{5}$
$29 x^{6}$
$327 x^{5}$
$427 x^{6}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

656 The expression $\frac{\left(10 w^{3}\right)^{2}}{5 w}$ is equivalent to
$12 w^{5}$
$22 w^{8}$
$320 w^{5}$
$420 w^{8}$

657 The expression $\frac{\left(4 x^{3}\right)^{2}}{2 x}$ is equivalent to

$$
\begin{array}{ll}
1 & 4 x^{4} \\
2 & 4 x^{5} \\
3 & 8 x^{4} \\
4 & 8 x^{5}
\end{array}
$$

658 If the expression $\left(2 y^{a}\right)^{4}$ is equivalent to $16 y^{8}$, what is the value of a ?
$1 \quad 12$
22
$3 \quad 32$
44

659 Which equation is true?
$1 \quad \frac{c^{5}}{d^{7}} \div \frac{d^{3}}{c}=\frac{c^{4}}{d^{4}}$
$2\left(-2 m^{2} p\right)^{3}=-8 m^{6} p^{3}$
$3\left(\frac{s^{3} t^{8}}{s^{4} t^{5}}\right)^{2}=\frac{t^{5}}{s^{2}}$
$4 \quad\left(-2 a^{2} b^{3}\right)\left(3 a b^{2}\right)=a^{3} b^{5}$

A.N.4: OPERATIONS WITH SCIENTIFIC
 NOTATION

660 What is the quotient of 8.05×10^{6} and 3.5×10^{2} ?
12.3×10^{3}
$2 \quad 2.3 \times 10^{4}$
$3 \quad 2.3 \times 10^{8}$
$4 \quad 2.3 \times 10^{12}$

661 What is the product of 8.4×10^{8} and 4.2×10^{3} written in scientific notation?
12.0×10^{5}
$2 \quad 12.6 \times 10^{11}$
$3 \quad 35.28 \times 10^{11}$
$4 \quad 3.528 \times 10^{12}$

662 What is the product of 12 and 4.2×10^{6} expressed in scientific notation?
150.4×10^{6}
$2 \quad 50.4 \times 10^{7}$
35.04×10^{6}
$4 \quad 5.04 \times 10^{7}$

663 The quotient of $\left(9.2 \times 10^{6}\right)$ and $\left(2.3 \times 10^{2}\right)$ expressed in scientific notation is
14,000
2 40,000
34×10^{3}
$4 \quad 4 \times 10^{4}$

664 What is the product of $\left(6 \times 10^{3}\right),\left(4.6 \times 10^{5}\right)$, and $\left(2 \times 10^{-2}\right)$ expressed in scientific notation?
155.2×10^{6}
$2 \quad 5.52 \times 10^{7}$
$3 \quad 55.2 \times 10^{7}$
$4 \quad 5.52 \times 10^{10}$
665 State the value of the expression $\frac{\left(4.1 \times 10^{2}\right)\left(2.4 \times 10^{3}\right)}{\left(1.5 \times 10^{7}\right)}$ in scientific notation.

666 The expression $\frac{6 \times 10^{-7}}{3 \times 10^{-3}}$ is equivalent to
12×10^{4}
$2 \quad 2 \times 10^{10}$
32×10^{-4}
42×10^{-10}

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

667 What is the product of $\left(1.5 \times 10^{2}\right)$ and $\left(8.4 \times 10^{3}\right)$ expressed in scientific notation?
1.26×10^{5}
$2 \quad 12.6 \times 10^{5}$
31.26×10^{6}
412.6×10^{6}

668 If $\left(7.6 \times 10^{n}\right)\left(3.5 \times 10^{3}\right)=2.66 \times 10^{9}$, what is the value of n ?
16
25
3 3
47

A.A.9: EXPONENTIAL FUNCTIONS

669 Daniel's Print Shop purchased a new printer for $\$ 35,000$. Each year it depreciates (loses value) at a rate of 5%. What will its approximate value be at the end of the fourth year?
1 \$33,250.00
2 \$30,008.13
3 \$28,507.72
4 \$27,082.33
670 Kathy plans to purchase a car that depreciates (loses value) at a rate of 14% per year. The initial cost of the car is $\$ 21,000$. Which equation represents the value, v, of the car after 3 years?
$1 \quad v=21,000(0.14)^{3}$
$2 \quad v=21,000(0.86)^{3}$
$3 \quad v=21,000(1.14)^{3}$
$4 \quad v=21,000(0.86)(3)$

671 The New York Volleyball Association invited 64 teams to compete in a tournament. After each round, half of the teams were eliminated. Which equation represents the number of teams, t, that remained in the tournament after r rounds?
$1 t=64(r)^{0.5}$
$2 t=64(-0.5)^{r}$
$3 \quad t=64(1.5)^{r}$
$4 \quad t=64(0.5)^{r}$
672 A bank is advertising that new customers can open a savings account with a $3 \frac{3}{4} \%$ interest rate compounded annually. Robert invests $\$ 5,000$ in an account at this rate. If he makes no additional deposits or withdrawals on his account, find the amount of money he will have, to the nearest cent, after three years.

673 Cassandra bought an antique dresser for $\$ 500$. If the value of her dresser increases 6% annually, what will be the value of Cassandra's dresser at the end of 3 years to the nearest dollar?
$1 \quad \$ 415$
2 \$590
$3 \quad \$ 596$
$4 \quad \$ 770$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

674 In a science fiction novel, the main character found a mysterious rock that decreased in size each day. The table below shows the part of the rock that remained at noon on successive days.

Day	Fractional Part of the Rock Remaining
1	1
2	$\frac{1}{2}$
3	$\frac{1}{4}$
4	$\frac{1}{8}$

Which fractional part of the rock will remain at noon on day 7 ?
$1 \frac{1}{128}$
$2 \quad \frac{1}{64}$
$3 \quad \frac{1}{14}$
$4 \quad \frac{1}{12}$

675 The value, y, of a $\$ 15,000$ investment over x years is represented by the equation $y=15000(1.2)^{\frac{x}{3}}$. What is the profit (interest) on a 6 -year investment?
1 \$6,600
2 \$10,799
3 \$21,600
4 \$25,799

676 The Booster Club raised $\$ 30,000$ for a sports fund. No more money will be placed into the fund. Each year the fund will decrease by 5%. Determine the amount of money, to the nearest cent, that will be left in the sports fund after 4 years.

677 The value of a car purchased for $\$ 20,000$ decreases at a rate of 12% per year. What will be the value of the car after 3 years?
1 \$12,800.00
2 \$13,629.44
3 \$17,600.00
4 \$28,098.56
678 The current student population of the Brentwood Student Center is 2,000 . The enrollment at the center increases at a rate of 4% each year. To the nearest whole number, what will the student population be closest to in 3 years'?
1 2,240
2 2,250
3 5,488
4 6,240

679 Mr. Smith invested $\$ 2,500$ in a savings account that earns 3% interest compounded annually. He made no additional deposits or withdrawals. Which expression can be used to determine the number of dollars in this account at the end of 4 years?
$1 \quad 2500(1+0.03)^{4}$
$2 \quad 2500(1+0.3)^{4}$
$3 \quad 2500(1+0.04)^{3}$
$4 \quad 2500(1+0.4)^{3}$

680 A car depreciates (loses value) at a rate of 4.5\% annually. Greg purchased a car for $\$ 12,500$. Which equation can be used to determine the value of the car, V, after 5 years?

$$
\begin{array}{ll}
1 & V=12,500(0.55)^{5} \\
2 & V=12,500(0.955)^{5} \\
3 & V=12,500(1.045)^{5} \\
4 & V=12,500(1.45)^{5}
\end{array}
$$

681 Is the equation $A=21000(1-0.12)^{t}$ a model of exponential growth or exponential decay, and what is the rate (percent) of change per time period?
1 exponential growth and 12%
2 exponential growth and 88%
3 exponential decay and 12%
4 exponential decay and 88%

682 The current population of a town is 10,000 . If the population, P, increases by 20% each year, which equation could be used to find the population after t years?
$1 \quad P=10,000(0.2)^{t}$
$2 P=10,000(0.8)^{t}$
$3 \quad P=10,000(1.2)^{t}$
$4 \quad P=10,000(1.8)^{t}$

683 Adrianne invested \$2000 in an account at a 3.5\% interest rate compounded annually. She made no deposits or withdrawals on the account for 4 years. Determine, to the nearest dollar, the balance in the account after the 4 years.

684 Kirsten invested \$1000 in an account at an annual interest rate of 3%. She made no deposits or withdrawals on the account for 5 years. The interest was compounded annually. Find the balance in the account, to the nearest cent, at the end of 5 years.

685 Sheba opened a retirement account with \$36,500. Her account grew at a rate of 7% per year compounded annually. She made no deposits or withdrawals on the account. At the end of 20 years, what was the account worth, to the nearest dollar?
1 \$87,600
2 \$130,786
3 \$141,243
4 \$1,483,444,463

A.G.4: GRAPHING EXPONENTIAL FUNCTIONS

686 On the set of axes below, draw the graph of $y=2^{x}$ over the interval $-1 \leq x \leq 3$. Will this graph ever intersect the x-axis? Justify your answer.

687 On the set of axes below, graph $y=3^{x}$ over the interval $-1 \leq x \leq 2$.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

688 Which graph represents the exponential decay of a radioactive element?

1

2

3

4

RADICALS

A.N.2: SIMPLIFYING RADICALS

689 Express $5 \sqrt{72}$ in simplest radical form.

690 What is $\frac{\sqrt{32}}{4}$ expressed in simplest radical form?
$1 \sqrt{2}$
$2 \quad 4 \sqrt{2}$
$3 \sqrt{8}$
$4 \quad \frac{\sqrt{8}}{2}$

691 What is $\sqrt{72}$ expressed in simplest radical form?
$1 \quad 2 \sqrt{18}$
$2 \quad 3 \sqrt{8}$
$3 \quad 6 \sqrt{2}$
$48 \sqrt{3}$

692 What is $\sqrt{32}$ expressed in simplest radical form?
$1 \quad 16 \sqrt{2}$
$2 \quad 4 \sqrt{2}$
$3 \quad 4 \sqrt{8}$
$4 \quad 2 \sqrt{8}$

693 When $5 \sqrt{20}$ is written in simplest radical form, the result is $k \sqrt{5}$. What is the value of k ?
120
$2 \quad 10$
37
44

694 Express $-3 \sqrt{48}$ in simplest radical form.

695 What is $3 \sqrt{250}$ expressed in simplest radical form?
$1 \quad 5 \sqrt{10}$
$2 \quad 8 \sqrt{10}$
$3 \quad 15 \sqrt{10}$
$4 \quad 75 \sqrt{10}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

696 What is $2 \sqrt{45}$ expressed in simplest radical form?
$13 \sqrt{5}$
$2 \quad 5 \sqrt{5}$
$3 \quad 6 \sqrt{5}$
$418 \sqrt{5}$

697 Express $4 \sqrt{75}$ in simplest radical form.

698 Express $2 \sqrt{108}$ in simplest radical form.

A.N.3: OPERATIONS WITH RADICALS

699 Express the product of $3 \sqrt{20}(2 \sqrt{5}-7)$ in simplest radical form.

700 The expression $6 \sqrt{50}+6 \sqrt{2}$ written in simplest radical form is
$16 \sqrt{52}$
$2 \quad 12 \sqrt{52}$
$3 \quad 17 \sqrt{2}$
$436 \sqrt{2}$
701 The expression $\sqrt{72}-3 \sqrt{2}$ written in simplest radical form is

$$
\begin{array}{ll}
1 & 5 \sqrt{2} \\
2 & 3 \sqrt{6} \\
3 & 3 \sqrt{2} \\
4 & \sqrt{6}
\end{array}
$$

702 What is $3 \sqrt{2}+\sqrt{8}$ expressed in simplest radical form?
$1 \quad 3 \sqrt{10}$
$2 \quad 3 \sqrt{16}$
$3 \quad 5 \sqrt{2}$
$4 \quad 7 \sqrt{2}$

703 Express $\frac{16 \sqrt{21}}{2 \sqrt{7}}-5 \sqrt{12}$ in simplest radical form.

704 Express $\frac{3 \sqrt{75}+\sqrt{27}}{3}$ in simplest radical form.

705 Express $\sqrt{25}-2 \sqrt{3}+\sqrt{27}+2 \sqrt{9}$ in simplest radical form.

706 Express $\frac{\sqrt{84}}{2 \sqrt{3}}$ in simplest radical form.

707 Perform the indicated operations and express the answer in simplest radical form.

$$
3 \sqrt{7}(\sqrt{14}+4 \sqrt{56})
$$

708 Express $y \sqrt{3}-(\sqrt{32}+y \sqrt{27})$ in simplest radical form.

709 What is $\sqrt{150}+\sqrt{24}$ expressed in simplest radical form?
$17 \sqrt{6}$
$27 \sqrt{12}$
$3 \quad \sqrt{87}$
$4 \quad \sqrt{174}$

710 Which value is equivalent to the product of $4 \sqrt{2}$ and $2 \sqrt{6}$?
$1 \quad 16 \sqrt{3}$
$2 \quad 6 \sqrt{12}$
$3 \quad 6 \sqrt{8}$
$4 \quad 24 \sqrt{2}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

RATIONALS

A.A.16: RATIONAL EXPRESSIONS

711 The expression $\frac{9 x^{4}-27 x^{6}}{3 x^{3}}$ is equivalent to
$13 x(1-3 x)$
$23 x\left(1-3 x^{2}\right)$
$33 x\left(1-9 x^{5}\right)$
$49 x^{3}(1-x)$

712 Which expression represents $\frac{2 x^{2}-12 x}{x-6}$ in simplest form?
10
2 2x
$34 x$
$4 \quad 2 x+2$

713 Which expression represents $\frac{25 x-125}{x^{2}-25}$ in simplest form?
$1 \frac{5}{x}$
$2 \frac{-5}{x}$
$3 \quad \frac{25}{x-5}$
$4 \frac{25}{x+5}$

714 Which expression represents $\frac{x^{2}-2 x-15}{x^{2}+3 x}$ in simplest form?
1 -5
$2 \frac{x-5}{x}$
$3 \frac{-2 x-5}{x}$
$4 \frac{-2 x-15}{3 x}$

715 Which expression represents $\frac{x^{2}-x-6}{x^{2}-5 x+6}$ in simplest form?
$1 \frac{x+2}{x-2}$
$2 \frac{-x-6}{-5 x+6}$
$3 \quad \frac{1}{5}$
$4-1$

716 The area of a rectangle is represented by $x^{2}-5 x-24$. If the width of the rectangle is represented by $x-8$, express the length of the rectangle as a binomial.

717 Express in simplest form: $\frac{x^{2}-1}{x^{2}+3 x+2}$

718 Which expression represents $\frac{x^{2}-3 x-10}{x^{2}-25}$ in simplest form?
$1 \quad \frac{2}{5}$
$2 \frac{x+2}{x+5}$
$3 \frac{x-2}{x-5}$
$4 \frac{-3 x-10}{-25}$

719 Which expression is equivalent to
$\frac{2 x^{6}-18 x^{4}+2 x^{2}}{2 x^{2}} ?$
$1 x^{3}-9 x^{2}$
$2 x^{4}-9 x^{2}$
$3 x^{3}-9 x^{2}+1$
$4 x^{4}-9 x^{2}+1$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

720 The expression $\frac{2 x^{2}+10 x-28}{4 x+28}$ is equivalent to
$1 \frac{x-2}{2}$
$2 x-1$
$3 \frac{x+2}{2}$
$4 \quad \frac{x+5}{2}$

721 If the area of a rectangle is represented by $x^{2}+8 x+15$ and its length is represented by $x+5$, which expression represents the width of the rectangle?
$1 x+3$
$2 x-3$
$3 x^{2}+6 x+5$
$4 \quad x^{2}+7 x+10$

722 Which fraction represents $\frac{x^{2}-25}{x^{2}-x-20}$ expressed in simplest form?
$1 \quad \frac{5}{4}$
$2 \frac{x-5}{x-4}$
$3 \frac{x+5}{x+4}$
$4 \frac{25}{x+20}$

A.A.15: UNDEFINED RATIONALS

723 For which value of x is $\frac{x-3}{x^{2}-4}$ undefined?
1 -2
20
$3 \quad 3$
44

724 Which value of x makes the expression $\frac{x+4}{x-3}$ undefined?
1 -4
2 -3
3 3
40

725 The function $y=\frac{x}{x^{2}-9}$ is undefined when the value of x is
10 or 3
2 or - 3
3 3, only
$4-3$, only

726 Which value of n makes the expression $\frac{5 n}{2 n-1}$ undefined?
11
20
$3-\frac{1}{2}$
$4 \quad \frac{1}{2}$

727 Which value of x makes the expression $\frac{x^{2}-9}{x^{2}+7 x+10}$ undefined?
$1-5$
22
$3 \quad 3$
$4-3$

728 The algebraic expression $\frac{x-2}{x^{2}-9}$ is undefined when x is
10
22
33
49

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

729 For which set of values of x is the algebraic expression $\frac{x^{2}-16}{x^{2}-4 x-12}$ undefined?
$1 \quad\{-6,2\}$
$2\{-4,3\}$
3 \{-4,4\}
$4 \quad\{-2,6\}$

730 For which values of x is the fraction $\frac{x^{2}+x-6}{x^{2}+5 x-6}$ undefined?
$1 \quad 1$ and -6
2 2 and -3
3 and -2
46 and -1

731 The expression $\frac{14+x}{x^{2}-4}$ is undefined when x is
1 -14, only
2 2, only
$3-2$ or 2
$4-14,-2$, or 2

732 The expression $\frac{x-3}{x+2}$ is undefined when the value of x is
$1-2$, only
2 -2 and 3
3 3, only
$4 \quad-3$ and 2

733 A value of x that makes the expression
$\frac{x^{2}+4 x-12}{x^{2}-2 x-15}$ undefined is
1 -6
2 -2
33
45

734 The expression $\frac{x-7}{9-x^{2}}$ is undefined when x is
$1 \quad 3$ and 7
2 3 and -3
3 3, only
$4 \quad 9$

735 The expression $\frac{2 x^{2}+10 x-28}{4 x+28}$ is undefined when x is
1 7, only
$2-7$, only
3 or -2
$4-7$ or 2

736 For which value of x is the expression $\frac{x+2}{2 x-1}$ undefined?
10
$2-2$
$3-\frac{1}{2}$
$4 \quad \frac{1}{2}$

737 Which value of x makes the expression $\frac{x+9}{3 x-6}$ undefined?
1 -9
22
$3-3$
40

A.A.18: MULTIPLICATION AND DIVISION OF RATIONALS

738 What is the product of $\frac{x^{2}-1}{x+1}$ and $\frac{x+3}{3 x-3}$ expressed in simplest form?
$1 x$
$2 \quad \frac{x}{3}$
$3 x+3$
$4 \frac{x+3}{3}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic

739 What is the product of $\frac{4 x}{x-1}$ and $\frac{x^{2}-1}{3 x+3}$ expressed in simplest form?
$1 \quad \frac{4 x}{3}$
$2 \frac{4 x^{2}}{3}$
$3 \frac{4 x^{2}}{3(x+1)}$
$4 \frac{4(x+1)}{3}$

740 Perform the indicated operation and simplify:
$\frac{3 x+6}{4 x+12} \div \frac{x^{2}-4}{x+3}$

741 Express in simplest form: $\frac{2 x^{2}-8 x-42}{6 x^{2}} \div \frac{x^{2}-9}{x^{2}-3 x}$

742 Express in simplest form:

$$
\frac{x^{2}+9 x+14}{x^{2}-49} \div \frac{3 x+6}{x^{2}+x-56}
$$

743 What is the quotient of $\frac{x}{x+4}$ divided by $\frac{2 x}{x^{2}-16}$?
$1 \frac{2}{x-4}$
$2 \frac{2 x^{2}}{x-4}$
$3 \frac{2 x^{2}}{x^{2}-16}$
$4 \frac{x-4}{2}$

744 Express the product of $\frac{x+2}{2}$ and $\frac{4 x+20}{x^{2}+6 x+8}$ in simplest form.

745 Express $\frac{3 x^{2}+9 x}{x^{2}+5 x+6} \div \frac{x^{2}-9}{x^{2}-x-6}$ in simplest form.

746 Perform the indicated operations and express the result in simplest form:
$\left(\frac{10 x^{2} y}{x^{2}+x y}\right) \cdot\left(\frac{(x+y)^{2}}{2 x}\right) \div\left(\frac{x^{2}-y^{2}}{5 y^{2}}\right)$

A.A.17: ADDITION AND SUBTRACTION OF RATIONALS

747 What is the sum of $\frac{d}{2}$ and $\frac{2 d}{3}$ expressed in simplest form?
$1 \quad \frac{3 d}{5}$
$2 \quad \frac{3 d}{6}$
$3 \quad \frac{7 d}{5}$
$4 \quad \frac{7 d}{6}$

748 What is $\frac{6}{5 x}-\frac{2}{3 x}$ in simplest form?
$1 \frac{8}{15 x^{2}}$
$2 \frac{8}{15 x}$
$3 \quad \frac{4}{15 x}$
$4 \quad \frac{4}{2 x}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

749 What is $\frac{6}{4 a}-\frac{2}{3 a}$ expressed in simplest form?
$1 \frac{4}{a}$
$2 \quad \frac{5}{6 a}$
$3 \quad \frac{8}{7 a}$
$4 \quad \frac{10}{12 a}$

750 What is the sum of $\frac{3}{2 x}$ and $\frac{4}{3 x}$ expressed in simplest form?

753 What is $\frac{2+x}{5 x}-\frac{x-2}{5 x}$ expressed in simplest form?
10
$2 \quad \frac{2}{5}$
$3 \quad \frac{4}{5 x}$
$4 \quad \frac{2 x+4}{5 x}$

754 What is the sum of $\frac{3}{2 x}$ and $\frac{7}{4 x}$?
$1 \frac{21}{8 x^{2}}$
$2 \frac{13}{4 x}$
$3 \quad \frac{10}{6 x}$
$4 \quad \frac{13}{8 x}$

755 What is $\frac{7}{12 x}-\frac{y}{6 x^{2}}$ expressed in simplest form?
$1 \frac{7-y}{6 x}$
$1 \frac{3 x^{4}}{(x-2)^{2}}$
$2 \frac{3 x^{4}}{x-2}$
$3 \frac{4 x^{2}}{(x-2)^{2}}$
$4 \frac{4 x^{2}}{x-2}$

752 What is the sum of $\frac{-x+7}{2 x+4}$ and $\frac{2 x+5}{2 x+4}$?
$1 \frac{x+12}{2 x+4}$
$2 \frac{3 x+12}{2 x+4}$
$3 \frac{x+12}{4 x+8}$
$4 \quad \frac{3 x+12}{4 x+8}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

757 The expression $\frac{2 x+13}{2 x+6}-\frac{3 x-6}{2 x+6}$ is equivalent to
$1 \frac{-x+19}{2(x+3)}$
$2 \frac{-x+7}{2(x+3)}$
$3 \quad \frac{5 x+19}{2(x+3)}$
$4 \quad \frac{5 x+7}{4 x+12}$

758 Which fraction is equivalent to $\frac{4}{3 a}-\frac{5}{2 a}$?
$1-\frac{1}{a}$
$2-\frac{1}{5 a}$
$3-\frac{7}{6 a}$
$4-\frac{7}{6 a^{2}}$

759 The expression $\frac{2 n}{5}+\frac{3 n}{2}$ is equivalent to
$1 \quad \frac{5 n}{7}$
$2 \frac{6 n^{2}}{10}$
$3 \quad \frac{19 n}{10}$
$4 \quad \frac{7 n}{10}$

760 The expression $\frac{a}{b}-\frac{1}{3}$ is equivalent to
$1 \quad \frac{a-1}{b-3}$
$2 \frac{a-1}{3 b}$
$3 \quad \frac{3 a-b}{3 b}$
$4 \quad \frac{3 a-b}{b-3}$

761 The sum of $\frac{3 x-4}{x+3}$ and $\frac{2 x-5}{x+3}$ is
$1 \frac{5 x-9}{x+3}$
$2 \frac{5 x+1}{2 x+6}$
$3 \frac{5 x-9}{x+6}$
$4 \quad \frac{5 x+1}{x+3}$

762 What is $\frac{10}{7 x}-\frac{3}{5 x}$ expressed in simplest form?
$1 \frac{7}{2 x}$
$2 \quad \frac{29}{2 x}$
$3 \quad \frac{29}{35 x}$
$4 \quad \frac{55}{35 x}$

A.A.26: SOLVING RATIONALS

763 Solve for $x: \frac{x+1}{x}=\frac{-7}{x-12}$

764 Which value of x is a solution of $\frac{5}{x}=\frac{x+13}{6}$?
1 -2
$2-3$
$3-10$
$4-15$

765 What is the solution of $\frac{k+4}{2}=\frac{k+9}{3}$?
$1 \quad 1$
25
36
$4 \quad 14$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

766 What is the value of x in the equation
$\frac{2}{x}-3=\frac{26}{x}$?
1 -8
$2-\frac{1}{8}$
$3 \quad \frac{1}{8}$
48

767 What is the solution set of $\frac{x+2}{x-2}=\frac{-3}{x}$?
$1 \quad\{-2,3\}$
2 \{-3,-2\}
$3\{-1,6\}$
$4 \quad\{-6,1\}$

768 Which value of x is the solution of $\frac{2 x-3}{x-4}=\frac{2}{3}$?
$1 \quad-\frac{1}{4}$
$2 \frac{1}{4}$
3 -4
44

769 Solve algebraically for $x: \frac{x+2}{6}=\frac{3}{x-1}$

770 Solve algebraically for $x: \frac{3}{4}=\frac{-(x+11)}{4 x}+\frac{1}{2 x}$

771 What is the solution of $\frac{2}{x+1}=\frac{x+1}{2}$?
1 -1 and -3
2 -1 and 3
3 1 and -3
$4 \quad 1$ and 3

772 What is the solution of the equation $\frac{x+2}{2}=\frac{4}{x}$?
$1 \quad 1$ and -8
2 2 and -4
$3-1$ and 8
$4 \quad-2$ and 4

773 Solve algebraically: $\frac{2}{3 x}+\frac{4}{x}=\frac{7}{x+1}$
[Only an algebraic solution can receive full credit.]

774 Solve algebraically for all values of x :
$\frac{3}{x+5}=\frac{2 x}{x^{2}-8}$

775 What is the solution of the equation
$\frac{12}{7 x}+\frac{3}{2 x}=\frac{15}{14}$?
11
25
33
414

776 What is the solution of the equation $\frac{x}{3}=\frac{8}{x+2}$?
$1 \quad\{-6,-4\}$
$2\{-6,4\}$
3 \{6, -4\}
$4 \quad\{6,4\}$

777 Which value of x is the solution of $\frac{1}{5}+\frac{2}{x}=\frac{1}{3}$?
$1-2 \frac{3}{4}$
$2-15$
$3 \quad 2 \frac{3}{4}$
415

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

FUNCTIONS

A.G.4: FAMILIES OF FUNCTIONS

778 Which type of graph is shown in the diagram below?

1 absolute value
2 exponential
3 linear
4 quadratic

779 Which graph represents a linear function?

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

780 Antwaan leaves a cup of hot chocolate on the counter in his kitchen. Which graph is the best representation of the change in temperature of his hot chocolate over time?

2

3

781 Which graph represents an exponential equation?

1

2

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

782 Which type of function is represented by the graph shown below?

1 absolute value
2 exponential
3 linear
4 quadratic
783 Which equation represents a quadratic function?
$1 \quad y=x+2$
$2 y=|x+2|$
$3 y=x^{2}$
$4 y=2^{x}$

784 Which type of function is graphed below?

1 linear
2 quadratic
3 exponential
4 absolute value

785 Which graph represents an absolute value equation?

1

2

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org
A.G.4: IDENTIFYING THE EQUATION OF A GRAPH

786 Which equation is represented by the graph below?

$1 y=x^{2}-3$
$2 y=(x-3)^{2}$
$3 \quad y=|x|-3$
$4 y=|x-3|$

787 Which equation is represented by the graph below?

$12 y+x=10$
$2 \quad y-2 x=-5$
$3 \quad-2 y=10 x-4$
$42 y=-4 x-10$

A.G.3: DEFINING FUNCTIONS

788 Which graph represents a function?

3

4

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

789 Which graph represents a function?

1

790 Which statement is true about the relation shown on the graph below?

1 It is a function because there exists one x-coordinate for each y-coordinate.
2 It is a function because there exists one y-coordinate for each x-coordinate.
3 It is not a function because there are multiple y-values for a given x-value.
4 It is not a function because there are multiple x-values for a given y-value.

