JMAP
 REGENTS BY PERFORMANCE INDICATOR: TOPIC

NY Algebra 2/Trigonometry Regents Exam Questions from Fall 2009 to August 2015 Sorted by PI: Topic
www.jmap.org

TABLE OF CONTENTS

TOPIC	PI: SUBTOPIC QUESTION NUMBER
GRAPHS AND STATISTICS	
PROBABILITY	A2.S.10: Permutations ...45-55 A2.S.11: Combinations...56-61 A2.S.9: Differentiating Permutations and Combinations62-68 A2.S.12: Sample Space...69-70 A2.S.13: Geometric Probability.. 71 A2.S.15: Binomial Probability.. $72-83$
ABSOLUTE VALUE	A2.A.1: Absolute Value Equations and Equalities84-93
QUADRATICS	A2.A.20-21: Roots of Quadratics ..94-106 A2.A.7: Factoring Polynomials ...107-109 A2.A.7: Factoring the Difference of Perfect Squares 110 A2.A.7: Factoring by Grouping..111-115 A2.A.25: Quadratic Formula ...116-120 A2.A.2: Using the Discriminant..121-128 A2.A.24: Completing the Square...129-135 A2.A.4: Quadratic Inequalities ..136-139
SYSTEMS	A2.A.3: Quadratic-Linear Systems......................................140-144
POWERS	

RADICALS	A2.N.4: Operations with Irrational Expressions................................ 235 A2.A.13: Simplifying Radicals..236-237 A2.N.2, A.14: Operations with Radicals238-244 A2.N.5, A.15: Rationalizing Denominators................................245-253 A2.A.22: Solving Radicals ..254-259 A2.A.10-11: Exponents as Radicals ...260-263 A2.N.6: Square Roots of Negative Numbers..............................264-266 A2.N.7: Imaginary Numbers ...267-271 A2.N.8: Conjugates of Complex Numbers272-275 A2.N.9: Multiplication and Division of Complex Numbers......276-281
RATIONALS	A2.A.16: Multiplication and Division of Rationals \qquad .282-285 A2.A.16: Addition and Subtraction of Rationals \qquad .286 A2.A.23: Solving Rationals and Rational Inequalities \qquad .287-294 A2.A.17: Complex Fractions. \qquad .295-299 A2.A.5: Inverse Variation. \qquad 300-307
FUNCTIONS	A2.A.40-41: Functional Notation ...308-311 A2.A.52: Families of Functions... 312 A2.A.46: Properties of Graphs of Functions and Relations.......313-314 A2.A.52: Identifying the Equation of a Graph............................315-318 A2.A.37, 38, 43: Defining Functions..319-332 A2.A.39, 51: Domain and Range...333-345 A2.A.42: Compositions of Functions ..
SEQUENCES AND SERIES	A2.A.29-33: Sequences ..363-383 A2.N.10, A.34: Sigma Notation ..384-396 A2.A.35: Series...397-400
TRIGONOMETRY	A2.A.55: Trigonometric Ratios ..401-406 A2.M.1-2: Radian Measure ..407-420 A2.A.60: Unit Circle ...421-423 A2.A.60: Finding the Terminal Side of an Angle.......................424-425 A2.A.62, 66: Determining Trigonometric Functions.................426-433 A2.A.64: Using Inverse Trigonometric Functions.....................434-439 A2.A.57: Reference Angles ..440-441 A2.A.61: Arc Length ...442-446 A2.A.58-59: Cofunction/Reciprocal Trigonometric Functions447-456 A2.A.67: Simplifying \& Proving Trigonometric Identities.......457-459 A2.A.76: Angle Sum and Difference Identities..........................460-466

CONICS	A2.A.47-49: Equations of Circles..537-546

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic

GRAPHS AND STATISTICS

A2.S.1-2: ANALYSIS OF DATA

1 Howard collected fish eggs from a pond behind his house so he could determine whether sunlight had an effect on how many of the eggs hatched. After he collected the eggs, he divided them into two tanks. He put both tanks outside near the pond, and he covered one of the tanks with a box to block out all sunlight. State whether Howard's investigation was an example of a controlled experiment, an observation, or a survey. Justify your response.

2 Which task is not a component of an observational study?
1 The researcher decides who will make up the sample.
2 The researcher analyzes the data received from the sample.
3 The researcher gathers data from the sample, using surveys or taking measurements.
4 The researcher divides the sample into two groups, with one group acting as a control group.

3 A doctor wants to test the effectiveness of a new drug on her patients. She separates her sample of patients into two groups and administers the drug to only one of these groups. She then compares the results. Which type of study best describes this situation?
1 census
2 survey
3 observation
4 controlled experiment
4 A market research firm needs to collect data on viewer preferences for local news programming in Buffalo. Which method of data collection is most appropriate?
1 census
2 survey
3 observation
4 controlled experiment

5 A school cafeteria has five different lunch periods. The cafeteria staff wants to find out which items on the menu are most popular, so they give every student in the first lunch period a list of questions to answer in order to collect data to represent the school. Which type of study does this represent?
1 observation
2 controlled experiment
3 population survey
4 sample survey
6 A survey completed at a large university asked 2,000 students to estimate the average number of hours they spend studying each week. Every tenth student entering the library was surveyed. The data showed that the mean number of hours that students spend studying was 15.7 per week. Which characteristic of the survey could create a bias in the results?
1 the size of the sample
2 the size of the population
3 the method of analyzing the data
4 the method of choosing the students who were surveyed

7 The yearbook staff has designed a survey to learn student opinions on how the yearbook could be improved for this year. If they want to distribute this survey to 100 students and obtain the most reliable data, they should survey
1 every third student sent to the office
2 every third student to enter the library
3 every third student to enter the gym for the basketball game
4 every third student arriving at school in the morning

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

8 Which survey is least likely to contain bias?
1 surveying a sample of people leaving a movie theater to determine which flavor of ice cream is the most popular
2 surveying the members of a football team to determine the most watched TV sport
3 surveying a sample of people leaving a library to determine the average number of books a person reads in a year
4 surveying a sample of people leaving a gym to determine the average number of hours a person exercises per week

A2.S.3: AVERAGE KNOWN WITH MISSING DATA

9 The number of minutes students took to complete a quiz is summarized in the table below.

Minutes	14	15	16	17	18	19	20
Number of Students	5	3	x	5	2	10	1

If the mean number of minutes was 17 , which equation could be used to calculate the value of x ?
$1 \quad 17=\frac{119+x}{x}$
$2 \quad 17=\frac{119+16 x}{x}$
$3 \quad 17=\frac{446+x}{26+x}$
$4 \quad 17=\frac{446+16 x}{26+x}$
10 The table below displays the results of a survey regarding the number of pets each student in a class has. The average number of pets per student in this class is 2.

Number of Pets	0	1	2	3	4	5
Number of Students	4	6	10	0	k	2

What is the value of k for this table?
19
22
38
44

A2.S.4: DISPERSION

11 The table below shows the first-quarter averages for Mr. Harper's statistics class.

Statistics Class Averages

Quarter Averages	Frequency
99	1
97	5
95	4
92	4
90	7
87	2
84	6
81	2
75	1
70	2
65	1

What is the population variance for this set of data?
18.2
28.3
$3 \quad 67.3$
$4 \quad 69.3$
12 The scores of one class on the Unit 2 mathematics test are shown in the table below.

Unit 2 Mathematics Test

Test Score	Frequency
96	1
92	2
84	5
80	3
76	6
72	3
68	2

Find the population standard deviation of these scores, to the nearest tenth.

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

13 During a particular month, a local company surveyed all its employees to determine their travel times to work, in minutes. The data for all 15 employees are shown below.

$$
\begin{array}{rrrrr}
25 & 55 & 40 & 65 & 29 \\
45 & 59 & 35 & 25 & 37 \\
52 & 30 & 8 & 40 & 55
\end{array}
$$

Determine the number of employees whose travel time is within one standard deviation of the mean.

14 The heights, in inches, of 10 high school varsity basketball players are $78,79,79,72,75,71,74,74$, 83, and 71. Find the interquartile range of this data set.

15 Ten teams competed in a cheerleading competition at a local high school. Their scores were 29, 28, $39,37,45,40,41,38,37$, and 48 . How many scores are within one population standard deviation from the mean? For these data, what is the interquartile range?

16 The following is a list of the individual points scored by all twelve members of the Webster High School basketball team at a recent game:

$$
22346791010111214
$$

Find the interquartile range for this set of data.
17 The table below shows five numbers and their frequency of occurrence.

Number	Frequency
5	9
7	5
8	8
12	8
14	8

The interquartile range for these data is
17
25
37 to 12
46 to 13

18 The table below shows the final examination scores for Mr. Spear's class last year.

Test Score	Frequency
72	1
76	1
79	4
83	5
85	7
88	5
94	3

Find the population standard deviation based on these data, to the nearest hundredth. Determine the number of students whose scores are within one population standard deviation of the mean.

19 The table below displays the number of siblings of each of the 20 students in a class.

Number of Siblings	Frequency
0	2
1	5
2	7
3	4
4	2

What is the population standard deviation, to the nearest hundredth, for this group?
11.11
21.12
31.14
41.15

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A2.S.6-7: REGRESSION

20 Samantha constructs the scatter plot below from a set of data.

Based on her scatter plot, which regression model would be most appropriate?
1 exponential
2 linear
3 logarithmic
4 power
21 The table below shows the results of an experiment involving the growth of bacteria.

Time (x) (in minutes)	1	3	5	7	9	11
Number of Bacteria (y)	2	25	81	175	310	497

Write a power regression equation for this set of data, rounding all values to three decimal places. Using this equation, predict the bacteria's growth, to the nearest integer, after 15 minutes.

22 The table below shows the number of new stores in a coffee shop chain that opened during the years 1986 through 1994.

Year	Number of New Stores
1986	14
1987	27
1988	48
1989	80
1990	110
1991	153
1992	261
1993	403
1994	681

Using $x=1$ to represent the year 1986 and y to represent the number of new stores, write the exponential regression equation for these data. Round all values to the nearest thousandth.

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

23 A population of single-celled organisms was grown in a Petri dish over a period of 16 hours. The number of organisms at a given time is recorded in the table below.

Time, hrs (x)	Number of Organisms (y)
0	25
2	36
4	52
6	68
8	85
10	104
12	142
16	260

Determine the exponential regression equation model for these data, rounding all values to the nearest ten-thousandth. Using this equation, predict the number of single-celled organisms, to the nearest whole number, at the end of the 18th hour.

24 A cup of soup is left on a countertop to cool. The table below gives the temperatures, in degrees Fahrenheit, of the soup recorded over a $10-$ minute period.

Time in Minutes (x)	Temperature in $^{\mathbf{0}} \mathbf{F}(y)$
0	180.2
2	165.8
4	146.3
6	135.4
8	127.7
10	110.5

Write an exponential regression equation for the data, rounding all values to the nearest thousandth.

25 The data collected by a biologist showing the growth of a colony of bacteria at the end of each hour are displayed in the table below.

Time, hour, (x)	Population (y)
0	250
1	330
2	580
3	800
4	1650
5	3000

Write an exponential regression equation to model these data. Round all values to the nearest thousandth. Assuming this trend continues, use this equation to estimate, to the nearest ten, the number of bacteria in the colony at the end of 7 hours.

26 The table below shows the concentration of ozone in Earth's atmosphere at different altitudes. Write the exponential regression equation that models these data, rounding all values to the nearest thousandth.

Concentration of Ozone

Altitude (x)	Ozone Units (y)
0	0.7
5	0.6
10	1.1
15	3.0
20	4.9

27 The table below shows the amount of a decaying radioactive substance that remained for selected years after 1990.

Years After $1990(x)$	0	2	5	9	14	17	19
Amount (y)	750	451	219	84	25	12	8

Write an exponential regression equation for this set of data, rounding all values to the nearest thousandth. Using this equation, determine the amount of the substance that remained in 2002, to the nearest integer.

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A2.S.8: CORRELATION COEFFICIENT

28 Which value of r represents data with a strong negative linear correlation between two variables?
$\begin{array}{ll}1 & -1.07\end{array}$
$2-0.89$
$3-0.14$
$4 \quad 0.92$
29 Which calculator output shows the strongest linear relationship between x and y ?

Lin Reg
$y=a+b x$
$a=59.026$
$b=6.767$
$1 r=.8643$
Lin Reg
$y=a+b x$
$a=.7$
$b=24.2$
$2 r=.8361$
Lin Reg
$y=a+b x$
$a=2.45$
$b=.95$
$3 \quad r=.6022$
Lin Reg
$y=a+b x$
$a=-2.9$
$b=24.1$
$4 \quad r=-.8924$

30 As shown in the table below, a person's target heart rate during exercise changes as the person gets older.

Age (years)	Target Heart Rate (beats per minute)
20	135
25	132
30	129
35	125
40	122
45	119
50	115

Which value represents the linear correlation coefficient, rounded to the nearest thousandth, between a person's age, in years, and that person's target heart rate, in beats per minute?
1 -0.999
$2-0.664$
30.998
$4 \quad 1.503$
31 The relationship between t, a student's test scores, and d, the student's success in college, is modeled by the equation $d=0.48 t+75.2$. Based on this linear regression model, the correlation coefficient could be
1 between -1 and 0
2 between 0 and 1
3 equal to -1
4 equal to 0
32 Which value of r represents data with a strong positive linear correlation between two variables?
10.89
$2 \quad 0.34$
$3 \quad 1.04$
$4 \quad 0.01$

33 Determine which set of data given below has the stronger linear relationship between x and y. Justify your choice.
Set A

\mathbf{x}	1	2	3	4	5	6
\mathbf{y}	24	30	36	51	70	86

Set B | \mathbf{x} | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| \mathbf{y} | 81 | 64 | 49 | 36 | 25 | 16 |

34 A study compared the number of years of education a person received and that person's average yearly salary. It was determined that the relationship between these two quantities was linear and the correlation coefficient was 0.91 . Which conclusion can be made based on the findings of this study?
1 There was a weak relationship.
2 There was a strong relationship.
3 There was no relationship.
4 There was an unpredictable relationship.

A2.S.5: NORMAL DISTRIBUTIONS

35 The lengths of 100 pipes have a normal distribution with a mean of 102.4 inches and a standard deviation of 0.2 inch. If one of the pipes measures exactly 102.1 inches, its length lies
1 below the $16^{\text {th }}$ percentile
2 between the $50^{\text {th }}$ and $84^{\text {th }}$ percentiles
3 between the $16^{\text {th }}$ and $50^{\text {th }}$ percentiles
4 above the $84^{\text {th }}$ percentile
36 An amateur bowler calculated his bowling average for the season. If the data are normally distributed, about how many of his 50 games were within one standard deviation of the mean?
$1 \quad 14$
$2 \quad 17$
$3 \quad 34$
448

37 Assume that the ages of first-year college students are normally distributed with a mean of 19 years and standard deviation of 1 year. To the nearest integer, find the percentage of first-year college students who are between the ages of 18 years and 20 years, inclusive. To the nearest integer, find the percentage of first-year college students who are 20 years old or older.

38 In a study of 82 video game players, the researchers found that the ages of these players were normally distributed, with a mean age of 17 years and a standard deviation of 3 years. Determine if there were 15 video game players in this study over the age of 20 . Justify your answer.

39 If the amount of time students work in any given week is normally distributed with a mean of 10 hours per week and a standard deviation of 2 hours, what is the probability a student works between 8 and 11 hours per week?
1 34.1\%
2 38.2\%
3 53.2\%
4 68.2\%
40 In a certain high school, a survey revealed the mean amount of bottled water consumed by students each day was 153 bottles with a standard deviation of 22 bottles. Assuming the survey represented a normal distribution, what is the range of the number of bottled waters that approximately 68.2% of the students drink?
1 131-164
2 131-175
3 142-164
4 142-175
41 Liz has applied to a college that requires students to score in the top 6.7% on the mathematics portion of an aptitude test. The scores on the test are approximately normally distributed with a mean score of 576 and a standard deviation of 104. What is the minimum score Liz must earn to meet this requirement?
1680
2732
3740
4784

42 In a certain school, the heights of the population of girls are normally distributed, with a mean of 63 inches and a standard deviation of 2 inches. If there are 450 girls in the school, determine how many of the girls are shorter than 60 inches. Round the answer to the nearest integer.

43 On a test that has a normal distribution of scores, a score of 57 falls one standard deviation below the mean, and a score of 81 is two standard deviations above the mean. Determine the mean score of this test.

44 The scores on a standardized exam have a mean of 82 and a standard deviation of 3.6. Assuming a normal distribution, a student's score of 91 would rank
1 below the $75^{\text {th }}$ percentile
2 between the $75^{\text {th }}$ and $85^{\text {th }}$ percentiles
3 between the $85^{\text {th }}$ and $95^{\text {th }}$ percentiles
4 above the $95^{\text {th }}$ percentile

PROBABILITY

A2.S.10: PERMUTATIONS
45 Which formula can be used to determine the total number of different eight-letter arrangements that can be formed using the letters in the word DEADLINE?
1 8!
$2 \frac{8!}{4!}$
$3 \quad \frac{8!}{2!+2!}$
$4 \quad \frac{8!}{2!\cdot 2!}$
46 The letters of any word can be rearranged. Carol believes that the number of different 9-letter arrangements of the word "TENNESSEE" is greater than the number of different 7-letter arrangements of the word "VERMONT." Is she correct? Justify your answer.

47 Find the total number of different twelve-letter arrangements that can be formed using the letters in the word PENNSYLVANIA.

48 A four-digit serial number is to be created from the digits 0 through 9 . How many of these serial numbers can be created if 0 can not be the first digit, no digit may be repeated, and the last digit must be 5 ?
1448
2504
3 2,240
4 2,520
49 How many different six-letter arrangements can be made using the letters of the word "TATTOO"?
160
290
3120
4720
50 Find the number of possible different 10 -letter arrangements using the letters of the word "STATISTICS."

51 Which expression represents the total number of different 11-letter arrangements that can be made using the letters in the word "MATHEMATICS"?
$1 \frac{11!}{3!}$
$2 \frac{11!}{2!+2!+2!}$
$3 \quad \frac{11!}{8!}$
$4 \frac{11!}{2!\cdot 2!\cdot 2!}$
52 The number of possible different 12-letter arrangements of the letters in the word "TRIGONOMETRY" is represented by
$1 \frac{12!}{3!}$
$2 \frac{12!}{6!}$
$3 \quad \frac{{ }_{12} P_{12}}{8}$
$4 \frac{{ }_{12} P_{12}}{6!}$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

53 How many different 11-letter arrangements are possible using the letters in the word
"ARRANGEMENT"?
1 2,494,800
2 4,989,600
3 19,958,400
4 39,916,800
54 What is the total number of different nine-letter arrangements that can be formed using the letters in the word "TENNESSEE"?
1 3,780
2 15,120
3 45,360
4 362,880
55 How many distinct ways can the eleven letters in the word "TALLAHASSEE" be arranged?
1 831,600
2 1,663,200
3 3,326,400
4 5,702,400

A2.S.11: COMBINATIONS

56 The principal would like to assemble a committee of 8 students from the 15 -member student council. How many different committees can be chosen?
1120
2 6,435
3 32,432,400
4 259,459,200
57 Ms. Bell's mathematics class consists of 4 sophomores, 10 juniors, and 5 seniors. How many different ways can Ms. Bell create a four-member committee of juniors if each junior has an equal chance of being selected?
1210
2 3,876
3 5,040
4 93,024
58 A blood bank needs twenty people to help with a blood drive. Twenty-five people have volunteered. Find how many different groups of twenty can be formed from the twenty-five volunteers.

59 If order does not matter, which selection of students would produce the most possible committees?
15 out of 15
25 out of 25
320 out of 25
$4 \quad 15$ out of 25
60 How many different ways can teams of four members be formed from a class of 20 students?
15
280
3 4,845
4 116,280
61 A customer will select three different toppings for a supreme pizza. If there are nine different toppings to choose from, how many different supreme pizzas can be made?
$1 \quad 12$
$2 \quad 27$
384
4504

A2.S.9: DIFFERENTIATING BETWEEN

 PERMUTATIONS AND COMBINATIONS62 Twenty different cameras will be assigned to several boxes. Three cameras will be randomly selected and assigned to box A. Which expression can be used to calculate the number of ways that three cameras can be assigned to box A ?
120 !
$2 \frac{20!}{3!}$
$3{ }_{20} C_{3}$
$4{ }_{20} P_{3}$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

63 Three marbles are to be drawn at random, without replacement, from a bag containing 15 red marbles, 10 blue marbles, and 5 white marbles. Which expression can be used to calculate the probability of drawing 2 red marbles and 1 white marble from the bag?
$1 \frac{{ }_{15} C_{2} \cdot{ }_{5} C_{1}}{{ }_{30} C_{3}}$
$2 \frac{{ }_{15} P_{2} \cdot{ }_{5} P_{1}}{{ }_{30} C_{3}}$
$3 \frac{{ }_{15} C_{2} \cdot{ }_{5} C_{1}}{{ }_{30} P_{3}}$
$4 \frac{{ }_{15} P_{2} \cdot{ }_{5} P_{1}}{{ }_{30} P_{3}}$
64 There are eight people in a tennis club. Which expression can be used to find the number of different ways they can place first, second, and third in a tournament?
$1{ }_{8} P_{3}$
$2{ }_{8} C_{3}$
$3{ }_{8} P_{5}$
$4{ }_{8} C_{5}$
65 Which problem involves evaluating ${ }_{6} P_{4}$?
1 How many different four-digit ID numbers can be formed using $1,2,3,4,5$, and 6 without repetition?
2 How many different subcommittees of four can be chosen from a committee having six members?
3 How many different outfits can be made using six shirts and four pairs of pants?
4 How many different ways can one boy and one girl be selected from a group of four boys and six girls?

66 A math club has 30 boys and 20 girls. Which expression represents the total number of different 5 -member teams, consisting of 3 boys and 2 girls, that can be formed?
$1{ }_{30} P_{3} \cdot{ }_{20} P_{2}$
$2{ }_{30} C_{3} \cdot{ }_{20} C_{2}$
$3{ }_{30} P_{3}+{ }_{20} P_{2}$
$4{ }_{30} C_{3}+{ }_{20} C_{2}$

67 A video-streaming service can choose from six half-hour shows and four one-hour shows. Which expression could be used to calculate the number of different ways the service can choose four half-hour shows and two one-hour shows?
$1{ }_{6} P_{4} \cdot{ }_{4} P_{2}$
$2{ }_{6} P_{4}+{ }_{4} P_{2}$
$3{ }_{6} C_{4} \cdot{ }_{4} C_{2}$
$4{ }_{6} C_{4}+{ }_{4} C_{2}$
68 Six people met at a dinner party, and each person shook hands once with everyone there. Which expression represents the total number of handshakes?
1 6!
2 6! $\cdot 2$!
$3 \quad \frac{6!}{2!}$
$4 \quad \frac{6!}{4!\cdot 2!}$

A2.S.12: SAMPLE SPACE

69 A committee of 5 members is to be randomly selected from a group of 9 teachers and 20 students. Determine how many different committees can be formed if 2 members must be teachers and 3 members must be students.

70 A school math team consists of three juniors and five seniors. How many different groups can be formed that consist of one junior and two seniors?
113
$2 \quad 15$
$3 \quad 30$
460

A2.S.13: GEOMETRIC PROBABILITY

71 A dartboard is shown in the diagram below. The two lines intersect at the center of the circle, and the central angle in sector 2 measures $\frac{2 \pi}{3}$.

If darts thrown at this board are equally likely to land anywhere on the board, what is the probability that a dart that hits the board will land in either sector 1 or sector 3 ?
$1 \frac{1}{6}$
$2 \quad \frac{1}{3}$
$3 \quad \frac{1}{2}$
$4 \quad \frac{2}{3}$

A2.S.15: BINOMIAL PROBABILITY

72 The members of a men's club have a choice of wearing black or red vests to their club meetings. A study done over a period of many years determined that the percentage of black vests worn is 60%. If there are 10 men at a club meeting on a given night, what is the probability, to the nearest thousandth, that at least 8 of the vests worn will be black?

73 A study shows that 35% of the fish caught in a local lake had high levels of mercury. Suppose that 10 fish were caught from this lake. Find, to the nearest tenth of a percent, the probability that at least 8 of the 10 fish caught did not contain high levels of mercury.

74 The probability that the Stormville Sluggers will win a baseball game is $\frac{2}{3}$. Determine the probability, to the nearest thousandth, that the Stormville Sluggers will win at least 6 of their next 8 games.

75 The probability that a professional baseball player will get a hit is $\frac{1}{3}$. Calculate the exact probability that he will get at least 3 hits in 5 attempts.

76 A spinner is divided into eight equal sections. Five sections are red and three are green. If the spinner is spun three times, what is the probability that it lands on red exactly twice?
$1 \quad \frac{25}{64}$
$2 \quad \frac{45}{512}$
$3 \quad \frac{75}{512}$
$4 \quad \frac{225}{512}$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

77 A study finds that 80% of the local high school students text while doing homework. Ten students are selected at random from the local high school. Which expression would be part of the process used to determine the probability that, at most, 7 of the 10 students text while doing homework?

$$
\begin{array}{ll}
1 & { }_{10} C_{6}\left(\frac{4}{5}\right)^{6}\left(\frac{1}{5}\right)^{4} \\
2 & { }_{10} C_{7}\left(\frac{4}{5}\right)^{10}\left(\frac{1}{5}\right)^{7} \\
3 & { }_{10} C_{8}\left(\frac{7}{10}\right)^{10}\left(\frac{3}{10}\right)^{2} \\
4 & { }_{10} C_{9}\left(\frac{7}{10}\right)^{9}\left(\frac{3}{10}\right)^{1}
\end{array}
$$

78 On a multiple-choice test, Abby randomly guesses on all seven questions. Each question has four choices. Find the probability, to the nearest thousandth, that Abby gets exactly three questions correct.

79 Because Sam's backyard gets very little sunlight, the probability that a geranium planted there will flower is 0.28 . Sam planted five geraniums. Determine the probability, to the nearest thousandth, that at least four geraniums will flower.

80 Whenever Sara rents a movie, the probability that it is a horror movie is 0.57 . Of the next five movies she rents, determine the probability, to the nearest hundredth, that no more than two of these rentals are horror movies.

81 The probability of Ashley being the catcher in a softball game is $\frac{2}{5}$. Calculate the exact probability that she will be the catcher in exactly five of the next six games.

82 The probability that Kay and Joseph Dowling will have a redheaded child is 1 out of 4 . If the Dowlings plan to have three children, what is the exact probability that only one child will have red hair?

83 The probability of winning a game is $\frac{2}{3}$.
Determine the probability, expressed as a fraction, of winning exactly four games if seven games are played.

ABSOLUTE VALUE
 A2.A.1: ABSOLUTE VALUE EQUATIONS AND INEQUALITIES

84 What is the solution set of the equation
$|4 a+6|-4 a=-10$?
$1 \varnothing$
$2\{0\}$
$3\left\{\frac{1}{2}\right\}$
$4\left\{0, \frac{1}{2}\right\}$
85 What is the solution set of $|x-2|=3 x+10$?
1 \{ \}
2 \{-2\}
3 \{-6\}
$4 \quad\{-2,-6\}$
86 Which graph represents the solution set of $|6 x-7| \leq 5 ?$

87 Graph the inequality $-3|6-x|<-15$ for x. Graph the solution on the line below.

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

88 Which graph represents the solution set of

89 Determine the solution of the inequality $|3-2 x| \geq 7$. [The use of the grid below is optional.]

90 What is the graph of the solution set of

91 Solve $|-4 x+5|<13$ algebraically for x.
92 Solve $|2 x-3|>5$ algebraically.

93 Solve algebraically for x : $|3 x-5|-x<17$

QUADRATICS

A2.A.20-21: ROOTS OF QUADRATICS
94 Find the sum and product of the roots of the equation $5 x^{2}+11 x-3=0$.

95 What are the sum and product of the roots of the equation $6 x^{2}-4 x-12=0$?
1 sum $=-\frac{2}{3} ;$ product $=-2$
2 sum $=\frac{2}{3} ;$ product $=-2$
3 sum $=-2 ;$ product $=\frac{2}{3}$
4 sum $=-2 ;$ product $=-\frac{2}{3}$
96 Determine the sum and the product of the roots of $3 x^{2}=11 x-6$.

97 Determine the sum and the product of the roots of the equation $12 x^{2}+x-6=0$.

98 What is the product of the roots of the quadratic equation $2 x^{2}-7 x=5$?
15
$2 \quad \frac{5}{2}$
$3-5$
$4-\frac{5}{2}$
99 What is the product of the roots of $4 x^{2}-5 x=3$?
$1 \quad \frac{3}{4}$
$2 \quad \frac{5}{4}$
$3 \quad-\frac{3}{4}$
$4-\frac{5}{4}$
100 Given the equation $3 x^{2}+2 x+k=0$, state the sum and product of the roots.

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

101 Which statement about the equation
$3 x^{2}+9 x-12=0$ is true?
1 The product of the roots is -12 .
2 The product of the roots is -4 .
3 The sum of the roots is 3.
4 The sum of the roots is -9 .
102 For which equation does the sum of the roots equal $\frac{3}{4}$ and the product of the roots equal -2 ?
$14 x^{2}-8 x+3=0$
$2 \quad 4 x^{2}+8 x+3=0$
$3 \quad 4 x^{2}-3 x-8=0$
$4 \quad 4 x^{2}+3 x-2=0$
103 For which equation does the sum of the roots equal -3 and the product of the roots equal 2 ?
$1 x^{2}+2 x-3=0$
$2 x^{2}-3 x+2=0$
$3 \quad 2 x^{2}+6 x+4=0$
$4 \quad 2 x^{2}-6 x+4=0$
104 Write a quadratic equation such that the sum of its roots is 6 and the product of its roots is -27 .

105 Which equation has roots with the sum equal to $\frac{9}{4}$ and the product equal to $\frac{3}{4}$?
$14 x^{2}+9 x+3=0$
$24 x^{2}+9 x-3=0$
$3 \quad 4 x^{2}-9 x+3=0$
$4 \quad 4 x^{2}-9 x-3=0$
106 What is the product of the roots of $x^{2}-4 x+k=0$ if one of the roots is 7 ?
121
$2-11$
$3-21$
$4 \quad-77$

A2.A.7: FACTORING POLYNOMIALS

107 Factored completely, the expression $6 x-x^{3}-x^{2}$ is equivalent to
$1 \quad x(x+3)(x-2)$
$2 x(x-3)(x+2)$
$3-x(x-3)(x+2)$
$4-x(x+3)(x-2)$
108 Factored completely, the expression $12 x^{4}+10 x^{3}-12 x^{2}$ is equivalent to
$1 x^{2}(4 x+6)(3 x-2)$
$22\left(2 x^{2}+3 x\right)\left(3 x^{2}-2 x\right)$
$3 \quad 2 x^{2}(2 x-3)(3 x+2)$
$42 x^{2}(2 x+3)(3 x-2)$
109 Factor completely: $10 a x^{2}-23 a x-5 a$

A2.A.7: FACTORING THE DIFFERENCE OF PERFECT SQUARES

110 Factor the expression $12 t^{8}-75 t^{4}$ completely.

A2.A.7: FACTORING BY GROUPING

111 When factored completely, $x^{3}+3 x^{2}-4 x-12$ equals
$1(x+2)(x-2)(x-3)$
$2(x+2)(x-2)(x+3)$
$3\left(x^{2}-4\right)(x+3)$
$4\left(x^{2}-4\right)(x-3)$
112 When factored completely, the expression $3 x^{3}-5 x^{2}-48 x+80$ is equivalent to
$1\left(x^{2}-16\right)(3 x-5)$
$2\left(x^{2}+16\right)(3 x-5)(3 x+5)$
$3(x+4)(x-4)(3 x-5)$
$4(x+4)(x-4)(3 x-5)(3 x-5)$
113 The expression $x^{2}(x+2)-(x+2)$ is equivalent to
$2 x^{2}-1$
$3 x^{3}+2 x^{2}-x+2$
$4(x+1)(x-1)(x+2)$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

114 When factored completely, the expression $x^{3}-2 x^{2}-9 x+18$ is equivalent to
$1\left(x^{2}-9\right)(x-2)$
$2(x-2)(x-3)(x+3)$
$3(x-2)^{2}(x-3)(x+3)$
$4(x-3)^{2}(x-2)$
115 Factor completely: $x^{3}-6 x^{2}-25 x+150$

A2.A.25: QUADRATIC FORMULA

116 The solutions of the equation $y^{2}-3 y=9$ are
$1 \frac{3 \pm 3 i \sqrt{3}}{2}$
$2 \frac{3 \pm 3 i \sqrt{5}}{2}$
$3 \frac{-3 \pm 3 \sqrt{5}}{2}$
$4 \frac{3 \pm 3 \sqrt{5}}{2}$
117 The roots of the equation $2 x^{2}+7 x-3=0$ are
$1-\frac{1}{2}$ and -3
$2 \quad \frac{1}{2}$ and 3
$3 \frac{-7 \pm \sqrt{73}}{4}$
$4 \quad \frac{7 \pm \sqrt{73}}{4}$
118 Solve the equation $6 x^{2}-2 x-3=0$ and express the answer in simplest radical form.

119 A cliff diver on a Caribbean island jumps from a height of 105 feet, with an initial upward velocity of 5 feet per second. An equation that models the height, $\mathrm{h}(t)$, above the water, in feet, of the diver in time elapsed, t, in seconds, is
$h(t)=-16 t^{2}+5 t+105$. How many seconds, to the nearest hundredth, does it take the diver to fall 45 feet below his starting point?
11.45
21.84
$3 \quad 2.10$
$4 \quad 2.72$
120 A homeowner wants to increase the size of a rectangular deck that now measures 14 feet by 22 feet. The building code allows for a deck to have a maximum area of 800 square feet. If the length and width are increased by the same number of feet, find the maximum number of whole feet each dimension can be increased and not exceed the building code. [Only an algebraic solution can receive full credit.]

A2.A.2: USING THE DISCRIMINANT

121 Use the discriminant to determine all values of k that would result in the equation $x^{2}-k x+4=0$ having equal roots.

