JMAP
 REGENTS BY PERFORMANCE INDICATOR: TOPIC

NY Geometry Regents Exam Questions from Fall 2008 to August 2015 Sorted by PI: Topic www.jmap.org

TABLE OF CONTENTS

TOPIC	P.I.: SUBTOPIC QUESTION NUMBER
LINEAR EQUATIONS	G.G.62-65: Parallel and Perpendicular Lines .. G.G.68: Perpendicular Bisector..........
SYSTEMS	G.G.70: Quadratic-Linear Systems..65-83
TOOLS OF GEOMETRY	
ANGLES	G.G.35: Parallel Lines and Transversals...............................233-245
TRIANGLES	
POLYGONS	
CONICS	
MEASURING IN THE PLANE AND SPACE	G.G.11-16: Volume, Surface Area and Lateral Area...611-641 G.G.45, 47: Similarity
TRANSFORMATIONS	
LOGIC	

Geometry Regents Exam Questions by Performance Indicator: Topic

LINEAR EQUATIONS
G.G.62: PARALLEL AND PERPENDICULAR LINES

1 What is the slope of a line perpendicular to the line whose equation is $5 x+3 y=8$?
$1 \frac{5}{3}$
$2 \quad \frac{3}{5}$
$3-\frac{3}{5}$
$4-\frac{5}{3}$

2 What is the slope of a line perpendicular to the line whose equation is $y=-\frac{2}{3} x-5$?
$1-\frac{3}{2}$
$2-\frac{2}{3}$
$3 \quad \frac{2}{3}$
$4 \quad \frac{3}{2}$

3 What is the slope of a line that is perpendicular to the line whose equation is $3 x+4 y=12$?
$1 \frac{3}{4}$
$2-\frac{3}{4}$
$3 \quad \frac{4}{3}$
$4-\frac{4}{3}$

4 What is the slope of a line perpendicular to the line whose equation is $y=3 x+4$?
$1 \frac{1}{3}$
$2-\frac{1}{3}$
3 3
$4-3$

5 What is the slope of a line perpendicular to the line whose equation is $2 y=-6 x+8$?
1 -3
$2 \frac{1}{6}$
$3 \quad \frac{1}{3}$
$4-6$

6 Find the slope of a line perpendicular to the line whose equation is $2 y-6 x=4$.

7 What is the slope of a line that is perpendicular to the line whose equation is $3 x+5 y=4$?
$1-\frac{3}{5}$
$2 \quad \frac{3}{5}$
$3-\frac{5}{3}$
$4 \quad \frac{5}{3}$

8 What is the slope of a line that is perpendicular to the line represented by the equation $x+2 y=3$?
1 -2
22
$3-\frac{1}{2}$
$4 \quad \frac{1}{2}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

9 What is the slope of a line perpendicular to the line whose equation is $20 x-2 y=6$?
1 -10
$2-\frac{1}{10}$
310
$4 \frac{1}{10}$

10 The slope of line ℓ is $-\frac{1}{3}$. What is an equation of a line that is perpendicular to line ℓ ?
$1 \quad y+2=\frac{1}{3} x$
$2-2 x+6=6 y$
$3 \quad 9 x-3 y=27$
$4 \quad 3 x+y=0$

11 What is the slope of the line perpendicular to the line represented by the equation $2 x+4 y=12$?
1 -2
22
$3-\frac{1}{2}$
$4 \quad \frac{1}{2}$

12 The equation of a line is $3 y+2 x=12$. What is the slope of the line perpendicular to the given line?
$1 \frac{2}{3}$
$2 \quad \frac{3}{2}$
$3-\frac{2}{3}$
$4-\frac{3}{2}$

13 What is the slope of a line perpendicular to the line whose equation is $3 x-7 y+14=0$?
$1 \quad \frac{3}{7}$
$2-\frac{7}{3}$
3 3
$4-\frac{1}{3}$

14 The slope of $\overline{Q R}$ is $\frac{x-1}{4}$ and the slope of $\overline{S T}$ is $\frac{8}{3}$.
If $\overline{Q R} \perp \overline{S T}$, determine and state the value of x.
G.G.63: PARALLEL AND PERPENDICULAR LINES

15 The lines $3 y+1=6 x+4$ and $2 y+1=x-9$ are
1 parallel
2 perpendicular
3 the same line
4 neither parallel nor perpendicular

16 Which equation represents a line perpendicular to the line whose equation is $2 x+3 y=12$?
$16 y=-4 x+12$
$2 \quad 2 y=3 x+6$
$32 y=-3 x+6$
$43 y=-2 x+12$

17 What is the equation of a line that is parallel to the line whose equation is $y=x+2$?

$$
\begin{array}{ll}
1 & x+y=5 \\
2 & 2 x+y=-2 \\
3 & y-x=-1 \\
4 & y-2 x=3
\end{array}
$$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

18 Which equation represents a line parallel to the line whose equation is $2 y-5 x=10$?
$15 y-2 x=25$
$25 y+2 x=10$
$3 \quad 4 y-10 x=12$
$42 y+10 x=8$

19 Two lines are represented by the equations
$-\frac{1}{2} y=6 x+10$ and $y=m x$. For which value of m will the lines be parallel?
1 -12
2 -3
3 3
$4 \quad 12$

20 The lines represented by the equations $y+\frac{1}{2} x=4$ and $3 x+6 y=12$ are
1 the same line
2 parallel
3 perpendicular
4 neither parallel nor perpendicular

21 The two lines represented by the equations below are graphed on a coordinate plane.

$$
\begin{gathered}
x+6 y=12 \\
3(x-2)=-y-4
\end{gathered}
$$

Which statement best describes the two lines?
1 The lines are parallel.
2 The lines are the same line.
3 The lines are perpendicular.
4 The lines intersect at an angle other than 90°.

22 The equation of line k is $y=\frac{1}{3} x-2$. The equation of line m is $-2 x+6 y=18$. Lines k and m are
1 parallel
2 perpendicular
3 the same line
4 neither parallel nor perpendicular

23 Determine whether the two lines represented by the equations $y=2 x+3$ and $2 y+x=6$ are parallel,
perpendicular, or neither. Justify your response.

24 Two lines are represented by the equations $x+2 y=4$ and $4 y-2 x=12$. Determine whether these lines are parallel, perpendicular, or neither. Justify your answer.

25 Which equation represents a line that is parallel to the line whose equation is $3 x-2 y=7$?
$1 y=-\frac{3}{2} x+5$
$2 y=-\frac{2}{3} x+4$
$3 y=\frac{3}{2} x-5$
$4 \quad y=\frac{2}{3} x-4$

26 Points $A(5,3)$ and $B(7,6)$ lie on $\overleftrightarrow{A B}$. Points $C(6,4)$ and $D(9,0)$ lie on $\overleftrightarrow{C D}$. Which statement is true?
$1 \overleftrightarrow{A B} \| \overleftrightarrow{C D}$
$2 \overleftrightarrow{A B} \perp \overleftrightarrow{C D}$
$3 \overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ are the same line.
$4 \overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ intersect, but are not perpendicular.

27 A student wrote the following equations:

$$
\begin{aligned}
& 3 y+6=2 x \\
& 2 y-3 x=6
\end{aligned}
$$

The lines represented by these equations are
1 parallel
2 the same line
3 perpendicular
4 intersecting, but not perpendicular

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

28 State whether the lines represented by the equations $y=\frac{1}{2} x-1$ and $y+4=-\frac{1}{2}(x-2)$ are parallel, perpendicular, or neither. Explain your answer.

29 The equations of lines k, p, and m are given below:

$$
\begin{aligned}
& k: x+2 y=6 \\
& p: 6 x+3 y=12 \\
& m:-x+2 y=10
\end{aligned}
$$

Which statement is true?

1	$p \perp m$	
2	$m \perp k$	
3	$k \\| p$	
4	$m \\| k$	

30 The lines represented by the equations $4 x+6 y=6$ and $y=\frac{2}{3} x-1$ are
1 parallel
2 the same line
3 perpendicular
4 intersecting, but not perpendicular

31 The equations of lines k, m, and n are given below.

$$
\begin{aligned}
& k: 3 y+6=2 x \\
& m: 3 y+2 x+6=0 \\
& n: 2 y=3 x+6
\end{aligned}
$$

Which statement is true?

1	$k \\| m$
2	$n \\| m$
3	$m \perp k$
4	$m \perp n$

G.G.64: PARALLEL AND PERPENDICULAR LINES

32 What is an equation of the line that passes through the point $(-2,5)$ and is perpendicular to the line whose equation is $y=\frac{1}{2} x+5$?
$1 y=2 x+1$
$2 \quad y=-2 x+1$
$3 \quad y=2 x+9$
$4 y=-2 x-9$

33 What is an equation of the line that contains the point $(3,-1)$ and is perpendicular to the line whose equation is $y=-3 x+2$?
$1 \quad y=-3 x+8$
$2 y=-3 x$
$3 y=\frac{1}{3} x$
$4 \quad y=\frac{1}{3} x-2$

34 Find an equation of the line passing through the point $(6,5)$ and perpendicular to the line whose equation is $2 y+3 x=6$.

35 What is an equation of the line that is perpendicular to the line whose equation is $y=\frac{3}{5} x-2$ and that passes through the point $(3,-6)$?
$1 y=\frac{5}{3} x-11$
$2 y=-\frac{5}{3} x+11$
$3 y=-\frac{5}{3} x-1$
$4 \quad y=\frac{5}{3} x+1$

36 What is the equation of the line that passes through the point $(-9,6)$ and is perpendicular to the line $y=3 x-5$?
$1 \quad y=3 x+21$
$2 y=-\frac{1}{3} x-3$
$3 y=3 x+33$
$4 \quad y=-\frac{1}{3} x+3$

37 Which equation represents the line that is perpendicular to $2 y=x+2$ and passes through the point (4,3)?
$1 \quad y=\frac{1}{2} x-5$
$2 y=\frac{1}{2} x+1$
$3 y=-2 x+11$
$4 y=-2 x-5$

38 The equation of a line is $y=\frac{2}{3} x+5$. What is an equation of the line that is perpendicular to the given line and that passes through the point $(4,2)$?
$1 \quad y=\frac{2}{3} x-\frac{2}{3}$
$2 y=\frac{3}{2} x-4$
$3 y=-\frac{3}{2} x+7$
$4 \quad y=-\frac{3}{2} x+8$

39 What is an equation of the line that passes through $(-9,12)$ and is perpendicular to the line whose equation is $y=\frac{1}{3} x+6$?
$1 \quad y=\frac{1}{3} x+15$
$2 y=-3 x-15$
$3 y=\frac{1}{3} x-13$
$4 y=-3 x+27$

40 What is an equation of the line that passes through the point $(2,4)$ and is perpendicular to the line whose equation is $3 y=6 x+3$?
$1 y=-\frac{1}{2} x+5$
$2 y=-\frac{1}{2} x+4$
$3 \quad y=2 x-6$
$4 y=2 x$

41 Write an equation of the line that is perpendicular to the line whose equation is $2 y=3 x+12$ and that passes through the origin.

G.G.65: PARALLEL AND PERPENDICULAR LINES

42 What is the equation of a line that passes through the point $(-3,-11)$ and is parallel to the line whose equation is $2 x-y=4$?
$1 \quad y=2 x+5$
$2 y=2 x-5$
$3 y=\frac{1}{2} x+\frac{25}{2}$
$4 \quad y=-\frac{1}{2} x-\frac{25}{2}$

43 Find an equation of the line passing through the point $(5,4)$ and parallel to the line whose equation is $2 x+y=3$.

44 Write an equation of the line that passes through the point $(6,-5)$ and is parallel to the line whose equation is $2 x-3 y=11$.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

45 What is an equation of the line that passes through the point $(7,3)$ and is parallel to the line $4 x+2 y=10$?
$1 y=\frac{1}{2} x-\frac{1}{2}$
$2 y=-\frac{1}{2} x+\frac{13}{2}$
$3 y=2 x-11$
$4 y=-2 x+17$

46 What is an equation of the line that passes through the point $(-2,3)$ and is parallel to the line whose equation is $y=\frac{3}{2} x-4$?
$1 y=\frac{-2}{3} x$
$2 y=\frac{-2}{3} x+\frac{5}{3}$
$3 y=\frac{3}{2} x$
$4 \quad y=\frac{3}{2} x+6$

47 Which line is parallel to the line whose equation is $4 x+3 y=7$ and also passes through the point $(-5,2)$?
$1 \quad 4 x+3 y=-26$
$2 \quad 4 x+3 y=-14$
$3 \quad 3 x+4 y=-7$
$4 \quad 3 x+4 y=14$

48 Which equation represents the line parallel to the line whose equation is $4 x+2 y=14$ and passing through the point $(2,2)$?
$1 \quad y=-2 x$
$2 y=-2 x+6$
$3 y=\frac{1}{2} x$
$4 \quad y=\frac{1}{2} x+1$

49 What is the equation of a line passing through $(2,-1)$ and parallel to the line represented by the equation $y=2 x+1$?
$1 y=-\frac{1}{2} x$
$2 y=-\frac{1}{2} x+1$
$3 y=2 x-5$
$4 y=2 x-1$

50 An equation of the line that passes through $(2,-1)$ and is parallel to the line $2 y+3 x=8$ is
$1 \quad y=\frac{3}{2} x-4$
$2 y=\frac{3}{2} x+4$
$3 y=-\frac{3}{2} x-2$
$4 y=-\frac{3}{2} x+2$

51 Which equation represents a line that is parallel to the line whose equation is $y=\frac{3}{2} x-3$ and passes through the point $(1,2)$?
$1 \quad y=\frac{3}{2} x+\frac{1}{2}$
$2 y=\frac{2}{3} x+\frac{4}{3}$
$3 y=\frac{3}{2} x-2$
$4 \quad y=-\frac{2}{3} x+\frac{8}{3}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

52 What is the equation of a line passing through the point $(6,1)$ and parallel to the line whose equation is $3 x=2 y+4$?
$1 \quad y=-\frac{2}{3} x+5$
$2 y=-\frac{2}{3} x-3$
$3 y=\frac{3}{2} x-8$
$4 \quad y=\frac{3}{2} x-5$

53 Line ℓ passes through the point $(5,3)$ and is parallel to line k whose equation is $5 x+y=6$. An equation of line ℓ is
$1 \quad y=\frac{1}{5} x+2$
$2 y=-5 x+28$
$3 y=\frac{1}{5} x-2$
$4 y=-5 x-28$

54 What is the equation of a line passing through the point ($4,-1$) and parallel to the line whose equation is $2 y-x=8$?
$1 \quad y=\frac{1}{2} x-3$
$2 y=\frac{1}{2} x-1$
$3 y=-2 x+7$
$4 \quad y=-2 x+2$

55 Line m and point P are shown in the graph below.

Which equation represents the line passing through P and parallel to line m ?
$1 \quad y-3=2(x+2)$
$2 y+2=2(x-3)$
$3 y-3=-\frac{1}{2}(x+2)$
$4 y+2=-\frac{1}{2}(x-3)$

56 Write an equation of a line that is parallel to the line whose equation is $3 y=x+6$ and that passes through the point $(-3,4)$.

57 What is an equation of the line that passes through the point $(4,5)$ and is parallel to the line whose equation is $y=\frac{2}{3} x-4$?
$12 y+3 x=11$
$22 y+3 x=22$
$3 \quad 3 y-2 x=2$
$4 \quad 3 y-2 x=7$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

58 What is an equation of the line that passes through the point $(-2,1)$ and is parallel to the line whose equation is $4 x-2 y=8$?
$1 \quad y=\frac{1}{2} x+2$
$2 y=\frac{1}{2} x-2$
$3 y=2 x+5$
$4 \quad y=2 x-5$

G.G.68: PERPENDICULAR BISECTOR

59 Write an equation of the perpendicular bisector of the line segment whose endpoints are $(-1,1)$ and $(7,-5)$. [The use of the grid below is optional]

60 Which equation represents the perpendicular bisector of $\overline{A B}$ whose endpoints are $A(8,2)$ and $B(0,6)$?
$1 \quad y=2 x-4$
$2 y=-\frac{1}{2} x+2$
$3 y=-\frac{1}{2} x+6$
$4 y=2 x-12$

61 The coordinates of the endpoints of $\overline{A B}$ are $A(0,0)$ and $B(0,6)$. The equation of the perpendicular bisector of $\overline{A B}$ is
$1 x=0$
$2 x=3$
$3 y=0$
$4 y=3$

62 Write an equation of the line that is the perpendicular bisector of the line segment having endpoints $(3,-1)$ and $(3,5)$. [The use of the grid below is optional]

63 Triangle $A B C$ has vertices $A(0,0), B(6,8)$, and $C(8,4)$. Which equation represents the perpendicular bisector of $\overline{B C}$?
$1 \quad y=2 x-6$
$2 y=-2 x+4$
$3 y=\frac{1}{2} x+\frac{5}{2}$
$4 \quad y=-\frac{1}{2} x+\frac{19}{2}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

64 If $\overline{A B}$ is defined by the endpoints $A(4,2)$ and $B(8,6)$, write an equation of the line that is the perpendicular bisector of $\overline{A B}$.

SYSTEMS

G.G.70: QUADRATIC-LINEAR SYSTEMS

65 Which graph could be used to find the solution to the following system of equations?

$$
\begin{gathered}
y=-x+2 \\
y=x^{2}
\end{gathered}
$$

1

2

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

66 Given the system of equations: $y=x^{2}-4 x$

$$
x=4
$$

The number of points of intersection is
11
22
33
40

67 Given the equations: $y=x^{2}-6 x+10$

$$
y+x=4
$$

What is the solution to the given system of equations?
$1(2,3)$
$2(3,2)$
$3(2,2)$ and $(1,3)$
$4(2,2)$ and $(3,1)$

68 On the set of axes below, solve the following system of equations graphically for all values of x and y.

$$
\begin{gathered}
y=(x-2)^{2}+4 \\
4 x+2 y=14
\end{gathered}
$$

69 Given: $y=\frac{1}{4} x-3$

$$
y=x^{2}+8 x+12
$$

In which quadrant will the graphs of the given equations intersect?
1 I
2 II
3 III
4 IV

70 What is the solution of the following system of equations?

$$
\begin{aligned}
& y=(x+3)^{2}-4 \\
& y=2 x+5
\end{aligned}
$$

1 (0,-4)
$2(-4,0)$
3 ($-4,-3$) and $(0,5)$
$4(-3,-4)$ and $(5,0)$

71 Solve the following system of equations graphically.

$$
\begin{gathered}
2 x^{2}-4 x=y+1 \\
x+y=1
\end{gathered}
$$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

72 When solved graphically, what is the solution to the following system of equations?

$$
\begin{gathered}
y=x^{2}-4 x+6 \\
y=x+2
\end{gathered}
$$

$1(1,4)$
$2(4,6)$
$3(1,3)$ and $(4,6)$
$4(3,1)$ and $(6,4)$

73 On the set of axes below, solve the system of equations graphically and state the coordinates of all points in the solution.

$$
\begin{gathered}
y=(x-2)^{2}-3 \\
2 y+16=4 x
\end{gathered}
$$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

76 Which graph could be used to find the solution to the following system of equations?

$$
\begin{gathered}
y=(x+3)^{2}-1 \\
x+y=2
\end{gathered}
$$

1

2

3

77 When the system of equations $y+2=(x-4)^{2}$ and $2 x+y-6=0$ is solved graphically, the solution is
$1 \quad(-4,-2)$ and $(-2,2)$
$2(4,-2)$ and $(2,2)$
$3(-4,2)$ and $(-6,6)$
$4(4,2)$ and $(6,6)$

78 The solution of the system of equations $y=x^{2}-2$ and $y=x$ is
$1(1,1)$ and $(-2,-2)$
$2(2,2)$ and $(-1,-1)$
$3(1,1)$ and $(2,2)$
$4(-2,-2)$ and $(-1,-1)$

79 When the system of equations $y+2 x=x^{2}$ and $y=x$ is graphed on a set of axes, what is the total number of points of intersection?
11
22
3 3
40

80 What is the solution of the system of equations $y-x=5$ and $y=x^{2}+5$?
$1(0,5)$ and $(1,6)$
$2(0,5)$ and $(-1,6)$
$3(2,9)$ and $(-1,4)$
$4(-2,9)$ and $(-1,4)$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

81 What is the solution of the system of equations graphed below?

$$
\begin{gathered}
y=2 x+1 \\
y=x^{2}+2 x-3
\end{gathered}
$$

1 (0,-3)
$2(-1,-4)$
3 ($-3,0$) and $(1,0)$
$4(-2,-3)$ and $(2,5)$

82 Solve the following system of equations graphically. State the coordinates of all points in the solution.

$$
\begin{aligned}
y+4 x & =x^{2}+5 \\
x+y & =5
\end{aligned}
$$

83 The equations $y=2 x+3$ and $y=-x^{2}-x+1$ are graphed on the same set of axes. The coordinates of a point in the solution of this system of equations are
$1(0,1)$
$2(1,5)$
$3(-1,-2)$
$4 \quad(-2,-1)$

TOOLS OF GEOMETRY
G.G.66: MIDPOINT

84 Line segment $A B$ has endpoints $A(2,-3)$ and
$B(-4,6)$. What are the coordinates of the midpoint of $\overline{A B}$?
$1(-2,3)$
$2\left(-1,1 \frac{1}{2}\right)$
$3 \quad(-1,3)$
$4 \quad\left(3,4 \frac{1}{2}\right)$

85 Square $L M N O$ is shown in the diagram below.

What are the coordinates of the midpoint of diagonal $\overline{L N}$?
$1 \quad\left(4 \frac{1}{2},-2 \frac{1}{2}\right)$
$2\left(-3 \frac{1}{2}, 3 \frac{1}{2}\right)$
$3\left(-2 \frac{1}{2}, 3 \frac{1}{2}\right)$
$4\left(-2 \frac{1}{2}, 4 \frac{1}{2}\right)$

86 The endpoints of $\overline{C D}$ are $C(-2,-4)$ and $D(6,2)$.
What are the coordinates of the midpoint of $\overline{C D}$?
$1(2,3)$
$2(2,-1)$
$3(4,-2)$
$4(4,3)$

87 In the diagram below of circle $C, \overline{Q R}$ is a diameter, and $Q(1,8)$ and $C(3.5,2)$ are points on a coordinate plane. Find and state the coordinates of point R.

88 If a line segment has endpoints $A(3 x+5,3 y)$ and $B(x-1,-y)$, what are the coordinates of the midpoint of $\overline{A B}$?
$1(x+3,2 y)$
$2(2 x+2, y)$
$3(2 x+3, y)$
$4(4 x+4,2 y)$

89 A line segment has endpoints $A(7,-1)$ and $B(-3,3)$.
What are the coordinates of the midpoint of $\overline{A B}$?
$1(1,2)$
$2(2,1)$
$3 \quad(-5,2)$
$4(5,-2)$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

90 In circle O, diameter $\overline{R S}$ has endpoints $R(3 a, 2 b-1)$ and $S(a-6,4 b+5)$. Find the coordinates of point O, in terms of a and b. Express your answer in simplest form.

91 Segment $A B$ is the diameter of circle M. The coordinates of A are $(-4,3)$. The coordinates of M are $(1,5)$. What are the coordinates of B ?
$1(6,7)$
$2(5,8)$
$3(-3,8)$
$4(-5,2)$

92 Point M is the midpoint of $\overline{A B}$. If the coordinates of A are $(-3,6)$ and the coordinates of M are $(-5,2)$, what are the coordinates of B ?
$1(1,2)$
$2(7,10)$
$3 \quad(-4,4)$
$4(-7,-2)$

93 Line segment $A B$ is a diameter of circle O whose center has coordinates $(6,8)$. What are the coordinates of point B if the coordinates of point A are $(4,2)$?
$1(1,3)$
$2(5,5)$
$3(8,14)$
$4(10,10)$

94 What are the coordinates of the center of a circle if the endpoints of its diameter are $A(8,-4)$ and $B(-3,2)$?
$1(2.5,1)$
$2(2.5,-1)$
$3(5.5,-3)$
$4(5.5,3)$

95 The midpoint of $\overline{A B}$ is $M(4,2)$. If the coordinates of A are $(6,-4)$, what are the coordinates of B ?
$1(1,-3)$
$2(2,8)$
$3(5,-1)$
$4(14,0)$

96 In the diagram below, quadrilateral $A B C D$ has vertices $A(-5,1), B(6,-1), C(3,5)$, and $D(-2,7)$.

What are the coordinates of the midpoint of diagonal $\overline{A C}$?
$1(-1,3)$
$2(1,3)$
$3(1,4)$
$4(2,3)$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

97 In the diagram below, parallelogram $A B C D$ has vertices $A(1,3), B(5,7), C(10,7)$, and $D(6,3)$.
Diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E.