791 Which relation is not a function?
1 \{(1,5), (2, 6), (3, 6), (4, 7)\}
$2\{(4,7),(2,1),(-3,6),(3,4)\}$
$3\{(-1,6),(1,3),(2,5),(1,7)\}$
$4\{(-1,2),(0,5),(5,0),(2,-1)\}$

792 Which relation represents a function?
1 \{(0,3), (2, 4), (0, 6)\}
$2\{(-7,5),(-7,1),(-10,3),(-4,3)\}$
$3\{(2,0),(6,2),(6,-2)\}$
$4\{(-6,5),(-3,2),(1,2),(6,5)\}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

793 Which graph represents a function?
1

3

794 Which relation is a function?
$1\left\{\left(\frac{3}{4}, 0\right),(0,1),\left(\frac{3}{4}, 2\right)\right\}$
$2\left\{(-2,2),\left(-\frac{1}{2}, 1\right),(-2,4)\right\}$
$3\{(-1,4),(0,5),(0,4)\}$
$4\{(2,1),(4,3),(6,5)\}$

795 Which set of ordered pairs represents a function?
1 \{(0,4), (2, 4), (2, 5)\}
$2\{(6,0),(5,0),(4,0)\}$
3 \{(4, 1), (6, 2), (6, 3), (5, 0)\}
$4\{(0,4),(1,4),(0,5),(1,5)\}$

796 Which graph does not represent a function?

1

2

3

4

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

797 Which graph represents a function?

1

2

3

798 Which graph represents a function?

1

3

4

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

799 Which graph does not represent the graph of a function?

1

2

3

800 Which relation is not a function?
$1\{(2,4),(1,2),(0,0),(-1,2),(-2,4)\}$
$2\{(2,4),(1,1),(0,0),(-1,1),(-2,4)\}$
$3\{(2,2),(1,1),(0,0),(-1,1),(-2,2)\}$
$4\{(2,2),(1,1),(0,0),(1,-1),(2,-2)\}$

802 Which set is a function?
1 \{(3,4), (3, 5), (3, 6), (3, 7)\}
$2\{(1,2),(3,4),(4,3),(2,1)\}$
3 \{(6,7), (7, 8), (8, 9), (6, 5)\}
$4\{(0,2),(3,4),(0,8),(5,6)\}$

TRIANGLES

A.A.45: PYTHAGOREAN THEOREM

803 Tanya runs diagonally across a rectangular field that has a length of 40 yards and a width of 30 yards, as shown in the diagram below.

What is the length of the diagonal, in yards, that Tanya runs?
150
260
370
480

801 Which relation is a function?
$1\{(2,1),(3,1),(4,1),(5,1)\}$
$2\{(1,2),(1,3),(1,4),(1,5)\}$
$3\{(2,3),(3,2),(4,2),(2,4)\}$
$4\{(1,6),(2,8),(3,9),(3,12)\}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

804 Don placed a ladder against the side of his house as shown in the diagram below.

Which equation could be used to find the distance, x, from the foot of the ladder to the base of the house?
$1 \quad x=20-19.5$
$2 x=20^{2}-19.5^{2}$
$3 x=\sqrt{20^{2}-19.5^{2}}$
$4 x=\sqrt{20^{2}+19.5^{2}}$
805 The length of the hypotenuse of a right triangle is 34 inches and the length of one of its legs is 16 inches. What is the length, in inches, of the other leg of this right triangle?
$1 \quad 16$
$2 \quad 18$
$3 \quad 25$
430

806 What is the value of x, in inches, in the right triangle below?

$1 \sqrt{15}$
28
$3 \quad \sqrt{34}$
44
807 Nancy's rectangular garden is represented in the diagram below.

15 feet
If a diagonal walkway crosses her garden, what is its length, in feet?
117
222
$3 \sqrt{161}$
$4 \quad \sqrt{529}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

808 The end of a dog's leash is attached to the top of a 5 -foot-tall fence post, as shown in the diagram below. The dog is 7 feet away from the base of the fence post.

How long is the leash, to the nearest tenth of a foot?
14.9
28.6
39.0
$4 \quad 12.0$

809 The rectangle shown below has a diagonal of 18.4 cm and a width of 7 cm .

To the nearest centimeter, what is the length, x, of the rectangle?
111
$2 \quad 17$
$3 \quad 20$
425

810 The legs of an isosceles right triangle each measure 10 inches. What is the length of the hypotenuse of this triangle, to the nearest tenth of an inch?
16.3
27.1
$3 \quad 14.1$
417.1

811 Campsite A and campsite B are located directly opposite each other on the shores of Lake Omega, as shown in the diagram below. The two campsites form a right triangle with Sam's position, S. The distance from campsite B to Sam's position is 1,300 yards, and campsite A is 1,700 yards from his position.

What is the distance from campsite A to campsite B, to the nearest yard?
1 1,095
2 1,096
3 2,140
4 2,141

812 The length of one side of a square is 13 feet. What is the length, to the nearest foot, of a diagonal of the square?
$1 \quad 13$
$2 \quad 18$
$3 \quad 19$
426

813 In triangle $R S T$, angle R is a right angle. If $T R=6$ and $T S=8$, what is the length of $\overline{R S}$?
110
22
$3 \quad 2 \sqrt{7}$
$4 \quad 7 \sqrt{2}$

814 In right triangle $A B C, \mathrm{~m} \angle C=90, A C=7$, and $A B=13$. What is the length of $\overline{B C}$?
16
220
$3 \sqrt{120}$
$4 \sqrt{218}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

815 The length and width of a rectangle are 48 inches and 40 inches. To the nearest inch, what is the length of its diagonal?
127
262
388
$4 \quad 90$

816 The lengths of the sides of a right triangle can be 1 9,12,15
2 8,10,13
3 5,5,10
4 4,5,6

817 Which set of numbers represents the lengths of the sides of a right triangle?
$1\{7,24,25\}$
$2\{9,16,23\}$
3 \{10, 12, 14\}
$4 \quad\{14,16,18$

TRIGONOMETRY

A.A.42: TRIGONOMETRIC RATIOS

818 In triangle $M C T$, the measure of $\angle T=90^{\circ}$, $M C=85 \mathrm{~cm}, C T=84 \mathrm{~cm}$, and $T M=13 \mathrm{~cm}$. Which ratio represents the sine of $\angle C$?
$1 \quad \frac{13}{85}$
$2 \quad \frac{84}{85}$
$3 \quad \frac{13}{84}$
$4 \quad \frac{84}{13}$

819 The diagram below shows right triangle UPC.

Which ratio represents the sine of $\angle U$?
$1 \quad \frac{15}{8}$
$2 \quad \frac{15}{17}$
$3 \frac{8}{15}$
$4 \quad \frac{8}{17}$

820 Which equation shows a correct trigonometric ratio for angle A in the right triangle below?

$1 \quad \sin A=\frac{15}{17}$
$2 \quad \tan A=\frac{8}{17}$
$3 \quad \cos A=\frac{15}{17}$
$4 \tan A=\frac{5}{8}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

821 In $\triangle A B C$, the measure of $\angle B=90^{\circ}, A C=50$, $A B=48$, and $B C=14$. Which ratio represents the tangent of $\angle A$?
$1 \quad \frac{14}{50}$
$2 \quad \frac{14}{48}$
$3 \quad \frac{48}{50}$
$4 \quad \frac{48}{14}$

822 Right triangle $A B C$ has legs of 8 and 15 and a hypotenuse of 17 , as shown in the diagram below.

The value of the tangent of $\angle B$ is
10.4706
20.5333
30.8824
41.8750

823 Which ratio represents $\sin x$ in the right triangle shown below?

$1 \quad \frac{28}{53}$
$2 \quad \frac{28}{45}$
$3 \quad \frac{45}{53}$
$4 \quad \frac{53}{28}$

824 The diagram below shows right triangle $A B C$.

Which ratio represents the tangent of $\angle A B C$?
$1 \frac{5}{13}$
$2 \frac{5}{12}$
$3 \quad \frac{12}{13}$
$4 \frac{12}{5}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

825 The diagram below shows right triangle LMP.

Which ratio represents the tangent of $\angle P L M$?
$1 \frac{3}{4}$
$2 \quad \frac{3}{5}$
$3 \quad \frac{4}{3}$
$4 \quad \frac{5}{4}$

826 In $\triangle A B C, \mathrm{~m} \angle C=90$. If $A B=5$ and $A C=4$, which statement is not true?
$1 \quad \cos A=\frac{4}{5}$
$2 \tan A=\frac{3}{4}$
$3 \quad \sin B=\frac{4}{5}$
$4 \tan B=\frac{5}{3}$

827 In right triangle $A B C$ shown below, what is the value of $\cos A$?

$1 \quad \frac{12}{20}$
$2 \quad \frac{16}{20}$
$3 \quad \frac{20}{12}$
$4 \quad \frac{20}{16}$

828 Which ratio represents the cosine of angle A in the right triangle below?

$1 \quad \frac{3}{5}$
$2 \quad \frac{5}{3}$
$3 \quad \frac{4}{5}$
$4 \quad \frac{4}{3}$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

829 In right triangle $A B C$ shown below, $A C=12$, $B C=16$, and $A B=20$.

Which equation is not correct?
$1 \quad \cos A=\frac{12}{20}$
$2 \tan A=\frac{16}{12}$
$3 \quad \sin B=\frac{12}{20}$
$4 \tan B=\frac{16}{20}$

830 In right triangle $J K L$ in the diagram below, $K L=7$, $J K=24, J L=25$, and $\angle K=90^{\circ}$.

Which statement is not true?
$1 \tan L=\frac{24}{7}$
$2 \cos L=\frac{24}{25}$
$3 \tan J=\frac{7}{24}$
$4 \quad \sin J=\frac{7}{25}$

831 In $\triangle A B C$ below, the measure of $\angle A=90^{\circ}, A B=6$, $A C=8$, and $B C=10$.

Which ratio represents the sine of $\angle B$?
$1 \quad \frac{10}{8}$
$2 \frac{8}{6}$
$3 \quad \frac{6}{10}$
$4 \quad \frac{8}{10}$

A.A.44: USING TRIGONOMETRY TO FIND A

 SIDE832 In the right triangle shown in the diagram below, what is the value of x to the nearest whole number?

112
$2 \quad 14$
321
$4 \quad 28$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

833 A stake is to be driven into the ground away from the base of a 50 -foot pole, as shown in the diagram below. A wire from the stake on the ground to the top of the pole is to be installed at an angle of elevation of 52°.

How far away from the base of the pole should the stake be driven in, to the nearest foot? What will be the length of the wire from the stake to the top of the pole, to the nearest foot?

834 A tree casts a 25 -foot shadow on a sunny day, as shown in the diagram below.

If the angle of elevation from the tip of the shadow to the top of the tree is 32°, what is the height of the tree to the nearest tenth of a foot?
13.2
$2 \quad 15.6$
$3 \quad 21.2$
$4 \quad 40.0$

835 A hot-air balloon is tied to the ground with two taut (straight) ropes, as shown in the diagram below. One rope is directly under the balloon and makes a right angle with the ground. The other rope forms an angle of 50° with the ground.

Determine the height, to the nearest foot, of the balloon directly above the ground. Determine the distance, to the nearest foot, on the ground between the two ropes.

836 As shown in the diagram below, a ladder 5 feet long leans against a wall and makes an angle of 65° with the ground. Find, to the nearest tenth of a foot, the distance from the wall to the base of the ladder.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

837 An 8-foot rope is tied from the top of a pole to a stake in the ground, as shown in the diagram below.

If the rope forms a 57° angle with the ground, what is the height of the pole, to the nearest tenth of a foot?
14.4
26.7
39.5
$4 \quad 12.3$

838 A right triangle contains a 38° angle whose adjacent side measures 10 centimeters. What is the length of the hypotenuse, to the nearest hundredth of a centimeter?
17.88
$2 \quad 12.69$
$3 \quad 12.80$
$4 \quad 16.24$

839 A metal pipe is used to hold up a 9 -foot fence, as shown in the diagram below. The pipe makes an angle of 48° with the ground.

Determine, to the nearest foot, how far the bottom of the pipe is from the base of the fence. Determine, to the nearest foot, the length of the metal pipe.

840 From the top of an apartment building, the angle of depression to a car parked on the street below is 38 degrees, as shown in the diagram below. The car is parked 80 feet from the base of the building. Find the height of the building, to the nearest tenth of a foot.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

841 The top of a lighthouse, T, is 215 feet above sea level, L, as shown in the diagram below. The angle of depression from the top of the lighthouse to a boat, B, at sea is 26°. Determine, to the nearest foot, the horizontal distance, x, from the boat to the base of the lighthouse.

842 As shown in the diagram below, a ladder 12 feet long leans against a wall and makes an angle of 72° with the ground.

Find, to the nearest tenth of a foot, the distance from the wall to the base of the ladder.

843 As shown in the diagram below, a building casts a 72 -foot shadow on the ground when the angle of elevation of the Sun is 40°.

How tall is the building, to the nearest foot?
146
260
$3 \quad 86$
$4 \quad 94$

A.A.43: USING TRIGONOMETRY TO FIND AN ANGLE

844 The center pole of a tent is 8 feet long, and a side of the tent is 12 feet long as shown in the diagram below.

If a right angle is formed where the center pole meets the ground, what is the measure of angle A to the nearest degree?
134
242
348
456

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

845 Which equation could be used to find the measure of one acute angle in the right triangle shown below?

$1 \quad \sin A=\frac{4}{5}$
$2 \tan A=\frac{5}{4}$
$3 \quad \cos B=\frac{5}{4}$
$4 \quad \tan B=\frac{4}{5}$

846 In the diagram of $\triangle A B C$ shown below, $B C=10$ and $A B=16$.

To the nearest tenth of a degree, what is the measure of the largest acute angle in the triangle?
132.0
238.7
$3 \quad 51.3$
490.0

847 In right triangle $A B C, A B=20, A C=12, B C=16$, and $\mathrm{m} \angle C=90$. Find, to the nearest degree, the measure of $\angle A$.

848 A communications company is building a 30 -foot antenna to carry cell phone transmissions. As shown in the diagram below, a 50 -foot wire from the top of the antenna to the ground is used to stabilize the antenna.

Find, to the nearest degree, the measure of the angle that the wire makes with the ground.

849 In right triangle $A B C$ shown below, $A B=18.3$ and $B C=11.2$.

What is the measure of $\angle A$, to the nearest tenth of a degree?
131.5
$2 \quad 37.7$
352.3
458.5

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

850 A trapezoid is shown below.

Calculate the measure of angle x, to the nearest tenth of a degree.

851 A 28 -foot ladder is leaning against a house. The bottom of the ladder is 6 feet from the base of the house. Find the measure of the angle formed by the ladder and the ground, to the nearest degree.

852 In right triangle $A B C$ shown below, $A C=29$ inches, $A B=17$ inches, and $\mathrm{m} \angle A B C=90$. Find the number of degrees in the measure of angle $B A C$, to the nearest degree.

Find the length of $\overline{B C}$ to the nearest inch.

853 Which equation could be used to find the measure of angle D in the right triangle shown in the diagram below?

$1 \quad \cos D=\frac{12}{13}$
$2 \quad \cos D=\frac{13}{12}$
$3 \quad \sin D=\frac{5}{13}$
$4 \quad \sin D=\frac{12}{13}$

854 A man standing on level ground is 1000 feet away from the base of a 350 -foot-tall building. Find, to the nearest degree, the measure of the angle of elevation to the top of the building from the point on the ground where the man is standing.

855 The diagram below shows the path a bird flies from the top of a 9.5 -foot-tall sunflower to a point on the ground 5 feet from the base of the sunflower.

To the nearest tenth of a degree, what is the measure of angle x ?
$1 \quad 27.8$
231.8
$3 \quad 58.2$
$4 \quad 62.2$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

856 In right triangle $E F D, E D=11, E F=6$, and $\mathrm{m} \angle F=90$. What is the measure of angle E, to the nearest degree?
161
$2 \quad 57$
$3 \quad 33$
$4 \quad 29$
MEASURING IN THE
PLANE AND SPACE
A.G.1: COMPOSITIONS OF POLYGONS AND CIRCLES

857 Serena's garden is a rectangle joined with a semicircle, as shown in the diagram below. Line segment $A B$ is the diameter of semicircle P. Serena wants to put a fence around her garden.

Calculate the length of fence Serena needs to the nearest tenth of a foot.

858 A designer created the logo shown below. The logo consists of a square and four quarter-circles of equal size.

Express, in terms of π, the exact area, in square inches, of the shaded region.

859 Luis is going to paint a basketball court on his driveway, as shown in the diagram below. This basketball court consists of a rectangle and a semicircle.

Which expression represents the area of this basketball court, in square feet?
180
$2 \quad 80+8 \pi$
$380+16 \pi$
$480+64 \pi$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

860 A window is made up of a single piece of glass in the shape of a semicircle and a rectangle, as shown in the diagram below. Tess is decorating for a party and wants to put a string of lights all the way around the outside edge of the window.

To the nearest foot, what is the length of the string of lights that Tess will need to decorate the window?

861 In the diagram below, the circumference of circle O is 16π inches. The length of $\overline{B C}$ is three-quarters of the length of diameter $\overline{A D}$ and $C E=4$ inches. Calculate the area, in square inches, of trapezoid ABCD.

862 A playground in a local community consists of a rectangle and two semicircles, as shown in the diagram below.

Which expression represents the amount of fencing, in yards, that would be needed to completely enclose the playground?
$1 \quad 15 \pi+50$
$215 \pi+80$
$3 \quad 30 \pi+50$
$430 \pi+80$

863 A figure is made up of a rectangle and a semicircle as shown in the diagram below.

What is the area of the figure, to the nearest tenth of a square centimeter?
139.4
244.1
348.8
$4 \quad 58.3$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

864 In the diagram below, $M A T H$ is a rectangle, $G B=4.6, M H=6$, and $H T=15$.

What is the area of polygon MBATH?
134.5
255.5
390.0
$4 \quad 124.5$

865 The figure shown below is composed of two rectangles and a quarter circle.

What is the area of this figure, to the nearest square centimeter?
133
$2 \quad 37$
344
458

866 A garden is in the shape of an isosceles trapezoid and a semicircle, as shown in the diagram below. A fence will be put around the perimeter of the entire garden.

Which expression represents the length of fencing, in meters, that will be needed?
$122+6 \pi$
$222+12 \pi$
$315+6 \pi$
$415+12 \pi$

867 In the diagram below, circle O is inscribed in square $A B C D$. The square has an area of 36 .

What is the area of the circle?
1 9?
2 6?
3 3?
4 36?

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

868
What is the perimeter of the figure shown below, which consists of an isosceles trapezoid and a semicircle?

$120+3 \pi$
$220+6 \pi$
$326+3 \pi$
$4 \quad 26+6 \pi$
869 In the figure below, $A B C D$ is a square and semicircle O has a radius of 6 .

What is the area of the figure?
$1 \quad 36+6 \pi$
$236+18 \pi$
$3144+18 \pi$
$4144+36 \pi$

870 In the diagram below of rectangle $A F E B$ and a semicircle with diameter $\overline{C D}, A B=5$ inches, $A B=B C=D E=F E$, and $C D=6$ inches. Find the area of the shaded region, to the nearest hundredth of a square inch.

871 A designer created a garden, as shown in the diagram below. The garden consists of four quarter-circles of equal size inside a square. The designer put a fence around both the inside and the outside of the garden.

Which expression represents the amount of fencing, in yards, that the designer used for the fence?
$140+10 \pi$
$240+25 \pi$
$3100+10 \pi$
$4100+25 \pi$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

872 A figure consists of a square and a semicircle, as shown in the diagram below.

If the length of a side of the square is 6 , what is the area of the shaded region?
$1 \quad 36-3 \pi$
2 36-4.5 π
3 36-6
4 36-9 \quad 元

873 A patio consisting of two semicircles and a square is shown in the diagram below. The length of each side of the square region is represented by $2 x$. Write an expression for the area of the entire patio, in terms of x and π.

874 Ross is installing edging around his pool, which consists of a rectangle and a semicircle, as shown in the diagram below.

Determine the length of edging, to the nearest tenth of a foot, that Ross will need to go completely around the pool.

875 The diagram below consists of a square with a side of 4 cm , a semicircle on the top, and an equilateral triangle on the bottom. Find the perimeter of the figure to the nearest tenth of a centimeter.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

876 The Rock Solid Concrete Company has been asked to pave a rectangular area surrounding a circular fountain with a diameter of 8 feet, as shown in the diagram.

Find the area, to the nearest square foot, that must be paved. Find the cost, in dollars, of paving the area if the Rock Solid Concrete Company charges $\$ 8.95$ per square foot.

877 As shown below, polygon ABCGFED consists of two squares, $A B C D$ and $C G F E$, and an equilateral triangle $C E D$. The length of $\overline{B C}$ is $\sqrt{3} \mathrm{~cm}$. Determine the perimeter of polygon $A B C G F E D$ in radical form.

A.G.2: VOLUME

878 A cylindrical container has a diameter of 12 inches and a height of 15 inches, as illustrated in the diagram below.

(Not drawn to scale)
What is the volume of this container to the nearest tenth of a cubic inch?
1 6,785.8
2 4,241.2
3 2,160.0
4 1,696.5

879 Lenny made a cube in technology class. Each edge measured 1.5 cm . What is the volume of the cube in cubic centimeters?
$1 \quad 2.25$
$2 \quad 3.375$
39.0
413.5

880 A soup can is in the shape of a cylinder. The can has a volume of $342 \mathrm{~cm}^{3}$ and a diameter of 6 cm . Express the height of the can in terms of π. Determine the maximum number of soup cans that can be stacked on their base between two shelves if the distance between the shelves is exactly 36 cm . Explain your answer.

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

881 The diagram below represents Joe's two fish tanks.

Joe's larger tank is completely filled with water. He takes water from it to completely fill the small tank. Determine how many cubic inches of water will remain in the larger tank.

882 A cylinder has a diameter of 10 inches and a height of 2.3 inches. What is the volume of this cylinder, to the nearest tenth of a cubic inch?
172.3
283.1
$\begin{array}{ll}3 & 180.6\end{array}$
$4 \quad 722.6$

883 Mike buys his ice cream packed in a rectangular prism-shaped carton, while Carol buys hers in a cylindrical-shaped carton. The dimensions of the prism are 5 inches by 3.5 inches by 7 inches. The cylinder has a diameter of 5 inches and a height of 7 inches. Which container holds more ice cream? Justify your answer. Determine, to the nearest tenth of a cubic inch, how much more ice cream the larger container holds.

884 The volume of a cylindrical can in 32π cubic inches. If the height of the can is 2 inches, what is its radius, in inches?
18
22
316
44

885 How many cubes with 5-inch sides will completely fill a cube that is 10 inches on a side?
150
$2 \quad 25$
38
44

886 Oatmeal is packaged in a cylindrical container, as shown in the diagram below.

The diameter of the container is 13 centimeters and its height is 24 centimeters. Determine, in terms of π, the volume of the cylinder, in cubic centimeters.

887 A thermos in the shape of a cylinder is filled to 1 inch from the top of the cylinder with coffee. The height of the cylinder is 12 inches and its radius is 2.5 inches. State, to the nearest hundredth of a cubic inch, the volume of coffee in the thermos.

888 A cylinder has a circular base with a radius of 3 units and a height of 7 units. What is the volume of the cylinder in cubic units?
12π
242π
363π
4147π

889 A rectangular tank measures 5 feet long, 4 feet wide, and 3 feet high. Water is poured into the tank to a depth of $2 \frac{1}{2}$ feet. How many cubic feet of water are in the tank?
160
250
315.5
$4 \quad 11.5$

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A.G.2: SURFACE AREA

890 Mrs. Ayer is painting the outside of her son's toy box, including the top and bottom. The toy box measures 3 feet long, 1.5 feet wide, and 2 feet high. What is the total surface area she will paint?
$19.0 \mathrm{ft}^{2}$
$2 \quad 13.5 \mathrm{ft}^{2}$
$3 \quad 22.5 \mathrm{ft}^{2}$
$4 \quad 27.0 \mathrm{ft}^{2}$

891 How many square inches of wrapping paper are needed to entirely cover a box that is 2 inches by 3 inches by 4 inches?
$1 \quad 18$
$2 \quad 24$
326
452

892 Find the volume, in cubic centimeters, and the surface area, in square centimeters, of the rectangular prism shown below.

893 A plastic storage box in the shape of a rectangular prism has a length of $x+3$, a width of $x-4$, and a height of 5 . Represent the surface area of the box as a trinomial in terms of x.

894 The length and width of the base of a rectangular prism are 5.5 cm and 3 cm . The height of the prism is 6.75 cm . Find the exact value of the surface area of the prism, in square centimeters.

895 The rectangular prism shown below has a length of 3.0 cm , a width of 2.2 cm , and a height of 7.5 cm .

What is the surface area, in square centimeters?
145.6
249.5
$3 \quad 78.0$
$4 \quad 91.2$

896 If the volume of a cube is 8 cubic centimeters, what is its surface area, in square centimeters?
132
$2 \quad 24$
$3 \quad 12$
44

897 The base of a closed right circular cylinder has a diameter of 5 cm . If the height of the cylinder is 8 cm , what is the surface area of the cylinder, to the nearest square centimeter?
1157
2165
3408
4628

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic Answer Section

1 ANS: 3
$|-5(5)+12|=|-13|=13$

PTS: 2
REF: 080923ia
2 ANS: 1
$-|a-b|=-|7-(-3)|=-|-10|=-10$

PTS: 2 REF: 011010ia
3 ANS: 2
PTS: 2
TOP: Evaluating Expressions
4 ANS: 1
$-3(-4)^{2}(2)+4(-4)=-96-16=-112$
PTS: 2
REF: 081113ia
5 ANS: 1
$\left|\frac{4(-6)+18}{4!}\right|=\left|\frac{-6}{24}\right|=\frac{1}{4}$

PTS: 2
REF: 081220ia
6 ANS: 2
$|-3-4|-(-3)^{2}=7-9=-2$

PTS: 2
REF: 011321ia
STA: A.N. 6
7 ANS: 3
$6!+\frac{5!(3!)}{4!}-10=720+5(6)-10=740$

PTS: 2
REF: 061309ia
8 ANS: 3
$2(4)^{0}+(4)!=2+24=26$

PTS: 2
REF: 011421ia
9 ANS: 3
$3(-3)^{2}-4|-3|+6=27-12+6=21$
PTS: 2 REF: 061412ia
STA: A.N. 6

STA: A.N. 6
REF: 011110ia

STA: A.N. 6

STA: A.N. 6

PTS: 2
TOP: Evaluating Expressions
11 ANS: 3 PTS: 2
TOP: Identifying Properties
12 ANS: 2 PTS: 2

STA: A.N. 6
REF: 081402ia

REF: fall0705ia

REF: 080802ia
STA: A.N. 6

STA: A.N.