122 The roots of the equation $9 x^{2}+3 x-4=0$ are
1 imaginary
2 real, rational, and equal
3 real, rational, and unequal
4 real, irrational, and unequal
123 The roots of the equation $x^{2}-10 x+25=0$ are 1 imaginary 2 real and irrational 3 real, rational, and equal
4 real, rational, and unequal
124 The discriminant of a quadratic equation is 24 . The roots are
1 imaginary
2 real, rational, and equal
3 real, rational, and unequal
4 real, irrational, and unequal

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

125 The roots of the equation $2 x^{2}+4=9 x$ are
1 real, rational, and equal
2 real, rational, and unequal
3 real, irrational, and unequal
4 imaginary
126 For which value of k will the roots of the equation $2 x^{2}-5 x+k=0$ be real and rational numbers?
11
$2-5$
30
$4 \quad 4$
127 Which equation has real, rational, and unequal roots?
$1 x^{2}+10 x+25=0$
$2 x^{2}-5 x+4=0$
$3 \quad x^{2}-3 x+1=0$
$4 \quad x^{2}-2 x+5=0$
128 The roots of $3 x^{2}+x=14$ are
1 imaginary
2 real, rational, and equal
3 real, rational, and unequal
4 real, irrational, and unequal

A2.A.24: COMPLETING THE SQUARE

129 Solve $2 x^{2}-12 x+4=0$ by completing the square, expressing the result in simplest radical form.

130 If $x^{2}+2=6 x$ is solved by completing the square, an intermediate step would be
$1 \quad(x+3)^{2}=7$
$2 \quad(x-3)^{2}=7$
$3(x-3)^{2}=11$
$4(x-6)^{2}=34$

131 Brian correctly used a method of completing the square to solve the equation $x^{2}+7 x-11=0$. Brian's first step was to rewrite the equation as $x^{2}+7 x=11$. He then added a number to both sides of the equation. Which number did he add?
$1 \quad \frac{7}{2}$
$2 \quad \frac{49}{4}$
$3 \quad \frac{49}{2}$
$4 \quad 49$
132 Max solves a quadratic equation by completing the square. He shows a correct step:

$$
(x+2)^{2}=-9
$$

What are the solutions to his equation?
$12 \pm 3 i$
$2-2 \pm 3 i$
3 3 $\pm 2 i$
$4-3 \pm 2 i$
133 Which step can be used when solving $x^{2}-6 x-25=0$ by completing the square?
$1 x^{2}-6 x+9=25+9$
$2 x^{2}-6 x-9=25-9$
$3 x^{2}-6 x+36=25+36$
$4 x^{2}-6 x-36=25-36$
134 If $x^{2}=12 x-7$ is solved by completing the square, one of the steps in the process is
$1(x-6)^{2}=-43$
$2(x+6)^{2}=-43$
$3(x-6)^{2}=29$
$4 \quad(x+6)^{2}=29$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

135 Which value of k will make $x^{2}-\frac{1}{4} x+k$ a perfect square trinomial?
$1 \frac{1}{64}$
$2 \frac{1}{16}$
$3 \frac{1}{8}$
$4 \quad \frac{1}{4}$

A2.A.4: QUADRATIC INEQUALITIES

136 Which graph best represents the inequality $y+6 \geq x^{2}-x$?

1

2

3

4

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

137 The solution set of the inequality $x^{2}-3 x>10$ is
$1 \quad\{x \mid-2<x<5\}$
$2\{x \mid 0<x<3\}$
$3\{x \mid x<-2$ or $x>5\}$
$4\{x \mid x<-5$ or $x>2\}$
138 Find the solution of the inequality $x^{2}-4 x>5$, algebraically.

139 What is the solution of the inequality $9-x^{2}<0$?
$1 \quad\{x \mid-3<x<3\}$
$2\{x \mid x>3$ or $x<-3\}$
3 \{x|x>3\}
$4 \quad\{x \mid x<-3\}$

SYSTEMS

A2.A.3: QUADRATIC-LINEAR SYSTEMS
140 Which values of x are in the solution set of the following system of equations?

$$
\begin{aligned}
& y=3 x-6 \\
& y=x^{2}-x-6
\end{aligned}
$$

$1 \quad 0,-4$
2 0, 4
3 6, - 2
$4-6,2$
141 Solve the following systems of equations algebraically: $5=y-x$

$$
4 x^{2}=-17 x+y+4
$$

142 Which ordered pair is a solution of the system of equations shown below? $x+y=5$

$$
(x+3)^{2}+(y-3)^{2}=53
$$

$1(2,3)$
$2(5,0)$
$3 \quad(-5,10)$
$4(-4,9)$

143 Which ordered pair is in the solution set of the system of equations shown below?

$$
\begin{array}{r}
y^{2}-x^{2}+32=0 \\
3 y-x=0 \tag{2,6}
\end{array}
$$

$3(-1,-3)$
$4(-6,-2)$
144 Determine algebraically the x-coordinate of all points where the graphs of $x y=10$ and $y=x+3$ intersect.

POWERS

A2.N.3: OPERATIONS WITH POLYNOMIALS
145 Express $\left(\frac{2}{3} x-1\right)^{2}$ as a trinomial.
146 When $\frac{3}{2} x^{2}-\frac{1}{4} x-4$ is subtracted from $\frac{5}{2} x^{2}-\frac{3}{4} x+1$, the difference is
$1-x^{2}+\frac{1}{2} x-5$
$2 x^{2}-\frac{1}{2} x+5$
$3-x^{2}-x-3$
$4 \quad x^{2}-x-3$
147 Express the product of $\left(\frac{1}{2} y^{2}-\frac{1}{3} y\right)$ and $\left(12 y+\frac{3}{5}\right)$ as a trinomial.

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

148 What is the product of $\left(\frac{x}{4}-\frac{1}{3}\right)$ and $\left(\frac{x}{4}+\frac{1}{3}\right)$?
$1 \quad \frac{x^{2}}{8}-\frac{1}{9}$
$2 \frac{x^{2}}{16}-\frac{1}{9}$
$3 \quad \frac{x^{2}}{8}-\frac{x}{6}-\frac{1}{9}$
$4 \quad \frac{x^{2}}{16}-\frac{x}{6}-\frac{1}{9}$
149 What is the product of $\left(\frac{2}{5} x-\frac{3}{4} y^{2}\right)$ and
$\left(\frac{2}{5} x+\frac{3}{4} y^{2}\right)$?
$1 \frac{4}{25} x^{2}-\frac{9}{16} y^{4}$
$2 \quad \frac{4}{25} x-\frac{9}{16} y^{2}$
$3 \quad \frac{2}{5} x^{2}-\frac{3}{4} y^{4}$
$4 \frac{4}{5} x$
150 When $x^{2}+3 x-4$ is subtracted from $x^{3}+3 x^{2}-2 x$, the difference is
$1 x^{3}+2 x^{2}-5 x+4$
$2 x^{3}+2 x^{2}+x-4$
$3-x^{3}+4 x^{2}+x-4$
$4-x^{3}-2 x^{2}+5 x+4$
151 The expression $(2-3 \sqrt{x})^{2}$ is equivalent to

$$
\begin{array}{ll}
1 & 4-9 x \\
2 & 4-3 x \\
3 & 4-12 \sqrt{x}+9 x \\
4 & 4-12 \sqrt{x}+6 x
\end{array}
$$

152 The expression $\left(\frac{3}{2} x+1\right)\left(\frac{3}{2} x-1\right)-\left(\frac{3}{2} x-1\right)^{2}$ is equivalent to
10
$2-3 x$
$3 \quad \frac{3}{4} x-2$
$43 x-2$
153 When $\frac{7}{8} x^{2}-\frac{3}{4} x$ is subtracted from $\frac{5}{8} x^{2}-\frac{1}{4} x+2$, the difference is
$1-\frac{1}{4} x^{2}-x+2$
$2 \frac{1}{4} x^{2}-x+2$
$3-\frac{1}{4} x^{2}+\frac{1}{2} x+2$
$4 \frac{1}{4} x^{2}-\frac{1}{2} x-2$

A2.N.1, A.8-9: NEGATIVE AND FRACTIONAL EXPONENTS

154 If $a=3$ and $b=-2$, what is the value of the expression $\frac{a^{-2}}{b^{-3}}$?
$1-\frac{9}{8}$
$2-1$
$3-\frac{8}{9}$
$4 \quad \frac{8}{9}$
155 If n is a negative integer, then which statement is always true?
$16 n^{-2}<4 n^{-1}$
$2 \quad \frac{n}{4}>-6 n^{-1}$
$36 n^{-1}<4 n^{-1}$
$4 \quad 4 n^{-1}>(6 n)^{-1}$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

156 What is the value of $4 x^{\frac{1}{2}}+x^{0}+x^{-\frac{1}{4}}$ when $x=16$?
$1 \quad 7 \frac{1}{2}$
$29 \frac{1}{2}$
$316 \frac{1}{2}$
$4 \quad 17 \frac{1}{2}$
157 When simplified, the expression $\left(\frac{w^{-5}}{w^{-9}}\right)^{\frac{1}{2}}$ is equivalent to
$1 w^{-7}$
$2 w^{2}$
$3 w^{7}$
$4 \quad w^{14}$
158 Which expression is equivalent to $\left(9 x^{2} y^{6}\right)^{-\frac{1}{2}}$?
$1 \frac{1}{3 x y^{3}}$
$23 x y^{3}$
$3 \frac{3}{x y^{3}}$
$4 \frac{x y^{3}}{3}$
159 Which expression is equivalent to $\left(3 x^{2}\right)^{-1}$?
$1 \frac{1}{3 x^{2}}$
$2-3 x^{2}$
$3 \frac{1}{9 x^{2}}$
$4-9 x^{2}$

160 The expression $(2 a)^{-4}$ is equivalent to
$1-8 a^{4}$
$2 \frac{16}{a^{4}}$
$3-\frac{2}{a^{4}}$
$4 \quad \frac{1}{16 a^{4}}$
161 The expression $\frac{a^{2} b^{-3}}{a^{-4} b^{2}}$ is equivalent to
$1 \frac{a^{6}}{b^{5}}$
$2 \quad \frac{b^{5}}{a^{6}}$
$3 \quad \frac{a^{2}}{b}$
$4 \quad a^{-2} b^{-1}$
162 When $x^{-1}-1$ is divided by $x-1$, the quotient is $1-1$
$2-\frac{1}{x}$
$3 \frac{1}{x^{2}}$
$4 \frac{1}{(x-1)^{2}}$
163 Simplify the expression $\frac{3 x^{-4} y^{5}}{\left(2 x^{3} y^{-7}\right)^{-2}}$ and write the answer using only positive exponents.

164 When $x^{-1}+1$ is divided by $x+1$, the quotient equals
11
$2 \frac{1}{x}$
$3 x$
$4-\frac{1}{x}$

165 Which expression is equivalent to $\frac{x^{-1} y^{4}}{3 x^{-5} y^{-1}}$?
$1 \frac{x^{4} y^{5}}{3}$
$2 \frac{x^{5} y^{4}}{3}$
$33 x^{4} y^{5}$
$4 \frac{y^{4}}{3 x^{5}}$
166 Which expression is equivalent to $\frac{2 x^{-2} y^{-2}}{4 y^{-5}}$?
$1 \frac{y^{3}}{2 x^{2}}$
$2 \frac{2 y^{3}}{x^{2}}$
$3 \frac{2 x^{2}}{y^{3}}$
$4 \frac{x^{2}}{2 y^{3}}$

167 Which expression is equivalent to $\left(5^{-2} a^{3} b^{-4}\right)^{-1}$?
$1 \frac{10 b^{4}}{a^{3}}$
$2 \frac{25 b^{4}}{a^{3}}$
$3 \frac{a^{3}}{25 b^{4}}$
$4 \frac{a^{2}}{125 b^{5}}$

168 Which expression is equivalent to $\frac{x^{-1} y^{2}}{x^{2} y^{-4}}$?
$1 \frac{x}{y^{2}}$
$2 \frac{x^{3}}{y^{6}}$
$3 \frac{y^{2}}{x}$
$4 \frac{y^{6}}{x^{3}}$

A2.A.12: EVALUATING EXPONENTIAL EXPRESSIONS

169 Matt places \$1,200 in an investment account earning an annual rate of 6.5%, compounded continuously. Using the formula $V=P e^{r t}$, where V is the value of the account in t years, P is the principal initially invested, e is the base of a natural logarithm, and r is the rate of interest, determine the amount of money, to the nearest cent, that Matt will have in the account after 10 years.

170 Evaluate $e^{x \ln y}$ when $x=3$ and $y=2$.

171 The formula for continuously compounded interest is $A=P e^{r t}$, where A is the amount of money in the account, P is the initial investment, r is the interest rate, and t is the time in years. Using the formula, determine, to the nearest dollar, the amount in the account after 8 years if $\$ 750$ is invested at an annual rate of 3%.

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

172 If \$5000 is invested at a rate of 3\% interest compounded quarterly, what is the value of the investment in 5 years? (Use the formula
$A=P\left(1+\frac{r}{n}\right)^{n t}$, where A is the amount accrued, P
is the principal, r is the interest rate, n is the number of times per year the money is compounded, and t is the length of time, in years.)
1 \$5190.33
$2 \quad \$ 5796.37$
$3 \quad \$ 5805.92$
$4 \quad \$ 5808.08$
173 The formula to determine continuously
compounded interest is $A=P e^{r t}$, where A is the amount of money in the account, P is the initial investment, r is the interest rate, and t is the time, in years. Which equation could be used to determine the value of an account with an $\$ 18,000$ initial investment, at an interest rate of 1.25% for 24 months?
$1 A=18,000 e^{1.25 \bullet 2}$
$2 A=18,000 e^{1.25 \cdot 24}$
$3 A=18,000 e^{0.0125 \cdot 2}$
$4 \quad A=18,000 e^{0.0125 \cdot 24}$
174 A population, $\mathrm{p}(x)$, of wild turkeys in a certain area is represented by the function $\mathrm{p}(x)=17(1.15)^{2 x}$, where x is the number of years since 2010. How many more turkeys will be in the population for the year 2015 than 2010?
146
249
351
468

175 Yusef deposits \$50 into a savings account that pays 3.25% interest compounded quarterly. The amount, A, in his account can be determined by the formula $A=P\left(1+\frac{r}{n}\right)^{n t}$, where P is the initial amount invested, r is the interest rate, n is the number of times per year the money is compounded, and t is the number of years for which the money is invested. What will his investment be worth in 12 years if he makes no other deposits or withdrawals?
$1 \quad \$ 55.10$
2 \$73.73
$3 \quad \$ 232.11$
$4 \quad \$ 619.74$

A2.A.18: EVALUATING LOGARITHMIC EXPRESSIONS

176 The expression $\log _{8} 64$ is equivalent to
18
$2 \quad 2$
$3 \quad \frac{1}{2}$
$4 \frac{1}{8}$
177 The expression $\log _{5}\left(\frac{1}{25}\right)$ is equivalent to
$1 \quad \frac{1}{2}$
22
$3-\frac{1}{2}$
4 -2

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A2.A.53: GRAPHING EXPONENTIAL FUNCTIONS

178 The graph of the equation $y=\left(\frac{1}{2}\right)^{x}$ has an asymptote. On the grid below, sketch the graph of $y=\left(\frac{1}{2}\right)^{x}$ and write the equation of this asymptote.

179 On the axes below, for $-2 \leq x \leq 2$, graph $y=2^{x+1}-3$.

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

180 An investment is earning 5\% interest compounded quarterly. The equation represents the total amount of money, A, where P is the original investment, r is the interest rate, t is the number of years, and n represents the number of times per year the money earns interest. Which graph could represent this investment over at least 50 years?

1

2

3

4

A2.A.54: GRAPHING LOGARITHMIC FUNCTIONS

181 If a function is defined by the equation $\mathrm{f}(x)=4^{x}$, which graph represents the inverse of this function?

1

2

3

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

182 Which graph represents the function $\log _{2} x=y$?

183 Which sketch shows the inverse of $y=a^{x}$, where $a>1$?

1

A2.A.19: PROPERTIES OF LOGARITHMS

184 The expression $2 \log x-(3 \log y+\log z)$ is equivalent to
$1 \log \frac{x^{2}}{y^{3} z}$
$2 \log \frac{x^{2} z}{y^{3}}$
$3 \quad \log \frac{2 x}{3 y z}$
$4 \quad \log \frac{2 x z}{3 y}$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

185 If $r=\sqrt[3]{\frac{A^{2} B}{C}}$, then $\log r$ can be represented by
$1 \frac{1}{6} \log A+\frac{1}{3} \log B-\log C$
$23\left(\log A^{2}+\log B-\log C\right)$
$3 \quad \frac{1}{3} \log \left(A^{2}+B\right)-C$
$4 \frac{2}{3} \log A+\frac{1}{3} \log B-\frac{1}{3} \log C$
186 If $\log x^{2}-\log 2 a=\log 3 a$, then $\log x$ expressed in terms of $\log a$ is equivalent to
$1 \quad \frac{1}{2} \log 5 a$
$2 \frac{1}{2} \log 6+\log a$
$3 \log 6+\log a$
$4 \log 6+2 \log a$
187 If $\log _{b} x=3 \log _{b} p-\left(2 \log _{b} t+\frac{1}{2} \log _{b} r\right)$, then the value of x is
$1 \frac{p^{3}}{\sqrt{t^{2} r}}$
$2 p^{3} t^{2} r^{\frac{1}{2}}$
$3 \frac{p^{3} t^{2}}{\sqrt{r}}$
$4 \frac{p^{3}}{t^{2} \sqrt{r}}$
188 If $\log 2=a$ and $\log 3=b$, the expression $\log \frac{9}{20}$ is equivalent to
$1 \quad 2 b-a+1$
$2 \quad 2 b-a-1$
$3 \quad b^{2}-a+10$
$4 \quad \frac{2 b}{a+1}$

189 The expression $\log 4 m^{2}$ is equivalent to
$1 \quad 2(\log 4+\log m)$
$2 \quad 2 \log 4+\log m$
$3 \log 4+2 \log m$
$4 \quad \log 16+2 \log m$
190 If $2 x^{3}=y$, then $\log y$ equals
$1 \log (2 x)+\log 3$
$23 \log (2 x)$
$3 \quad 3 \log 2+3 \log x$
$4 \log 2+3 \log x$
191 If $\log x=2 \log a+\log b$, then x equals
$1 \quad a^{2} b$
$22 a b$
$3 \quad a^{2}+b$
$4 \quad 2 a+b$

A2.A.28: LOGARITHMIC EQUATIONS

192 What is the solution of the equation $2 \log _{4}(5 x)=3$?
16.4
$2 \quad 2.56$
$3 \frac{9}{5}$
$4 \frac{8}{5}$
193 Solve algebraically for $x: \log _{x+3} \frac{x^{3}+x-2}{x}=2$

194 The temperature, T, of a given cup of hot chocolate after it has been cooling for t minutes can best be modeled by the function below, where T_{0} is the temperature of the room and k is a constant.

$$
\ln \left(T-T_{0}\right)=-k t+4.718
$$

A cup of hot chocolate is placed in a room that has a temperature of 68°. After 3 minutes, the temperature of the hot chocolate is 150°. Compute the value of k to the nearest thousandth. [Only an algebraic solution can receive full credit.] Using this value of k, find the temperature, T, of this cup of hot chocolate if it has been sitting in this room for a total of 10 minutes. Express your answer to the nearest degree. [Only an algebraic solution can receive full credit.]

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

195 What is the value of x in the equation $\log _{5} x=4$?
$1 \quad 1.16$
20
3625
4 1,024
196 If $\log _{4} x=2.5$ and $\log _{y} 125=-\frac{3}{2}$, find the numerical value of $\frac{x}{y}$, in simplest form.

197 Solve algebraically for all values of x :
$\log _{(x+4)}(17 x-4)=2$

198 Solve algebraically for x : $\log _{27}(2 x-1)=\frac{4}{3}$
199 Solve algebraically for all values of x : $\log _{(x+3)}(2 x+3)+\log _{(x+3)}(x+5)=2$

200 Solve algebraically for x : $\log _{5 x-1} 4=\frac{1}{3}$
201 The equation $\log _{a} x=y$ where $x>0$ and $a>1$ is equivalent to
$1 \quad x^{y}=a$
$2 y^{a}=x$
$3 a^{y}=x$
$4 \quad a^{x}=y$
202 If $\log _{(x+1)} 64=3$, find the value of x.
203 Solve algebraically, to the nearest hundredth, for all values of x :
$\log _{2}\left(x^{2}-7 x+12\right)-\log _{2}(2 x-10)=3$

A2.A.6, 27: EXPONENTIAL EQUATIONS

204 Akeem invests $\$ 25,000$ in an account that pays 4.75\% annual interest compounded continuously. Using the formula $A=P e^{r t}$, where $A=$ the amount in the account after t years, $P=$ principal invested, and $r=$ the annual interest rate, how many years, to the nearest tenth, will it take for Akeem's investment to triple?
110.0
$2 \quad 14.6$
323.1
$4 \quad 24.0$
205 A population of rabbits doubles every 60 days according to the formula $P=10(2)^{\frac{t}{60}}$, where P is the population of rabbits on day t. What is the value of t when the population is 320 ?
1240
2300
3660
4960
206 The number of bacteria present in a Petri dish can be modeled by the function $N=50 e^{3 t}$, where N is the number of bacteria present in the Petri dish after t hours. Using this model, determine, to the nearest hundredth, the number of hours it will take for N to reach 30,700.

207 Susie invests \$500 in an account that is compounded continuously at an annual interest rate of 5%, according to the formula $A=P e^{r t}$, where A is the amount accrued, P is the principal, r is the rate of interest, and t is the time, in years.
Approximately how many years will it take for Susie's money to double?

1	1.4
2	6.0
3	13.9
4	14.7

26.0
414.7

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

208 The solution set of $4^{x^{2}+4 x}=2^{-6}$ is
1 \{1,3\}
2 \{-1,3\}
3 \{-1,-3\}
4 \{1,-3\}
209 What is the value of x in the equation
$9^{3 x+1}=27^{x+2}$?
11
$2 \quad \frac{1}{3}$
$3 \quad \frac{1}{2}$
$4 \quad \frac{4}{3}$
210 Solve algebraically for x : $16^{2 x+3}=64^{x+2}$
211 The value of x in the equation $4^{2 x+5}=8^{3 x}$ is
11
22
35
$4-10$
212 Solve algebraically for all values of x :
$81^{x^{3}+2 x^{2}}=27^{\frac{5 x}{3}}$
213 Which value of k satisfies the equation
$8^{3 k+4}=4^{2 k-1}$?
1 -1
$2-\frac{9}{4}$
$3-2$
$4-\frac{14}{5}$
214 Solve $e^{4 x}=12$ algebraically for x, rounded to the nearest hundredth.

215 Solve algebraically for $x: 5^{4 x}=125^{x-1}$
216 Solve for x : $\frac{1}{16}=2^{3 x-1}$

A2.A.36: BINOMIAL EXPANSIONS

217 What is the fourth term in the expansion of $(3 x-2)^{5}$?
$1-720 x^{2}$
$2-240 x$
$3720 x^{2}$
$4 \quad 1,080 x^{3}$
218 Write the binomial expansion of $(2 x-1)^{5}$ as a polynomial in simplest form.

219 What is the coefficient of the fourth term in the expansion of $(a-4 b)^{9}$?
$1-5,376$
$2-336$
3336
4 5,376
220 Which expression represents the third term in the expansion of $\left(2 x^{4}-y\right)^{3}$?
$1-y^{3}$
$2-6 x^{4} y^{2}$
$36 x^{4} y^{2}$
$42 x^{4} y^{2}$
221 What is the middle term in the expansion of
$\left(\frac{x}{2}-2 y\right)^{6}$?
$120 x^{3} y^{3}$
$2-\frac{15}{4} x^{4} y^{2}$
$3-20 x^{3} y^{3}$
$4 \quad \frac{15}{4} x^{4} y^{2}$
222 What is the fourth term in the binomial expansion $(x-2)^{8}$?
$1448 x^{5}$
$2448 x^{4}$
$3-448 x^{5}$
$4-448 x^{4}$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

223 What is the third term in the expansion of
$(2 x-3)^{5}$?
$1720 x^{3}$
$2180 x^{3}$
$3-540 x^{2}$
$4-1080 x^{2}$
224 The ninth term of the expansion of $(3 x+2 y)^{15}$ is
$1 \quad{ }_{15} C_{9}(3 x)^{6}(2 y)^{9}$
$2 \quad{ }_{15} C_{9}(3 x)^{9}(2 y)^{6}$
$3{ }_{15} C_{8}(3 x)^{7}(2 y)^{8}$
$4 \quad{ }_{15} C_{8}(3 x)^{8}(2 y)^{7}$

A2.A.26, 50: SOLVING POLYNOMIAL

 EQUATIONS225 Solve the equation $8 x^{3}+4 x^{2}-18 x-9=0$ algebraically for all values of x.

226 Which values of x are solutions of the equation
$x^{3}+x^{2}-2 x=0$?
$10,1,2$
2 0,1,-2
3 0,-1,2
4 0,-1,-2
227 What is the solution set of the equation
$3 x^{5}-48 x=0$?
$1\{0, \pm 2\}$
$2\{0, \pm 2,3\}$
$3\{0, \pm 2, \pm 2 i\}$
$4 \quad\{ \pm 2, \pm 2 i\}$
228 Solve algebraically for all values of x :
$x^{4}+4 x^{3}+4 x^{2}=-16 x$
229 Solve $x^{3}+5 x^{2}=4 x+20$ algebraically.
230 Solve the equation $2 x^{3}-x^{2}-8 x+4=0$ algebraically for all values of x.

231 The graph of $y=\mathrm{f}(x)$ is shown below.

Which set lists all the real solutions of $\mathrm{f}(x)=0$?
$1 \quad\{-3,2\}$
$2\{-2,3\}$
$3 \quad\{-3,0,2\}$
$4 \quad\{-2,0,3\}$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

232 The graph of $y=x^{3}-4 x^{2}+x+6$ is shown below.

What is the product of the roots of the equation
$x^{3}-4 x^{2}+x+6=0$?
$1-36$
$2-6$
36
44
233 How many negative solutions to the equation $2 x^{3}-4 x^{2}+3 x-1=0$ exist?
11
22
33
40

234 What are the zeros of the polynomial function graphed below?

$1 \quad\{-3,-1,2\}$
2 \{3,1,-2\}
3 \{4,-8\}
4 \{-6\}

RADICALS

A2.N.4: OPERATIONS WITH IRRATIONAL EXPRESSIONS

235 The product of $(3+\sqrt{5})$ and $(3-\sqrt{5})$ is
$14-6 \sqrt{5}$
$214-6 \sqrt{5}$
314
44
A2.A.13: SIMPLIFYING RADICALS
236 Express in simplest form: $\sqrt[3]{\frac{a^{6} b^{9}}{-64}}$
237 The expression $\sqrt[3]{64 a^{16}}$ is equivalent to
$18 a^{4}$
$28 a^{8}$
$3 \quad 4 a^{5} \sqrt[3]{a}$
$4 \quad 4 a \sqrt[3]{a^{5}}$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A2.N.2, A.14: OPERATIONS WITH RADICALS

238 Express $5 \sqrt{3 x^{3}}-2 \sqrt{27 x^{3}}$ in simplest radical form.

239 The sum of $\sqrt[3]{6 a^{4} b^{2}}$ and $\sqrt[3]{162 a^{4} b^{2}}$, expressed in simplest radical form, is
$1 \sqrt[6]{168 a^{8} b^{4}}$
$2 \quad 2 a^{2} b \sqrt[3]{21 a^{2} b}$
$34 a \sqrt[3]{6 a b^{2}}$
$4 \quad 10 a^{2} b \sqrt[3]{8}$
240 The expression $\left(\sqrt[3]{27 x^{2}}\right)\left(\sqrt[3]{16 x^{4}}\right)$ is equivalent

$$
\begin{array}{ll}
\text { to } & \\
1 & 12 x^{2} \sqrt[3]{2} \\
2 & 12 x \sqrt[3]{2 x} \\
3 & 6 x^{3} \sqrt[3]{2 x^{2}} \\
4 & 6 x^{2} \sqrt[3]{2}
\end{array}
$$

241 What is the product of $\sqrt[3]{4 a^{2} b^{4}}$ and $\sqrt[3]{16 a^{3} b^{2}}$?

$$
\begin{array}{ll}
1 & 4 a b^{2} \sqrt[3]{a^{2}} \\
2 & 4 a^{2} b^{3} \sqrt[3]{a} \\
3 & 8 a b^{2} \sqrt[3]{a^{2}} \\
4 & 8 a^{2} b^{3} \sqrt[3]{a}
\end{array}
$$

242 The expression $4 a b \sqrt{2 b}-3 a \sqrt{18 b^{3}}+7 a b \sqrt{6 b}$ is equivalent to
$12 a b \sqrt{6 b}$
$216 a b \sqrt{2 b}$
$3-5 a b+7 a b \sqrt{6 b}$
$4-5 a b \sqrt{2 b}+7 a b \sqrt{6 b}$
243 Express $\frac{\sqrt{108 x^{5} y^{8}}}{\sqrt{6 x y^{5}}}$ in simplest radical form.

244 The expression $\sqrt[3]{27 a^{3}} \cdot \sqrt[4]{16 b^{8}}$ is equivalent to
$16 a b^{2}$
$26 a b^{4}$
$312 a b^{2}$
$4 \quad 12 a b^{4}$
A2.N.5, A.15: RATIONALIZING DENOMINATORS

245 Express $\frac{5}{3-\sqrt{2}}$ with a rational denominator, in simplest radical form.

246 Which expression is equivalent to $\frac{\sqrt{3}+5}{\sqrt{3}-5}$?
$1-\frac{14+5 \sqrt{3}}{11}$
$2-\frac{17+5 \sqrt{3}}{11}$
$3 \frac{14+5 \sqrt{3}}{14}$
$4 \frac{17+5 \sqrt{3}}{14}$
247 The expression $\frac{4}{5-\sqrt{13}}$ is equivalent to
$1 \frac{4 \sqrt{13}}{5 \sqrt{13}-13}$
$2 \frac{4(5-\sqrt{13})}{38}$
$3 \frac{5+\sqrt{13}}{3}$
$4 \frac{4(5+\sqrt{13})}{38}$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic

248 The expression $\frac{1}{7-\sqrt{11}}$ is equivalent to
$1 \frac{7+\sqrt{11}}{38}$
$2 \frac{7-\sqrt{11}}{38}$
$3 \frac{7+\sqrt{11}}{60}$
$4 \frac{7-\sqrt{11}}{60}$
249 The expression $\frac{5}{4-\sqrt{11}}$ is equivalent to
$14+\sqrt{11}$
$2 \frac{20+5 \sqrt{11}}{27}$
$3 \quad 4-\sqrt{11}$
$4 \frac{20-5 \sqrt{11}}{27}$
250 The expression $\frac{3-\sqrt{8}}{\sqrt{3}}$ is equivalent to
$1 \frac{\sqrt{3}-2 \sqrt{6}}{\sqrt{3}}$
$2-\sqrt{3}+\frac{2}{3} \sqrt{6}$
$3 \quad \frac{3-\sqrt{24}}{3}$
$4 \quad \sqrt{3}-\frac{2}{3} \sqrt{6}$

251 The fraction $\frac{3}{\sqrt{3 a^{2} b}}$ is equivalent to
$1 \frac{1}{a \sqrt{b}}$
$2 \frac{\sqrt{b}}{a b}$
$3 \frac{\sqrt{3 b}}{a b}$
$4 \quad \frac{\sqrt{3}}{a}$
252 The expression $\frac{2 x+4}{\sqrt{x+2}}$ is equivalent to
$1 \frac{(2 x+4) \sqrt{x-2}}{x-2}$
$2 \frac{(2 x+4) \sqrt{x-2}}{x-4}$
$3 \quad 2 \sqrt{x-2}$
$4 \quad 2 \sqrt{x+2}$
253 Expressed with a rational denominator and in simplest form, $\frac{x}{x-\sqrt{x}}$ is
$1 \frac{x^{2}+x \sqrt{x}}{x^{2}-x}$
$2-\sqrt{x}$
$3 \frac{x+\sqrt{x}}{1-x}$
$4 \frac{x+\sqrt{x}}{x-1}$

A2.A.22: SOLVING RADICALS

254 The solution set of the equation $\sqrt{x+3}=3-x$ is
1 \{1\}
2 \{0\}
3 \{1,6\}
$4 \quad\{2,3\}$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

255 The solution set of $\sqrt{3 x+16}=x+2$ is
$1 \quad\{-3,4\}$
2 \{-4,3\}
3 \{3\}
$4 \quad\{-4\}$
256 Solve algebraically for x : $4-\sqrt{2 x-5}=1$
257 What is the solution set for the equation
$\sqrt{5 x+29}=x+3 ?$
1 \{4\}
2 \{-5\}
3 \{4,5\}
$4 \quad\{-5,4\}$
258 Solve algebraically for x :
$\sqrt{x^{2}+x-1}+11 x=7 x+3$
259 The solution set of the equation $\sqrt{2 x-4}=x-2$ is
$1 \quad\{-2,-4\}$
$2\{2,4\}$
3 \{4\}
4 \{ \}

A2.A.10-11: EXPONENTS AS RADICALS

260 The expression $\left(x^{2}-1\right)^{-\frac{2}{3}}$ is equivalent to
$1 \sqrt[3]{\left(x^{2}-1\right)^{2}}$
$2 \frac{1}{\sqrt[3]{\left(x^{2}-1\right)^{2}}}$
$3 \sqrt{\left(x^{2}-1\right)^{3}}$
$4 \frac{1}{\sqrt{\left(x^{2}-1\right)^{3}}}$

261 The expression $x^{-\frac{2}{5}}$ is equivalent to
$1-\sqrt[2]{x^{5}}$
$2-\sqrt[5]{x^{2}}$
$3 \frac{1}{\sqrt[2]{x^{5}}}$
$4 \frac{1}{\sqrt[5]{x^{2}}}$
262 The expression $\sqrt[4]{16 x^{2} y^{7}}$ is equivalent to
$12 x^{\frac{1}{2}} y^{\frac{7}{4}}$
$22 x^{8} y^{28}$
$34 x^{\frac{1}{2}} y^{\frac{7}{4}}$
$4 \quad 4 x^{8} y^{28}$
263 The expression $\sqrt[4]{81 x^{2} y^{5}}$ is equivalent to
$13 x^{\frac{1}{2}} y^{\frac{5}{4}}$
$23 x^{\frac{1}{2}} y^{\frac{4}{5}}$
$39 x y^{\frac{5}{2}}$
$49 x y^{\frac{2}{5}}$
A2.N.6: SQUARE ROOTS OF NEGATIVE NUMBERS

264 In simplest form, $\sqrt{-300}$ is equivalent to
$1 \quad 3 i \sqrt{10}$
$2 \quad 5 i \sqrt{12}$
$3 \quad 10 i \sqrt{3}$
$4 \quad 12 i \sqrt{5}$
265 Expressed in simplest form, $\sqrt{-18}-\sqrt{-32}$ is
$1-\sqrt{2}$
$2-7 \sqrt{2}$
$3 \quad-i \sqrt{2}$
$4 \quad 7 i \sqrt{2}$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

266 The expression $\sqrt{-180 x^{16}}$ is equivalent to
$1-6 x^{4} \sqrt{5}$
$2-6 x^{8} \sqrt{5}$
$3 \quad 6 x^{4} i \sqrt{5}$
$4 \quad 6 x^{8} i \sqrt{5}$

A2.N.7: IMAGINARY NUMBERS

267 The product of i^{7} and i^{5} is equivalent to
11
$2-1$
3 i
4 -i
268 The expression $2 i^{2}+3 i^{3}$ is equivalent to
$1 \quad-2-3 i$
2 2-3i
$3-2+3 i$
$4 \quad 2+3 i$
269 Determine the value of n in simplest form:
$i^{13}+i^{18}+i^{31}+n=0$
270 Express $4 x i+5 y i^{8}+6 x i^{3}+2 y i^{4}$ in simplest $a+b i$ form.