(Not drawn to scale)
What are the coordinates of point E ?
1 (0.5,2)
$2(4.5,2)$
$3(5.5,5)$
4 (7.5,7)

98 What are the coordinates of the midpoint of the line segment with endpoints $(2,-5)$ and $(8,3)$?
$1(3,-4)$
$2(3,-1)$
$3(5,-4)$
$4(5,-1)$

99 Point M is the midpoint of $\overline{A B}$. If the coordinates of M are $(2,8)$ and the coordinates of A are $(10,12)$, what are the coordinates of B ?
$1(6,10)$
$2(-6,4)$
$3(-8,-4)$
$4(18,16)$

G.G.67: DISTANCE

100 The endpoints of $\overline{P Q}$ are $P(-3,1)$ and $Q(4,25)$.
Find the length of $\overline{P Q}$.

101 If the endpoints of $\overline{A B}$ are $A(-4,5)$ and $B(2,-5)$, what is the length of $\overline{A B}$?
$12 \sqrt{34}$
22
$3 \sqrt{61}$
48

102 What is the distance between the points $(-3,2)$ and $(1,0)$?
$1 \quad 2 \sqrt{2}$
$2 \quad 2 \sqrt{3}$
$3 \quad 5 \sqrt{2}$
$4 \quad 2 \sqrt{5}$

103 What is the length, to the nearest tenth, of the line segment joining the points $(-4,2)$ and $(146,52)$?
$1 \quad 141.4$
$2 \quad 150.5$
$3 \quad 151.9$
4158.1

104 What is the length of the line segment with endpoints $(-6,4)$ and $(2,-5)$?
$1 \sqrt{13}$
$2 \quad \sqrt{17}$
$3 \sqrt{72}$
$4 \sqrt{145}$

105 In circle O, a diameter has endpoints $(-5,4)$ and $(3,-6)$. What is the length of the diameter?
$1 \sqrt{2}$
$2 \quad 2 \sqrt{2}$
$3 \sqrt{10}$
$4 \quad 2 \sqrt{41}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

106 What is the length of the line segment whose endpoints are $A(-1,9)$ and $B(7,4)$?
$1 \sqrt{61}$
$2 \sqrt{89}$
$3 \sqrt{205}$
$4 \sqrt{233}$

107 What is the length of the line segment whose
endpoints are ($1,-4$) and (9,2)?
15
$2 \quad 2 \sqrt{17}$
310
$4 \quad 2 \sqrt{26}$

108 A line segment has endpoints $(4,7)$ and $(1,11)$.
What is the length of the segment?
15
27
316
$4 \quad 25$

109 What is the length of $\overline{A B}$ with endpoints $A(-1,0)$ and $B(4,-3)$?
$1 \sqrt{6}$
$2 \sqrt{18}$
$3 \sqrt{34}$
$4 \sqrt{50}$

110 The coordinates of the endpoints of $\overline{F G}$ are $(-4,3)$ and $(2,5)$. Find the length of $\overline{F G}$ in simplest radical form.

111 Find, in simplest radical form, the length of the line segment with endpoints whose coordinates are $(-1,4)$ and $(3,-2)$.

112 The endpoints of $\overline{A B}$ are $A(3,-4)$ and $B(7,2)$. Determine and state the length of $\overline{A B}$ in simplest radical form.

113 What is the length of $\overline{R S}$ with $R(-2,3)$ and $S(4,5)$?
$1 \quad 2 \sqrt{2}$
240
$3 \quad 2 \sqrt{10}$
$4 \quad 2 \sqrt{17}$

114 Line segment $A B$ has endpoint A located at the origin. Line segment $A B$ is longest when the coordinates of B are
$1(3,7)$
2 (2,-8)
$3(-6,4)$
$4(-5,-5)$

115 What is the length of a line segment whose endpoints have coordinates $(5,3)$ and $(1,6)$?
15
$2 \quad 25$
$3 \quad \sqrt{17}$
$4 \sqrt{29}$

116 The coordinates of the endpoints of $\overline{C D}$ are $C(3,8)$ and $D(6,-1)$. Find the length of $\overline{C D}$ in simplest radical form.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.1: PLANES

117 Lines k_{1} and k_{2} intersect at point E. Line m is perpendicular to lines k_{1} and k_{2} at point E.

Which statement is always true?
1 Lines k_{1} and k_{2} are perpendicular.
2 Line m is parallel to the plane determined by lines k_{1} and k_{2}.
3 Line m is perpendicular to the plane determined by lines k_{1} and k_{2}.
4 Line m is coplanar with lines k_{1} and k_{2}.

118 Lines j and k intersect at point P. Line m is drawn so that it is perpendicular to lines j and k at point P. Which statement is correct?
1 Lines j and k are in perpendicular planes.
2 Line m is in the same plane as lines j and k.
3 Line m is parallel to the plane containing lines j and k.
4 Line m is perpendicular to the plane containing lines j and k.

119 In plane \mathscr{P}, lines m and n intersect at point A. If line k is perpendicular to line m and line n at point A, then line k is
1 contained in plane \mathscr{P}
2 parallel to plane \mathscr{P}
3 perpendicular to plane \mathscr{P}
4 skew to plane \mathscr{P}

120 Lines m and n intersect at point A. Line k is perpendicular to both lines m and n at point A. Which statement must be true?
1 Lines m, n, and k are in the same plane.
2 Lines m and n are in two different planes.
3 Lines m and n are perpendicular to each other.
4 Line k is perpendicular to the plane containing lines m and n.

121 Lines a and b intersect at point P. Line c passes through P and is perpendicular to the plane containing lines a and b. Which statement must be true?
1 Lines a, b, and c are coplanar.
2 Line a is perpendicular to line b.
3 Line c is perpendicular to both line a and line b.

4 Line c is perpendicular to line a or line b, but not both.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

122 As shown in the diagram below, $\overline{F D}$ and $\overline{C B}$ intersect at point A and $\overline{E T}$ is perpendicular to both $\overline{F D}$ and $\overline{C B}$ at A.

Which statement is not true?
$1 \overline{E T}$ is perpendicular to plane $B A D$.
$2 \overline{E T}$ is perpendicular to plane $F A B$.
$3 \overline{E T}$ is perpendicular to plane $C A D$.
$4 \overline{E T}$ is perpendicular to plane BAT.

123 In the prism shown below, $\overline{A D} \perp \overline{A E}$ and $\overline{A D} \perp \overline{A B}$.

Which plane is perpendicular to $\overline{A D}$?
1 HEA
2 BAD
3 EAB
4 EHG

G.G.2: PLANES

124 Point P is on line m. What is the total number of planes that are perpendicular to line m and pass through point P ?
$1 \quad 1$
22
30
4 infinite

125 Point P lies on line m. Point P is also included in distinct planes Q, R, S, and \mathcal{T}. At most, how many of these planes could be perpendicular to line m ?
11
22
$3 \quad 3$
$4 \quad 4$

126 Point A is on line m. How many distinct planes will be perpendicular to line m and pass through point A ?
1 one
2 two
3 zero
4 infinite

127 In the diagram below, point P is not on line ℓ.

How many distinct planes that contain point P are also perpendicular to line ℓ ?
11
22
30
4 an infinite amount

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.3: PLANES

128 Through a given point, P, on a plane, how many lines can be drawn that are perpendicular to that plane?
11
22
3 more than 2
4 none

129 Point A is not contained in plane \mathfrak{B}. How many lines can be drawn through point A that will be perpendicular to plane \mathscr{B} ?
1 one
2 two
3 zero
4 infinite

130 Point A lies in plane \mathscr{B}. How many lines can be drawn perpendicular to plane \mathscr{B} through point A ?
1 one
2 two
3 zero
4 infinite

131 In the diagram below, point K is in plane \mathscr{P}.

How many lines can be drawn through K, perpendicular to plane \mathscr{P} ?
11
22
30
4 an infinite number

132 Point W is located in plane \mathbb{R}. How many distinct lines passing through point W are perpendicular to plane R ?
1 one
2 two
3 zero
4 infinite

133 Point A lies on plane \mathscr{P}. How many distinct lines passing through point A are perpendicular to plane P?
11
22
30
4 infinite

G.G.4: PLANES

134 If two different lines are perpendicular to the same plane, they are
1 collinear
2 coplanar
3 congruent
4 consecutive

G.G.5: PLANES

135 If $\overleftrightarrow{A B}$ is contained in plane \mathscr{P}, and $\overleftrightarrow{A B}$ is perpendicular to plane \mathbb{R}, which statement is true?
$1 \overleftrightarrow{A B}$ is parallel to plane R
2 Plane \mathscr{P} is parallel to plane \mathbb{R}.
$3 \overleftrightarrow{A B}$ is perpendicular to plane \mathscr{P}.
4 Plane \mathscr{P} is perpendicular to plane \mathbb{R}.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

136 As shown in the diagram below, $\overline{F J}$ is contained in plane $\mathcal{R}, \overline{B C}$ and $\overline{D E}$ are contained in plane S, and $\overline{F J}, \overline{B C}$, and $\overline{D E}$ intersect at A.

Which fact is sufficient to show that planes \mathbb{R} and S are perpendicular?
$1 \quad \overline{F A} \perp \overline{D E}$
$2 \overline{A D} \perp \overline{A F}$
$3 \overline{B C} \perp \overline{F J}$
$4 \overline{D E} \perp \overline{B C}$

G.G.7: PLANES

137 In the diagram below, line k is perpendicular to plane \mathscr{P} at point T.

Which statement is true?
1 Any point in plane \mathscr{P} also will be on line k.
2 Only one line in plane \mathscr{P} will intersect line k.
3 All planes that intersect plane \mathscr{P} will pass through T.
4 Any plane containing line k is perpendicular to plane \mathscr{P}.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

138 In the diagram below, $\overleftrightarrow{A B}$ is perpendicular to plane $A E F G$.

Which plane must be perpendicular to plane
AEFG?
1 ABCE
2 BCDH
3 CDFE
4 HDFG

G.G.8: PLANES

139 In three-dimensional space, two planes are parallel and a third plane intersects both of the parallel
planes. The intersection of the planes is a
1 plane
2 point
3 pair of parallel lines
4 pair of intersecting lines

140 Plane \mathcal{A} is parallel to plane \mathcal{B}. Plane C intersects plane \mathcal{A} in line m and intersects plane \mathscr{B} in line n. Lines m and n are
1 intersecting
2 parallel
3 perpendicular
4 skew

G.G.9: PLANES

141 Line k is drawn so that it is perpendicular to two distinct planes, P and R. What must be true about planes P and R ?
$1 \quad$ Planes P and R are skew.
2 Planes P and R are parallel.
$3 \quad$ Planes P and R are perpendicular.
$4 \quad$ Plane P intersects plane R but is not perpendicular to plane R.

142 A support beam between the floor and ceiling of a house forms a 90° angle with the floor. The builder wants to make sure that the floor and ceiling are parallel. Which angle should the support beam form with the ceiling?
145°
260°
390°
4180°

143 Plane \mathbb{R} is perpendicular to line k and plane \mathscr{D} is perpendicular to line k. Which statement is correct?
1 Plane \mathbb{R} is perpendicular to plane \mathscr{D}.
2 Plane \mathbb{R} is parallel to plane \mathscr{D}.
3 Plane \mathbb{R} intersects plane \mathscr{D}.
4 Plane \mathbb{R} bisects plane \mathscr{D}.

144 If two distinct planes, \mathcal{A} and \mathscr{B}, are perpendicular to line c, then which statement is true?
$1 \quad$ Planes \mathcal{A} and \mathscr{B} are parallel to each other.
2 Planes \mathcal{A} and \mathscr{B} are perpendicular to each other.
3 The intersection of planes \mathcal{A} and \mathcal{B} is a line parallel to line c.
4 The intersection of planes \mathcal{A} and \mathcal{B} is a line perpendicular to line c.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

145 As shown in the diagram below, $\overleftrightarrow{E F}$ intersects planes \mathscr{P}, Q, and \mathbb{R}.

If $\overleftrightarrow{E F}$ is perpendicular to planes \mathscr{P} and \mathbb{R}, which statement must be true?
1 Plane \mathscr{P} is perpendicular to plane Q.
2 Plane \mathbb{R} is perpendicular to plane \mathscr{P}.
3 Plane \mathscr{P} is parallel to plane Q.
4 Plane \mathbb{R} is parallel to plane \mathscr{P}.

146 Plane \mathcal{A} and plane \mathscr{B} are two distinct planes that are both perpendicular to line ℓ. Which statement about planes \mathcal{A} and \mathscr{B} is true?
$1 \quad$ Planes \mathcal{A} and \mathscr{B} have a common edge, which forms a line.
2 Planes \mathcal{A} and \mathscr{B} are perpendicular to each other.
3 Planes \mathcal{A} and \mathcal{B} intersect each other at exactly one point.
$4 \quad$ Planes \mathcal{A} and \mathscr{B} are parallel to each other.

147 If line ℓ is perpendicular to distinct planes \mathscr{P} and Q, then planes \mathscr{P} and Q
1 are parallel
2 contain line ℓ
3 are perpendicular
4 intersect, but are not perpendicular

148 If distinct planes R and S are both perpendicular to line ℓ, which statement must always be true?
$1 \quad$ Plane R is parallel to plane S.
2 Plane R is perpendicular to plane S.
3 Planes R and S and line ℓ are all parallel.
4 The intersection of planes R and S is perpendicular to line ℓ.

149 Plane \mathscr{P} is parallel to plane Q. If plane \mathscr{P} is perpendicular to line ℓ, then plane Q
1 contains line ℓ
2 is parallel to line ℓ
3 is perpendicular to line ℓ
4 intersects, but is not perpendicular to line ℓ

G.G.10: SOLIDS

150 The figure in the diagram below is a triangular prism.

Which statement must be true?
$1 \overline{D E} \cong \overline{A B}$
$2 \overline{A D} \cong \overline{B C}$
$3 \overline{A D} \| \overline{C E}$
$4 \overline{D E} \| \overline{B C}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

151 The diagram below shows a right pentagonal prism.

Which statement is always true?
$1 \quad \overline{B C} \| \overline{E D}$
$2 \overline{F G} \| \overline{C D}$
$3 \overline{F J} \| \overline{I H}$
$4 \overline{G B} \| \overline{H C}$

152 The diagram below shows a rectangular prism.

Which pair of edges are segments of lines that are coplanar?
$1 \overline{A B}$ and $\overline{D H}$
$2 \overline{A E}$ and $\overline{D C}$
$3 \overline{B C}$ and $\overline{E H}$
$4 \quad \overline{C G}$ and $\overline{E F}$

153 The diagram below represents a rectangular solid.

Which statement must be true?
$1 \overline{E H}$ and $\overline{B C}$ are coplanar
$2 \overline{F G}$ and $\overline{A B}$ are coplanar
$3 \overline{E H}$ and $\overline{A D}$ are skew
$4 \quad \overline{F G}$ and $\overline{C G}$ are skew

154 The bases of a right triangular prism are $\triangle A B C$ and $\triangle D E F$. Angles A and D are right angles, $A B=6, A C=8$, and $A D=12$. What is the length of edge $\overline{B E}$?
$1 \quad 10$
212
314
416

155 A rectangular right prism is shown in the diagram below.

Which pair of edges are not coplanar?
$1 \quad \overline{B F}$ and $\overline{C G}$
$2 \overline{B F}$ and $\overline{D H}$
$3 E F$ and $C D$
$4 \overline{E F}$ and $\overline{B C}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

156 A rectangular prism is shown in the diagram below.

Which pair of line segments would always be both congruent and parallel?
$1 \quad \overline{A C}$ and $\overline{F B}$
$2 \overline{F B}$ and $\overline{D B}$
$3 \overline{H F}$ and $\overline{A C}$
$4 \quad \overline{D B}$ and $\overline{H F}$

157 The bases of a prism are right trapezoids, as shown in the diagram below.

Which two edges do not lie in the same plane?
$1 \quad \overline{B C}$ and $\overline{W Z}$
$2 \overline{A W}$ and $\overline{C Y}$
$3 \overline{D C}$ and $\overline{W X}$
$4 \quad \overline{B X}$ and $\overline{A B}$

158 A right rectangular prism is shown in the diagram below.

Which line segments are coplanar?
$1 \quad \overline{E F}$ and $\overline{B C}$
$2 \overline{H D}$ and $\overline{F G}$
$3 \quad \overline{G H}$ and $\overline{F B}$
$4 \overline{E A}$ and $\overline{G C}$

159 Which pair of edges is not coplanar in the cube shown below?

$1 \quad \overline{E H}$ and $\overline{C D}$
$2 \overline{A D}$ and $\overline{F G}$
$3 \overline{D H}$ and $\overline{A E}$
$4 \quad \overline{A B}$ and $\overline{E F}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.13: SOLIDS

160 The lateral faces of a regular pyramid are composed of
1 squares
2 rectangles
3 congruent right triangles
4 congruent isosceles triangles

161 As shown in the diagram below, a right pyramid has a square base, $A B C D$, and $\overline{E F}$ is the slant height.

Which statement is not true?
$1 \overline{E A} \cong \overline{E C}$
$2 \overline{E B} \cong \overline{E F}$
$3 \triangle A E B \cong \triangle B E C$
$4 \triangle C E D$ is isosceles

G.G.17: CONSTRUCTIONS

162 Using a compass and straightedge, construct the bisector of the angle shown below. [Leave all construction marks.]

163 Which illustration shows the correct construction of an angle bisector?

1

2

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

164 The diagram below shows the construction of the bisector of $\angle A B C$.

Which statement is not true?
$1 \mathrm{~m} \angle E B F=\frac{1}{2} \mathrm{~m} \angle A B C$
$2 \mathrm{~m} \angle D B F=\frac{1}{2} \mathrm{~m} \angle A B C$
$3 \mathrm{~m} \angle E B F=\mathrm{m} \angle A B C$
$4 \mathrm{~m} \angle D B F=\mathrm{m} \angle E B F$

165 Using a compass and straightedge, construct the angle bisector of $\angle A B C$ shown below. [Leave all construction marks.]

166 Based on the construction below, which statement must be true?

$1 \mathrm{~m} \angle A B D=\frac{1}{2} \mathrm{~m} \angle C B D$
$2 \mathrm{~m} \angle A B D=\mathrm{m} \angle C B D$
$3 \mathrm{~m} \angle A B D=\mathrm{m} \angle A B C$
$4 \mathrm{~m} \angle C B D=\frac{1}{2} \mathrm{~m} \angle A B D$

167 On the diagram below, use a compass and straightedge to construct the bisector of $\angle A B C$. [Leave all construction marks.]

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

A straightedge and compass were used to create the construction below. Arc $E F$ was drawn from point B, and arcs with equal radii were drawn from E and F.

Which statement is false?
$1 \mathrm{~m} \angle A B D=\mathrm{m} \angle D B C$
$2 \quad \frac{1}{2}(\mathrm{~m} \angle A B C)=\mathrm{m} \angle A B D$
$3 \quad 2(\mathrm{~m} \angle D B C)=\mathrm{m} \angle A B C$
$4 \quad 2(\mathrm{~m} \angle A B C)=\mathrm{m} \angle C B D$

169 On the diagram below, use a compass and straightedge to construct the bisector of $\angle X Y Z$. [Leave all construction marks.]

170 Using a compass and straightedge, construct the bisector of $\angle C B A$. [Leave all construction marks.]

171 As shown in the diagram below of $\triangle A B C$, a compass is used to find points D and E, equidistant from point A. Next, the compass is used to find point F, equidistant from points D and E. Finally, a straightedge is used to draw $\overrightarrow{A F}$. Then, point G, the intersection of $\overrightarrow{A F}$ and side $\overline{B C}$ of $\triangle A B C$, is labeled.

Which statement must be true?
$1 \overrightarrow{A F}$ bisects side $\overrightarrow{B C}$
$2 \overrightarrow{A F}$ bisects $\angle B A C$
$3 \overrightarrow{A F} \perp \overrightarrow{B C}$
$4 \triangle A B G \sim \triangle A C G$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

172 Using a compass and straightedge, construct the bisector of $\angle M J H$. [Leave all construction marks.]

173 Which diagram shows the construction of a 45° angle?

1

2

3

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

174 Using a compass and straightedge, construct an equilateral triangle with $\overline{A B}$ as a side. Using this triangle, construct a 30° angle with its vertex at A. [Leave all construction marks.]

$$
A \longrightarrow B
$$

175 A student used a compass and a straightedge to construct $\overline{C E}$ in $\triangle A B C$ as shown below.

Which statement must always be true for this construction?
$1 \angle C E A \cong \angle C E B$
$2 \angle A C E \cong \angle B C E$
$3 \overline{A E} \cong \overline{B E}$
$4 \overline{E C} \cong \overline{A C}$

G.G.18: CONSTRUCTIONS

176 The diagram below shows the construction of the perpendicular bisector of $\overline{A B}$.

Which statement is not true?
$1 \quad A C=C B$
$2 C B=\frac{1}{2} A B$
$3 A C=2 A B$
$4 \quad A C+C B=A B$

177 One step in a construction uses the endpoints of $\overline{A B}$ to create arcs with the same radii. The arcs intersect above and below the segment. What is the relationship of $\overline{A B}$ and the line connecting the points of intersection of these arcs?
1 collinear
2 congruent
3 parallel
4 perpendicular

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

178 Which diagram shows the construction of the perpendicular bisector of $\overline{A B}$?

1

179 Line segment $A B$ is shown in the diagram below.

Which two sets of construction marks, labeled I, II, III, and IV, are part of the construction of the perpendicular bisector of line segment $A B$?
1 I and II
2 I and III
3 II and III
4 II and IV

180 On the diagram of $\triangle A B C$ shown below, use a compass and straightedge to construct the perpendicular bisector of $\overline{A C}$. [Leave all construction marks.]

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

181 Based on the construction below, which conclusion is not always true?

$1 \quad \overline{A B} \perp \overline{C D}$
$2 A B=C D$
$3 \quad A E=E B$
$4 C E=D E$

182 Using a compass and straightedge, construct the perpendicular bisector of $A B$. [Leave all construction marks.]

183 Use a compass and straightedge to divide line segment $A B$ below into four congruent parts. [Leave all construction marks.]

184 Using a compass and straightedge, construct the perpendicular bisector of side $\overline{A R}$ in $\triangle A R T$ shown below. [Leave all construction marks.]

185 Using a compass and straightedge, locate the midpoint of $\overline{A B}$ by construction. [Leave all construction marks.]

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.19: CONSTRUCTIONS

186 The diagram below illustrates the construction of $\overleftrightarrow{P S}$ parallel to $\overleftrightarrow{R Q}$ through point P

Which statement justifies this construction?
$1 \mathrm{~m} \angle 1=\mathrm{m} \angle 2$
$2 \mathrm{~m} \angle 1=\mathrm{m} \angle 3$
$3 \quad \overline{P R} \cong \overline{R Q}$
$4 \quad \overline{P S} \cong \overline{R Q}$

187 Using a compass and straightedge, construct a line that passes through point P and is perpendicular to line m. [Leave all construction marks.]
\qquad

189 The diagram below shows the construction of a line through point P perpendicular to line m.

Which statement is demonstrated by this construction?
1 If a line is parallel to a line that is perpendicular to a third line, then the line is also perpendicular to the third line.
2 The set of points equidistant from the endpoints of a line segment is the perpendicular bisector of the segment.
3 Two lines are perpendicular if they are equidistant from a given point.
4 Two lines are perpendicular if they intersect to form a vertical line.

190 The diagram below shows the construction of $\overleftrightarrow{A B}$ through point P parallel to $\overleftrightarrow{C D}$.

Which theorem justifies this method of construction?
1 If two lines in a plane are perpendicular to a transversal at different points, then the lines are parallel.
2 If two lines in a plane are cut by a transversal to form congruent corresponding angles, then the lines are parallel.
3 If two lines in a plane are cut by a transversal to form congruent alternate interior angles, then the lines are parallel.
4 If two lines in a plane are cut by a transversal to form congruent alternate exterior angles, then the lines are parallel.

191 Using a compass and straightedge, construct a line perpendicular to $\overline{A B}$ through point P. [Leave all construction marks.]

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

192 Using a compass and straightedge, construct a line perpendicular to line ℓ through point P. [Leave all construction marks.]

193 The diagram below shows the construction of line m, parallel to line ℓ, through point P.

Which theorem was used to justify this construction?
1 If two lines are cut by a transversal and the alternate interior angles are congruent, the lines are parallel.
2 If two lines are cut by a transversal and the interior angles on the same side are supplementary, the lines are parallel.
3 If two lines are perpendicular to the same line, they are parallel.
4 If two lines are cut by a transversal and the corresponding angles are congruent, they are parallel.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

194 Which diagram illustrates a correct construction of an altitude of $\triangle A B C$?

1

2

3

4

195 Which construction of parallel lines is justified by the theorem "If two lines are cut by a transversal to form congruent alternate interior angles, then the lines are parallel"?

1

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.20: CONSTRUCTIONS

196 Using a compass and straightedge, and $\overline{A B}$ below, construct an equilateral triangle with all sides congruent to $\overline{A B}$. [Leave all construction marks.]