TOP: Evaluating Expressions

TOP: Evaluating Expressions
TOP: Evaluating Expressions STA: A.N. 6

TOP: Evaluating Expressions

TOP: Evaluating Expressions

TOP: Evaluating Expressions

STA: A.N. 6 TOP: Evaluating Expressions

TOP: Identifying Properties

TOP: Evaluating Expressions
STA: A.N. 6

STA: A.N. 1

STA: A.N. 1

13 ANS:
(1) Distributive; (2) Commutative

PTS: 2 REF: 061132ia
14 ANS: $1 \quad$ PTS: 2
TOP: Identifying Properties
15 ANS: 1 PTS: 2
TOP: Identifying Properties
16 ANS: $3 \quad$ PTS: 2
TOP: Identifying Properties
17 ANS: $1 \quad$ PTS: 2
TOP: Identifying Properties
18 ANS: 3 PTS: 2
TOP: Properties of Reals
19 ANS:
$-6 a+42$. distributive
PTS: 2
REF: 061032ia
20 ANS: 4
PTS: 2
TOP: Properties of Reals
21 ANS: 3
PTS: 2
TOP: Properties of Reals
22 ANS: 1
PTS: 2
TOP: Properties of Reals
23 ANS: 3 PTS: 2
TOP: Properties of Reals
24 ANS: $1 \quad$ PTS: 2
TOP: Properties of Integers
25 ANS: 4 PTS: 2 TOP: Set Theory
26 ANS: $3 \quad$ PTS: 2
TOP: Set Theory
27 ANS: 4
TOP: Set Theory
28 ANS: $1 \quad$ PTS: 2
TOP: Set Theory
29 ANS: 4
PTS: 2
TOP: Set Theory
30 ANS: 2
TOP: Set Theory
31 ANS: 2
TOP: Set Theory
32 ANS: 3
TOP: Set Theory
33 ANS: 4
PTS: 2
TOP: Set Theory

STA: A.N. 1 TOP: Identifying Properties
REF: 081319ia

REF: 061405ia
REF: 081419ia
REF: 061526ia

REF: 060926ia

STA: A.N. 1
REF: 011114ia
REF: 011224ia
REF: 081209ia

REF: 011428ia

REF: 011523ia
REF: fall0704ia

REF: 010917ia
REF: 060930ia
REF: 061021ia
REF: 081022ia
REF: 011119ia

REF: 061128ia

REF: 081117ia
REF: 011222ia

TOP: Properties of Reals
STA: A.N. 1
STA: A.A. 29

STA: A.A. 29
STA: A.A. 29

STA: A.A. 29
STA: A.A. 29
STA: A.A. 29

STA: A.A. 29

STA: A.A. 29
STA: A.A. 29

34	ANS: 3 TOP: Set Theory	PTS:	2	REF:	061217ia	STA:	A.A. 29
35	ANS: 4 TOP: Set Theory	PTS:	2	REF:	011318ia	STA:	A.A. 29
36	ANS: 1 TOP: Set Theory	PTS:	2	REF:	061310ia	STA:	A.A. 29
37	ANS: 4 TOP: Set Theory	PTS:	2	REF:	081321ia	STA:	A.A. 29
38	ANS: 2 TOP: Set Theory	PTS:	2	REF:	061411ia	STA:	A.A. 29
39	ANS: 1 TOP: Set Theory	PTS:	2	REF:	081430ia	STA:	A.A. 29
40	ANS: 3 TOP: Set Theory ANS: 2	PTS:	2	REF:	061529ia	STA:	A.A. 29

The set of integers greater than -2 and less than 6 is $\{-1,0,1,2,3,4,5\}$. The subset of this set that is the positive factors of 5 is $\{1,5\}$. The complement of this subset is $\{-1,0,2,3,4\}$.

PTS: 2 REF: 060818ia STA: A.A. 30 TOP: Set Theory
42 ANS:
\{1,2,4,5,9,10,12\}
PTS: 2 REF: 080833ia STA: A.A. 30 TOP: Set Theory
43 ANS: 4
$A=\{2,4,6,8,10,12,14,16,18,20\}$
PTS: 2
44 ANS: 4
REF: 080912ia
STA: A.A. 30
TOP: Set Theory
TOP: Set Theory
45 ANS: 3
PTS: 2
REF: 081009ia
STA: A.A. 30
TOP: Set Theory
46 ANS: 3
PTS: 2
REF: 081103ia
STA: A.A. 30
TOP: Set Theory
47 ANS: 2
$A=\{4,9,16,25,36,49,64,81,100\}$
PTS: 2 REF: 011326ia STA: A.A. 30 TOP: Set Theory
48 ANS: 4
$A=\{1,3,5,7,9,11,13,15,17,19\}$

	PTS: 2	REF: 081306ia	STA: A.A.30	TOP: Set Theory
49	ANS: 4	PTS: 2	REF: 011426ia	STA: A.A. 30
TOP: Set Theory				
50	ANS: 3	PTS: 2	REF: fall0710ia	STA: A.A. 31
TOP: Set Theory				

51 ANS:
$0 \leq t \leq 40$

PTS: 2
52 ANS: 1
TOP: Set Theory
53 ANS: 2
TOP: Set Theory
54 ANS: 1
TOP: Set Theory
55 ANS: 4
TOP: Set Theory
56 ANS: 4
TOP: Set Theory
57 ANS: 3
TOP: Set Theory
58 ANS: 3
$A \cup C=\{1,2,3,5,7,9\}$

PTS: 2
59 ANS: 3
TOP: Set Theory
60 ANS: 4
TOP: Set Theory
61 ANS: 4
TOP: Set Theory
62 ANS: 2
TOP: Set Theory
63 ANS: 3
TOP: Set Theory
64 ANS:

REF: 060833ia
PTS: 2
PTS: 2

PTS: 2

PTS: 2
PTS: 2

PTS: 2

REF: 081221ia
PTS: 2
PTS: 2

PTS: 2

PTS: 2
PTS: 2

STA: A.A. 31
REF: 011004ia
REF: 081003ia

REF: 011101ia

REF: 061123ia

REF: 011225ia

REF: 061208ia

STA: A.A. 31
REF: 061324ia
REF: 061426ia

REF: 081408ia

REF: 011501ia
REF: 061501ia

TOP: Set Theory
STA: A.A. 31
STA: A.A. 31

STA: A.A. 31

STA: A.A. 31
STA: A.A. 31

STA: A.A. 31

PTS: 4
REF: 080838ia STA: A.S. 5
TOP: Frequency Histograms, Bar Graphs and Tables
KEY: cumulative frequency histograms

ANS:

PTS: 4
REF: 060938ia STA: A.S. 5
TOP: Frequency Histograms, Bar Graphs and Tables
KEY: frequency histograms ANS:

Interval	Tally	Frequency		
$51-60$	$\\|\\|$	2		
$61-70$	$\\|$	2		
$71-80$	$11 \\|$	4		
$81-90$	411	6		
$91-100$	$111 \mid$	4		

PTS: 3
REF: 011135ia STA: A.S. 5
TOP: Frequency Histograms, Bar Graphs and Tables
KEY: frequency histograms

67 ANS:

PTS: 2
REF: 081132ia
STA: A.S. 5
TOP: Frequency Histograms, Bar Graphs and Tables
68 ANS: 4
PTS: 2
REF: 011530ia
TOP: Frequency Histograms, Bar Graphs and Tables
69 ANS:
Heights of Students

Interval	Tally	Frequency
$55-59$	II	3
$60-64$	$1 / 11$	4
$65-69$	$-1+1$ II	8
$70-74$	41 I	5

PTS: 3
REF: 061536ia
STA: A.S. 5
TOP: Frequency Histograms, Bar Graphs and Tables
70 ANS: 3
$25-18=7$
PTS: 2

REF: 060822ia STA: A.S. 9

71 ANS:
30, 20, 71-80, 81-90 and 91-100
PTS: 4
REF: 061038ia
STA: A.S. 9
TOP: Frequency Histograms, Bar Graphs and Tables
72 ANS: 3
PTS: 2
REF: 061230ia
STA: A.S. 9
TOP: Frequency Histograms, Bar Graphs and Tables
73 ANS:
$3,0,20.15-12=3.12-12=0$
PTS: 3
REF: 081234ia
STA: A.S. 9
TOP: Frequency Histograms, Bar Graphs and Tables

KEY: frequency histograms
STA: A.S. 5

KEY: frequency histograms

74 ANS:
If there are 31 students. the 16th student's time represents the median. The 16th time is in the $41-80$ interval on the cumulative frequency table and the 71-80 interval on the related frequency table.

PTS: 2 REF: 011432ia STA: A.S. 9
TOP: Frequency Histograms, Bar Graphs and Tables
75 ANS: 2
The median score, 10 , is the vertical line in the center of the box.
PTS: 2 REF: fall0709ia STA: A.S. 5 TOP: Box-and-Whisker Plots
76 ANS:

PTS: 4 REF: 080939ia STA: A.S. 5 TOP: Box-and-Whisker Plots
77 ANS:
minimum is 120 , 1st quartile is 145 , median is 292 , 3rd quartile is 407 , and maximum is 452

PTS: 3 REF: 081034ia STA: A.S. 5 TOP: Box-and-Whisker Plots
78 ANS:

PTS: 4 REF: 011337ia STA: A.S. 5 TOP: Box-and-Whisker Plots
79 ANS:

Min: 8, Q1: 20, Med: 32, Q3: 36, Max: 40

PTS: 4
REF: 061439ia
STA: A.S. 5
TOP: Box-and-Whisker Plots
80 ANS:

PTS: 2
REF: 081431ia
STA: A.S. 5
TOP: Box-and-Whisker Plots
81 ANS: 3
The value of the third quartile is the last vertical line of the box.
$\begin{array}{llll}\text { PTS: } 2 & \text { REF: 080818ia } & \text { STA: A.S.6 } & \text { TOP: Box-and-Whisker Plots } \\ \text { ANS: } 4 & \text { PTS: } 2 & \text { REF: 010929ia } & \text { STA: A.S. } 6\end{array}$
TOP: Box-and-Whisker Plots

83 ANS: 3
The value of the upper quartile is the last vertical line of the box.
PTS: 2 REF: 060915ia STA: A.S. 6 TOP: Box-and-Whisker Plots
84 ANS: 1 PTS: 2
85 ANS: 3
$75-15=60$

	PTS: 2	REF: 011113ia	STA:	A.S. 6	TOP:	Box-and-Whisker Plots
86	ANS: 2	PTS: 2	REF:	081106ia	STA:	A.S. 6
	TOP: Box-and-Whi	isker Plots				
87	ANS: 3	PTS: 2	REF:	011220ia	STA:	A.S. 6
	TOP: Box-and-Whi	sker Plots				
88	ANS: 2	PTS: 2	REF:	061314ia	STA:	A.S. 6
	TOP: Box-and-Whi	sker Plots				
89	ANS: 4	PTS: 2	REF:	081312ia	STA:	A.S. 6
	TOP: Box-and-Whi	isker Plots				
90	ANS: 3	PTS: 2	REF:	011408ia	STA:	A.S. 6
	TOP: Box-and-Whi	isker Plots				
91	ANS: 2	PTS: 2	REF:	011512ia	STA:	A.S. 6
	TOP: Box-and-Whi	isker Plots				
92	ANS: 3	PTS: 2	REF:	061017ia	STA:	A.S. 11
	TOP: Quartiles and	Percentiles				
93	ANS: 4					
	$\frac{95000}{125000}=.76$					
	PTS: 2	REF: 061207ia	STA:	A.S. 11	TOP:	Quartiles and Percentiles
94	ANS: 1					
	$25 \% \times 40=10$					
	PTS: 2	REF: 011515ia	STA:	A.S. 11	TOP:	Quartiles and Percentiles
95	ANS: 2	PTS: 2	REF:	fall0701ia	STA:	A.S. 7
	TOP: Scatter Plots					
96	ANS: 3	PTS: 2	REF:	081001ia	STA:	A.S. 7
	TOP: Scatter Plots					
97	ANS: 2	PTS: 2	REF:	061115ia	STA:	A.S. 7
	TOP: Scatter Plots					

98
ANS: 4

PTS: 2
REF: 080822ia
STA: A.S. 8
TOP: Scatter Plots
99 ANS:

PTS: 3
100 ANS: 4 TOP: Scatter Plots
101 ANS: 4 TOP: Scatter Plots
102 ANS: 2
TOP: Scatter Plots
103 ANS: 3
TOP: Scatter Plots
104 ANS: 1
TOP: Scatter Plots
105 ANS: 2
TOP: Scatter Plots
106 ANS: 1
TOP: Scatter Plots
107 ANS: 1
TOP: Scatter Plots
108 ANS: 1 TOP: Scatter Plots
109 ANS: 4 TOP: Scatter Plots
110 ANS: 3
TOP: Scatter Plots
111 ANS: 2 TOP: Scatter Plots

REF: 060936ia
PTS: 2
PTS: 2
PTS: 2
PTS: 2

PTS: 2
PTS: 2
PTS: 2

PTS: 2
PTS: 2
PTS: 2
PTS: 2
PTS: 2

STA: A.S. 8
REF: 011229ia
REF: 060805ia

REF: 011019ia
REF: 011103ia

REF: 081102ia

REF: 061205ia
REF: 081204ia

REF: 011301ia
REF: 081301ia

REF: 081412ia

REF: 061512ia
REF: 080930ia

TOP: Scatter Plots
STA: A.S. 8
STA: A.S. 12
STA: A.S. 17

112 ANS:

They will not reach their goal in 18 months.
PTS: 3
113 ANS: 3
TOP: Scatter Plots
114 ANS: 3
TOP: Scatter Plots
115 ANS: 2
TOP: Scatter Plots
116 ANS:
225000, 175000, the median better represents the value since it is closer to more values than the mean.
PTS: 4 REF: fall0737ia STA: A.S. 4
TOP: Frequency Histograms, Bar Graphs and Tables
117 ANS:
$315,000,180,000$, the median better represents value since it is closer to more prices than the mean.
PTS: 4 REF: 060839ia STA: A.S. 4
TOP: Frequency Histograms, Bar Graphs and Tables
118 ANS: 3
mean $=6$, median $=6$ and mode $=7$
PTS: 2 REF: 080804ia STA: A.S. 4 TOP: Central Tendency
119 ANS: 4
The mean is $80 . \overline{6}$, the median is 84.5 and the mode is 87 .
PTS: 2 REF: 010907ia STA: A.S. 4 TOP: Central Tendency
120 ANS: 3
mean $=81 \frac{7}{11}$, median $=81$ and mode $=76$
PTS: 2
REF: 011118ia
STA: A.S. 4
TOP: Central Tendency
121 ANS: 2
mean $=7$, median $=6$ and mode $=6$
PTS: 2
REF: 011329ia
STA: A.S. 4
TOP: Central Tendency

122 ANS: 1
The mean is 17 , the median is 18 and the mode is 22 .
PTS: 2 REF: 081421ia STA: A.S. 4 TOP: Central Tendency
123 ANS: 3
The mean is 86 , the median is 88 and the mode is 92 .
PTS: 2
REF: 061525ia
STA: A.S. 4
TOP: Central Tendency
124 ANS:
81.3, 80, both increase

PTS: 3
REF: 011035ia
STA: A.S. 16
TOP: Central Tendency
125 ANS:
12, 7. Both the median and the mode will increase.
PTS: 3
REF: 061134ia
STA: A.S. 16
126 ANS: 2
PTS: 2
REF: 081327ia
TOP: Central Tendency
127 ANS: 4
$\frac{2+3+0+1+3+2+4+0+2+3}{10}=\frac{20}{10}=2 \frac{x}{10}=2+0.5$

$$
x=25
$$

PTS: 2
REF: 081020ia
STA: A.S. 16
ANS:
$\frac{76+84+x+74+91}{5}=82 \quad 85-69=16$

$$
\begin{aligned}
x+325 & =410 \\
x & =85
\end{aligned}
$$

PTS: 3
REF: 011535ia
STA: A.S. 16
TOP: Average Known with Missing Data
129 ANS: 3
The other situations are quantitative.
PTS: 2
REF: 060819ia
STA: A.S. 1
TOP: Analysis of Data
ANS: 3
The other situations are quantitative.
PTS: 2 REF: 060905ia
STA: A.S. 1
TOP: Analysis of Data
131 ANS: 4
The other sets of data are qualitative.
PTS: 2
REF: 011116ia
STA: A.S. 1
TOP: Analysis of Data
132 ANS: 4
The other situations are quantitative.
PTS: 2
REF: 081122ia
STA: A.S. 1
TOP: Analysis of Data

133 ANS: 2
The other sets of data are qualitative.
PTS: 2 REF: 011211ia STA: A.S. 1 TOP: Analysis of Data
134 ANS: 3
The other situations are qualitative.
PTS: 2 REF: 081213ia STA: A.S. 1 TOP: Analysis of Data
135 ANS: 1
The other situations are quantitative.
PTS: 2 REF: 061308ia STA: A.S. 1 TOP: Analysis of Data
136 ANS: 3
The other situations are quantitative.
PTS: 2 REF: 081313ia STA: A.S. 1 TOP: Analysis of Data
137 ANS: 3
The other situations are qualitative.
PTS: 2 REF: 011414ia STA: A.S. 1 TOP: Analysis of Data
138 ANS: 3
The other situations are quantitative.
PTS: 2 REF: 061402ia STA: A.S. 1 TOP: Analysis of Data
139 ANS: 4
The other situations are quantitative.
PTS: 2
REF: 081407ia
STA: A.S. 1
TOP: Analysis of Data
140 ANS: 1
The other situations are quantitative.
PTS: 2 REF: 061522ia STA: A.S. 1 TOP: Analysis of Data
141 ANS: 2
The two values are shoe size and height.
PTS: 2 REF: fall0714ia STA: A.S. 2 TOP: Analysis of Data
142 ANS: 3
Frequency is not a variable.
143 ANS: 3
REF: 011014ia
STA: A.S. 2
REF: 061011ia
TOP: Analysis of Data
TOP: Analysis of Data
144 ANS: 3 PT
TOP: Analysis of Data
145 ANS: 3
Due to lack of specificity in the wording, this 13th question was removed from the June, 2013 Regents Exam.
PTS: 2 REF: 061313ia STA: A.S. 2 TOP: Analysis of Data

ANS: 4 PTS: 2
REF: 011504ia
STA: A.S. 2
TOP: Analysis of Data
147
PTS: 2
REF: 061510ia
STA: A.S. 2
TOP: Analysis of Data
148 ANS: 1
To determine student interest, survey the widest range of students.
PTS: 2 REF: 060803ia STA: A.S. 3 TOP: Analysis of Data
149 ANS: 1
Everyone eats, can shop in malls and wear clothes. People who work in a sporting goods store probably watch more sports television than most.

PTS: 2 REF: 010923ia STA: A.S. 3 TOP: Analysis of Data
150 ANS: 4
Surveying persons leaving a football game about a sports budget contains the most bias.
PTS: 2 REF: 080910ia STA: A.S. 3 TOP: Analysis of Data
151 ANS: 4
PTS: 2
REF: 061022ia
STA: A.S. 3
TOP: Analysis of Data
152 ANS: 1
Asking school district employees about a school board candidate produces the most bias.
PTS: 2 REF: 061107ia STA: A.S. 3 TOP: Analysis of Data
153 ANS: 2
People at a gym or football game and members of a soccer team are more biased towards sports.
PTS: 2 REF: 061202ia STA: A.S. 3 TOP: Analysis of Data
154 ANS: 2
To determine student opinion, survey the widest range of students.

	PTS: 2	REF: 011313ia	STA: A.S.3	TOP: Analysis of Data	
155	ANS: 3	PTS: 2	REF: 011404ia	STA: A.S. 3	
	TOP: Analysis of Data				
156	ANS: 4 PTS: 2	REF: 061407ia	STA: A.S. 3		
TOP: Analysis of Data					
157	ANS: 3				
	The number of correct answers on a test causes the test score.				

PTS: 2 REF: 080908ia STA: A.S. 13
158 ANS: 2
PTS: 2 REF: 081104ia
TOP: Analysis of Data
159 ANS: 3 PTS: 2 REF: 081406ia
TOP: Analysis of Data
STA: A.S. 13

STA: A.S. 13
TOP: Analysis of Data
160 ANS: 1
A rooster crows before sunrise, not because of the sun.
PTS: 2 REF: fall0707ia STA: A.S. 14 TOP: Analysis of Data

161 ANS: 3
The age of a child does not cause the number of siblings he has, or vice versa.

	PTS: 2	REF: 011030ia	STA: A.S.14	TOP: Analysis of Data	
162	ANS: 3	PTS: 2	REF: 081017a	STA: A.S. 14	
	TOP: Analysis of Data				
163	ANS: 2	PTS: 2	REF: 061122ia	STA: A.S. 14	
	TOP: Analysis of Data				
164	ANS: 2	PTS: 2	REF: 061427ia	STA: A.S. 14	
	TOP: Analysis of Data				
165	ANS: 1	PTS: 2	REF: fall0723ia	STA: A.M. 3	

166 ANS:
$618.45,613.44,0.008 .21 .7 \times 28.5=618.45 .21 .6 \times 28.4=613.44 .\left|\frac{618.45-613.44}{613.44}\right| \approx 0.008$. An error of less than 1% would seem to be insignificant.

PTS: 4 REF: 060838ia STA: A.M. 3 TOP: Error
KEY: area
167 ANS: 1
$\left|\frac{289-282}{289}\right| \approx 0.024$
PTS: 2 REF: 080828ia STA: A.M. 3 TOP: Error
KEY: volume and surface area
168 ANS:
$1,512,1,551.25,0.025 .36 \times 42=1512.36 .5 \times 42.5=1551.25 . \quad R E=\left|\frac{1512-1551.25}{1551.25}\right| \approx 0.025$.
PTS: 3 REF: 010934ia STA: A.M. 3 TOP: Error
KEY: area
169 ANS: 2
The volume of the cube using Ezra's measurements is $8\left(2^{3}\right)$. The actual volume is $9.261\left(2.1^{3}\right)$. The relative error is $\left|\frac{9.261-8}{9.261}\right| \approx 0.14$.

PTS: 2
REF: 060928ia
STA: A.M. 3 TOP: Error
KEY: volume and surface area
170
ANS: 2
$\left|\frac{149.6-174.2}{149.6}\right| \approx 0.1644$
PTS: 2
REF: 080926ia
STA: A.M. 3
TOP: Error
KEY: area

171 ANS:
0.102. $\frac{(5.3 \times 8.2 \times 4.1)-(5 \times 8 \times 4)}{5.3 \times 8.2 \times 4.1}=\frac{178.16-160}{178.16}=0.102$

PTS: 3 REF: 011036ia STA: A.M. 3 TOP: Error
KEY: volume and surface area
172 ANS:
$\frac{600-592}{592} \approx 0.014$
PTS: 2 REF: 061031ia STA: A.M. 3 TOP: Error
KEY: volume and surface area
173 ANS: 2
$\left|\frac{55.42-50.27}{55.42}\right| \approx 0.093$
PTS: 2
REF: 081023ia
STA: A.M. 3
TOP: Error
KEY: area
174 ANS:
0.029. $\frac{\left[2 \pi(5.1)^{2}+2 \pi(5.1)(15.1)\right]-\left[2 \pi(5)^{2}+2 \pi(5)(15)\right]}{2 \pi(5.1)^{2}+2 \pi(5.1)(15.1)} \approx \frac{647.294-628.319}{647.294} \approx 0.029$

PTS: 4
REF: 011137ia
STA: A.M. 3
TOP: Error
KEY: volume and surface area
175
ANS: 3
$\frac{(12.3 \times 11.9)-(12.2 \times 11.8)}{12.3 \times 11.9} \approx 0.0165$
PTS: 2 REF: 061120ia STA: A.M. 3 TOP: Error
KEY: area
176
ANS: 2
$\left|\frac{13.5-12.8}{13.5}\right| \approx 0.093$
PTS: 2 REF: 081123ia STA: A.M. 3 TOP: Error
KEY: area
177 ANS: 2
$\left|\frac{(2.6 \times 6.9)-(2.5 \times 6.8)}{(2.6 \times 6.9)}\right| \approx 0.052$
PTS: 2 REF: 011209ia STA: A.M. 3 TOP: Error KEY: area

178 ANS:
$\frac{8100-7678.5}{7678.5} \approx 0.055$
PTS: 2 REF: 061233ia STA: A.M. 3 TOP: Error
KEY: area
179 ANS:
$\frac{(5.9 \times 10.3 \times 1.7)-(6 \times 10 \times 1.5)}{5.9 \times 10.3 \times 1.7} \approx 0.129$
PTS: 3 REF: 081235ia STA: A.M. 3 TOP: Error
KEY: volume and surface area
180 ANS:
$\left|\frac{(24.2 \times 14.1)-(24 \times 14)}{(24.2 \times 14.1)}\right|=\frac{5.22}{341.22} \approx 0.015$
PTS: 3 REF: 011336ia STA: A.M. 3 TOP: Error
KEY: area
181 ANS:
$\frac{(10.75)(12.5)-(10.5)(12.25)}{(10.75)(12.5)} \approx 0.043$
PTS: 3 REF: 081336ia STA: A.M. 3 TOP: Error
KEY: area
182 ANS:
$\frac{6(5.2)^{2}-6(5)^{2}}{6(5.2)^{2}} \approx .075$
PTS: 3
REF: 011435ia
STA: A.M. 3
TOP: Error
KEY: volume and surface area
183 ANS:
$\frac{(11.75 \times 7.75 \times 4)-(12 \times 8 \times 4)}{11.75 \times 7.75 \times 4}=\frac{364.25-384}{364.25}=0.054$
PTS: 3
REF: 061435ia
STA: A.M. 3
TOP: Error
KEY: volume and surface area
ANS:
Machine A. A: $\frac{4^{2}-3.97^{2}}{4^{2}} \approx .0149$ B: $\frac{4.12^{2}-4^{2}}{4^{2}} \approx .0609$
PTS: 4
REF: 081438ia STA: A.M. 3
TOP: Error
KEY: area

185
ANS:
$\left|\frac{(36.5 \times 42.5)-(36 \times 42)}{(36.5 \times 42.5)}\right|=\frac{39.25}{1551.25} \approx 0.025$
PTS: 3 REF: 061535ia STA: A.M. 3 TOP: Error
KEY: area
186 ANS:
(S,S), (S,K), (S,D), (K,S), (K,K), (K,D), (D,S), (D,K), (D,D), $\frac{4}{9}$
PTS: 3 REF: fall0736ia STA: A.S. 19 TOP: Sample Space
187 ANS:
(H,F,M), (H,F,J), (H,F,S), (H,A,M), (H,A,J), (H,A,S), (C,F,M), (C,F,J), (C,F,S), (C,A,M), (C,A,J), (C,A,S), (T,F,M), (T,F,J), (T,F,S), (T,A,M), (T,A,J), (T,A,S). There are 18 different kids’ meals, 12 do not include juice and 6 include chicken nuggets.

PTS: 4 REF: 010939ia STA: A.S. 19 TOP: Sample Space
188 ANS:
$\frac{3}{8} .(H, H, H),(H, H, T),(H, T, H),(H, T, T),(T, H, H),(T, H, T),(T, T, H),(T, T, T)$
PTS: 2 REF: 080933ia STA: A.S. 19 TOP: Sample Space
189 ANS:
(T,J,F), (T,J,N), (T,K,F), (T,K,N), (T,C,F), (T,C,N), (B,J,F), (B,J,N), (B,K,F), (B,K,N), (B,C,F), (B,C,N), (S,J,F), (S,J,N), (S,K,F), (S,K,N), (S,C,F), (S,C,N). 3, 12.