271 Express $x i^{8}-y i^{6}$ in simplest form.

A2.N.8: CONJUGATES OF COMPLEX NUMBERS

272 What is the conjugate of $-2+3 i$?
$1-3+2 i$
$2-2-3 i$
3 2-3i
$43+2 i$
273 The conjugate of $7-5 i$ is
$1 \quad-7-5 i$
$2-7+5 i$
3 7-5i
$4 \quad 7+5 i$

274 What is the conjugate of $\frac{1}{2}+\frac{3}{2}$ i?
$1-\frac{1}{2}+\frac{3}{2} i$
$2 \quad \frac{1}{2}-\frac{3}{2} i$
$3 \quad \frac{3}{2}+\frac{1}{2} i$
$4-\frac{1}{2}-\frac{3}{2} i$
275 The conjugate of the complex expression $-5 x+4 i$ is
$15 x-4 i$
$25 x+4 i$
$3-5 x-4 i$
$4 \quad-5 x+4 i$

A2.N.9: MULTIPLICATION AND DIVISION OF COMPLEX NUMBERS

276 The expression $(3-7 i)^{2}$ is equivalent to
$1-40+0 i$
$2-40-42 i$
$358+0 i$
4 58-42i
277 The expression $(x+i)^{2}-(x-i)^{2}$ is equivalent to
10
$2-2$
$3-2+4 x i$
4 4xi
278 If $x=3 i, y=2 i$, and $z=m+i$, the expression $x y^{2} z$ equals
1 -12-12mi
$2-6-6 m i$
3 12-12mi
4 6-6mi
279 Multiply $x+y i$ by its conjugate, and express the product in simplest form.

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

280 When $-3-2 i$ is multiplied by its conjugate, the result is
1 -13
$2-5$
35
413
281 If x is a real number, express $2 x i\left(i-4 i^{2}\right)$ in simplest $a+b i$ form.

RATIONALS
A2.A.16: MULTIPLICATION AND DIVISION OF RATIONALS

282 Perform the indicated operations and simplify completely:
$\frac{x^{3}-3 x^{2}+6 x-18}{x^{2}-4 x} \cdot \frac{2 x-4}{x^{4}-3 x^{3}} \div \frac{x^{2}+2 x-8}{16-x^{2}}$
283 Express in simplest form: $\frac{\frac{4-x^{2}}{x^{2}+7 x+12}}{\frac{2 x-4}{x+3}}$
284 The expression $\frac{x^{2}+9 x-22}{x^{2}-121} \div(2-x)$ is equivalent to
$1 \quad x-11$
$2 \frac{1}{x-11}$
3 11-x
$4 \frac{1}{11-x}$
285 Express in simplest form: $\frac{\frac{36-x^{2}}{(x+6)^{2}}}{\frac{x-3}{x^{2}+3 x-18}}$

A2.A.16: ADDITION AND SUBTRACTION OF RATIONALS

286 Expressed in simplest form, $\frac{3 y}{2 y-6}+\frac{9}{6-2 y}$ is equivalent to
$1 \frac{-6 y^{2}+36 y-54}{(2 y-6)(6-2 y)}$
$2 \frac{3 y-9}{2 y-6}$
$3 \quad \frac{3}{2}$
$4 \quad-\frac{3}{2}$

A2.A.23: SOLVING RATIONALS AND RATIONAL INEQALITIES

287 Solve for $x: \frac{4 x}{x-3}=2+\frac{12}{x-3}$
288 Solve algebraically for x : $\frac{1}{x+3}-\frac{2}{3-x}=\frac{4}{x^{2}-9}$
289 Solve the equation below algebraically, and express the result in simplest radical form:

$$
\frac{13}{x}=10-x
$$

290 What is the solution set of the equation
$\frac{30}{x^{2}-9}+1=\frac{5}{x-3}$?
$1 \quad\{2,3\}$
2 \{2\}
3 \{3\}
4 \{ \}
291 Which equation could be used to solve
$\frac{5}{x-3}-\frac{2}{x}=1$?
$1 x^{2}-6 x-3=0$
$2 x^{2}-6 x+3=0$
$3 x^{2}-6 x-6=0$
$4 x^{2}-6 x+6=0$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

292 Solve algebraically for x : $\frac{3}{x}+\frac{x}{x+2}=-\frac{2}{x+2}$
293 Solve algebraically for the exact values of x :
$\frac{5 x}{2}=\frac{1}{x}+\frac{x}{4}$
294 Which graph represents the solution set of $\frac{x+16}{x-2} \leq 7$?

A2.A.17: COMPLEX FRACTIONS

295 Written in simplest form, the expression $\frac{\frac{x}{4}-\frac{1}{x}}{\frac{1}{2 x}+\frac{1}{4}}$ is
equivalent to
$1 \quad x-1$
$2 x-2$
$3 \frac{x-2}{2}$
$4 \frac{x^{2}-4}{x+2}$
296 Express in simplest form: $\frac{\frac{1}{2}-\frac{4}{d}}{\frac{1}{d}+\frac{3}{2 d}}$

297 The simplest form of $\frac{1-\frac{4}{x}}{1-\frac{2}{x}-\frac{8}{x^{2}}}$ is
$1 \quad \frac{1}{2}$
$2 \frac{x}{x+2}$
$3 \frac{x}{3}$
$4-\frac{x}{x-2}$
298 The expression $\frac{a+\frac{b}{c}}{d-\frac{b}{c}}$ is equivalent to
$1 \quad \frac{c+1}{d-1}$
$2 \frac{a+b}{d-b}$
$3 \frac{a c+b}{c d-b}$
$4 \frac{a c+1}{c d-1}$
299 Express in simplest terms: $\frac{1+\frac{3}{x}}{1-\frac{5}{x}-\frac{24}{x^{2}}}$

A2.A.5: INVERSE VARIATION

300 For a given set of rectangles, the length is inversely proportional to the width. In one of these rectangles, the length is 12 and the width is 6 . For this set of rectangles, calculate the width of a rectangle whose length is 9 .

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

301 If p varies inversely as q, and $p=10$ when $q=\frac{3}{2}$, what is the value of p when $q=\frac{3}{5}$?
$1 \quad 25$
$2 \quad 15$
39
44
302 The quantities p and q vary inversely. If $p=20$ when $q=-2$, and $p=x$ when $q=-2 x+2$, then x equals
$1 \quad-4$ and 5
$2 \quad \frac{20}{19}$
$3-5$ and 4
$4 \quad-\frac{1}{4}$
303 The points (2,3), $\left(4, \frac{3}{4}\right)$, and $(6, d)$ lie on the graph of a function. If y is inversely proportional to the square of x, what is the value of d ?
11
$2 \quad \frac{1}{3}$
33
$4 \quad 27$
304 If d varies inversely as t, and $d=20$ when $t=2$, what is the value of t when $d=-5$?
18
$2 \quad 2$
$3-8$
$4 \quad-2$
305 If p and q vary inversely and p is 25 when q is 6 , determine q when p is equal to 30 .

306 Given y varies inversely as x, when y is multiplied by $\frac{1}{2}$, then x is multiplied by
$1 \frac{1}{2}$
22
$3-\frac{1}{2}$
$4-2$

307 A scholarship committee rewards the school's top math students. The amount of money each winner receives is inversely proportional to the number of scholarship recipients. If there are three winners, they each receive $\$ 400$. If there are eight winners, how much money will each winner receive?
$1 \quad \$ 1067$
$2 \quad \$ 400$
$3 \quad \$ 240$
$4 \quad \$ 150$

FUNCTIONS

A2.A.40-41: FUNCTIONAL NOTATION
308 The equation $y-2 \sin \theta=3$ may be rewritten as
$1 \mathrm{f}(y)=2 \sin x+3$
$2 \mathrm{f}(y)=2 \sin \theta+3$
$3 \mathrm{f}(x)=2 \sin \theta+3$
$4 \mathrm{f}(\theta)=2 \sin \theta+3$
309 If $\mathrm{f}(x)=\frac{x}{x^{2}-16}$, what is the value of $\mathrm{f}(-10)$?
$1-\frac{5}{2}$
$2-\frac{5}{42}$
$3 \frac{5}{58}$
$4 \quad \frac{5}{18}$
310 If $\mathrm{g}(x)=(a x \sqrt{1-x})^{2}$, express $\mathrm{g}(10)$ in simplest form.

311 If $\mathrm{f}(x)=4 x^{2}-x+1$, then $\mathrm{f}(a+1)$ equals

$$
\begin{array}{ll}
1 & 4 a^{2}-a+6 \\
2 & 4 a^{2}-a+4 \\
3 & 4 a^{2}+7 a+6 \\
4 & 4 a^{2}+7 a+4
\end{array}
$$

A2.A.52: FAMILIES OF FUNCTIONS

312 On January 1, a share of a certain stock cost $\$ 180$. Each month thereafter, the cost of a share of this stock decreased by one-third. If x represents the time, in months, and y represents the cost of the stock, in dollars, which graph best represents the cost of a share over the following 5 months?

1

2

3

4

A2.A.52: PROPERTIES OF GRAPHS OF FUNCTIONS AND RELATIONS

313 Which statement about the graph of the equation $y=e^{x}$ is not true?
1 It is asymptotic to the x-axis.
2 The domain is the set of all real numbers.
3 It lies in Quadrants I and II.
4 It passes through the point $(e, 1)$.
314 Theresa is comparing the graphs of $y=2^{x}$ and $y=5^{x}$. Which statement is true?
1 The y-intercept of $y=2^{x}$ is (0,2), and the y-intercept of $y=5^{x}$ is $(0,5)$.
2 Both graphs have a y-intercept of (0,1), and $y=2^{x}$ is steeper for $x>0$.
3 Both graphs have a y-intercept of (0,1), and $y=5^{x}$ is steeper for $x>0$.
4 Neither graph has a y-intercept.
A2.A.52: IDENTIFYING THE EQUATION OF A GRAPH

315 Four points on the graph of the function $f(x)$ are shown below.
$\{(0,1),(1,2),(2,4),(3,8)\}$
Which equation represents $\mathrm{f}(x)$?
$1 \mathrm{f}(x)=2^{x}$
$2 \mathrm{f}(x)=2 x$
$3 \mathrm{f}(x)=x+1$
$4 \mathrm{f}(x)=\log _{2} x$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

316 Which equation is represented by the graph below?

$1 y=5^{x}$
$2 y=0.5^{x}$
$3 y=5^{-x}$
$4 y=0.5^{-x}$
317 What is the equation of the graph shown below?

$1 y=2^{x}$
$2 y=2^{-x}$
$3 x=2^{y}$
$4 x=2^{-y}$

318 The table of values below can be modeled by which equation?

\mathbf{x}	\mathbf{y}
-2	5
-1	4
0	3
1	4
2	5

$1 \mathrm{f}(x)=|x+3|$
$2 \mathrm{f}(x)=|x|+3$
$3 \mathrm{f}(y)=|y+3|$
$4 \mathrm{f}(y)=|y|+3$

A2.A.37, 38, 43: DEFINING FUNCTIONS

319 Given the relation $\{(8,2),(3,6),(7,5),(k, 4)\}$, which value of k will result in the relation not being a function?
11
22
3 3
44

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

320 Which graph does not represent a function?

321 Which relation is not a function?
$1(x-2)^{2}+y^{2}=4$
$2 x^{2}+4 x+y=4$
$3 \quad x+y=4$
$4 \quad x y=4$

322 Which graph does not represent a function?

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

323 Which graph represents a relation that is not a
function?

1

324 Which graph represents a function?

1

1

2

3

4

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

325 Which statement is true about the graphs of f and g shown below?

$1 \quad f$ is a relation and g is a function.
$2 f$ is a function and g is a relation.
3 Both f and g are functions.
4 Neither f nor g is a function.
326 Which function is not one-to-one?
1 \{(0,1), (1,2), (2,3), (3, 4)\}
$2\{(0,0),(1,1),(2,2),(3,3)\}$
3 \{(0,1), (1,0), (2,3), (3,2)\}
$4\{(0,1),(1,0),(2,0),(3,2)\}$

327 Which graph represents a one-to-one function?

328 Which function is one-to-one?
$1 \mathrm{f}(x)=|x|$
$2 \mathrm{f}(x)=2^{x}$
$3 \mathrm{f}(x)=x^{2}$
$4 \mathrm{f}(x)=\sin x$
329 Which function is one-to-one?
$1 \mathrm{k}(x)=x^{2}+2$
$2 \mathrm{~g}(x)=x^{3}+2$
$3 \mathrm{f}(x)=|x|+2$
$4 \quad \mathrm{j}(x)=x^{4}+2$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

330 Which diagram represents a relation that is both one-to-one and onto?

1

2

3

4

Which relation is both one-to-one and onto?

1

1

2

3

4

332 Which list of ordered pairs does not represent a one-to-one function?
1 (1,-1), (2,0), (3, 1), (4, 2)
2 (1,2),(2,3),(3,4),(4,6)
3 (1,3),(2,4),(3,3),(4,1)
4 (1,5),(2,4),(3,1),(4,0)

A2.A.39, 51: DOMAIN AND RANGE

333 What is the domain of the function
$\mathrm{f}(x)=\sqrt{x-2}+3$?
$1(-\infty, \infty)$
$2(2, \infty)$
$3 \quad[2, \infty)$
$4[3, \infty)$
334 What is the range of $\mathrm{f}(x)=(x+4)^{2}+7$?
$1 \quad y \geq-4$
$2 \quad y \geq 4$
$3 \quad y=7$
$4 \quad y \geq 7$
335 What is the range of $\mathrm{f}(x)=|x-3|+2$?
$1 \quad\{x \mid x \geq 3\}$
$2 \quad\{y \mid y \geq 2\}$
$3 \quad\{x \mid x \in$ real numbers $\}$
$4 \quad\{y \mid y \in$ real numbers $\}$
336 If $\mathrm{f}(x)=\sqrt{9-x^{2}}$, what are its domain and range?
1 domain: $\{x \mid-3 \leq x \leq 3\}$; range: $\{y \mid 0 \leq y \leq 3\}$
2 domain: $\{x \mid x \neq \pm 3\}$; range: $\{y \mid 0 \leq y \leq 3\}$
3 domain: $\{x \mid x \leq-3$ or $x \geq 3\}$; range: $\{y \mid y \neq 0\}$
4 domain: $\{x \mid x \neq 3\}$; range: $\{y \mid y \geq 0\}$
337 For $y=\frac{3}{\sqrt{x-4}}$, what are the domain and range?
$1 \quad\{x \mid x>4\}$ and $\{y \mid y>0\}$
$2\{x \mid x \geq 4\}$ and $\{y \mid y>0\}$
3 \{x|x>4\} and $\{y \mid y \geq 0\}$
$4 \quad\{x \mid x \geq 4\}$ and $\{y \mid y \geq 0\}$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

338 The domain of $\mathrm{f}(x)=-\frac{3}{\sqrt{2-x}}$ is the set of all real numbers
1 greater than 2
2 less than 2
3 except 2
4 between -2 and 2
339 What is the domain of the function $\mathrm{g}(x)=3^{x}-1$?
$1 \quad(-\infty, 3]$
$2(-\infty, 3)$
$3(-\infty, \infty)$
$4(-1, \infty)$
340 What are the domain and the range of the function shown in the graph below?

$1 \quad\{x \mid x>-4\} ;\{y \mid y>2\}$
$2\{x \mid x \geq-4\} ;\{y \mid y \geq 2\}$
3 \{x|x>2\}; $\{y \mid y>-4\}$
$4 \quad\{x \mid x \geq 2\} ;\{y \mid y \geq-4\}$

341 The graph below represents the function $y=\mathrm{f}(x)$.

State the domain and range of this function.
342 What is the domain of the function shown below?

$$
\begin{array}{ll}
1 & -1 \leq x \leq 6 \\
2 & -1 \leq y \leq 6 \\
3 & -2 \leq x \leq 5 \\
4 & -2 \leq y \leq 5
\end{array}
$$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

343 What is the range of the function shown below?

$$
\begin{array}{ll}
1 & x \leq 0 \\
2 & x \geq 0 \\
3 & y \leq 0 \\
4 & y \geq 0
\end{array}
$$

344 The graph below shows the average price of gasoline, in dollars, for the years 1997 to 2007.

What is the approximate range of this graph?
$1 \quad 1997 \leq x \leq 2007$
$2 \quad 1999 \leq x \leq 2007$
$3 \quad 0.97 \leq y \leq 2.38$
$4 \quad 1.27 \leq y \leq 2.38$

345 Which value is in the domain of the function graphed below, but is not in its range?

10
22
33
47

A2.A.42: COMPOSITIONS OF FUNCTIONS

346 If $\mathrm{f}(x)=\frac{1}{2} x-3$ and $\mathrm{g}(x)=2 x+5$, what is the value of $(g \circ f)(4)$?
$1-13$
23.5

3 3
46
347 If $\mathrm{f}(x)=x^{2}-5$ and $\mathrm{g}(x)=6 x$, then $\mathrm{g}(\mathrm{f}(x))$ is equal to
$16 x^{3}-30 x$
$26 x^{2}-30$
$3 \quad 36 x^{2}-5$
$4 \quad x^{2}+6 x-5$
348 If $\mathrm{f}(x)=x^{2}-6$ and $\mathrm{g}(x)=2^{x}-1$, determine the value of $(g \circ f)(-3)$.

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

349 If $\mathrm{f}(x)=4 x-x^{2}$ and $\mathrm{g}(x)=\frac{1}{x}$, then $(\mathrm{f} \circ \mathrm{g})\left(\frac{1}{2}\right)$ is equal to
$1 \frac{4}{7}$
$2-2$
$3 \quad \frac{7}{2}$
44
350 Which expression is equivalent to $\left(\mathrm{n}^{\circ} \mathrm{m} \circ{ }^{\circ} \mathrm{p}\right)(x)$, given $\mathrm{m}(x)=\sin x, \mathrm{n}(x)=3 x$, and $\mathrm{p}(x)=x^{2}$?
$1 \sin (3 x)^{2}$
$23 \sin x^{2}$
$3 \quad \sin ^{2}(3 x)$
$43 \sin ^{2} x$
351 If $\mathrm{g}(x)=\frac{1}{2} x+8$ and $\mathrm{h}(x)=\frac{1}{2} x-2$, what is the value of $\mathrm{g}(\mathrm{h}(-8))$?
10
29
35
44

A2.A.44: INVERSE OF FUNCTIONS

355 Which two functions are inverse functions of each other?
$1 \mathrm{f}(x)=\sin x$ and $\mathrm{g}(x)=\cos (x)$
$2 \mathrm{f}(x)=3+8 x$ and $\mathrm{g}(x)=3-8 x$
$3 \mathrm{f}(x)=e^{x}$ and $\mathrm{g}(x)=\ln x$
$4 \mathrm{f}(x)=2 x-4$ and $\mathrm{g}(x)=-\frac{1}{2} x+4$
356 If $\mathrm{f}(x)=x^{2}-6$, find $\mathrm{f}^{-1}(x)$.
357 What is the inverse of the function $\mathrm{f}(x)=\log _{4} x$?
$1 \quad \mathrm{f}^{-1}(x)=x^{4}$
$2 \quad \mathrm{f}^{-1}(x)=4^{x}$
$3 \quad \mathrm{f}^{-1}(x)=\log _{x} 4$
$4 \quad \mathrm{f}^{-1}(x)=-\log _{x} 4$
358 If $m=\{(-1,1),(1,1),(-2,4),(2,4),(-3,9),(3,9)\}$, which statement is true?
$1 \quad m$ and its inverse are both functions.
$2 m$ is a function and its inverse is not a function.
3 m is not a function and its inverse is a function.
4 Neither m nor its inverse is a function.
352 If $\mathrm{f}(x)=2 x^{2}-3 x+1$ and $g(x)=x+5$, what is $\mathrm{f}(\mathrm{g}(x))$?
$12 x^{2}+17 x+36$
$2 \quad 2 x^{2}+17 x+66$
$3 \quad 2 x^{2}-3 x+6$
$4 \quad 2 x^{2}-3 x+36$
353 If $\mathrm{f}(x)=2 x^{2}+1$ and $\mathrm{g}(x)=3 x-2$, what is the value of $f(g(-2))$?
1 -127
$2-23$
$3 \quad 25$
4129
354 If $\mathrm{f}(x)=x^{2}-x$ and $\mathrm{g}(x)=x+1$, determine $\mathrm{f}(\mathrm{g}(x))$ in simplest form.

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A2.A.46: TRANSFORMATIONS WITH FUNCTIONS AND RELATIONS

359 The graph below shows the function $\mathrm{f}(x)$.

Which graph represents the function $\mathrm{f}(x+2)$?

1

2

3

360 The minimum point on the graph of the equation $y=\mathrm{f}(x)$ is $(-1,-3)$. What is the minimum point on the graph of the equation $y=\mathrm{f}(x)+5$?
$1(-1,2)$
$2(-1,-8)$
$3(4,-3)$
$4(-6,-3)$
361 The function $\mathrm{f}(x)$ is graphed on the set of axes below. On the same set of axes, graph $\mathrm{f}(x+1)+2$.

362 Which transformation of $y=f(x)$ moves the graph 7 units to the left and 3 units down?
$1 \quad y=\mathrm{f}(x+7)-3$
$2 y=\mathrm{f}(x+7)+3$
$3 \quad y=\mathrm{f}(x-7)-3$
$4 \quad y=\mathrm{f}(x-7)+3$

SEQUENCES AND SERIES
 A2.A.29-33: SEQUENCES

363 What is the formula for the nth term of the sequence $54,18,6, \ldots$?
$1 \quad a_{n}=6\left(\frac{1}{3}\right)^{n}$
$2 a_{n}=6\left(\frac{1}{3}\right)^{n-1}$
$3 \quad a_{n}=54\left(\frac{1}{3}\right)^{n}$
$4 \quad a_{n}=54\left(\frac{1}{3}\right)^{n-1}$
364 What is a formula for the nth term of sequence B shown below?

$$
B=10,12,14,16, \ldots
$$

$1 \quad b_{n}=8+2 n$
$2 b_{n}=10+2 n$
$3 \quad b_{n}=10(2)^{n}$
$4 \quad b_{n}=10(2)^{n-1}$
365 A sequence has the following terms: $a_{1}=4$, $a_{2}=10, a_{3}=25, a_{4}=62.5$. Which formula represents the nth term in the sequence?
$1 \quad a_{n}=4+2.5 n$
$2 a_{n}=4+2.5(n-1)$
$3 \quad a_{n}=4(2.5)^{n}$
$4 a_{n}=4(2.5)^{n-1}$
366 In an arithmetic sequence, $a_{4}=19$ and $a_{7}=31$.
Determine a formula for a_{n}, the $n^{\text {th }}$ term of this sequence.

367 A theater has 35 seats in the first row. Each row has four more seats than the row before it. Which expression represents the number of seats in the nth row?
$135+(n+4)$
$235+(4 n)$
$3 \quad 35+(n+1)(4)$
$435+(n-1)(4)$

368 What is the common difference of the arithmetic sequence $5,8,11,14$?
$1 \quad \frac{8}{5}$
2 -3
3 3
$4 \quad 9$
369 Which arithmetic sequence has a common difference of 4 ?
$1\{0,4 n, 8 n, 12 n, \ldots\}$
$2\{n, 4 n, 16 n, 64 n, \ldots\}$
$3\{n+1, n+5, n+9, n+13, \ldots\}$
$4\{n+4, n+16, n+64, n+256, \ldots\}$
370 What is the common difference in the sequence $2 a+1,4 a+4,6 a+7,8 a+10, \ldots$?
$1 \quad 2 a+3$
$2-2 a-3$
$3 \quad 2 a+5$
$4 \quad-2 a+5$
371 What is the common difference of the arithmetic sequence below?

$$
-7 x,-4 x,-x, 2 x, 5 x, \ldots
$$

$1 \quad-3$
$2-3 x$
3 3
$43 x$
372 What is the common ratio of the geometric sequence whose first term is 27 and fourth term is 64?
$1 \quad \frac{3}{4}$
$2 \quad \frac{64}{81}$
$3 \quad \frac{4}{3}$
$4 \quad \frac{37}{3}$

373 What is the common ratio of the geometric sequence shown below?

$$
-2,4,-8,16, \ldots
$$

$1 \quad-\frac{1}{2}$
22
$3-2$
$4-6$
374 What is the common ratio of the sequence $\frac{1}{64} a^{5} b^{3},-\frac{3}{32} a^{3} b^{4}, \frac{9}{16} a b^{5}, \ldots$?
$1-\frac{3 b}{2 a^{2}}$
$2-\frac{6 b}{a^{2}}$
$3-\frac{3 a^{2}}{b}$
$4-\frac{6 a^{2}}{b}$
375 The common ratio of the sequence $-\frac{1}{2}, \frac{3}{4},-\frac{9}{8}$ is
$1-\frac{3}{2}$
$2-\frac{2}{3}$
$3-\frac{1}{2}$
$4 \quad-\frac{1}{4}$
376
What is the fifteenth term of the sequence
$5,-10,20,-40,80, \ldots$?
1 -163,840
$2-81,920$
3 81,920
4 327,680
377 What is the fifteenth term of the geometric sequence $-\sqrt{5}, \sqrt{10},-2 \sqrt{5}, \ldots$?
$1-128 \sqrt{5}$
$2 \quad 128 \sqrt{10}$
$3-16384 \sqrt{5}$
$416384 \sqrt{10}$

378 An arithmetic sequence has a first term of 10 and a sixth term of 40 . What is the 20th term of this sequence?
1105
2110
3124
4130
379 Find the first four terms of the recursive sequence defined below.

$$
\begin{gathered}
a_{1}=-3 \\
a_{n}=a_{(n-1)}-n
\end{gathered}
$$

380 Find the third term in the recursive sequence $a_{k+1}=2 a_{k}-1$, where $a_{1}=3$.

381 Use the recursive sequence defined below to express the next three terms as fractions reduced to lowest terms.

$$
\begin{gathered}
a_{1}=2 \\
a_{n}=3\left(a_{n-1}\right)^{-2}
\end{gathered}
$$

382 What is the fourth term of the sequence defined by $a_{1}=3 x y^{5}$
$a_{n}=\left(\frac{2 x}{y}\right) a_{n-1}$?
$1 \quad 12 x^{3} y^{3}$
$2 \quad 24 x^{2} y^{4}$
$324 x^{4} y^{2}$
$448 x^{5} y$
383 The first four terms of the sequence defined by $a_{1}=\frac{1}{2}$ and $a_{n+1}=1-a_{n}$ are
$1 \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$
$2 \frac{1}{2}, 1,1 \frac{1}{2}, 2$
$3 \quad \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}$
$4 \frac{1}{2}, 1 \frac{1}{2}, 2 \frac{1}{2}, 3 \frac{1}{2}$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A2.N.10, A.34: SIGMA NOTATION

384 The value of the expression $2 \sum_{n=0}^{2}\left(n^{2}+2^{n}\right)$ is
$1 \quad 12$
$2 \quad 22$
$3 \quad 24$
426
385 Evaluate: $10+\sum_{n=1}^{5}\left(n^{3}-1\right)$

386 The value of the expression $\sum_{r=3}^{5}\left(-r^{2}+r\right)$ is
$1 \quad-38$
$2-12$
326
462
387 Evaluate: $\sum_{n=1}^{3}\left(-n^{4}-n\right)$
388 The expression $4+\sum_{k=2}^{5} 3(k-x)$ is equal to
1 58-4x
2 46-4x
3 58-12x
4 46-12x
389 Which expression is equivalent to $\sum_{n=1}^{4}(a-n)^{2}$?
$1 \quad 2 a^{2}+17$
$2 \quad 4 a^{2}+30$
$3 \quad 2 a^{2}-10 a+17$
$4 \quad 4 a^{2}-20 a+30$

390 What is the value of $\sum_{x=0}^{2}(3-2 a)^{x}$?
$1 \quad 4 a^{2}-2 a+12$
$2 \quad 4 a^{2}-2 a+13$
$3 \quad 4 a^{2}-14 a+12$
$4 \quad 4 a^{2}-14 a+13$
391 Simplify: $\sum_{a=1}^{4}\left(x-a^{2}\right)$.
392 Mrs. Hill asked her students to express the sum $1+3+5+7+9+\ldots+39$ using sigma notation. Four different student answers were given. Which student answer is correct?
$1 \quad \sum_{k=1}^{20}(2 k-1)$
$2 \sum_{k=2}^{40}(k-1)$
$3 \quad \sum_{k=-1}^{37}(k+2)$
$4 \quad \sum_{k=1}^{39}(2 k-1)$
393 Express the sum $7+14+21+28+\ldots+105$ using sigma notation.

394 Which summation represents
$5+7+9+11+\ldots+43$?
$1 \sum_{n=5}^{43} n$
$2 \quad \sum_{n=1}^{20}(2 n+3)$
$3 \sum_{n=4}^{24}(2 n-3)$
$4 \sum_{n=3}^{23}(3 n-4)$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

395 A jogger ran $\frac{1}{3}$ mile on day 1 , and $\frac{2}{3}$ mile on day 2 , and $1 \frac{1}{3}$ miles on day 3 , and $2 \frac{2}{3}$ miles on day 4 , and this pattern continued for 3 more days. Which expression represents the total distance the jogger ran?
$1 \quad \sum_{d=1}^{7} \frac{1}{3}(2)^{d-1}$
$2 \quad \sum_{d=1}^{7} \frac{1}{3}(2)^{d}$
$3 \quad \sum_{d=1}^{7} 2\left(\frac{1}{3}\right)^{d-1}$
$4 \quad \sum_{d=1}^{7} 2\left(\frac{1}{3}\right)^{d}$
396 Which expression is equivalent to the sum of the sequence $6,12,20,30$?
$1 \quad \sum_{n=4}^{7} 2^{n}-10$
$2 \sum_{n=3}^{6} \frac{2 n^{2}}{3}$
$3 \quad \sum_{n=2}^{5} 5 n-4$
$4 \quad \sum_{n=2}^{5} n^{2}+n$

A2.A.35: SERIES

397 An auditorium has 21 rows of seats. The first row has 18 seats, and each succeeding row has two more seats than the previous row. How many seats are in the auditorium?
1540
2567
3760
4798

398 What is the sum of the first 19 terms of the sequence $3,10,17,24,31, \ldots$?
11188
21197
31254
41292
399 Determine the sum of the first twenty terms of the sequence whose first five terms are $5,14,23,32$, 41.

400 The sum of the first eight terms of the series $3-12+48-192+\ldots$ is
$1-13,107$
$2-21,845$
$3-39,321$
$4-65,535$

TRIGONOMETRY

A2.A.55: TRIGONOMETRIC RATIOS
401 In the diagram below of right triangle $K T W$, $K W=6, K T=5$, and $\mathrm{m} \angle K T W=90$.

What is the measure of $\angle K$, to the nearest minute?
1 33 ${ }^{\circ} 33^{\prime}$
$233^{\circ} 34^{\prime}$
$3 \quad 33^{\circ} 55^{\prime}$
4 33 ${ }^{\circ} 56^{\prime}$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

402 Which ratio represents $\csc A$ in the diagram below?

$1 \quad \frac{25}{24}$
$2 \quad \frac{25}{7}$
$3 \quad \frac{24}{7}$
$4 \quad \frac{7}{24}$
403 In the diagram below of right triangle $J T M$, $J T=12, J M=6$, and $\mathrm{m} \angle J M T=90$.

What is the value of $\cot J$?
$1 \frac{\sqrt{3}}{3}$
22
$3 \sqrt{3}$
$4 \frac{2 \sqrt{3}}{3}$

404 In the diagram below, the length of which line segment is equal to the exact value of $\sin \theta$?

$1 \overline{T O}$
$2 \overline{T S}$
$3 \quad \overline{O R}$
$4 \overline{O S}$
405 In the right triangle shown below, what is the measure of angle S, to the nearest minute?

$$
\begin{array}{ll}
1 & 28^{\circ} 1^{\prime} \\
2 & 28^{\circ} 4^{\prime} \\
3 & 61^{\circ} 56^{\prime} \\
4 & 61^{\circ} 93^{\prime}
\end{array}
$$

406 By law, a wheelchair service ramp may be inclined no more than 4.76°. If the base of a ramp begins 15 feet from the base of a public building, which equation could be used to determine the maximum height, h, of the ramp where it reaches the building's entrance?
$1 \quad \sin 4.76^{\circ}=\frac{h}{15}$
$2 \sin 4.76^{\circ}=\frac{15}{h}$
$3 \tan 4.76^{\circ}=\frac{h}{15}$
$4 \tan 4.76^{\circ}=\frac{15}{h}$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A2.M.1-2: RADIAN MEASURE

407 What is the radian measure of the smaller angle formed by the hands of a clock at 7 o'clock?
$1 \frac{\pi}{2}$
$2 \frac{2 \pi}{3}$
$3 \frac{5 \pi}{6}$
$4 \frac{7 \pi}{6}$
408 The terminal side of an angle measuring $\frac{4 \pi}{5}$ radians lies in Quadrant
1 I
2 II
3 III
4 IV
409 Find, to the nearest minute, the angle whose measure is 3.45 radians.

410 What is the number of degrees in an angle whose radian measure is $\frac{11 \pi}{12}$?
1150
2165
3330
4518
411 What is the radian measure of an angle whose measure is -420° ?
$1-\frac{7 \pi}{3}$
$2-\frac{7 \pi}{6}$
$3 \quad \frac{7 \pi}{6}$
$4 \quad \frac{7 \pi}{3}$
412 Find, to the nearest tenth of a degree, the angle whose measure is 2.5 radians.