A B

197 Which diagram shows the construction of an equilateral triangle?

1

2

3

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

198 On the line segment below, use a compass and straightedge to construct equilateral triangle $A B C$. [Leave all construction marks.]

199 Using a compass and straightedge, on the diagram below of $\overleftrightarrow{R S}$, construct an equilateral triangle with $\overline{R S}$ as one side. [Leave all construction marks.]

200 Which diagram represents a correct construction of equilateral $\triangle A B C$, given side $\overline{A B}$?

1

3

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

201 The diagram below shows the construction of an equilateral triangle.

Which statement justifies this construction?
$1 \angle A+\angle B+\angle C=180$
$2 \mathrm{~m} \angle A=\mathrm{m} \angle B=\mathrm{m} \angle C$
$3 A B=A C=B C$
$4 \quad A B+B C>A C$

202 On the ray drawn below, using a compass and straightedge, construct an equilateral triangle with a vertex at R. The length of a side of the triangle must be equal to a length of the diagonal of rectangle $A B C D$.

203 In the diagram below, $\triangle A B C$ is equilateral.

Using a compass and straightedge, construct a new equilateral triangle congruent to $\triangle A B C$ in the space below. [Leave all construction marks.]

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.22: LOCUS

204 The length of $\overline{A B}$ is 3 inches. On the diagram below, sketch the points that are equidistant from A and B and sketch the points that are 2 inches from A. Label with an \mathbf{X} all points that satisfy both conditions.

205 Towns A and B are 16 miles apart. How many points are 10 miles from town A and 12 miles from town B ?
11
22
33
40

206 Two lines, $\overleftrightarrow{A B}$ and $\overleftrightarrow{C R D}$, are parallel and 10 inches apart. Sketch the locus of all points that are equidistant from $\overleftrightarrow{A B}$ and $\overleftrightarrow{C R D}$ and 7 inches from point R. Label with an \mathbf{X} each point that satisfies both conditions.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

207 In the diagram below, car A is parked 7 miles from car B. Sketch the points that are 4 miles from car A and sketch the points that are 4 miles from car B. Label with an \mathbf{X} all points that satisfy both conditions.

208 A man wants to place a new bird bath in his yard so that it is 30 feet from a fence, f, and also 10 feet from a light pole, P. As shown in the diagram below, the light pole is 35 feet away from the fence.

How many locations are possible for the bird bath?
$1 \quad 1$
22
33
40

209 In the diagram below, point M is located on $\overleftrightarrow{A B}$
Sketch the locus of points that are 1 unit from $\overleftrightarrow{A B}$ and the locus of points 2 units from point M. Label with an \mathbf{X} all points that satisfy both conditions.

210 How many points are 5 units from a line and also equidistant from two points on the line?
11
22
$3 \quad 3$
40

211 In a park, two straight paths intersect. The city wants to install lampposts that are both equidistant from each path and also 15 feet from the intersection of the paths. How many lampposts are needed?
11
22
33
44

212 Two intersecting lines are shown in the diagram below. Sketch the locus of points that are equidistant from the two lines. Sketch the locus of points that are a given distance, d, from the point of intersection of the given lines. State the number of points that satisfy both conditions.

213 A tree, T, is 6 meters from a row of corn, c, as represented in the diagram below. A farmer wants to place a scarecrow 2 meters from the row of corn and also 5 meters from the tree. Sketch both loci. Indicate, with an \mathbf{X}, all possible locations for the scarecrow.
T.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

214 Point P is 5 units from line j. Sketch the locus of points that are 3 units from line j and also sketch the locus of points that are 8 units from P. Label with an \mathbf{X} all points that satisfy both conditions.
. ${ }^{~}$

215 Points A and B are on line ℓ, and line ℓ is parallel to line m, as shown in the diagram below.

How many points are in the same plane as ℓ and m and equidistant from ℓ and m, and also equidistant from A and B ?
11
22
33
40

G.G.23: LOCUS

216 A city is planning to build a new park. The park must be equidistant from school A at $(3,3)$ and school B at $(3,-5)$. The park also must be exactly 5 miles from the center of town, which is located at the origin on the coordinate graph. Each unit on the graph represents 1 mile. On the set of axes below, sketch the compound loci and label with an \mathbf{X} all possible locations for the new park.

217 In a coordinate plane, how many points are both 5 units from the origin and 2 units from the x-axis?
11
22
33
44

218 On the set of axes below, sketch the points that are 5 units from the origin and sketch the points that are 2 units from the line $y=3$. Label with an \mathbf{X} all points that satisfy both conditions.

219 On the grid below, graph the points that are equidistant from both the x and y axes and the points that are 5 units from the origin. Label with an \mathbf{X} all points that satisfy both conditions.

220 On the set of axes below, graph the locus of points that are four units from the point $(2,1)$. On the same set of axes, graph the locus of points that are two units from the line $x=4$. State the coordinates of all points that satisfy both conditions.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

221 On the set of coordinate axes below, graph the locus of points that are equidistant from the lines $y=6$ and $y=2$ and also graph the locus of points that are 3 units from the y-axis. State the coordinates of all points that satisfy both conditions.

222 How many points are both 4 units from the origin and also 2 units from the line $y=4$?
11
22
33
44

223 On the set of axes below, graph the locus of points that are 4 units from the line $x=3$ and the locus of points that are 5 units from the point $(0,2)$. Label with an \mathbf{X} all points that satisfy both conditions.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

224 The graph below shows the locus of points equidistant from the x-axis and y-axis. On the same set of axes, graph the locus of points 3 units from the line $x=0$. Label with an \mathbf{X} all points that satisfy both conditions.

225 On the set of axes below, graph the locus of points 4 units from $(0,1)$ and the locus of points 3 units from the origin. Label with an \mathbf{X} any points that satisfy both conditions.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

226 On the set of axes below, graph the locus of points 4 units from the x-axis and equidistant from the points whose coordinates are $(-2,0)$ and $(8,0)$. Mark with an \mathbf{X} all points that satisfy both conditions.

227 In a coordinate plane, the locus of points 5 units from the x-axis is the
1 lines $x=5$ and $x=-5$
2 lines $y=5$ and $y=-5$
3 line $x=5$, only
4 line $y=5$, only

228 How many points in the coordinate plane are 3 units from the origin and also equidistant from both the x-axis and the y-axis?
11
22
38
44

229 On the set of axes below, sketch the locus of points 2 units from the x-axis and sketch the locus of points 6 units from the point (0,4). Label with an \mathbf{X} all points that satisfy both conditions.

230 On the set of axes below, graph the locus of points 5 units from the point $(3,-2)$. On the same set of axes, graph the locus of points equidistant from the points $(0,-6)$ and $(2,-4)$. State the coordinates of all points that satisfy both conditions.

231 On the set of axes below, graph two horizontal lines whose y-intercepts are $(0,-2)$ and $(0,6)$, respectively. Graph the locus of points equidistant from these horizontal lines. Graph the locus of points 3 units from the y-axis. State the coordinates of the points that satisfy both loci.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

232 On the set of axes below, graph the locus of points 5 units from the point $(2,-3)$ and the locus of points 2 units from the line whose equation is $y=-1$. State the coordinates of all points that satisfy both conditions.

ANGLES

G.G.35: PARALLEL LINES \& TRANSVERSALS

233 Based on the diagram below, which statement is true?

$1 \quad a \| b$
$2 a \| c$
$3 \quad b \| c$
$4 d \| e$

234 A transversal intersects two lines. Which condition would always make the two lines parallel?
1 Vertical angles are congruent.
2 Alternate interior angles are congruent.
3 Corresponding angles are supplementary.
4 Same-side interior angles are complementary.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

235 In the diagram below of quadrilateral $A B C D$ with diagonal $\overline{B D}, \mathrm{~m} \angle A=93, \mathrm{~m} \angle A D B=43$, $\mathrm{m} \angle C=3 x+5, \mathrm{~m} \angle B D C=x+19$, and $\mathrm{m} \angle D B C=2 x+6$. Determine if $\overline{A B}$ is parallel to $\overline{D C}$. Explain your reasoning.

236 In the diagram below, line p intersects line m and line n.

If $\mathrm{m} \angle 1=7 x$ and $\mathrm{m} \angle 2=5 x+30$, lines m and n are parallel when x equals
112.5

215
387.5

4105

237 In the diagram below, lines n and m are cut by transversals p and q.

What value of x would make lines n and m parallel?
1110
280
370
450

238 Line n intersects lines l and m, forming the angles shown in the diagram below.

Which value of x would prove $l \| m$?
12.5
24.5
$3 \quad 6.25$
$4 \quad 8.75$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

239 In the diagram below, $\ell \| m$ and $\overline{Q R} \perp \overline{S T}$ at R.

If $\mathrm{m} \angle 1=63$, find $\mathrm{m} \angle 2$.

240 As shown in the diagram below, lines m and n are cut by transversal p.

If $\mathrm{m} \angle 1=4 x+14$ and $\mathrm{m} \angle 2=8 x+10$, lines m and n are parallel when x equals
11
26
313
$4 \quad 17$

241 Transversal $\overleftrightarrow{E F}$ intersects $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$, as shown in the diagram below.

Which statement could always be used to prove $\overleftrightarrow{A B} \| \overleftrightarrow{C D}$?
$1 \quad \angle 2 \cong \angle 4$
$2 \quad \angle 7 \cong \angle 8$
$3 \quad \angle 3$ and $\angle 6$ are supplementary
$4 \quad \angle 1$ and $\angle 5$ are supplementary

242 Lines p and q are intersected by line r, as shown below.

If $\mathrm{m} \angle 1=7 x-36$ and $\mathrm{m} \angle 2=5 x+12$, for which value of x would $p \| q$?
117
$2 \quad 24$
383
497

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

Geometry Regents Exam Questions by Performance Indicator: Topic

243 In the diagram below, transversal $\overleftrightarrow{T U}$ intersects $\overleftrightarrow{P Q}$ and $\overleftrightarrow{R S}$ at V and W, respectively.

If $\mathrm{m} \angle T V Q=5 x-22$ and $\mathrm{m} \angle V W S=3 x+10$, for which value of x is $\overleftrightarrow{P Q} \| \overleftrightarrow{R S}$?
16
216
$3 \quad 24$
428

244 Peach Street and Cherry Street are parallel. Apple Street intersects them, as shown in the diagram below.

If $\mathrm{m} \angle 1=2 x+36$ and $\mathrm{m} \angle 2=7 x-9$, what is $\mathrm{m} \angle 1$?
19
$2 \quad 17$
$3 \quad 54$
470

245 In the diagram below, line ℓ is parallel to line m, and line w is a transversal.

If $\mathrm{m} \angle 2=3 x+17$ and $\mathrm{m} \angle 3=5 x-21$, what is $\mathrm{m} \angle 1$?
$1 \quad 19$
$2 \quad 23$
$3 \quad 74$
486

TRIANGLES

G.G.48: PYTHAGOREAN THEOREM

246 In the diagram below of $\triangle A D B, \mathrm{~m} \angle B D A=90$, $A D=5 \sqrt{2}$, and $A B=2 \sqrt{15}$.

What is the length of $\overline{B D}$?
$1 \sqrt{10}$
$2 \sqrt{20}$
$3 \sqrt{50}$
$4 \sqrt{110}$

247 The diagram below shows a pennant in the shape of an isosceles triangle. The equal sides each measure 13 , the altitude is $x+7$, and the base is $2 x$.

What is the length of the base?
15
$2 \quad 10$
312
424

248 Which set of numbers does not represent the sides of a right triangle?
$1 \quad\{6,8,10\}$
$2\{8,15,17\}$
3 \{8,24,25\}
$4 \quad\{15,36,39\}$

249 As shown in the diagram below, a kite needs a vertical and a horizontal support bar attached at opposite corners. The upper edges of the kite are 7 inches, the side edges are x inches, and the vertical support bar is $(x+1)$ inches.

What is the measure, in inches, of the vertical support bar?
$1 \quad 23$
24
325
426

250 Which set of numbers could not represent the lengths of the sides of a right triangle?

1	$\{1,3, \sqrt{10}\}$
2	$\{2,3,4\}$
3	$\{3,4,5\}$
4	$\{8,15,17\}$

251 Which set of numbers could represent the lengths of the sides of a right triangle?
1 \{2,3,4\}
2 \{5,9,13\}
3 \{7,7,12\}
$4 \quad\{8,15,17\}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.30: INTERIOR AND EXTERIOR ANGLES OF TRIANGLES

252 Juliann plans on drawing $\triangle A B C$, where the measure of $\angle A$ can range from 50° to 60° and the measure of $\angle B$ can range from 90° to 100°. Given these conditions, what is the correct range of measures possible for $\angle C$?
120° to 40°
230° to 50°
380° to 90°
4120° to 130°

253 In an equilateral triangle, what is the difference between the sum of the exterior angles and the sum of the interior angles?
1180°
2120°
390°
460°

254 The degree measures of the angles of $\triangle A B C$ are represented by $x, 3 x$, and $5 x-54$. Find the value of x.

255 In $\triangle A B C, \mathrm{~m} \angle A=x, \mathrm{~m} \angle B=2 x+2$, and $\mathrm{m} \angle C=3 x+4$. What is the value of x ?
129
231
359
461

256 In right $\triangle D E F, \mathrm{~m} \angle D=90$ and $\mathrm{m} \angle F$ is 12 degrees less than twice $\mathrm{m} \angle E$. Find $\mathrm{m} \angle E$.

257 In $\triangle D E F, \mathrm{~m} \angle D=3 x+5, \mathrm{~m} \angle E=4 x-15$, and $\mathrm{m} \angle F=2 x+10$. Which statement is true?
$1 \quad D F=F E$
$2 D E=F E$
$3 \mathrm{~m} \angle E=\mathrm{m} \angle F$
$4 \quad \mathrm{~m} \angle D=\mathrm{m} \angle F$

258 Triangle $P Q R$ has angles in the ratio of 2:3:5.
Which type of triangle is $\triangle P Q R$?
1 acute
2 isosceles
3 obtuse
4 right

259 The angles of triangle $A B C$ are in the ratio of $8: 3: 4$. What is the measure of the smallest angle?
$1 \quad 12^{\circ}$
$2 \quad 24^{\circ}$
$3 \quad 36^{\circ}$
472°

260 In the diagram of $\triangle J E A$ below, $\mathrm{m} \angle J E A=90$ and $\mathrm{m} \angle E A J=48$. Line segment $M S$ connects points M and S on the triangle, such that $\mathrm{m} \angle E M S=59$.

What is $\mathrm{m} \angle J S M$?
1163
2121
342
417

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

261 The diagram below shows $\triangle A B D$, with $\overrightarrow{A B C}$, $\overline{B E} \perp \overline{A D}$, and $\angle E B D \cong \angle C B D$.

If $\mathrm{m} \angle A B E=52$, what is $\mathrm{m} \angle D$?
126
238
$3 \quad 52$
$4 \quad 64$

262 In $\triangle A B C, \mathrm{~m} \angle A=3 x+1, \mathrm{~m} \angle B=4 x-17$, and $\mathrm{m} \angle C=5 x-20$. Which type of triangle is $\triangle A B C$?
1 right
2 scalene
3 isosceles
4 equilateral

263 In $\triangle A B C$, the measure of angle A is fifteen less than twice the measure of angle B. The measure of angle C equals the sum of the measures of angle A and angle B. Determine the measure of angle B.

264 The measures of the angles of a triangle are in the ratio $2: 3: 4$. In degrees, the measure of the largest angle of the triangle is
120
240
380
4100

265 In the diagram of $\triangle A B C$ below, $\overline{B D}$ is drawn to side $\overline{A C}$.

If $\mathrm{m} \angle A=35, \mathrm{~m} \angle A B D=25$, and $\mathrm{m} \angle C=60$, which type of triangle is $\triangle B C D$?
1 equilateral
2 scalene
3 obtuse
4 right

266 The measures of the angles of a triangle are in the ratio 5:6:7. Determine the measure, in degrees, of the smallest angle of the triangle.

G.G.31: ISOSCELES TRIANGLE THEOREM

267 In the diagram of $\triangle A B C$ below, $\overline{A B} \cong \overline{A C}$. The measure of $\angle B$ is 40°.

What is the measure of $\angle A$?
140°
250°
370°
4100°

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

268 In $\triangle A B C, \overline{A B} \cong \overline{B C}$. An altitude is drawn from B to $\overline{A C}$ and intersects $\overline{A C}$ at D. Which conclusion is not always true?
$1 \angle A B D \cong \angle C B D$
$2 \angle B D A \cong \angle B D C$
$3 \overline{A D} \cong \overline{B D}$
$4 \overline{A D} \cong \overline{D C}$

269 In $\triangle R S T, \mathrm{~m} \angle R S T=46$ and $\overline{R S} \cong \overline{S T}$. Find $\mathrm{m} \angle S T R$.

270 In isosceles triangle $A B C, A B=B C$. Which statement will always be true?
$1 \mathrm{~m} \angle B=\mathrm{m} \angle A$
$2 \mathrm{~m} \angle A>\mathrm{m} \angle B$
$3 \mathrm{~m} \angle A=\mathrm{m} \angle C$
$4 \mathrm{~m} \angle C<\mathrm{m} \angle B$

271 In the diagram below of $\triangle A C D, B$ is a point on $\overline{A C}$ such that $\triangle A D B$ is an equilateral triangle, and $\triangle D B C$ is an isosceles triangle with $\overline{D B} \cong \overline{B C}$. Find $\mathrm{m} \angle C$.

272 If the vertex angles of two isosceles triangles are congruent, then the triangles must be
1 acute
2 congruent
3 right
4 similar

273 In the diagram below of $\triangle G J K, H$ is a point on $\overline{G J}, \overline{H J} \cong \overline{J K}, \mathrm{~m} \angle G=28$, and $\mathrm{m} \angle G J K=70$. Determine whether $\triangle G H K$ is an isosceles triangle and justify your answer.

274 In the diagram below, $\triangle L M O$ is isosceles with $L O=M O$.

If $\mathrm{m} \angle L=55$ and $\mathrm{m} \angle N O M=28$, what is $\mathrm{m} \angle N$?
127
$2 \quad 28$
$3 \quad 42$
$4 \quad 70$

275 In the diagram below of $\triangle A B C, \overline{A B} \cong \overline{A C}$, $\mathrm{m} \angle A=3 x$, and $\mathrm{m} \angle B=x+20$.

What is the value of x ?
$1 \quad 10$
228
32
440

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

276 In the diagram of $\triangle B C D$ shown below, $\overline{B A}$ is drawn from vertex B to point A on $\overline{D C}$, such that $\overline{B C} \cong \overline{B A}$.

In $\triangle D A B, \mathrm{~m} \angle D=x, \mathrm{~m} \angle D A B=5 x-30$, and $\mathrm{m} \angle D B A=3 x-60$. In $\triangle A B C, A B=6 y-8$ and $B C=4 y-2$. [Only algebraic solutions can receive full credit.] Find $m \angle D$. Find $m \angle B A C$. Find the length of $\overline{B C}$. Find the length of $\overline{D C}$.

277 The vertex angle of an isosceles triangle measures 15 degrees more than one of its base angles. How many degrees are there in a base angle of the triangle?
150
255
365
470

278 In $\triangle F G H, \mathrm{~m} \angle F=\mathrm{m} \angle H, G F=x+40$, $H F=3 x-20$, and $G H=2 x+20$. The length of $\overline{G H}$ is
120
240
360
480

279 In the diagram below of isosceles $\triangle A B C$, the measure of vertex angle B is 80°. If $\overline{A C}$ extends to point D, what is $\mathrm{m} \angle B C D$?

150
280
3100
4130

280 In $\triangle J K L, \bar{J} \cong \overline{K L}$. If $\mathrm{m} \angle J=58$, then $\mathrm{m} \angle L$ is
161
264
3116
4122

G.G.32: EXTERIOR ANGLE THEOREM

281 Side $\overline{P Q}$ of $\triangle P Q R$ is extended through Q to point T. Which statement is not always true?
$1 \mathrm{~m} \angle R Q T>\mathrm{m} \angle R$
$2 \mathrm{~m} \angle R Q T>\mathrm{m} \angle P$
$3 \mathrm{~m} \angle R Q T=\mathrm{m} \angle P+\mathrm{m} \angle R$
$4 \mathrm{~m} \angle R Q T>\mathrm{m} \angle P Q R$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

282 In the diagram below, $\triangle A B C$ is shown with $\overline{A C}$ extended through point D.

If $\mathrm{m} \angle B C D=6 x+2, \mathrm{~m} \angle B A C=3 x+15$, and $\mathrm{m} \angle A B C=2 x-1$, what is the value of x ?
$1 \quad 12$
$2 \quad 14 \frac{10}{11}$
316
$4 \quad 18 \frac{1}{9}$

283 In the diagram below of $\triangle H Q P$, side $\overline{H P}$ is extended through P to $T, \mathrm{~m} \angle Q P T=6 x+20$, $\mathrm{m} \angle H Q P=x+40$, and $\mathrm{m} \angle P H Q=4 x-5$. Find $\mathrm{m} \angle Q P T$.

(Not drawn to scale)

284 In the diagram below of $\triangle A B C$, side $\overline{B C}$ is extended to point $D, \mathrm{~m} \angle A=x, \mathrm{~m} \angle B=2 x+15$, and $\mathrm{m} \angle A C D=5 x+5$.

What is $\mathrm{m} \angle B$?
15
20
325
455

285 In the diagram of $\triangle K L M$ below, $\mathrm{m} \angle L=70$, $\mathrm{m} \angle M=50$, and $\overline{M K}$ is extended through N.

What is the measure of $\angle L K N$?
160°
2120°
3180°
4300°

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

286 In the diagram below of $\triangle B C D$, side $\overline{D B}$ is extended to point A.

Which statement must be true?
$1 \mathrm{~m} \angle C>\mathrm{m} \angle D$
$2 \mathrm{~m} \angle A B C<\mathrm{m} \angle D$
$3 \mathrm{~m} \angle A B C>\mathrm{m} \angle C$
$4 \mathrm{~m} \angle A B C>\mathrm{m} \angle C+\mathrm{m} \angle D$

287 In $\triangle F G H, \mathrm{~m} \angle F=42$ and an exterior angle at vertex H has a measure of 104 . What is $\mathrm{m} \angle G$?
134
262
376
4146

288 In the diagram below of $\triangle A B C, \overline{B C}$ is extended to D.

If $\mathrm{m} \angle A=x^{2}-6 x, \mathrm{~m} \angle B=2 x-3$, and $\mathrm{m} \angle A C D=9 x+27$, what is the value of x ?
$1 \quad 10$
22
33
415

289 In the diagram of $\triangle A B C$ below, $\overline{A B}$ is extended to point D.

If $\mathrm{m} \angle C A B=x+40, \mathrm{~m} \angle A C B=3 x+10$, $\mathrm{m} \angle C B D=6 x$, what is $\mathrm{m} \angle C A B$?
$1 \quad 13$
$2 \quad 25$
353
465

290 In the diagram below, $\overleftrightarrow{R C B T}$ and $\triangle A B C$ are shown with $\mathrm{m} \angle A=60$ and $\mathrm{m} \angle A B T=125$.

What is $\mathrm{m} \angle A C R$?
1125
2115
365
455

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

291 In the diagram of $\triangle P Q R$ shown below, $\overline{P R}$ is extended to $S, \mathrm{~m} \angle P=110, \mathrm{~m} \angle Q=4 x$, and $\mathrm{m} \angle Q R S=x^{2}+5 x$.

What is $\mathrm{m} \angle Q$?
144
240
311
$4 \quad 10$

292 In $\triangle A B C$, an exterior angle at C measures 50°. If $\mathrm{m} \angle A>30$. which inequality must be true?
$1 \mathrm{~m} \angle B<20$
$2 \mathrm{~m} \angle B>20$
$3 \mathrm{~m} \angle B C A<130$
$4 \mathrm{~m} \angle B C A>130$

293 In all isosceles triangles, the exterior angle of a base angle must always be
1 a right angle
2 an acute angle
3 an obtuse angle
4 equal to the vertex angle
G.G.33: TRIANGLE INEQUALITY THEOREM

294 In the diagram below of $\triangle A B C, D$ is a point on $\overline{A B}, A C=7, A D=6$, and $B C=18$.

The length of $\overline{D B}$ could be
15
$2 \quad 12$
319
425

295 Which set of numbers represents the lengths of the sides of a triangle?
1 \{5,18,13\}
$2\{6,17,22\}$
3 \{16,24,7\}
$4 \quad\{26,8,15\}$

296 In $\triangle A B C, A B=5$ feet and $B C=3$ feet. Which inequality represents all possible values for the length of $\overline{A C}$, in feet?
$12 \leq A C \leq 8$
$2 \quad 2<A C<8$
$3 \quad 3 \leq A C \leq 7$
$43<A C<7$

297 Which numbers could represent the lengths of the sides of a triangle?
1 5,9,14
2 7,7,15
3 1,2,4
4 3,6,8

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

298 If two sides of a triangle have lengths of 4 and 10, the third side could be
18
22
$3 \quad 16$
44

299 The lengths of two sides of a triangle are 7 and 11. Which inequality represents all possible values for x, the length of the third side of the triangle?
$14 \leq x \leq 18$
$24<x \leq 18$
$3 \quad 4 \leq x<18$
$4 \quad 4<x<18$

300 Which set of numbers could be the lengths of the sides of an isosceles triangle?
1 \{1,1,2\}
2 \{3,3,5\}
3 \{3,4,5\}
$4 \quad\{4,4,9\}$

G.G.34: ANGLE SIDE RELATIONSHIP

301 In $\triangle A B C, \mathrm{~m} \angle A=95, \mathrm{~m} \angle B=50$, and $\mathrm{m} \angle C=35$. Which expression correctly relates the lengths of the sides of this triangle?
$1 \quad A B<B C<C A$
$2 A B<A C<B C$
$3 A C<B C<A B$
$4 B C<A C<A B$

302 In the diagram below of $\triangle A B C$ with side $\overline{A C}$ extended through $D, \mathrm{~m} \angle A=37$ and $\mathrm{m} \angle B C D=117$. Which side of $\triangle A B C$ is the longest side? Justify your answer.