PTS: 4 REF: 061138ia STA: A.S. 19 TOP: Sample Space
190 ANS:
(W,H,A), (W,H,S), (W,T,A), (W,T,S), (W,B,A), (W,B,S), (R,H,A), (R,H,S), (R,T,A), (R,T,S), (R,B,A), (R,B,S).
8, 3
PTS: 4 REF: 011238ia STA: A.S. 19 TOP: Sample Space
191 ANS:
(C,B,T), (C,B,5), (C,N,T), (C,N,5), (C,2,T), (C,2,5), (F,B,T), (F,B,5), (F,N,T), (F,N,5), (F,2,T), (F,2,5). 1, 2.
PTS: 4 REF: 081237ia STA: A.S. 19 TOP: Sample Space
192 ANS:
(1,A), (1,B), (1,C), (3,A), (3,B), (3,C), (5,A), (5,B), (5,C), (7,A), (7,B), (7,C), (9,A), (9,B), (9,C). 6
PTS: 3 REF: 011334ia STA: A.S. 19 TOP: Sample Space
193 ANS: 3
$(2, T),(4, T),(6, T)$
PTS: 2 REF: 081324ia STA: A.S. 19 TOP: Sample Space

194 ANS:
cap-jacket: TT, TR, TW, BB, BR, BW, RB, RR, RW, GB, GR, GW, 10, 6.
PTS: 4 REF: 011439ia STA: A.S. 19 TOP: Sample Space
195 ANS:
$\frac{3}{8} .(H, H, H),(H, H, T),(H, T, H),(\mathbf{H}, \mathbf{T}, \mathbf{T}),(T, H, H),(T, H, T),(T, T, H),(T, T, T)$
PTS: 2 REF: 061432ia STA: A.S. 19 TOP: Sample Space
196 ANS: 1
$3 \cdot 3 \cdot 3=27$

PTS: 2 REF: 081413ia
STA: A.S. 19
REF: 060908ia
TOP: Empirical Probability
198 ANS: 3
$\frac{15}{15+13+12}=\frac{15}{40}=\frac{3}{8}$
PTS: 2
REF: 061006ia
STA: A.S. 21
TOP: Experimental Probability
199 ANS: 3
$\frac{3+2+4+3}{20}=\frac{12}{20}$
PTS: 2
REF: 011129ia
STA: A.S. 21
TOP: Experimental Probability
200 ANS:
$\frac{6}{25} \cdot \frac{25-(11+5+3)}{25}$
PTS: 2
REF: 011232ia
PTS: 2
TOP: Experimental Probability
202 ANS: 2
$\frac{12+20+8}{30+50+20} \cdot 75=30$
PTS: 2
REF: 011528ia
ANS: 3
$\frac{14}{30+28+14+28}=\frac{14}{100}=\frac{7}{50}$
PTS: 2 REF: 061502ia
204 ANS: 2
PTS: 2
TOP: Theoretical Probability

STA: A.S. 21
STA: A.S. 21
REF: 011415ia

STA: A.S. 21
REF: 011002ia

TOP: Experimental Probability
STA: A.S. 21

TOP: Empirical Probability

TOP: Experimental Probability STA: A.S. 20

205
ANS: 4
$P(O)=\frac{3}{6}, P(E)=\frac{3}{6}, P(<6)=\frac{5}{6}, P(>4)=\frac{2}{6}$

PTS: 2 REF: 010903ia STA: A.S. 22 TOP: Theoretical Probability
206 ANS:
orchestra: $\frac{3}{26}>\frac{4}{36}$

PTS: 2 REF: 011033ia STA: A.S. 22 TOP: Theoretical Probability 207 ANS:

Hat A, add 1 not green to Hat A, add 11 green to Hat B, and add none to Hat C.
PTS: 4 REF: 081038ia STA: A.S. 22 TOP: Theoretical Probability
208 ANS: 3
$P(O)=\frac{5}{10}, P(P)=\frac{4}{10}, P(\leq 5)=\frac{6}{10}, P(/ 3)=\frac{4}{10}$

PTS: 2 REF: 081125ia STA: A.S. 22 TOP: Theoretical Probability
209 ANS:
White. There are 31 white blocks, 30 red blocks and 29 blue blocks.
PTS: 2 REF: 061232ia STA: A.S. 22 TOP: Theoretical Probability
210 ANS: 4
$P($ odd $)=\frac{7+14+20}{75}=\frac{41}{75} . P($ even $)=\frac{22+6+6}{75}=\frac{34}{75} . P(3$ or less $)=\frac{14+22+7}{75}=\frac{43}{75}$.
$P(2$ or 4$)=\frac{22+6}{75}=\frac{28}{75}$

PTS: 2 REF: 011325ia STA: A.S. 22 TOP: Theoretical Probability
211 ANS: 4 PTS: 2
TOP: Theoretical Probability
212 ANS: 3 PTS: 2
TOP: Theoretical Probability
REF: 081303ia

REF: fall0702ia STA: A.S. 23
KEY: mutually exclusive events
213 ANS: 2
The events are not mutually exclusive: $\mathrm{P}($ prime $)=\frac{3}{6}, \mathrm{P}($ even $)=\frac{3}{6}, \mathrm{P}($ prime AND even $)=\frac{1}{6}$
$P($ prime OR even $)=\frac{3}{6}+\frac{3}{6}-\frac{1}{6}=\frac{5}{6}$
PTS: 2
REF: 080830ia
STA: A.S. 23 TOP: Theoretical Probability
KEY: not mutually exclusive events

214 ANS: 3
$P(S) \cdot P(M)=P(S$ and $M)$
$\frac{3}{5} \cdot P(M)=\frac{3}{10}$

$$
P(M)=\frac{1}{2}
$$

PTS: 2 REF: 081024ia STA: A.S. 23 TOP: Theoretical Probability
KEY: independent events
215 ANS:
$\frac{4}{12} \times \frac{2}{11} \times \frac{1}{10}=\frac{8}{1320} \frac{6}{12} \times \frac{5}{11} \times \frac{4}{10}+\frac{4}{12} \times \frac{3}{11} \times \frac{2}{10}=\frac{120}{1320}+\frac{24}{1320}=\frac{144}{1320}$
PTS: 4
REF: 081137ia
STA: A.S. 23 TOP: Theoretical Probability
KEY: dependent events
216 ANS: 2 PTS: 2
TOP: Theoretical Probability
217 ANS: 4 PTS: 2
REF: 011212ia STA: A.S. 23
KEY: independent events
TOP: Theoretical Probability
REF: 081229ia STA: A.S. 23
KEY: independent events
218 ANS:
$\frac{5}{8} \times \frac{3}{7}=\frac{15}{56} \cdot \frac{5}{8} \times \frac{4}{7}=\frac{20}{56} \cdot \frac{20}{56}+\frac{3}{8} \times \frac{2}{7}=\frac{26}{56}$
PTS: 4 REF: 061338ia STA: A.S. 23 TOP: Theoretical Probability
KEY: dependent events
219 ANS:
$\frac{12}{20} \times \frac{8}{19}+\frac{8}{20} \times \frac{12}{19}=\frac{192}{380} \cdot 1-P(B B)=1-\left(\frac{8}{20} \times \frac{7}{19}\right)=\frac{380}{380}-\frac{56}{380}=\frac{324}{380}$
PTS: 4
REF: 081339ia
STA: A.S. 23
TOP: Theoretical Probability
KEY: dependent events
220 ANS:
$\frac{6}{12} \cdot \frac{5}{11} \cdot \frac{4}{10}=\frac{1}{11}$
PTS: 3 REF: 081435ia STA: A.S. 23 TOP: Theoretical Probability
KEY: dependent events
221 ANS:
$\frac{1}{3} \times p=\frac{2}{15}$

$$
\begin{aligned}
& p=\frac{2}{15} \times \frac{3}{1} \\
& p=\frac{2}{5}
\end{aligned}
$$

PTS: 2
REF: 011533ia
STA: A.S. 23
TOP: Theoretical Probability KEY: independent events
222 ANS: 3 PTS: 2

TOP: Geometric Probability
223 ANS:
$\frac{1375}{1600} \cdot \frac{40^{2}-15^{2}}{40^{2}}=\frac{1375}{1600}$
PTS: 2 REF: 011132ia STA: A.S. 20 TOP: Geometric Probability
224 ANS: 3 PTS: 2
REF: 061218ia
STA: A.S. 20
TOP: Geometric Probability
225 ANS: 4
$P(G$ or $W)=\frac{4}{8}, P(G$ or $B)=\frac{3}{8}, P(Y$ or $B)=\frac{4}{8}, P(Y$ or $G)=\frac{5}{8}$
PTS: 2 REF: 060802ia STA: A.S. 22 TOP: Geometric Probability
226 ANS: 3
$P($ odd $)=\frac{3}{6}, P($ prime $)=\frac{3}{6}, P($ perfect square $)=\frac{2}{6}, P($ even $)=\frac{3}{6}$
PTS: 2 REF: 061104ia STA: A.S. 22 TOP: Geometric Probability
227 ANS:
$\frac{3}{8} . P\left(s_{1}<4\right) \times P\left(s_{2}=\right.$ back $)=\frac{3}{4} \times \frac{1}{2}=\frac{3}{8}$
PTS: 2 REF: 080832ia STA: A.S. 23 TOP: Geometric Probability
228 ANS: 1
$\frac{1}{8} \times \frac{1}{8}=\frac{1}{64}$
PTS: 2
REF: 010928ia
STA: A.S. 23
TOP: Geometric Probability
229 ANS:
$\frac{1}{8}$. After the English and social studies books are taken, 8 books are left and 1 is an English book.
PTS: 2 REF: 060933ia STA: A.S. 18 TOP: Conditional Probability
230 ANS: 4
PTS: 2
REF: 011308ia
STA: A.S. 18
TOP: Conditional Probability
231 ANS: 1
$\frac{20-6}{(20-6)+15+7+8}=\frac{14}{44}$
PTS: 2
REF: 061302ia
STA: A.S. 18
TOP: Conditional Probability
232 ANS: 3
$(3-1) \times 2 \times 3=12$
PTS: 2
REF: 080905ia
STA: A.N. 7
TOP: Conditional Probability

233 ANS: 4
$5 \times 2 \times 3=30$
PTS: 2 REF: 061002ia STA: A.N. 7 TOP: Multiplication Counting Principle 234 ANS:
$5 \times 3 \times 5 \times 3=225.1 \times 3 \times 5 \times 3=45.1 \times 2 \times 5 \times 3=30$
PTS: 4 REF: 061334ia STA: A.N. 7
235 ANS: 2
PTS: 2
REF: 061428ia
REF: 060808ia
TOP: Multiplication Counting Principle
TOP: Conditional Probability
236 ANS: $3 \quad$ PTS: 2 STA: A.N. 7

STA: A.N. 8
TOP: Permutations
237 ANS: 1
${ }_{4} P_{4}=4 \times 3 \times 2 \times 1=24$
PTS: 2
REF: 080816ia
STA: A.N. 8
TOP: Permutations
238 ANS:
60. ${ }_{5} P_{3}=60$

PTS: 2 REF: 060931ia STA: A.N. 8 TOP: Permutations
239 ANS:
$15,600,000,4,368,000.10 \times 10 \times 10 \times 26 \times 25 \times 24=15,600,000.10 \times 9 \times 8 \times 26 \times 25 \times 24=11,232,000$. $15,600,000-11,232,000=4,368,000$.

PTS: 4
REF: 011037ia
STA: A.N. 8
TOP: Permutations
240 ANS: 4
${ }_{8} P_{3}=336$
PTS: 2 REF: 061026ia STA: A.N. 8 TOP: Permutations
241 ANS: 3
${ }_{6} P_{4}=360$
PTS: 2
REF: 081028ia
STA: A.N. 8
TOP: Permutations
242 ANS: 4
${ }_{5} P_{5}=5 \times 4 \times 3 \times 2 \times 1=120$
PTS: 2
REF: 061109ia
STA: A.N. 8
TOP: Permutations
243 ANS:
$26 \times 25 \times 24 \times 23=358,800.10^{6}=1,000,000$. Use the numeric password since there are over 500,000 employees

PTS: 4 REF: 061239ia STA: A.N. 8 TOP: Permutations
244 ANS: 3
${ }_{18} P_{3}=4896$
PTS: 2 REF: 061328ia STA: A.N. 8 TOP: Permutations

245 ANS: 4
${ }_{7} P_{1}=5040$

PTS: 2
REF: 011527ia STA: A.N. 8
TOP: Permutations

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic Answer Section

246 ANS: 4
$25(x-3)=25 x-75$
PTS: 2 REF: 060823ia STA: A.A. 1 TOP: Expressions
247 ANS: 4
$A=l w=(3 w-7)(w)=3 w^{2}-7 w$

PTS: 2
248 ANS: 2
TOP: Expressions
249 ANS: 4
$5(x+4)=5 x+20$
PTS: 2
250 ANS: 3
TOP: Expressions
251 ANS: 1
TOP: Expressions
252 ANS: 3
TOP: Expressions
253 ANS: 1
TOP: Expressions
254 ANS: 2
TOP: Expressions
255 ANS: 1
TOP: Expressions
256 ANS: 1
TOP: Expressions
257 ANS: 3
TOP: Expressions
258 ANS: 2
TOP: Expressions
259 ANS: 4
$x+x+2+x+4=3 x+6$
PTS: 2
260 ANS: 3
TOP: Expressions
261 ANS: 3
TOP: Expressions
262 ANS: 4
TOP: Expressions
263 ANS: 4
TOP: Expressions

REF: 081013ia
PTS: 2
PTS: 2
PTS: 2

PTS: 2
PTS: 2
PTS: 2
PTS: 2
PTS: 2
PTS: 2

REF: 010924ia
PTS: 2

$+6$
REF: 011430ia
PTS: 2

PTS: 2

PTS: 2
PTS: 2

STA: A.A. 1 TOP: Expressions
REF: 011104ia
REF: 081110ia
REF: 011205ia
REF: 061204ia

REF: 081215ia
REF: 011303ia

REF: 061301ia
REF: 061323ia

REF: 081305ia

STA: A.A. 1
REF: 011507ia

REF: 061519ia
REF: fall0729ia STA: A.A. 2
REF: 061016ia

TOP: Expressions
STA: A.A. 1

STA: A.A. 1

STA: A.A. 2

264 ANS: 3
TOP: Expressions
265 ANS: 1
TOP: Expressions
266 ANS:
Not all of the homework problems are equations. The first problem is an expression.

	PTS: 2	REF:	080931ia	STA:	A.A. 3	TOP:	Expressions
267	ANS: 2	PTS:	2	REF:	011027ia	STA:	A.A. 3
	TOP: Expressions						
268	ANS: 1	PTS:	2	REF:	081030ia	STA:	A.A. 3
	TOP: Expressions						
269	ANS: 2	PTS:	2	REF:	061121ia	STA:	A.A. 3
	TOP: Expressions						
270	ANS: 2	PTS:	2	REF:	011227ia	STA:	A.A. 3
	TOP: Expressions						
271	ANS: 4	PTS:	2	REF:	011401ia	STA:	A.A. 3
	TOP: Expressions						
272	ANS: 3	PTS:	2	REF:	061408ia	STA:	A.A. 3
	TOP: Expressions						
273	ANS: 4	PTS:	2	REF:	011508ia	STA:	A.A. 3
	TOP: Expressions						
274	ANS:						

274 ANS:
4. $3+2 g=5 g-9$

$$
12=3 g
$$

$$
g=4
$$

PTS: 2
275 ANS: 4

$$
\begin{aligned}
& \\
& 5 p-1=2 p \\
& 3 p=21 \\
& p=7
\end{aligned}
$$

PTS: 2
REF: 080801ia
STA: A.A. 22
TOP: Solving Equations

276 ANS: 2
Debbie failed to distribute the 3 properly.
PTS: 2 REF: 011009ia STA: A.A. 22 TOP: Solving Equations
277 ANS: 1

$$
\begin{aligned}
2(x-4) & =4(2 x+1) \\
2 x-8 & =8 x+4 \\
-12 & =6 x \\
-2 & =x
\end{aligned}
$$

PTS: 2 REF: 011106ia STA: A.A. 22 TOP: Solving Equations
278 ANS:
4. $3(x+1)-5 x=12-(6 x-7)$

$$
3 x+3-5 x=12-6 x+7
$$

$$
-2 x+3=-6 x+19
$$

$$
4 x=16
$$

$$
x=4
$$

PTS: 4
REF: 061238ia
STA: A.A. 22
TOP: Solving Equations
279 ANS: 4
$5-2 x=-4 x-7$
$2 x=-12$
$x=-6$
PTS: 2
REF: 011305ia
STA: A.A. 22
TOP: Solving Equations
ANS: 2

$$
\begin{aligned}
2(x-4)+7 & =3 \\
2 x-8 & =-4 \\
2 x & =4 \\
x & =2
\end{aligned}
$$

PTS: 2
REF: 061425ia
STA: A.A. 22
TOP: Solving Equations

281 ANS: 4

PTS: 2
REF: 080820ia STA: A.A. 25
TOP: Solving Equations with Fractional Expressions
282 ANS: 1

$$
\begin{aligned}
\frac{(2 x \times 6)+(3 \times x)}{3 \times 6} & =5 \\
\frac{12 x+3 x}{18} & =5 \\
15 x & =90 \\
x & =6
\end{aligned}
$$

PTS: 2
REF: 060907ia STA: A.A. 25
TOP: Solving Equations with Fractional Expressions

ANS: 2

$$
\begin{aligned}
\frac{3}{5}(x+2) & =x-4 \\
3(x+2) & =5(x-4) \\
3 x+6 & =5 x-20 \\
26 & =2 x \\
x & =13
\end{aligned}
$$

PTS: 2
REF: 080909ia STA: A.A. 25
TOP: Solving Equations with Fractional Expressions

284 ANS: 3

$$
\begin{aligned}
\frac{x}{3}+\frac{x+1}{2} & =x \\
\frac{2 x+3(x+1)}{6} & =x \\
5 x+3 & =6 x \\
3 & =x
\end{aligned}
$$

PTS: 2 REF: 061019ia STA: A.A. 25
TOP: Solving Equations with Fractional Expressions
285 ANS: 1

$$
\begin{aligned}
\frac{2 x}{3}+\frac{1}{2} & =\frac{5}{6} \\
\frac{2 x}{3} & =\frac{1}{3} \\
6 x & =3 \\
x & =\frac{1}{2}
\end{aligned}
$$

PTS: 2 REF: 011112ia STA: A.A. 25
TOP: Solving Equations with Fractional Expressions
286 ANS:

$$
\begin{aligned}
\frac{m}{5}+\frac{3(m-1)}{2} & =2(m-3) \\
\frac{2 m}{10}+\frac{15(m-1)}{10} & =2 m-6 \\
\frac{17 m-15}{10} & =2 m-6 \\
17 m-15 & =20 m-60 \\
45 & =3 m \\
15 & =m
\end{aligned}
$$

PTS: 4
REF: 081139ia STA: A.A. 25
TOP: Solving Equations with Fractional Expressions
287 ANS: 1
$\frac{1}{7}+\frac{2 x}{3}=\frac{15 x-3}{21}$
$\frac{14 x+3}{21}=\frac{15 x-3}{21}$
$14 x+3=15 x-3$
$x=6$
PTS: 2
REF: 011328ia STA: A.A. 25
TOP: Solving Equations with Fractional Expressions

ANS: 3
$0.06 y+200=0.03 y+350$

$$
\begin{aligned}
0.03 y & =150 \\
y & =5,000
\end{aligned}
$$

PTS: 2 REF: 081203ia STA: A.A. 25 TOP: Solving Equations with Decimals
289 ANS: 3
$0.2(n-6)=2.8$
$n-6=14$
$n=20$
PTS: 2 REF: 011502ia STA: A.A. 25 TOP: Solving Equations with Decimals
290 ANS: 2
PTS: 2
REF: 080901ia STA: A.A. 4
TOP: Modeling Equations
291 ANS: 3 PTS:
REF: 011413ia STA: A.A. 4
TOP: Modeling Equations
292 ANS: 1 PTS: 2
REF: 061418ia STA: A.A. 4
TOP: Modeling Equations
293 ANS: $1 \quad$ PTS: 2
REF: 061508ia STA: A.A. 4
TOP: Modeling Equations
294 ANS: 4
$w(w+5)=36$
$w^{2}+5 w-36=0$
PTS: 2 REF: fall0726ia
STA: A.A. 5 TOP: Modeling Equations
295 ANS: 2
PTS: 2
TOP: Modeling Equations
296 ANS: 4 PTS:
REF: 010915ia
STA: A.A. 5
PTS: 2
REF: 081011ia STA: A.A. 5
TOP: Modeling Equations
297 ANS: 3 PTS: 2
TOP: Modeling Equations
ANS: 3
PTS: 2
REF: 081424ia
STA: A.A. 5
TOP: Modeling Equations
299 ANS: 4
Let $x=$ youngest brother and $x+4=$ oldest brother. $3 x-(x+4)=48$.

$$
\begin{aligned}
2 x-4 & =48 \\
x & =26
\end{aligned}
$$

PTS: 2
REF: 080928ia
STA: A.A. 6
TOP: Modeling Equations

300 ANS:
7, 9, 11. $x+(x+2)+(x+4)=5(x+2)-18$

$$
3 x+6=5 x-8
$$

$$
14=2 x
$$

$$
7=x
$$

PTS: 4
REF: 011237ia
STA: A.A. 6
TOP: Modeling Equations
301 ANS: 4
$3+2-1=4$
PTS: 2
REF: 081320ia
STA: A.A. 6
TOP: Venn Diagrams
302 ANS: 3
$3 a x+b=c$

$$
\begin{aligned}
3 a x & =c-b \\
x & =\frac{c-b}{3 a}
\end{aligned}
$$

PTS: 2
REF: 080808ia
STA: A.A. 23
TOP: Transforming Formulas
303 ANS: 2

$$
P=2 l+2 w
$$

$P-2 l=2 w$
$\frac{P-2 l}{2}=w$
PTS: 2
REF: 010911ia
STA: A.A. 23
TOP: Transforming Formulas
304 ANS: 3

$$
\begin{aligned}
a+a r & =b+r \\
a(1+r) & =b+r \\
a & =\frac{b+r}{1+r}
\end{aligned}
$$

PTS: 2
305 ANS: 4
TOP: T
(ang Eomlas
306 ANS: 2
TOP: Transforming Formulas

STA: A.A. 23
REF: 011016ia
REF: 061023ia

TOP: Transforming Formulas
STA: A.A. 23

STA: A.A. 23

307 ANS: 4

$$
\begin{aligned}
\frac{e y}{n}+k & =t \\
\frac{e y}{n} & =t-k \\
y & =\frac{n(t-k)}{e}
\end{aligned}
$$

PTS: 2
REF: 011125ia
STA: A.A. 23
TOP: Transforming Formulas
308 ANS:
$b c+a c=a b$
$c(b+a)=a b$
$c=\frac{a b}{b+a}$
PTS: 2
REF: 081131ia
STA: A.A. 23
TOP: Transforming Formulas
309 ANS: 1
$s=\frac{2 x+t}{r}$

$$
r s=2 x+t
$$

$r s-t=2 x$
$\frac{r s-t}{2}=x$
PTS: 2
REF: 011228ia
STA: A.A. 23
TOP: Transforming Formulas
310 ANS: 1

$$
\begin{aligned}
k & =a m+3 m x \\
k & =m(a+3 x) \\
\frac{k}{a+3 x} & =m
\end{aligned}
$$

PTS: 2
311 ANS: 3
REF: 061215ia
STA: A.A. 23
TOP: Transforming Formulas
312 ANS: 1

$$
\begin{aligned}
r x-s t & =r \\
r x & =r+s t \\
x & =\frac{r+s t}{r}
\end{aligned}
$$

PTS: 2
REF: 061316ia
STA: A.A. 23
TOP: Transforming Formulas

313 ANS: 2
$2 y+2 w=x$

$$
2 w=x-2 y
$$

$$
w=\frac{x-2 y}{2}
$$

PTS: 2
REF: 081330ia
STA: A.A. 23
TOP: Transforming Formulas
314 ANS: 1
$a b x-5=0$
$a b x=5$

$$
x=\frac{5}{a b}
$$

PTS: 2
REF: 011425ia
STA: A.A. 23
TOP: Transforming Formulas
315 ANS: 3

$$
\begin{aligned}
a x+3 & =7-b x \\
a x+b x & =4 \\
x(a+b) & =4 \\
x & =\frac{4}{a+b}
\end{aligned}
$$

PTS: 2 REF: 081426ia STA: A.A. 23 TOP: Transforming Formulas
316 ANS: 4

$$
z+y=x\left(1+y^{2}\right)
$$

$\frac{z+y}{1+y^{2}}=x$
PTS: 2
REF: 061524ia
STA: A.A. 23
TOP: Transforming Formulas
317 ANS:
Ann's. $\frac{225}{15}=15 \mathrm{mpg}$ is greater than $\frac{290}{23.2}=12.5 \mathrm{mpg}$
PTS: 2
REF: 060831ia
STA: A.M. 1
TOP: Using Rate
318 ANS: 3
0.75 hours $=45$ minutes. $\frac{120}{1}=\frac{x}{45}$

$$
x=5400
$$

PTS: 2
REF: 080814ia
STA: A.M. 1
TOP: Using Rate

319 ANS:
$2,160 \frac{1,200}{25}=\frac{x}{45}$

$$
\begin{aligned}
25 x & =54,000 \\
x & =2,160
\end{aligned}
$$

PTS: 2 REF: 081032ia STA: A.M. 1 TOP: Using Rate
320 ANS: 3
$\frac{120}{60}=\frac{m}{150}$
$m=300$
PTS: 2
REF: 081202ia
STA: A.M. 1
TOP: Using Rate
321 ANS: 2

$$
\begin{aligned}
\frac{20}{3.98} & =\frac{180}{x} \\
20 x & =716.4 \\
x & =35.82 \approx 36
\end{aligned}
$$

PTS: 2
REF: 011302ia
STA: A.M. 1
TOP: Using Rate
322 ANS: 3
$\frac{15}{2 \times 3}=2.5$
PTS: 2
REF: 011509ia
STA: A.M. 1
TOP: Using Rate
323 ANS:
50, 1.5, 10. $\frac{\text { distance }}{\text { time }}=\frac{60}{1.2}=50 . \frac{\text { distance }}{\text { time }}=\frac{60}{40}=1.5$. speed \times time $=55 \times 2=110.120-110=10$
PTS: 3
REF: fall0734ia STA: A.M. 1
TOP: Speed
324 ANS:
111.25. $\frac{\text { distance }}{\text { time }}=\frac{89}{0.8}=111.25$

PTS: 2
REF: 080831ia
STA: A.M. 1
TOP: Speed
325 ANS: 4
$\frac{\text { distance }}{\text { time }}=\frac{24}{6}=4$
PTS: 2
REF: 010902ia
STA: A.M. 1
TOP: Speed

326 ANS: 4
$\frac{5}{45}=\frac{8}{x}$
$5 x=360$
$x=72$
PTS: 2
REF: 060901ia
STA: A.M. 1 TOP: Speed
327 ANS:
Greg's rate of 5.5 is faster than Dave's rate of 5.3. $\frac{\text { distance }}{\text { time }}=\frac{11}{2}=5.5 . \frac{16}{3}=5 . \overline{3}$
PTS: 3 REF: 080936ia STA: A.M. 1 TOP: Speed
328 ANS: 4
$s=\frac{d}{t}=\frac{150 \mathrm{~m}}{1.5 \mathrm{~min}} \cdot \frac{60 \mathrm{~min}}{1 \mathrm{hr}}=6,000 \frac{\mathrm{~m}}{\mathrm{hr}}$
PTS: 2 REF: 061025ia STA: A.M. 1 TOP: Speed
329 ANS: 1
$\frac{12.8+17.2}{3+5}=3.75$
PTS: 2 REF: 061117ia STA: A.M. 1 TOP: Speed
330 ANS:
The turtle won by . 5 minutes. Turtle: $\frac{d}{s}=\frac{100}{20}=5$. Rabbit: $\frac{d}{s}=\frac{100}{40}=2.5+3=5.5$
PTS: 3 REF: 011236ia STA: A.M. 1 TOP: Speed
331 ANS: 1
$\frac{\text { distance }}{\text { time }}=\frac{350.7}{4.2}=83.5$
PTS: 2 REF: 061201ia STA: A.M. 1 TOP: Speed
332 ANS:
$t=\frac{d}{s}=\frac{136,000,000}{31,000} \approx 4387.1$ hours. $\frac{4387.1}{24} \approx 183$
PTS: 2 REF: 061333ia STA: A.M. 1 TOP: Speed
333 ANS: 2
$d=s t=45 \times 3=135$ miles. $t=\frac{d}{s}=\frac{135}{55} \approx 2.5$ hours
PTS: 2 REF: 011419ia STA: A.M. 1 TOP: Speed

334 ANS: 4
$\frac{15}{500}=\frac{6}{x}$
$15 x=3000$
$x=200$
PTS: 2
REF: 061403ia
STA: A.M. 1
TOP: Speed
335 ANS:
$\frac{\text { distance }}{\text { time }}=\frac{170}{2.75} \approx 61.8$
PTS: 2
REF: 061531ia
STA: A.M. 1
TOP: Speed
336
ANS: 3
$F=\frac{9}{5} C+32=\frac{9}{5}(15)+32=59$
PTS: 2 REF: 010901ia STA: A.M. 2 TOP: Conversions
KEY: formula
337 ANS: 4
$\frac{344 \mathrm{~m}}{\mathrm{sec}} \times \frac{60 \mathrm{sec}}{1 \mathrm{~min}} \times \frac{60 \mathrm{~min}}{1 \mathrm{hr}}=1,238,400 \frac{\mathrm{~m}}{\mathrm{hr}}$
PTS: 2 REF: 060911ia
STA: A.M. 2 TOP: Conversions
KEY: dimensional analysis
338 ANS:
16. 12 feet equals 4 yards. $4 \times 4=16$.