413 What is the number of degrees in an angle whose measure is 2 radians?
$1 \quad \frac{360}{\pi}$
$2 \quad \frac{\pi}{360}$
3360
490
414 Find, to the nearest tenth, the radian measure of 216°.

415 Convert 3 radians to degrees and express the answer to the nearest minute.

416 What is the number of degrees in an angle whose radian measure is $\frac{8 \pi}{5}$?
1576
2288
3225
4113
417 Approximately how many degrees does five radians equal?
1286
2900
$3 \quad \frac{\pi}{36}$
45π
418 Convert 2.5 radians to degrees, and express the answer to the nearest minute.

419 Determine, to the nearest minute, the degree measure of an angle of $\frac{5}{11} \pi$ radians.

420 Determine, to the nearest minute, the number of degrees in an angle whose measure is 2.5 radians.

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A2.A.60: UNIT CIRCLE

421 On the unit circle shown in the diagram below, sketch an angle, in standard position, whose degree measure is 240 and find the exact value of $\sin 240^{\circ}$.

422 In which graph is θ coterminal with an angle of -70° ?

1

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

423 If $\mathrm{m} \angle \theta=-50$, which diagram represents θ drawn in standard position?

A2.A.60: FINDING THE TERMINAL SIDE OF AN ANGLE

424 An angle, P, drawn in standard position, terminates in Quadrant II if
$1 \quad \cos P<0$ and $\csc P<0$
$2 \quad \sin P>0$ and $\cos P>0$
$3 \quad \csc P>0$ and $\cot P<0$
$4 \tan P<0$ and $\sec P>0$

425 If $\sin \theta<0$ and $\cot \theta>0$, in which quadrant does the terminal side of angle θ lie?
1 I
2 II
3 III
4 IV

A2.A.56, 62, 66: DETERMINING TRIGONOMETRIC FUNCTIONS

426 In the interval $0^{\circ} \leq x<360^{\circ}$, $\tan x$ is undefined when x equals
10° and 90°
290° and 180°
$3 \quad 180^{\circ}$ and 270°
490° and 270°
427 Express the product of $\cos 30^{\circ}$ and $\sin 45^{\circ}$ in simplest radical form.

428 If θ is an angle in standard position and its terminal side passes through the point $(-3,2)$, find the exact value of $\csc \theta$.

429 Angle θ is in standard position and $(-4,0)$ is a point on the terminal side of θ. What is the value of $\sec \theta$?
1 -4
$2-1$
30
4 undefined
430 Circle O has a radius of 2 units. An angle with a measure of $\frac{\pi}{6}$ radians is in standard position. If the terminal side of the angle intersects the circle at point B, what are the coordinates of B ?
$1 \quad\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
$2(\sqrt{3}, 1)$
$3 \quad\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
$4(1, \sqrt{3})$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

431 The value of $\tan 126^{\circ} 43^{\prime}$ to the nearest ten-thousandth is
$1 \begin{array}{ll}1 & -1.3407\end{array}$
$2-1.3408$
$3-1.3548$
$4 \quad-1.3549$
432 Which expression, when rounded to three decimal places, is equal to -1.155 ?
$1 \sec \left(\frac{5 \pi}{6}\right)$
$2 \tan \left(49^{\circ} 20^{\prime}\right)$
$3 \sin \left(-\frac{3 \pi}{5}\right)$
$4 \quad \csc \left(-118^{\circ}\right)$
433 The value of csc $138^{\circ} 23^{\prime}$ rounded to four decimal places is
1 -1.3376
$2-1.3408$
$3 \quad 1.5012$
41.5057

A2.A.64: USING INVERSE TRIGONOMETRIC FUNCTIONS

434 What is the principal value of $\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$?

$$
1-30^{\circ}
$$

260°
3150°
4240°

435 In the diagram below of a unit circle, the ordered
pair $\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$ represents the point where the terminal side of θ intersects the unit circle.

What is $\mathrm{m} \angle \theta$?
145
2135
3225
4240
436 If $\sin ^{-1}\left(\frac{5}{8}\right)=A$, then
$1 \quad \sin A=\frac{5}{8}$
$2 \quad \sin A=\frac{8}{5}$
$3 \quad \cos A=\frac{5}{8}$
$4 \quad \cos A=\frac{8}{5}$
437 If $\tan \left(\operatorname{Arccos} \frac{\sqrt{3}}{k}\right)=\frac{\sqrt{3}}{3}$, then k is
$1 \quad 1$
22
$3 \sqrt{2}$
$4 \quad 3 \sqrt{2}$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

438 If $\sin A=-\frac{7}{25}$ and $\angle A$ terminates in Quadrant IV, $\tan A$ equals
$1-\frac{7}{25}$
$2-\frac{7}{24}$
$3-\frac{24}{7}$
$4-\frac{24}{25}$
439 What is the value of $\tan \left(\operatorname{Arccos} \frac{15}{17}\right)$?
$1 \frac{8}{15}$
$2 \frac{8}{17}$
$3 \frac{15}{8}$
$4 \quad \frac{17}{8}$

A2.A.57: REFERENCE ANGLES

440 Expressed as a function of a positive acute angle, $\cos \left(-305^{\circ}\right)$ is equal to
$1-\cos 55^{\circ}$
$2 \cos 55^{\circ}$
$3-\sin 55^{\circ}$
$4 \sin 55^{\circ}$
441 Expressed as a function of a positive acute angle, $\sin 230^{\circ}$ is equal to
$1-\sin 40^{\circ}$
$2-\sin 50^{\circ}$
$3 \sin 40^{\circ}$
$4 \sin 50^{\circ}$

A2.A.61: ARC LENGTH

442 A circle has a radius of 4 inches. In inches, what is the length of the arc intercepted by a central angle of 2 radians?
12π
22
38π
48
443 A circle is drawn to represent a pizza with a 12 inch diameter. The circle is cut into eight congruent pieces. What is the length of the outer edge of any one piece of this circle?
$1 \quad \frac{3 \pi}{4}$
2π
$3 \quad \frac{3 \pi}{2}$
43π
444 Circle O shown below has a radius of 12 centimeters. To the nearest tenth of a centimeter, determine the length of the arc, x, subtended by an angle of $83^{\circ} 50^{\prime}$.

445 A wheel has a radius of 18 inches. Which distance, to the nearest inch, does the wheel travel when it rotates through an angle of $\frac{2 \pi}{5}$ radians?
145
223
$3 \quad 13$
411

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

446 In a circle, an arc length of 6.6 is intercepted by a central angle of $\frac{2}{3}$ radians. Determine the length of the radius.

A2.A.58-59: COFUNCTION AND RECIPROCAL TRIGONOMETRIC FUNCTIONS

447 If $\angle A$ is acute and $\tan A=\frac{2}{3}$, then
$1 \cot A=\frac{2}{3}$
$2 \cot A=\frac{1}{3}$
$3 \cot \left(90^{\circ}-A\right)=\frac{2}{3}$
$4 \cot \left(90^{\circ}-A\right)=\frac{1}{3}$
448 The expression $\frac{\sin ^{2} \theta+\cos ^{2} \theta}{1-\sin ^{2} \theta}$ is equivalent to
$1 \cos ^{2} \theta$
$2 \sin ^{2} \theta$
$3 \sec ^{2} \theta$
$4 \csc ^{2} \theta$
449 Express $\cos \theta(\sec \theta-\cos \theta)$, in terms of $\sin \theta$.
450 If $\sec (a+15)^{\circ}=\csc (2 a)^{\circ}$, find the smallest positive value of a, in degrees.

451 Express $\frac{\cot x \sin x}{\sec x}$ as a single trigonometric function, in simplest form, for all values of x for which it is defined.

452 The expression $\frac{\cot x}{\csc x}$ is equivalent to
$1 \sin x$
$2 \cos x$
$3 \tan x$
$4 \sec x$

453 Which trigonometric expression does not simplify to 1 ?
$1 \sin ^{2} x\left(1+\cot ^{2} x\right)$
$2 \sec ^{2} x\left(1-\sin ^{2} x\right)$
$3 \quad \cos ^{2} x\left(\tan ^{2} x-1\right)$
$4 \quad \cot ^{2} x\left(\sec ^{2} x-1\right)$
454 Show that $\frac{\sec ^{2} x-1}{\sec ^{2} x}$ is equivalent to $\sin ^{2} x$.

455 Express the exact value of $\csc 60^{\circ}$, with a rational denominator.

456 The exact value of $\csc 120^{\circ}$ is
$1 \quad \frac{2 \sqrt{3}}{3}$
22
$3-\frac{2 \sqrt{3}}{3}$
4 -2

A2.A.67: SIMPLIFYING TRIGONOMETRIC
EXPRESSIONS \& PROVING TRIGONOMETRIC IDENTITIES

457 Which expression always equals 1 ?
$1 \quad \cos ^{2} x-\sin ^{2} x$
$2 \cos ^{2} x+\sin ^{2} x$
$3 \cos x-\sin x$
$4 \cos x+\sin x$
458 Starting with $\sin ^{2} A+\cos ^{2} A=1$, derive the formula $\tan ^{2} A+1=\sec ^{2} A$.

459 Show that sec $\theta \sin \theta \cot \theta=1$ is an identity.

A2.A.76: ANGLE SUM AND DIFFERENCE

 IDENTITIES460 The expression $\cos 4 x \cos 3 x+\sin 4 x \sin 3 x$ is equivalent to
$1 \sin x$
$2 \sin 7 x$
$3 \cos x$
$4 \cos 7 x$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

461 If $\tan A=\frac{2}{3}$ and $\sin B=\frac{5}{\sqrt{41}}$ and angles A and B are in Quadrant I , find the value of $\tan (A+B)$.

462 Express as a single fraction the exact value of $\sin 75^{\circ}$.

463 Given angle A in Quadrant I with $\sin A=\frac{12}{13}$ and angle B in Quadrant II with $\cos B=-\frac{3}{5}$, what is the value of $\cos (A-B)$?
$1 \quad \frac{33}{65}$
$2-\frac{33}{65}$
$3 \quad \frac{63}{65}$
$4-\frac{63}{65}$
464 The value of $\sin (180+x)$ is equivalent to
$1-\sin x$
$2-\sin (90-x)$
$3 \sin x$
$4 \quad \sin (90-x)$
465 The expression $\sin (\theta+90)^{\circ}$ is equivalent to
$1-\sin \theta$
$2-\cos \theta$
$3 \sin \theta$
$4 \cos \theta$
466 If $\sin x=\sin y=a$ and $\cos x=\cos y=b$, then $\cos (x-y)$ is
$1 b^{2}-a^{2}$
$2 b^{2}+a^{2}$
$3 \quad 2 b-2 a$
$4 \quad 2 b+2 a$

A2.A.77: DOUBLE AND HALF ANGLE IDENTITIES

467 The expression $\cos ^{2} \theta-\cos 2 \theta$ is equivalent to
$1 \sin ^{2} \theta$
$2-\sin ^{2} \theta$
$3 \cos ^{2} \theta+1$
$4-\cos ^{2} \theta-1$
468 If $\sin A=\frac{2}{3}$ where $0^{\circ}<A<90^{\circ}$, what is the value of $\sin 2 A$?
$1 \frac{2 \sqrt{5}}{3}$
$2 \quad \frac{2 \sqrt{5}}{9}$
$3 \quad \frac{4 \sqrt{5}}{9}$
$4-\frac{4 \sqrt{5}}{9}$
469 What is a positive value of $\tan \frac{1}{2} x$, when $\sin x=0.8$?
10.5
20.4
30.33
$4 \quad 0.25$
470 If $\sin A=\frac{1}{3}$, what is the value of $\cos 2 A$?
$1-\frac{2}{3}$
$2 \quad \frac{2}{3}$
$3-\frac{7}{9}$
$4 \quad \frac{7}{9}$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

471 If $\sin A=\frac{3}{8}$, what is the value of $\cos 2 A$?
$1-\frac{9}{64}$
$2 \frac{1}{4}$
$3 \quad \frac{23}{32}$
$4 \quad \frac{55}{64}$
472 The expression $\frac{1+\cos 2 A}{\sin 2 A}$ is equivalent to
$1 \cot A$
$2 \tan A$
$3 \sec A$
$4 \quad 1+\cot 2 A$
473 If $\cos \theta=\frac{3}{4}$, then what is $\cos 2 \theta$?
$1 \frac{1}{8}$
$2 \frac{9}{16}$
$3-\frac{1}{8}$
$4 \quad \frac{3}{2}$

A2.A.68: TRIGONOMETRIC EQUATIONS

474 What are the values of θ in the interval $0^{\circ} \leq \theta<360^{\circ}$ that satisfy the equation $\tan \theta-\sqrt{3}=0$?
$160^{\circ}, 240^{\circ}$
$272^{\circ}, 252^{\circ}$
$372^{\circ}, 108^{\circ}, 252^{\circ}, 288^{\circ}$
$460^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$
475 Find all values of θ in the interval $0^{\circ} \leq \theta<360^{\circ}$ that satisfy the equation $\sin 2 \theta=\sin \theta$.

476 Solve the equation $2 \tan C-3=3 \tan C-4$ algebraically for all values of C in the interval $0^{\circ} \leq C<360^{\circ}$.

477 What is the solution set for $2 \cos \theta-1=0$ in the interval $0^{\circ} \leq \theta<360^{\circ}$?
$1\left\{30^{\circ}, 150^{\circ}\right\}$
$2\left\{60^{\circ}, 120^{\circ}\right\}$
$3\left\{30^{\circ}, 330^{\circ}\right\}$
$4 \quad\left\{60^{\circ}, 300^{\circ}\right\}$
478 What is the solution set of the equation $-\sqrt{2} \sec x=2$ when $0^{\circ} \leq x<360^{\circ}$?
1 \{45 $\left., 135^{\circ}, 225^{\circ}, 315^{\circ}\right\}$
$2\left\{45^{\circ}, 315^{\circ}\right\}$
$3\left\{135^{\circ}, 225^{\circ}\right\}$
$4\left\{225^{\circ}, 315^{\circ}\right\}$
479 Find, algebraically, the measure of the obtuse angle, to the nearest degree, that satisfies the equation $5 \csc \theta=8$.

480 Solve algebraically for all exact values of x in the interval $0 \leq x<2 \pi: 2 \sin ^{2} x+5 \sin x=3$

481 Solve sec $x-\sqrt{2}=0$ algebraically for all values of x in $0^{\circ} \leq x<360^{\circ}$.

482 In the interval $0^{\circ} \leq \theta<360^{\circ}$, solve the equation $5 \cos \theta=2 \sec \theta-3$ algebraically for all values of θ, to the nearest tenth of a degree.

483 Which values of x in the interval $0^{\circ} \leq x<360^{\circ}$ satisfy the equation $2 \sin ^{2} x+\sin x-1=0$?
$1\left\{30^{\circ}, 270^{\circ}\right\}$
$2\left\{30^{\circ}, 150^{\circ}, 270^{\circ}\right\}$
$3\left\{90^{\circ}, 210^{\circ}, 330^{\circ}\right\}$
$4\left\{90^{\circ}, 210^{\circ}, 270^{\circ}, 330^{\circ}\right\}$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A2.A.69: PROPERTIES OF TRIGONOMETRIC FUNCTIONS

484 What is the period of the function
$y=\frac{1}{2} \sin \left(\frac{x}{3}-\pi\right)$?
$1 \quad \frac{1}{2}$
$2 \quad \frac{1}{3}$
$3 \frac{2}{3} \pi$
46π
485 What is the period of the function $\mathrm{f}(\theta)=-2 \cos 3 \theta$?
1π
$2 \quad \frac{2 \pi}{3}$
$3 \quad \frac{3 \pi}{2}$
42π
486 Which equation represents a graph that has a period of 4π ?
$1 y=3 \sin \frac{1}{2} x$
$2 y=3 \sin 2 x$
$3 y=3 \sin \frac{1}{4} x$
$4 y=3 \sin 4 x$
487 What is the period of the graph $y=\frac{1}{2} \sin 6 x$?
$1 \quad \frac{\pi}{6}$
$2 \frac{\pi}{3}$
$3 \quad \frac{\pi}{2}$
46π
488 How many full cycles of the function $y=3 \sin 2 x$ appear in π radians?
$1 \quad 1$
22
$3 \quad 3$
44

489 What is the period of the graph of the equation
$y=\frac{1}{3} \sin 2 x$?
$1 \frac{1}{3}$
22
3π
$4 \quad 6 \pi$

A2.A.72: IDENTIFYING THE EQUATION OF A TRIGONOMETRIC GRAPH

490 Which equation is graphed in the diagram below?

$1 \quad y=3 \cos \left(\frac{\pi}{30} x\right)+8$
$2 \quad y=3 \cos \left(\frac{\pi}{15} x\right)+5$
$3 y=-3 \cos \left(\frac{\pi}{30} x\right)+8$
$4 \quad y=-3 \cos \left(\frac{\pi}{15} x\right)+5$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

491 Write an equation for the graph of the trigonometric function shown below.

492 Which equation is represented by the graph below?

$1 y=2 \cos 3 x$
$2 y=2 \sin 3 x$
$3 y=2 \cos \frac{2 \pi}{3} x$
$4 y=2 \sin \frac{2 \pi}{3} x$

493 Which equation represents the graph below?

$1 y=-2 \sin 2 x$
$2 y=-2 \sin \frac{1}{2} x$
$3 y=-2 \cos 2 x$
$4 y=-2 \cos \frac{1}{2} x$
494 The periodic graph below can be represented by the trigonometric equation $y=a \cos b x+c$ where a, b, and c are real numbers.

State the values of a, b, and c, and write an equation for the graph.

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A2.A.65, 70-71: GRAPHING TRIGONOMETRIC FUNCTIONS

495 Which graph represents the equation $y=\cos ^{-1} x$?

496 Which graph shows $y=\cos ^{-1} x$?

1

2

3

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic

497 Which graph represents one complete cycle of the equation $y=\sin 3 \pi x$?

1

2

498 Which equation is represented by the graph below?

$1 \quad y=\cot x$
$2 y=\csc x$
$3 y=\sec x$
$4 y=\tan x$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

499 Which equation is sketched in the diagram below?

$$
\begin{array}{ll}
1 & y=\csc x \\
2 & y=\sec x \\
3 & y=\cot x \\
4 & y=\tan x
\end{array}
$$

500 Which is a graph of $y=\cot x$?

1

2

A2.A.63: DOMAIN AND RANGE

501 The function $\mathrm{f}(x)=\tan x$ is defined in such a way that $\mathrm{f}^{-1}(x)$ is a function. What can be the domain of $\mathrm{f}(x)$?
$1 \quad\{x \mid 0 \leq x \leq \pi\}$
$2 \quad\{x \mid 0 \leq x \leq 2 \pi\}$
$3\left\{x \left\lvert\,-\frac{\pi}{2}<x<\frac{\pi}{2}\right.\right\}$
$4\left\{x \left\lvert\,-\frac{\pi}{2}<x<\frac{3 \pi}{2}\right.\right\}$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

502 In which interval of $\mathrm{f}(x)=\cos (x)$ is the inverse also a function?
$1-\frac{\pi}{2}<x<\frac{\pi}{2}$
$2-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$
$3 \quad 0 \leq x \leq \pi$
$4 \quad \frac{\pi}{2} \leq x \leq \frac{3 \pi}{2}$
503 Which statement regarding the inverse function is true?
1 A domain of $y=\sin ^{-1} x$ is [$\left.0,2 \pi\right]$.
2 The range of $y=\sin ^{-1} x$ is $[-1,1]$.
3 A domain of $y=\cos ^{-1} x$ is $(-\infty, \infty)$.
4 The range of $y=\cos ^{-1} x$ is [0, $\left.\pi\right]$.

A2.A.74: USING TRIGONOMETRY TO FIND AREA

504 In $\triangle A B C, \mathrm{~m} \angle A=120, b=10$, and $c=18$. What is the area of $\triangle A B C$ to the nearest square inch?
152
278
390
4156
505 Two sides of a parallelogram are 24 feet and 30 feet. The measure of the angle between these sides is 57°. Find the area of the parallelogram, to the nearest square foot.

506 The sides of a parallelogram measure 10 cm and 18 cm . One angle of the parallelogram measures 46 degrees. What is the area of the parallelogram, to the nearest square centimeter?
165
2125
3129
4162

507 In parallelogram $B F L O, O L=3.8, L F=7.4$, and $\mathrm{m} \angle O=126$. If diagonal $\overline{B L}$ is drawn, what is the area of $\triangle B L F$?
111.4
$2 \quad 14.1$
$3 \quad 22.7$
$4 \quad 28.1$
508 The two sides and included angle of a parallelogram are 18,22 , and 60°. Find its exact area in simplest form.

509 The area of triangle $A B C$ is 42 . If $A B=8$ and $\mathrm{m} \angle B=61$, the length of $\overline{B C}$ is approximately 15.1
29.2
312.0
$4 \quad 21.7$
510 A ranch in the Australian Outback is shaped like triangle $A C E$, with $\mathrm{m} \angle A=42, \mathrm{~m} \angle E=103$, and $A C=15$ miles. Find the area of the ranch, to the nearest square mile.

511 Find, to the nearest tenth of a square foot, the area of a rhombus that has a side of 6 feet and an angle of 50°.

512 Two sides of a triangular-shaped sandbox measure 22 feet and 13 feet. If the angle between these two sides measures 55°, what is the area of the sandbox, to the nearest square foot?
182
2117
3143
$4 \quad 234$
513 The area of a parallelogram is 594, and the lengths of its sides are 32 and 46. Determine, to the nearest tenth of a degree, the measure of the acute angle of the parallelogram.

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

514 What is the area of a parallelogram that has sides measuring 8 cm and 12 cm and includes an angle of 120° ?
$124 \sqrt{3}$
$248 \sqrt{3}$
$383 \sqrt{3}$
$4 \quad 96 \sqrt{3}$

A2.A.73: LAW OF SINES

515 In $\triangle A B C, \mathrm{~m} \angle A=32, a=12$, and $b=10$. Find the measures of the missing angles and side of $\triangle A B C$. Round each measure to the nearest tenth.

516 The diagram below shows the plans for a cell phone tower. A guy wire attached to the top of the tower makes an angle of 65 degrees with the ground. From a point on the ground 100 feet from the end of the guy wire, the angle of elevation to the top of the tower is 32 degrees. Find the height of the tower, to the nearest foot.

517 As shown in the diagram below, fire-tracking station A is 100 miles due west of fire-tracking station B. A forest fire is spotted at F, on a bearing 47° northeast of station A and 15° northeast of station B. Determine, to the nearest tenth of a mile, the distance the fire is from both station A and station B. [N represents due north.]

518 In $\triangle P Q R$, p equals
$1 \frac{r \sin P}{\sin Q}$
$2 \frac{r \sin P}{\sin R}$
$3 \frac{r \sin R}{\sin P}$
$4 \frac{q \sin R}{\sin Q}$

A2.A.75: LAW OF SINES-THE AMBIGUOUS

 CASE519 In $\triangle A B C, \mathrm{~m} \angle A=74, a=59.2$, and $c=60.3$.
What are the two possible values for $\mathrm{m} \angle C$, to the nearest tenth?
$1 \quad 73.7$ and 106.3
$2 \quad 73.7$ and 163.7
$3 \quad 78.3$ and 101.7
$4 \quad 78.3$ and 168.3
520 How many distinct triangles can be formed if $\mathrm{m} \angle A=35, a=10$, and $b=13$?
$1 \quad 1$
22
$3 \quad 3$
40
521 Given $\triangle A B C$ with $a=9, b=10$, and $\mathrm{m} \angle B=70$, what type of triangle can be drawn?
1 an acute triangle, only
2 an obtuse triangle, only
3 both an acute triangle and an obtuse triangle
4 neither an acute triangle nor an obtuse triangle
522 In $\triangle M N P, m=6$ and $n=10$. Two distinct triangles can be constructed if the measure of angle M is
135
240
345
450

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

523 In $\triangle K L M, K L=20, L M=13$, and $\mathrm{m} \angle K=40$.
The measure of $\angle M$?
1 must be between 0° and 90°
2 must equal 90°
3 must be between 90° and 180°
4 is ambiguous
524 In $\triangle D E F, d=5, e=8$, and $\mathrm{m} \angle D=32$. How many distinct triangles can be drawn given these measurements?
11
$2 \quad 2$
33
40
525 How many distinct triangles can be constructed if $\mathrm{m} \angle A=30$, side $a=\sqrt{34}$, and side $b=12$?
1 one acute triangle
2 one obtuse triangle
3 two triangles
4 none
526 In triangle $A B C$, determine the number of distinct triangles that can be formed if $\mathrm{m} \angle A=85$, side $a=8$, and side $c=2$. Justify your answer.

A2.A.73: LAW OF COSINES

527 In a triangle, two sides that measure 6 cm and 10 cm form an angle that measures 80°. Find, to the nearest degree, the measure of the smallest angle in the triangle.

528 In $\triangle A B C, a=3, b=5$, and $c=7$. What is $\mathrm{m} \angle C$?
$1 \quad 22$
238
360
4120

529 In $\triangle A B C, a=15, b=14$, and $c=13$, as shown in the diagram below. What is the $\mathrm{m} \angle C$, to the nearest degree?

153
259
367
4127
530 Two sides of a parallelogram measure 27 cm and 32 cm . The included angle measures 48°. Find the length of the longer diagonal of the parallelogram, to the nearest centimeter.

531 In $\triangle F G H, f=6, g=9$, and $\mathrm{m} \angle H=57$. Which statement can be used to determine the numerical value of h ?
$1 h^{2}=6^{2}+9^{2}-2(9)(h) \cos 57^{\circ}$
$2 h^{2}=6^{2}+9^{2}-2(6)(9) \cos 57^{\circ}$
$36^{2}=9^{2}+h^{2}-2(9)(h) \cos 57^{\circ}$
$4 \quad 9^{2}=6^{2}+h^{2}-2(6)(h) \cos 57^{\circ}$
532 Find the measure of the smallest angle, to the nearest degree, of a triangle whose sides measure 28,47 , and 34.

533 In a triangle, two sides that measure 8 centimeters and 11 centimeters form an angle that measures 82°. To the nearest tenth of a degree, determine the measure of the smallest angle in the triangle.

A2.A.73: VECTORS

534 Two forces of 25 newtons and 85 newtons acting on a body form an angle of 55°. Find the magnitude of the resultant force, to the nearest hundredth of a newton. Find the measure, to the nearest degree, of the angle formed between the resultant and the larger force.

535 The measures of the angles between the resultant and two applied forces are 60° and 45°, and the magnitude of the resultant is 27 pounds. Find, to the nearest pound, the magnitude of each applied force.

536 Two forces of 40 pounds and 28 pounds act on an object. The angle between the two forces is 65°. Find the magnitude of the resultant force, to the nearest pound. Using this answer, find the measure of the angle formed between the resultant and the smaller force, to the nearest degree.

CONICS

A2.A.47-49: EQUATIONS OF CIRCLES

537 The equation $x^{2}+y^{2}-2 x+6 y+3=0$ is equivalent to
$1(x-1)^{2}+(y+3)^{2}=-3$
$2(x-1)^{2}+(y+3)^{2}=7$
$3 \quad(x+1)^{2}+(y+3)^{2}=7$
$4(x+1)^{2}+(y+3)^{2}=10$
538 What are the coordinates of the center of a circle whose equation is $x^{2}+y^{2}-16 x+6 y+53=0$?
1 (-8,-3)
$2(-8,3)$
$3(8,-3)$
$4(8,3)$
539 What is the equation of the circle passing through the point $(6,5)$ and centered at $(3,-4)$?
$1(x-6)^{2}+(y-5)^{2}=82$
$2(x-6)^{2}+(y-5)^{2}=90$
$3(x-3)^{2}+(y+4)^{2}=82$
$4(x-3)^{2}+(y+4)^{2}=90$

540 Which equation represents a circle with its center at $(2,-3)$ and that passes through the point $(6,2)$?
$1(x-2)^{2}+(y+3)^{2}=\sqrt{41}$
$2(x+2)^{2}+(y-3)^{2}=\sqrt{41}$
$3(x-2)^{2}+(y+3)^{2}=41$
$4(x+2)^{2}+(y-3)^{2}=41$
541 Write an equation of the circle shown in the graph below.

542 A circle shown in the diagram below has a center of $(-5,3)$ and passes through point $(-1,7)$.

Write an equation that represents the circle.

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

Which equation represents the circle shown in the graph below that passes through the point $(0,-1)$?

$1(x-3)^{2}+(y+4)^{2}=16$
$2(x-3)^{2}+(y+4)^{2}=18$
$3(x+3)^{2}+(y-4)^{2}=16$
$4(x+3)^{2}+(y-4)^{2}=18$
544 Write an equation of the circle shown in the diagram below.

545 Which equation is represented by the graph below?

$1(x-3)^{2}+(y+1)^{2}=5$
$2(x+3)^{2}+(y-1)^{2}=5$
$3(x-1)^{2}+(y+3)^{2}=13$
$4(x+3)^{2}+(y-1)^{2}=13$
546 A circle with center O and passing through the origin is graphed below.

What is the equation of circle O ?
$1 x^{2}+y^{2}=2 \sqrt{5}$
$2 x^{2}+y^{2}=20$
$3(x+4)^{2}+(y-2)^{2}=2 \sqrt{5}$
$4(x+4)^{2}+(y-2)^{2}=20$

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic Answer Section

1 ANS:
Controlled experiment because Howard is comparing the results obtained from an experimental sample against a control sample.

PTS: 2 REF: 081030a2 STA: A2.S. 1 TOP: Analysis of Data
2 ANS: 4 PTS: 2
REF: 011127a2
STA: A2.S. 1
TOP: Analysis of Data
3 ANS: $4 \quad$ PTS: 2
TOP: Analysis of Data
4 ANS: 2 PTS: 2
REF: 061101a2
STA: A2.S. 1

TOP: Analysis of Data
5 ANS: 4 PTS: 2
REF: 011406a2 STA: A2.S. 1
TOP: Analysis of Data
6 ANS: 4
Students entering the library are more likely to spend more time studying, creating bias.
PTS: 2 REF: fall0904a2 STA: A2.S. 2 TOP: Analysis of Data
7 ANS: 4
PTS: 2
REF: 011201a2
TOP: Analysis of Data
8 ANS: 1 PTS: 2 REF: 061401a2
TOP: Analysis of Data
9 ANS: $4 \quad$ PTS: 2
REF: 061124a2 STA: A2.S. 3
TOP: Average Known with Missing Data
10 ANS: 4
$\frac{4 \cdot 0+6 \cdot 1+10 \cdot 2+0 \cdot 3+4 k+2 \cdot 5}{4+6+10+0+k+2}=2$

$$
\begin{aligned}
\frac{4 k+36}{k+22} & =2 \\
4 k+36 & =2 k+44 \\
2 k & =8 \\
k & =4
\end{aligned}
$$

PTS: 2
REF: 061221a2
STA: A2.S. 3
TOP: Average Known with Missing Data

11 ANS: 3

PTS: 2 REF: fall0924a2 STA: A2.S. 4 TOP: Dispersion
KEY: range, quartiles, interquartile range, variance
12 ANS:
7.4

PTS: 2 REF: 061029a2 STA: A2.S. 4 TOP: Dispersion
KEY: basic, group frequency distributions
13 ANS:
$\sigma_{x}=14.9 . \bar{x}=40$. There are 8 scores between 25.1 and 54.9.
PTS: 4 REF: 061237a2 STA: A2.S. 4 TOP: Dispersion
KEY: advanced
14 ANS:
Ordered, the heights are $71,71,72,74,74,75,78,79,79,83 . Q_{1}=72$ and $Q_{3}=79.79-72=7$.
PTS: 2
REF: 011331a2 STA: A2.S. 4 TOP: Dispersion
KEY: range, quartiles, interquartile range, variance
15 ANS:
$\sigma_{x} \approx 6.2 .6$ scores are within a population standard deviation of the mean. $Q_{3}-Q_{1}=41-37=4$
$\bar{x} \approx 38.2$
PTS: 4
REF: 061338a2 STA: A2.S. 4 TOP: Dispersion
KEY: advanced
16 ANS:
$Q_{1}=3.5$ and $Q_{3}=10.5 .10 .5-3.5=7$.
PTS: 2 REF: 011430a2 STA: A2.S. 4 TOP: Dispersion
KEY: range, quartiles, interquartile range, variance
17 ANS: 2
$12-7=5$
PTS: 2
REF: 011525a2 STA: A2.S. 4
TOP: Dispersion
KEY: range, quartiles, interquartile range, variance

18 ANS:
$5.17 \quad 84.46 \pm 5.17$
79.29-89.63
$5+7+5=17$
PTS: 4
REF: 061538a2 STA: A2.S. 4
KEY: advanced, group frequency distributions
19 ANS: 2
PTS: 2 REF: 081509a2
STA: A2.S. 4
TOP: Dispersion KEY: basic, group frequency distributions
20 ANS: 3
PTS: 2 REF: 061127a2 STA: A2.S. 6
TOP: Regression
21 ANS:
$y=2.001 x^{2.298}, 1,009 . y=2.001(15)^{2.298} \approx 1009$
PTS: 4 REF: fall0938a2 STA: A2.S. 7 TOP: Power Regression
22 ANS:
$y=10.596(1.586)^{x}$
PTS: 2 REF: 081031a2 STA: A2.S. 7 TOP: Exponential Regression
23 ANS:
$y=27.2025(1.1509)^{x} . y=27.2025(1.1509)^{18} \approx 341$

PTS: 4 REF: 011238a2 STA: A2.S. 7 TOP: Exponential Regression
24 ANS:
$y=180.377(0.954)^{x}$
PTS: 2 REF: 061231a2 STA: A2.S. 7 TOP: Exponential Regression
25 ANS:
$y=215.983(1.652)^{x} .215 .983(1.652)^{7} \approx 7250$
PTS: 4 REF: 011337a2 STA: A2.S. 7 TOP: Exponential Regression
26 ANS:
$y=0.488(1.116)^{x}$
PTS: 2 REF: 061429a2 STA: A2.S. 7 TOP: Exponential Regression
27 ANS:
$y=733.646(0.786)^{x} 733.646(0.786)^{12} \approx 41$
PTS: 4 REF: 011536a2 STA: A2.S. 7 TOP: Exponential Regression
28 ANS: $2 \quad$ PTS: 2
REF: 061021a2 STA: A2.S. 8
TOP: Correlation Coefficient

29 ANS: 1
(4) shows the strongest linear relationship, but if $r<0, b<0$. The Regents announced that a correct solution was not provided for this question and all students should be awarded credit.