(Not drawn to scale)

303 In $\triangle P Q R, P Q=8, Q R=12$, and $R P=13$. Which statement about the angles of $\triangle P Q R$ must be true?
$1 \mathrm{~m} \angle Q>\mathrm{m} \angle P>\mathrm{m} \angle R$
$2 \mathrm{~m} \angle Q>\mathrm{m} \angle R>\mathrm{m} \angle P$
$3 \mathrm{~m} \angle R>\mathrm{m} \angle P>\mathrm{m} \angle Q$
$4 \mathrm{~m} \angle P>\mathrm{m} \angle R>\mathrm{m} \angle Q$

304 In $\triangle A B C, A B=7, B C=8$, and $A C=9$. Which list has the angles of $\triangle A B C$ in order from smallest to largest?
$1 \angle A, \angle B, \angle C$
$2 \angle B, \angle A, \angle C$
$3 \angle C, \angle B, \angle A$
$4 \angle C, \angle A, \angle B$

305 In scalene triangle $A B C, \mathrm{~m} \angle B=45$ and $\mathrm{m} \angle C=55$. What is the order of the sides in length, from longest to shortest?
$1 \overline{A B}, \overline{B C}, \overline{A C}$
$2 \overline{B C}, \overline{A C}, \overline{A B}$
$3 \overline{A C}, \overline{B C}, \overline{A B}$
$4 \overline{B C}, \overline{A B}, \overline{A C}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

306 In $\triangle R S T, \mathrm{~m} \angle R=58$ and $\mathrm{m} \angle S=73$. Which inequality is true?
$1 \quad R T<T S<R S$
$2 R S<R T<T S$
$3 R T<R S<T S$
$4 \quad R S<T S<R T$

307 As shown in the diagram of $\triangle A C D$ below, B is a point on $\overline{A C}$ and $\overline{D B}$ is drawn.

If $\mathrm{m} \angle A=66, \mathrm{~m} \angle C D B=18$, and $\mathrm{m} \angle C=24$, what is the longest side of $\triangle A B D$?
$1 \overline{A B}$
$2 \overline{D C}$
$3 \overline{A D}$
$4 \overline{B D}$

308 In $\triangle A B C, \mathrm{~m} \angle A=x^{2}+12, \mathrm{~m} \angle B=11 x+5$, and $\mathrm{m} \angle C=13 x-17$. Determine the longest side of $\triangle A B C$.

309 In $\triangle A B C, \mathrm{~m} \angle A=60, \mathrm{~m} \angle B=80$, and $\mathrm{m} \angle C=40$. Which inequality is true?
$1 \quad A B>B C$
$2 A C>B C$
$3 \quad A C<B A$
$4 B C<B A$

310 In $\triangle A B C, \angle A \cong \angle B$ and $\angle C$ is an obtuse angle. Which statement is true?
$1 \overline{A C} \cong \overline{A B}$ and $\overline{B C}$ is the longest side.
$2 \overline{A C} \cong \overline{B C}$ and $\overline{A B}$ is the longest side.
$3 \overline{A C} \cong \overline{A B}$ and $\overline{B C}$ is the shortest side.
$4 \overline{A C} \cong \overline{B C}$ and $\overline{A B}$ is the shortest side.

311 For which measures of the sides of $\triangle A B C$ is angle B the largest angle of the triangle?
$1 \quad A B=2, B C=6, A C=7$
$2 A B=6, B C=12, A C=8$
$3 A B=16, B C=9, A C=10$
$4 A B=18, B C=14, A C=5$

312 As shown in the diagram below, $\overline{A S}$ is a diagonal of trapezoid $S T A R, \overline{R A} \| \overline{S T}, \mathrm{~m} \angle A T S=48$, $\mathrm{m} \angle R S A=47$, and $\mathrm{m} \angle A R S=68$.

Determine and state the longest side of $\triangle S A T$.

313 In $\triangle C A T, \mathrm{~m} \angle C=65, \mathrm{~m} \angle A=40$, and B is a point on side $\overline{C A}$, such that $\overline{T B} \perp \overline{C A}$. Which line segment is shortest?
$1 \overline{C T}$
$2 \quad \overline{B C}$
$3 \overline{\overline{T B}}$
$4 \overline{A T}$

314 In $\triangle A B C, A B=4, B C=7$, and $A C=10$. Which statement is true?
$1 \mathrm{~m} \angle B>\mathrm{m} \angle C>\mathrm{m} \angle A$
$2 \mathrm{~m} \angle B>\mathrm{m} \angle A>\mathrm{m} \angle C$
$3 \mathrm{~m} \angle C>\mathrm{m} \angle B>\mathrm{m} \angle A$
$4 \mathrm{~m} \angle C>\mathrm{m} \angle A>\mathrm{m} \angle B$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

315 In $\triangle A B C, \mathrm{~m} \angle A=65$ and $\mathrm{m} \angle B$ is greater than $\mathrm{m} \angle A$. The lengths of the sides of $\triangle A B C$ in order from smallest to largest are
$1 \overline{A B}, \overline{B C}, \overline{A C}$
$2 \overline{B C}, \overline{A B}, \overline{A C}$
$3 \overline{A C}, \overline{B C}, \overline{A B}$
$4 \overline{A B}, \overline{A C}, \overline{B C}$

316 In $\triangle A B C, \mathrm{~m} \angle B<\mathrm{m} \angle A<\mathrm{m} \angle C$. Which statement is false?
$1 \quad A C>B C$
$2 B C>A C$
$3 \quad A C<A B$
$4 B C<A B$

G.G.46: SIDE SPLITTER THEOREM

317 In $\triangle A B C$, point D is on $\overline{A B}$, and point E is on $\overline{B C}$ such that $\overline{D E} \| \overline{A C}$. If $D B=2, D A=7$, and $D E=3$, what is the length of $\overline{A C}$?
18
29
310.5
413.5

318 In the diagram below of $\triangle A C D, E$ is a point on $\overline{A D}$ and B is a point on $\overline{A C}$, such that $\overline{E B} \| \overline{D C}$. If $A E=3, E D=6$, and $D C=15$, find the length of $E B$.

319 In the diagram below of $\triangle A C T, \overleftrightarrow{B E} \| \overline{A T}$.

If $C B=3, C A=10$, and $C E=6$, what is the length of $\overline{E T}$?
15
$2 \quad 14$
$3 \quad 20$
426

320 In the diagram below of $\triangle A D E, B$ is a point on $\overline{A E}$ and C is a point on $\overline{A D}$ such that $\overline{B C} \| \overline{E D}$, $A C=x-3, B E=20, A B=16$, and $A D=2 x+2$. Find the length of $\overline{A C}$.

321 In the diagram below of $\triangle A B C, D$ is a point on $\overline{A B}, E$ is a point on $\overline{B C}, \overline{A C} \| \overline{D E}, C E=25$ inches, $A D=18$ inches, and $D B=12$ inches. Find, to the nearest tenth of an inch, the length of $\overline{E B}$.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

322 In the diagram below of $\triangle A B C, \overleftrightarrow{T V} \| \overline{B C}, A T=5$, $T B=7$, and $A V=10$.

What is the length of $\overline{V C}$?
$13 \frac{1}{2}$
$2 \quad 7 \frac{1}{7}$
314
424

323 In the diagram of $\triangle A B C$ shown below, $\overline{D E} \| \overline{B C}$.

If $A B=10, A D=8$, and $A E=12$, what is the length of $\overline{E C}$?
16
22
33
$4 \quad 15$

324 Triangle $P Q T$ with $\overline{R S} \| \overline{Q T}$ is shown below.

If $P R=12, R Q=8$, and $P S=21$, what is the length of $\overline{P T}$?
$1 \quad 14$
$2 \quad 17$
$3 \quad 35$
438

325 In the diagram of $\triangle A B C$ below, $\overline{D E} \| \overline{B C}$, $A D=3, D B=2$, and $D E=6$.

What is the length of $\overline{B C}$?
$1 \quad 12$
210
38
44

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

326 In the diagram of $\triangle A B C$ below, $\overline{D E} \| \overline{A B}$.

If $C D=4, C A=10, C E=x+2$, and $E B=4 x-7$, what is the length of $\overline{C E}$?
$1 \quad 10$
28
36
44

327 In the diagram below of $\triangle A B C$, with $\overline{C D E A}$ and $\overline{B G F A}, \overline{E F}\|\overline{D G}\| \overline{C B}$.

Which statement is false?
$1 \quad \frac{A C}{A D}=\frac{A B}{A G}$
$2 \frac{A E}{A F}=\frac{A C}{A B}$
$3 \quad \frac{A E}{A D}=\frac{E C}{A C}$
$4 \quad \frac{B G}{B A}=\frac{C D}{C A}$

G.G.42: MIDSEGMENTS

328 On the set of axes below, graph and label $\triangle D E F$ with vertices at $D(-4,-4), E(-2,2)$, and $F(8,-2)$. If G is the midpoint of $\overline{E F}$ and H is the midpoint of $\overline{D F}$, state the coordinates of G and H and label each point on your graph. Explain why $\overline{G H} \| \overline{D E}$.

329 In the diagram of $\triangle A B C$ below, $A B=10, B C=14$, and $A C=16$. Find the perimeter of the triangle formed by connecting the midpoints of the sides of $\triangle A B C$.

330 In the diagram below of $\triangle A C T, D$ is the midpoint of $\overline{A C}, O$ is the midpoint of $\overline{A T}$, and G is the midpoint of $\overline{C T}$.

If $A C=10, A T=18$, and $C T=22$, what is the perimeter of parallelogram $C D O G$?
121
$2 \quad 25$
$3 \quad 32$
440

331 In the diagram below of $\triangle A B C, \overline{D E}$ is a midsegment of $\triangle A B C, D E=7, A B=10$, and $B C=13$. Find the perimeter of $\triangle A B C$.

332 In the diagram below, the vertices of $\triangle D E F$ are the midpoints of the sides of equilateral triangle $A B C$, and the perimeter of $\triangle A B C$ is 36 cm .

What is the length, in centimeters, of $\overline{E F}$?
16
$2 \quad 12$
$3 \quad 18$
44

333 In the diagram below of $\triangle A B C, D$ is the midpoint of $\overline{A B}$, and E is the midpoint of $\overline{B C}$.

If $A C=4 x+10$, which expression represents $D E$?
$1 x+2.5$
$2 \quad 2 x+5$
$3 \quad 2 x+10$
$4 \quad 8 x+20$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

334 Triangle $H K L$ has vertices $H(-7,2), K(3,-4)$, and $L(5,4)$. The midpoint of $\overline{H L}$ is M and the midpoint of $\overline{L K}$ is N. Determine and state the coordinates of points M and N. Justify the statement: $\overline{M N}$ is parallel to $\overline{H K}$. [The use of the set of axes below is optional.]

335 In the diagram of $\triangle A B C$ shown below, D is the midpoint of $\overline{A B}, E$ is the midpoint of $\overline{B C}$, and F is the midpoint of $\overline{A C}$.

If $A B=20, B C=12$, and $A C=16$, what is the perimeter of trapezoid $A B E F$?
$1 \quad 24$
236
340
444

336 In the diagram below, $\overline{D E}$ joins the midpoints of two sides of $\triangle A B C$.

Which statement is not true?
$1 C E=\frac{1}{2} C B$
$2 D E=\frac{1}{2} A B$
3 area of $\triangle C D E=\frac{1}{2}$ area of $\triangle C A B$
4 perimeter of $\triangle C D E=\frac{1}{2}$ perimeter of $\triangle C A B$

337 Triangle $A B C$ is shown in the diagram below.

If $\overline{D E}$ joins the midpoints of $\overline{A D C}$ and $\overline{A E B}$, which statement is not true?
$1 \quad D E=\frac{1}{2} C B$
$2 \overline{D E} \| \overline{C B}$
$3 \frac{A D}{D C}=\frac{D E}{C B}$
$4 \triangle A B C \sim \triangle A E D$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

In $\triangle A B C, D$ is the midpoint of $\overline{A B}$ and E is the midpoint of $\overline{B C}$. If $A C=3 x-15$ and $D E=6$, what is the value of x ?

16
27
39
$4 \quad 12$

339 In the diagram of $\triangle U V W$ below, A is the midpoint of $\overline{U V}, B$ is the midpoint of $\overline{U W}, C$ is the midpoint of $\overline{V W}$, and $\overline{A B}$ and $\overline{A C}$ are drawn.

If $V W=7 x-3$ and $A B=3 x+1$, what is the length of $\overline{V C}$?
15
$2 \quad 13$
$3 \quad 16$
432

340 In $\triangle A B C$ shown below, L is the midpoint of $\overline{B C}$, M is the midpoint of $\overline{A B}$, and N is the midpoint of $\overline{A C}$.

If $M N=8, M L=5$, and $N L=6$, the perimeter of trapezoid BMNC is
135
$2 \quad 31$
$3 \quad 28$
$4 \quad 26$

341 In the diagram below of $\triangle A B C, \overline{D E}$ and $\overline{D F}$ are midsegments.

If $D E=9$, and $B C=17$, determine and state the perimeter of quadrilateral $F D E C$.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

342 In $\triangle A B C$ shown below, L is the midpoint of $\overline{B C}$, M is the midpoint of $\overline{A B}$, and N is the midpoint of $\overline{A C}$.

If $M N=8, M L=5$, and $N L=6$, the perimeter of trapezoid BMNC is
126
$2 \quad 28$
$3 \quad 30$
435

343 In isosceles triangle $R S T$ shown below, $\overline{R S} \cong \overline{R T}$, M and N are midpoints of $\overline{R S}$ and $\overline{R T}$, respectively, and $\overline{M N}$ is drawn. If $M N=3.5$ and the perimeter of $\triangle R S T$ is 25 , determine and state the length of $\overline{N T}$.

G.G.21: CENTROID, ORTHOCENTER, INCENTER AND CIRCUMCENTER

344 In which triangle do the three altitudes intersect outside the triangle?
1 a right triangle
2 an acute triangle
3 an obtuse triangle
4 an equilateral triangle

345 The diagram below shows the construction of the center of the circle circumscribed about $\triangle A B C$.

This construction represents how to find the intersection of
1 the angle bisectors of $\triangle A B C$
2 the medians to the sides of $\triangle A B C$
3 the altitudes to the sides of $\triangle A B C$
4 the perpendicular bisectors of the sides of $\triangle A B C$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

346 In the diagram below of $\triangle A B C, \overline{C D}$ is the bisector of $\angle B C A, \overline{A E}$ is the bisector of $\angle C A B$, and $\overline{B G}$ is drawn.

Which statement must be true?
$1 \quad D G=E G$
$2 \quad A G=B G$
$3 \angle A E B \cong \angle A E C$
$4 \angle D B G \cong \angle E B G$

347 Which geometric principle is used in the construction shown below?

1 The intersection of the angle bisectors of a triangle is the center of the inscribed circle.
2 The intersection of the angle bisectors of a triangle is the center of the circumscribed circle.
3 The intersection of the perpendicular bisectors of the sides of a triangle is the center of the inscribed circle.
4 The intersection of the perpendicular bisectors of the sides of a triangle is the center of the circumscribed circle.

348 The vertices of the triangle in the diagram below are $A(7,9), B(3,3)$, and $C(11,3)$.

What are the coordinates of the centroid of $\triangle A B C$?
$1(5,6)$
$2(7,3)$
$3(7,5)$
$4(9,6)$

349 Triangle $A B C$ has vertices $A(3,3), B(7,9)$, and $C(11,3)$. Determine the point of intersection of the medians, and state its coordinates. [The use of the set of axes below is optional.]

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

350 In a given triangle, the point of intersection of the three medians is the same as the point of intersection of the three altitudes. Which classification of the triangle is correct?
1 scalene triangle
2 isosceles triangle
3 equilateral triangle
4 right isosceles triangle

351 In the diagram below of $\triangle A B C, \overline{A E} \cong \overline{B E}$, $\overline{A F} \cong \overline{C F}$, and $\overline{C D} \cong \overline{B D}$.

Point P must be the
1 centroid
2 circumcenter
3 Incenter
4 orthocenter

352 For a triangle, which two points of concurrence could be located outside the triangle?
1 incenter and centroid
2 centroid and orthocenter
3 incenter and circumcenter
4 circumcenter and orthocenter

353 Triangle $A B C$ is graphed on the set of axes below.

What are the coordinates of the point of intersection of the medians of $\triangle A B C$?
$1(-1,2)$
$2(-3,2)$
$3(0,2)$
$4(1,2)$

354 In the diagram below, point B is the incenter of $\triangle F E C$, and $\overline{E B R}, \overline{C B D}$, and $\overline{F B}$ are drawn.

If $\mathrm{m} \angle F E C=84$ and $\mathrm{m} \angle E C F=28$, determine and state $\mathrm{m} \angle B R C$.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.43: CENTROID

355 In the diagram of $\triangle A B C$ below, Jose found centroid P by constructing the three medians. He measured $C F$ and found it to be 6 inches.

If $P F=x$, which equation can be used to find x ?
$1 \quad x+x=6$
$22 x+x=6$
$3 \quad 3 x+2 x=6$
$4 \quad x+\frac{2}{3} x=6$

356 In the diagram below of $\triangle T E M$, medians $\overline{T B}, \overline{E C}$, and $\overline{M A}$ intersect at D, and $T B=9$. Find the length of $\overline{T D}$.

357 In the diagram below of $\triangle A B C$, medians $\overline{A D}, \overline{B E}$, and $\overline{C F}$ intersect at G.

If $C F=24$, what is the length of $\overline{F G}$?
18
$2 \quad 10$
$3 \quad 12$
416

358 In the diagram below of $\triangle A C E$, medians $\overline{A D}, \overline{E B}$, and $\overline{C F}$ intersect at G. The length of $\overline{F G}$ is 12 cm .

What is the length, in centimeters, of $\overline{G C}$?
124
$2 \quad 12$
36
44

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

359 In the diagram below, point P is the centroid of $\triangle A B C$.

If $P M=2 x+5$ and $B P=7 x+4$, what is the length of $\overline{P M}$?
19
22
318
$4 \quad 27$

360 In $\triangle A B C$ shown below, P is the centroid and $B F=18$.

What is the length of $\overline{B P}$?
16
29
33
412

361 In the diagram of $\triangle A B C$ below, medians $\overline{A D}$ and $\overline{B E}$ intersect at point F.

If $A F=6$, what is the length of $\overline{F D}$?
16
22
3 3
49

362 As shown below, the medians of $\triangle A B C$ intersect at D.

If the length of $\overline{B E}$ is 12 , what is the length of $\overline{B D}$?
18
29
33
$4 \quad 4$

363 The three medians of a triangle intersect at a point. Which measurements could represent the segments of one of the medians?
12 and 3
23 and 4.5
$3 \quad 3$ and 6
43 and 9

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

364 In the diagram below, $\overline{Q M}$ is a median of triangle $P Q R$ and point C is the centroid of triangle $P Q R$.

If $Q C=5 x$ and $C M=x+12$, determine and state the length of $\overline{Q M}$.

365 In the diagram below of $\triangle M A R$, medians $\overline{M N}$, $\overline{A T}$, and $\overline{R H}$ intersect at O.

If $T O=10$, what is the length of $\overline{T A}$?
130
$2 \quad 25$
320
$4 \quad 15$

366 In the diagram below of $\triangle A B C$, point H is the intersection of the three medians.

If $\overline{D H}$ measures 2.4 centimeters, what is the length, in centimeters, of $\overline{A D}$?
13.6
24.8
$3 \quad 7.2$
49.6

G.G.69: TRIANGLES IN THE COORDINATE PLANE

367 The vertices of $\triangle A B C$ are $A(-1,-2), B(-1,2)$ and $C(6,0)$. Which conclusion can be made about the angles of $\triangle A B C$?
$1 \mathrm{~m} \angle A=\mathrm{m} \angle B$
$2 \mathrm{~m} \angle A=\mathrm{m} \angle C$
$3 \mathrm{~m} \angle A C B=90$
$4 \mathrm{~m} \angle A B C=60$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

368 Triangle $A B C$ has coordinates $A(-6,2), B(-3,6)$, and $C(5,0)$. Find the perimeter of the triangle.
Express your answer in simplest radical form. [The use of the grid below is optional.]

369 Triangle $A B C$ has vertices $A(0,0), B(3,2)$, and $C(0,4)$. The triangle may be classified as
1 equilateral
2 isosceles
3 right
4 scalene

370 Which type of triangle can be drawn using the points $(-2,3),(-2,-7)$, and $(4,-5)$?
1 scalene
2 isosceles
3 equilateral
4 no triangle can be drawn

371 If the vertices of $\triangle A B C$ are $A(-2,4), B(-2,8)$, and $C(-5,6)$, then $\triangle A B C$ is classified as
1 right
2 scalene
3 isosceles
4 equilateral

372 Triangle $A B C$ has vertices at $A(3,0), B(9,-5)$, and $C(7,-8)$. Find the length of $\overline{A C}$ in simplest radical form.

POLYGONS

G.G.36: INTERIOR AND EXTERIOR ANGLES OF POLYGONS

373 The pentagon in the diagram below is formed by five rays.

What is the degree measure of angle x ?
172
296
3108
4112

374 In which polygon does the sum of the measures of the interior angles equal the sum of the measures of the exterior angles?
1 triangle
2 hexagon
3 octagon
4 quadrilateral

375 The number of degrees in the sum of the interior angles of a pentagon is
172
2360
3540
4720

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

376 The sum of the interior angles of a polygon of n sides is
1360
$2 \frac{360}{n}$
$3(n-2) \cdot 180$
$4 \frac{(n-2) \cdot 180}{n}$

377 For which polygon does the sum of the measures of the interior angles equal the sum of the measures of the exterior angles?
1 hexagon
2 pentagon
3 quadrilateral
4 triangle

G.G.37: INTERIOR AND EXTERIOR ANGLES

 OF POLYGONS378 What is the measure of an interior angle of a
regular octagon?
145°
260°
3120°
4135°

379 In the diagram below of regular pentagon $A B C D E$, $\overline{E B}$ is drawn.

What is the measure of $\angle A E B$?
136°
254°
372°
4108°

380 Find, in degrees, the measures of both an interior angle and an exterior angle of a regular pentagon.

381 What is the measure of each interior angle of a regular hexagon?
160°
2120°
3135°
4270°

382 The measure of an interior angle of a regular polygon is 120°. How many sides does the polygon have?
15
26
$3 \quad 3$
44

383 Determine, in degrees, the measure of each interior angle of a regular octagon.

384 What is the difference between the sum of the measures of the interior angles of a regular pentagon and the sum of the measures of the exterior angles of a regular pentagon?
136
272
3108
4180

385 What is the measure of the largest exterior angle that any regular polygon can have?
160°
290°
3120°
4360°

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

386 A regular polygon has an exterior angle that measures 45°. How many sides does the polygon have?
110
28
36
44

387 The sum of the interior angles of a regular polygon is 540°. Determine and state the number of degrees in one interior angle of the polygon.

388 Determine and state the measure, in degrees, of an interior angle of a regular decagon.

389 A regular polygon with an exterior angle of 40° is a
1 pentagon
2 hexagon
3 nonagon
4 decagon

390 The sum of the interior angles of a regular polygon is 720°. How many sides does the polygon have?
18
26
35
44

391 What is the measure of each interior angle in a regular octagon?
1108°
2135°
3144°
41080°

G.G.38: PARALLELOGRAMS

392 In the diagram below of parallelogram $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}, \mathrm{~m} \angle 1=45$ and $\mathrm{m} \angle D C B=120$.

What is the measure of $\angle 2$?
115°
230°
345°
460°

393 In the diagram below of parallelogram STUV, $S V=x+3, V U=2 x-1$, and $T U=4 x-3$.

What is the length of $\overline{S V}$?
15
22
37
44

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

394 Which statement is true about every parallelogram?
1 All four sides are congruent.
2 The interior angles are all congruent.
3 Two pairs of opposite sides are congruent.
4 The diagonals are perpendicular to each other.