PTS: 2
REF: 011031ia
STA: A.M. 2
TOP: Conversions
KEY: dimensional analysis
ANS:
5. 48 inches $\times \frac{1 \text { yard }}{36 \text { inches }}=\frac{4}{3}$ yards $\times \$ 3.75=\$ 5.00$

PTS: 2
REF: 011131ia
STA: A.M. 2
TOP: Conversions
KEY: dimensional analysis
340
ANS:
$77120+33500=110620$ sq. ft. $\times \frac{1 \text { acre }}{43560 \text { sq. ft. }} \approx 2.54$ acres
PTS: 2
REF: 081133ia
STA: A.M. 2
TOP: Conversions
KEY: dimensional analysis
341
ANS: 1
$\frac{3}{4} \times 5=\frac{15}{4}$ teaspoons $\times \frac{1 \text { tablespoon }}{3 \text { teaspoons }}=\frac{5}{4}=1 \frac{1}{4}$ tablespoon
PTS: 2
REF: 061228ia
STA: A.M. 2
TOP: Conversions
KEY: dimensional analysis

342 ANS: 4
$8900 \mathrm{ft} \times \frac{1 \mathrm{mi}}{5280 \mathrm{ft}} \approx 1.7 \mathrm{mi}$
PTS: 2
REF: 081210ia
STA: A.M. 2
TOP: Conversions
KEY: dimensional analysis
343 ANS: 3 PTS: 2
REF: 011317ia
STA: A.M. 2
TOP: Conversions KEY: dimensional analysis
344 ANS: 4
$5.5 \mathrm{~g} \times \frac{4 \mathrm{q}}{1 \mathrm{~g}} \times \frac{32 \mathrm{oz}}{1 \mathrm{q}}=704 \mathrm{oz}$
PTS: 2
REF: 061305ia
STA: A.M. 2
TOP: Conversions
KEY: dimensional analysis
345 ANS:
$\frac{5.4 \text { miles }}{\text { hour }} \times \frac{5280 \text { feet }}{\text { mile }} \times \frac{1 \text { hour }}{60 \mathrm{~min}}=\frac{475.2 \mathrm{ft}}{\mathrm{min}}$
PTS: 2 REF: 081331ia
STA: A.M. 2
TOP: Conversions
KEY: dimensional analysis
346 ANS: 2
$100 \mathrm{yd} \cdot \frac{3 \mathrm{ft}}{1 \mathrm{yd}} \cdot \frac{3}{4}=225$
PTS: 2
REF: 081415ia
STA: A.M. 2
TOP: Conversions
KEY: dimensional analysis
347 ANS: 4
$\frac{8000 \mathrm{mi}}{1 \mathrm{yr}} \times \frac{1760 \mathrm{yd}}{1 \mathrm{mi}} \times \frac{1 \mathrm{yr}}{365 \mathrm{~d}} \approx 38,575 \mathrm{yd} / \mathrm{d}$
PTS: 2
REF: 011522ia
STA: A.M. 2
TOP: Conversions
KEY: dimensional analysis
348 ANS: 1
$5 \times 16=80 \mathrm{oz} \cdot \frac{1680}{80}=21$
PTS: 2 REF: 061521ia
STA: A.M. 2 TOP: Conversions
KEY: dimensional analysis
349 ANS:
$\frac{1}{6}, 16.67 \%, \$ 13.50 . \frac{18-15}{18}=\frac{1}{6} .18 \times 0.75=13.5$
PTS: 3
REF: 060835ia
STA: A.N. 5
TOP: Percents

350 ANS:
30.4%; no, $23.3 \% . \frac{7.50-5.75}{5.75}=30.4 \% . \frac{7.50-5.75}{7.50}=23.3 \%$
PTS: 3 REF: 080935ia STA: A.N. 5 TOP: Percents
351 ANS: 2
Candidate B received $45 \% .45 \% \times 1860=837$
PTS: 2 REF: 081007ia STA: A.N. 5 TOP: Percents
352 ANS:
$259.99 \times 1.07-259.99(1-0.3) \times 1.07=83.46$
PTS: 4
REF: 011239ia
STA: A.N. 5
TOP: Percents
353 ANS:
$800-(895)(0.75)(1.08)=75.05$
PTS: 3
REF: 081334ia
STA: A.N. 5
TOP: Percents
354 ANS:

$$
\begin{aligned}
(1-0.20) p & =28.80 \\
p & =36
\end{aligned}
$$

PTS: 2
REF: 011532ia
STA: A.N. 5
TOP: Percents
355 ANS:
$d=6.25 h, 250 . d=6.25(40)=250$
PTS: 2 REF: 010933ia STA: A.N. 5 TOP: Direct Variation
356 ANS: 4
$\frac{150}{20}=\frac{x}{30}$

$$
\begin{aligned}
20 x & =4500 \\
x & =225
\end{aligned}
$$

PTS: 2
357 ANS: 2
TOP: Slope
358 ANS: 1
TOP: Slope
359
ANS: 2
TOP: Slope
360 ANS: 3
$m=\frac{4-10}{3-(-6)}=-\frac{2}{3}$

PTS: 2

REF: 081101ia
PTS: 2
STA: A.N. 5
REF: 080823ia

REF: 081115ia
REF: 081223ia
STA: A.A. 32

361 ANS: 3
$m=\frac{1-(-4)}{-6-4}=-\frac{1}{2}$
PTS: 2
REF: 060820ia
STA: A.A. 33
TOP: Slope
362 ANS: 2
$m=\frac{5-3}{2-7}=-\frac{2}{5}$
PTS: 2 REF: 010913ia STA: A.A. 33 TOP: Slope
363 ANS: 1
$m=\frac{4-(-4)}{-5-15}=-\frac{2}{5}$
PTS: 2 REF: 080915ia STA: A.A. 33 TOP: Slope
364 ANS: 4
$A(-3,4)$ and $B(5,8) . m=\frac{4-8}{-3-5}=\frac{-4}{-8}=\frac{1}{2}$
PTS: 2 REF: 011007ia STA: A.A. 33 TOP: Slope
365 ANS: 2
$m=\frac{5-2}{3-(-2)}=\frac{3}{5}$
PTS: 2 REF: 061004ia STA: A.A. 33 TOP: Slope
366 ANS: 2
$A(-3,8)$ and $B(3,6) . m=\frac{8-6}{-3-3}=\frac{2}{-6}=-\frac{1}{3}$
PTS: 2
REF: 081005ia STA: A.A. 33
TOP: Slope
367 ANS: 3
$m=\frac{6-4}{3-(-2)}=\frac{2}{5}$

PTS: 2
REF: 061110ia
STA: A.A. 33
TOP: Slope
368
ANS: 4
$m=\frac{-3-1}{2-5}=\frac{-4}{-3}=\frac{4}{3}$
PTS: 2
REF: 011215ia
STA: A.A. 33
TOP: Slope
369 ANS: 2
$m=\frac{-7-1}{4-9}=\frac{-8}{-5}=\frac{8}{5}$
PTS: 2
REF: 081310ia
STA: A.A. 33
TOP: Slope

370 ANS: 2
$m=\frac{-7-(-2)}{-2-(-6)}=\frac{-5}{4}$

PTS: 2 REF: 061410ia STA: A.A. 33 TOP: Slope
371 ANS: 2
$m=\frac{5--3}{-7-5}=\frac{8}{-12}=-\frac{2}{3}$
PTS: 2
REF: 081411ia
STA: A.A. 33
TOP: Slope
372 ANS: 2
$m=\frac{-A}{B}=\frac{-3}{-7}=\frac{3}{7}$
PTS: 2
REF: 011122ia
STA: A.A. 37
TOP: Slope
373 ANS: 4
$m=\frac{-A}{B}=\frac{-(-3)}{2}=\frac{3}{2}$
PTS: 2
REF: 061212ia
STA: A.A. 37
TOP: Slope
374 ANS: 4
$m=\frac{-A}{B}=\frac{-4}{3}$
PTS: 2
REF: 061319ia
STA: A.A. 37
TOP: Slope
375 ANS: 2
$y=\frac{1}{2} x-2$
PTS: 2
REF: 011409ia
STA: A.A. 37
TOP: Slope
376 ANS: 4
$m=\frac{-A}{B}=\frac{-4}{3}$
PTS: 2
377 ANS: 4
TOP: Slope
378 ANS: 2
If the car can travel 75 miles on 4 gallons, it can travel 300 miles on 16 gallons. $\frac{75}{4}=\frac{x}{16}$.

$$
x=300
$$

PTS: 2
REF: 080807ia
STA: A.G. 4
TOP: Graphing Linear Functions

379 ANS: 1

$$
\begin{aligned}
y & =m x+b \\
-6 & =(-3)(4)+b \\
b & =6
\end{aligned}
$$

PTS: 2
REF: 060922ia
STA: A.A. 34
TOP: Writing Linear Equations
380 ANS: 4
$y=m x+b$
$-1=(2)(3)+b$
$b=-7$
PTS: 2
REF: 080927ia
STA: A.A. 34
TOP: Writing Linear Equations
381 ANS:

$$
\begin{aligned}
y=\frac{3}{4} x+10 . & y
\end{aligned}=m x+b=\begin{aligned}
4 & =\frac{3}{4}(-8)+b \\
4 & =-6+b \\
10 & =b
\end{aligned}
$$

PTS: 3
REF: 011134ia
STA: A.A. 34
TOP: Writing Linear Equations
382 ANS: 1
$y=m x+b$
$5=(-2)(1)+b$
$b=7$
PTS: 2 REF: 081108ia STA: A.A. 34 TOP: Writing Linear Equations
383 ANS: 3
$y=m x+b \quad y=\frac{3}{4} x-\frac{1}{2}$
$1=\left(\frac{3}{4}\right)(2)+b \quad 4 y=3 x-2$
$1=\frac{3}{2}+b$
$b=-\frac{1}{2}$
PTS: 2
REF: 081219ia
STA: A.A. 34
TOP: Writing Linear Equations

ANS: 1

$$
\begin{aligned}
y & =m x+b \\
-8 & =(3)(-2)+b \\
b & =-2
\end{aligned}
$$

PTS: 2 REF: 011406ia STA: A.A. 34 TOP: Writing Linear Equations 385 ANS: 2

$$
\begin{aligned}
y & =m x+b \\
-7 & =\left(-\frac{4}{3}\right)(3)+b \\
-7 & =-4+b \\
b & =-3
\end{aligned}
$$

PTS: 2 REF: 061419ia STA: A.A. 34 TOP: Writing Linear Equations
ANS: 1
$m=\frac{3-0}{0-2}=-\frac{3}{2}$. Using the given y-intercept $(0,3)$ to write the equation of the line $y=-\frac{3}{2} x+3$.
PTS: 2 REF: fall0713ia STA: A.A. 35 TOP: Writing Linear Equations
387 ANS:
$y=\frac{2}{5} x+2 . m=\frac{4-0}{5-(-5)}=\frac{2}{5} . y=m x+b$.

$$
4=\frac{2}{5}(5)+b
$$

$$
b=2
$$

PTS: 2
REF: 011013ia
STA: A.A. 35
TOP: Writing Linear Equations
390 ANS: 2
$m=\frac{5-3}{8-1}=\frac{2}{7} \quad y-y_{1}=m\left(x-x_{i}\right)$

$$
y-5=\frac{2}{7}(x-8)
$$

PTS: 2
REF: 081029ia
STA: A.A. 35
TOP: Writing Linear Equations

391 ANS: 2

$$
m=\frac{1-7}{1--2}=\frac{-6}{3}=-2 \quad \begin{aligned}
y & =m x+b \\
1 & =-2(1)+b \\
3 & =b
\end{aligned}
$$

PTS: 2
REF: 081404ia
STA: A.A. 35
TOP: Writing Linear Equations
392 ANS: 2
$m=\frac{1-(-5)}{2-6}=\frac{6}{-4}=-\frac{3}{2} \quad 1=\left(-\frac{3}{2}\right)(2)+b$

$$
\begin{aligned}
& 1=-3+b \\
& 4=b
\end{aligned}
$$

PTS: 2
REF: 011510ia
STA: A.A. 35
TOP: Writing Linear Equations
393 ANS: 1

$$
m=\frac{10--2}{3--1}=\frac{12}{4}=3 \quad \begin{aligned}
y & =m x+b \\
10 & =3(3)+b \\
10 & =9+b \\
1 & =b
\end{aligned}
$$

PTS: 2
REF: 061515ia
STA: A.A. 35
TOP: Writing Linear Equations
394 ANS: 1

$$
4 y-2 x=0
$$

$4(-1)-2(-2)=0$
$-4+4=0$
PTS: 2
REF: 011021ia
STA: A.A. 39
ANS: 3
$2(1)+3=5$
PTS: 2
REF: 061007ia
STA: A.A. 39
TOP: Linear Equations
396 ANS: 4

$$
\begin{array}{r}
2 x-3 y=9 \\
2(0)-3(-3)=9 \\
0+9=9
\end{array}
$$

PTS: 2
REF: 081016ia
STA: A.A. 39
TOP: Identifying Points on a Line

397
ANS: 4

$$
3 y+2 x=8
$$

$3(-2)+2(7)=8$
$-6+14=8$
PTS: 2 REF: 011218ia STA: A.A. 39 TOP: Identifying Points on a Line
398 ANS: 4
$2(2)-(-7)=11$
PTS: 2 REF: 081217ia STA: A.A. 39 TOP: Identifying Points on a Line
399 ANS: 3
$2(5)+k=9$
$10+k=9$
$k=-1$

	PTS: 2 REF: 061304ia	STA: A.A. 39	TOP: Identifying Points on a Line
400	ANS: 2 PTS: 2	REF: 080810ia	STA: A.A. 36
	TOP: Parallel and Perpendicular Lines		
401	ANS: 1 PTS: 2	REF: 080911ia	STA: A.A. 36
	TOP: Parallel and Perpendicular Lines		
402	ANS: 2 PTS: 2	REF: 081014ia	STA: A.A. 36
	TOP: Parallel and Perpendicular Lines		
403	ANS: 4 PTS: 2	REF: 061112ia	STA: A.A. 36
	TOP: Parallel and Perpendicular Lines		
404	ANS: 3 PTS: 2	REF: 011324ia	STA: A.A. 36
	TOP: Parallel and Perpendicular Lines		
405	ANS: 2 PTS: 2	REF: 061327ia	STA: A.A. 36
	TOP: Parallel and Perpendicular Lines		
406	ANS: 1 PTS: 2	REF: 061416ia	STA: A.A. 36
	TOP: Parallel and Perpendicular Lines		
407	ANS: 4 PTS: 2	REF: 081423ia	STA: A.A. 36
	TOP: Parallel and Perpendicular Lines		
408	ANS: 1 PTS: 2	REF: 061513ia	STA: A.A. 36
	TOP: Parallel and Perpendicular Lines		
409	ANS: 1		
	The slope of both is -4 .		

PTS: 2
REF: 060814ia
STA: A.A. 38
TOP: Parallel and Perpendicular Lines
410 ANS: 1
The slope of $y=3-2 x$ is -2 . Using $m=-\frac{A}{B}$, the slope of $4 x+2 y=5$ is $-\frac{4}{2}=-2$.
PTS: 2 REF: 010926ia STA: A.A. 38 TOP: Parallel and Perpendicular Lines

411 ANS: 1
The slope of $2 x-4 y=16$ is $\frac{-A}{B}=\frac{-2}{-4}=\frac{1}{2}$
PTS: 2
REF: 011026ia
STA: A.A. 38
TOP: Parallel and Perpendicular Lines
412 ANS: 2
$y-k x=7$ may be rewritten as $y=k x+7$
PTS: 2 REF: 061015ia STA: A.A. 38 TOP: Parallel and Perpendicular Lines
413 ANS: 1
Using $m=-\frac{A}{B}$, the slope of $2 x-3 y=9$ is $\frac{2}{3}$.
PTS: 2
REF: 011322ia
STA: A.A. 38
TOP: Parallel and Perpendicular Lines
414 ANS: 1
$m=-3$
PTS: 2
REF: 081307ia
STA: A.A. 38
TOP: Parallel and Perpendicular Lines
415 ANS: 3
$m=-3 \frac{-A}{B}=\frac{-6}{2}=-3$
PTS: 2
REF: 081427ia
STA: A.A. 38
TOP: Parallel and Perpendicular Lines
416 ANS: 1
$3(2 m-1) \leq 4 m+7$

$$
\begin{aligned}
6 m-3 & \leq 4 m+7 \\
2 m & \leq 10 \\
m & \leq 5
\end{aligned}
$$

PTS: 2
REF: 081002ia
STA: A.A. 24
TOP: Solving Inequalities
417 ANS: 4
$-6 x-17 \geq 8 x+25$
$-42 \geq 14 x$
$-3 \geq x$
PTS: 2
REF: 081121ia
STA: A.A. 24
TOP: Solving Inequalities
418 ANS:

$$
\begin{aligned}
2(x-4) & \geq \frac{1}{2}(5-3 x) \\
4(x-4) & \geq 5-3 x \\
4 x-16 & \geq 5-3 x \\
7 x & \geq 21 \\
x & \geq 3
\end{aligned}
$$

PTS: 3
REF: 011234ia
STA: A.A. 24
TOP: Solving Inequalities

419 ANS:

$$
\begin{aligned}
-5(x-7) & <15 \\
x-7 & >-3 \\
x & >4
\end{aligned}
$$

PTS: 2
REF: 061331ia
420 ANS: 1
PTS: 2
TOP: Solving Inequalities
421 ANS: 1
$4 x-30 \geq-3 x+12$
$7 x \geq 42$
$x \geq 6$
PTS: 2
REF: 061406ia
STA: A.A. 24
TOP: Solving Inequalities
422 ANS: 1
$-2 x+5>17$
$-2 x>12$
$x<-6$
PTS: 2
REF: fall0724ia
STA: A.A. 21
TOP: Interpreting Solutions
423 ANS: 4
$-4 x+2>10$
$-4 x>8$
$x<-2$
PTS: 2
REF: 080805ia
STA: A.A. 21
TOP: Interpreting Solutions
424 ANS: 1
$\frac{4}{3} x+5<17$

$$
\begin{aligned}
\frac{4}{3} x & <12 \\
4 x & <36 \\
x & <9
\end{aligned}
$$

PTS: 2
REF: 060914ia
STA: A.A. 21
TOP: Interpreting Solutions
425 ANS: 4 $-2(x-5)<4$
$-2 x+10<4$
$-2 x<-6$
$x>3$
PTS: 2
REF: 080913ia
STA: A.A. 21
TOP: Interpreting Solutions

426 ANS:
-12. $3\left(\frac{2}{3} x+3<-2 x-7\right)$

$$
\begin{aligned}
x+9 & <-6 x-21 \\
7 x & <-30 \\
x & <\frac{-30}{7}
\end{aligned}
$$

PTS: 3
REF: 061034ia
STA: A.A. 21
TOP: Interpreting Solutions
427 ANS: 1
$-3 x+8 \geq 14$
$-3 x \geq 6$
$x \leq-2$
PTS: 2 REF: 081309i
428 ANS: 3
PTS: 2
STA: A.A. 21
REF: 081317ia
TOP: Interpreting Solutions
TOP: Interpreting Solutions
429 ANS: 1
$25 x-100<250$
$25 x<350$

$$
x<14
$$

PTS: 2 REF: 061517ia

STA: A.A. 21
REF: 080803ia

REF: 060906ia

REF: 081410ia
REF: fall0715ia

REF: 060821ia
REF: 011005ia
REF: 081107ia

REF: 081212ia
REF: 061321ia
REF: 011403ia

REF: 011513ia

TOP: Interpreting Solutions
STA: A.A. 4
STA: A.A. 4

STA: A.A. 4
STA: A.A. 5
STA: A.A. 5
STA: A.A. 5
STA: A.A. 5

STA: A.A. 5
STA: A.A. 5
STA: A.A. 5
STA: A.A. 5

441 ANS:
7. $15 x+22 \geq 120$

$$
x \geq 6.5 \overline{3}
$$

PTS: 3
REF: fall0735ia
STA: A.A. 6
TOP: Modeling Inequalities
442 ANS:
$10+2 d \geq 75,33.10+2 d \geq 75$

$$
d \geq 32.5
$$

PTS: 3
REF: 060834ia
STA: A.A. 6
TOP: Modeling Inequalities
443 ANS: 1
$0.07 m+19 \leq 29.50$

$$
\begin{aligned}
0.07 m & \leq 10.50 \\
m & \leq 150
\end{aligned}
$$

PTS: 2
REF: 010904ia
STA: A.A. 6
TOP: Modeling Inequalities
444 ANS: 1

$$
\begin{aligned}
13.95+0.49 s & \leq 50.00 \\
0.49 s & \leq 36.05 \\
s & \leq 73.57
\end{aligned}
$$

PTS: 2
445 ANS:
$\begin{aligned} 0.65 x+35 & \leq 45 \\ 0.65 x & \leq 10 \\ x & \leq 15\end{aligned}$
PTS: 3
446 ANS: 3
$5 x<55$

$$
x<11
$$

PTS: 2
447 ANS: 4
$375+155 w \geq 900$
$155 w \geq 525$
$w \geq 3.4$
PTS: 2
REF: 081206ia
REF: 061135ia

REF: 061211ia

TOP: Modeling Inequalities

STA: A.A. 6
TOP: Modeling Inequalities

STA: A.A. 6
TOP: Modeling Inequalities

448 ANS:
$0.25+0.10(m-4) \leq 2.1022$ minutes
$0.10(m-4) \leq 1.85$
$m-4 \leq 18.5$
$m \leq 22.5$
PTS: 4
REF: 061539ia
STA: A.A. 6
TOP: Modeling Inequalities
449 ANS: 2
The slope of the inequality is $-\frac{1}{2}$.
PTS: 2
REF: fall0720ia
STA: A.G. 6
REF: 060920ia
TOP: Linear Inequalities
ANS: 1
PTS: 2
STA: A.G. 6
TOP: Linear Inequalities
451 ANS:

$(1,-3)$ is in the solution set. $4(1)-3(-3)>9$

$$
4+9>9
$$

PTS: 4
452 ANS: 4
REF: 011038ia
TOP: Linear Inequalities
453 ANS: $1 \quad$ PTS: 2
TOP: Linear Inequalities
454
ANS. 4
PTS: 2
TOP: Linear Inequalities
455 ANS: $2 \quad$ PTS: 2
TOP: Linear Inequalities
456 ANS: 3
$y>2 x-3$
PTS: 2 REF: 011422ia
457 ANS: 3
PTS: 2
TOP: Linear Inequalities
458 ANS: 3

PTS: 2
2 REF: 011117ia
STA: A.G. 6
REF: 061505ia
STA: A.G. 4
TOP: Graphing Absolute Value Functions

459
ANS:

PTS: 2
460 ANS: 4
REF: 011333ia
TOP: Graphing Absolute Value Functions
461 ANS: 4
The transformation is a reflection in the x-axis.

PTS: 2
462 ANS: 3
ANS: 3 PTS: 2
TOP: Graphing Absolute Value Functions
463 ANS:

PTS: 3
REF: 061035ia
. Graph becomes wider as the coefficient approaches 0 .
STA: A.G. 5
TOP: Graphing Absolute Value Functions

464
ANS:

PTS: 3
465 ANS: 4
The transformation is a reflection in the x-axis.
PTS: 2
REF: 011206ia
STA: A.G. 5
TOP: Graphing Absolute Value Functions
ANS:

Graph becomes narrower as the coefficient increases.