PTS: 2 REF: 011223a2 STA: A2.S. 8 TOP: Correlation Coefficient
30 ANS: 1

PTS: 2 REF: 061225a2 STA: A2.S. 8 TOP: Correlation Coefficient
31 ANS: 2
Since the coefficient of t is greater than $0, r>0$.
PTS: 2 REF: 011303a2 STA: A2.S. 8 TOP: Correlation Coefficient
32 ANS: $1 \quad$ PTS: 2
TOP: Correlation Coefficient
33 ANS:
$r_{A} \approx 0.976 r_{B} \approx 0.994$ Set B has the stronger linear relationship since r is higher.
PTS: 2 REF: 061535a2 STA: A2.S.8 TOP: Correlation Coefficient
34 ANS: 2
PTS: 2
REF: 081502a2
STA: A2.S. 8
TOP: Correlation Coefficient
35 ANS: 1

PTS: 2
REF: fall0915a2 STA: A2.S.5
TOP: Normal Distributions
KEY: interval
36 ANS: 3
$68 \% \times 50=34$
PTS: 2 REF: 081013a2 STA: A2.S. 5 TOP: Normal Distributions
KEY: predict
37 ANS:
68% of the students are within one standard deviation of the mean. 16% of the students are more than one standard deviation above the mean.

PTS: 2
REF: 011134a2
STA: A2.S. 5
TOP: Normal Distributions
KEY: percent

38 ANS:
no. over 20 is more than 1 standard deviation above the mean. $0.159 \cdot 82 \approx 13.038$
PTS: 2 REF: 061129a2 STA: A2.S. 5 TOP: Normal Distributions
KEY: predict
39 ANS: 3
$34.1 \%+19.1 \%=53.2 \%$
PTS: 2 REF: 011212a2 STA: A2.S. 5 TOP: Normal Distributions
KEY: probability
40 ANS: 2
$\bar{x} \pm \sigma$
153 ± 22
131-175
PTS: 2 REF: 011307a2 STA: A2.S. 5 TOP: Normal Distributions
KEY: interval
41 ANS: 2
Top $6.7 \%=1.5$ s.d. $+\sigma=1.5(104)+576=732$
PTS: 2 REF: 011420a2 STA: A2.S. 5 TOP: Normal Distributions
KEY: predict
42 ANS:
Less than 60 inches is below 1.5 standard deviations from the mean. $0.067 \cdot 450 \approx 30$
PTS: 2 REF: 061428a2 STA: A2.S. 5 TOP: Normal Distributions
KEY: predict
43 ANS:

$$
\mathrm{sd}=\frac{81-57}{3}=8
$$

$$
57+8=65
$$

$81-2(8)=65$
PTS: 2
REF: 011534a2 STA: A2.S.5
TOP: Normal Distributions
KEY: mean and standard deviation
44 ANS: 4
$\frac{91-82}{3.6}=2.5 \mathrm{sd}$
PTS: 2
REF: 081521a2
STA: A2.S. 5
TOP: Normal Distributions
KEY: interval
45 ANS: 4
PTS: 2
REF: fall0925a2
STA: A2.S. 10
TOP: Permutations

46 ANS:
No. TENNESSEE: $\frac{{ }_{9} P_{9}}{4!\cdot 2!\cdot 2!}=\frac{362,880}{96}=3,780$. VERMONT: ${ }_{7} P_{7}=5,040$
PTS: 4 REF: 061038a2 STA: A2.S. 10 TOP: Permutations
47 ANS:
39,916,800. $\frac{{ }_{12} P_{12}}{3!\cdot 2!}=\frac{479,001,600}{12}=39,916,800$
PTS: 2 REF: 081035a2 STA: A2.S. 10 TOP: Permutations
48 ANS: 1
$8 \times 8 \times 7 \times 1=448$. The first digit cannot be 0 or 5 . The second digit cannot be 5 or the same as the first digit. The third digit cannot be 5 or the same as the first or second digit.

PTS: 2 REF: 011125a2 STA: A2.S. 10 TOP: Permutations
49 ANS: 1
$\frac{{ }_{6} P_{6}}{3!2!}=\frac{720}{12}=60$
PTS: 2
REF: 011324a2
STA: A2.S. 10
TOP: Permutations
50 ANS:
$\frac{{ }_{10} P_{10}}{3!\cdot 3!\cdot 2!}=\frac{3,628,800}{72}=50,400$
PTS: 2
51 ANS: 4
REF: 061330a2
STA: A2.S. 10
TOP: Permutations
TOP: Permutations
52 ANS: 3
$2!\cdot 2!\cdot 2!=8$
PTS: 2 REF: 061425a2 STA: A2.S. 10 TOP: Permutations
53 ANS: 1
$\frac{{ }_{11} P_{11}}{2!2!2!2!}=\frac{39,916,800}{16}=2,494,800$
PTS: 2 REF: 011518a2 STA: A2.S. 10 TOP: Permutations
54 ANS: 1
$\frac{{ }_{9} P_{9}}{4!\cdot 2!\cdot 2!}=\frac{362,880}{96}=3,780$
PTS: 2 REF: 061511a2 STA: A2.S. 10 TOP: Permutations
55 ANS: 1
$\frac{{ }_{11} P_{11}}{3!2!2!2!}=\frac{39,916,800}{48}=831,600$
PTS: 2 REF: 081512a2 STA: A2.S. 10 TOP: Permutations

56 ANS: 2
${ }_{15} C_{8}=6,435$
PTS: 2 REF: 081012a2 STA: A2.S. 11 TOP: Combinations
57 ANS: 1
${ }_{10} C_{4}=210$
PTS: 2 REF: 061113a2 STA: A2.S. 11 TOP: Combinations
58 ANS:
${ }_{25} C_{20}=53,130$
PTS: 2 REF: 011232a2 STA: A2.S. 11 TOP: Combinations
59 ANS: 4
${ }_{15} C_{5}=3,003 .{ }_{25} C_{5}={ }_{25} C_{20}=53,130 .{ }_{25} C_{15}=3,268,760$.
PTS: 2 REF: 061227a2 STA: A2.S. 11 TOP: Combinations
60 ANS: 3
${ }_{20} C_{4}=4,845$
PTS: 2 REF: 011509a2 STA: A2.S. 11 TOP: Combinations
61 ANS: 3
${ }_{9} C_{3}=84$
PTS: 2 REF: 081513a2 STA: A2.S. 11 TOP: Combinations
62 ANS: 3 PTS: 2 REF: 061007a2 STA: A2.S. 9
TOP: Differentiating Permutations and Combinations
63 ANS: 1 PTS: 2 REF: 011117a2 STA: A2.S. 9
TOP: Differentiating Permutations and Combinations
64 ANS: 1 PTS: 2 REF: 011310a2 STA: A2.S.9
TOP: Differentiating Permutations and Combinations
65 ANS: 1 PTS: 2 REF: 061317a2
TOP: Differentiating Permutations and Combinations
66 ANS: 2 PTS: 2 REF: 011417a2 STA: A2.S.9
TOP: Differentiating Permutations and Combinations
67 ANS: 3 PTS: 2 REF: 061523a2 STA: A2.S.9
TOP: Differentiating Permutations and Combinations
68 ANS: 4 PTS: 2 REF: 081526a2 STA: A2.S. 9
TOP: Differentiating Permutations and Combinations

69 ANS:

	$\begin{array}{r} 9 \mathrm{nCr} 2 * 20 \mathrm{nCr} 3 \\ 41040 \end{array}$
41,040.	

PTS: 2 REF: fall0935a2 STA: A2.S. 12 TOP: Sample Space
70 ANS: 3
${ }_{3} C_{1} \cdot{ }_{5} C_{2}=3 \cdot 10=30$
PTS: 2 REF: 061422a2 STA: A2.S. 12 TOP: Combinations
71 ANS: 2

PTS: 2 REF: 011108a2 STA: A2.S. 13 TOP: Geometric Probability
72 ANS:
0.167. ${ }_{10} C_{8} \cdot 0.6^{8} \cdot 0.4^{2}+{ }_{10} C_{9} \cdot 0.6^{9} \cdot 0.4^{1}+{ }_{10} C_{10} \cdot 0.6^{10} \cdot 0.4^{0} \approx 0.167$

PTS: 4 REF: 061036a2 STA: A2.S. 15 TOP: Binomial Probability
KEY: at least or at most
73 ANS:
26.2\%. ${ }_{10} C_{8} \cdot 0.65^{8} \cdot 0.35^{2}+{ }_{10} C_{9} \cdot 0.65^{9} \cdot 0.35^{1}+{ }_{10} C_{10} \cdot 0.65^{10} \cdot 0.35^{0} \approx 0.262$

PTS: 4
REF: 081038a2 STA: A2.S. 15 TOP: Binomial Probability
KEY: at least or at most
74 ANS:
0.468. ${ }_{8} C_{6}\left(\frac{2}{3}\right)^{6}\left(\frac{1}{3}\right)^{2} \approx 0.27313 .{ }_{8} C_{7}\left(\frac{2}{3}\right)^{7}\left(\frac{1}{3}\right)^{1} \approx 0.15607 .{ }_{8} C_{8}\left(\frac{2}{3}\right)^{8}\left(\frac{1}{3}\right)^{0} \approx 0.03902$.

PTS: 4
REF: 011138a2 STA: A2.S. 15 TOP: Binomial Probability
KEY: at least or at most

75 ANS:

$$
\begin{array}{r}
\frac{51}{243} \cdot{ }_{5} C_{3}\left(\frac{1}{3}\right)^{3}\left(\frac{2}{3}\right)^{2}=\frac{40}{243} \\
{ }_{5} C_{4}\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)^{1}=\frac{10}{243} \\
{ }_{5} C_{3}\left(\frac{1}{3}\right)^{5}\left(\frac{2}{3}\right)^{0}=\frac{1}{243}
\end{array}
$$

PTS: 4
REF: 061138a2
STA: A2.S. 15
TOP: Binomial Probability
KEY: at least or at most
76 ANS: 4
${ }_{3} C_{2}\left(\frac{5}{8}\right)^{2}\left(\frac{3}{8}\right)^{1}=\frac{225}{512}$
PTS: 2
KEY: spinner
77 ANS: 1
REF: 011221a2
STA: A2.S. 15
TOP: Binomial Probability
PTS: 2
REF: 061223a2
TOP: Binomial Probability
KEY: modeling
78 ANS:
${ }_{7} C_{3}\left(\frac{1}{4}\right)^{3}\left(\frac{3}{4}\right)^{4}=35\left(\frac{1}{64}\right)\left(\frac{81}{256}\right)=\frac{2835}{16384} \approx 0.173$
PTS: 2 REF: 061335a2 STA: A2.S. 15 TOP: Binomial Probability
KEY: exactly
79
${ }_{5} C_{4} \cdot 0.28^{4} \cdot 0.72^{1}+{ }_{5} C_{5} \cdot 0.28^{5} \cdot 0.72^{0} \approx 0.024$
PTS: 4 REF: 011437a2 STA: A2.S. 15 TOP: Binomial Probability
KEY: at least or at most
80 ANS:
${ }_{5} C_{0} \cdot 0.57^{0} \cdot 0.43^{5}+{ }_{5} C_{1} \cdot 0.57^{1} \cdot 0.43^{4}+{ }_{5} C_{2} \cdot 0.57^{2} \cdot 0.43^{3} \approx 0.37$
PTS: 4 REF: 061438a2 STA: A2.S. 15 TOP: Binomial Probability
KEY: at least or at most
81 ANS:
${ }_{6} C_{5}\left(\frac{2}{5}\right)^{5}\left(\frac{3}{5}\right)=6\left(\frac{32}{3125}\right)\left(\frac{3}{5}\right)=\frac{576}{15,625}$
PTS: 2 REF: 011532a2 STA: A2.S. 15 TOP: Binomial Probability KEY: exactly

82 ANS:
${ }_{3} C_{1}\left(\frac{1}{4}\right)^{1}\left(\frac{3}{4}\right)^{2}=3 \cdot \frac{1}{4} \cdot \frac{9}{16}=\frac{27}{64}$
PTS: 2 REF: 061530a2 STA: A2.S. 15 TOP: Binomial Probability
KEY: exactly
83 ANS:
${ }_{7} C_{4}\left(\frac{2}{3}\right)^{4}\left(\frac{1}{3}\right)^{3}=35\left(\frac{16}{81}\right)\left(\frac{1}{27}\right)=\frac{560}{2187}$
PTS: 2 REF: 081531a2 STA: A2.S. 15 TOP: Binomial Probability
KEY: exactly
84 ANS: 1
$\begin{array}{rlrl}4 a+6=4 a-10.4 a+6 & =-4 a+10 . & \left|4\left(\frac{1}{2}\right)+6\right|-4\left(\frac{1}{2}\right)=-10 \\ 6 \neq-10 & 8 a & =4 \\ a & =\frac{4}{8}=\frac{1}{2} & 8-2 \neq-10\end{array}$
PTS: 2 REF: 011106a2 STA: A2.A. 1 TOP: Absolute Value Equations
85 ANS: 2
$x-2=3 x+10-6$ is extraneous. $x-2=-3 x-10$

$$
\begin{array}{rlrl}
-12 & =2 x & 4 x & =-8 \\
-6 & =x & x & =-2
\end{array}
$$

PTS: 2 REF: 061513a2 STA: A2.A. 1 TOP: Absolute Value Equations
86 ANS: 1
$6 x-7 \leq 5 \quad 6 x-7 \geq-5$

$$
\begin{array}{crl}
6 x & \leq 12 & 6 x \\
x & \geq 2 \\
x & x & \geq \frac{1}{3}
\end{array}
$$

PTS: 2 REF: fall0905a2 STA: A2.A. 1 TOP: Absolute Value Inequalities
KEY: graph
87 ANS:

$$
\begin{gathered}
-3|6-x|<-15 \\
|6-x|>5 \\
6-x>5 \text { or } 6-x<-5 \\
1>x \text { or } 11<x
\end{gathered}
$$

PTS: 2
REF: 061137a2 STA: A2.A. 1
TOP: Absolute Value Inequalities KEY: graph

88 ANS: 3
$\frac{4 x-5}{3}>1$ or $\frac{4 x-5}{3}<-1$

$$
\begin{array}{rlrl}
4 x-5 & >3 & 4 x-5 & <-3 \\
4 x & >8 & 4 x & <2 \\
x & >2 & x & <\frac{1}{2}
\end{array}
$$

PTS: 2 REF: 061209a2 STA: A2.A. 1 TOP: Absolute Value Inequalities
KEY: graph
89 ANS:
$3-2 x \geq 7$ or $3-2 x \leq-7$

$$
\begin{array}{rlrl}
-2 x & \geq 4 & -2 x & \leq-10 \\
x & \leq-2 & x & \geq 5
\end{array}
$$

PTS: 2 REF: 011334a2 STA: A2.A. 1 TOP: Absolute Value Inequalities
KEY: graph
90 ANS: 1
$2 x-1>5.2 x-1<-5$

$$
\begin{array}{rlrl}
2 x & >6 & 2 x & >-4 \\
x & >3 & x & <-2
\end{array}
$$

PTS: 2 REF: 061307a2 STA: A2.A. 1 TOP: Absolute Value Inequalities
KEY: graph
91 ANS:
$-4 x+5<13-4 x+5>-13-2<x<4.5$
$-4 x<8 \quad-4 x>-18$
$x>-2 \quad x<4.5$
PTS: 2 REF: 011432a2 STA: A2.A. 1 TOP: Absolute Value Inequalities
92 ANS:
$2 x-3>5$ or $2 x-3<-5$

$$
\begin{array}{rlrl}
2 x & >8 & 2 x & <-2 \\
x & >4 & x & <-1
\end{array}
$$

PTS: 2 REF: 061430a2 STA: A2.A. 1 TOP: Absolute Value Inequalities

93 ANS:
$|3 x-5|<x+173 x-5<x+17$ and $3 x-5>-x-17-3<x<11$

$$
\begin{array}{rc}
2 x & <22 \\
x & <11
\end{array} \quad 4 x>-12
$$

PTS: 4 REF: 081538a2 STA: A2.A. 1 TOP: Absolute Value Inequalities
94 ANS:
Sum $\frac{-b}{a}=-\frac{11}{5}$. Product $\frac{c}{a}=-\frac{3}{5}$
PTS: 2 REF: 061030a2 STA: A2.A. 20 TOP: Roots of Quadratics
95 ANS: 2
sum: $\frac{-b}{a}=\frac{4}{6}=\frac{2}{3}$. product: $\frac{c}{a}=\frac{-12}{6}=-2$
PTS: 2 REF: 011209a2 STA: A2.A. 20 TOP: Roots of Quadratics
96 ANS:
$3 x^{2}-11 x+6=0$. Sum $\frac{-b}{a}=\frac{11}{3}$. Product $\frac{c}{a}=\frac{6}{3}=2$
PTS: 2 REF: 011329a2 STA: A2.A. 20 TOP: Roots of Quadratics
97 ANS:
Sum $\frac{-b}{a}=-\frac{1}{12}$. Product $\frac{c}{a}=-\frac{1}{2}$
PTS: 2 REF: 061328a2 STA: A2.A. 20 TOP: Roots of Quadratics
98 ANS: 4
$2 x^{2}-7 x-5=0$

$$
\frac{c}{a}=\frac{-5}{2}
$$

PTS: 2 REF: 061414a2 STA: A2.A. 20 TOP: Roots of Quadratics
99 ANS: 3
$\frac{c}{a}=\frac{-3}{4}$
PTS: 2 REF: 011517a2 STA: A2.A. 20 TOP: Roots of Quadratics
100 ANS:
Sum $\frac{-b}{a}=\frac{-2}{3}$. Product $\frac{c}{a}=\frac{k}{3}$
PTS: 2
REF: 061534a2
STA: A2.A. 20
TOP: Roots of Quadratics

101
ANS: 2
$P=\frac{c}{a}=\frac{-12}{3}=-4$
PTS: 2 REF: 081506a2 STA: A2.A. 20 TOP: Roots of Quadratics
ANS: 3
$S=\frac{-b}{a}=\frac{-(-3)}{4}=\frac{3}{4} . \quad P=\frac{c}{a}=\frac{-8}{4}=-2$
PTS: 2 REF: fall0912a2 STA: A2.A. 21 TOP: Roots of Quadratics
KEY: basic
ANS: 3
$\frac{-b}{a}=\frac{-6}{2}=-3 . \frac{c}{a}=\frac{4}{2}=2$
PTS: 2 REF: 011121a2 STA: A2.A. 21 TOP: Roots of Quadratics
KEY: basic
104
$x^{2}-6 x-27=0, \frac{-b}{a}=6$. $\frac{c}{a}=-27$. If $a=1$ then $b=-6$ and $c=-27$
PTS: 4 REF: 061130a2 STA: A2.A. 21 TOP: Roots of Quadratics
KEY: basic
105 ANS: 3
sum of the roots, $\frac{-b}{a}=\frac{-(-9)}{4}=\frac{9}{4}$. product of the roots, $\frac{c}{a}=\frac{3}{4}$
PTS: 2 REF: 061208a2 STA: A2.A. 21 TOP: Roots of Quadratics
KEY: basic
106
ANS: 3
$\frac{-b}{a}=\frac{-(-4)}{1}=4$. If the sum is 4 , the roots must be 7 and -3.
PTS: 2
REF: 011418a2 STA: A2.A. 21
TOP: Roots of Quadratics
KEY: advanced
ANS: 4
$6 x-x^{3}-x^{2}=-x\left(x^{2}+x-6\right)=-x(x+3)(x-2)$
PTS: 2 REF: fall0917a2 STA: A2.A. 7 TOP: Factoring Polynomials
KEY: single variable
ANS: 4
$12 x^{4}+10 x^{3}-12 x^{2}=2 x^{2}\left(6 x^{2}+5 x-6\right)=2 x^{2}(2 x+3)(3 x-2)$
PTS: 2
REF: 061008a2
STA: A2.A. 7
TOP: Factoring Polynomials
KEY: single variable

109 ANS:
$10 a x^{2}-23 a x-5 a=a\left(10 x^{2}-23 x-5\right)=a(5 x+1)(2 x-5)$
PTS: 2
REF: 081028a2 STA: A2.A.7
TOP: Factoring Polynomials
KEY: multiple variables
110 ANS:
$12 t^{8}-75 t^{4}=3 t^{4}\left(4 t^{4}-25\right)=3 t^{4}\left(2 t^{2}+5\right)\left(2 t^{2}-5\right)$
PTS: 2
REF: 061133a2 STA: A2.A.7
TOP: Factoring the Difference of Perfect Squares
KEY: binomial
111 ANS: 2

$$
\begin{gathered}
x^{3}+3 x^{2}-4 x-12 \\
x^{2}(x+3)-4(x+3) \\
\left(x^{2}-4\right)(x+3) \\
(x+2)(x-2)(x+3)
\end{gathered}
$$

PTS: 2 REF: 061214a2 STA: A2.A. 7 TOP: Factoring by Grouping
112 ANS: 3

$$
\begin{gathered}
3 x^{3}-5 x^{2}-48 x+80 \\
x^{2}(3 x-5)-16(3 x-5) \\
\left(x^{2}-16\right)(3 x-5) \\
(x+4)(x-4)(3 x-5)
\end{gathered}
$$

PTS: 2
REF: 011317a2
STA: A2.A. 7
TOP: Factoring by Grouping
113 ANS: 4
$x^{2}(x+2)-(x+2)$
$\left(x^{2}-1\right)(x+2)$
$(x+1)(x-1)(x+2)$
PTS: 2 REF: 011426a2 STA: A2.A. 7 TOP: Factoring by Grouping
114 ANS: 2

$$
\begin{gathered}
x^{3}-2 x^{2}-9 x+18 \\
x^{2}(x-2)-9(x-2) \\
\left(x^{2}-9\right)(x-2) \\
(x+3)(x-3)(x-2)
\end{gathered}
$$

PTS: 2
REF: 011511a2
STA: A2.A. 7
TOP: Factoring by Grouping

115 ANS:
$x^{2}(x-6)-25(x-6)$
$\left(x^{2}-25\right)(x-6)$
$(x+5)(x-5)(x-6)$
PTS: 2 REF: 061532a2 STA: A2.A. 7 TOP: Factoring by Grouping
116 ANS: 4
$\frac{3 \pm \sqrt{(-3)^{2}-4(1)(-9)}}{2(1)}=\frac{3 \pm \sqrt{45}}{2}=\frac{3 \pm 3 \sqrt{5}}{2}$
PTS: 2 REF: 061009a2 STA: A2.A. 25 TOP: Quadratics with Irrational Solutions
117 ANS: 3
$\frac{-7 \pm \sqrt{7^{2}-4(2)(-3)}}{2(2)}=\frac{-7 \pm \sqrt{73}}{4}$
PTS: 2 REF: 081009a2 STA: A2.A. 25 TOP: Quadratics with Irrational Solutions
ANS:
$\frac{2 \pm \sqrt{(-2)^{2}-4(6)(-3)}}{2(6)}=\frac{2 \pm \sqrt{76}}{12}=\frac{2 \pm \sqrt{4} \sqrt{19}}{12}=\frac{2 \pm 2 \sqrt{19}}{12}=\frac{1 \pm \sqrt{19}}{6}$
PTS: 2 REF: 011332a2 STA: A2.A. 25 TOP: Quadratics with Irrational Solutions
119
ANS: 2
$60=-16 t^{2}+5 t+105 t=\frac{-5 \pm \sqrt{5^{2}-4(-16)(45)}}{2(-16)} \approx \frac{-5 \pm 53.89}{-32} \approx 1.84$
$0=-16 t^{2}+5 t+45$
PTS: 2 REF: 061424a2 STA: A2.A. 25 TOP: Quadratics with Irrational Solutions
120 ANS:
$(x+14)(x+22)=800 \quad x=\frac{-36 \pm \sqrt{(-36)^{2}-4(1)(-492)}}{2(1)}=\frac{-36+\sqrt{3264}}{2} \approx 10.6 \quad 10$ feet increase.
$x^{2}+36 x+308=800$
$x^{2}+36 x-492=0$
PTS: 6 REF: 011539a2 STA: A2.A. 25 TOP: Quadratics with Irrational Solutions

121 ANS:

$$
\begin{aligned}
b^{2}-4 a c & =0 \\
k^{2}-4(1)(4) & =0 \\
k^{2}-16 & =0 \\
(k+4)(k-4) & =0 \\
k & = \pm 4
\end{aligned}
$$

PTS: 2 REF: 061028a2 STA: A2.A. 2 TOP: Using the Discriminant KEY: determine equation given nature of roots
122 ANS: 4
$b^{2}-4 a c=3^{2}-4(9)(-4)=9+144=153$
PTS: 2 REF: 081016a2 STA: A2.A. 2 TOP: Using the Discriminant
KEY: determine nature of roots given equation
123 ANS: 3
$b^{2}-4 a c=(-10)^{2}-4(1)(25)=100-100=0$
PTS: 2 REF: 011102a2 STA: A2.A. 2 TOP: Using the Discriminant
KEY: determine nature of roots given equation
124 ANS: 4 PTS: 2 REF: 011323a2 STA: A2.A. 2
TOP: Using the Discriminant KEY: determine nature of roots given equation
125
ANS: 2
$b^{2}-4 a c=(-9)^{2}-4(2)(4)=81-32=49$
PTS: 2 REF: 011411a2 STA: A2.A. 2 TOP: Using the Discriminant
KEY: determine nature of roots given equation
126 ANS: 3
$(-5)^{2}-4(2)(0)=25$
PTS: 2 REF: 061423a2 STA: A2.A. 2 TOP: Using the Discriminant
KEY: determine equation given nature of roots
127 ANS: 2
$(-5)^{2}-4(1)(4)=9$
PTS: 2 REF: 011506a2 STA: A2.A. 2 TOP: Using the Discriminant
128 ANS: 3
$3 x^{2}+x-14=01^{2}-4(3)(-14)=1+168=169=13^{2}$
PTS: 2 REF: 061524a2 STA: A2.A. 2 TOP: Using the Discriminant
KEY: determine nature of roots given equation

129 ANS:
$3 \pm \sqrt{7} \cdot 2 x^{2}-12 x+4=0$

$$
\begin{aligned}
x^{2}-6 x+2 & =0 \\
x^{2}-6 x & =-2 \\
x^{2}-6 x+9 & =-2+9 \\
(x-3)^{2} & =7 \\
x-3 & = \pm \sqrt{7} \\
x & =3 \pm \sqrt{7}
\end{aligned}
$$

PTS: 4 REF: fall0936a2 STA: A2.A. 24 TOP: Completing the Square
130 ANS: 2

$$
\begin{aligned}
x^{2}+2 & =6 x \\
x^{2}-6 x & =-2 \\
x^{2}-6 x+9 & =-2+9 \\
(x-3)^{2} & =7
\end{aligned}
$$

PTS: 2
ANS: 2
TOP: Completing the Square
132 ANS: 2
$(x+2)^{2}=-9$
$x+2= \pm \sqrt{-9}$
$x=-2 \pm 3 i$
PTS: 2
REF: 011408a2
PTS: 2
TOP: Completing the Square
134 ANS: 3

$$
\begin{aligned}
x^{2} & =12 x-7 \\
x^{2}-12 x & =-7 \\
x^{2}-12 x+36 & =-7+36 \\
(x-6)^{2} & =29
\end{aligned}
$$

PTS: 2
REF: 061505a2
STA: A2.A. 24
TOP: Completing the Square

135 ANS: 1
$\left(\frac{1}{2}\left(-\frac{1}{4}\right)\right)^{2}=\frac{1}{64}$
PTS: 2 REF: 081527a2 STA: A2.A. 24 TOP: Completing the Square
136 ANS: 1
$y \geq x^{2}-x-6$
$y \geq(x-3)(x+2)$
PTS: 2 REF: 061017a2 STA: A2.A. 4 TOP: Quadratic Inequalities KEY: two variables
137
ANS: 3

$$
\begin{array}{cc}
x^{2}-3 x-10>0 & \text { or } \\
(x-5)(x+2)>0 & x-5<0 \text { and } x+2<0 \\
x-5>0 \text { and } x+2>0 & x<5 \text { and } x<-2 \\
x>5 \text { and } x>-2 & x<-2 \\
x>5 &
\end{array}
$$

PTS: 2 REF: 011115a2 STA: A2.A. 4 TOP: Quadratic Inequalities
KEY: one variable
138 ANS:
$x<-1$ or $x>5 . \quad x^{2}-4 x-5>0 . x-5>0$ and $x+1>0$ or $x-5<0$ and $x+1<0$

$$
\begin{array}{ccc}
(x-5)(x+1)>0 & x>5 \text { and } x>-1 & x<5 \text { and } x<-1 \\
x>5 & x<-1
\end{array}
$$

PTS: 2 REF: 011228a2 STA: A2.A. 4 TOP: Quadratic Inequalities
KEY: one variable
ANS: 2

$$
\begin{array}{rlrl}
9-x^{2} & <0 & \text { or } x+3 & <0 \text { and } x-3<0 \\
x^{2}-9 & >0 & x & <-3 \text { and } x<3 \\
(x+3)(x-3) & >0 & x & <-3 \\
x+3 & >0 \text { and } x-3>0 & & \\
x & >-3 \text { and } x>3 & & \\
x & >3 & &
\end{array}
$$

PTS: 2
REF: 061507a2 STA: A2.A. 4 TOP: Quadratic Inequalities
KEY: one variable

140 ANS: 2
$x^{2}-x-6=3 x-6$

$$
\begin{aligned}
x^{2}-4 x & =0 \\
x(x-4) & =0 \\
x & =0,4
\end{aligned}
$$

PTS: 2
REF: 081015a2 STA: A2.A. 3
TOP: Quadratic-Linear Systems
KEY: equations
141

$$
\begin{array}{rl}
\left(-\frac{9}{2}, \frac{1}{2}\right) \text { and }\left(\frac{1}{2}, \frac{11}{2}\right) \cdot y=x+5 & 4 x^{2}+17 x-4=x+5 \\
y=4 x^{2}+17 x-4 & 4 x^{2}+16 x-9=0 \\
& (2 x+9)(2 x-1)=0 \\
x & =-\frac{9}{2} \text { and } x=\frac{1}{2} \\
& y=-\frac{9}{2}+5=\frac{1}{2} \text { and } y=\frac{1}{2}+5=\frac{11}{2}
\end{array}
$$

PTS: 6
REF: 061139a2 STA: A2.A. 3 TOP: Quadratic-Linear Systems
KEY: equations
ANS: 3

$$
\begin{aligned}
x+y & =5 \quad .-5+y=5 \\
y & =-x+5 \quad y=10 \\
(x+3)^{2}+(-x+5-3)^{2} & =53 \\
x^{2}+6 x+9+x^{2}-4 x+4 & =53 \\
2 x^{2}+2 x-40 & =0 \\
x^{2}+x-20 & =0 \\
(x+5)(x-4) & =0 \\
x & =-5,4
\end{aligned}
$$

PTS: 2
REF: 011302a2
STA: A2.A. 3 TOP: Quadratic-Linear Systems KEY: equations

143
ANS: 4
$x=2 y \cdot y^{2}-(3 y)^{2}+32=0 \quad . \quad x=3(-2)=-6$

$$
\begin{aligned}
y^{2}-9 y^{2} & =-32 \\
-8 y^{2} & =-32 \\
y^{2} & =4 \\
y & = \pm 2
\end{aligned}
$$

PTS: 2 REF: 061312a2 STA: A2.A. 3 TOP: Quadratic-Linear Systems
KEY: equations
144 ANS:
$x(x+3)=10$
$x^{2}+3 x-10=0$
$(x+5)(x-2)=0$

$$
x=-5,2
$$

PTS: 2 REF: 011431a2 STA: A2.A. 3 TOP: Quadratic-Linear Systems
KEY: equations
145 ANS:
$\frac{4}{9} x^{2}-\frac{4}{3} x+1 .\left(\frac{2}{3} x-1\right)^{2}=\left(\frac{2}{3} x-1\right)\left(\frac{2}{3} x-1\right)=\frac{4}{9} x^{2}-\frac{2}{3} x-\frac{2}{3} x+1=\frac{4}{9} x^{2}-\frac{4}{3} x+1$
PTS: 2 REF: 081034a2 STA: A2.N. 3 TOP: Operations with Polynomials
146 ANS: 2
PTS: 2
REF: 011114a2 STA: A2.N. 3
TOP: Operations with Polynomials
147 ANS:
$6 y^{3}-\frac{37}{10} y^{2}-\frac{1}{5} y \cdot\left(\frac{1}{2} y^{2}-\frac{1}{3} y\right)\left(12 y+\frac{3}{5}\right)=6 y^{3}+\frac{3}{10} y^{2}-4 y^{2}-\frac{1}{5} y=6 y^{3}-\frac{37}{10} y^{2}-\frac{1}{5} y$
PTS: 2 REF: 061128a2 STA: A2.N. 3 TOP: Operations with Polynomials
148 ANS: 2
The binomials are conjugates, so use FL.
PTS: 2 REF: 011206a2 STA: A2.N. 3 TOP: Operations with Polynomials
ANS: 1
The binomials are conjugates, so use FL.
PTS: 2 REF: 061201a2
150 ANS: 1
PTS: 2
STA: A2.N. 3
REF: 011314a2
TOP: Operations with Polynomials
151 ANS: 3
PTS: 2
TOP: Operations with Polynomials

152 ANS: 4
$\left(\frac{3}{2} x-1\right)\left[\left(\frac{3}{2} x+1\right)-\left(\frac{3}{2} x-1\right)\right]=\left(\frac{3}{2} x-1\right)(2)=3 x-2$
PTS: 2 REF: 011524a2 STA: A2.N. 3
153 ANS: $3 \quad$ PTS: 2
REF: 061515a2
TOP: Operations with Polynomials
TOP: Operations with Polynomials
154 ANS: 3
$\frac{3^{-2}}{(-2)^{-3}}=\frac{\frac{1}{9}}{-\frac{1}{8}}=-\frac{8}{9}$
PTS: 2 REF: 061003a2 STA: A2.N. 1 TOP: Negative and Fractional Exponents
155 ANS: 3
$6 n^{-1}<4 n^{-1}$. Flip sign when multiplying each side of the inequality by n, since a negative number.
$\frac{6}{n}<\frac{4}{n}$
$6>4$
PTS: 2
REF: 061314a2
STA: A2.N. 1
156 ANS: 4

$$
\begin{aligned}
f(16) & =4(16)^{\frac{1}{2}}+16^{0}+16^{-\frac{1}{4}} \\
& =4(4)+1+\frac{1}{2} \\
& =17 \frac{1}{2}
\end{aligned}
$$

PTS: 2 REF: 081503a2 STA: A2.N. 1 TOP: Negative and Fractional Exponents

157
ANS: 2
$\left(\frac{w^{-5}}{w^{-9}}\right)^{\frac{1}{2}}=\left(w^{4}\right)^{\frac{1}{2}}=w^{2}$
PTS: 2
REF: 081011a2
PTS: 2
ANS: 1
PTS: 2
Exponents
159 ANS: 1
TOP: Negative and Fractional Exponents
160
TOP: Negative and Fractional Exponents
161
TOP: Negative and Fractional Exponents

STA: A2.A. 8
REF: 011306a2
REF: 011402a2
REF: 061402a2
REF: fall0914a2

TOP: Negative and Fractional Exponents
STA: A2.A. 8
STA: A2.A. 8
STA: A2.A. 8
STA: A2.A. 9

162 ANS: 2
$\frac{x^{-1}-1}{x-1}=\frac{\frac{1}{x}-1}{x-1}=\frac{\frac{1-x}{x}}{x-1}=\frac{\frac{-(x-1)}{x}}{x-1}=-\frac{1}{x}$
PTS: 2 REF: 081018a2 STA: A2.A. 9 TOP: Negative Exponents
163 ANS:
$\frac{12 x^{2}}{y^{9}} \cdot \frac{3 x^{-4} y^{5}}{\left(2 x^{3} y^{-7}\right)^{-2}}=\frac{3 y^{5}\left(2 x^{3} y^{-7}\right)^{2}}{x^{4}}=\frac{3 y^{5}\left(4 x^{6} y^{-14}\right)}{x^{4}}=\frac{12 x^{6} y^{-9}}{x^{4}}=\frac{12 x^{2}}{y^{9}}$
PTS: 2 REF: 061134a2 STA: A2.A. 9 TOP: Negative Exponents
164 ANS: 2
$\frac{x^{-1}+1}{x+1}=\frac{\frac{1}{x}+1}{x+1}=\frac{\frac{1+x}{x}}{x+1}=\frac{1}{x}$
PTS: 2 REF: 011211a2 STA: A2.A. 9 TOP: Negative Exponents
165 ANS: 1
PTS: 2
TOP: Negative Exponents
166 ANS: $1 \quad$ PTS: 2
TOP: Negative Exponents
167 ANS: 2
$5^{2} a^{-3} b^{4}=\frac{25 b^{4}}{a^{3}}$
PTS: 2
168 ANS: 4
REF: 011514a2
STA: A2.A. 9
REF: 061506a2
TOP: Negative Exponents
TOP: Negative Exponents
169 ANS:

2,298.65.