395
In the diagram below, parallelogram $A B C D$ has diagonals $\overline{A C}$ and $\overline{B D}$ that intersect at point E.

Which expression is not always true?
$\begin{array}{ll}1 & \angle D A E \cong \angle B C E \\ 2 & \angle D E C \cong \angle B E A \\ 3 & \overline{A C} \cong \overline{D B} \\ 4 & \overline{D E} \cong \overline{E B}\end{array}$

396 As shown in the diagram below, the diagonals of parallelogram QRST intersect at E. If $Q E=x^{2}+6 x, S E=x+14$, and $T E=6 x-1$, determine $T E$ algebraically.

397 In parallelogram $Q R S T$, diagonal $\overline{Q S}$ is drawn.
Which statement must always be true?
$1 \triangle Q R S$ is an isosceles triangle.
$2 \triangle S T Q$ is an acute triangle.
$3 \triangle S T Q \cong \triangle Q R S$
$4 \overline{Q S} \cong \overline{Q T}$

398 Parallelogram $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}$ intersecting at E is shown below.

Which statement must be true?
$1 \overline{B E} \cong \overline{C E}$
$2 \angle B A E \cong \angle D C E$
$3 \overline{A B} \cong \overline{B C}$
$4 \angle D A E \cong \angle C B E$

399 In parallelogram $A B C D$, with diagonal $\overline{A C}$ drawn, $\mathrm{m} \angle B C A=4 x+2, \mathrm{~m} \angle D A C=6 x-6$, $\mathrm{m} \angle B A C=5 y-1$, and $\mathrm{m} \angle D C A=7 y-15$.
Determine $\mathrm{m} \angle B$.

400 In parallelogram $J K L M, \mathrm{~m} \angle L$ exceeds $\mathrm{m} \angle M$ by 30 degrees. What is the measure of $\mathrm{m} \angle J$?
175°
2105°
3165°
4195°

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.39: PARALLELOGRAMS

401 In the diagram below, quadrilateral $S T A R$ is a rhombus with diagonals $\overline{S A}$ and $\overline{T R}$ intersecting at E. $S T=3 x+30, S R=8 x-5, S E=3 z, T E=5 z+5$, $A E=4 z-8, \mathrm{~m} \angle R T A=5 y-2$, and $\mathrm{m} \angle T A S=9 y+8$. Find $S R, R T$, and $\mathrm{m} \angle T A S$.

402
In the diagram below of rhombus $A B C D$, $\mathrm{m} \angle C=100$.

What is $\mathrm{m} \angle D B C$?
140
245
350
480

403 In rhombus $A B C D$, the diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E. If $A E=5$ and $B E=12$, what is the length of $\overline{A B}$?
17
$2 \quad 10$
$3 \quad 13$
$4 \quad 17$

404 Which quadrilateral has diagonals that always bisect its angles and also bisect each other?
1 rhombus
2 rectangle
3 parallelogram
4 isosceles trapezoid

405 The diagonals of a quadrilateral are congruent but do not bisect each other. This quadrilateral is
1 an isosceles trapezoid
2 a parallelogram
3 a rectangle
4 a rhombus

406 Given three distinct quadrilaterals, a square, a rectangle, and a rhombus, which quadrilaterals must have perpendicular diagonals?
1 the rhombus, only
2 the rectangle and the square
3 the rhombus and the square
4 the rectangle, the rhombus, and the square

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

407 In the diagram below, MATH is a rhombus with diagonals $\overline{A H}$ and $\overline{M T}$.

If $\mathrm{m} \angle H A M=12$, what is $\mathrm{m} \angle A M T$?
$1 \quad 12$
278
384
4156

408 Which reason could be used to prove that a parallelogram is a rhombus?
1 Diagonals are congruent.
2 Opposite sides are parallel.
3 Diagonals are perpendicular.
4 Opposite angles are congruent.

409 As shown in the diagram of rectangle $A B C D$ below, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E.

If $A E=x+2$ and $B D=4 x-16$, then the length of $\overline{A C}$ is
16
$2 \quad 10$
312
424

410 What is the perimeter of a rhombus whose diagonals are 16 and 30 ?
192
268
360
$4 \quad 17$

411 What is the perimeter of a square whose diagonal is $3 \sqrt{2}$?
118
$2 \quad 12$
39
46

412 Which quadrilateral does not always have congruent diagonals?
1 isosceles trapezoid
2 rectangle
3 rhombus
4 square

413 In rhombus $A B C D$, with diagonals $\overline{A C}$ and $\overline{D B}$, $A D=10$.

If the length of diagonal $\overline{A C}$ is 12 , what is the length of $\overline{D B}$?
18
$2 \quad 16$
$3 \sqrt{44}$
$4 \sqrt{136}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

414 In quadrilateral $A B C D$, the diagonals bisect its angles. If the diagonals are not congruent, quadrilateral $A B C D$ must be a
1 square
2 rectangle
3 rhombus
4 trapezoid

415 In the diagram below of rhombus $A B C D$, the diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E.

If $A C=18$ and $B D=24$, what is the length of one side of rhombus $A B C D$?
$1 \quad 15$
$2 \quad 18$
$3 \quad 24$
430

416 In quadrilateral $A B C D$, each diagonal bisects opposite angles. If $\mathrm{m} \angle D A B=70$, then $A B C D$ must be a
1 rectangle
2 trapezoid
3 rhombus
4 square

G.G.40: TRAPEZOIDS

417 Isosceles trapezoid $A B C D$ has diagonals $\overline{A C}$ and $\overline{B D}$. If $A C=5 x+13$ and $B D=11 x-5$, what is the value of x ?
128
$2 \quad 10 \frac{3}{4}$
33
$4 \quad \frac{1}{2}$

418 In the diagram below of isosceles trapezoid $D E F G$, $\overline{D E} \| \overline{G F}, D E=4 x-2, E F=3 x+2, F G=5 x-3$, and $G D=2 x+5$. Find the value of x.

419 In the diagram below of trapezoid $R S U T, \overline{R S} \| \overline{T U}$, X is the midpoint of $\overline{R T}$, and V is the midpoint of $\overline{S U}$.

If $R S=30$ and $X V=44$, what is the length of $\overline{T U}$?
137
258
374
4118

420 If the diagonals of a quadrilateral do not bisect each other, then the quadrilateral could be a
1 rectangle
2 rhombus
3 square
4 trapezoid

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

421 In isosceles trapezoid $A B C D, \overline{A B} \cong \overline{C D}$. If
$B C=20, A D=36$, and $A B=17$, what is the length of the altitude of the trapezoid?
110
$2 \quad 12$
315
416

422 The diagram below shows isosceles trapezoid $A B C D$ with $\overline{A B} \| \overline{D C}$ and $\overline{A D} \cong \overline{B C}$. If $\mathrm{m} \angle B A D=2 x$ and $\mathrm{m} \angle B C D=3 x+5$, find $\mathrm{m} \angle B A D$.

423 In the diagram below of isosceles trapezoid $A B C D$, $A B=C D=25, A D=26$, and $B C=12$.

What is the length of an altitude of the trapezoid?
17
$2 \quad 14$
$3 \quad 19$
$4 \quad 24$

424 In the diagram below, LATE is an isosceles trapezoid with $\overline{L E} \cong \overline{A T}, L A=24, E T=40$, and $A T=10$. Altitudes $\overline{L F}$ and $\overline{A G}$ are drawn.

What is the length of $\overline{L F}$?
16
28
3 3
$4 \quad 4$

425 In the diagram below, $\overline{E F}$ is the median of trapezoid $A B C D$.

If $A B=5 x-9, D C=x+3$, and $E F=2 x+2$, what is the value of x ?
15
22
37
48

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

426 In the diagram of trapezoid $A B C D$ below,
$\overline{A B} \| \overline{D C}, \overline{A D} \cong \overline{B C}, \mathrm{~m} \angle A=4 x+20$, and $\mathrm{m} \angle C=3 x-15$.

What is $\mathrm{m} \angle D$?
125
235
360
490

427 In trapezoid $R S T V$ with bases $\overline{R S}$ and $\overline{V T}$, diagonals $\overline{R T}$ and $\overline{S V}$ intersect at Q.

If trapezoid $R S T V$ is not isosceles, which triangle is equal in area to $\triangle R S V$?
$1 \triangle R Q V$
$2 \Delta R S T$
$3 \triangle R V T$
$4 \quad \triangle S V T$

428 Trapezoid $T R A P$, with median $\overline{M Q}$, is shown in the diagram below. Solve algebraically for x and y.

429 In the diagram below, $\overline{A B}$ and $\overline{C D}$ are bases of trapezoid $A B C D$.

(Not drawn to scale)
If $\mathrm{m} \angle B=123$ and $\mathrm{m} \angle D=75$, what is $\mathrm{m} \angle C$?
157
275
3105
4123

430 In isosceles trapezoid $Q R S T$ shown below, $\overline{Q R}$ and $T S$ are bases.

If $\mathrm{m} \angle Q=5 x+3$ and $\mathrm{m} \angle R=7 x-15$, what is $\mathrm{m} \angle Q$?
183
248
316
$4 \quad 9$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.41: SPECIAL QUADRILATERALS

431 A quadrilateral whose diagonals bisect each other and are perpendicular is a
1 rhombus
2 rectangle
3 trapezoid
4 parallelogram

432 Which quadrilateral has diagonals that are always perpendicular bisectors of each other?
1 square
2 rectangle
3 trapezoid
4 parallelogram

G.G.69: QUADRILATERALS IN THE

 COORDINATE PLANE433 The coordinates of the vertices of parallelogram
$A B C D$ are $A(-3,2), B(-2,-1), C(4,1)$, and $D(3,4)$.
The slopes of which line segments could be calculated to show that $A B C D$ is a rectangle?
$1 \quad \overline{A B}$ and $\overline{D C}$
$2 \overline{A B}$ and $\overline{B C}$
$3 \overline{A D}$ and $\overline{B C}$
$4 \overline{A C}$ and $\overline{B D}$

434 Given: Quadrilateral $A B C D$ has vertices $A(-5,6)$, $B(6,6), C(8,-3)$, and $D(-3,-3)$.
Prove: Quadrilateral $A B C D$ is a parallelogram but is neither a rhombus nor a rectangle. [The use of the grid below is optional.]

Quadrilateral MATH has coordinates $M(1,1)$, $A(-2,5), T(3,5)$, and $H(6,1)$. Prove that quadrilateral MATH is a rhombus and prove that it is not a square. [The use of the grid is optional.]

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

436 Given: $\triangle A B C$ with vertices $A(-6,-2), B(2,8)$, and $C(6,-2) . \overline{A B}$ has midpoint $D, \overline{B C}$ has midpoint E, and $\overline{A C}$ has midpoint F.
Prove: $A D E F$ is a parallelogram
$A D E F$ is not a rhombus
[The use of the grid is optional.]

437 Parallelogram $A B C D$ has coordinates $A(1,5)$, $B(6,3), C(3,-1)$, and $D(-2,1)$. What are the coordinates of E, the intersection of diagonals $\overline{A C}$ and $\overline{B D}$?
$1(2,2)$
$2(4.5,1)$
$3(3.5,2)$
$4(-1,3)$

438 Square $A B C D$ has vertices $A(-2,-3), B(4,-1)$, $C(2,5)$, and $D(-4,3)$. What is the length of a side of the square?
$12 \sqrt{5}$
$2 \quad 2 \sqrt{10}$
$34 \sqrt{5}$
$410 \sqrt{2}$

439 The coordinates of two vertices of square $A B C D$ are $A(2,1)$ and $B(4,4)$. Determine the slope of side $\overline{B C}$.

440 Quadrilateral $A B C D$ with vertices $A(-7,4)$, $B(-3,6), C(3,0)$, and $D(1,-8)$ is graphed on the set of axes below. Quadrilateral $M N P Q$ is formed by joining M, N, P, and Q, the midpoints of $\overline{A B}, \overline{B C}$, $\overline{C D}$, and $\overline{A D}$, respectively. Prove that quadrilateral $M N P Q$ is a parallelogram. Prove that quadrilateral $M N P Q$ is not a rhombus.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

441 The vertices of quadrilateral $J K L M$ have coordinates $J(-3,1), K(1,-5), L(7,-2)$, and $M(3,4)$. Prove that $J K L M$ is a parallelogram. Prove that $J K L M$ is not a rhombus. [The use of the set of axes below is optional.]

442 Quadrilateral $A B C D$ is graphed on the set of axes below.

Which quadrilateral best classifies $A B C D$?
1 trapezoid
2 rectangle
3 rhombus
4 square

443 Rectangle $K L M N$ has vertices $K(0,4), L(4,2)$, $M(1,-4)$, and $N(-3,-2)$. Determine and state the coordinates of the point of intersection of the diagonals.

CONICS

G.G.49: CHORDS

444 In the diagram below, circle O has a radius of 5, and $C E=2$. Diameter $\overline{A C}$ is perpendicular to chord $\overline{B D}$ at E.

What is the length of $\overline{B D}$?
$1 \quad 12$
$2 \quad 10$
38
44

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

445 In the diagram below, $\triangle A B C$ is inscribed in circle P. The distances from the center of circle P to each side of the triangle are shown.

Which statement about the sides of the triangle is true?
$1 \quad A B>A C>B C$
$2 A B<A C$ and $A C>B C$
$3 A C>A B>B C$
$4 \quad A C=A B$ and $A B>B C$

446 In the diagram below of circle O, radius $\overline{O C}$ is 5 cm . Chord $\overline{A B}$ is 8 cm and is perpendicular to $\overline{O C}$ at point P.

What is the length of $\overline{O P}$, in centimeters?
18
22
33
44

447 In the diagram below of circle O, diameter $\overline{A O B}$ is perpendicular to chord $\overline{C D}$ at point $E, O A=6$, and $O E=2$.

What is the length of $\overline{C E}$?
$1 \quad 4 \sqrt{3}$
$2 \quad 2 \sqrt{3}$
$3 \quad 8 \sqrt{2}$
$4 \quad 4 \sqrt{2}$

448 In the diagram below of circle O, diameter $\overline{A B}$ is perpendicular to chord $\overline{C D}$ at E. If $A O=10$ and $B E=4$, find the length of $\overline{C E}$.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

449 In circle O shown below, diameter $\overline{D B}$ is perpendicular to chord $\overline{A C}$ at E.

If $D B=34, A C=30$, and $D E>B E$, what is the length of $\overline{B E}$?
18
29
316
$4 \quad 25$

450 In circle R shown below, diameter $\overline{D E}$ is perpendicular to chord $\overline{S T}$ at point L.

Which statement is not always true?
$1 \overline{S L} \cong \overline{T L}$
$2 \quad R S=D R$
$3 \overline{R L} \cong \overline{L E}$
$4 \quad(D L)(L E)=(S L)(L T)$

451 In circle O shown below, chords $\overline{A B}$ and $\overline{C D}$ and radius $\overline{O A}$ are drawn, such that $\overline{A B} \cong \overline{C D}$, $\overline{O E} \perp \overline{A B}, \overline{O F} \perp \overline{C D}, O F=16, C F=y+10$, and $C D=4 y-20$.

Determine the length of $\overline{D F}$. Determine the length of $\overline{O A}$.

452 In circle O, diameter $\overline{A B}$ intersects chord $\overline{C D}$ at E. If $C E=E D$, then $\angle C E A$ is which type of angle?
1 straight
2 obtuse
3 acute
4 right

453 In the diagram below, diameter $\overline{A B}$ bisects chord $\overline{C D}$ at point E in circle F.

If $A E=2$ and $F B=17$, then the length of $\overline{C E}$ is
17
28
$3 \quad 15$
$4 \quad 16$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

454 In the diagram below of circle O, diameter $\overline{A B}$ and chord $\overline{C D}$ intersect at E.

If $\overline{A B} \perp \overline{C D}$, which statement is always true?
$1 \overparen{A C} \cong \overparen{B D}$
$2 \widehat{B D} \cong \overparen{D A}$
$3 \overparen{A D} \cong \overparen{B C}$
$4 \overparen{C B} \cong \overparen{B D}$

G.G.52: CHORDS AND SECANTS

455 In the diagram of circle O below, chords $\overline{A B}$ and $\overline{C D}$ are parallel, and $\overline{B D}$ is a diameter of the circle.

If $\mathrm{m} \overparen{A D}=60$, what is $\mathrm{m} \angle C D B$?
120
230
360
4120

456 In the diagram of circle O below, chord $\overline{C D}$ is parallel to diameter $\overline{A O B}$ and $\mathrm{m} \overparen{A C}=30$.

What is $\mathrm{m} \overparen{C D}$?
1150
2120
3100
460

457 In the diagram below of circle O, chord $\overline{A B} \|$ chord $\overline{C D}$, and chord $\overline{C D} \|$ chord $\overline{E F}$.

Which statement must be true?
$1 \overparen{C E} \cong \overparen{D F}$
$2 \overparen{A C} \cong \overparen{D F}$
$3 \overparen{A C} \cong \overparen{C E}$
$4 \overparen{E F} \cong \overparen{C D}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

458 In the diagram below of circle O, chord $\overline{A B}$ is parallel to chord $\overline{C D}$.

Which statement must be true?
$1 \overparen{A C} \cong \overparen{B D}$
$2 \overparen{A B} \cong \overparen{C D}$
$3 \overline{A B} \cong \overline{C D}$
$4 \widehat{A B D} \cong \widehat{C D B}$

459 In the diagram below, trapezoid $A B C D$, with bases $\overline{A B}$ and $\overline{D C}$, is inscribed in circle O, with diameter $\overline{D C}$. If $\mathrm{m} \overparen{A B}=80$, find $\mathrm{m} \overparen{B C}$.

460 In the diagram below, two parallel lines intersect circle O at points A, B, C, and D, with $\mathrm{m} \overparen{A B}=x+20$ and $\mathrm{m} \overparen{D C}=2 x-20$. Find $\mathrm{m} \overparen{A B}$.

461 In the diagram below of circle O, diameter $\overline{A B}$ is parallel to chord $\overline{C D}$.

If $\mathrm{m} \overparen{C D}=70$, what is $\mathrm{m} \overparen{A C}$?
1110
270
355
435

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

462 In the diagram below of circle O, chord $\overline{A B}$ is parallel to chord $\overline{G H}$. Chord $\overline{C D}$ intersects $\overline{A B}$ at E and $\overline{G H}$ at F.

Which statement must always be true?
$1 \overparen{A C} \cong \overparen{C B}$
$2 \widehat{D H} \cong \overparen{B H}$
$3 \overparen{A B} \cong \overparen{G H}$
$4 \overparen{A G} \cong \overparen{B H}$

463 In circle O shown in the diagram below, chords $\overline{A B}$ and $\overline{C D}$ are parallel.

If $\mathrm{m} \overparen{A B}=104$ and $\mathrm{m} \overparen{C D}=168$, what is $\mathrm{m} \overparen{B D}$?
138
244
388
$4 \quad 96$

464 In the diagram of circle O below, chord $\overline{C D}$ is parallel to diameter $\overline{A O B}$ and $\mathrm{m} \overparen{C D}=110$.

What is $\mathrm{m} \overparen{D B}$?
135
255
370
4110

465 In the diagram of the circle shown below, chords $\overline{A C}$ and $\overline{B D}$ intersect at Q, and chords $\overline{A E}$ and $\overline{B D}$ are parallel.

Which statement must always be true?
$1 \overparen{A B} \cong \overparen{C D}$
$2 \overparen{D E} \cong \overparen{C D}$
$3 \overparen{A B} \cong \overparen{D E}$
$4 \overparen{B D} \cong \overparen{A E}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

466 In the diagram below of circle O, chord $\overline{A B}$ is parallel to chord $\overline{C D}$.

A correct justification for $\mathrm{m} \overparen{A C}=\mathrm{m} \overparen{B D}$ in circle O is
1 parallel chords intercept congruent arcs
2 congruent chords intercept congruent arcs
3 if two chords are parallel, then they are congruent
4 if two chords are equidistant from the center, then the arcs they intercept are congruent

467 In the diagram of the circle below, $\overline{A D} \| \overline{B C}$, $\overparen{A B}=(5 x+30)^{\circ}$, and $\overparen{C D}=(9 x-10)^{\circ}$.

What is $\mathrm{m} \overparen{A B}$?
15
$2 \quad 10$
355
480

468 Points A, B, C, and D are located on circle O, forming trapezoid $A B C D$ with $\overline{A B} \| \overline{D C}$. Which statement must be true?
$1 \overline{A B} \cong \overline{D C}$
$2 \widehat{A D} \cong \overparen{B C}$
$3 \angle A \cong \angle D$
$4 \quad \overparen{A B} \cong \overparen{D C}$

469 Parallel secants $F H$ and $G J$ intersect circle O, as shown in the diagram below.

If $\mathrm{m} \overparen{F H}=106$ and $\mathrm{m} \overparen{\mathrm{GJ}}=24$, then $\mathrm{m} \overparen{F G}$ equals
1106
2115
3130
4156

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.50: TANGENTS

470 In the diagram below, circle A and circle B are shown.

What is the total number of lines of tangency that are common to circle A and circle B ?
11
22
33
44

471 In the diagram below, circles X and Y have two tangents drawn to them from external point T. The points of tangency are C, A, S, and E. The ratio of $T A$ to $A C$ is $1: 3$. If $T S=24$, find the length of $\overline{S E}$.

(Not drawn to scale)

472 How many common tangent lines can be drawn to the two externally tangent circles shown below?

11
22
33
$4 \quad 4$

473 Line segment $A B$ is tangent to circle O at A. Which type of triangle is always formed when points A, B, and O are connected?
1 right
2 obtuse
3 scalene
4 isosceles

474 Tangents $\overline{P A}$ and $\overline{P B}$ are drawn to circle O from an external point, P, and radii $\overline{O A}$ and $\overline{O B}$ are drawn. If $\mathrm{m} \angle A P B=40$, what is the measure of $\angle A O B$?
1140°
2100°
370°
450°

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

475 In the diagram below of $\triangle P A O, \overline{A P}$ is tangent to circle O at point $A, O B=7$, and $B P=18$.

What is the length of $\overline{A P}$?
$1 \quad 10$
$2 \quad 12$
$3 \quad 17$
424

476 The angle formed by the radius of a circle and a tangent to that circle has a measure of
145°
290°
3135°
4180°

477 In the diagram below, circles A and B are tangent at point C and $\overline{A B}$ is drawn. Sketch all common tangent lines.

478 In the diagram below, $\overline{A C}$ and $\overline{A D}$ are tangent to circle B at points C and D, respectively, and $\overline{B C}$, $\overline{B D}$, and $\overline{B A}$ are drawn.

If $A C=12$ and $A B=15$, what is the length of $\overline{B D}$?
15.5

29
$3 \quad 12$
418

479 In the diagram below, $\overline{A C}$ and $\overline{B C}$ are tangent to circle O at A and B, respectively, from external point C.

If $\mathrm{m} \angle A C B=38$, what is $\mathrm{m} \angle A O B$?
171
2104
3142
4161

480 From external point A, two tangents to circle O are drawn. The points of tangency are B and C. Chord $\overline{B C}$ is drawn to form $\triangle A B C$. If $\mathrm{m} \angle A B C=66$, what is $\mathrm{m} \angle A$?
133
248
$3 \quad 57$
466

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

Geometry Regents Exam Questions by Performance Indicator: Topic

481 How many common tangent lines can be drawn to the circles shown below?

11
22
33
44

482 As shown in the diagram below, $\overline{B O}$ and tangents $\overline{B A}$ and $\overline{B C}$ are drawn from external point B to circle O. Radii $\overline{O A}$ and $\overline{O C}$ are drawn.

If $O A=7$ and $D B=18$, determine and state the length of $\overline{A B}$.

483 In the diagram below of circle O with radius $\overline{O A}$, tangent $\overline{C A}$ and secant $\overline{C O B}$ are drawn.

If $A C=20 \mathrm{~cm}$ and $O A=7 \mathrm{~cm}$, what is the length of $\overline{O C}$, to the nearest centimeter?
119
$2 \quad 20$
$3 \quad 21$
427

G.G.51: ARCS DETERMINED BY ANGLES

484 In the diagram below of circle O, chords $\overline{D F}, \overline{D E}$, $\overline{F G}$, and $\overline{E G}$ are drawn such that $\mathrm{m} \overparen{D F}: \mathrm{m} \overparen{F E}: \mathrm{m} \overparen{E G}: \mathrm{m} \overparen{G D}=5: 2: 1: 7$. Identify one pair of inscribed angles that are congruent to each other and give their measure.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

485 In the diagram below of circle O, chords $\overline{A D}$ and $\overline{B C}$ intersect at $E, \mathrm{~m} \overparen{A C}=87$, and $\mathrm{m} \overparen{B D}=35$.