PTS: 3 REF: 011434ia STA: A.G. 5
467 ANS: 1
PTS: 2
REF: 011529ia
TOP: Graphing Absolute Value Functions STA: A.G. 5
TOP: Graphing Absolute Value Functions
ANS: 2
$2 x^{2}+10 x-12=2\left(x^{2}+5 x-6\right)=2(x+6)(x-1)$
PTS: 2
469 ANS: 2
REF: 080806ia
STA: A.A. 20
TOP: Factoing Polynomials
REF: 061027ia
TOP: Factoring Polynomials
STA: A.A. 20
TOP: Factoring Polynomials
470 ANS: 2
PTS: 2
REF: 061105ia
STA: A.A. 20
TOP: Factoring Polynomials
471 ANS: 4
$3 x^{3}-33 x^{2}+90 x=3 x\left(x^{2}-11 x+30\right)=3 x(x-5)(x-6)$
PTS: 2
REF: 061227ia
STA: A.A. 20
TOP: Factoring Polynomials

472 ANS:
$5 x^{3}-20 x^{2}-60 x$
$5 x\left(x^{2}-4 x-12\right)$
$5 x(x+2)(x-6)$
PTS: 2
REF: 011332ia
STA: A.A. 20
TOP: Factoring Polynomials
473 ANS: 3
$3 m n(m+4 n)$
PTS: 2 REF: 011402ia STA: A.A. 20 TOP: Factoring Polynomials 474 ANS: 4
$3 x^{2}-9 x+6=3\left(x^{2}-3 x+2\right)=3(x-1)(x-2)$
PTS: 2
REF: 061421ia
STA: A.A. 20
475 ANS: 3
PTS: 2
REF: fall0706ia
TOP: Factoring Polynomials
TOP: Factoring the Difference of Perfect Squares
476 ANS: 1
PTS: 2
REF: 060804ia
STA: A.A. 19
TOP: Factoring the Difference of Perfect Squares
ANS: 2 PTS: 2 REF: 010909ia
STA: A.A. 19
TOP: Factoring the Difference of Perfect Squares
478 ANS:
$4 x(x+3)(x-3) .4 x^{3}-36 x=4 x\left(x^{2}-9\right)=4 x(x+3)(x-3)$
PTS: 2
REF: 060932ia STA: A.A. 19
TOP: Factoring the Difference of Perfect Squares
479 ANS: 1 PTS: 2 REF: 080902ia
TOP: Factoring the Difference of Perfect Squares
480 ANS: 2
PTS: 2
REF: 011022ia
STA: A.A. 19

TOP: Factoring the Difference of Perfect Squares
481 ANS: 3
PTS: 2
REF: 081008ia
STA: A.A. 19
TOP: Factoring the Difference of Perfect Squares
482 ANS: 2
$a^{3}-4 a=a\left(a^{2}-4\right)=a(a-2)(a+2)$
PTS: 2
REF: 011108ia
STA: A.A. 19
TOP: Factoring the Difference of Perfect Squares
483 ANS: 3
PTS: 2
REF: 061101ia
STA: A.A. 19
TOP: Factoring the Difference of Perfect Squares
484 ANS: 2
$36 x^{2}-100 y^{6}=4\left(9 x^{2}-25 y^{6}\right)=4\left(3 x+5 y^{3}\right)\left(3 x-5 y^{3}\right)$
PTS: 2
REF: 081129ia STA: A.A. 19
TOP: Factoring the Difference of Perfect Squares
485
ANS: 2
PTS: 2
REF: 011201ia
STA: A.A. 19
TOP: Factoring the Difference of Perfect Squares

486
ANS: 3
PTS: 2
REF: 081207ia
STA: A.A. 19
TOP: Factoring the Difference of Perfect Squares
487 ANS: 1
PTS: 2
REF: 011306ia
STA: A.A. 19
TOP: Factoring the Difference of Perfect Squares
488 ANS: 2
PTS: 2
REF: 081403ia
TOP: Factoring the Difference of Perfect Squares
489 ANS: 3
PTS: 2
REF: 061506ia
STA: A.A. 19
TOP: Factoring the Difference of Perfect Squares
490 ANS: 3
$x^{2}-6 x=0$
$x(x-6)=0$
$x=0 x=6$
PTS: 2
REF: 080921ia
STA: A.A. 27
TOP: Solving Quadratics by Factoring
491 ANS: 2
$x^{2}-16 x+28=0$
$(x-14)(x-2)=0$
$x=14,2$
PTS: 2
REF: 061311ia
STA: A.A. 27
TOP: Solving Quadratics by Factoring
492 ANS: 3

$$
\begin{gathered}
x^{2}-10 x+21=0 \\
(x-7)(x-3)=0 \\
x=7 \quad x=3
\end{gathered}
$$

PTS: 2
REF: 010914ia
STA: A.A. 28
TOP: Roots of Quadratics

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic

 Answer Section493 ANS: 4

$$
\begin{gathered}
x^{2}-7 x+6=0 \\
(x-6)(x-1)=0 \\
x=6 \quad x=1
\end{gathered}
$$

PTS: 2
REF: 060902ia
STA: A.A. 28
TOP: Roots of Quadratics 494 ANS:

PTS: 3
REF: 011034ia
STA: A.A. 28
TOP: Roots of Quadratics
495 ANS:

$$
\begin{aligned}
-15,2 \quad x^{2}+13 x-30 & =0 \\
(x+15)(x-2) & =0 \\
x & =-15,2
\end{aligned}
$$

PTS: 3
REF: 081036ia
STA: A.A. 28
TOP: Roots of Quadratics
496 ANS: 2
$x^{2}-2 x-15=0$
$(x-5)(x+3)=0$

$$
x=5 x=-3
$$

PTS: 2
497 ANS: 2

$$
x^{2}-5 x+6=0
$$

$$
(x-3)(x-2)=0
$$

$$
x=3 x=2
$$

PTS: 2
REF: 081120ia
STA: A.A. 28
TOP: Roots of Quadratics
498 ANS: 1
$3 x^{2}-27 x=0$
$3 x(x-9)=0$
$x=0,9$
PTS: 2
REF: 011223ia
STA: A.A. 28
TOP: Roots of Quadratics

$$
\begin{aligned}
& \text {-2, 3. } \quad x^{2}-x=6 \\
& x^{2}-x-6=0 \\
& (x-3)(x+2)=0 \\
& x=3 \text { or }-2
\end{aligned}
$$

499 ANS: 4
$x^{2}-14 x+48=0$
$(x-6)(x-8)=0$

$$
x=6,8
$$

PTS: 2
REF: 011320ia
STA: A.A. 28
ANS: 2 PTS: 2
TOP: Roots of Quadratics
501 ANS: 4
$2 x^{2}-8 x=0$
$2 x(x-4)=0$

$$
x=0,4
$$

PTS: 2 REF: 011427ia
STA: A.A. 28
REF: 081420ia
TOP: Roots of Quadratics
502 ANS: 1
PTS: 2
STA: A.A. 28
TOP: Roots of Quadratics
503 ANS:
$(x+12)(x-2)=0$
$x^{2}+10 x-24=0$

PTS: 2
REF: 061533ia
ANS: 4
PTS: 2
TOP: Graphing Quadratic Functions
505 ANS: 1
PTS: 2
TOP: Graphing Quadratic Functions
506 ANS: 2
PTS: 2
TOP: Graphing Quadratic Functions
507 ANS: $2 \quad$ PTS: 2
TOP: Graphing Quadratic Functions
508 ANS: 2
PTS: 2
TOP: Graphing Quadratic Functions
509 ANS: 4
PTS: 2
TOP: Graphing Quadratic Functions
510 ANS: $2 \quad$ PTS: 2
TOP: Graphing Quadratic Functions
511 ANS: 4
PTS: 2
TOP: Graphing Quadratic Functions

REF: 061326ia
TOP: Roots of Quadratics
STA: A.A. 28

STA: A.A. 28 TOP: Roots of Quadratics
REF: 060829ia STA: A.G. 5
REF: 081015ia STA: A.G. 5
REF: 061113ia STA: A.G. 5

REF: 081218ia STA: A.G. 5
REF: 011330ia STA: A.G. 5
REF: 081322ia STA: A.G. 5

REF: 081414ia STA: A.G. 5
REF: 061503ia STA: A.G. 5

512 ANS:

PTS: 3
513 ANS: 3
TOP: Solving Quadratics by Graphing
514 ANS: 2
PTS: 2
TOP: Solving Quadratics by Graphing
515 ANS: 4
PTS: 2
TOP: Solving Quadratics by Graphing
516 ANS:

PTS: 3
517 ANS: 3 TOP: Solving Quadratics by Graphing
518 ANS: 3 TOP: Solving Quadratics by Graphing
519 ANS: 2
PTS: 2
TOP: Solving Quadratics by Graphing

STA: A.G. 8
REF: 060924ia
REF: 080916ia
REF: 011111ia

TOP: Solving Quadratics by Graphing STA: A.G. 8

STA: A.G. 8
STA: A.G. 8

STA: A.G. 8
REF: 061306ia

REF: 061404ia
REF: 011506ia

TOP: Solving Quadratics by Graphing STA: A.G. 8

STA: A.G. 8

STA: A.G. 8

520 ANS:

3 and -1 .
PTS: 4 REF: 061537ia STA: A.G. 8 TOP: Solving Quadratics by Graphing
ANS: 4
$P=0.0089(125)^{2}+1.1149(125)+78.4491 \approx 356.9$
PTS: 2
REF: 061422ia
STA: A.A. 8
TOP: Quadratic Functions
522 ANS: 2

$$
-16 x^{2}+32 x=0
$$

$$
-16 x(x-2)=0
$$

$$
x=0,2
$$

PTS: 2
REF: 011524ia
STA: A.A. 8
TOP: Quadratic Functions
523 ANS:
$6,8,10$. Three consecutive even integers are $x, x+2$ and $x+4 .(x+2)(x+4)=10 x+20$

$$
\begin{aligned}
x^{2}+6 x+8 & =10 x+20 \\
x^{2}-4 x-12 & =0 \\
(x-6)(x+2) & =0 \\
x & =6
\end{aligned}
$$

PTS: 4
REF: 011039ia
STA: A.A. 8
TOP: Writing Quadratics
524 ANS: 1

$$
\begin{aligned}
x^{2}-36 & =5 x \\
x^{2}-5 x-36 & =0 \\
(x-9)(x+4) & =0 \\
x & =9
\end{aligned}
$$

PTS: 2
REF: 061020ia
STA: A.A. 8
TOP: Writing Quadratics

525 ANS: 3
$b=3+d \quad(3+d) d=40$
$b d=40 \quad d^{2}+3 d-40=0$

$$
(d+8)(d-5)=0
$$

$$
d=5
$$

PTS: 2 REF: 011208ia
STA: A.A. 8
TOP: Writing Quadratics
526 ANS: 3
$N=5+J \quad N(N-5)=84$
$J=N-5 \quad N^{2}-5 N-84=0$
$N J=84 \quad(N-12)(N+7)=0$

$$
N=12
$$

PTS: 2
REF: 081304ia
STA: A.A. 8
TOP: Writing Quadratics

527 ANS: 2

$$
x^{2}=5 x+24
$$

$x^{2}-5 x-24=0$
$(x-8)(x+3)=0$

$$
x=8
$$

PTS: 2
REF: 061518ia
STA: A.A. 8
TOP: Writing Quadratics
528 ANS:
$w(w+15)=54,3,18 . \quad w(w+15)=54$

$$
\begin{aligned}
w^{2}+15 w-54 & =0 \\
(w+18)(w-3) & =0 \\
w & =3
\end{aligned}
$$

PTS: 4
REF: 060837ia
STA: A.A. 8
TOP: Geometric Applications of Quadratics
529 ANS: 2

$$
\begin{aligned}
l(l-5) & =24 \\
l^{2}-5 l-24 & =0 \\
(l-8)(l+3) & =0 \\
l & =8
\end{aligned}
$$

PTS: 2
REF: 080817ia
STA: A.A. 8
TOP: Geometric Applications of Quadratics

530
ANS: 2

$$
l(l-3)=40
$$

$l^{2}-3 l-40=0$
$(l-8)(l+5)=0$

$$
l=8
$$

PTS: 2
REF: 081116ia
STA: A.A. 8
531 ANS: 1
PTS: 2
REF: 060811ia
TOP: Identifying the Vertex of a Quadratic Given Graph
532
ANS: 1
PTS: 2
REF: 080813ia
TOP: Identifying the Vertex of a Quadratic Given Graph 533

REF: 010916ia
TOP: Identifying the Vertex of a Quadratic Given Graph
534 ANS: 2 PTS: 2 REF: 011015ia
TOP: Identifying the Vertex of a Quadratic Given Graph 535 ANS: 1 PTS: 2 REF: 061005ia

TOP: Identifying the Vertex of a Quadratic Given Graph
536 ANS:
$x=1 ;(1,-5)$
PTS: 2 REF: 061133ia STA: A.G. 10
TOP: Identifying the Vertex of a Quadratic Given Graph
537 ANS: 2 PTS: 2 REF: 081111ia
TOP: Identifying the Vertex of a Quadratic Given Graph
538 ANS: 4 PTS: 2 REF: 081214ia
TOP: Identifying the Vertex of a Quadratic Given Graph
539 ANS: 1 PTS: 2 REF: 061420ia
TOP: Identifying the Vertex of a Quadratic Given Graph
540 ANS: 1 PTS: 2 REF: 081405ia
TOP: Identifying the Vertex of a Quadratic Given Graph
541 ANS: 1
$x=\frac{-b}{2 a}=\frac{-(-16)}{2(1)}=8 . y=(8)^{2}-16(8)+63=-1$
PTS: 2 REF: 060918ia STA: A.A. 41
TOP: Identifying the Vertex of a Quadratic Given Equation 542 ANS:
$(-2,11) . \quad x=\frac{-b}{2 a}=\frac{-(-8)}{2(-2)}=-2$

$$
y=-2(-2)^{2}-8(-2)+3=11
$$

PTS: 3
REF: 080934ia STA: A.A. 41
TOP: Identifying the Vertex of a Quadratic Given Equation

TOP: Geometric Applications of Quadratics
STA: A.G. 10

STA: A.G. 10
STA: A.G. 10
STA: A.G. 10
STA: A.G. 10

543 ANS: 3
$x=\frac{-b}{2 a}=\frac{-10}{2(-1)}=5$.
PTS: 2 REF: 081018ia STA: A.A. 41
TOP: Identifying the Vertex of a Quadratic Given Equation
ANS: 1
$x=\frac{-b}{2 a}=\frac{-6}{2(-1)}=3$.
PTS: 2 REF: 011127ia STA: A.A. 41
TOP: Identifying the Vertex of a Quadratic Given Equation
545 ANS: 1
$x=\frac{-b}{2 a}=\frac{-(-3)}{2(2)}=\frac{3}{4}$.

PTS: 2 REF: 011219ia STA: A.A. 41
TOP: Identifying the Vertex of a Quadratic Given Equation
546 ANS: 3
$x=\frac{-b}{2 a}=\frac{-24}{2(-2)}=6 . \quad y=-2(6)^{2}+24(6)-100=-28$

PTS: 2 REF: 061214ia STA: A.A. 41
TOP: Identifying the Vertex of a Quadratic Given Equation
547 ANS: 3
$x=\frac{-b}{2 a}=\frac{-8}{2(1)}=-4 . y=(-4)^{2}+8(-4)+10=-6 .(-4,-6)$
PTS: 2 REF: 011314ia STA: A.A. 41
TOP: Identifying the Vertex of a Quadratic Given Equation
548 ANS: 1
$x=\frac{-b}{2 a}=\frac{-6}{2(3)}=-1 . \quad y=3(-1)^{2}+6(-1)+1=-2$
PTS: 2 REF: 011416ia STA: A.A. 41
TOP: Identifying the Vertex of a Quadratic Given Equation
549 ANS: 1
$x=\frac{-b}{2 a}=\frac{-4}{2(1)}=-2$
PTS: 2 REF: 011520ia STA: A.A. 41
TOP: Identifying the Vertex of a Quadratic Given Equation

550 ANS:
$x=\frac{-(-2)}{2(-1)}=\frac{2}{-2}=-1 \quad y=-(-1)^{2}-2(-1)+1=-1+2+1=2 \quad x=-1 \quad(-1,2)$
PTS: 3 REF: 061534ia STA: A.A. 41
TOP: Identifying the Vertex of a Quadratic Given Equation
551 ANS: 3
$5 x+2 y=48$
$3 x+2 y=32$

$$
\begin{aligned}
2 x & =16 \\
x & =8
\end{aligned}
$$

PTS: 2 REF: fall0708ia STA: A.A. 10 TOP: Solving Linear Systems
552 ANS:
$(-2,5) .3 x+2 y=4 \quad 12 x+8 y=16 . \quad 3 x+2 y=4$
$4 x+3 y=7 \quad 12 x+9 y=21 \quad 3 x+2(5)=4$

$$
\left.\begin{array}{rl}
y=5 & 3 x
\end{array}\right)=-6
$$

PTS: 4 REF: 010937ia STA: A.A. 10 TOP: Solving Linear Systems
553 ANS: 2

$$
\begin{aligned}
x+2 y & =9 \\
x-y & =3 \\
3 y & =6 \\
y & =2
\end{aligned}
$$

PTS: 2 REF: 060925ia STA: A.A. 10 TOP: Solving Linear Systems
554 ANS: 1

$$
\begin{aligned}
x-2 y & =1 \\
x+4 y & =7 \\
-6 y & =-6 \\
y & =1
\end{aligned}
$$

PTS: 2 REF: 080920ia STA: A.A. 10 TOP: Solving Linear Systems
555 ANS: 3

$$
\begin{array}{rlrl}
c+3 d & =8 & & c=4 d-6 \\
4 d-6+3 d & =8 & & c=4(2)-6 \\
7 d & =14 & c=2 \\
d & =2 & &
\end{array}
$$

PTS: 2
REF: 061012ia
STA: A.A. 10
TOP: Solving Linear Systems

556
ANS: 2

$$
\begin{aligned}
2(x-3 y & =-3) \\
2 x+y & =8 \\
2 x-6 y & =-6 \\
7 y & =14 \\
y & =2
\end{aligned}
$$

PTS: 2 REF: 081021ia STA: A.A. 10 TOP: Solving Linear Systems
557 ANS: 3

$$
\begin{array}{rlrl}
2 x-5 y & =11 & 2 x-5(-1) & =11 \\
-2 x+3 y & =-9 & 2 x & =6 \\
-2 y & =2 & x & =3 \\
y & =-1 &
\end{array}
$$

PTS: 2 REF: 081109ia STA: A.A. 10 TOP: Solving Linear Systems
558 ANS:
2. Subtracting the equations: $3 y=6$

$$
y=2
$$

PTS: 2
REF: 061231ia
STA: A.A. 10
REF: 081315ia
TOP: Solving Linear Systems 559 ANS: 1

PTS: 2
STA: A.A. 10
TOP: Solving Linear Systems
560 ANS: 2
$2 x+3 y=7$
$3 x+3 y=9$

$$
x=2
$$

PTS: 2
REF: 011410ia
STA: A.A. 10
TOP: Solving Linear Systems
561 ANS: 2
$3 x+2 y=12$
$5 x-2 y=4$

$$
\begin{aligned}
8 x & =16 \\
x & =2
\end{aligned}
$$

PTS: 2
REF: 061409ia
STA: A.A. 10
TOP: Solving Linear Systems

562 ANS: 3

$$
\begin{aligned}
6 x+5 y & =300 \\
6 x+14 y & =570 \\
9 y & =270 \\
y & =30
\end{aligned}
$$

PTS: 2
REF: 011519ia
STA: A.A. 10
TOP: Solving Linear Systems
563 ANS: 3

$$
\begin{array}{rlrl}
2\left(\frac{1}{2} b-6\right)+3 b & =12 & 2 a+3(6) & =12 \\
b-12+3 b & =12 & 2 a & =-6 \\
4 b & =24 & a & =-3 \\
b & =6
\end{array}
$$

PTS: 2
REF: 061511ia
STA: A.A. 10
TOP: Solving Linear Systems
564 ANS:

PTS: 4
REF: 080938ia
STA: A.G. 7
TOP: Solving Linear Systems
565 ANS:

PTS: 3
566 ANS: 3
REF: 011235ia
TOP: Solving Linear Systems
567 ANS: 3
PTS: 2
TOP: Solving Linear Systems

STA: A.G. 7
REF: 081201ia
REF: 011304ia

TOP: Solving Linear Systems STA: A.G. 7

STA: A.G. 7

568 ANS: 2
$3 c+4 m=12.50$
$3 c+2 m=8.50$

$$
\begin{aligned}
2 m & =4.00 \\
m & =2.00
\end{aligned}
$$

PTS: 2 REF: 060806ia STA: A.A. 7 TOP: Writing Linear Systems
569 ANS: 3
$b=42-r \quad r=2 b+3$
$r=2 b+3 \quad r=2(42-r)+3$
$r=84-2 r+3$
$3 r=87$
$r=29$
PTS: 2
REF: 060812ia
STA: A.A. 7
TOP: Writing Linear Systems
570 ANS: 2
$s+o=126 . s+2 s=126$
$o=2 s \quad s=42$
PTS: 2 REF: 080811ia STA: A.A. 7 TOP: Writing Linear Systems
571 ANS:
$m=50 ¢, p=15 ¢ .3 m+2 p=1.80 .9 m+6 p=5.40 .4(.50)+6 p=2.90$

$$
\begin{aligned}
& 4 m+6 p=2.90 \quad 4 m+6 p=2.90 \quad 6 p=.90 \\
& 5 m=2.50 \quad p=\$ 0.15 \\
& m=\$ 0.50
\end{aligned}
$$

PTS: 4
REF: 080837ia
STA: A.A. 7
TOP: Writing Linear Systems
572 ANS: 2
$L+S=47$
$L-S=15$

$$
\begin{aligned}
2 L & =62 \\
L & =31
\end{aligned}
$$

PTS: 2 REF: 060912ia STA: A.A. 7 TOP: Writing Linear Systems
573 ANS: 1
so $=f+60 j=2 f-50$ se $=3 f . f+(f+60)+(2 f-50)+3 f=1424$

$$
\begin{gathered}
7 f+10=1424 \\
f=202
\end{gathered}
$$

PTS: 2
REF: 060917ia
STA: A.A. 7
TOP: Writing Linear Systems

574 ANS: 1

$$
\begin{aligned}
& 1 P+2 C=5 \\
& 1 P+4 C=6
\end{aligned}
$$

$$
2 C=1
$$

$$
C=0.5
$$

PTS: 2
REF: 011003ia
STA: A.A. 7
TOP: Writing Linear Systems
575 ANS: 2

$$
\begin{aligned}
J-M & =3 \\
8 J+8 M & =120 \\
8 J-8 M & =24 \\
16 J & =144 \\
J & =9
\end{aligned}
$$

PTS: 2
REF: 011115ia
STA: A.A. 7
TOP: Writing Linear Systems
576 ANS: 1
$f+m=53$
$f-m=25$

$$
2 m=28
$$

$$
m=14
$$

PTS: 2
REF: 061126ia
STA: A.A. 7
TOP: Writing Linear Systems
577 ANS: 1

$$
b=2 j+42 j+4=31-j
$$

$$
b+j=31 \quad 3 j=27
$$

$$
b=31-j \quad j=9
$$

PTS: 2
REF: 081119ia
STA: A.A. 7
TOP: Writing Linear Systems
578 ANS: 2
$W+L=72$
$W-L=12$

$$
2 W=84
$$

$$
W=42
$$

PTS: 2
REF: 081227ia
STA: A.A. 7
TOP: Writing Linear Systems

579 ANS:
$3 n+4 p=8.50 .3(2.50)+4 p=8.50$
$5 n+8 p=14.50 \quad 4 p=1$
$6 n+8 p=17 \quad p=0.25$
$n=2.50$
PTS: 3
REF: 011335ia
STA: A.A. 7
TOP: Writing Linear Systems
580 ANS:
$L-S=28 \quad .2 S-8=S+28$
$L=2 S-8 \quad S=36$
$L=S+28 \quad L=36+28=64$
PTS: 3 REF: 081335ia
STA: A.A. 7
TOP: Writing Linear Systems 581 ANS:

$$
\begin{array}{rlr}
a+o & =108 \quad 64+o=108 \\
5 a+3 o & =452 \quad o=44 \\
3 a+3 o & =324 & \\
2 a & =128 & \\
a & =64
\end{array}
$$

PTS: 4 REF: 061437ia
STA: A.A. 7
TOP: Writing Linear Systems
582 ANS:

$$
d=2 c \quad 2(2 c)+2 c=45
$$

$2 d+2 c=45 \quad 6 c=45$

$$
c=7.50
$$

PTS: 3
583 ANS: 4
TOP: Writing Linear Systems
584 ANS: 4
PTS: 2
TOP: Systems of Linear Inequalities
585 ANS: 2
PTS: 2
TOP: Systems of Linear Inequalities
586 ANS: 1
PTS: 2
TOP: Systems of Linear Inequalities 587 ANS: 2

PTS: 2
TOP: Systems of Linear Inequalities
ANS: 4 PTS: 2
TOP: Systems of Linear Inequalities

STA: A.A. 7
REF: 061504ia
REF: 080825ia
REF: 011023ia
REF: 061010ia
REF: 081127ia
REF: 061222ia

TOP: Writing Linear Systems
STA: A.A. 7
STA: A.A. 40

589 ANS: 2
$-1 \leq 3(2)+1.2-(-1)>1$
$-1 \leq 7 \quad 3>1$
PTS: 2
REF: 011323ia
STA: A.A. 40
TOP: Systems of Linear Inequalities

PTS: 4
REF: 010938ia
STA: A.G. 7
TOP: Systems of Linear Inequalities

PTS: 4
REF: 081037ia
STA: A.G. 7
TOP: Systems of Linear Inequalities

592
ANS:

PTS: 4
REF: 011139ia
ANS:

PTS: 4
REF: 061139ia
ANS:

PTS: 4
REF: 081239ia
STA: A.G. 7
TOP: Systems of Linear Inequalities

595 ANS:

PTS: 4 REF: 061438ia STA: A.G. 7 TOP: Systems of Linear Inequalities
596 ANS:

PTS: 4 597 ANS:

PTS: 3
REF: 011536ia
STA: A.G. 7
TOP: Systems of Linear Inequalities

ANS: 4
$x^{2}-2=x \quad$ Since $y=x$, the solutions are $(2,2)$ and $(-1,-1)$.

$x^{2}-x-2=0$
$(x-2)(x+1)=0$
$x=2$ or -1
PTS: 2
REF: 060810ia
STA: A.A. 11
TOP: Quadratic-Linear Systems
599 ANS: 2

$$
x^{2}+5 x+6=-x+1 . y=-x+1
$$

$$
\begin{array}{cl}
x^{2}+6 x+5=0 & =-(-5)+1 \\
(x+5)(x+1)=0 & =6 \\
x=-5 \text { or }-1 &
\end{array}
$$

PTS: 2 REF: 080812ia STA: A.A. 11 TOP: Quadratic-Linear Systems
600 ANS: 2

$$
\begin{array}{cc}
x^{2}-x-20=3 x-15 . & y=3 x-15 . \\
x^{2}-4 x-6=0 & =3(-1)-15 \\
(x=5)(x+1)=0 & \\
=-18 \\
x=5 \text { or }-1 &
\end{array}
$$

PTS: 2
REF: 010922ia
STA: A.A. 11
TOP: Quadratic-Linear Systems
601 ANS: 2
$x^{2}-x=x+3$. Since $y=x+3$, the solutions are $(3,6)$ and $(-1,2)$.

$x^{2}-2 x-3=0$
$(x-3)(x+1)=0$

$$
x=3 \text { or }-1
$$

PTS: 2
REF: 061118ia
STA: A.A. 11
TOP: Quadratic-Linear Systems

602 ANS: 2

$$
\begin{array}{rlrl}
y=-x+5 .-x+5 & =x^{2}-25 & . y=-(-6)+5=11 . \\
0 & =x^{2}+x-30 \quad y=-5+5=0 \\
0 & =(x+6)(x-5) \\
x & =-6,5 &
\end{array}
$$

PTS: 2
REF: 061213ia
STA: A.A. 11
TOP: Quadratic-Linear Systems
603
ANS:
$(-3,-5),(3,7) . x^{2}+2 x-8=2 x+1 . y=2(3)+1=7$

$$
\begin{aligned}
x^{2}-9 & =0 \\
x & = \pm 3
\end{aligned}
$$

PTS: 3
REF: 081236ia
STA: A.A. 11
TOP: Quadratic-Linear Systems
604 ANS:

$$
\begin{array}{rlrl}
(-3,-5),(3,7) . x^{2}+2 x-8 & =2 x+1 . & y & =2(3)+1=7 \\
x^{2}-9 & =0 & y=2(-3)+1=-5 \\
x & = \pm 3 &
\end{array}
$$

PTS: 3 REF: 061434ia STA: A.A. 11 TOP: Quadratic-Linear Systems 605 ANS:

$$
\begin{array}{rlrl}
x^{2}-6 x+9 & =-9 x+19 & y=-9(-5)+19=64 \quad(-5,64) \text { and }(2,1) \\
x^{2}+3 x-10 & =0 & y=-9(2)+19=1 \\
(x+5)(x-2) & =0 & & \\
x & =-5,2 & &
\end{array}
$$

PTS: 4
REF: 081439ia STA: A.A. 11
TOP: Quadratic-Linear Systems
606
ANS:

$$
\begin{array}{rlrl}
x^{2}+5 x-17 & =x-5 & y=-6-5=-11 \quad(-6,-11),(2,-3) \\
x^{2}+4 x-12 & =0 & y=2-5=-3 \\
(x+6)(x-2) & =0 & & \\
x & =-6,2 & &
\end{array}
$$

PTS: 4
REF: 011538ia
STA: A.A. 11
TOP: Quadratic-Linear Systems

607

PTS: 4
REF: fall0738ia STA: A.G. 9
TOP: Quadratic-Linear Systems
608 ANS:

PTS: 4
REF: 080839ia STA: A.G. 9
TOP: Quadratic-Linear Systems
609 ANS:

PTS: 4
610

REF: 060939ia
STA: A.G. 9
REF: 011012ia
TOP: Quadratic-Linear Systems
STA: A.G. 9

TOP: Quadratic-Linear Systems

611 ANS:

PTS: 4
REF: 061039ia
STA: A.G. 9
TOP: Quadratic-Linear Systems
612 ANS: 1
$2 y-2 x=10 \quad$ axis of symmetry: $x=\frac{-b}{2 a}=\frac{-2}{2(1)}=-1$
$2 y=2 x+10$
$y=x+5$
PTS: 2
REF: 081010ia
STA: A.G. 9
613 ANS: 4
PTS: 2
REF: 011102ia
TOP: Quadratic-Linear Systems
614 ANS:

PTS: 4
615 ANS: 1
REF: 081138ia
TOP: Quadratic-Linear Systems

STA: A.G. 9
REF: 011207ia

TOP: Quadratic-Linear Systems STA: A.G. 9

616 ANS:

PTS: 4
REF: 011339ia
STA: A.G. 9
ANS: 1
$x^{2}-5 x+3=x-6 \quad y=3-6=-3(3,-3)$
$x^{2}-6 x+9=0$

$$
\begin{aligned}
(x-3)^{2} & =0 \\
x & =3
\end{aligned}
$$

PTS: 2
REF: 061330ia
STA: A.G. 9
618 ANS:

PTS: 4
REF: 081337ia
STA: A.G. 9
619 ANS:

PTS: 4
REF: 011437ia
STA: A.G. 9
620 ANS: 4
$-3 x(x-4)-2 x(x+3)=-3 x^{2}+12 x-2 x^{2}-6 x=-5 x^{2}+6 x$
PTS: 2
REF: 081114ia
STA: A.A. 13
621
ANS: 3
PTS: 2
REF: 080819ia
TOP: Addition and Subtraction of Polynomials
ANS:

TOP: Quadratic-Linear Systems

TOP: Quadratic-Linear Systems

PTS: 2 REF: 061210ia STA: A.A. 13 TOP: Multiplication of Polynomials 636 ANS:
$P=2\left(x^{2}+3 x+2\right)+2(4 x)=2 x^{2}+6 x+4+8 x=2 x^{2}+14 x+4 \quad A=4 x\left(x^{2}+3 x+2\right)=4 x^{3}+12 x^{2}+8 x$
PTS: 4 REF: 061538ia STA: A.A. 13 TOP: Multiplication of Polynomials 637 ANS: 3
$\frac{12 x^{3}-6 x^{2}+2 x}{2 x}=\frac{2 x\left(6 x^{2}-3 x+1\right)}{2 x}=6 x^{2}-3 x+1$
PTS: 2
REF: 011011ia
STA: A.A. 14
TOP: Division of Polynomials
638 ANS:
$3 a^{2} b^{2}-6 a . \frac{45 a^{4} b^{3}-90 a^{3} b}{15 a^{2} b}=\frac{45 a^{4} b^{3}}{15 a^{2} b}-\frac{90 a^{3} b}{15 a^{2} b}=3 a^{2} b^{2}-6 a$
PTS: 2 REF: 081031ia STA: A.A. 14
639 ANS: 4 PTS: 2 REF: 061203ia

TOP: Division of Polynomials
STA: A.A. 14

TOP: Division of Polynomials

640 ANS: $2 \quad$ PTS: 2
TOP: Division of Polynomials
641 ANS: 4 PTS: 2
TOP: Division of Polynomials
642 ANS: 4 PTS: 2
TOP: Multiplication of Powers
643 ANS: 4 PTS: 2
TOP: Multiplication of Powers
644 ANS: 3 PTS: 2
TOP: Multiplication of Powers
645 ANS: 4 PTS: 2
TOP: Multiplication of Powers
646 ANS: 3
$\frac{\left(2 x^{3}\right)\left(8 x^{5}\right)}{4 x^{6}}=\frac{16 x^{8}}{4 x^{6}}=4 x^{2}$
PTS: 2
REF: fall0703ia
647 ANS: 4
$\frac{2^{6}}{2^{1}}=2^{5}$
PTS: 2
REF: 060813ia
648 ANS:
$\frac{3 k^{2} m^{6}}{4}$

PTS: 2
649 ANS: 1
REF: 010932ia
TOP: Division of Powers
650 ANS: 4 PTS: 2
TOP: Division of Powers
651 ANS: 1 PTS: 2
TOP: Division of Powers
652 ANS: 3
$\frac{3^{6}}{3^{1}}=3^{5}$

	PTS: 2	REF:	$061219 i a$
653	ANS:	2	PTS:
	TOP: Division of Powers		
	TOS:		
654	ANS: 4		
	TOP: Division of Powers		
655	ANS: 4		
	TOP: Powers of Powers		

REF: 061219ia
ANS: 2

STA: A.A. 12
REF: 081311ia
STA: A.A. 12
REF: 011503ia STA: A.A. 12

REF: 080827ia
STA: A.A. 12

656 ANS: 3
$\frac{\left(10 w^{3}\right)^{2}}{5 w}=\frac{100 w^{6}}{5 w}=20 w^{5}$
PTS: 2 REF: 011124ia STA: A.A. 12 TOP: Powers of Powers
657 ANS: 4
$\frac{\left(4 x^{3}\right)^{2}}{2 x}=\frac{16 x^{6}}{2 x}=8 x^{5}$
PTS: 2
658 ANS: 2
REF: 011216ia
STA: A.A. 12
REF: 061312ia
TOP: Powers of Powers
659 ANS: 2 PTS: 2
TOP: Powers of Powers
660 ANS: 2
PTS: 2
REF: 081318ia
STA: A.A. 12

TOP: Operations with Scientific Notation
661 ANS: 4
PTS: 2
REF: 010927ia
STA: A.N. 4
TOP: Operations with Scientific Notation
662 ANS: 4
PTS: 2
TOP: Operations with Scientific Notation
663 ANS: 4
$\frac{9.2 \times 10^{6}}{2.3 \times 10^{2}}=4 \times 10^{4}$

PTS: 2
REF: 081006ia
PTS: 2
TOP: Operations with Scientific Notation
665 ANS:
6.56×10^{-2}
PTS: 2
REF: 081231ia
STA: A.N. 4
REF: 011319ia
TOP: Operations with Scientific Notation
667 ANS: 3
PTS: 2
REF: 061430ia
TOP: Operations with Scientific Notation STA: A.N. 4

TOP: Operations with Scientific Notation
668 ANS: 2
$\frac{26.6 \times 10^{8}}{3.5 \times 10^{3}}=7.6 \times 10^{5}$
PTS: 2
REF: 061527ia
STA: A.N. 4
TOP: Operations with Scientific Notation
669 ANS: 3
$35000(1-0.05)^{4} \approx 28507.72$
PTS: 2
REF: fall0719ia
STA: A.A. 9
TOP: Exponential Functions

670 ANS: $2 \quad$ PTS: 2
TOP: Exponential Functions
671 ANS: 4 PTS: 2
TOP: Exponential Functions
672 ANS:
5,583.86. $A=P(1+R)^{t}=5000(1+0.0375)^{3} \approx 5583.86$
PTS: 3
REF: 060935ia STA: A.A. 9
673 ANS: 3
$500(1+0.06)^{3} \approx 596$
PTS: 2
674 ANS: 2
$R=0.5^{d-1}$
PTS: 2 REF: 011006ia STA: A.A. 9 TOP: Exponential Functions
675 ANS: 1
$15000(1.2)^{\frac{6}{3}}=21,600.21,600-15,000=6,600$
PTS: 2 REF: 061030ia STA: A.A. 9 TOP: Exponential Functions 676 ANS:

24,435.19. $30000(.95)^{4} \approx 24435.19$
PTS: 4 REF: 011138ia STA: A.A. 9 TOP: Exponential Functions 677 ANS: 2
$20000(.88)^{3}=13629.44$
PTS: 2
REF: 061124ia
STA: A.A. 9
TOP: Exponential Functions
678 ANS: 2
$2000(1+0.04)^{3} \approx 2249$
PTS: 2
679 ANS: 1
REF: 081124ia
RT: 2
680 ANS: 2 PTS: 2
TOP: Exponential Functions
681 ANS: 3 PTS: 2
TOP: Exponential Functions
682 ANS: 3 PTS: 2
TOP: Exponential Functions
683 ANS:
$A=P(1+R)^{t}=2000(1+0.035)^{4} \approx 2295$
PTS: 2
REF: 081333ia
STA: A.A. 9
STA: A.A. 9
REF: 010908ia STA: A.A. 9
REF: 060830ia
REF: 010908ia

TOP: Exponential Functions

STA: A.A. 9
TOP: Exponential Functions
(OP: Exper

684 ANS:
$1000(1.03)^{5} \approx 1159.27$
PTS: 3 REF: 011433ia STA: A.A. 9 TOP: Exponential Functions
685 ANS: 3
$36500(1.07)^{20} \approx 141243$
PTS: 2 REF: 081422ia STA: A.A. 9 TOP: Exponential Functions
686 ANS:

The graph will never intersect the x-axis as $2^{x}>0$ for all values of x.
PTS: 3
REF: 080835ia
STA: A.G. 4
TOP: Graphing Exponential Functions
687 ANS:

PTS: 2
688
ANS: 4
TOP: Graphing Exponential Functions
689 ANS:
$30 \sqrt{2} .5 \sqrt{72}=5 \sqrt{36} \sqrt{2}=30 \sqrt{2}$
PTS: 2
REF: fall0731ia
STA: A.N. 2
TOP: Simplifying Radicals
690 ANS: 1
$\frac{\sqrt{32}}{4}=\frac{\sqrt{16} \sqrt{2}}{4}=\sqrt{2}$
PTS: 2
REF: 060828ia
STA: A.N. 2
TOP: Simplifying Radicals
691 ANS: 3
$\sqrt{72}=\sqrt{36} \sqrt{2}=6 \sqrt{2}$
PTS: 2
REF: 010920ia
STA: A.N. 2
TOP: Simplifying Radicals

692 ANS: 2
$\sqrt{32}=\sqrt{16} \sqrt{2}=4 \sqrt{2}$
PTS: 2 REF: 060910ia STA: A.N. 2 TOP: Simplifying Radicals
693 ANS: 2
$5 \sqrt{20}=5 \sqrt{4} \sqrt{5}=10 \sqrt{5}$
PTS: 2
REF: 080922ia
STA: A.N. 2
TOP: Simplifying Radicals
694 ANS:
$-3 \sqrt{48}=-3 \sqrt{16} \sqrt{3}=-12 \sqrt{3}$
PTS: 2
REF: 081033ia
STA: A.N. 2
TOP: Simplifying Radicals
695 ANS: 3
$3 \sqrt{250}=3 \sqrt{25} \sqrt{10}=15 \sqrt{10}$
PTS: 2
REF: 061106ia
STA: A.N. 2
TOP: Simplifying Radicals
696 ANS: 3
$2 \sqrt{45}=2 \sqrt{9} \sqrt{5}=6 \sqrt{5}$
PTS: 2
REF: 011203ia
STA: A.N. 2
TOP: Simplifying Radicals
697 ANS:
$4 \sqrt{75}=4 \sqrt{25} \sqrt{3}=20 \sqrt{3}$
PTS: 2
REF: 011331ia
STA: A.N. 2
TOP: Simplifying Radicals
698 ANS:
$2 \sqrt{108}=2 \sqrt{36} \sqrt{3}=12 \sqrt{3}$
PTS: 2
REF: 081332ia
STA: A.N. 2
TOP: Simplifying Radicals
699 ANS:
$60-42 \sqrt{5} \cdot 3 \sqrt{20}(2 \sqrt{5}-7)=6 \sqrt{100}-21 \sqrt{20}=60-21 \sqrt{4} \sqrt{5}=60-42 \sqrt{5}$
PTS: 3 REF: 080834ia STA: A.N. 3 TOP: Operations with Radicals
KEY: mixed
700 ANS: 4
$6 \sqrt{50}+6 \sqrt{2}=6 \sqrt{25} \sqrt{2}+6 \sqrt{2}=30 \sqrt{2}+6 \sqrt{2}=36 \sqrt{2}$
PTS: 2 REF: 011024ia STA: A.N. 3 TOP: Operations with Radicals
KEY: addition
701 ANS: 3
$\sqrt{72}-3 \sqrt{2}=\sqrt{36} \sqrt{2}-3 \sqrt{2}=6 \sqrt{2}-3 \sqrt{2}=3 \sqrt{2}$
PTS: 2 REF: 061008ia STA: A.N. 3 TOP: Operations with Radicals
KEY: subtraction

702
ANS: 3
$3 \sqrt{2}+\sqrt{8}=3 \sqrt{2}+\sqrt{4} \sqrt{2}=3 \sqrt{2}+2 \sqrt{2}=5 \sqrt{2}$
PTS: 2 REF: 011121ia STA: A.N. 3 TOP: Operations with Radicals
KEY: addition
703
ANS:
$-2 \sqrt{3} \frac{16 \sqrt{21}}{2 \sqrt{7}}-5 \sqrt{12}=8 \sqrt{3}-5 \sqrt{4} \sqrt{3}=8 \sqrt{3}-10 \sqrt{3}=-2 \sqrt{3}$
PTS: 3 REF: 081136ia STA: A.N. 3 TOP: Operations with Radicals
KEY: mixed
$6 \sqrt{3} \frac{3 \sqrt{75}+\sqrt{27}}{3}=\frac{3 \sqrt{25} \sqrt{3}+\sqrt{9} \sqrt{3}}{3}=\frac{15 \sqrt{3}+3 \sqrt{3}}{3}=\frac{18 \sqrt{3}}{3}=6 \sqrt{3}$
PTS: 3 REF: 061236ia STA: A.N. 3 TOP: Operations with Radicals
KEY: addition
705 ANS:
$5-2 \sqrt{3}+\sqrt{9} \sqrt{3}+2(3)=5-2 \sqrt{3}+3 \sqrt{3}+6=11+\sqrt{3}$
PTS: 3 REF: 061336ia STA: A.N. 3 TOP: Operations with Radicals
KEY: subtraction
706 ANS:
$\frac{\sqrt{84}}{2 \sqrt{3}}=\frac{\sqrt{4} \sqrt{21}}{2 \sqrt{3}}=\sqrt{\frac{21}{3}}=\sqrt{7}$
PTS: 2 REF: 011431ia STA: A.N. 3 TOP: Operations with Radicals
KEY: division
707 ANS:
$3 \sqrt{7}(\sqrt{7} \sqrt{2}+4 \sqrt{7} \sqrt{4} \sqrt{2})=21 \sqrt{2}+168 \sqrt{2}=189 \sqrt{2}$
PTS: 3 REF: 061436ia STA: A.N. 3 TOP: Operations with Radicals
KEY: mixed
708
$y \sqrt{3}-4 \sqrt{2}-3 y \sqrt{3}=-2 y \sqrt{3}-4 \sqrt{2}$
PTS: 3 REF: 081436ia STA: A.N. 3 TOP: Operations with Radicals
KEY: subtraction
709
ANS: 1
$\sqrt{150}+\sqrt{24}=\sqrt{25} \sqrt{6}+\sqrt{4} \sqrt{6}=5 \sqrt{6}+2 \sqrt{6}=7 \sqrt{6}$
PTS: 2
REF: 011517ia
STA: A.N. 3
TOP: Operations with Radicals
KEY: addition

710 ANS: 1
$4 \sqrt{2} \cdot 2 \sqrt{6}=8 \sqrt{12}=8 \sqrt{4} \cdot \sqrt{3}=16 \sqrt{3}$
PTS: 2 REF: 061528ia STA: A.N. 3 TOP: Operations with Radicals
KEY: multiplication
711 ANS: 2
$\frac{9 x^{4}-27 x^{6}}{3 x^{3}}=\frac{9 x^{4}\left(1-3 x^{2}\right)}{3 x^{3}}=3 x\left(1-3 x^{2}\right)$
PTS: 2 REF: fall0718ia
STA: A.A. 16
TOP: Rational Expressions
KEY: a > 0
712 ANS: 2
$\frac{2 x^{2}-12 x}{x-6}=\frac{2 x(x-6)}{x-6}=2 x$
PTS: 2
REF: 060824ia
STA: A.A. 16
TOP: Rational Expressions
KEY: a > 0
713 ANS: 4
$\frac{25 x-125}{x^{2}-25}=\frac{25(x-5)}{(x+5)(x-5)}=\frac{25}{x+5}$
PTS: 2 REF: 080821ia
STA: A.A. 16
KEY: a > 0
714 ANS: 2
$\frac{x^{2}-2 x-15}{x^{2}+3 x}=\frac{(x-5)(x+3)}{x(x+3)}=\frac{x-5}{x}$
PTS: 2
REF: 060921ia
STA: A.A. 16
TOP: Rational Expressions
KEY: a > 0
715 ANS: 1
$\frac{x^{2}-x-6}{x^{2}-5 x+6}=\frac{(x-3)(x+2)}{(x-3)(x+2)}=\frac{x+2}{x-2}$
PTS: 2
REF: 011130ia
STA: A.A. 16
TOP: Rational Expressions
716
KEY: a > 0
ANS:
$\frac{x^{2}-5 x-24}{x-8}=\frac{(x-8)(x+3)}{x-8}=x+3$
PTS: 2
REF: 061131ia
STA: A.A. 16
TOP: Rational Expressions

717 ANS:
$\frac{x-1}{x+2} \cdot \frac{x^{2}-1}{x^{2}+3 x+2}=\frac{(x+1)(x-1)}{(x+2)(x+1)}$
PTS: 2 REF: 011233ia STA: A.A. 16 TOP: Rational Expressions
KEY: a > 0
718 ANS: 2
$\frac{x^{2}-3 x-10}{x^{2}-25}=\frac{(x-5)(x+2)}{(x+5)(x-5)}=\frac{x+2}{x+5}$
PTS: 2
REF: 061216ia
STA: A.A. 16
TOP: Rational Expressions
KEY: a > 0
719 ANS: 4
$\frac{2 x^{2}\left(x^{4}-9 x^{2}+1\right)}{2 x^{2}}$
PTS: 2
REF: 081222ia
STA: A.A. 16
TOP: Rational Expressions
KEY: a > 0
720 ANS: 1
$\frac{2 x^{2}+10 x-28}{4 x+28}=\frac{2\left(x^{2}+5 x-14\right)}{4 x+28}=\frac{2(x+7)(x-2)}{4(x+7)}=\frac{x-2}{2}$
PTS: 2
REF: 011327ia STA: A.A. 16
TOP: Rational Expressions
KEY: a > 0
721 ANS: 1
$\frac{(x+5)(x+3)}{x+5}=x+3$
PTS: 2
REF: 0613071a STA: A.A. 16
TOP: Rational Expressions
KEY: a > 0
722 ANS: 3
$\frac{x^{2}-25}{x^{2}-x-20}=\frac{(x+5)(x-5)}{(x+4)(x-5)}=\frac{x+5}{x+4}$
PTS: 2
REF: 011424ia
STA: A.A. 16
KEY: a > 0
723
ANS: 1
PTS: 2
REF: fall0728ia
REF: 060817ia
STA: A.A. 15
ANS: 3 PTS: 2
TOP: Undefined Rationals
725 ANS: $2 \quad$ PTS: 2
REF: 010925ia
STA: A.A. 15
TOP: Undefined Rationals
726
ANS: 4 PTS: 2
TOP: Undefined Rationals

727 ANS: 1

$$
\begin{gathered}
x^{2}+7 x+10=0 \\
(x+5)(x+2)=0 \\
x=-5 \text { or }-2
\end{gathered}
$$

PTS: 2
REF: 080918ia
STA: A.A. 15
TOP: Undefined Rationals
728 ANS: 3

$$
\begin{aligned}
x^{2}-9 & =0 \\
(x+3)(x-3) & =0 \\
x & = \pm 3
\end{aligned}
$$

PTS: 2
REF: 061014ia
STA: A.A. 15
TOP: Undefined Rationals
729 ANS: 4
$x^{2}-4 x-12=0$
$(x-6)(x+2)=0$

$$
x=6 x=-2
$$

PTS: 2
REF: 061125ia
STA: A.A. 15
TOP: Undefined Rationals
730 ANS: 1
$x^{2}+5 x-6=0$
$(x+6)(x-1)=0$ $x=-6,1$

PTS: 2
REF: 011214ia
STA: A.A. 15
TOP: Undefined Rationals
731 ANS: 3

$$
\begin{aligned}
x^{2}-4 & =0 \\
(x+2)(x-2) & =0 \\
x & = \pm 2
\end{aligned}
$$

PTS: 2
732 ANS: 1
PTS: 2
TOP: Undefined Rationals
733 ANS: 4
$x^{2}-2 x-15=0$
$(x+3)(x-5)=0$ $x=-3,5$

PTS: 2
734 ANS: 2
REF: 081316ia
PTS: 2
TOP: Undefined Rationals

STA: A.A. 15
REF: 061429ia

TOP: Undefined Rationals STA: A.A. 15

735 ANS: 2
$4 x+28=0$
$4 x=-28$

$$
x=-7
$$

PTS: 2
736 ANS: 4
REF: 081417ia
STA: A.A. 15
REF: 011521ia
TOP: Undefined Rationals
TOP: Undefined Rationals
737
ANS: 2 PTS: 2
TOP: Undefined Rationals
738 ANS: 4
$\frac{x^{2}-1}{x+1} \cdot \frac{x+3}{3 x-3}=\frac{(x+1)(x-1)}{x+1} \cdot \frac{x+3}{3(x-1)}=\frac{x+3}{3}$
PTS: 2
REF: 060815ia STA: A.A. 18
TOP: Multiplication and Division of Rationals
KEY: multiplication

Integrated Algebra Regents Exam Questions by Performance Indicator: Topic Answer Section

739
ANS: 1
$\frac{4 x}{x-1} \cdot \frac{x^{2}-1}{3 x+3}=\frac{4 x}{x-1} \cdot \frac{(x+1)(x-1)}{3(x+1)}=\frac{4 x}{3}$

PTS: 2
REF: 080826ia
STA: A.A. 18
TOP: Multiplication and Division of Rationals
KEY: multiplication
740 ANS:
$\frac{3}{4 x-8} \cdot \frac{3 x+6}{4 x+12} \div \frac{x^{2}-4}{x+3}=\frac{3(x+2)}{4(x+3)} \cdot \frac{x+3}{(x+2)(x-2)}=\frac{3}{4(x-2)}$

PTS: 3 REF: 010935ia STA: A.A. 18 TOP: Multiplication and Division of Rationals
KEY: division
741 ANS:
$\frac{x-7}{3 x} \cdot \frac{2 x^{2}-8 x-42}{6 x^{2}} \div \frac{x^{2}-9}{x^{2}-3 x}=\frac{2\left(x^{2}-4 x-21\right)}{6 x^{2}} \cdot \frac{x(x-3)}{(x+3)(x-3)}=\frac{(x-7)(x+3)}{3 x} \cdot \frac{1}{x+3}=\frac{x-7}{3 x}$
PTS: 4 REF: 080937ia STA: A.A. 18 TOP: Multiplication and Division of Rationals
KEY: division
742 ANS:
$\frac{x^{2}+9 x+14}{x^{2}-49} \div \frac{3 x+6}{x^{2}+x-56}=\frac{(x+7)(x+2)}{(x+7)(x-7)} \cdot \frac{(x+8)(x-7)}{3(x+2)}=\frac{x+8}{3}$

PTS: 4
REF: 061037ia
STA: A.A. 18
TOP: Multiplication and Division of Rationals
KEY: division
743 ANS: 4
$\frac{x}{x+4} \div \frac{2 x}{x^{2}-16}=\frac{x}{x+4} \cdot \frac{x^{2}-16}{2 x}=\frac{1}{x+4} \cdot \frac{(x+4)(x-4)}{2}=\frac{x-4}{2}$
PTS: 2 REF: 081130ia STA: A.A. 18 TOP: Multiplication and Division of Rationals
KEY: division
744
ANS:
$\frac{x+2}{2} \times \frac{4(x+5)}{(x+4)(x+2)}=\frac{2(x+5)}{x+4}$

PTS: 2
REF: 081232ia
STA: A.A. 18
TOP: Multiplication and Division of Rationals
KEY: multiplication
745 ANS:
$\frac{3 x(x+3)}{(x+3)(x+2)} \times \frac{(x-3)(x+2)}{(x+3)(x-3)}=\frac{3 x}{x+3}$

PTS: 4
REF: 081338ia
STA: A.A. 18
TOP: Multiplication and Division of Rationals
KEY: division

746 ANS:
$\left(\frac{10 x^{2} y}{x^{2}+x y}\right) \bullet\left(\frac{(x+y)^{2}}{2 x}\right) \div\left(\frac{x^{2}-y^{2}}{5 y^{2}}\right)=\left(\frac{10 x^{2} y}{x(x+y)}\right) \bullet\left(\frac{(x+y)^{2}}{2 x}\right) \cdot\left(\frac{5 y^{2}}{(x+y)(x-y)}\right)=\frac{25 y^{3}}{x-y}$

PTS: 4
REF: 011539ia
STA: A.A. 18
TOP: Multiplication and Division of Rationals
KEY: division
747 ANS: 4
$\frac{(d \times 3)+(2 \times 2 d)}{2 \times 3}=\frac{3 d+4 d}{6}=\frac{7 d}{6}$
PTS: 2
REF: fall0727ia
STA: A.A. 17
TOP: Addition and Subtraction of Rationals
748 ANS: 2
$\frac{6}{5 x}-\frac{2}{3 x}=\frac{18 x-10 x}{15 x^{2}}=\frac{8 x}{15 x^{2}}=\frac{8}{15 x}$
PTS: 2
REF: 010921ia
STA: A.A. 17
TOP: Addition and Subtraction of Rationals
749 ANS: 2
$\frac{6}{4 a}-\frac{2}{3 a}=\frac{18 a-8 a}{12 a^{2}}=\frac{10 a}{12 a^{2}}=\frac{5}{6 a}$
PTS: 2
REF: 060929ia
STA: A.A. 17
TOP: Addition and Subtraction of Rationals
750 ANS: 2
$\frac{3}{2 x}+\frac{4}{3 x}=\frac{9 x+8 x}{6 x^{2}}=\frac{17 x}{6 x^{2}}=\frac{17}{6 x}$
PTS: 2
REF: 080917ia
STA: A.A. 17
751 ANS: 4
PTS: 2
REF: 011025ia
TOP: Addition and Subtraction of Rationals
752 ANS: 1
PTS: 2
REF: 061024ia
STA: A.A. 17
TOP: Addition and Subtraction of Rationals
753 ANS: 3
$\frac{2+x}{5 x}-\frac{x-2}{5 x}=\frac{2+x-x+2}{5 x}=\frac{4}{5 x}$
PTS: 2
REF: 081027ia
STA: A.A. 17
TOP: Addition and Subtraction of Rationals
754 ANS: 2
$\frac{3}{2 x}+\frac{7}{4 x}=\frac{12 x+14 x}{8 x^{2}}=\frac{26 x}{8 x^{2}}=\frac{13}{4 x}$
PTS: 2
REF: 011120ia
STA: A.A. 17
TOP: Addition and Subtraction of Rationals
755 ANS: 4
$\frac{7}{12 x}-\frac{y}{6 x^{2}}=\frac{42 x^{2}-12 x y}{72 x^{3}}=\frac{6 x(7 x-2 y)}{72 x^{3}}=\frac{7 x-2 y}{12 x^{2}}$
PTS: 2
REF: 061129ia
STA: A.A. 17
TOP: Addition and Subtraction of Rationals

756 ANS: 2
$\frac{2 y}{y+5}+\frac{10}{y+5}=\frac{2 y+10}{y+5}=\frac{2(y+5)}{y+5}=2$
PTS: 2 REF: 011230ia STA: A.A. 17
757 ANS: 1
PTS: 2
REF: 061220ia
TOP: Addition and Subtraction of Rationals
TOP: Addition and Subtraction of Rationals
758 ANS: 3
$\frac{4}{3 a}-\frac{5}{2 a}=\frac{8}{6 a}-\frac{15}{6 a}=-\frac{7}{6 a}$
PTS: 2 REF: 081328ia STA: A.A. 17 TOP: Addition and Subtraction of Rationals 759 ANS: 3
$\frac{2 n}{5}+\frac{3 n}{2}=\frac{4 n+15 n}{10}=\frac{19 n}{10}$
PTS: 2
REF: 011420ia
STA: A.A. 17
ANS: 3
PTS: 2
REF: 061424ia
TOP: Addition and Subtraction of Rationals
TOP: Addition and Subtraction of Rationals
761 ANS: 1
PTS: 2
REF: 081409ia
STA: A.A. 17
TOP: Addition and Subtraction of Rationals
762 ANS: 3
$\frac{10}{7 x}-\frac{3}{5 x}=\frac{50 x-21 x}{35 x^{2}}=\frac{29 x}{35 x^{2}}=\frac{29}{35 x}$
PTS: 2
REF: 011511ia
STA: A.A. 17
TOP: Addition and Subtraction of Rationals
ANS:

$$
6,-2 . \quad \frac{x+1}{x}=\frac{-7}{x-12}
$$

$$
\begin{gathered}
(x+1)(x-12)=-7 x \\
x^{2}-11 x-12=-7 x \\
x^{2}-4 x-12=0 \\
(x-6)(x+2)=0 \\
x=6 \text { or }-2
\end{gathered}
$$

PTS: 4
REF: fall0739ia
STA: A.A. 26
TOP: Solving Rationals

764 ANS: 4

$$
\begin{aligned}
& \frac{5}{x}=\frac{x+13}{6} \text { Interseckion } \\
& x^{2}+13 x=30 \\
& x^{2}+13 x-30=0 \\
& (x+15)(x-2)=0 \\
& x=-15 \text { or } 2
\end{aligned}
$$

PTS: 2
REF: 060826ia
STA: A.A. 26
TOP: Solving Rationals
765 ANS: 3

$$
\frac{k+4}{2}=\frac{k+9}{3}
$$

$$
3(k+4)=2(k+9)
$$

$$
3 k+12=2 k+18
$$

$$
k=6
$$

PTS: 2
REF: 010906ia
STA: A.A. 26
TOP: Solving Rationals
766
ANS: 1

$$
\frac{2}{x}-3=\frac{26}{x}
$$

$$
-3=\frac{24}{x}
$$

$$
x=-8
$$

PTS: 2
REF: 010918ia STA: A.A. 26
TOP: Solving Rationals

767 ANS: 4

$$
\begin{aligned}
x(x+2) & =-3(x-2) \\
x^{2}+2 x & =-3 x+6 \\
x^{2}+5 x-6 & =0 \\
(x+6)(x-1) & =0 \\
x & =-6 \text { or } 1
\end{aligned}
$$