PTS: 2
REF: fall0932a2
STA: A2.A. 12
TOP: Evaluating Exponential Expressions
170 ANS:
$e^{3 \ln 2}=e^{\ln 2^{3}}=e^{\ln 8}=8$
PTS: 2 REF: 061131a2 STA: A2.A. 12 TOP: Evaluating Exponential Expressions
171 ANS:
$A=750 e^{(0.03)(8)} \approx 953$
PTS: 2 REF: 061229a2 STA: A2.A. 12 TOP: Evaluating Exponential Expressions

172 ANS: 3
$5000\left(1+\frac{.03}{4}\right)^{4.5}=5000(1.0075)^{20} \approx 5805.92$
PTS: 2 REF: 011410a2 STA: A2.A. 12
173 ANS: 3
ANS: 3 PTS: 2
REF: 061416a2
TOP: Evaluating Exponential Expressions
TOP: Evaluating Exponential Expressions
174 ANS: 3
$\mathrm{p}(5)-\mathrm{p}(0)=17(1.15)^{2(5)}-17(1.15)^{2(0)} \approx 68.8-17 \approx 51$
PTS: 2
REF: 061527a2 STA: A2.A. 12
TOP: Evaluating Exponential Expressions
175
ANS: 2
$A=50\left(1+\frac{.0325}{4}\right)^{4 \cdot 12}=50(1.008125)^{48} \approx 73.73$
PTS: 2
REF: 081511a2
STA: A2.A. 12
TOP: Evaluating Exponential Expressions
176
ANS: 2
$8^{2}=64$
PTS: 2
REF: fall0909a2
STA: A2.A. 18
PTS: 2
REF: 011124a2
TOP: Evaluating Logarithmic Expressions
177 ANS: 4 STA: A2.A. 18
TOP: Evaluating Logarithmic Expressions
178
ANS:

PTS: 2
REF: 061031a2 STA: A2.A. 53
TOP: Graphing Exponential Functions

179 ANS:

PTS: 2
180 ANS: 1

REF: 011234a2
PTS: 2
TOP: Graphing Exponential Functions
181 ANS: 2
$\mathrm{f}^{-1}(x)=\log _{4} x$
PTS: 2
182 ANS: 1
TOP: Graphing Logarithmic Functions
183 ANS: 3
TOP: Graphing Logarithmic Functions
184 ANS: 1
$2 \log x-(3 \log y+\log z)=\log x^{2}-\log y^{3}-\log z=\log \frac{x^{2}}{y^{3} z}$
PTS: 2 REF: 061010a2 STA: A2.A. 19 TOP: Properties of Logarithms
185 ANS: 4
PTS: 2
TOP: Properties of Logarithms
KEY: splitting logs

TOP: Graphing Exponential Functions
STA: A2.A. 53
REF: 011506a2
STA: A2.A. 53

STA: A2.A. 54 TOP: Graphing Logarithmic Functions
REF: 061211a2 STA: A2.A.54
REF: 011422a2 STA: A2.A.54

ANS: 2
$\log x^{2}=\log 3 a+\log 2 a$
$2 \log x=\log 6 a^{2}$
$\log x=\frac{\log 6}{2}+\frac{\log a^{2}}{2}$
$\log x=\frac{1}{2} \log 6+\frac{2 \log a}{2}$
$\log x=\frac{1}{2} \log 6+\log a$
PTS: 2
REF: 011224a2
STA: A2.A. 19 TOP: Properties of Logarithms
KEY: splitting logs

188 ANS: 2

$$
\begin{gathered}
\log 9-\log 20 \\
\log 3^{2}-\log (10 \cdot 2) \\
2 \log 3-(\log 10+\log 2) \\
2 b-(1+a) \\
2 b-a-1
\end{gathered}
$$

PTS: 2
REF: 011326a2
STA: A2.A. 19
TOP: Properties of Logarithms
KEY: expressing logs algebraically
189 ANS: 3
$\log 4 m^{2}=\log 4+\log m^{2}=\log 4+2 \log m$
PTS: 2
REF: 0613212
KEY: splitting logs
190
ANS: 4
$\log 2 x^{3}=\log 2+\log x^{3}=\log 2+3 \log x$
PTS: 2
REF: 061426a2
KEY: splitting logs
191 ANS: 1

$$
\begin{aligned}
\log x & =\log a^{2}+\log b \\
\log x & =\log a^{2} b \\
x & =a^{2} b
\end{aligned}
$$

PTS: 2 REF: 061517a2 STA: A2.A. 19 TOP: Properties of Logarithms KEY: antilogarithms
192
ANS: 4
$2 \log _{4}(5 x)=3$
$\log _{4}(5 x)=\frac{3}{2}$

$$
\begin{aligned}
5 x & =4^{\frac{3}{2}} \\
5 x & =8 \\
x & =\frac{8}{5}
\end{aligned}
$$

PTS: 2
KEY: advanced
REF: fall0921a2
STA: A2.A. 28
TOP: Logarithmic Equations

193
ANS:
$x=-\frac{1}{3},-1 \log _{x+3} \frac{x^{3}+x-2}{x}=2$

$$
\begin{aligned}
\frac{x^{3}+x-2}{x} & =(x+3)^{2} \\
\frac{x^{3}+x-2}{x} & =x^{2}+6 x+9 \\
x^{3}+x-2 & =x^{3}+6 x^{2}+9 x \\
0 & =6 x^{2}+8 x+2 \\
0 & =3 x^{2}+4 x+1 \\
0 & =(3 x+1)(x+1) \\
x & =-\frac{1}{3},-1
\end{aligned}
$$

PTS: 6 REF: 081039a2 STA: A2.A. 28 TOP: Logarithmic Equations KEY: basic

$$
\begin{aligned}
\text { ANS: } & \begin{array}{rlrl}
\ln \left(T-T_{0}\right) & =-k t+4.718 & . \ln (T-68) & =-0.104(10)+4.718 \\
\ln (150-68) & =-k(3)+4.718 & \ln (T-68) & =3.678 \\
4.407 & \approx-3 k+4.718 & T-68 & \approx 39.6 \\
k & \approx 0.104 & T & \approx 108
\end{array}
\end{aligned}
$$

PTS: 6 REF: 011139a2 STA: A2.A. 28 TOP: Logarithmic Equations
KEY: advanced
195
ANS: 3
$x=5^{4}=625$
PTS: 2 REF: 061106a2 STA: A2.A. 28 TOP: Logarithmic Equations
KEY: basic
196 ANS:
800. $x=4^{2.5}=32 . y^{-\frac{3}{2}}=125 \quad \cdot \frac{x}{y}=\frac{32}{\frac{1}{25}}=800$

$$
y=125^{-\frac{2}{3}}=\frac{1}{25}
$$

PTS: 4
REF: 011237a2 STA: A2.A. 28 TOP: Logarithmic Equations
KEY: advanced

197
ANS:

$$
\begin{aligned}
(x+4)^{2} & =17 x-4 \\
x^{2}+8 x+16 & =17 x-4 \\
x^{2}-9 x+20 & =0 \\
(x-4)(x-5) & =0 \\
x & =4,5
\end{aligned}
$$

PTS: 4
REF: 011336a2
STA: A2.A. 28
TOP: Logarithmic Equations
KEY: basic
198
ANS:
$2 x-1=27^{\frac{4}{3}}$
$2 x-1=81$

$$
\begin{aligned}
2 x & =82 \\
x & =41
\end{aligned}
$$

PTS: 2
REF: 061329a2
STA: A2.A. 28
TOP: Logarithmic Equations
KEY: advanced
199

$$
\begin{aligned}
\log _{(x+3)}(2 x+3)(x+5) & =2 \\
(x+3)^{2} & =(2 x+3)(x+5) \\
x^{2}+6 x+9 & =2 x^{2}+13 x+15 \\
x^{2}+7 x+6 & =0 \\
(x+6)(x+1) & =0 \\
x & =-1
\end{aligned}
$$

PTS: 6
REF: 011439a2
STA: A2.A. 28
TOP: Logarithmic Equations
KEY: applying properties of logarithms
ANS:

$$
\begin{aligned}
(5 x-1)^{\frac{1}{3}} & =4 \\
5 x-1 & =64 \\
5 x & =65 \\
x & =13
\end{aligned}
$$

PTS: 2
KEY: advanced
ANS: 3

REF: 061433a2
STA: A2.A. 28
TOP: Logarithmic Equations
PTS: 2
REF: 011503a2
STA: A2.A. 28
TOP: Logarithmic Equations
KEY: basic

202 ANS:

$$
\begin{aligned}
(x+1)^{3} & =64 \\
x+1 & =4 \\
x & =3
\end{aligned}
$$

PTS: 2 REF: 061531a2 STA: A2.A. 28 TOP: Logarithmic Equations KEY: basic
203 ANS:
$\log _{2}\left(\frac{x^{2}-7 x+12}{2 x-10}\right)=3 \quad x=\frac{23 \pm \sqrt{(-23)^{2}-4(1)(92)}}{2(1)} \approx 17.84,5.16$

$$
\begin{aligned}
\frac{x^{2}-7 x+12}{2 x-10} & =8 \\
x^{2}-7 x+12 & =16 x-80 \\
x^{2}-23 x+92 & =0
\end{aligned}
$$

PTS: 6
REF: 081539a2
STA: A2.A. 28
TOP: Logarithmic Equations KEY: applying properties of logarithms
ANS: 3
$75000=25000 e^{.0475 t}$

$$
3=e^{.0475 t}
$$

$$
\ln 3=\ln e^{.0475 t}
$$

$\frac{\ln 3}{.0475}=\frac{.0475 t \cdot \ln e}{.0475}$
$23.1 \approx t$
PTS: 2
REF: 061117a2 STA: A2.A. 6
TOP: Exponential Growth

205 ANS: 2

$$
\begin{aligned}
320 & =10(2)^{\frac{t}{60}} \\
32 & =(2)^{\frac{t}{60}} \\
\log 32 & =\log (2)^{\frac{t}{60}} \\
\log 32 & =\frac{t \log 2}{60}
\end{aligned}
$$

$$
\frac{60 \log 32}{\log 2}=t
$$

$$
300=t
$$

PTS: 2
206 ANS:

$$
\begin{aligned}
30700 & =50 e^{3 t} \\
614 & =e^{3 t} \\
\ln 614 & =\ln e^{3 t} \\
\ln 614 & =3 t \ln e \\
\ln 614 & =3 t \\
2.14 & \approx t
\end{aligned}
$$

207 ANS: 3

$$
1000=500 e^{.05 t}
$$

REF: 011205a2
STA: A2.A. 6
TOP: Exponential Growth
PTS: 2 REF: 011333a2 STA: A2.A. 6 TOP: Exponential Growth

REF: 011205a2

SA. A2.A. 6
IOP: Exponential Growth

$$
2=e^{.05 t}
$$

$$
\ln 2=\ln e^{.05 t}
$$

$$
\frac{\ln 2}{.05}=\frac{.05 t \cdot \ln e}{.05}
$$

$$
13.9 \approx t
$$

PTS: 2

ANS: 3

$$
\begin{array}{rlrl}
4^{x^{2}+4 x} & =2^{-6} . & 2 x^{2}+8 x & =-6 \\
\left(2^{2}\right)^{x^{2}+4 x} & =2^{-6} & 2 x^{2}+8 x+6 & =0 \\
2^{2 x^{2}+8 x} & =2^{-6} & x^{2}+4 x+3 & =0 \\
& & (x+3)(x+1) & =0 \\
x & =-3 x=-1
\end{array}
$$

PTS: 2
REF: 061015a2 STA: A2.A. 27
KEY: common base shown
ANS: 4

$$
\begin{aligned}
9^{3 x+1} & =27^{x+2} . \\
\left(3^{2}\right)^{3 x+1} & =\left(3^{3}\right)^{x+2} \\
3^{6 x+2} & =3^{3 x+6} \\
6 x+2 & =3 x+6 \\
3 x & =4 \\
x & =\frac{4}{3}
\end{aligned}
$$

PTS: 2
REF: 081008a2 STA: A2.A. 27
TOP: Exponential Equations
KEY: common base not shown
210 ANS:

$$
\begin{aligned}
16^{2 x+3} & =64^{x+2} \\
\left(4^{2}\right)^{2 x+3} & =\left(4^{3}\right)^{x+2} \\
4 x+6 & =3 x+6 \\
x & =0
\end{aligned}
$$

PTS: 2
REF: 011128a2 STA: A2.A. 27
TOP: Exponential Equations
KEY: common base not shown

211 ANS: 2

$$
\begin{aligned}
4^{2 x+5} & =8^{3 x} . \\
\left(2^{2}\right)^{2 x+5} & =\left(2^{3}\right)^{3 x} \\
2^{4 x+10} & =2^{9 x} \\
4 x+10 & =9 x \\
10 & =5 x \\
2 & =x
\end{aligned}
$$

PTS: 2
REF: 061105a2 KEY: common base not shown
212 ANS:

$$
\begin{aligned}
81^{x^{3}+2 x^{2}} & =27^{\frac{5 x}{3}} \\
\left(3^{4}\right)^{x^{3}+2 x^{2}} & =\left(3^{3}\right)^{\frac{5 x}{3}} \\
3^{4 x^{3}+8 x^{2}} & =3^{5 x} \\
4 x^{3}+8 x^{2}-5 x & =0 \\
x\left(4 x^{2}+8 x-5\right) & =0 \\
x(2 x-1)(2 x+5) & =0 \\
x & =0, \frac{1}{2},-\frac{5}{2}
\end{aligned}
$$

PTS: 6
REF: 061239a2
STA: A2.A. 27
TOP: Exponential Equations
KEY: common base not shown
213 ANS: 4

$$
\begin{aligned}
8^{3 k+4} & =4^{2 k-1} . \\
\left(2^{3}\right)^{3 k+4} & =\left(2^{2}\right)^{2 k-1} \\
2^{9 k+12} & =2^{4 k-2} \\
9 k+12 & =4 k-2 \\
5 k & =-14 \\
k & =-\frac{14}{5}
\end{aligned}
$$

PTS: 2
REF: 011309a2
STA: A2.A. 27 TOP: Exponential Equations KEY: common base not shown

214 ANS:

$$
\begin{aligned}
\ln e^{4 x} & =\ln 12 \\
4 x & =\ln 12 \\
x & =\frac{\ln 12}{4} \\
& \approx 0.62
\end{aligned}
$$

PTS: 2 REF: 011530a2 STA: A2.A. 27 TOP: Exponential Equations
KEY: without common base
215 ANS:
$5^{4 x}=\left(5^{3}\right)^{x-1}$
$4 x=3 x-3$
$x=-3$

PTS: 2 REF: 061528a2 STA: A2.A. 27 TOP: Exponential Equations
KEY: common base shown
216 ANS:
$2^{-4}=2^{3 x-1}$
$-4=3 x-1$
$-3=3 x$
$-1=x$
PTS: 2
REF: 081529a2
STA: A2.A. 27
TOP: Exponential Equations
KEY: common base shown
217 ANS: 1
${ }_{5} C_{3}(3 x)^{2}(-2)^{3}=10 \cdot 9 x^{2} \cdot-8=-720 x^{2}$
PTS: 2 REF: fall0919a2 STA: A2.A. 36 TOP: Binomial Expansions
218 ANS:
$32 x^{5}-80 x^{4}+80 x^{3}-40 x^{2}+10 x-1 .{ }_{5} C_{0}(2 x)^{5}(-1)^{0}=32 x^{5} .{ }_{5} C_{1}(2 x)^{4}(-1)^{1}=-80 x^{4} .{ }_{5} C_{2}(2 x)^{3}(-1)^{2}=80 x^{3}$.
${ }_{5} C_{3}(2 x)^{2}(-1)^{3}=-40 x^{2} .{ }_{5} C_{4}(2 x)^{1}(-1)^{4}=10 x .{ }_{5} C_{5}(2 x)^{0}(-1)^{5}=-1$
PTS: 4 REF: 011136a2 STA: A2.A. 36 TOP: Binomial Expansions
219 ANS: 1
${ }_{9} C_{3} a^{6}(-4 b)^{3}=-5376 a^{6} b^{3}$
PTS: 2
REF: 061126a2
STA: A2.A. 36
TOP: Binomial Expansions
220
ANS: 3
${ }_{3} C_{2}\left(2 x^{4}\right)^{1}(-y)^{2}=6 x^{4} y^{2}$
PTS: 2
REF: 011215a2
STA: A2.A. 36
TOP: Binomial Expansions

221 ANS: 3
${ }_{6} C_{3}\left(\frac{x}{2}\right)^{3}(-2 y)^{3}=20 \cdot \frac{x^{3}}{8} \cdot-8 y^{3}=-20 x^{3} y^{3}$
PTS: 2 REF: 061215a2 STA: A2.A. 36 TOP: Binomial Expansions
222 ANS: 3
${ }_{8} C_{3} \cdot x^{8-3} \cdot(-2)^{3}=56 x^{5} \cdot(-8)=-448 x^{5}$
PTS: 2 REF: 011308a2 STA: A2.A. 36 TOP: Binomial Expansions
223 ANS: 1
${ }_{5} C_{2}(2 x)^{5-2}(-3)^{2}=720 x^{3}$
PTS: 2 REF: 011519a2 STA: A2.A.36 TOP: Binomial Expansions
224 ANS: 3
PTS: 2
TOP: Binomial Expansions
225 ANS:

$$
\begin{aligned}
\pm \frac{3}{2},-\frac{1}{2} \cdot \quad 8 x^{3}+4 x^{2}-18 x-9 & =0 \\
4 x^{2}(2 x+1)-9(2 x+1) & =0 \\
\left(4 x^{2}-9\right)(2 x+1) & =0 \\
4 x^{2}-9 & =0 \text { or } 2 x+1=0 \\
(2 x+3)(2 x-3) & =0 \quad x=-\frac{1}{2} \\
x & = \pm \frac{3}{2}
\end{aligned}
$$

PTS: 4
REF: fall0937a2 STA: A2.A. 26
TOP: Solving Polynomial Equations
226
ANS: 2

$$
\begin{gathered}
x^{3}+x^{2}-2 x=0 \\
x\left(x^{2}+x-2\right)=0 \\
x(x+2)(x-1)=0 \\
x=0,-2,1
\end{gathered}
$$

PTS: 2 REF: 011103a2 STA: A2.A. 26 TOP: Solving Polynomial Equations

227 ANS: 3

$$
\begin{aligned}
3 x^{5}-48 x & =0 \\
3 x\left(x^{4}-16\right) & =0 \\
3 x\left(x^{2}+4\right)\left(x^{2}-4\right) & =0 \\
3 x\left(x^{2}+4\right)(x+2)(x-2) & =0
\end{aligned}
$$

PTS: 2 REF: 011216a2 STA: A2.A. 26 TOP: Solving Polynomial Equations
228 ANS:

$$
\begin{aligned}
x^{4}+4 x^{3}+4 x^{2}+16 x & =0 \\
x\left(x^{3}+4 x^{2}+4 x+16\right) & =0 \\
x\left(x^{2}(x+4)+4(x+4)\right) & =0 \\
x\left(x^{2}+4\right)(x+4) & =0 \\
x & =0, \pm 2 i,-4
\end{aligned}
$$

PTS: 6
REF: 061339a2
STA: A2.A. 26
TOP: Solving Polynomial Equations
229 ANS:

$$
\begin{aligned}
x^{3}+5 x^{2}-4 x-20 & =0 \\
x^{2}(x+5)-4(x+5) & =0 \\
\left(x^{2}-4\right)(x+5) & =0 \\
(x+2)(x-2)(x+5) & =0 \\
x & = \pm 2,-5
\end{aligned}
$$

PTS: 4
REF: 061437a2
STA: A2.A. 26
TOP: Solving Polynomial Equations
230 ANS:

$$
\begin{aligned}
x^{2}(2 x-1)-4(2 x-1) & =0 \\
\left(x^{2}-4\right)(2 x-1) & =0 \\
(x+2)(x-2)(2 x-1) & =0 \\
x & = \pm 2, \frac{1}{2}
\end{aligned}
$$

PTS: 4
231 ANS: 4
REF: 081537a2
TOP: Solving Polynomial Equations
232
ANS: 2

The roots are $-1,2,3$.
PTS: 2
REF: 081023a2
STA: A2.A. 50
TOP: Solving Polynomial Equations

233 ANS: 4
$\sum_{n=0}$
PTS: 2 REF: 061222a2

STA: A2.A. 50
REF: 081501a2

TOP: Solving Polynomial Equations
ANS: 1 PTS: 2
TOP: Solving Polynomial Equations
235 ANS: 4
$(3+\sqrt{5})(3-\sqrt{5})=9-\sqrt{25}=4$
PTS: 2
REF: 081001a2
KEY: without variables | index $=2$
236
ANS:
$-\frac{a^{2} b^{3}}{4}$
PTS: 2
REF: 011231a2
STA: A2.A. 13
TOP: Simplifying Radicals
KEY: index > 2
237 ANS: 3
$\sqrt[3]{4^{3} a^{15} a}=4 a^{5} \sqrt[3]{a}$
PTS: 2
REF: 061204a2
STA: A2.A. 13
TOP: Simplifying Radicals
KEY: index > 2
238
ANS.
$5 \sqrt{3 x^{3}}-2 \sqrt{27 x^{3}}=5 \sqrt{x^{2}} \sqrt{3 x}-2 \sqrt{9 x^{2}} \sqrt{3 x}=5 x \sqrt{3 x}-6 x \sqrt{3 x}=-x \sqrt{3 x}$
PTS: 2 REF: 061032a2 STA: A2.N. 2 TOP: Operations with Radicals
239 ANS: 3

$$
\begin{gathered}
\sqrt[3]{6 a^{4} b^{2}}+\sqrt[3]{(27 \cdot 6) a^{4} b^{2}} \\
a \sqrt[3]{6 a b^{2}}+3 a \sqrt[3]{6 a b^{2}} \\
4 a \sqrt[3]{6 a b^{2}}
\end{gathered}
$$

PTS: 2 REF: 011319a2 STA: A2.N. 2 TOP: Operations with Radicals
240 ANS: 4
$\left(\sqrt[3]{27 x^{2}}\right)\left(\sqrt[3]{16 x^{4}}\right)=\sqrt[3]{3^{3} \cdot 2^{4} \cdot x^{6}}=3 \cdot 2 \cdot x^{23} \sqrt{2}=6 x^{23} \sqrt{2}$
PTS: 2 REF: 011421a2 STA: A2.N. 2 TOP: Operations with Radicals

241 ANS: 1
$\sqrt[3]{64 a^{5} b^{6}}=\sqrt[3]{4^{3} a^{3} a^{2} b^{6}}=4 a b \sqrt[3]{a^{2}}$
PTS: 2 REF: 011516a2 STA: A2.N. 2 TOP: Operations with Radicals
242 ANS: 4
$4 a b \sqrt{2 b}-3 a \sqrt{9 b^{2}} \sqrt{2 b}+7 a b \sqrt{6 b}=4 a b \sqrt{2 b}-9 a b \sqrt{2 b}+7 a b \sqrt{6 b}=-5 a b \sqrt{2 b}+7 a b \sqrt{6 b}$
PTS: 2
REF: fall0918a2
STA: A2.A. 14
TOP: Operations with Radicals
KEY: with variables \mid index $=2$
243 ANS:
$\frac{\sqrt{108 x^{5} y^{8}}}{\sqrt{6 x y^{5}}}=\sqrt{18 x^{4} y^{3}}=3 x^{2} y \sqrt{2 y}$
PTS: 2
REF: 011133a2
STA: A2.A. 14 TOP: Operations with Radicals
KEY: with variables | index $=2$
244 ANS: 1
$\sqrt[3]{27 a^{3}} \cdot \sqrt[4]{16 b^{8}}=3 a \cdot 2 b^{2}=6 a b^{2}$
PTS: 2 REF: 061504a2 STA: A2.A. 14 TOP: Operations with Radicals
KEY: with variables | index > 2
245 ANS:
$\frac{5(3+\sqrt{2})}{7} \cdot \frac{5}{3-\sqrt{2}} \times \frac{3+\sqrt{2}}{3+\sqrt{2}}=\frac{5(3+\sqrt{2})}{9-2}=\frac{5(3+\sqrt{2})}{7}$
PTS: 2 REF: fall0928a2 STA: A2.N. 5 TOP: Rationalizing Denominators
246 ANS: 1
$\frac{\sqrt{3}+5}{\sqrt{3}-5} \cdot \frac{\sqrt{3}+5}{\sqrt{3}+5}=\frac{3+5 \sqrt{3}+5 \sqrt{3}+25}{3-25}=\frac{28+10 \sqrt{3}}{-22}=-\frac{14+5 \sqrt{3}}{11}$
PTS: 2 REF: 061012a2 STA: A2.N. 5 TOP: Rationalizing Denominators
247 ANS: 3
$\frac{4}{5-\sqrt{13}} \cdot \frac{5+\sqrt{13}}{5+\sqrt{13}}=\frac{4(5+\sqrt{13})}{25-13}=\frac{5+\sqrt{13}}{3}$
PTS: 2 REF: 061116a2 STA: A2.N. 5 TOP: Rationalizing Denominators

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic Answer Section

248 ANS: 1
$\frac{1}{7-\sqrt{11}} \cdot \frac{7+\sqrt{11}}{7+\sqrt{11}}=\frac{7+\sqrt{11}}{49-11}=\frac{7+\sqrt{11}}{38}$
PTS: 2 REF: 011404a2 STA: A2.N. 5 TOP: Rationalizing Denominators
249 ANS: 1
$\frac{5}{4-\sqrt{11}} \cdot \frac{4+\sqrt{11}}{4+\sqrt{11}}=\frac{5(4+\sqrt{11})}{16-11}=\frac{5(4+\sqrt{11})}{5}=4+\sqrt{11}$
PTS: 2 REF: 061509a2 STA: A2.N. 5 TOP: Rationalizing Denominators
250 ANS: 4
$\frac{3-\sqrt{8}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{3 \sqrt{3}-\sqrt{24}}{3}=\frac{3 \sqrt{3}-2 \sqrt{6}}{3}=\sqrt{3}-\frac{2}{3} \sqrt{6}$
PTS: 2 REF: 081518a2 STA: A2.N. 5 TOP: Rationalizing Denominators
251 ANS: 3
$\frac{3}{\sqrt{3 a^{2} b}}=\frac{3}{a \sqrt{3 b}} \cdot \frac{\sqrt{3 b}}{\sqrt{3 b}}=\frac{3 \sqrt{3 b}}{3 a b}=\frac{\sqrt{3 b}}{a b}$
PTS: 2 REF: 081019a2 STA: A2.A. 15 TOP: Rationalizing Denominators
KEY: index = 2
252 ANS: 4
$\frac{2 x+4}{\sqrt{x+2}} \cdot \frac{\sqrt{x+2}}{\sqrt{x+2}}=\frac{2(x+2) \sqrt{x+2}}{x+2}=2 \sqrt{x+2}$
PTS: 2 REF: 011122a2 STA: A2.A. 15 TOP: Rationalizing Denominators
KEY: index = 2
253
ANS: 4
$\frac{x}{x-\sqrt{x}} \times \frac{x+\sqrt{x}}{x+\sqrt{x}}=\frac{x^{2}+x \sqrt{x}}{x^{2}-x}=\frac{x(x+\sqrt{x})}{x(x-1)}=\frac{x+\sqrt{x}}{x-1}$

PTS: 2
KEY: index = 2
254 ANS: 1
REF: 061325a2 STA: A2.A. 15
PTS: 2
REF: 061018a2 STA: A2.A. 22
KEY: extraneous solutions

255 ANS: 3
$\begin{aligned} 3 x+16 & =(x+2)^{2} \quad .-4 \text { is an extraneous solution. } \\ 3 x+16 & =x^{2}+4 x+4 \\ 0 & =x^{2}+x-12 \\ 0 & =(x+4)(x-3) \\ x & =-4 x=3\end{aligned}$
PTS: 2 REF: 061121a2 STA: A2.A. 22 TOP: Solving Radicals KEY: extraneous solutions
256 ANS:
7. $4-\sqrt{2 x-5}=1$

$$
\begin{aligned}
-\sqrt{2 x-5} & =-3 \\
2 x-5 & =9 \\
2 x & =14 \\
x & =7
\end{aligned}
$$

PTS: 2 REF: 011229a2 STA: A2.A. 22 TOP: Solving Radicals KEY: basic
257 ANS: 1
$5 x+29=(x+3)^{2} \quad .(-5)+3$ shows an extraneous solution.
$5 x+29=x^{2}+6 x+9$
$0=x^{2}+x-20$
$0=(x+5)(x-4)$
$x=-5,4$
PTS: 2
REF: 061213a2
STA: A2.A. 22
TOP: Solving Radicals KEY: extraneous solutions

258 ANS:

$$
\begin{array}{rlrl}
\sqrt{x^{2}+x-1} & =-4 x+3 & -4\left(\frac{2}{3}\right)+3 \geq 0 \\
x^{2}+x-1 & =16 x^{2}-24 x+9 & & \\
0 & =15 x^{2}-25 x+10 & \frac{1}{3} & \geq 0 \\
0 & =3 x^{2}-5 x+2 & -4(1)+3<0 \\
0 & =(3 x-2)(x-1) & & 1 \text { is extraneous } \\
x & =\frac{2}{3}, x \neq 1 &
\end{array}
$$

PTS: 6 REF: 011339a2 STA: A2.A. 22 TOP: Solving Radicals KEY: extraneous solutions
ANS: 2
$\sqrt{2 x-4}=x-2$

$$
\begin{aligned}
2 x-4 & =x^{2}-4 x+4 \\
0 & =x^{2}-6 x+8 \\
0 & =(x-4)(x-2) \\
x & =4,2
\end{aligned}
$$

PTS: 2
REF: 061406a2
STA: A2.A. 22
TOP: Solving Radicals
KEY: extraneous solutions
260 ANS: 2
PTS: 2
REF: 061011a2 STA: A2.A.10
TOP: Fractional Exponents as Radicals
261 ANS: 4
$x^{-\frac{2}{5}}=\frac{1}{x^{\frac{2}{5}}}=\frac{1}{\sqrt[5]{x^{2}}}$
PTS: 2
REF: 011118a2
STA: A2.A. 10
TOP: Fractional Exponents as Radicals
ANS: 1
$\sqrt[4]{16 x^{2} y^{7}}=16^{\frac{1}{4}} x^{\frac{2}{4}} y^{\frac{7}{4}}=2 x^{\frac{1}{2}} y^{\frac{7}{4}}$
PTS: 2 REF: 061107a2 STA: A2.A. 11 TOP: Radicals as Fractional Exponents 263

ANS: 1
$\sqrt[4]{81 x^{2} y^{5}}=81^{\frac{1}{4}} x^{\frac{2}{4}} y^{\frac{5}{4}}=3 x^{\frac{1}{2}} y^{\frac{5}{4}}$
PTS: 2 REF: 081504a2 STA: A2.A. 11 TOP: Radicals as Fractional Exponents

264
ANS: 3
$\sqrt{-300}=\sqrt{100} \sqrt{-1} \sqrt{3}$
PTS: 2
REF: 061006a2
STA: A2.N. 6
ANS: 3
$\sqrt{9} \sqrt{-1} \sqrt{2}-\sqrt{16} \sqrt{-1} \sqrt{2}=3 i \sqrt{2}-4 i \sqrt{2}=-i \sqrt{2}$
PTS: 2
REF: 061404a2
STA: A2.N. 6 266 ANS: 4
$\sqrt{-180 x^{16}}=6 x^{8} i \sqrt{5}$
PTS: 2 REF: 081524a2 STA: A2.N. 6
267 ANS: 1
PTS: 2
TOP: Imaginary Numbers
268 ANS: 1
$2 i^{2}+3 i^{3}=2(-1)+3(-i)=-2-3 i$
PTS: 2
REF: 081004a2
STA: A2.N. 7
TOP: Imaginary Numbers
269 ANS:

$$
\begin{array}{r}
i^{13}+i^{18}+i^{31}+n=0 \\
i+(-1)-i+n=0 \\
-1+n=0 \\
n=1
\end{array}
$$

PTS: 2
REF: 061228a2
STA: A2.N. 7
270 ANS:
$4 x i+5 y i^{8}+6 x i^{3}+2 y i^{4}=4 x i+5 y-6 x i+2 y=7 y-2 x i$
PTS: 2
REF: 011433a2
STA: A2.N. 7
TOP: Imaginary Numbers
271 ANS:
$x i^{8}-y i^{6}=x(1)-y(-1)=x+y$