What is the degree measure of $\angle C E A$?
187
261
343.5
$4 \quad 26$

486 In the diagram below of circle O, chords $\overline{A E}$ and $\overline{D C}$ intersect at point B, such that $\mathrm{m} \overparen{A C}=36$ and $\mathrm{m} \overparen{D E}=20$.

What is $\mathrm{m} \angle A B C$?
156
236
328
48

487 In the diagram below of circle O, chords $\overline{A D}$ and $\overline{B C}$ intersect at E.

Which relationship must be true?
$1 \triangle C A E \cong \triangle D B E$
$2 \triangle A E C \sim \triangle B E D$
$3 \angle A C B \cong \angle C B D$
$4 \overparen{C A} \cong \overparen{D B}$

488 In the diagram below of circle $C, \overparen{m T}=140$, and $\mathrm{m} \angle P=40$.

What is $\mathrm{m} \overparen{R S}$?
150
260
390
4110

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

489 In the diagram below, quadrilateral JUMP is inscribed in a circle..

Opposite angles J and M must be
1 right
2 complementary
3 congruent
4 supplementary

490 In the diagram below, tangent $\overline{M L}$ and secant $\overline{M N K}$ are drawn to circle O. The ratio $\mathrm{m} \overparen{L N}: \mathrm{m} \overparen{N K}: \mathrm{m} \overparen{K L}$ is 3:4:5. Find $\mathrm{m} \angle L M K$.

491 In the diagram below of circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E.

If $\mathrm{m} \angle A E C=34$ and $\mathrm{m} \overparen{A C}=50$, what is $\mathrm{m} \overparen{D B}$?
116
218
368
4118

492 Chords $\overline{A B}$ and $\overline{C D}$ intersect at E in circle O, as shown in the diagram below. Secant $\overline{F D A}$ and tangent $\overline{F B}$ are drawn to circle O from external point F and chord $\overline{A C}$ is drawn. The $\mathrm{m} \overparen{D A}=56$, $\mathrm{m} \overparen{D B}=112$, and the ratio of $\mathrm{m} \overparen{A C}: \mathrm{m} \overparen{C B}=3: 1$.

Determine $\mathrm{m} \angle C E B$. Determine $\mathrm{m} \angle F$. Determine $\mathrm{m} \angle D A C$.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

493 In the diagram below of circle $O, \overline{P A C}$ and $\overline{P B D}$ are secants.

If $\mathrm{m} \overparen{C D}=70$ and $\mathrm{m} \overparen{A B}=20$, what is the degree measure of $\angle P$?
125
235
345
450

494 Circle O with $\angle A O C$ and $\angle A B C$ is shown in the diagram below.

What is the ratio of $\mathrm{m} \angle A O C$ to $\mathrm{m} \angle A B C$?
1 1:1
2 2:1
3 3:1
4 1:2

495 As shown in the diagram below, quadrilateral $D E F G$ is inscribed in a circle and $\mathrm{m} \angle D=86$.

Determine and state $\widehat{m F E}$. Determine and state $\mathrm{m} \angle F$.

496 In the diagram below of circle $O, \mathrm{~m} \angle A B C=24$.

What is the $\mathrm{m} \angle A O C$?
$1 \quad 12$
$2 \quad 24$
348
460

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

497 As shown in the diagram below, $\overline{A B}$ is a diameter of circle O, and chord $\overline{A C}$ is drawn.

If $\mathrm{m} \angle B A C=70$, then $\mathrm{m} \overparen{A C}$ is
140
$2 \quad 70$
3110
4140

G.G.53: SEGMENTS INTERCEPTED BY CIRCLE

498 In the diagram below, $\overline{P S}$ is a tangent to circle O at point $S, \overline{P Q R}$ is a secant, $P S=x, P Q=3$, and $P R=x+18$.

(Not drawn to scale)
What is the length of $\overline{P S}$?
16
29
$3 \quad 3$
$4 \quad 27$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

499 In the diagram below, tangent $\overline{A B}$ and secant $\overline{A C D}$ are drawn to circle O from an external point A, $A B=8$, and $A C=4$.

What is the length of $\overline{C D}$?
$1 \quad 16$
$2 \quad 13$
$3 \quad 12$
410

500 In the diagram of circle O below, chord $\overline{A B}$ intersects chord $\overline{C D}$ at $E, D E=2 x+8, E C=3$, $A E=4 x-3$, and $E B=4$.

What is the value of x ?
11
23.6

35
$4 \quad 10.25$

501 In the diagram below, tangent $\overline{P A}$ and secant $\overline{P B C}$ are drawn to circle O from external point P.

If $P B=4$ and $B C=5$, what is the length of $\overline{P A}$?
120
29
38
46

502 In the diagram below of circle O, secant $\overline{A B}$ intersects circle O at D, secant $\overline{A O C}$ intersects circle O at $E, A E=4, A B=12$, and $D B=6$.

What is the length of $\overline{O C}$?
14.5

27
$3 \quad 9$
$4 \quad 14$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

503 In the diagram below of circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E.

If $\underline{C E}=10, E D=6$, and $A E=4$, what is the length of $\overline{E B}$?
115
$2 \quad 12$
$\begin{array}{ll}3 & 6.7\end{array}$
42.4

504 In the diagram below, $\overline{A B}, \overline{B C}$, and $\overline{A C}$ are tangents to circle O at points F, E, and D, respectively, $A F=6, C D=5$, and $B E=4$.

What is the perimeter of $\triangle A B C$?
115
225
$3 \quad 30$
460

505 In the diagram below of circle O, chord $\overline{A B}$ bisects chord $\overline{C D}$ at E. If $A E=8$ and $B E=9$, find the length of $\overline{C E}$ in simplest radical form.

506 In the diagram below of circle $O, \overline{P A}$ is tangent to circle O at A, and $\overline{P B C}$ is a secant with points B and C on the circle.

If $P A=8$ and $P B=4$, what is the length of $\overline{B C}$?
120
216
315
412

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

507
In the diagram below, $\triangle A B C$ is circumscribed about circle O and the sides of $\triangle A B C$ are tangent to the circle at points D, E, and F.

If $A B=20, A E=12$, and $C F=15$, what is the length of $\overline{A C}$?
18
$2 \quad 15$
$3 \quad 23$
427

508 In the diagram below of circle O, chords $\overline{R T}$ and $\overline{Q S}$ intersect at M. Secant $\overline{P T R}$ and tangent $\overline{P S}$ are drawn to circle O. The length of $\overline{R M}$ is two more than the length of $\overline{T M}, Q M=2, S M=12$, and $P T=8$.

Find the length of $\overline{R T}$. Find the length of $\overline{P S}$.

509 Secants $\overline{J K L}$ and $\overline{J M N}$ are drawn to circle O from an external point, J. If $J K=8, L K=4$, and $J M=6$, what is the length of $\overline{J N}$?
$1 \quad 16$
$2 \quad 12$
310
48

510 Chords $\overline{A B}$ and $\overline{C D}$ intersect at point E in a circle with center at O. If $A E=8, A B=20$, and $D E=16$, what is the length of $\overline{C E}$?
16
29
$3 \quad 10$
$4 \quad 12$

511 In the diagram below, secants $\overline{P Q R}$ and $\overline{P S T}$ are drawn to a circle from point P.

If $P R=24, P Q=6$, and $P S=8$, determine and state the length of $\overline{P T}$.

G.G.71: EQUATIONS OF CIRCLES

512 The diameter of a circle has endpoints at ($-2,3$) and $(6,3)$. What is an equation of the circle?
$1(x-2)^{2}+(y-3)^{2}=16$
$2(x-2)^{2}+(y-3)^{2}=4$
$3(x+2)^{2}+(y+3)^{2}=16$
$4(x+2)^{2}+(y+3)^{2}=4$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

513 What is an equation of a circle with its center at $(-3,5)$ and a radius of 4 ?
$1(x-3)^{2}+(y+5)^{2}=16$
$2(x+3)^{2}+(y-5)^{2}=16$
$3(x-3)^{2}+(y+5)^{2}=4$
$4 \quad(x+3)^{2}+(y-5)^{2}=4$

514 Which equation represents the circle whose center is $(-2,3)$ and whose radius is 5 ?
$1(x-2)^{2}+(y+3)^{2}=5$
$2(x+2)^{2}+(y-3)^{2}=5$
$3(x+2)^{2}+(y-3)^{2}=25$
$4(x-2)^{2}+(y+3)^{2}=25$

515 Write an equation of the circle whose diameter $\overline{A B}$ has endpoints $A(-4,2)$ and $B(4,-4)$. [The use of the grid below is optional.]

516 What is an equation of a circle with center (7,-3) and radius 4 ?
$1(x-7)^{2}+(y+3)^{2}=4$
$2(x+7)^{2}+(y-3)^{2}=4$
$3(x-7)^{2}+(y+3)^{2}=16$
$4(x+7)^{2}+(y-3)^{2}=16$

517 What is an equation of the circle with a radius of 5 and center at $(1,-4)$?
$1(x+1)^{2}+(y-4)^{2}=5$
$2(x-1)^{2}+(y+4)^{2}=5$
$3(x+1)^{2}+(y-4)^{2}=25$
$4(x-1)^{2}+(y+4)^{2}=25$

518 Which equation represents circle O with center $(2,-8)$ and radius 9 ?
$1(x+2)^{2}+(y-8)^{2}=9$
$2(x-2)^{2}+(y+8)^{2}=9$
$3(x+2)^{2}+(y-8)^{2}=81$
$4(x-2)^{2}+(y+8)^{2}=81$

519 What is the equation of a circle whose center is 4 units above the origin in the coordinate plane and whose radius is 6 ?
$1 x^{2}+(y-6)^{2}=16$
$2(x-6)^{2}+y^{2}=16$
$3 x^{2}+(y-4)^{2}=36$
$4 \quad(x-4)^{2}+y^{2}=36$

520 The equation of a circle with its center at $(-3,5)$ and a radius of 4 is
$1(x+3)^{2}+(y-5)^{2}=4$
$2(x-3)^{2}+(y+5)^{2}=4$
$3(x+3)^{2}+(y-5)^{2}=16$
$4(x-3)^{2}+(y+5)^{2}=16$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

521 Write an equation of a circle whose center is $(-3,2)$ and whose diameter is 10 .

522 Which equation represents the circle whose center is $(-5,3)$ and that passes through the point $(-1,3)$?
$1(x+1)^{2}+(y-3)^{2}=16$
$2(x-1)^{2}+(y+3)^{2}=16$
$3(x+5)^{2}+(y-3)^{2}=16$
$4(x-5)^{2}+(y+3)^{2}=16$

523 What is an equation of the circle with center $(-5,4)$ and a radius of 7 ?
$1 \quad(x-5)^{2}+(y+4)^{2}=14$
$2(x-5)^{2}+(y+4)^{2}=49$
$3(x+5)^{2}+(y-4)^{2}=14$
$4(x+5)^{2}+(y-4)^{2}=49$

524 What is the equation of the circle with its center at $(-1,2)$ and that passes through the point $(1,2)$?

$$
\begin{array}{ll}
1 & (x+1)^{2}+(y-2)^{2}=4 \\
2 & (x-1)^{2}+(y+2)^{2}=4 \\
3 & (x+1)^{2}+(y-2)^{2}=2 \\
4 & (x-1)^{2}+(y+2)^{2}=2
\end{array}
$$

525 The coordinates of the endpoints of the diameter of a circle are $(2,0)$ and $(2,-8)$. What is the equation of the circle?
$1(x-2)^{2}+(y+4)^{2}=16$
$2(x+2)^{2}+(y-4)^{2}=16$
$3 \quad(x-2)^{2}+(y+4)^{2}=8$
$4 \quad(x+2)^{2}+(y-4)^{2}=8$

526 A circle whose center has coordinates $(-3,4)$ passes through the origin. What is the equation of the circle?
$1(x+3)^{2}+(y-4)^{2}=5$
$2(x+3)^{2}+(y-4)^{2}=25$
$3 \quad(x-3)^{2}+(y+4)^{2}=5$
$4 \quad(x-3)^{2}+(y+4)^{2}=25$

527 Which equation represents a circle whose center is the origin and that passes through the point $(-4,0)$?
$1 \quad x^{2}+y^{2}=8$
$2 x^{2}+y^{2}=16$
$3 \quad(x+4)^{2}+y^{2}=8$
$4(x+4)^{2}+y^{2}=16$

G.G.72: EQUATIONS OF CIRCLES

528 Which equation represents circle K shown in the graph below?

$1(x+5)^{2}+(y-1)^{2}=3$
$2(x+5)^{2}+(y-1)^{2}=9$
$3(x-5)^{2}+(y+1)^{2}=3$
$4 \quad(x-5)^{2}+(y+1)^{2}=9$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

529 What is an equation for the circle shown in the graph below?

$1 \quad x^{2}+y^{2}=2$
$2 x^{2}+y^{2}=4$
$3 \quad x^{2}+y^{2}=8$
$4 x^{2}+y^{2}=16$

530 Write an equation for circle O shown on the graph below.

531 What is an equation of circle O shown in the graph below?

$1 \quad(x+1)^{2}+(y-3)^{2}=25$
$2(x-1)^{2}+(y+3)^{2}=25$
$3(x-5)^{2}+(y+6)^{2}=25$
$4(x+5)^{2}+(y-6)^{2}=25$

532 Write an equation of the circle graphed in the diagram below.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

533 What is an equation of circle O shown in the graph below?

$1(x+2)^{2}+(y-2)^{2}=9$
$2(x+2)^{2}+(y-2)^{2}=3$
$3(x-2)^{2}+(y+2)^{2}=9$
$4(x-2)^{2}+(y+2)^{2}=3$

534 What is an equation of the circle shown in the graph below?

$1(x-3)^{2}+(y-4)^{2}=25$
$2(x+3)^{2}+(y+4)^{2}=25$
$3(x-3)^{2}+(y-4)^{2}=10$
$4(x+3)^{2}+(y+4)^{2}=10$

535 Which equation represents circle A shown in the diagram below?

$1(x-4)^{2}+(y-1)^{2}=3$
$2(x+4)^{2}+(y+1)^{2}=3$
$3(x-4)^{2}+(y-1)^{2}=9$
$4 \quad(x+4)^{2}+(y+1)^{2}=9$

536 What is the equation for circle O shown in the graph below?

$1 \quad(x-3)^{2}+(y+1)^{2}=6$
$2(x+3)^{2}+(y-1)^{2}=6$
$3 \quad(x-3)^{2}+(y+1)^{2}=9$
$4(x+3)^{2}+(y-1)^{2}=9$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

What is the equation of circle O shown in the diagram below?

$1(x+4)^{2}+(y-1)^{2}=3$
$2(x-4)^{2}+(y+1)^{2}=3$
$3 \quad(x+4)^{2}+(y-1)^{2}=9$
$4(x-4)^{2}+(y+1)^{2}=9$

538
Which equation represents circle O shown in the graph below?

$1 x^{2}+(y-2)^{2}=10$
$2 x^{2}+(y+2)^{2}=10$
$3 \quad x^{2}+(y-2)^{2}=25$
$4 x^{2}+(y+2)^{2}=25$

539 Circle O is graphed on the set of axes below. Which equation represents circle O ?

$1(x+1)^{2}+(y-3)^{2}=9$
$2(x-1)^{2}+(y+3)^{2}=9$
$3(x+1)^{2}+(y-3)^{2}=6$
$4 \quad(x-1)^{2}+(y+3)^{2}=6$

540 What is an equation of circle O shown in the graph below?

$1(x-2)^{2}+(y+4)^{2}=4$
$2(x-2)^{2}+(y+4)^{2}=16$
$3(x+2)^{2}+(y-4)^{2}=4$
$4(x+2)^{2}+(y-4)^{2}=16$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

541 The diagram below is a graph of circle O.

Which equation represents circle O ?
$1(x-5)^{2}+(y+3)^{2}=4$
$2(x+5)^{2}+(y-3)^{2}=4$
$3(x-5)^{2}+(y+3)^{2}=16$
$4 \quad(x+5)^{2}+(y-3)^{2}=16$

542 Which equation represents the circle shown in the graph below?

$1(x-2)^{2}+y^{2}=9$
$2(x+2)^{2}+y^{2}=9$
$3(x-2)^{2}+y^{2}=3$
$4(x+2)^{2}+y^{2}=3$

543 Which equation represents the circle shown in the graph below?

$1(x-5)^{2}+(y+3)^{2}=1$
$2(x+5)^{2}+(y-3)^{2}=1$
$3(x-5)^{2}+(y+3)^{2}=2$
$4(x+5)^{2}+(y-3)^{2}=2$

G.G.73: EQUATIONS OF CIRCLES

544 What are the center and radius of a circle whose
equation is $(x-A)^{2}+(y-B)^{2}=C$?
1 center $=(A, B)$; radius $=C$
2 center $=(-A,-B)$; radius $=C$
3 center $=(A, B)$; radius $=\sqrt{C}$
4 center $=(-A,-B)$; radius $=\sqrt{C}$

545 A circle is represented by the equation
$x^{2}+(y+3)^{2}=13$. What are the coordinates of the center of the circle and the length of the radius?
$1(0,3)$ and 13
$2(0,3)$ and $\sqrt{13}$
$3(0,-3)$ and 13
$4(0,-3)$ and $\sqrt{13}$

546 What are the center and the radius of the circle whose equation is $(x-3)^{2}+(y+3)^{2}=36$
1 center $=(3,-3)$; radius $=6$
2 center $=(-3,3)$; radius $=6$
3 center $=(3,-3)$; radius $=36$
4 center $=(-3,3)$; radius $=36$

547 The equation of a circle is $x^{2}+(y-7)^{2}=16$. What are the center and radius of the circle?
1 center $=(0,7)$; radius $=4$
2 center $=(0,7)$; radius $=16$
3 center $=(0,-7)$; radius $=4$
4 center $=(0,-7)$; radius $=16$

548 What are the center and the radius of the circle
whose equation is $(x-5)^{2}+(y+3)^{2}=16$?
$1 \quad(-5,3)$ and 16
$2(5,-3)$ and 16
$3(-5,3)$ and 4
$4(5,-3)$ and 4

549 A circle has the equation $(x-2)^{2}+(y+3)^{2}=36$. What are the coordinates of its center and the length of its radius?
$1 \quad(-2,3)$ and 6
$2(2,-3)$ and 6
$3 \quad(-2,3)$ and 36
$4(2,-3)$ and 36

550 Which equation of a circle will have a graph that lies entirely in the first quadrant?
$1(x-4)^{2}+(y-5)^{2}=9$
$2(x+4)^{2}+(y+5)^{2}=9$
$3(x+4)^{2}+(y+5)^{2}=25$
$4(x-5)^{2}+(y-4)^{2}=25$

551 The equation of a circle is $(x-2)^{2}+(y+5)^{2}=32$. What are the coordinates of the center of this circle and the length of its radius?
$1 \quad(-2,5)$ and 16
$2(2,-5)$ and 16
$3 \quad(-2,5)$ and $4 \sqrt{2}$
$4(2,-5)$ and $4 \sqrt{2}$

552 Which set of equations represents two circles that have the same center?
$1 x^{2}+(y+4)^{2}=16$ and $(x+4)^{2}+y^{2}=16$
$2(x+3)^{2}+(y-3)^{2}=16$ and

$$
(x-3)^{2}+(y+3)^{2}=25
$$

$3(x-7)^{2}+(y-2)^{2}=16$ and

$$
(x+7)^{2}+(y+2)^{2}=25
$$

$4(x-2)^{2}+(y-5)^{2}=16$ and
$(x-2)^{2}+(y-5)^{2}=25$

553 A circle has the equation $(x-3)^{2}+(y+4)^{2}=10$. Find the coordinates of the center of the circle and the length of the circle's radius.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

554 What are the coordinates of the center and the length of the radius of the circle whose equation is $(x+1)^{2}+(y-5)^{2}=16$?
$1 \quad(1,-5)$ and 16
$2(-1,5)$ and 16
$3(1,-5)$ and 4
$4 \quad(-1,5)$ and 4

555 A circle with the equation $(x+6)^{2}+(y-7)^{2}=64$ does not include points in Quadrant
1 I
2 II
3 III
4 IV

556 The equation of a circle is $(x-3)^{2}+y^{2}=8$. The coordinates of its center and the length of its radius are
$1 \quad(-3,0)$ and 4
$2(3,0)$ and 4
$3(-3,0)$ and $2 \sqrt{2}$
$4(3,0)$ and $2 \sqrt{2}$

557 Circle O is represented by the equation $(x+3)^{2}+(y-5)^{2}=48$. The coordinates of the center and the length of the radius of circle O are
$1(-3,5)$ and $4 \sqrt{3}$
$2(-3,5)$ and 24
$3(3,-5)$ and $4 \sqrt{3}$
$4(3,-5)$ and 24

558 Students made four statements about a circle.
A : The coordinates of its center are $(4,-3)$.
B : The coordinates of its center are $(-4,3)$.
C : The length of its radius is $5 \sqrt{2}$.
D : The length of its radius is 25 .
If the equation of the circle is
$(x+4)^{2}+(y-3)^{2}=50$, which statements are correct?
$1 \quad A$ and C
$2 \quad A$ and D
$3 \quad B$ and C
$4 \quad B$ and D

559 In a circle whose equation is $(x-1)^{2}+(y+3)^{2}=9$, the coordinates of the center and length of its radius are
$1 \quad(1,-3)$ and $r=81$
$2(-1,3)$ and $r=81$
$3(1,-3)$ and $r=3$
$4 \quad(-1,3)$ and $r=3$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.74: GRAPHING CIRCLES

560 Which graph represents a circle with the equation $(x-5)^{2}+(y+1)^{2}=9$?

1

561 The equation of a circle is $(x-2)^{2}+(y+4)^{2}=4$. Which diagram is the graph of the circle?

1

2

3

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

562 Which graph represents a circle with the equation $(x-3)^{2}+(y+1)^{2}=4$?

1

,

2

563 Which graph represents a circle whose equation is $(x+2)^{2}+y^{2}=16 ?$

1

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

564 Which graph represents a circle whose equation is $x^{2}+(y-1)^{2}=9$?

1

2

565 Which graph represents a circle whose equation is
$x^{2}+(y-2)^{2}=4$?

1

2

3

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

566 Which graph represents the graph of the equation $(x-1)^{2}+y^{2}=4$?

1

2

3

567 Which graph represents a circle whose equation is $(x-2)^{2}+(y+4)^{2}=4$?

1

2

On the set of axes below, graph and label circle A whose equation is $(x+4)^{2}+(y-2)^{2}=16$ and circle B whose equation is $x^{2}+y^{2}=9$. Determine, in simplest radical form, the length of the line segment with endpoints at the centers of circles A and B.

MEASURING IN THE PLANE AND SPACE g.G.11: VOLUME

Tim has a rectangular prism with a length of 10 centimeters, a width of 2 centimeters, and an unknown height. He needs to build another rectangular prism with a length of 5 centimeters and the same height as the original prism. The volume of the two prisms will be the same. Find the width, in centimeters, of the new prism.

570 A rectangular prism has a base with a length of 25, a width of 9 , and a height of 12 . A second prism has a square base with a side of 15 . If the volumes of the two prisms are equal, what is the height of the second prism?
16
28
312
415

571 Two prisms have equal heights and equal volumes. The base of one is a pentagon and the base of the other is a square. If the area of the pentagonal base is 36 square inches, how many inches are in the length of each side of the square base?
16
29
324
436

572 Two prisms with equal altitudes have equal volumes. The base of one prism is a square with a side length of 5 inches. The base of the second prism is a rectangle with a side length of 10 inches. Determine and state, in inches, the measure of the width of the rectangle.

573 A carpenter made a storage container in the shape of a rectangular prism. It is 5 feet high and has a volume of 720 cubic feet. He wants to make a second container with the same height and volume as the first one, but in the shape of a triangular prism. What will be the number of square feet in the area of the base of the new container?
136
272
3144
4288

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.12: VOLUME

574 A rectangular prism has a volume of
$3 x^{2}+18 x+24$. Its base has a length of $x+2$ and a width of 3 . Which expression represents the height of the prism?
$1 \quad x+4$
$2 x+2$
33
$4 \quad x^{2}+6 x+8$

575 The Parkside Packing Company needs a rectangular shipping box. The box must have a length of 11 inches and a width of 8 inches. Find, to the nearest tenth of an inch, the minimum height of the box such that the volume is at least 800 cubic inches.

576 A packing carton in the shape of a triangular prism is shown in the diagram below.

What is the volume, in cubic inches, of this carton?
120
260
3120
4240

577 The volume of a rectangular prism is 144 cubic inches. The height of the prism is 8 inches. Which measurements, in inches, could be the dimensions of the base?
$1 \quad 3.3$ by 5.5
$2 \quad 2.5$ by 7.2
$3 \quad 12$ by 8
$4 \quad 9$ by 9

578 A right prism has a square base with an area of 12 square meters. The volume of the prism is 84 cubic meters. Determine and state the height of the prism, in meters.