PTS: 2
REF: 011028ia
STA: A.A. 26
TOP: Solving Rationals

$$
\begin{aligned}
\frac{2 x-3}{x-4} & =\frac{2}{3} \\
3(2 x-3) & =2(x-4) \\
6 x-9 & =2 x-8 \\
4 x & =1 \\
x & =\frac{1}{4}
\end{aligned}
$$

PTS: 2 REF: 081012ia STA: A.A. 26 TOP: Solving Rationals
769 ANS:
4,-5. $\frac{x+2}{6}=\frac{3}{x-1}$
$(x+2)(x-1)=18$
$x^{2}-x+2 x-2=18$
$x^{2}+x-20=0$
$(x+5)(x-4)=0$ $x=-5$ or 4

PTS: 3
REF: 011136ia
STA: A.A. 26
TOP: Solving Rationals

770 ANS:

$$
\begin{aligned}
-\frac{9}{4} . \quad \frac{3}{4} & =\frac{-(x+11)}{4 x}+\frac{1}{2 x} \\
\frac{3}{4} & =\frac{-x-11}{4 x}+\frac{2}{4 x} \\
\frac{3}{4} & =\frac{-x-9}{4 x} \\
12 x & =-4 x-36 \\
16 x & =-36 \\
x & =-\frac{9}{4}
\end{aligned}
$$

PTS: 4
REF: 061137ia
STA: A.A. 26
TOP: Solving Rationals
771
ANS: 3

$$
\begin{aligned}
\frac{2}{x+1} & =\frac{x+1}{2} \\
x^{2}+2 x+1 & =4 \\
x^{2}+2 x-3 & =0 \\
(x+3)(x-1) & =3 \\
x & =-3,1
\end{aligned}
$$

PTS: 2
REF: 081226ia
STA: A.A. 26
TOP: Solving Rationals
772
ANS: 2

$$
\begin{aligned}
\frac{x+2}{2} & =\frac{4}{x} \\
x^{2}+2 x & =8 \\
x^{2}+2 x-8 & =0 \\
(x+4)(x-2) & =0 \\
x & =-4,2
\end{aligned}
$$

PTS: 2
REF: 061317ia
STA: A.A. 26
TOP: Solving Rationals
773 ANS:
$\frac{2}{3 x}+\frac{12}{3 x}=\frac{7}{x+1}$
$\frac{14}{3 x}=\frac{7}{x+1}$

$$
21 x=14 x+14
$$

$$
7 x=14
$$

$$
x=2
$$

PTS: 4
REF: 061337ia
STA: A.A. 26
TOP: Solving Rationals

774 ANS:

$$
\begin{aligned}
\frac{3}{x+5} & =\frac{2 x}{x^{2}-8} \\
3 x^{2}-24 & =2 x^{2}+10 x \\
x^{2}-10 x+24 & =0 \\
(x-12)(x+2) & =0 \\
x & =12,-2
\end{aligned}
$$

PTS: 4
REF: 011438ia
STA: A.A. 26
TOP: Solving Rationals
775 ANS: 3

$$
\begin{aligned}
\frac{24}{14 x}+\frac{21}{14 x} & =\frac{15 x}{14 x} \\
45 & =15 x \\
x & =3
\end{aligned}
$$

PTS: 2
REF: 081416ia
STA: A.A. 26
TOP: Solving Rationals
776 ANS: 2

$$
\begin{aligned}
\frac{x}{3} & =\frac{8}{x+2} \\
x^{2}+2 x & =24 \\
x^{2}+2 x-24 & =0 \\
(x+6)(x-4) & =0 \\
x & =-6,4
\end{aligned}
$$

PTS: 2
REF: 081429ia
STA: A.A. 26
TOP: Solving Rationals
777 ANS: 4
$\frac{2}{x}=\frac{1}{3}-\frac{1}{5}$
$\frac{2}{x}=\frac{2}{15}$
$x=15$

PTS: 2
778 ANS: 4
REF: 061507ia
PTS: 2
TOP: Families of Functions
779 ANS: 1
PTS: 2
TOP: Families of Functions
ANS: 1 PTS: 2
TOP: Families of Functions
781 ANS: 4
PTS: 2
TOP: Families of Functions
782 ANS: 4
PTS: 2
TOP: Families of Functions

STA: A.A. 26
REF: fall0717ia
REF: 060801ia

REF: 010905ia
REF: 081025ia
REF: 061111ia

TOP: Solving Rationals
STA: A.G. 4

791 ANS: 3
An element of the domain, 1 , is paired with two different elements of the range, 3 and 7 .
PTS: 2 REF: 080919ia STA: A.G. 3 TOP: Defining Functions
KEY: ordered pairs
792 ANS: 4
In (4), each element in the domain corresponds to a unique element in the range.
PTS: 2 REF: 011018ia STA: A.G. 3 TOP: Defining Functions
KEY: ordered pairs
793
ANS: 4 PTS: 2 REF: 061013ia STA: A.G. 3
TOP: Defining Functions KEY: graphs
794 ANS: 4
In (4), each element in the domain corresponds to a unique element in the range.
PTS: 2 REF: 011105ia STA: A.G. 3 TOP: Defining Functions
KEY: ordered pairs
795 ANS: 2
In (2), each element in the domain corresponds to a unique element in the range.
PTS: 2 REF: 061116ia STA: A.G. 3 TOP: Defining Functions
KEY: ordered pairs
796 ANS: $3 \quad$ PTS: 2
TOP: Defining Functions
797 ANS: $1 \quad$ PTS: 2
TOP: Defining Functions
798 ANS: $3 \quad$ PTS: 2
TOP: Defining Functions
799 ANS: $3 \quad$ PTS: 2
TOP: Defining Functions
REF: 011204ia STA: A.G. 3
KEY: graphs
REF: 061209ia STA: A.G. 3
KEY: graphs
REF: 011309ia STA: A.G. 3
KEY: graphs
REF: 081308ia STA: A.G. 3
KEY: graphs

800 ANS: 4
An element of the domain, 1 , is paired with two different elements of the range, 1 and -1 .
PTS: 2 REF: 011405ia STA: A.G. 3 TOP: Defining Functions
KEY: ordered pairs
801 ANS: $1 \quad$ PTS: 2
REF: 061413ia
TOP: Defining Functions
802 ANS: 2 PTS:
TOP: Defining Functions
KEY: ordered pairs
REF: 011514ia
STA: A.G. 3
KEY: ordered pairs
803 ANS: 1
$30^{2}+40^{2}=c^{2} .30,40,50$ is a multiple of $3,4,5$.

$$
\begin{aligned}
2500 & =c^{2} \\
50 & =c
\end{aligned}
$$

PTS: 2
804 ANS: 3
REF: fall0711ia
STA: A.A. 45
REF: 060825ia
TOP: Pythagorean Theorem
TOP: Pythagorean Theorem
805 ANS: 4
$16^{2}+b^{2}=34^{2}$
$b^{2}=900$
$b=30$
PTS: 2
REF: 080809ia
STA: A.A. 45
TOP: Pythagorean Theorem
806 ANS: 3
$3^{2}+5^{2}=x^{2}$
$34=x^{2}$
$\sqrt{34}=x$
PTS: 2
REF: 060909ia
STA: A.A. 45
TOP: Pythagorean Theorem
807 ANS: 1
$8^{2}+15^{2}=c^{2}$
$c^{2}=289$
$c=17$
PTS: 2
REF: 080906ia
STA: A.A. 45
TOP: Pythagorean Theorem
808 ANS: 2
$\sqrt{5^{2}+7^{2}} \approx 8.6$
PTS: 2
REF: 081004ia
STA: A.A. 45
TOP: Pythagorean Theorem

809 ANS: 2
$\sqrt{18.4^{2}-7^{2}} \approx 17$
PTS: 2 REF: 011107ia STA: A.A. 45 TOP: Pythagorean Theorem
810 ANS: 3

$$
\begin{aligned}
10^{2}+10^{2} & =c^{2} \\
c^{2} & =200 \\
c & \approx 14.1
\end{aligned}
$$

PTS: 2
REF: 061102ia
STA: A.A. 45
TOP: Pythagorean Theorem
811 ANS: 1
$\sqrt{1700^{2}-1300^{2}} \approx 1095$
PTS: 2
REF: 011221ia
STA: A.A. 45
TOP: Pythagorean Theorem
812 ANS: 2
$13^{2}+13^{2}=x^{2}$

$$
\begin{aligned}
338 & =x^{2} \\
\sqrt{338} & =x \\
18 & \approx x
\end{aligned}
$$

PTS: 2
REF: 061223ia
STA: A.A. 45
TOP: Pythagorean Theorem
813 ANS: 3
$\sqrt{8^{2}-6^{2}}=\sqrt{28}=\sqrt{4} \sqrt{7}=2 \sqrt{7}$
PTS: 2
REF: 061329ia
STA: A.A. 45
TOP: Pythagorean Theorem
814 ANS: 3
$\sqrt{13^{2}-7^{2}}=\sqrt{120}$
PTS: 2
REF: 081323ia
STA: A.A. 45
TOP: Pythagorean Theorem
815 ANS: 2
$\sqrt{48^{2}+40^{2}}=\sqrt{2304+1600}=\sqrt{3904} \approx 62$
PTS: 2
REF: 011417ia
STA: A.A. 45
REF: 061415ia
TOP: Pythagorean Theorem
816 ANS: 1
PTS: 2
TOP: Pythagorean Theorem
817 ANS: 1
$7^{2}+24^{2}=25^{2}$
PTS: 2
REF: 011526ia
STA: A.A. 45
TOP: Pythagorean Theorem

818 ANS: 1
$\sin C=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{13}{85}$
PTS: 2 REF: fall0721ia STA: A.A. 42 TOP: Trigonometric Ratios
819 ANS: 2
$\sin U=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{15}{17}$
PTS: 2
REF: 010919ia
STA: A.A. 42
TOP: Trigonometric Ratios
820 ANS: 3
$\cos A=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{15}{17}$
PTS: 2
REF: 011008ia
STA: A.A. 42
TOP: Trigonometric Ratios
821 ANS: 2
$\tan A=\frac{\text { opposite }}{\text { adjacent }}=\frac{14}{48}$
PTS: 2 REF: 061009ia STA: A.A. 42 TOP: Trigonometric Ratios
822 ANS: 2
$\tan B=\frac{\text { opposite }}{\text { adjacent }}=\frac{8}{15}=0.5 \overline{3}$
PTS: 2
REF: 081026ia
STA: A.A. 42
TOP: Trigonometric Ratios
823 ANS: 1
$\sin x=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{28}{53}$
PTS: 2
REF: 011109ia
STA: A.A. 42
TOP: Trigonometric Ratios
824 ANS: 2
$\tan A B C=\frac{\text { opposite }}{\text { adjacent }}=\frac{5}{12}$
PTS: 2
REF: 081112ia
STA: A.A. 42
TOP: Trigonometric Ratios
825 ANS: 3
$\tan P L M=\frac{\text { opposite }}{\text { adjacent }}=\frac{4}{3}$
PTS: 2
REF: 011226ia
STA: A.A. 42
TOP: Trigonometric Ratios
826
ANS: 4
If $\mathrm{m} \angle C=90$, then $\overline{A B}$ is the hypotenuse, and the triangle is a 3-4-5 triangle.
PTS: 2 REF: 061224ia STA: A.A. 42 TOP: Trigonometric Ratios

827 ANS: 2
$\cos x=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{16}{20}$
PTS: 2 REF: 011307ia STA: A.A. 42 TOP: Trigonometric Ratios
828 ANS: 1
$\cos A=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{3}{5}$
PTS: 2
829 ANS: 4
REF: 081329ia
STA: A.A. 42
REF: 061417ia
TOP: Trigonometric Ratios
TOP: Trgonomic Ratos
TOP: Trigonometric Ratios
830 ANS: $2 \quad$ PTS: 2
TOP: Trigonometric Ratios
831 ANS: 4
$\sin B=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{8}{10}$
PTS: 2
REF: 011518ia
STA: A.A. 42
TOP: Trigonometric Ratios
832
ANS: 3
$\cos 30=\frac{x}{24}$
$x \approx 21$
PTS: 2
REF: 010912ia
STA: A.A. 44
TOP: Using Trigonometry to Find a Side
833 ANS:
39, 63. $\tan 52=\frac{50}{x} \cdot \sin 52=\frac{50}{x}$

$$
x \approx 39 \quad x \approx 63
$$

PTS: 4
REF: 060937ia
STA: A.A. 44
TOP: Using Trigonometry to Find a Side
834
ANS: 2

$$
\begin{aligned}
\tan 32 & =\frac{x}{25} \\
x & \approx 15.6
\end{aligned}
$$

PTS: 2
REF: 080914ia
STA: A.A. 44
TOP: Using Trigonometry to Find a Side
835 ANS:
$84,71 \sin 50=\frac{x}{110} \quad \cos 50=\frac{y}{110}$

$$
x \approx 84 \quad y \approx 71
$$

PTS: 4
REF: 081039ia
STA: A.A. 44
TOP: Using Trigonometry to Find a Side

836 ANS:
2.1. $\cos 65=\frac{x}{5}$

$$
x \approx 2.1
$$

PTS: 2
REF: 011133ia
STA: A.A. 44
TOP: Using Trigonometry to Find a Side
837 ANS: 2
$\sin 57=\frac{x}{8}$

$$
x \approx 6.7
$$

PTS: 2
REF: 061108ia
STA: A.A. 44
TOP: Using Trigonometry to Find a Side
838
ANS: 2
$\cos 38=\frac{10}{x}$

$$
x=\frac{10}{\cos 38} \approx 12.69
$$

PTS: 2
REF: 081126ia
STA: A.A. 44
TOP: Using Trigonometry to Find a Side
839 ANS:

$$
\begin{aligned}
\tan 48 & =\frac{9}{x} \cdot \sin 48 \\
x & =\frac{9}{y} \\
x & \approx 8 \quad y
\end{aligned}
$$

PTS: 4
REF: 011338ia
STA: A.A. 44
TOP: Using Trigonometry to Find a Side
840 ANS:
$\tan 38=\frac{o p p}{80}$

$$
o p p=80 \tan 38 \approx 62.5
$$

PTS: 3
REF: 011436ia
STA: A.A. 44
TOP: Using Trigonometry to Find a Side
841 ANS:

$$
\begin{aligned}
\tan 26 & =\frac{215}{x} \\
x & =\frac{215}{\tan 26} \\
x & \approx 441
\end{aligned}
$$

PTS: 3
REF: 081434ia
STA: A.A. 44
TOP: Using Trigonometry to Find a Side
842 ANS:

$$
\begin{aligned}
\cos 72 & =\frac{x}{12} \\
x & \approx 3.7
\end{aligned}
$$

PTS: 2
REF: 011531ia
STA: A.A. 44
TOP: Using Trigonometry to Find a Side

843 ANS: 2

$$
\begin{aligned}
\tan 40 & =\frac{x}{72} \\
x & \approx 60
\end{aligned}
$$

PTS: 2 REF: 061516ia STA: A.A. 44 TOP: Using Trigonometry to Find a Side
844 ANS: 2
$\sin A=\frac{8}{12}$

$$
A \approx 42
$$

PTS: 2 REF: 060816ia STA: A.A. 43 TOP: Using Trigonometry to Find an Angle
845 ANS: 1
PTS: 2
REF: 080824ia STA: A.A. 43
TOP: Using Trigonometry to Find an Angle
846 ANS: 3
$\sin A=\frac{10}{16} \quad B=180-(90+38.7)=51.3 . \quad$ A 90° angle is not acute.

$$
A \approx 38.7
$$

PTS: 2
REF: 080829ia
STA: A.A. 43
TOP: Using Trigonometry to Find an Angle
847 ANS:
53. $\sin A=\frac{16}{20}$

$$
A \approx 53
$$

PTS: 2
REF: 011032ia
STA: A.A. 43
TOP: Using Trigonometry to Find an Angle
848 ANS:
$\sin x=\frac{30}{50}$

$$
\begin{aligned}
& x=\sin ^{-1} \frac{3}{5} \\
& x \approx 37
\end{aligned}
$$

PTS: 2 REF: 061033ia STA: A.A. 43 TOP: Using Trigonometry to Find an Angle
849 ANS: 1
PTS: 2
REF: 061114ia
STA: A.A. 43
TOP: Using Trigonometry to Find an Angle
850 ANS:
41.8. $\sin x=\frac{8}{12}$

$$
A \approx 41.8
$$

PTS: 3
REF: 081135ia
STA: A.A. 43
TOP: Using Trigonometry to Find an Angle

851 ANS:
78. $\cos x=\frac{6}{28}$

$$
x \approx 78
$$

PTS: 3
REF: 061235ia
STA: A.A. 43
TOP: Using Trigonometry to Find an Angle
852 ANS:
54, 23. $\cos A=\frac{17}{29} \cdot \sqrt{29^{2}-17^{2}} \approx 23$

$$
x \approx 54
$$

PTS: 4
REF: 081238ia
STA: A.A. 43
TOP: Using Trigonometry to Find an Angle
853 ANS: 4
$\sin D=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{12}{13}$
PTS: 2
REF: 061325ia
STA: A.A. 43
TOP: Using Trigonometry to Find an Angle
854 ANS:
$\tan x=\frac{350}{1000}$
$x \approx 19$
PTS: 3
855
ANS: 1
$\tan x=\frac{5}{9.5}$
$x \approx 27.8$
PTS: 2
REF: 011525ia
STA: A.A. 43
TOP: Using Trigonometry to Find an Angle
856 ANS: 2
$\cos E=\frac{6}{11}$
$E \approx 57$
PTS: 2 REF: 061523ia STA: A.A. 43 TOP: Using Trigonometry to Find an Angle
33.4. Serena needs $24(9+6+9)$ feet of fencing to surround the rectangular portion of the garden. The length of the fencing needed for the semicircular portion of the garden is $\frac{1}{2} \pi d=3 \pi \approx 9.4$ feet.

PTS: 2
REF: fall0733ia STA: A.G. 1
TOP: Compositions of Polygons and Circles KEY: perimeter

858 ANS:

$36-9 \pi$. 15.6. Area of square-area of 4 quarter circles. $(3+3)^{2}-3^{2} \pi=36-9 \pi$
PTS: 2 REF: 060832ia STA: A.G. 1 TOP: Compositions of Polygons and Circles
KEY: area
859 ANS: 2
PTS: 2
REF: 080815ia
STA: A.G. 1
TOP: Compositions of Polygons and Circles KEY: area
860 ANS:
50. $12+10+12+\frac{1}{2}(10 \pi) \approx 50$

PTS: 2 REF: 010931ia STA: A.G. 1 TOP: Compositions of Polygons and Circles
KEY: perimeter
861 ANS:
56. If the circumference of circle O is 16 ð inches, the diameter, $\overline{A D}$, is 16 inches and the length of $\overline{B C}$ is 12 inches $\frac{3}{4} \times 16$. The area of trapezoid $A B C D$ is $\frac{1}{2} \times 4(12+16)=56$.

PTS: 3 REF: 060934ia STA: A.G. 1 TOP: Compositions of Polygons and Circles
KEY: area
862 ANS: 1
PTS: 2
REF: 080924ia
STA: A.G. 1
TOP: Compositions of Polygons and Circles
KEY: perimeter
863 ANS: 2
$A=l w+\frac{\pi r^{2}}{2}=6 \cdot 5+\frac{\pi \cdot 3^{2}}{2} \approx 44.1$
PTS: 2
REF: 061029ia
STA: A.G. 1
TOP: Compositions of Polygons and Circles
KEY: area
864 ANS: 2

$$
\text { shaded }=\text { whole }- \text { unshaded }
$$

= rectangle-triangle

$$
=l w-\frac{1}{2} b h
$$

$$
=15 \times 6-\frac{1}{2} \times 15 \times 4.6
$$

$$
=90-34.5
$$

$$
=55.5
$$

PTS: 2
REF: 081019ia
STA: A.G. 1
TOP: Compositions of Polygons and Circles
KEY: area

865 ANS: 2
$A=l w+l w+\frac{\pi r^{2}}{4}=5 \cdot 3+5 \cdot 3+\frac{\pi \cdot 3^{2}}{4} \approx 37$
PTS: 2 REF: 011123ia STA: A.G. 1 TOP: Compositions of Polygons and Circles
KEY: area
866 ANS: 1
$7+8+7+\frac{12 \pi}{2}=22+6 \pi$
PTS: 2
REF: 081128ia
STA: A.G. 1
TOP: Compositions of Polygons and Circles
KEY: perimeter
867 ANS: 1
If the area of the square is 36 , a side is 6 , the diameter of the circle is 6 , and its radius is $3 . A=\pi r^{2}=3^{2} \pi=9 \pi$
PTS: 2 REF: 011217ia STA: A.G. 1 TOP: Compositions of Polygons and Circles
KEY: area
868
ANS: 1
$4+6+10+\frac{6 \pi}{2}=20+3 \pi$
PTS: 2 REF: 081228ia STA: A.G. 1 TOP: Compositions of Polygons and Circles
KEY: perimeter
869
TOP: Compositions of Polygons and Circles
TA: A.G. 1

ANS:
Area of rectangle minus area of semicircle: $(5+6+5) \times 5-\frac{\pi \times 3^{2}}{2} \approx 65.86$

PTS: 4 REF: 061339ia STA: A.G. 1 TOP: Compositions of Polygons and Circles
KEY: area
871 ANS: 1
$4(5+5)+10 \pi=40+10 \pi$
PTS: 2 REF: 081326ia STA: A.G. 1 TOP: Compositions of Polygons and Circles
KEY: perimeter
872 ANS: 2
$6^{2}-\frac{(3)^{2} \pi}{2}$
PTS: 2 REF: 011407ia STA: A.G. 1 TOP: Compositions of Polygons and Circles
KEY: area
873 ANS:
$(2 x)^{2}+\pi x^{2}=4 x^{2}+\pi x^{2}$
PTS: 2
REF: 061431ia
STA: A.G. 1
TOP: Compositions of Polygons and Circles
KEY: area

874 ANS:
$30+15+30+\frac{15 \pi}{2} \approx 98.6$
PTS: 2 REF: 061433ia STA: A.G. 1 TOP: Compositions of Polygons and Circles
KEY: perimeter
875 ANS:
$16+2 \pi \approx 22.3$
PTS: 2 REF: 081432ia STA: A.G. 1 TOP: Compositions of Polygons and Circles
KEY: perimeter
876 ANS:
$(15 \times 36)-\left(\pi \cdot 4^{2}\right) \approx 490 \quad 490 \times 8.95=4385.50$
PTS: 4 REF: 011537ia STA: A.G. 1 TOP: Compositions of Polygons and Circles
KEY: area
877 ANS:
$7 \sqrt{3}$
PTS: 2 REF: 061532ia STA: A.G. 1 TOP: Compositions of Polygons and Circles
KEY: perimeter
878 ANS: 4
$V=\pi r^{2} h=\pi \cdot 6^{2} \cdot 15 \approx 1696.5$
PTS: 2 REF: fall0712ia STA: A.G. 2 TOP: Volume
879 ANS: 2
$1.5^{3}=3.375$
PTS: 2 REF: 060809ia STA: A.G. 2 TOP: Volume
880 ANS:
$\begin{aligned} \frac{38}{\pi}, 2 . & V=\pi r^{2} h \quad \cdot \frac{36}{\left(\frac{38}{\pi}\right)} \approx 2.97 \text {. Three cans will not fit. The maximum number is } 2 . \\ 342 & =\pi\left(\frac{6}{2}\right)^{2} h\end{aligned}$

$$
\begin{aligned}
\frac{342}{9 \pi} & =h \\
\frac{38}{\pi} & =h
\end{aligned}
$$

PTS: 3 REF: 010936ia STA: A.G. 2 TOP: Volume
881 ANS:
5,112. $(12 \times 30 \times 16)-(6 \times 12 \times 9)=5112$
PTS: 2 REF: 080932ia STA: A.G. 2 TOP: Volume

882 ANS: 3
$V=\pi r^{2} h=\pi \cdot 5^{2} \cdot 2.3 \approx 180.6$
PTS: 2 REF: 081105ia STA: A.G. 2 TOP: Volume
883 ANS:
Carol's, by 14.9. $V_{M}=5 \times 3.5 \times 7=122.5 . V_{C}=\pi \times 2.5^{2} \times 7 \approx 137.4 .137 .4-122.5=14.9$
PTS: 4
REF: 061237ia
STA: A.G. 2
TOP: Volume
884 ANS: 4

$$
\begin{aligned}
V & =\pi r^{2} h \\
32 \pi & =\pi r^{2}(2) \\
16 & =r^{2} \\
4 & =r
\end{aligned}
$$

PTS: 2
REF: 081224ia
STA: A.G. 2
TOP: Volume
885 ANS: 3
$\frac{10^{3}}{5^{3}}=\frac{1000}{125}=8$
PTS: 2
REF: 011312ia
STA: A.G. 2
TOP: Volume
886 ANS:
$V=\pi r^{2} h=\pi \cdot 6.5^{2} \cdot 24=1014 \pi$
PTS: 2 REF: 061332ia STA: A.G. 2 TOP: Volume 887 ANS:
$V=\pi \cdot 2.5^{2} \cdot 11 \approx 215.98$
PTS: 2 REF: 081433ia STA: A.G. 2 TOP: Volume
888 ANS: 3
$V=\pi \cdot 3^{2} \cdot 7=63 \pi$
PTS: 2
REF: 011505ia
STA: A.G. 2
TOP: Volume
889 ANS: 2
$5 \times 4 \times 2 \frac{1}{2}=50$
PTS: 2
REF: 061530ia
STA: A.G. 2
TOP: Volume
ANS: 4
$\mathrm{SA}=2 l w+2 h w+2 l h=2(3)(1.5)+2(2)(1.5)+2(3)(2)=27$
PTS: 2
REF: 060827ia STA: A.G. 2
TOP: Surface Area
891 ANS: 4
$\mathrm{SA}=2 l w+2 h w+2 l h=2(2)(3)+2(4)(3)+2(2)(4)=52$
PTS: 2
REF: 011029ia
STA: A.G. 2
TOP: Surface Area

892 ANS:
$80,136 V=l w h=10 \cdot 2 \cdot 4=80 S A=2 l w+2 h w+2 l h=2 \cdot 10 \cdot 2+2 \cdot 4 \cdot 2+2 \cdot 10 \cdot 4=136$
PTS: 3 REF: 081035ia STA: A.G. 2 TOP: Surface Area
893 ANS:
$2(x+3)(x-4)+2(5)(x-4)+2(x+3)(5)$
$2\left(x^{2}-4 x+3 x-12\right)+10(x-4)+10(x+3)$
$2 x^{2}-2 x-24+10 x-40+10 x+30$

$$
2 x^{2}+18 x-34
$$

PTS: 3
REF: 061136ia
STA: A.G. 2
TOP: Surface Area
894 ANS:
$147.752 \times 5.5 \times 3+2 \times 6.75 \times 3+2 \times 5.5 \times 6.75=147.75$
PTS: 2
REF: 011231ia STA: A.G. 2
TOP: Surface Area
895 ANS: 4
$\mathrm{SA}=2 l w+2 h w+2 l h=2(3)(2.2)+2(7.5)(2.2)+2(3)(7.5)=91.2$
PTS: 2 REF: 081216ia STA: A.G. 2 TOP: Surface Area
896 ANS: 2
$s^{3}=8.6 \times(2 \times 2)=24$
$s=2$
PTS: 2
REF: 081325ia
STA: A.G. 2
TOP: Surface Area
897 ANS: 2
$S A=2 \pi(2.5)^{2}+2 \pi(2.5)(8) \approx 165$
PTS: 2
REF: 061514ia
STA: A.G. 2
TOP: Surface Area