PTS: 2
REF: 061533a2
PTS: 2
TOP: Conjugates of Complex Numbers
273 ANS: 4
PTS: 2
REF: 011111a2 STA: A2.N. 8
REF: 011213a2
STA: A2.N. 8
REF: 061219a2 STA: A2.N. 8
STA: A2.N. 7 TOP: Imaginary Numbers
REF: 081024a2 STA: A2.N. 8

TOP: Conjugates of Complex Numbers
274
TOP: Conjugates of Complex Numbers
ANS: 3 PTS: 2
TOP: Conjugates of Complex Numbers
STA: A2.N. 8

TOP: Square Roots of Negative Numbers
TOP: Square Roots of Negative Numbers

TOP: Square Roots of Negative Numbers STA: A2.N. 7

TOP: Imaginary Numbers

276
ANS: 2
$(3-7 i)(3-7 i)=9-21 i-21 i+49 i^{2}=9-42 i-49=-40-42 i$
PTS: 2
REF: fall0901a2 STA: A2.N.9
TOP: Multiplication and Division of Complex Numbers
ANS: 4
$(x+i)^{2}-(x-i)^{2}=x^{2}+2 x i+i^{2}-\left(x^{2}-2 x i+i^{2}\right)=4 x i$
PTS: 2
REF: 011327a2 STA: A2.N.9
TOP: Multiplication and Division of Complex Numbers
278 ANS: 3
$(3 i)(2 i)^{2}(m+i)$
$(3 i)\left(4 i^{2}\right)(m+i)$
(3i) $(-4)(m+i)$
$(-12 i)(m+i)$
$-12 m i-12 i^{2}$
$-12 m i+12$
PTS: 2
REF: 061319a2 STA: A2.N.9
TOP: Multiplication and Division of Complex Numbers
ANS:
$(x+y i)(x-y i)=x^{2}-y^{2} i^{2}=x^{2}+y^{2}$
PTS: 2
REF: 061432a2
STA: A2.N. 9
TOP: Multiplication and Division of Complex Numbers
ANS: 4
$(-3-2 i)(-3+2 i)=9-4 i^{2}=9+4=13$

PTS: 2 REF: 011512a2 STA: A2.N.9
TOP: Multiplication and Division of Complex Numbers
281 ANS:
$2 x i\left(i-4 i^{2}\right)=2 x i^{2}-8 x i^{3}=2 x i^{2}-8 x i^{3}=-2 x+8 x i$
PTS: 2
REF: 011533a2 STA: A2.N. 9
TOP: Multiplication and Division of Complex Numbers

282
ANS:

$$
\begin{gathered}
\frac{-2\left(x^{2}+6\right)}{x^{4}} \cdot \frac{x^{2}(x-3)+6(x-3)}{x^{2}-4 x} \cdot \frac{2 x-4}{x^{4}-3 x^{3}} \div \frac{x^{2}+2 x-8}{16-x^{2}} \\
\frac{\left(x^{2}+6\right)(x-3)}{x(x-4)} \cdot \frac{2(x-2)}{x^{3}(x-3)} \cdot \frac{(4+x)(4-x)}{(x+4)(x-2)} \\
\frac{-2\left(x^{2}+6\right)}{x^{4}}
\end{gathered}
$$

PTS: 6 REF: 011239a2 STA: A2.A. 16 TOP: Multiplication and Division of Rationals
KEY: division
283
ANS:
$\frac{-\left(x^{2}-4\right)}{(x+4)(x+3)} \times \frac{x+3}{2(x-2)}=\frac{-(x+2)(x-2)}{x+4} \times \frac{1}{2(x-2)}=\frac{-(x+2)}{2(x+4)}$
PTS: 4 REF: 061236a2 STA: A2.A. 16 TOP: Multiplication and Division of Rationals
KEY: division
284
ANS: 4
$\frac{x^{2}+9 x-22}{x^{2}-121} \div(2-x)=\frac{(x+11)(x-2)}{(x+11)(x-11)} \cdot \frac{-1}{x-2}=\frac{-1}{x-11}$
PTS: 2 REF: 011423a2 STA: A2.A. 16 TOP: Multiplication and Division of Rationals KEY: Division
285 ANS:
$\frac{(6-x)(6+x)}{(x+6)(x+6)} \cdot \frac{(x+6)(x-3)}{x-3}=6-x$
PTS: 2
REF: 011529a2 STA: A2.A. 16
KEY: division
286
ANS: 3
$\frac{3 y}{2 y-6}+\frac{9}{6-2 y}=\frac{3 y}{2 y-6}-\frac{9}{2 y-6}=\frac{3 y-9}{2 y-6}=\frac{3(y-3)}{2(y-3)}=\frac{3}{2}$
PTS: 2
REF: 011325a2 STA: A2.A. 16
TOP: Addition and Subtraction of Rationals

287 ANS:
no solution. $\quad \frac{4 x}{x-3}=2+\frac{12}{x-3}$

$$
\begin{aligned}
\frac{4 x-12}{x-3} & =2 \\
\frac{4(x-3)}{x-3} & =2 \\
4 & \neq 2
\end{aligned}
$$

PTS: 2 REF: fall0930a2 STA: A2.A. 23 TOP: Solving Rationals KEY: rational solutions
288 ANS:
$\frac{1}{3} \quad \frac{1}{x+3}-\frac{2}{3-x}=\frac{4}{x^{2}-9}$
$\frac{1}{x+3}+\frac{2}{x-3}=\frac{4}{x^{2}-9}$
$\frac{x-3+2(x+3)}{(x+3)(x-3)}=\frac{4}{(x+3)(x-3)}$
$x-3+2 x+6=4$
$3 x=1$

$$
x=\frac{1}{3}
$$

PTS: 4 REF: 081036a2 STA: A2.A. 23 TOP: Solving Rationals KEY: rational solutions
289 ANS:
$\frac{13}{x}=10-x \quad . x=\frac{10 \pm \sqrt{100-4(1)(13)}}{2(1)}=\frac{10 \pm \sqrt{48}}{2}=\frac{10 \pm 4 \sqrt{3}}{2}=5 \pm 2 \sqrt{3}$
$13=10 x-x^{2}$
$x^{2}-10 x+13=0$
PTS: 4 REF: 061336a2 STA: A2.A. 23 TOP: Solving Rationals
KEY: irrational and complex solutions

290 ANS: 2
$\frac{30}{(x+3)(x-3)}+\frac{(x+3)(x-3)}{(x+3)(x-3)}=\frac{5(x+3)}{(x-3)(x+3)} 3$ is an extraneous root.

$$
\begin{aligned}
30+x^{2}-9 & =5 x+15 \\
x^{2}-5 x+6 & =0 \\
(x-3)(x-2) & =0 \\
x & =2
\end{aligned}
$$

PTS: 2
REF: 061417a2
STA: A2.A. 23
TOP: Solving Rationals
KEY: rational solutions
291
ANS: 3
$\frac{5 x}{x(x-3)}-\frac{2(x-3)}{x(x-3)}=\frac{x(x-3)}{x(x-3)}$

$$
\begin{aligned}
5 x-2 x+6 & =x^{2}-3 x \\
0 & =x^{2}-6 x-6
\end{aligned}
$$

PTS: 2
REF: 011522a2
STA: A2.A. 23
TOP: Solving Rationals KEY: irrational and complex solutions
$\frac{3}{x}+\frac{x}{x+2}=-\frac{2}{x+2}$

$$
\begin{aligned}
\frac{x+2}{x+2} & =-\frac{3}{x} \\
1 & =-\frac{3}{x} \\
x & =-3
\end{aligned}
$$

PTS: 4 REF: 061537a2 STA: A2.A. 23 TOP: Solving Rationals KEY: rational solutions

293 ANS:
$\frac{10 x}{4}=\frac{1}{x}+\frac{x}{4}$
$\frac{9 x}{4}=\frac{1}{x}$
$9 x^{2}=4$
$x^{2}=\frac{4}{9}$
$x= \pm \frac{2}{3}$
PTS: 2 REF: 081534a2 STA: A2.A. 23 TOP: Solving Rationals
KEY: rational solutions
294
ANS: 3
$\frac{x+16}{x-2}-\frac{7(x-2)}{x-2} \leq 0-6 x+30=0 \quad x-2=0$. Check points such that $x<2,2<x<5$, and $x>5$. If $x=1$,

$$
\begin{array}{rlr}
\frac{-6 x+30}{x-2} \leq 0 & -6 x & =-30 \\
x & =5
\end{array}
$$

$\frac{-6(1)+30}{1-2}=\frac{24}{-1}=-24$, which is less than 0 . If $x=3, \frac{-6(3)+30}{3-2}=\frac{12}{1}=12$, which is greater than 0 . If $x=6$, $\frac{-6(6)+30}{6-2}=\frac{-6}{4}=-\frac{3}{2}$, which is less than 0 .

PTS: 2 REF: 011424a2 STA: A2.A. 23 TOP: Rational Inequalities
295 ANS: 2
$\frac{\frac{x}{4}-\frac{1}{x}}{\frac{1}{2 x}+\frac{1}{4}}=\frac{\frac{x^{2}-4}{4 x}}{\frac{2 x+4}{8 x}}=\frac{(x+2)(x-2)}{4 x} \times \frac{8 x}{2(x+2)}=x-2$

PTS: 2 REF: fall0920a2 STA: A2.A. 17 TOP: Complex Fractions
296 ANS:
$\frac{\frac{1}{2}-\frac{4}{d}}{\frac{1}{d}+\frac{3}{2 d}}=\frac{\frac{d-8}{2 d}}{\frac{2 d+3 d}{2 d^{2}}}=\frac{d-8}{2 d} \times \frac{2 d^{2}}{5 d}=\frac{d-8}{5}$
PTS: 2 REF: 061035a2 STA: A2.A. 17 TOP: Complex Fractions

297 ANS: 2
$\frac{1-\frac{4}{x}}{1-\frac{2}{x}-\frac{8}{x^{2}}} \times \frac{x^{2}}{x^{2}}=\frac{x^{2}-4 x}{x^{2}-2 x-8}=\frac{x(x-4)}{(x-4)(x+2)}=\frac{x}{x+2}$
PTS: 2 REF: 061305a2 STA: A2.A. 17 TOP: Complex Fractions 298

ANS: 3
$\frac{a+\frac{b}{c}}{d-\frac{b}{c}}=\frac{\frac{a c+b}{c}}{\frac{c d-b}{c}}=\frac{a c+b}{c} \cdot \frac{c}{c d-b}=\frac{a c+b}{c d-b}$

PTS: 2 REF: 011405a2 STA: A2.A. 17 TOP: Complex Fractions
299 ANS:
$\frac{1+\frac{3}{x}}{1-\frac{5}{x}-\frac{24}{x^{2}}} \cdot \frac{x^{2}}{x^{2}}=\frac{x^{2}+3 x}{x^{2}-5 x-24}=\frac{x(x+3)}{(x-8)(x+3)}=\frac{x}{x-8}$

PTS: 4 REF: 061436a2 STA: A2.A. 17 TOP: Complex Fractions
300 ANS:
$12 \cdot 6=9 w$

$$
8=w
$$

PTS: 2 REF: 011130a2 STA: A2.A. 5 TOP: Inverse Variation
301 ANS: 1
$10 \cdot \frac{3}{2}=\frac{3}{5} p$

$$
\begin{aligned}
& 15=\frac{3}{5} p \\
& 25=p
\end{aligned}
$$

PTS: 2
REF: 011226a2
STA: A2.A. 5
TOP: Inverse Variation

302 ANS: 1

$$
\begin{aligned}
20(-2) & =x(-2 x+2) \\
-40 & =-2 x^{2}+2 x \\
2 x^{2}-2 x-40 & =0 \\
x^{2}-x-20 & =0 \\
(x+4)(x-5) & =0 \\
x & =-4,5
\end{aligned}
$$

PTS: 2 REF: 011321a2 STA: A2.A. 5 TOP: Inverse Variation
303 ANS: 2
$2^{2} \cdot 3=12.6^{2} d=12$
$4^{2} \cdot \frac{3}{4}=12 \begin{aligned} 36 d & =12 \\ d & =\frac{1}{3}\end{aligned}$
PTS: 2
REF: 061310a2
STA: A2.A. 5
TOP: Inverse Variation
304
ANS: 3
$20 \cdot 2=-5 t$

$$
-8=t
$$

PTS: 2
REF: 011412a2 STA: A2.A.5
TOP: Inverse Variation
305 ANS:
$25 \cdot 6=30 q$

$$
5=q
$$

PTS: 2
306 ANS: 2
REF: 011528a2
STA: A2.A. 5
REF: 061510a2
TOP: Inverse Variation
TOP: Inverse Variation
307
$3 \cdot 400=8 x$

$$
150=x
$$

PTS: 2
REF: 081507a2 STA: A2.A.5
TOP: Inverse Variation
308
ANS: 4
$y-2 \sin \theta=3$

$$
\begin{array}{r}
y=2 \sin \theta+3 \\
\mathrm{f}(\theta)=2 \sin \theta+3
\end{array}
$$

PTS: 2
REF: fall0927a2
STA: A2.A. 40
TOP: Functional Notation

309 ANS: 2
$f(10)=\frac{-10}{(-10)^{2}-16}=\frac{-10}{84}=-\frac{5}{42}$
PTS: 2 REF: 061102a2 STA: A2.A. 41 TOP: Functional Notation
310 ANS:
$g(10)=(a(10) \sqrt{1-10})^{2}=100 a^{2}(-9)=-900 a^{2}$
PTS: 2 REF: 061333a2 STA: A2.A. 41 TOP: Functional Notation
311 ANS: 4

$$
\begin{aligned}
\mathrm{f}(a+1) & =4(a+1)^{2}-(a+1)+1 \\
& =4\left(a^{2}+2 a+1\right)-a \\
& =4 a^{2}+8 a+4-a \\
& =4 a^{2}+7 a+4
\end{aligned}
$$

PTS: 2 REF: 011527a2 STA: A2.A. 41 TOP: Functional Notation
312 ANS: 3 PTS: 2 REF: 011119a2 STA: A2.A. 52
TOP: Families of Functions
313 ANS: 4 PTS: 2 REF: 011219a2 STA: A2.A. 52
TOP: Properties of Graphs of Functions and Relations
314 ANS: 3
As originally written, alternatives (2) and (3) had no domain restriction, so that both were correct.
PTS: 2 REF: 061405a2 STA: A2.A. 52
TOP: Properties of Graphs of Functions and Relations
315 ANS: 1 PTS: 2 REF: 061004a2 STA: A2.A. 52
TOP: Identifying the Equation of a Graph
316 ANS: 2 PTS: 2 REF: 061108a2 STA: A2.A. 52
TOP: Identifying the Equation of a Graph
317 ANS: 2 PTS: 2 REF: 011301a2 STA: A2.A. 52
TOP: Identifying the Equation of a Graph
318 ANS: 2 PTS: 2 REF: 011502a2 STA: A2.A. 52
TOP: Identifying the Equation of a Graph
319 ANS: 3 PTS: 2 REF: 011305a2 STA: A2.A. 37
TOP: Defining Functions
320 ANS: 4 PTS: 2 REF: fall0908a2 STA: A2.A. 38
TOP: Defining Functions KEY: graphs
321 PTS: 2 REF: 061013a2 STA: A2.A. 38
TOP: Defining Functions
322 ANS: 4 PTS:
TOP: Defining Functions
323 ANS: 3 PTS: 2
REF: 011101a2
STA: A2.A. 38
KEY: graphs
REF: 061114a2 STA: A2.A. 38
TOP: Defining Functions
KEY: graphs

324	ANS: 1	PTS: 2	REF: 061409a2	STA: A2.A. 38
	TOP: Defining Functions	KEY: graphs		
325	ANS: 2	PTS: 2	REF: 011507a2	STA: A2.A. 38
	TOP: Defining Functions	KEY: graphs		

326 ANS: 4
(4) fails the horizontal line test. Not every element of the range corresponds to only one element of the domain.

PTS: 2 REF: fall0906a2 STA: A2.A. 43 TOP: Defining Functions
327 ANS: 3
(1) and (4) fail the horizontal line test and are not one-to-one. Not every element of the range corresponds to only one element of the domain. (2) fails the vertical line test and is not a function. Not every element of the domain corresponds to only one element of the range.

	PTS:	2 REF:	081020a2	STA:	A2.A. 43	TOP:	Defining Functions
328	ANS:	2 PTS:	2	REF:	011225a2	STA:	A2.A. 43
	TOP:	Defining Functions					
329	ANS:	2 PTS:	2	REF:	061218a2	STA:	A2.A. 43
	TOP:	Defining Functions					
330	ANS:	4 PTS:	2	REF:	061303a2	STA:	A2.A. 43
	TOP:	Defining Functions					
331	ANS:	2 PTS:	2	REF:	011407a2	STA:	A2.A. 43
	TOP:	Defining Functions					
332	ANS:	3 PTS:	2	REF:	061501a2	STA:	A2.A. 43
	TOP:	Defining Functions					
333	ANS:	3 PTS:	2	REF:	fall0923a2	STA:	A2.A. 39
	TOP:	Domain and Range		KEY:	real domain		
334	ANS:	4 PTS:	2	REF:	061112a2	STA:	A2.A. 39
	TOP:	Domain and Range		KEY:	real domain		
335	ANS:	2 PTS:	2	REF:	011222a2	STA:	A2.A. 39
	TOP:	Domain and Range		KEY:	real domain		
336	ANS:	1 PTS:	2	REF:	011313a2	STA:	A2.A. 39
	TOP:	Domain and Range		KEY:	real domain		
337	ANS:	1 PTS:	2	REF:	011416a2	STA:	A2.A. 39
	TOP:	Domain and Range		KEY:	real domain		
338	ANS:	2 PTS:	2	REF:	011521a2	STA:	A2.A. 39
	TOP:	Domain and Range		KEY:	real domain		
339	ANS:	3 PTS:	2	REF:	081517a2	STA:	A2.A. 39
	TOP:	Domain and Range		KEY:	real domain		
340	ANS:	2 PTS:	2	REF:	081003a2	STA:	A2.A. 51
	TOP:	Domain and Range					
341	ANS:						
	D: -5	$\leq x \leq 8 . \mathrm{R}:-3 \leq y \leq 2$					

STA: A2.A. 51 TOP: Domain and Range
REF: 061202a2 STA: A2.A. 51

REF: 011132a2
PTS: 2
TOP: Domain and Range

343 ANS: $3 \quad$ PTS: 2
TOP: Domain and Range
344 ANS: 3 PTS: 2
TOP: Domain and Range
345 ANS: 4 PTS: 2
TOP: Domain and Range
346 ANS: 3
$f(4)=\frac{1}{2}(4)-3=-1 . g(-1)=2(-1)+5=3$
PTS: 2
REF: fall0902a2
KEY: numbers
347 ANS: 2
$6\left(x^{2}-5\right)=6 x^{2}-30$
PTS: 2
REF: 011109a2
STA: A2.A. 42
TOP: Compositions of Functions
KEY: variables
348 ANS:
7. $\mathrm{f}(-3)=(-3)^{2}-6=3 . \mathrm{g}(\mathrm{x})=2^{3}-1=7$.

PTS: 2 REF: 061135a2 STA: A2.A. 42 TOP: Compositions of Functions
KEY: numbers
349 ANS: 4
$g\left(\frac{1}{2}\right)=\frac{1}{\frac{1}{2}}=2 . f(2)=4(2)-2^{2}=4$
PTS: 2
REF: 011204a2
STA: A2.A. 42
KEY: numbers
350
ANS: 2 PTS: 2
TOP: Compositions of Functions
REF: 061216a2
STA: A2.A. 42
KEY: variables
351
ANS: 3
$h(-8)=\frac{1}{2}(-8)-2=-4-2=-6 . g(-6)=\frac{1}{2}(-6)+8=-3+8=5$
PTS: 2 REF: 011403a2 STA: A2.A. 42 TOP: Compositions of Functions KEY: numbers
352 ANS: 1
$\mathrm{f}(\mathrm{g}(x))=2(x+5)^{2}-3(x+5)+1=2\left(x^{2}+10 x+25\right)-3 x-15+1=2 x^{2}+17 x+36$
PTS: 2 REF: 061419a2 STA: A2.A. 42 TOP: Compositions of Functions
KEY: variables

353
ANS: 4
$g(-2)=3(-2)-2=-8 \mathrm{f}(-8)=2(-8)^{2}+1=128+1=129$
PTS: 2
REF: 061503a2
STA: A2.A. 42
TOP: Compositions of Functions
KEY: numbers
354 ANS:
$(x+1)^{2}-(x+1)=x^{2}+2 x+1-x-1=x^{2}+x$
PTS: 2
REF: 081530a2
STA: A2.A. 42
TOP: Compositions of Functions
KEY: variables
355 ANS: 3
PTS: 2
REF: 081027a2
TOP: Inverse of Functions
KEY: equations
356
ANS:
$y=x^{2}-6 . \mathrm{f}^{-1}(x)$ is not a function.
$x=y^{2}-6$
$x+6=y^{2}$
$\pm \sqrt{x+6}=y$
PTS: 2
REF: 061132a2
STA: A2.A. 44
KEY: equations
357 ANS: 2
PTS: 2
REF: 061521a2
TOP: Inverse of Functions
KEY: equations
ANS: 2
PTS: 2
TOP: Inverse of Functions
REF: 081523a2
STA: A2.A. 44
ANS: 2 PTS: 2
KEY: ordered pairs
TOP: Transformations with Functions and Relations
360
ANS: 1 PTS: 2
REF: 081022a2
STA: A2.A. 46
TOP: Transformations with Functions and Relations
361 ANS:

PTS: 2
REF: 061435a2 STA: A2.A. 46
TOP: Transformations with Functions and Relations
362 ANS: 1
PTS: 2
REF: 061516a2
STA: A2.A. 46
TOP: Transformations with Functions and Relations

363 ANS: 4
TOP: Sequences
364 ANS: 1
common difference is $2 . b_{n}=x+2 n$

$$
\begin{aligned}
10 & =x+2(1) \\
8 & =x
\end{aligned}
$$

PTS: 2 REF: 081014a2 STA: A2.A. 29 TOP: Sequences 365 ANS: 4
$\frac{10}{4}=2.5$
PTS: 2 REF: 011217a2 STA: A2.A. 29 TOP: Sequences
366 ANS:

$$
\begin{aligned}
\frac{31-19}{7-4}=\frac{12}{3}=4 x+(4-1) 4 & =19 \quad a_{n}=7+(n-1) 4 \\
x+12 & =19 \\
x & =7
\end{aligned}
$$

PTS: 2 REF: 011434a2 STA: A2.A. 29 TOP: Sequences
367 ANS: 4
PTS: 2
REF: 061520a2 STA: A2.A. 29
TOP: Sequences
368 ANS: 3
PTS: 2
REF: 061001a2 STA: A2.A. 30
TOP: Sequences
369 ANS: 3
PTS: 2
REF: 011110a2 STA: A2.A.30
TOP: Sequences
370 ANS: 1
$(4 a+4)-(2 a+1)=2 a+3$
PTS: 2
371 ANS: 4
TOP: Sequences
REF: 011401a2
STA: A2.A. 30
TOP: Sequences
PTS: 2
REF: 061411a2
372 ANS: 3
$27 r^{4-1}=64$

$$
\begin{aligned}
r^{3} & =\frac{64}{27} \\
r & =\frac{4}{3}
\end{aligned}
$$

PTS: 2
REF: 081025a2
STA: A2.A. 31
TOP: Sequences
373 ANS: 3
$\frac{4}{-2}=-2$
PTS: 2
REF: 011304a2
STA: A2.A. 31
TOP: Sequences

374 ANS: 2
$\frac{-\frac{3}{32} a^{3} b^{4}}{\frac{1}{64} a^{5} b^{3}}=-\frac{6 b}{a^{2}}$
PTS: 2 REF: 061326a2 STA: A2.A. 31 TOP: Sequences
375 ANS: 1
$\frac{\frac{3}{4}}{-\frac{1}{2}}=-\frac{3}{2}$
PTS: 2 REF: 011508a2 STA: A2.A. 31 TOP: Sequences
376 ANS: 3
$a_{n}=5(-2)^{n-1}$
$a_{15}=5(-2)^{15-1}=81,920$
PTS: 2 REF: 011105a2 STA: A2.A. 32 TOP: Sequences
377 ANS: 1
$a_{n}=-\sqrt{5}(-\sqrt{2})^{n-1}$
$a_{15}=-\sqrt{5}(-\sqrt{2})^{15-1}=-\sqrt{5}(-\sqrt{2})^{14}=-\sqrt{5} \cdot 2^{7}=-128 \sqrt{5}$
PTS: 2 REF: 061109a2 STA: A2.A. 32 TOP: Sequences
378 ANS: 3
$\frac{40-10}{6-1}=\frac{30}{5}=6 \quad a_{n}=6 n+4$

$$
a_{20}=6(20)+4=124
$$

PTS: 2
REF: 081510a2
STA: A2.A. 32
TOP: Sequences
379 ANS:
$-3,-5,-8,-12$
PTS: 2 REF: fall0934a2 STA: A2.A. 33 TOP: Recursive Sequences 380 ANS:
$a_{1}=3 . a_{2}=2(3)-1=5 . \quad a_{3}=2(5)-1=9$.
PTS: 2 REF: 061233a2 STA: A2.A. 33 TOP: Recursive Sequences 381 ANS:
$a_{2}=3(2)^{-2}=\frac{3}{4} \quad a_{3}=3\left(\frac{3}{4}\right)^{-2}=\frac{16}{3} \quad a_{4}=3\left(\frac{16}{3}\right)^{-2}=\frac{27}{256}$
PTS: 4 REF: 011537a2 STA: A2.A. 33 TOP: Recursive Sequences

382 ANS: 3
$a_{4}=3 x y^{5}\left(\frac{2 x}{y}\right)^{3}=3 x y^{5}\left(\frac{8 x^{3}}{y^{3}}\right)=24 x^{4} y^{2}$
PTS: 2 REF: 061512a2
383 ANS: 1
TOP: Sequences
PTS: 2

STA: A2.A. 33
REF: 081520a2 STA: A2.A. 33

ANS: 3

n	0	1	2	\sum
$n^{2}+2^{n}$	$0^{2}+2^{0}=1$	$1^{2}+2^{2}=3$	$2^{2}+2^{2}=8$	12

PTS: 2 REF: fall0911a2 STA: A2.N. 10 TOP: Sigma Notation
KEY: basic
385 ANS:
230. $10+\left(1^{3}-1\right)+\left(2^{3}-1\right)+\left(3^{3}-1\right)+\left(4^{3}-1\right)+\left(5^{3}-1\right)=10+0+7+26+63+124=230$

PTS: 2
REF: 011131a2 STA: A2.N. 10 TOP: Sigma Notation
KEY: basic
386 ANS: 1

n	3	4	5	Σ
$-r^{2}+r$	$-3^{2}+3=-6$	$-4^{2}+4=-12$	$-5^{2}+5=-20$	-38

PTS: 2
REF: 061118a2 STA: A2.N. 10
TOP: Sigma Notation
KEY: basic
387
ANS:
-104 .

PTS: 2
REF: 011230a2
STA: A2.N. 10
TOP: Sigma Notation
KEY: basic
388 ANS: 4

$$
\begin{gathered}
4+3(2-x)+3(3-x)+3(4-x)+3(5-x) \\
4+6-3 x+9-3 x+12-3 x+15-3 x \\
46-12 x
\end{gathered}
$$

PTS: 2
REF: 061315a2 STA: A2.N. 10
TOP: Sigma Notation
KEY: advanced

389 ANS: 4

$$
(a-1)^{2}+(a-2)^{2}+(a-3)^{2}+(a-4)^{2}
$$

$\left(a^{2}-2 a+1\right)+\left(a^{2}-4 a+4\right)+\left(a^{2}-6 a+9\right)+\left(a^{2}-8 a+16\right)$

$$
4 a^{2}-20 a+30
$$

PTS: 2 REF: 011414a2 STA: A2.N. 10 TOP: Sigma Notation
KEY: advanced
390 ANS: 4
$(3-2 a)^{0}+(3-2 a)^{1}+(3-2 a)^{2}=1+3-2 a+9-12 a+4 a^{2}=4 a^{2}-14 a+13$
PTS: 2 REF: 061526a2 STA: A2.N. 10 TOP: Sigma Notation
KEY: advanced
391 ANS:
$x-1+x-4+x-9+x-16=4 x-30$
PTS: 2 REF: 081535a2 STA: A2.N. 10 TOP: Sigma Notation
KEY: advanced
392
ANS: 1
PTS: 2
REF: 061025a2 STA: A2.A. 34
TOP: Sigma Notation
393 ANS:
$\sum_{n=1}^{15} 7 n$
PTS: 2 REF: 081029a2 STA: A2.A. 34 TOP: Sigma Notation
394 ANS: 2
PTS: 2
REF: 061205a2 STA: A2.A. 34
TOP: Sigma Notation
395 ANS: 1 PTS: 2 REF: 061420a2 STA: A2.A. 34
TOP: Sigma Notation
396 ANS: 4 PTS:
TOP: Sigma Notation
397 ANS: 4
$S_{n}=\frac{n}{2}[2 a+(n-1) d]=\frac{21}{2}[2(18)+(21-1) 2]=798$
PTS: 2 REF: 061103a2 STA: A2.A. 35 TOP: Series
KEY: arithmetic
398 ANS: 3
$S_{n}=\frac{n}{2}[2 a+(n-1) d]=\frac{19}{2}[2(3)+(19-1) 7]=1254$
PTS: 2 REF: 011202a2 STA: A2.A. 35 TOP: Summations
KEY: arithmetic

399 ANS:
$a_{n}=9 n-4 \quad . S_{n}=\frac{20(5+176)}{2}=1810$
$a_{1}=9(1)-4=5$
$a_{20}=9(20)-4=176$
PTS: 2 REF: 011328a2 STA: A2.A. 35 TOP: Summations
KEY: arithmetic
400 ANS: 3
$S_{8}=\frac{3\left(1-(-4)^{8}\right)}{1-(-4)}=\frac{196,605}{5}=-39,321$
PTS: 2 REF: 061304a2 STA: A2.A. 35 TOP: Summations
KEY: geometric
401 ANS: 1

$\cos K=\frac{5}{6}$

$$
\begin{aligned}
& K=\cos ^{-1} \frac{5}{6} \\
& K \approx 33^{\circ} 33^{\prime}
\end{aligned}
$$

PTS: 2 REF: 061023a2 STA: A2.A. 55 TOP: Trigonometric Ratios ANS: 2 PTS: 2 REF: 081010a2 STA: A2.A. 55
TOP: Trigonometric Ratios
403 ANS: 1
$\sqrt{12^{2}-6^{2}}=\sqrt{108}=\sqrt{36} \sqrt{3}=6 \sqrt{3} . \cot J=\frac{A}{O}=\frac{6}{6 \sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3}$
PTS: 2
REF: 011120a2
STA: A2.A. 55
TOP: Trigonometric Ratios
ANS: 2
PTS: 2
REF: 011315a2
STA: A2.A. 55
TOP: Trigonometric Ratios

405 ANS: 2

$$
\begin{aligned}
& S=\sin ^{-1} \frac{8}{17} \\
& S \approx 28^{\circ} 4^{\prime}
\end{aligned}
$$

$\begin{array}{lllll}\text { PTS: } 2 & \text { REF: 061311a2 } & \text { STA: A2.A. } 55 & \text { TOP: Trigonometric Ratios } \\ \text { ANS: } 3 & \text { PTS: } 2 & \text { REF: } 061514 \mathrm{a} 2 & \text { STA: A2. } 55\end{array}$
406 ANS: 3
PTS: 2
REF: 061514a2 STA: A2.A.55
TOP: Trigonometric Ratios
407 ANS: 3
$2 \pi \cdot \frac{5}{12}=\frac{10 \pi}{12}=\frac{5 \pi}{6}$
PTS: 2
REF: 061125a2
STA: A2.M. 1
TOP: Radian Measure
408 ANS: 2
PTS: 2
REF: 061502a2
STA: A2.M. 1
TOP: Radian Measure
409 ANS:

PTS: 2
REF: fall0931a2
STA: A2.M. 2
TOP: Radian Measure
KEY: degrees
410 ANS: 2
$\frac{11 \pi}{12} \cdot \frac{180}{\pi}=165$
PTS: 2
REF: 061002a2
STA: A2.M. 2
TOP: Radian Measure
KEY: degrees
411 ANS: 1
$-420\left(\frac{\pi}{180}\right)=-\frac{7 \pi}{3}$

PTS: 2
REF: 081002a2 STA: A2.M. 2
TOP: Radian Measure
KEY: radians

412 ANS:
$2.5 \cdot \frac{180}{\pi} \approx 143.2^{\circ}$
PTS: 2 REF: 011129a2 STA: A2.M. 2 TOP: Radian Measure
KEY: degrees
413 ANS: 1
$2 \cdot \frac{180}{\pi}=\frac{360}{\pi}$
PTS: 2
REF: 011220a2 STA: A2.M.2
TOP: Radian Measure
KEY: degrees
414 ANS:
$216\left(\frac{\pi}{180}\right) \approx 3.8$

PTS: 2
REF: 061232a2 STA: A2.M. 2 TOP: Radian Measure
KEY: radians
415 ANS:

PTS: 2
REF: 011335a2 STA: A2.M. 2
TOP: Radian Measure
KEY: degrees
416 ANS: 2
$\frac{8 \pi}{5} \cdot \frac{180}{\pi}=288$
PTS: 2
REF: 061302a2 STA: A2.M.2
TOP: Radian Measure
KEY: degrees
417 ANS: 1
$5 \cdot \frac{180}{\pi} \approx 286$
PTS: 2
REF: 011427a2
STA: A2.M. 2
TOP: Radian Measure KEY: degrees