G.G.13: VOLUME

579 A regular pyramid with a square base is shown in the diagram below.

A side, s, of the base of the pyramid is 12 meters, and the height, h, is 42 meters. What is the volume of the pyramid in cubic meters?

580 The base of a pyramid is a rectangle with a width of 6 cm and a length of 8 cm . Find, in centimeters, the height of the pyramid if the volume is $288 \mathrm{~cm}^{3}$.

581 A regular pyramid has a height of 12 centimeters and a square base. If the volume of the pyramid is 256 cubic centimeters, how many centimeters are in the length of one side of its base?
18
216
32
464

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org
G.G.14: VOLUME AND LATERAL AREA

582 The volume of a cylinder is $12,566.4 \mathrm{~cm}^{3}$. The height of the cylinder is 8 cm . Find the radius of the cylinder to the nearest tenth of a centimeter.

583 A right circular cylinder has a volume of 1,000 cubic inches and a height of 8 inches. What is the radius of the cylinder to the nearest tenth of an inch?
16.3
$2 \quad 11.2$
319.8
439.8

584 Which expression represents the volume, in cubic centimeters, of the cylinder represented in the diagram below?

$1 \quad 162 \pi$
2324π
3972π
$43,888 \pi$

585 A right circular cylinder has an altitude of 11 feet and a radius of 5 feet. What is the lateral area, in square feet, of the cylinder, to the nearest tenth?
$1 \quad 172.7$
$2 \quad 172.8$
$3 \quad 345.4$
4345.6

586 What is the volume, in cubic centimeters, of a cylinder that has a height of 15 cm and a diameter of 12 cm ?
$1 \quad 180 \pi$
2540π
3675π
$4 \quad 2,160 \pi$

587 A paint can is in the shape of a right circular cylinder. The volume of the paint can is 600π cubic inches and its altitude is 12 inches. Find the radius, in inches, of the base of the paint can. Express the answer in simplest radical form. Find, to the nearest tenth of a square inch, the lateral area of the paint can.

588 The cylindrical tank shown in the diagram below is to be painted. The tank is open at the top, and the bottom does not need to be painted. Only the outside needs to be painted. Each can of paint covers 600 square feet. How many cans of paint must be purchased to complete the job?

589 A cylinder has a height of 7 cm and a base with a diameter of 10 cm . Determine the volume, in cubic centimeters, of the cylinder in terms of π.

590 A right circular cylinder with a height of 5 cm has a base with a diameter of 6 cm . Find the lateral area of the cylinder to the nearest hundredth of a square centimeter. Find the volume of the cylinder to the nearest hundredth of a cubic centimeter.

591 A right circular cylinder has a height of 7 inches and the base has a diameter of 6 inches. Determine the lateral area, in square inches, of the cylinder in terms of π.

As shown in the diagram below, a landscaper uses a cylindrical lawn roller on a lawn. The roller has a radius of 9 inches and a width of 42 inches.

To the nearest square inch, the area the roller covers in one complete rotation is
1 2,374
2 2,375
3 10,682
4 10,688

593 The diameter of the base of a right circular cylinder is 6 cm and its height is 15 cm . In square centimeters, the lateral area of the cylinder is
$1 \quad 180 \pi$
2 135 π
390π
445π

G.G.15: VOLUME AND LATERAL AREA

594 In the diagram below, a right circular cone has a diameter of 8 inches and a height of 12 inches.

What is the volume of the cone to the nearest cubic inch?
1201
2481
3603
4804

595 A right circular cone has a base with a radius of 15 cm , a vertical height of 20 cm , and a slant height of 25 cm . Find, in terms of π, the number of square centimeters in the lateral area of the cone.

596 The lateral area of a right circular cone is equal to $120 \pi \mathrm{~cm}^{2}$. If the base of the cone has a diameter of 24 cm , what is the length of the slant height, in centimeters?
12.5

25
310
415.7

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

597 A right circular cone has an altitude of 10 ft and the diameter of the base is 6 ft as shown in the diagram below. Determine and state the lateral area of the cone, to the nearest tenth of a square foot.

In the diagram below, a right circular cone with a radius of 3 inches has a slant height of 5 inches, and a right cylinder with a radius of 4 inches has a height of 6 inches.

Determine and state the number of full cones of water needed to completely fill the cylinder with water.

599 As shown in the diagram below, a right circular cone has a height of 12 and a radius of 5 .

Determine, in terms of π, the lateral area of the right circular cone.

600 A paper container in the shape of a right circular cone has a radius of 3 inches and a height of 8 inches. Determine and state the number of cubic inches in the volume of the cone, in terms of π.

G.G.16: VOLUME AND SURFACE AREA

601 Tim is going to paint a wooden sphere that has a diameter of 12 inches. Find the surface area of the sphere, to the nearest square inch.

602 If the surface area of a sphere is represented by 144π, what is the volume in terms of π ?
136π
248π
3216π
4288π

603 The volume, in cubic centimeters, of a sphere whose diameter is 6 centimeters is
112π
236π
348π
4288π

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

604 A sphere has a diameter of 18 meters. Find the volume of the sphere, in cubic meters, in terms of π.

605 The diameter of a sphere is 15 inches. What is the volume of the sphere, to the nearest tenth of a cubic inch?
$1 \quad 706.9$
$2 \quad 1767.1$
$3 \quad 2827.4$
4 14,137.2

606 A sphere is inscribed inside a cube with edges of 6 cm . In cubic centimeters, what is the volume of the sphere, in terms of π ?
112π
236π
348π
4288π

607 The volume of a sphere is approximately 44.6022 cubic centimeters. What is the radius of the sphere, to the nearest tenth of a centimeter?
12.2
23.3
34.4
44.7

608 The diameter of a sphere is 5 inches. Determine and state the surface area of the sphere, to the nearest hundredth of a square inch.

609 If the surface area of a sphere is 144π square centimeters, what is the length of the diameter of the sphere, in centimeters?
136
$2 \quad 18$
312
46

610 The diameter of a sphere is 12 inches. What is the volume of the sphere to the nearest cubic inch?
1288
2452
3905
4 7,238

G.G.45: SIMILARITY

611 Two triangles are similar, and the ratio of each pair of corresponding sides is $2: 1$. Which statement regarding the two triangles is not true? 1 Their areas have a ratio of 4:1.
2 Their altitudes have a ratio of $2: 1$.
3 Their perimeters have a ratio of $2: 1$.
4 Their corresponding angles have a ratio of 2:1.

612 In the diagram below, $\triangle A B C \sim \triangle E F G$, $\mathrm{m} \angle C=4 x+30$, and $\mathrm{m} \angle G=5 x+10$. Determine the value of x.

613 Given $\triangle A B C \sim \triangle D E F$ such that $\frac{A B}{D E}=\frac{3}{2}$. Which statement is not true?
$1 \quad \frac{B C}{E F}=\frac{3}{2}$
$2 \frac{\mathrm{~m} \angle A}{\mathrm{~m} \angle D}=\frac{3}{2}$
$3 \frac{\text { area of } \triangle A B C}{\text { area of } \triangle D E F}=\frac{9}{4}$
$4 \frac{\text { perimeter of } \triangle A B C}{\text { perimeter of } \triangle D E F}=\frac{3}{2}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

614 If $\triangle A B C \sim \triangle Z X Y, \mathrm{~m} \angle A=50$, and $\mathrm{m} \angle C=30$, what is $\mathrm{m} \angle X$?
130
250
380
4100
$615 \triangle A B C$ is similar to $\triangle D E F$. The ratio of the length of $\overline{A B}$ to the length of $\overline{D E}$ is 3:1. Which ratio is also equal to $3: 1$?
$1 \frac{\mathrm{~m} \angle A}{\mathrm{~m} \angle D}$
$2 \frac{\mathrm{~m} \angle B}{\mathrm{~m} \angle F}$
$3 \frac{\text { area of } \triangle A B C}{\text { area of } \triangle D E F}$
$4 \frac{\text { perimeter of } \triangle A B C}{\text { perimeter of } \triangle D E F}$

616 As shown in the diagram below, $\triangle A B C \sim \triangle D E F$, $A B=7 x, B C=4, D E=7$, and $E F=x$.

What is the length of $\overline{A B}$?
128
22
$3 \quad 14$
44

617 In the diagram below, $\triangle A B C \sim \triangle D E F, D E=4$, $A B=x, A C=x+2$, and $D F=x+6$. Determine the length of $\overline{A B}$. [Only an algebraic solution can receive full credit.]

618 In the diagram below, $\triangle A B C \sim \triangle R S T$.

Which statement is not true?
$1 \angle A \cong \angle R$
$2 \quad \frac{A B}{R S}=\frac{B C}{S T}$
$3 \quad \frac{A B}{B C}=\frac{S T}{R S}$
$4 \frac{A B+B C+A C}{R S+S T+R T}=\frac{A B}{R S}$

619 Scalene triangle $A B C$ is similar to triangle $D E F$. Which statement is false?
$1 \quad A B: B C=D E: E F$
$2 A C: D F=B C: E F$
$3 \angle A C B \cong \angle D F E$
$4 \angle A B C \cong \angle E D F$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

620 Triangle $A B C$ is similar to triangle $D E F$. The lengths of the sides of $\triangle A B C$ are 5,8 , and 11 . What is the length of the shortest side of $\triangle D E F$ if its perimeter is 60 ?
110
$2 \quad 12.5$
$3 \quad 20$
427.5

621 If $\triangle R S T \sim \triangle A B C, \mathrm{~m} \angle A=x^{2}-8 x, \mathrm{~m} \angle C=4 x-5$, and $\mathrm{m} \angle R=5 x+30$, find $\mathrm{m} \angle C$. [Only an algebraic solution can receive full credit.]

622 The sides of a triangle are 8,12 , and 15 . The longest side of a similar triangle is 18 . What is the ratio of the perimeter of the smaller triangle to the perimeter of the larger triangle?
1 2:3
2 4:9
3 5:6
4 25:36

623 Triangle $R S T$ is similar to $\triangle X Y Z$ with $R S=3$ inches and $X Y=2$ inches. If the area of $\triangle R S T$ is 27 square inches, determine and state the area of $\triangle X Y Z$, in square inches.

624 If $\triangle A B C \sim \triangle L M N$, which statement is not always true?
$1 \mathrm{~m} \angle A \cong \mathrm{~m} \angle N$
$2 \mathrm{~m} \angle B \cong \mathrm{~m} \angle M$
$3 \frac{\text { area of } \triangle A B C}{\text { area of } \triangle L M N}=\frac{(A C)^{2}}{(L N)^{2}}$
$4 \frac{\text { perimeter of } \triangle A B C}{\text { perimeter of } \triangle L M N}=\frac{A B}{L M}$

625 The corresponding medians of two similar triangles are 8 and 20 . If the perimeter of the larger triangle is 45 , what is the perimeter of the smaller triangle?
$1 \quad 14$
$2 \quad 18$
$3 \quad 33$
437

G.G.47: SIMILARITY

626 In the diagram below of right triangle $A C B$, altitude $\overline{C D}$ intersects $\overline{A B}$ at D. If $A D=3$ and $D B=4$, find the length of $\overline{C D}$ in simplest radical form.

627 In the diagram below, the length of the legs $\overline{A C}$ and $\overline{B C}$ of right triangle $A B C$ are 6 cm and 8 cm , respectively. Altitude $\overline{C D}$ is drawn to the hypotenuse of $\triangle A B C$.

What is the length of $\overline{A D}$ to the nearest tenth of a centimeter?
13.6
26.0
36.4
$4 \quad 4.0$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

628 In the diagram below of right triangle $A C B$, altitude $\overline{C D}$ is drawn to hypotenuse $\overline{A B}$.

If $A B=36$ and $A C=12$, what is the length of $\overline{A D}$?
132
26
$3 \quad 3$
44

629 In the diagram below, $\triangle R S T$ is a $3-4-5$ right triangle. The altitude, h, to the hypotenuse has been drawn. Determine the length of h.

630 In the diagram below of right triangle $A B C, \overline{C D}$ is the altitude to hypotenuse $\overline{A B}, C B=6$, and $A D=5$.

What is the length of $\overline{B D}$?
15
29
33
44

631 In the diagram below of right triangle $A B C$, altitude $\overline{B D}$ is drawn to hypotenuse $\overline{A C}, A C=16$, and $C D=7$.

What is the length of $\overline{B D}$?
$1 \quad 3 \sqrt{7}$
$2 \quad 4 \sqrt{7}$
$3 \quad 7 \sqrt{3}$
412

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

632 In $\triangle P Q R, \angle P R Q$ is a right angle and $\overline{R T}$ is drawn perpendicular to hypotenuse $\overline{P Q}$. If $P T=x$, $R T=6$, and $T Q=4 x$, what is the length of $\overline{P Q}$?
19
$2 \quad 12$
33
415

633 In the diagram below of right triangle $A B C$, altitude $\overline{C D}$ is drawn to hypotenuse $\overline{A B}$.

If $A D=\underline{3}$ and $D B=12$, what is the length of altitude $\overline{C D}$?
16
$2 \quad 6 \sqrt{5}$
33
$4 \quad 3 \sqrt{5}$

634 In right triangle $A B C$ shown in the diagram below, altitude $\overline{B D}$ is drawn to hypotenuse $\overline{A C}, C D=12$, and $A D=3$.

What is the length of $\overline{A B}$?
$1 \quad 5 \sqrt{3}$
26
$3 \quad 3 \sqrt{5}$
49

635 Triangle $A B C$ shown below is a right triangle with altitude $\overline{A D}$ drawn to the hypotenuse $\overline{B C}$.

If $B D=2$ and $D C=10$, what is the length of $\overline{A B}$?
$1 \quad 2 \sqrt{2}$
$2 \quad 2 \sqrt{5}$
$3 \quad 2 \sqrt{6}$
$42 \sqrt{30}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

636 In right triangle $A B C$ below, $\overline{C D}$ is the altitude to hypotenuse $\overline{A B}$. If $C D=6$ and the ratio of $A D$ to $A B$ is $1: 5$, determine and state the length of $\overline{B D}$. [Only an algebraic solution can receive full credit.]

637
In right triangle $A B C$ shown below, altitude $\overline{B D}$ is drawn to hypotenuse $\overline{A C}$.

If $A D=8$ and $D C=10$, determine and state the length of $\overline{A B}$.

638 In the diagram below of right triangle $A B C$, an altitude is drawn to the hypotenuse $\overline{A B}$.

Which proportion would always represent a correct relationship of the segments?
$1 \frac{c}{z}=\frac{z}{y}$
$2 \quad \frac{c}{a}=\frac{a}{y}$
$3 \frac{x}{z}=\frac{z}{y}$
$4 \quad \frac{y}{b}=\frac{b}{x}$

639 In the diagram below, right triangle $R S U$ is inscribed in circle O, and $\overline{U T}$ is the altitude drawn to hypotenuse $\overline{R S}$. The length of $\overline{R T}$ is 16 more than the length of $\overline{T S}$ and $T U=15$. Find the length of $\overline{T S}$. Find, in simplest radical form, the length of $\overline{R U}$.

640 In the diagram below, $\overline{Q M}$ is an altitude of right triangle $P Q R, P M=8$, and $R M=18$.

What is the length of $\overline{Q M}$?
120
$2 \quad 16$
312
$4 \quad 10$

641 In the diagram below of right triangle $A B C, \overline{C D}$ is the altitude to hypotenuse $A B, A D=3$, and $D B=4$.

What is the length of $\overline{C B}$?
$1 \quad 2 \sqrt{3}$
$2 \sqrt{21}$
$3 \quad 2 \sqrt{7}$
$4 \quad 4 \sqrt{3}$

TRANSFORMATIONS

G.G.54: ROTATIONS

642 The coordinates of the vertices of $\triangle R S T$ are $R(-2,3), S(4,4)$, and $T(2,-2)$. Triangle $R^{\prime} S^{\prime} T^{\prime}$ is the image of $\triangle R S T$ after a rotation of 90° about the origin. State the coordinates of the vertices of $\Delta R^{\prime} S^{\prime} T^{\prime}$. [The use of the set of axes below is optional.]

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

643 The coordinates of the vertices of $\triangle A B C$ are $A(1,2), B(-4,3)$, and $C(-3,-5)$. State the coordinates of $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a rotation of 90° about the origin. [The use of the set of axes below is optional.]

644 What are the coordinates of A^{\prime}, the image of $A(-3,4)$, after a rotation of 180° about the origin?
$1(4,-3)$
$2(-4,-3)$
$3(3,4)$
$4(3,-4)$

645 The coordinates of point P are $(7,1)$. What are the coordinates of the image of P after $R_{90^{\circ}}$ about the origin?
$1(1,7)$
$2(-7,-1)$
$3(1,-7)$
$4(-1,7)$

646 The coordinates of the endpoints of $\overline{B C}$ are $B(5,1)$ and $C(-3,-2)$. Under the transformation R_{90}, the image of $\overline{B C}$ is $\overline{B^{\prime} C^{\prime}}$. State the coordinates of points B^{\prime} and C^{\prime}.

G.G.54: REFLECTIONS

647 Point A is located at (4,-7). The point is reflected in the x-axis. Its image is located at
$1(-4,7)$
$2(-4,-7)$
$3(4,7)$
$4(7,-4)$

648 Triangle $X Y Z$, shown in the diagram below, is reflected over the line $x=2$. State the coordinates of $\triangle X^{\prime} Y^{\prime} Z^{\prime}$, the image of $\triangle X Y Z$.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

649 Triangle $A B C$ has vertices $A(-2,2), B(-1,-3)$, and $C(4,0)$. Find the coordinates of the vertices of $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after the transformation $r_{x \text {-axis }}$. [The use of the grid is optional.]

652 Triangle $A B C$ has vertices $A(-1,1), B(1,3)$, and $C(4,1)$. The image of $\triangle A B C$ after the transformation $r_{y=x}$ is $\triangle A^{\prime} B^{\prime} C^{\prime}$. State and label the coordinates of $\triangle A^{\prime} B^{\prime} C^{\prime}$. [The use of the set of axes below is optional.]

650 What is the image of the point $(2,-3)$ after the transformation $r_{y \text {-axis }}$?
$1(2,3)$
$2(-2,-3)$
$3 \quad(-2,3)$
$4 \quad(-3,2)$

651 The coordinates of point A are $(-3 a, 4 b)$. If point A^{\prime} is the image of point A reflected over the line $y=x$, the coordinates of A^{\prime} are
1 (4b,-3a)
$2(3 a, 4 b)$
$3(-3 a,-4 b)$
$4(-4 b,-3 a)$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

653 The image of $\overline{R S}$ after a reflection through the origin is $R^{\prime} S^{\prime}$. If the coordinates of the endpoints of $\overline{R S}$ are $R(2,-3)$ and $S(5,1)$, state and label the coordinates of R^{\prime} and S^{\prime}. [The use of the set of axes below is optional.]

G.G.54: TRANSLATIONS

654 Triangle $A B C$ has vertices $A(1,3), B(0,1)$, and $C(4,0)$. Under a translation, A^{\prime}, the image point of A, is located at $(4,4)$. Under this same translation, point C^{\prime} is located at
$1(7,1)$
$2(5,3)$
$3(3,2)$
$4(1,-1)$

655 What is the image of the point $(-5,2)$ under the translation $T_{3,-4}$?
$1(-9,5)$
$2(-8,6)$
$3(-2,-2)$
$4(-15,-8)$

656 The image of $\triangle A B C$ under a translation is $\triangle A^{\prime} B^{\prime} C^{\prime}$. Under this translation, $B(3,-2)$ maps onto $B^{\prime}(1,-1)$. Using this translation, the coordinates of image A^{\prime} are ($-2,2$). Determine and state the coordinates of point A.

G.G.58: DILATIONS

657 Triangle $A B C$ has vertices $A(6,6), B(9,0)$, and $C(3,-3)$. State and label the coordinates of $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a dilation of $D_{\frac{1}{3}}$.

658 Triangle $A B C$ has coordinates $A(-2,1), B(3,1)$, and $C(0,-3)$. On the set of axes below, graph and label $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a dilation of 2 .

659 Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a dilation of 2 . Which statement is true?
$1 A B=A^{\prime} B^{\prime}$
$2 \quad B C=2\left(B^{\prime} C^{\prime}\right)$
$3 \mathrm{~m} \angle B=\mathrm{m} \angle B^{\prime}$
$4 \mathrm{~m} \angle A=\frac{1}{2}\left(\mathrm{~m} \angle A^{\prime}\right)$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.54: COMPOSITIONS OF TRANSFORMATIONS

660 The coordinates of the vertices of parallelogram $A B C D$ are $A(-2,2), B(3,5), C(4,2)$, and $D(-1,-1)$. State the coordinates of the vertices of parallelogram $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ that result from the transformation $r_{y-\text { axis }}{ }^{\circ} T_{2,-3}$. [The use of the set of axes below is optional.]

661 What is the image of point $A(4,2)$ after the composition of transformations defined by $R_{90}{ }^{\circ} r_{y=x}$?
$1(-4,2)$
$2(4,-2)$
$3(-4,-2)$
$4(2,-4)$

662 The point $(3,-2)$ is rotated 90° about the origin and then dilated by a scale factor of 4 . What are the coordinates of the resulting image?
$1(-12,8)$
2 (12,-8)
$3(8,12)$
$4(-8,-12)$
G.G.58: COMPOSITIONS OF TRANSFORMATIONS

663 The endpoints of $\overline{A B}$ are $A(3,2)$ and $B(7,1)$. If $\overline{A^{\prime \prime} B^{\prime \prime}}$ is the result of the transformation of $\overline{A B}$ under $D_{2}{ }^{\circ} T_{-4,3}$ what are the coordinates of $A^{\prime \prime}$ and B"?
$1 \quad A^{\prime \prime}(-2,10)$ and $B^{\prime \prime}(6,8)$
$2 A^{\prime \prime}(-1,5)$ and $B^{\prime \prime}(3,4)$
$3 \quad A^{\prime \prime}(2,7)$ and $B^{\prime \prime}(10,5)$
$4 \quad A^{\prime \prime}(14,-2)$ and $B^{\prime \prime}(22,-4)$

664 The coordinates of the vertices of $\triangle A B C A(1,3)$, $B(-2,2)$ and $C(0,-2)$. On the grid below, graph and label $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the result of the composite transformation $D_{2} \circ T_{3,-2}$. State the coordinates of $A^{\prime \prime}, B^{\prime \prime}$, and $C^{\prime \prime}$.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

665 As shown on the set of axes below, $\triangle G H S$ has vertices $G(3,1), H(5,3)$, and $S(1,4)$. Graph and state the coordinates of $\Delta G^{\prime \prime} H^{\prime \prime} S^{\prime \prime}$, the image of $\triangle G H S$ after the transformation $T_{-3,1} \circ D_{2}$.

666 The coordinates of trapezoid $A B C D$ are $A(-4,5)$, $B(1,5), C(1,2)$, and $D(-6,2)$. Trapezoid $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ is the image after the composition $r_{x-\text { axis }}{ }^{\circ} r_{y=x}$ is performed on trapezoid $A B C D$. State the coordinates of trapezoid $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$. [The use of the set of axes below is optional.]

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

667 The vertices of $\triangle R S T$ are $R(-6,5), S(-7,-2)$, and $T(1,4)$. The image of $\triangle R S T$ after the composition $T_{-2,3} \circ r_{y=x}$ is $\Delta R " S " T$ ". State the coordinates of $\Delta R " S " T$ ". [The use of the set of axes below is optional.]

668 Triangle $A B C$ has vertices $A(5,1), B(1,4)$ and $C(1,1)$. State and label the coordinates of the vertices of $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the image of $\triangle A B C$, following the composite transformation $T_{1,-1} \circ D_{2}$. [The use of the set of axes below is optional.]

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

669 The coordinates of the vertices of parallelogram SWAN are $S(2,-2), W(-2,-4), A(-4,6)$, and $N(0,8)$. State and label the coordinates of parallelogram $S " W^{\prime \prime} A$ " N ", the image of SWAN after the transformation $T_{4,-2} \circ D_{\frac{1}{2}}$. [The use of the set of axes below is optional.]

670 Quadrilateral MATH has coordinates $M(-6,-3)$, $A(-1,-3), T(-2,-1)$, and $H(-4,-1)$. The image of quadrilateral $M A T H$ after the composition $r_{x \text {-xis }}{ }^{\circ} T_{7,5}$ is quadrilateral $M " A " T " H "$. State and label the coordinates of $M " A " T$ " $H^{\prime \prime}$. [The use of the set of axes below is optional.]

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

671 The coordinates of the vertices of $\triangle A B C$ are $A(-6,5), B(-4,8)$, and $C(1,6)$. State and label the coordinates of the vertices of $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the image of $\triangle A B C$ after the composition of transformations $T_{(4,-5)}{ }^{\circ} r_{y \text {-xxis }}$. [The use of the set of axes below is optional.]