418 ANS:
$2.5 \cdot \frac{180}{\pi} \approx 143^{\circ} 14^{\prime}$
PTS: 2 REF: 061431a2 STA: A2.M. 2 TOP: Radian Measure
KEY: degrees
419 ANS:
$\frac{5}{11} \pi\left(\frac{180}{\pi}\right)=81^{\circ} 49^{\prime}$
PTS: 2 REF: 011531a2 STA: A2.M. 2 TOP: Radian Measure
KEY: degrees
420 ANS:
$2.5\left(\frac{180}{\pi}\right)=143^{\circ} 14^{\prime}$
PTS: 2
REF: 081528a2
STA: A2.M. 2
TOP: Radian Measure
KEY: degrees
421 ANS:

$$
-\frac{\sqrt{3}}{2}
$$

PTS: 2
422 ANS: 4 TOP: Unit Circle 423 ANS: 4 TOP: Unit Circle

REF: 061033a2
PTS: 2
PTS: 2

STA: A2.A. 60
REF: 081005a2
REF: 061206a2 STA: A2.A. 60
ANS: 3

If $\csc P>0, \sin P>0$. If $\cot P<0$ and $\sin P>0, \cos P<0$
PTS: 2
425 ANS: 3
REF: 061320a2 STA: A2.A. 60
TOP: Finding the Terminal Side of an Angle
426
ANS: 4
PTS: 1
REF: 011312a2
TOP: Determining Trigonometric Functions

TOP: Finding the Terminal Side of an Angle
STA: A2.A. 60
STA: A2.A. 56
KEY: degrees, common angles

427 ANS:
$\frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2}=\frac{\sqrt{6}}{4}$
PTS: 2 REF: 061331a2 STA: A2.A. 56 TOP: Determining Trigonometric Functions
KEY: degrees, common angles
428 ANS:
$\frac{\sqrt{13}}{2} \cdot \sin \theta=\frac{y}{\sqrt{x^{2}+y^{2}}}=\frac{2}{\sqrt{(-3)^{2}+2^{2}}}=\frac{2}{\sqrt{13}} . \csc \theta=\frac{\sqrt{13}}{2}$.
PTS: 2 REF: fall0933a2 STA: A2.A. 62 TOP: Determining Trigonometric Functions
429 ANS: 2
$\sec \theta=\frac{\sqrt{x^{2}+y^{2}}}{x}=\frac{\sqrt{(-4)^{2}+0^{2}}}{-4}=\frac{4}{-4}=-1$
PTS: 2 REF: 011520a2 STA: A2.A. 62 TOP: Determining Trigonometric Functions
430 ANS: 2
$x=2 \cdot \frac{\sqrt{3}}{2}=\sqrt{3} \quad y=2 \cdot \frac{1}{2}=1$
PTS: 2 REF: 061525a2 STA: A2.A. 62 TOP: Determining Trigonometric Functions
431 ANS: 2

PTS: 2
REF: 061115a2 STA: A2.A. 66
TOP: Determining Trigonometric Functions
432

PTS: 2
REF: 011203a2
STA: A2.A. 66
TOP: Determining Trigonometric Functions

PTS: 2 REF: 061217a2 STA: A2.A. 66 TOP: Determining Trigonometric Functions

434 ANS: 3 PTS: 2 REF: 081007a2
TOP: Using Inverse Trigonometric Functions
435 ANS: 3 PTS: 2 REF: 011104a2
TOP: Using Inverse Trigonometric Functions
436 ANS: 1 PTS: 2 REF: 011112a2
TOP: Using Inverse Trigonometric Functions
437 ANS: 2
$\tan 30=\frac{\sqrt{3}}{3} . \operatorname{Arccos} \frac{\sqrt{3}}{k}=30$

$$
\begin{aligned}
\frac{\sqrt{3}}{k} & =\cos 30 \\
k & =2
\end{aligned}
$$

PTS: 2
REF: 061323a2
STA: A2.A. 64
KEY: advanced
438 ANS: 2
If $\sin A=-\frac{7}{25}, \cos A=\frac{24}{25}$, and $\tan A=\frac{\sin A}{\cos A}=\frac{-\frac{7}{25}}{\frac{24}{25}}=-\frac{7}{24}$
PTS: 2
REF: 011413a2 STA: A2.A. 64
KEY: advanced
439 ANS: 1
If $\sin \theta=\frac{15}{17}$, then $\cos \theta=\frac{8}{17} \cdot \tan \theta=\frac{\frac{8}{17}}{\frac{15}{17}}=\frac{8}{15}$
PTS: 2
REF: 081508a2 STA: A2.A. 64
KEY: advanced
440 ANS: 2
$\cos \left(-305^{\circ}+360^{\circ}\right)=\cos \left(55^{\circ}\right)$
PTS: 2
REF: 061104a2
STA: A2.A. 57
REF: 081515a2 STA: A2.A. 57
TOP: Reference Angles
442 ANS: 4
$s=\theta r=2 \cdot 4=8$
PTS: 2
REF: fall0922a2
STA: A2.A. 61
TOP: Arc Length
KEY: arc length

443 ANS: 3
$s=\theta r=\frac{2 \pi}{8} \cdot 6=\frac{3 \pi}{2}$
PTS: 2
REF: 061212a2
STA: A2.A. 61
TOP: Arc Length
KEY: arc length
444 ANS:
$83^{\circ} 50^{\prime} \cdot \frac{\pi}{180} \approx 1.463$ radians $s=\theta r=1.463 \cdot 12 \approx 17.6$
PTS: 2
REF: 011435a2
STA: A2.A. 61
TOP: Arc Length
KEY: arc length
445 ANS: 2
$s=\theta r=\frac{2 \pi}{5} \cdot 18 \approx 23$
PTS: 2 REF: 011526a2 STA: A2.A. 61 TOP: Arc Length
KEY: arc length
446 ANS:
$r=\frac{6.6}{\frac{2}{3}}=9.9$
PTS: 2
REF: 081532a2 STA: A2.A. 61
TOP: Arc Length
KEY: radius
447 ANS: 3
Cofunctions tangent and cotangent are complementary
PTS: 2
REF: 061014a2 STA: A2.A. 58
TOP: Cofunction Trigonometric Relationships
448 ANS: 3
$\frac{\sin ^{2} \theta+\cos ^{2} \theta}{1-\sin ^{2} \theta}=\frac{1}{\cos ^{2} \theta}=\sec ^{2} \theta$
PTS: 2
REF: 061123a2
STA: A2.A. 58
TOP: Reciprocal Trigonometric Relationships
449 ANS:
$\cos \theta \cdot \frac{1}{\cos \theta}-\cos ^{2} \theta=1-\cos ^{2} \theta=\sin ^{2} \theta$
PTS: 2
REF: 061230a2 STA: A2.A.58
TOP: Reciprocal Trigonometric Relationships
450 ANS:

$$
\begin{aligned}
a+15+2 a & =90 \\
3 a+15 & =90 \\
3 a & =75 \\
a & =25
\end{aligned}
$$

PTS: 2
REF: 011330a2
STA: A2.A. 58
TOP: Cofunction Trigonometric Relationships

451 ANS:
$\frac{\cot x \sin x}{\sec x}=\frac{\frac{\cos x}{\sin x} \sin x}{\frac{1}{\cos x}}=\cos ^{2} x$
PTS: 2 REF: 061334a2 STA: A2.A. 58 TOP: Reciprocal Trigonometric Relationships
452 ANS: 2
$\frac{\cot x}{\csc x}=\frac{\frac{\cos x}{\sin x}}{\frac{1}{\sin x}}=\cos x$
PTS: 2 REF: 061410a2 STA: A2.A. 58 TOP: Reciprocal Trigonometric Relationships
453 ANS: 3
$\sin ^{2} x\left(1+\frac{\cos ^{2} x}{\sin ^{2} x}\right)=\sin ^{2} x+\cos ^{2} x=1 \frac{1}{\cos ^{2} x}\left(\cos ^{2} x\right)=1 \cos ^{2} x\left(\frac{\sin ^{2} x}{\cos ^{2} x}-1\right)=\sin ^{2} x-\cos ^{2} x \neq 1$
$\frac{\cos ^{2} x}{\sin ^{2} x}\left(\frac{1}{\cos ^{2} x}-1\right)=\frac{1}{\sin ^{2} x}-\frac{\cos ^{2} x}{\sin ^{2} x}=\csc ^{2} x-\cot x=1$
PTS: 2 REF: 011515a2 STA: A2.A. 58 TOP: Reciprocal Trigonometric Relationships 454 ANS:
$\frac{\frac{1}{\cos ^{2} x}-1}{\frac{1}{\cos ^{2} x}} \cdot \frac{\cos ^{2} x}{\cos ^{2} x}=\frac{1-\cos ^{2} x}{1}=\sin ^{2} x$
PTS: 2 REF: 081533a2 STA: A2.A. 58 TOP: Reciprocal Trigonometric Relationships 455 ANS:
$\frac{2 \sqrt{3}}{3}$. If $\sin 60=\frac{\sqrt{3}}{2}$, then $\csc 60=\frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}$
PTS: 2
REF: 011235a2 STA: A2.A. 59
TOP: Reciprocal Trigonometric Relationships
ANS: 1
$\sin 120=\frac{\sqrt{3}}{2} \quad \csc 120=\frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}$
PTS: 2 REF: 081505a2 STA: A2.A. 59 TOP: Reciprocal Trigonometric Relationships ANS: 2 PTS: 2 REF: 011208a2 STA: A2.A. 67
TOP: Simplifying Trigonometric Expressions

458
ANS:
$\frac{\sin ^{2} A}{\cos ^{2} A}+\frac{\cos ^{2} A}{\cos ^{2} A}=\frac{1}{\cos ^{2} A}$

$$
\tan ^{2} A+1=\sec ^{2} A
$$

PTS: 2 REF: 011135a2 STA: A2.A. 67 TOP: Proving Trigonometric Identities ANS:
$\sec \theta \sin \theta \cot \theta=\frac{1}{\cos \theta} \cdot \sin \theta \cdot \frac{\cos \theta}{\sin \theta}=1$
PTS: 2
REF: 011428a2
PTS: 2
STA: A2.A. 67
REF: fall0910a2
TOP: Proving Trigonometric Identities
ANS: 3
STA: A2.A. 76
TOP: Angle Sum and Difference Identities
KEY: simplifying
ANS:

$$
\begin{aligned}
\frac{23}{2} \cos ^{2} B+\sin ^{2} B & =1 \quad \tan B=\frac{\sin B}{\cos B}=\frac{\frac{5}{\sqrt{41}}}{\frac{4}{\sqrt{41}}}=\frac{5}{4} \tan (A+B)=\frac{\frac{2}{3}+\frac{5}{4}}{1-\left(\frac{2}{3}\right)\left(\frac{5}{4}\right)}=\frac{\frac{8+15}{12}}{\frac{12}{12}-\frac{10}{12}}=\frac{\frac{23}{12}}{\frac{2}{12}}=\frac{23}{2} \\
\cos ^{2} B+\left(\frac{5}{\sqrt{41}}\right)^{2} & =1 \\
\cos ^{2} B+\frac{25}{41} & =\frac{41}{41} \\
\cos ^{2} B & =\frac{16}{41} \\
\cos B & =\frac{4}{\sqrt{41}}
\end{aligned}
$$

PTS: 4 REF: 081037a2 STA: A2.A.76 TOP: Angle Sum and Difference Identities KEY: evaluating
462 ANS:
$\sin (45+30)=\sin 45 \cos 30+\cos 45 \sin 30$

$$
=\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2} \cdot \frac{1}{2}=\frac{\sqrt{6}}{4}+\frac{\sqrt{2}}{4}=\frac{\sqrt{6}+\sqrt{2}}{4}
$$

PTS: 4
REF: 061136a2 STA: A2.A. 76
TOP: Angle Sum and Difference Identities
KEY: evaluating
ANS: 1
$\cos (A-B)=\left(\frac{5}{13}\right)\left(-\frac{3}{5}\right)+\left(\frac{12}{13}\right)\left(\frac{4}{5}\right)=-\frac{15}{65}+\frac{48}{65}=\frac{33}{65}$
PTS: 2
REF: 011214a2 STA: A2.A.76
TOP: Angle Sum and Difference Identities
KEY: evaluating

464
ANS: 1
$\sin (180+x)=(\sin 180)(\cos x)+(\cos 180)(\sin x)=0+(-\sin x)=-\sin x$
PTS: 2 REF: 011318a2 STA: A2.A.76 TOP: Angle Sum and Difference Identities
KEY: identities
465 ANS: 4
$\sin (\theta+90)=\sin \theta \cdot \cos 90+\cos \theta \cdot \sin 90=\sin \theta \cdot(0)+\cos \theta \cdot(1)=\cos \theta$
PTS: 2
REF: 061309a2 STA: A2.A. 76 TOP: Angle Sum and Difference Identities
KEY: identities
466 ANS: 2

$$
\begin{aligned}
\cos (x-y) & =\cos x \cos y+\sin x \sin y \\
& =b \cdot b+a \cdot a \\
& =b^{2}+a^{2}
\end{aligned}
$$

PTS: 2
REF: 061421a2 STA: A2.A.76
KEY: simplifying
ANS. 1
$\cos ^{2} \theta-\cos 2 \theta=\cos ^{2} \theta-\left(\cos ^{2} \theta-\sin ^{2} \theta\right)=\sin ^{2} \theta$
PTS: 2
REF: 061024a2 STA: A2.A. 77
TOP: Double Angle Identities
KEY: simplifying
ANS: 3
$\left(\frac{2}{3}\right)^{2}+\cos ^{2} A=1$

$$
\sin 2 A=2 \sin A \cos A
$$

$\cos ^{2} A=\frac{5}{9}$
$=2\left(\frac{2}{3}\right)\left(\frac{\sqrt{5}}{3}\right)$
$\cos A=+\frac{\sqrt{5}}{3}, \sin A$ is acute. $\quad=\frac{4 \sqrt{5}}{9}$
PTS: 2 REF: 011107a2 STA: A2.A. 77 TOP: Double Angle Identities
KEY: evaluating
ANS: 1
If $\sin x=0.8$, then $\cos x=0.6 . \tan \frac{1}{2} x=\sqrt{\frac{1-0.6}{1+0.6}}=\sqrt{\frac{0.4}{1.6}}=0.5$.
PTS: 2 REF: 061220a2 STA: A2.A. 77 TOP: Half Angle Identities
470 ANS: 4
$\cos 2 A=1-2 \sin ^{2} A=1-2\left(\frac{1}{3}\right)^{2}=1-\frac{2}{9}=\frac{7}{9}$
PTS: 2
REF: 011311a2 STA: A2.A. 77
TOP: Double Angle Identities
KEY: evaluating

471 ANS: 3
$\cos 2 A=1-2 \sin ^{2} A=1-2\left(\frac{3}{8}\right)^{2}=\frac{32}{32}-\frac{9}{32}=\frac{23}{32}$

PTS: 2
REF: 011510a2
STA: A2.A. 77
TOP: Double Angle Identities
KEY: evaluating
472 ANS: 1
$\frac{1+\cos 2 A}{\sin 2 A}=\frac{1+2 \cos ^{2} A-1}{2 \sin A \cos A}=\frac{\cos A}{\sin A}=\cot A$
PTS: 2 REF: 061522a2 STA: A2.A. 77 TOP: Double Angle Identities KEY: simplifying
473 ANS: 1
$\cos 2 \theta=2\left(\frac{3}{4}\right)^{2}-1=2\left(\frac{9}{16}\right)-1=\frac{9}{8}-\frac{8}{8}=\frac{1}{8}$
PTS: 2 REF: 081522a2 STA: A2.A. 77 TOP: Double Angle Identities
KEY: evaluating
474 ANS: 1
$\tan \theta-\sqrt{3}=0$

$\tan \theta=\sqrt{3}$

$$
\theta=\tan ^{-1} \sqrt{3}
$$

$$
\theta=60,240
$$

PTS: 2
REF: fall0903a2 STA: A2.A. 68
TOP: Trigonometric Equations KEY: basic

ANS:
$0,60,180,300 . \quad \sin 2 \theta=\sin \theta$

$$
\sin 2 \theta-\sin \theta=0
$$

$$
2 \sin \theta \cos \theta-\sin \theta=0
$$

$$
\sin \theta(2 \cos \theta-1)=0
$$

$$
\sin \theta=0 \quad 2 \cos \theta-1=0
$$

$$
\theta=0,180 \cos \theta=\frac{1}{2}
$$

$$
\theta=60,300
$$

PTS: 4
REF: 061037a2
STA: A2.A. 68
TOP: Trigonometric Equations
KEY: double angle identities
476 ANS:
45, $2252 \tan C-3=3 \tan C-4$

$$
\begin{aligned}
1 & =\tan C \\
\tan ^{-1} 1 & =C \\
C & =45,225
\end{aligned}
$$

PTS: 2
KEY: basic
ANS: 4
$2 \cos \theta=1$

$$
\cos \theta=\frac{1}{2}
$$

$$
\theta=\cos ^{-1} \frac{1}{2}=60,300
$$

PTS: 2
REF: 061203a2 STA: A2.A. 68 TOP: Trigonometric Equations
KEY: basic

478 ANS: 3
$-\sqrt{2} \sec x=2$
$\sec x=-\frac{2}{\sqrt{2}}$

$$
\cos x=-\frac{\sqrt{2}}{2}
$$

$$
x=135,225
$$

PTS: 2
REF: 011322a2
STA: A2.A. 68
TOP: Trigonometric Equations KEY: reciprocal functions
479 ANS:
$5 \csc \theta=8$

$$
\csc \theta=\frac{8}{5}
$$

$$
\sin \theta=\frac{5}{8}
$$

$$
\theta \approx 141
$$

PTS: 2
REF: 061332a2 STA: A2.A. 68
TOP: Trigonometric Equations KEY: reciprocal functions
480 ANS:

$$
\begin{array}{r}
2 \sin ^{2} x+5 \sin x-3=0 \\
(2 \sin x-1)(\sin x+3)=0
\end{array}
$$

$$
\begin{aligned}
\sin x & =\frac{1}{2} \\
x & =\frac{\pi}{6}, \frac{5 \pi}{6}
\end{aligned}
$$

PTS: 4
REF: 011436a2
STA: A2.A. 68
TOP: Trigonometric Equations KEY: quadratics
ANS:

$$
\begin{aligned}
\sec x & =\sqrt{2} \\
\cos x & =\frac{1}{\sqrt{2}} \\
\cos x & =\frac{\sqrt{2}}{2} \\
x & =45^{\circ}, 315^{\circ}
\end{aligned}
$$

PTS: 2
REF: 061434a2
STA: A2.A. 68
TOP: Trigonometric Equations KEY: reciprocal functions

482 ANS:
$5 \cos \theta-2 \sec \theta+3=0$
$5 \cos \theta-\frac{2}{\cos \theta}+3=0$
$5 \cos ^{2} \theta+3 \cos \theta-2=0$
$(5 \cos \theta-2)(\cos \theta+1)=0$

$$
\begin{aligned}
\cos \theta & =\frac{2}{5},-1 \\
\theta & \approx 66.4,293.6,180
\end{aligned}
$$

PTS: 6 REF: 061539a2 STA: A2.A. 68
TOP: Trigonometric Equations
KEY: reciprocal functions
483
ANS: 2
$(2 \sin x-1)(\sin x+1)=0$
$\sin x=\frac{1}{2},-1$
$x=30,150,270$
PTS: 2 REF: 081514a2 STA: A2.A. 68 TOP: Trigonometric Equations
KEY: quadratics
484 ANS: 4
$\frac{2 \pi}{b}=\frac{2 \pi}{\frac{1}{3}}=6 \pi$
PTS: 2
REF: 061027a2 STA: A2.A. 69
TOP: Properties of Graphs of Trigonometric Functions
KEY: period
485 ANS: 2
$\frac{2 \pi}{b}=\frac{2 \pi}{3}$
PTS: 2
REF: 061111a2 STA: A2.A. 69
TOP: Properties of Graphs of Trigonometric Functions
KEY: period
486 ANS: 1
$\frac{2 \pi}{b}=4 \pi$

$$
b=\frac{1}{2}
$$

PTS: 2
REF: 011425a2 STA: A2.A. 69
TOP: Properties of Graphs of Trigonometric Functions
KEY: period

487 ANS: 2
$\frac{2 \pi}{6}=\frac{\pi}{3}$
PTS: 2 REF: 061413a2 STA: A2.A. 69
TOP: Properties of Graphs of Trigonometric Functions KEY: period
488 ANS: 1
$\frac{2 \pi}{2}=\pi$
$\frac{\pi}{\pi}=1$
PTS: 2 REF: 061519a2 STA: A2.A. 69
TOP: Properties of Graphs of Trigonometric Functions KEY: period
489 ANS: 3
$\frac{2 \pi}{2}=\pi$
PTS: 2 REF: 081519a2 STA: A2.A. 69
TOP: Properties of Graphs of Trigonometric Functions KEY: period
490 ANS: 4
$\frac{2 \pi}{b}=30$
$b=\frac{\pi}{15}$
PTS: 2 REF: 011227a2 STA: A2.A. 72
TOP: Identifying the Equation of a Trigonometric Graph
491 ANS:
$y=-3 \sin 2 x$. The period of the function is π, the amplitude is 3 and it is reflected over the x-axis.
PTS: 2 REF: 061235a2 STA: A2.A.72
TOP: Identifying the Equation of a Trigonometric Graph
492 ANS: 1 PTS: 2 REF: 011320a2 STA: A2.A. 72
TOP: Identifying the Equation of a Trigonometric Graph
493 ANS: 3 PTS: 2 REF: 061306a2 STA: A2.A. 72
TOP: Identifying the Equation of a Trigonometric Graph
494 ANS:
$a=3, b=2, c=1 \quad y=3 \cos 2 x+1$.
PTS: 2 REF: 011538a2 STA: A2.A. 72
TOP: Identifying the Equation of a Trigonometric Graph
495 ANS: 3 PTS: 2 REF: fall0913a2 STA: A2.A. 65
TOP: Graphing Trigonometric Functions
496 ANS: 3 PTS: 2 REF: 061119a2 STA: A2.A. 65
TOP: Graphing Trigonometric Functions

Algebra 2/Trigonometry Regents Exam Questions by Performance Indicator: Topic Answer Section

497 ANS: 3
period $=\frac{2 \pi}{b}=\frac{2 \pi}{3 \pi}=\frac{2}{3}$
PTS: 2
REF: 081026a2 STA: A2.A.70
TOP: Graphing Trigonometric Functions
KEY: recognize
498

PTS: 2 REF: 061020a2 STA: A2.A. 71 TOP: Graphing Trigonometric Functions
499 ANS: 1

PTS: 2 REF: 011123a2 STA: A2.A. 71 TOP: Graphing Trigonometric Functions
500 ANS: 3

PTS: 2
501
ANS: 3
TOP: Domain and Range
ANS: 3
PTS: 2
TOP: Domain and Range
503
ANS: 4 PTS.
TOP: Domain and Range
504
ANS: 2
$K=\frac{1}{2}(10)(18) \sin 120=45 \sqrt{3} \approx 78$
PTS: 2
KEY: basic

REF: fall0907a2 STA: A2.A.74 TOP: Using Trigonometry to Find Area

STA: A2.A. 71 TOP: Graphing Trigonometric Functions
REF: 061022a2 STA: A2.A. 63
REF: 061224a2 STA: A2.A. 63
REF: 061427a2 STA: A2.A. 63

505 ANS:
$K=a b \sin C=24 \cdot 30 \sin 57 \approx 604$
PTS: 2 REF: 061034a2 STA: A2.A. 74 TOP: Using Trigonometry to Find Area
KEY: parallelograms
506 ANS: 3
$K=(10)(18) \sin 46 \approx 129$
PTS: 2 REF: 081021a2 STA: A2.A.74 TOP: Using Trigonometry to Find Area
KEY: parallelograms
507 ANS: 1
$\frac{1}{2}(7.4)(3.8) \sin 126 \approx 11.4$
PTS: 2 REF: 011218a2 STA: A2.A. 74 TOP: Using Trigonometry to Find Area
KEY: basic
508 ANS:
$K=a b \sin C=18 \cdot 22 \sin 60=396 \frac{\sqrt{3}}{2}=198 \sqrt{3}$

PTS: 2 REF: 061234a2 STA: A2.A. 74 TOP: Using Trigonometry to Find Area
KEY: Parallelograms
509 ANS: 3
$42=\frac{1}{2}(a)(8) \sin 61$
$42 \approx 3.5 a$
$12 \approx a$
PTS: 2 REF: 011316a2 STA: A2.A.74 TOP: Using Trigonometry to Find Area
KEY: basic
510 ANS:
$\frac{15}{\sin 103}=\frac{a}{\sin 42} \cdot \frac{1}{2}(15)(10.3) \sin 35 \approx 44$

$$
a \approx 10.3
$$

PTS: 4 REF: 061337a2 STA: A2.A.74 TOP: Using Trigonometry to Find Area
KEY: advanced
511 ANS:
$K=a b \sin C=6 \cdot 6 \sin 50 \approx 27.6$
PTS: 2 REF: 011429a2 STA: A2.A.74 TOP: Using Trigonometry to Find Area
KEY: Parallelograms

512 ANS: 2
$\frac{1}{2}(22)(13) \sin 55 \approx 117$
PTS: 2 REF: 061403a2 STA: A2.A. 74 TOP: Using Trigonometry to Find Area
KEY: basic
513 ANS:
$594=32 \cdot 46 \sin C$
$\frac{594}{1472}=\sin C$
$23.8 \approx C$
PTS: 2 REF: 011535a2 STA: A2.A. 74 TOP: Using Trigonometry to Find Area
KEY: Parallelograms
514 ANS: 2
$K=8 \cdot 12 \sin 120=96 \cdot \frac{\sqrt{3}}{2}=48 \sqrt{3}$

PTS: 2 REF: 061508a2 STA: A2.A. 74 TOP: Using Trigonometry to Find Area
KEY: parallelograms
515 ANS:
$\frac{12}{\sin 32}=\frac{10}{\sin B} \quad . C \approx 180-(32+26.2) \approx 121.8 . \frac{12}{\sin 32}=\frac{C}{\sin 121.8}$

$$
B=\sin ^{-1} \frac{10 \sin 32}{12} \approx 26.2
$$

$c=\frac{12 \sin 121.8}{\sin 32} \approx 19.2$
PTS: 4 REF: 011137a2 STA: A2.A. 73 TOP: Law of Sines
KEY: basic
516 ANS:
88. $\frac{100}{\sin 33}=\frac{x}{\sin 32} \cdot \sin 66 \approx \frac{T}{97.3}$

$$
x \approx 97.3 \quad t \approx 88
$$

PTS: 4 REF: 011236a2 STA: A2.A. 73 TOP: Law of Sines
KEY: advanced
517 ANS:
$\frac{100}{\sin 32}=\frac{b}{\sin 105} \cdot \frac{100}{\sin 32}=\frac{a}{\sin 43}$

$$
b \approx 182.3 \quad a \approx 128.7
$$

PTS: 4
REF: 011338a2
STA: A2.A. 73
TOP: Law of Sines
KEY: basic
518 ANS: 2
PTS: 2
REF: 061322a2 STA: A2.A. 73
TOP: Law of Sines
KEY: modeling

519 ANS: 3

$$
\begin{aligned}
\frac{59.2}{\sin 74} & =\frac{60.3}{\sin C} \quad 180-78.3=101.7 \\
C & \approx 78.3
\end{aligned}
$$

PTS: 2 REF: 081006a2 STA: A2.A. 75 TOP: Law of Sines - The Ambiguous Case
ANS: 2
$\frac{10}{\sin 35}=\frac{13}{\sin B} . \quad 35+48<180$

$$
B \approx 48,132 \quad 35+132<180
$$

PTS: 2 REF: 011113a2 STA: A2.A. 75 TOP: Law of Sines - The Ambiguous Case
521 ANS: 1
$\frac{9}{\sin A}=\frac{10}{\sin 70} .58^{\circ}+70^{\circ}$ is possible. $122^{\circ}+70^{\circ}$ is not possible.
$A \approx 58$
PTS: 2 REF: 011210a2 STA: A2.A. 75 TOP: Law of Sines - The Ambiguous Case
522 ANS: 1

$$
\begin{aligned}
\frac{6}{\sin 35} & =\frac{10}{\sin N} \\
N & \approx 73 \\
73+35 & <180 \\
(180-73)+35 & <180
\end{aligned}
$$

PTS: 2 REF: 061226a2 STA: A2.A. 75 TOP: Law of Sines - The Ambiguous Case 523 ANS: 4

$$
\begin{aligned}
\frac{13}{\sin 40} & =\frac{20}{\sin M} \cdot 81+40<180 .(180-81)+40<180 \\
M & \approx 81
\end{aligned}
$$

PTS: 2 REF: 061327a2 STA: A2.A. 75 TOP: Law of Sines - The Ambiguous Case

$$
\begin{array}{rr}
\frac{5}{\sin 32}=\frac{8}{\sin E} \quad 57.98+32<180 \\
E \approx 57.98 & (180-57.98)+32<180
\end{array}
$$

PTS: 2 REF: 011419a2 STA: A2.A. 75 TOP: Law of Sines - The Ambiguous Case

525 ANS: 4

$$
\begin{aligned}
\frac{\sqrt{34}}{\sin 30} & =\frac{12}{\sin B} \\
B & =\sin ^{-1} \frac{12 \sin 30}{\sqrt{34}} \\
& \approx \sin ^{-1} \frac{6}{5.8}
\end{aligned}
$$

PTS: 2 REF: 011523a2 STA: A2.A. 75 TOP: Law of Sines - The Ambiguous Case
526 ANS:
$\frac{8}{\sin 85}=\frac{2}{\sin C}$ $85+14.4<180 \quad 1$ triangle

$$
C=\sin ^{-1}\left(\frac{2 \sin 85}{8}\right)
$$

$$
C \approx 14.4
$$

PTS: 2
REF: 061529a2
STA: A2.A. 75
TOP: Law of Sines - The Ambiguous Case
527 ANS:
33. $a=\sqrt{10^{2}+6^{2}-2(10)(6) \cos 80} \approx 10.7 . \angle C$ is opposite the shortest side. $\frac{6}{\sin C}=\frac{10.7}{\sin 80}$

$$
C \approx 33
$$

PTS: 6
REF: 061039a2 STA: A2A. 73
TOP: Law of Cosines
KEY: advanced
528 ANS: 4

$$
\begin{aligned}
7^{2} & =3^{2}+5^{2}-2(3)(5) \cos A \\
49 & =34-30 \cos A \\
15 & =-30 \cos A \\
-\frac{1}{2} & =\cos A \\
120 & =A
\end{aligned}
$$

PTS: 2 REF: 081017a2 STA: A2.A. 73 TOP: Law of Cosines
KEY: angle, without calculator

529 ANS: 1

$$
\begin{aligned}
13^{2} & =15^{2}+14^{2}-2(15)(14) \cos C \\
169 & =421-420 \cos C \\
-252 & =-420 \cos C \\
\frac{252}{420} & =\cos C \\
53 & \approx C
\end{aligned}
$$

PTS: 2 REF: 061110a2 STA: A2.A. 73 TOP: Law of Cosines
KEY: find angle
530 ANS:
$\sqrt{27^{2}+32^{2}-2(27)(32) \cos 132} \approx 54$
PTS: 4 REF: 011438a2 STA: A2.A. 73 TOP: Law of Cosines
KEY: applied
531
ANS: 2
TOP: Law of Cosines
REF: 011501a2 STA: A2.A.73

ANS:

$$
\begin{aligned}
28^{2} & =47^{2}+34^{2}-2(47)(34) \cos A \\
784 & =3365-3196 \cos A \\
-2581 & =-3196 \cos A \\
\frac{2581}{3196} & =\cos A \\
36 & \approx A
\end{aligned}
$$

PTS: 4 REF: 061536a2 STA: A2.A. 73 TOP: Law of Cosines KEY: find angle
ANS:
$a=\sqrt{8^{2}+11^{2}-2(8)(11) \cos 82} \approx 12.67$. The angle opposite the shortest side: $\frac{8}{\sin x}=\frac{12.67}{\sin 82}$

$$
x \approx 38.7
$$

PTS: 4
REF: 081536a2 STA: A2.A. 73 TOP: Law of Cosines KEY: advanced

534 ANS:

$$
\begin{aligned}
r^{2} & \approx 10287.7 \\
r & \approx 101.43
\end{aligned}
$$

$$
\begin{gathered}
\frac{2.5}{\sin x}=\frac{101.43}{\sin 125} \\
x \approx 12
\end{gathered}
$$

PTS: 6
REF: fall0939a2 STA: A2.A. 73
TOP: Vectors
535 ANS:

$\frac{27}{\sin 75}=\frac{F_{1}}{\sin 60} . \frac{27}{\sin 75}=\frac{F_{2}}{\sin 45}$.

$$
F_{1} \approx 24 \quad F_{2} \approx 20
$$

PTS: 4
REF: 061238a2 STA: A2.A. 73 TOP: Vectors
536 ANS:

PTS: 6 REF: 061439a2 STA: A2.A. 73 TOP: Vectors
ANS: 2
$x^{2}-2 x+y^{2}+6 y=-3$
$x^{2}-2 x+1+y^{2}+6 y+9=-3+1+9$
$(x-1)^{2}+(y+3)^{2}=7$
PTS: 2 REF: 061016a2 STA: A2.A. 47 TOP: Equations of Circles

538 ANS: 3

$$
\begin{aligned}
x^{2}+y^{2}-16 x+6 y+53 & =0 \\
x^{2}-16 x+64+y^{2}+6 y+9 & =-53+64+9 \\
(x-8)^{2}+(y+3)^{2} & =20
\end{aligned}
$$

PTS: 2 REF: 011415a2 STA: A2.A. 47 TOP: Equations of Circles
539 ANS: 4
$r=\sqrt{(6-3)^{2}+(5-(-4))^{2}}=\sqrt{9+81}=\sqrt{90}$
PTS: 2 REF: 061415a2 STA: A2.A. 48 TOP: Equations of Circles
540 ANS: 3
$r=\sqrt{(6-2)^{2}+(2--3)^{2}}=\sqrt{16+25}=\sqrt{41}$
PTS: 2 REF: 081516a2 STA: A2.A. 48 TOP: Equations of Circles
541 ANS:
$(x+3)^{2}+(y-4)^{2}=25$
PTS: 2 REF: fall0929a2 STA: A2.A. 49 TOP: Writing Equations of Circles
542 ANS:
$(x+5)^{2}+(y-3)^{2}=32$
PTS: 2 REF: 081033a2 STA: A2.A.49 TOP: Writing Equations of Circles
543 ANS: 2
PTS: 2
REF: 011126a2 STA: A2.A. 49
TOP: Equations of Circles
544 ANS:
$r=\sqrt{2^{2}+3^{2}}=\sqrt{13} .(x+5)^{2}+(y-2)^{2}=13$
PTS: 2 REF: 011234a2 STA: A2.A. 49 TOP: Writing Equations of Circles
545 ANS: 4 PTS: 2 REF: 061318a2 STA: A2.A. 49
TOP: Equations of Circles
546 ANS: 4 PTS: 2 REF: 011513a2 STA: A2.A. 49
TOP: Equations of Circles