672 The graph below shows $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after it was reflected over the y-axis. Graph and label $\triangle A B C$, the pre-image of $\triangle A^{\prime} B^{\prime} C^{\prime}$. Graph and label $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the image of $\triangle A^{\prime} B^{\prime} C^{\prime}$ after it is reflected through the origin. State a single transformation that will map $\triangle A B C$ onto $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

673 Quadrilateral HYPE has vertices $H(2,3), Y(1,7)$, $P(-2,7)$, and $E(-2,4)$. State and label the coordinates of the vertices of $H^{\prime \prime} Y^{\prime \prime} P^{\prime \prime} E$ " after the composition of transformations $r_{x-a x i s}{ }^{\circ} T_{5,-3}$. [The use of the set of axes below is optional.]

G.G.55: PROPERTIES OF TRANSFORMATIONS

674 The vertices of $\triangle A B C$ are $A(3,2), B(6,1)$, and $C(4,6)$. Identify and graph a transformation of $\triangle A B C$ such that its image, $\triangle A^{\prime} B^{\prime} C^{\prime}$, results in $\overline{A B} \| \overline{A^{\prime} B^{\prime}}$.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

675 Triangle $D E G$ has the coordinates $D(1,1), E(5,1)$, and $G(5,4)$. Triangle $D E G$ is rotated 90° about the origin to form $\triangle D^{\prime} E^{\prime} G^{\prime}$. On the grid below, graph and label $\triangle D E G$ and $\triangle D^{\prime} E^{\prime} G^{\prime}$. State the coordinates of the vertices D^{\prime}, E^{\prime}, and G^{\prime}. Justify that this transformation preserves distance.

676 Which expression best describes the transformation shown in the diagram below?

1 same orientation; reflection
2 opposite orientation; reflection
3 same orientation; translation
4 opposite orientation; translation

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

677 The rectangle $A B C D$ shown in the diagram below will be reflected across the x-axis.

What will not be preserved?
1 slope of $\overline{A B}$
2 parallelism of $\overline{A B}$ and $\overline{C D}$
3 length of $\overline{A B}$
4 measure of $\angle A$

678 Quadrilateral $M N O P$ is a trapezoid with $\overline{M N} \| \overline{O P}$. If $M^{\prime} N^{\prime} O^{\prime} P^{\prime}$ is the image of $M N O P$ after a reflection over the x-axis, which two sides of quadrilateral $M^{\prime} N^{\prime} O^{\prime} P^{\prime}$ are parallel?
$1 \quad \overline{M^{\prime} N^{\prime}}$ and $\overline{O^{\prime} P^{\prime}}$
$2 \overline{M^{\prime} N^{\prime}}$ and $\overline{N^{\prime} O^{\prime}}$
$3 \overline{P^{\prime} M^{\prime}}$ and $\overline{O^{\prime} P^{\prime}}$
$4 \overline{P^{\prime} M^{\prime}}$ and $\overline{N^{\prime} O^{\prime}}$

679 A pentagon is drawn on the set of axes below. If the pentagon is reflected over the y-axis, determine if this transformation is an isometry. Justify your answer. [The use of the set of axes is optional.]

680 Pentagon $P Q R S T$ has $\overline{P Q}$ parallel to $\overline{T S}$. After a translation of $T_{2,-5}$, which line segment is parallel to $\overline{P^{\prime} Q^{\prime}}$?
$1 \overline{R^{\prime} Q^{\prime}}$
$2 \overline{R^{\prime} S^{\prime}}$
$3 \overline{T^{\prime} S^{\prime}}$
$4 \overline{T^{\prime} P^{\prime}}$

681 When a quadrilateral is reflected over the line $y=x$, which geometric relationship is not preserved?
1 congruence
2 orientation
3 parallelism
4 perpendicularity

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

682 Triangle $A B C$ has coordinates $A(2,-2), B(2,1)$, and $C(4,-2)$. Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ under $T_{5,-2}$. On the set of axes below, graph and label $\triangle A B C$ and its image, $\triangle A^{\prime} B^{\prime} C^{\prime}$. Determine the relationship between the area of $\triangle A B C$ and the area of $\triangle A^{\prime} B^{\prime} C^{\prime}$. Justify your response.

683 The vertices of parallelogram $A B C D$ are $A(2,0)$, $B(0,-3), C(3,-3)$, and $D(5,0)$. If $A B C D$ is reflected over the x-axis, how many vertices remain invariant?
11
22
33
40

684 After the transformation $r_{y=x}$, the image of $\triangle A B C$ is $\triangle A^{\prime} B^{\prime} C^{\prime}$. If $A B=2 x+13$ and $A^{\prime} B^{\prime}=9 x-8$, find the value of x.

685 As shown in the diagram below, when right triangle $D A B$ is reflected over the x-axis, its image is triangle $D C B$.

Which statement justifies why $\overline{A B} \cong \overline{C B}$?
1 Distance is preserved under reflection.
2 Orientation is preserved under reflection.
3 Points on the line of reflection remain invariant.
4 Right angles remain congruent under reflection.

686 Triangle $A B C$ has the coordinates $A(1,2), B(5,2)$, and $C(5,5)$. Triangle $A B C$ is rotated 180° about the origin to form triangle $A^{\prime} B^{\prime} C^{\prime}$. Triangle $A^{\prime} B^{\prime} C^{\prime}$ is
1 acute
2 isosceles
3 obtuse
4 right

687 The image of rhombus $V W X Y$ preserves which properties under the transformation $T_{2,-3}$?
1 parallelism, only
2 orientation, only
3 both parallelism and orientation
4 neither parallelism nor orientation

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

688 Right triangle $A B C$ is shown in the graph below.

After a reflection over the y-axis, the image of $\triangle A B C$ is $\triangle A^{\prime} B^{\prime} C^{\prime}$. Which statement is not true?
$1 \overline{B C} \cong \overline{B^{\prime} C^{\prime}}$
$2 \overline{A^{\prime} B^{\prime}} \perp \overline{B^{\prime} C^{\prime}}$
$3 A B=A^{\prime} B^{\prime}$
$4 \overline{A C} \| \overline{A^{\prime} C^{\prime}}$

689 As shown in the diagram below, when hexagon $A B C D E F$ is reflected over line m, the image is hexagon $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime} F^{\prime}$.

Under this transformation, which property is not preserved?
1 area
2 distance
3 orientation
4 angle measure

690 If $\triangle W^{\prime} X^{\prime} Y^{\prime}$ is the image of $\triangle W X Y$ after the transformation $R_{90^{\circ}}$, which statement is false?
$1 \begin{aligned} & 1 \\ & 2 \\ & 2 Y \\ & \bar{W} \| X^{\prime} Y^{\prime} \\ & W^{\prime} X^{\prime}\end{aligned}$
$3 \triangle W X Y \cong \triangle W^{\prime} X^{\prime} Y^{\prime}$
$4 \mathrm{~m} \angle X W Y=\mathrm{m} \angle X^{\prime} W^{\prime} Y^{\prime}$

691 The image of $\triangle A B C$ after the transformation $r_{y \text {-axis }}$ is $\triangle A^{\prime} B^{\prime} C^{\prime}$. Which property is not preserved?
1 distance
2 orientation
3 collinearity
4 angle measure

G.G.57: PROPERTIES OF TRANSFORMATIONS

692 Which transformation of the line $x=3$ results in an image that is perpendicular to the given line?
$1 \quad r_{x \text {-xxis }}$
$2 r_{y \text {-xis }}$
$3 \quad r_{y=x}$
$4 \quad r_{x=1}$

G.G.59: PROPERTIES OF TRANSFORMATIONS

693 In $\triangle K L M, \mathrm{~m} \angle K=36$ and $K M=5$. The transformation D_{2} is performed on $\triangle K L M$ to form $\triangle K^{\prime} L^{\prime} M^{\prime}$. Find $\mathrm{m} \angle K^{\prime}$. Justify your answer.
Find the length of $\overline{K^{\prime} M^{\prime}}$. Justify your answer.

694 When $\triangle A B C$ is dilated by a scale factor of 2 , its image is $\triangle A^{\prime} B^{\prime} C^{\prime}$. Which statement is true?
$1 \overline{A C} \cong \overline{A^{\prime} C^{\prime}}$
$2 \angle A \cong \angle A^{\prime}$
3 perimeter of $\triangle A B C=$ perimeter of $\triangle A^{\prime} B^{\prime} C^{\prime}$
4 2(area of $\triangle A B C)=$ area of $\triangle A^{\prime} B^{\prime} C^{\prime}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

695 Triangle $A B C$ is graphed on the set of axes below.

Which transformation produces an image that is similar to, but not congruent to, $\triangle A B C$?
$1 T_{2,3}$
$2 D_{2}$
$3 r_{y=x}$
$4 \quad R_{90}$

696 When a dilation is performed on a hexagon, which property of the hexagon will not be preserved in its image?
1 parallelism
2 orientation
3 length of sides
4 measure of angles

697 If $\triangle A B C$ and its image, $\triangle A^{\prime} B^{\prime} C^{\prime}$, are graphed on a set of axes, $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$ under each transformation except
$1 \quad D_{2}$
$2 R_{90}$ 。
$3 r_{y=x}$
$4 \quad T_{(-2,3)}$

698 Triangle $J T M$ is shown on the graph below.

Which transformation would result in an image that is not congruent to $\triangle J T M$?
$1 \quad r_{y=x}$
$2 R_{90}$
$3 T_{0,-3}$
$4 \quad D_{2}$

G.G.56: IDENTIFYING TRANSFORMATIONS

699 In the diagram below, under which transformation will $\triangle A^{\prime} B^{\prime} C^{\prime}$ be the image of $\triangle A B C$?

$\begin{array}{ll}1 & \text { rotation } \\ 2 & \text { dilation } \\ 3 & \text { translation } \\ 4 & \text { glide reflection }\end{array}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

700 In the diagram below, which transformation was used to map $\triangle A B C$ to $\triangle A^{\prime} B^{\prime} C^{\prime}$?

1 dilation
2 rotation
3 reflection
4 glide reflection

701 Which transformation is not always an isometry?
1 rotation
2 dilation
3 reflection
4 translation

702 Which transformation can map the letter S onto itself?
1 glide reflection
2 translation
3 line reflection
4 rotation

703 The diagram below shows $\overline{A B}$ and $\overline{D E}$.

Which transformation will move $\overline{A B}$ onto $\overline{D E}$ such that point D is the image of point A and point E is the image of point B ?
$1 T_{3,-3}$
$2 D_{\frac{1}{2}}$
$3 R_{90}$
$4 \quad r_{y=x}$

704 A transformation of a polygon that always preserves both length and orientation is
1 dilation
2 translation
3 line reflection
4 glide reflection

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

705 As shown on the graph below, $\Delta R^{\prime} S^{\prime} T^{\prime}$ is the image of $\triangle R S T$ under a single transformation.

Which transformation does this graph represent?
1 glide reflection
2 line reflection
3 rotation
4 translation

706 The graph below shows $\overline{J T}$ and its image, $\overline{J^{\prime} T^{\prime}}$, after a transformation.

Which transformation would map $\overline{J T}$ onto $\overline{J^{\prime} T^{\prime}}$?
1 translation
2 glide reflection
3 rotation centered at the origin
4 reflection through the origin

707 Trapezoid QRST is graphed on the set of axes below.

Under which transformation will there be no invariant points?
$\begin{array}{ll}1 & r_{y=0} \\ 2 & r_{x=0} \\ 3 & r_{(0,0)} \\ 4 & r_{y=x}\end{array}$

708 In the diagram below, under which transformation is $\triangle X^{\prime} Y^{\prime} Z^{\prime}$ the image of $\triangle X Y Z$?

1 dilation
2 reflection
3 rotation
4 translation

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

709 In the diagram below, $\overline{A^{\prime} B^{\prime}}$ is the image of $\overline{A B}$ under which single transformation?

1 dilation
2 rotation
3 translation
4 glide reflection

G.G.60: IDENTIFYING TRANSFORMATIONS

710 After a composition of transformations, the coordinates $A(4,2), B(4,6)$, and $C(2,6)$ become $A^{\prime \prime}(-2,-1), B^{\prime \prime}(-2,-3)$, and $C^{\prime \prime}(-1,-3)$, as shown on the set of axes below.

Which composition of transformations was used?
$1 \quad R_{180^{\circ}}{ }^{\circ} D_{2}$
$2 R_{90^{\circ}} \circ D_{2}$
$3 \quad D_{\frac{1}{2}}{ }^{\circ} R_{180^{\circ}}$
$4 \quad D_{\frac{1}{2}} \circ R_{90}$ 。

711 Which transformation produces a figure similar but not congruent to the original figure?
$1 T_{1,3}$
$2 \quad D_{\frac{1}{2}}$
$3 R_{90}$ 。
$4 \quad r_{y=x}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

712 In the diagram below, $\Delta A^{\prime} B^{\prime} C^{\prime}$ is a transformation of $\triangle A B C$, and $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is a transformation of $\triangle A^{\prime} B^{\prime} C^{\prime}$.

The composite transformation of $\triangle A B C$ to $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is an example of a
1 reflection followed by a rotation
2 reflection followed by a translation
3 translation followed by a rotation
4 translation followed by a reflection

G.G.61: ANALYTICAL REPRESENTATIONS

 OF TRANSFORMATIONS713 A polygon is transformed according to the rule: $(x, y) \rightarrow(x+2, y)$. Every point of the polygon moves two units in which direction?
1 up
2 down
3 left
4 right

714 On the set of axes below, Geoff drew rectangle $A B C D$. He will transform the rectangle by using the translation $(x, y) \rightarrow(x+2, y+1)$ and then will reflect the translated rectangle over the x-axis.

What will be the area of the rectangle after these transformations?
1 exactly 28 square units
2 less than 28 square units
3 greater than 28 square units
4 It cannot be determined from the information given.

715 Quadrilateral $A B C D$ undergoes a transformation, producing quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. For which transformation would the area of $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ not be equal to the area of $A B C D$?
1 a rotation of 90° about the origin
2 a reflection over the y-axis
3 a dilation by a scale factor of 2
4 a translation defined by $(x, y) \rightarrow(x+4, y-1)$

716 What are the coordinates of the image of point $A(2,-7)$ under the translation $(x, y) \rightarrow(x-3, y+5)$?
$1(-1,-2)$
$2(-1,2)$
$3(5,-12)$
$4(5,12)$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

Geometry Regents Exam Questions by Performance Indicator: Topic

717 Triangle TAP has coordinates $T(-1,4), A(2,4)$, and $P(2,0)$. On the set of axes below, graph and label $\triangle T^{\prime} A^{\prime} P^{\prime}$, the image of $\triangle T A P$ after the translation $(x, y) \rightarrow(x-5, y-1)$.

718 In the diagram below, under which transformation is $\triangle A^{\prime} B^{\prime} C^{\prime}$ the image of $\triangle A B C$?

$1 D_{2}$
$2 r_{x \text {-axis }}$
$3 r_{y \text {-axis }}$
$4(x, y) \rightarrow(x-2, y)$

719 What are the coordinates of P^{\prime}, the image of point $P(x, y)$ after translation $T_{4,4}$?
$1(x-4, y-4)$
$2(x+4, y+4)$
3 (4x,4y)
$4(4,4)$

LOGIC

G.G.24: STATEMENTS AND NEGATIONS

720 What is the negation of the statement "The Sun is shining"?
1 It is cloudy.
2 It is daytime.
3 It is not raining.
4 The Sun is not shining.

721 Given $\triangle A B C$ with base $\overline{A F E D C}$, median $\overline{B F}$, altitude $\overline{B D}$, and $\overline{B E}$ bisects $\angle A B C$, which conclusion is valid?

$1 \angle F A B \cong \angle A B F$
$2 \angle A B F \cong \angle C B D$
$3 \overline{C E} \cong \overline{E A}$
$4 \quad \overline{C F} \cong \overline{F A}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

722 What is the negation of the statement "Squares are parallelograms"?
1 Parallelograms are squares.
2 Parallelograms are not squares.
3 It is not the case that squares are parallelograms.
4 It is not the case that parallelograms are squares.

723 What is the negation of the statement "I am not going to eat ice cream"?
1 I like ice cream.
2 I am going to eat ice cream.
3 If I eat ice cream, then I like ice cream.
4 If I don't like ice cream, then I don't eat ice cream.

724 Given the true statement, "The medians of a triangle are concurrent," write the negation of the statement and give the truth value for the negation.

725 Which statement is the negation of "Two is a prime number" and what is the truth value of the negation?
1 Two is not a prime number; false
2 Two is not a prime number; true
3 A prime number is two; false
4 A prime number is two; true

726 A student wrote the sentence "4 is an odd integer." What is the negation of this sentence and the truth value of the negation?
13 is an odd integer; true
24 is not an odd integer; true
34 is not an even integer; false
44 is an even integer; false

727 Write the negation of the statement " 2 is a prime number," and determine the truth value of the negation.

728 As shown in the diagram below, $\overline{C D}$ is a median of $\triangle A B C$.

Which statement is always true?
$1 \overline{A D} \cong \overline{D B}$
$2 \overline{A C} \cong \overline{A D}$
$3 \angle A C D \cong \angle C D B$
$4 \angle B C D \cong \angle A C D$

729 Given: $\triangle A B D, \overline{B C}$ is the perpendicular bisector of $\overline{A D}$

Which statement can not always be proven?
$1 \overline{A C} \cong \overline{D C}$
$2 \overline{B C} \cong \overline{C D}$
$3 \angle A C B \cong \angle D C B$
$4 \quad \triangle A B C \cong \triangle D B C$

730 Given the statement: One is a prime number. What is the negation and the truth value of the negation?
1 One is not a prime number; true
2 One is not a prime number; false
3 One is a composite number; true
4 One is a composite number; false

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

731 What are the truth values of the statement "Two is prime" and its negation?
1 The statement is false and its negation is true.
2 The statement is false and its negation is false.
3 The statement is true and its negation is true.
4 The statement is true and its negation is false.

732 In the diagram below of quadrilateral $A B C D$, diagonals $\overline{A E C}$ and $\overline{B E D}$ are perpendicular at E.

Which statement is always true based on the given information?
$1 \overline{D E} \cong \overline{E B}$
$2 \overline{A D} \cong \overline{A B}$
$3 \angle D A C \cong \angle B A C$
$4 \angle A E D \cong \angle C E D$

733 What are the truth values of the statement "Opposite angles of a trapezoid are always congruent" and its negation?
1 The statement is true and its negation is true.
2 The statement is true and its negation is false.
3 The statement is false and its negation is true.
4 The statement is false and its negation is false.

G.G.25: COMPOUND STATEMENTS

734 Given: Two is an even integer or three is an even integer.
Determine the truth value of this disjunction. Justify your answer.

735 Which compound statement is true?
1 A triangle has three sides and a quadrilateral has five sides.
2 A triangle has three sides if and only if a quadrilateral has five sides.
3 If a triangle has three sides, then a quadrilateral has five sides.
4 A triangle has three sides or a quadrilateral has five sides.

736 The statement " x is a multiple of 3 , and x is an even integer" is true when x is equal to
19
28
$3 \quad 3$
46

737 Which statement has the same truth value as the statement "If a quadrilateral is a square, then it is a rectangle"?
1 If a quadrilateral is a rectangle, then it is a square.
2 If a quadrilateral is a rectangle, then it is not a square.
3 If a quadrilateral is not a square, then it is not a rectangle.
4 If a quadrilateral is not a rectangle, then it is not a square.

738 Which compound statement is true?
1 A square has four sides or a hexagon has eight sides.
2 A square has four sides and a hexagon has eight sides.
3 If a square has four sides, then a hexagon has eight sides.
4 A square has four sides if and only if a hexagon has eight sides.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

739 The statement " $x>5$ or $x<3$ " is false when x is equal to
11
22
37
44

G.G.26: CONDITIONAL STATEMENTS

740 Write a statement that is logically equivalent to the statement "If two sides of a triangle are congruent, the angles opposite those sides are congruent."
Identify the new statement as the converse, inverse, or contrapositive of the original statement.

741 What is the contrapositive of the statement, "If I am tall, then I will bump my head"?
1 If I bump my head, then I am tall.
2 If I do not bump my head, then I am tall.
3 If I am tall, then I will not bump my head.
4 If I do not bump my head, then I am not tall.

742 What is the inverse of the statement "If two triangles are not similar, their corresponding angles are not congruent"?
1 If two triangles are similar, their corresponding angles are not congruent.
2 If corresponding angles of two triangles are not congruent, the triangles are not similar.
3 If two triangles are similar, their corresponding angles are congruent.
4 If corresponding angles of two triangles are congruent, the triangles are similar.

743 What is the converse of the statement "If Bob does his homework, then George gets candy"?
1 If George gets candy, then Bob does his homework.
2 Bob does his homework if and only if George gets candy.
3 If George does not get candy, then Bob does not do his homework.
4 If Bob does not do his homework, then George does not get candy.

744 Which statement is logically equivalent to "If it is warm, then I go swimming"
1 If I go swimming, then it is warm.
2 If it is warm, then I do not go swimming.
3 If I do not go swimming, then it is not warm.
4 If it is not warm, then I do not go swimming.

745 Consider the relationship between the two statements below.

$$
\begin{aligned}
& \text { If } \sqrt{16+9} \neq 4+3 \text {, then } 5 \neq 4+3 \\
& \text { If } \sqrt{16+9}=4+3 \text {, then } 5=4+3
\end{aligned}
$$

These statements are
1 inverses
2 converses
3 contrapositives
4 biconditionals

746 What is the converse of "If an angle measures 90 degrees, then it is a right angle"?
1 If an angle is a right angle, then it measures 90 degrees.
2 An angle is a right angle if it measures 90 degrees.
3 If an angle is not a right angle, then it does not measure 90 degrees.
4 If an angle does not measure 90 degrees, then it is not a right angle.

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

747 Lines m and n are in plane \mathcal{A}. What is the converse of the statement "If lines m and n are parallel, then lines m and n do not intersect"?
1 If lines m and n are not parallel, then lines m and n intersect.
2 If lines m and n are not parallel, then lines m and n do not intersect
3 If lines m and n intersect, then lines m and n are not parallel.
4 If lines m and n do not intersect, then lines m and n are parallel.

748 Given the statement, "If a number has exactly two factors, it is a prime number," what is the contrapositive of this statement?
1 If a number does not have exactly two factors, then it is not a prime number.
2 If a number is not a prime number, then it does not have exactly two factors.
3 If a number is a prime number, then it has exactly two factors.
4 A number is a prime number if it has exactly two factors.

749 Which statement is the inverse of "If $x+3=7$, then $x=4$ "?
1 If $x=4$, then $x+3=7$.
2 If $x \neq 4$, then $x+3 \neq 7$.
3 If $x+3 \neq 7$, then $x \neq 4$.
4 If $x+3=7$, then $x \neq 4$.

750 Given: "If a polygon is a triangle, then the sum of its interior angles is 180°." What is the contrapositive of this statement?
1 "If the sum of the interior angles of a polygon is not 180°, then it is not a triangle."
2 "A polygon is a triangle if and only if the sum of its interior angles is 180°."
3 "If a polygon is not a triangle, then the sum of the interior angles is not 180°."
4 "If the sum of the interior angles of a polygon is 180°, then it is a triangle."

G.G.28: TRIANGLE CONGRUENCY

751 In the diagram of $\triangle A B C$ and $\triangle D E F$ below, $\overline{A B} \cong \overline{D E}, \angle A \cong \angle D$, and $\angle B \cong \angle E$.

Which method can be used to prove
$\triangle A B C \cong \triangle D E F$?
1 SSS
2 SAS
3 ASA
4 HL

752 The diagonal $\overline{A C}$ is drawn in parallelogram $A B C D$. Which method can not be used to prove that $\triangle A B C \cong \triangle C D A$?
1 SSS
2 SAS
3 SSA
4 ASA

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

753 In the diagram below of $\triangle A G E$ and $\triangle O L D$, $\angle G A E \cong \angle L O D$, and $\overline{A E} \cong \overline{O D}$.

To prove that $\triangle A G E$ and $\triangle O L D$ are congruent by SAS, what other information is needed?
$1 \overline{G E} \cong \overline{L D}$
$2 \overline{A G} \cong \overline{O L}$
$3 \angle A G E \cong \angle O L D$
$4 \angle A E G \cong \angle O D L$

754 In the diagram of quadrilateral $A B C D, \overline{A B} \| \overline{C D}$, $\angle A B C \cong \angle C D A$, and diagonal $\overline{A C}$ is drawn.

Which method can be used to prove $\triangle A B C$ is congruent to $\triangle C D A$?
1 AAS
2 SSA
3 SAS
4 SSS

755 As shown in the diagram below, $\overline{A C}$ bisects $\angle B A D$ and $\angle B \cong \angle D$.

Which method could be used to prove
$\triangle A B C \cong \triangle A D C$?
1 SSS
2 AAA
3 SAS
4 AAS

756 In parallelogram $A B C D$ shown below, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E.

Which statement must be true?

$$
\begin{array}{ll}
1 & \overline{A C} \cong \overline{D B} \\
2 & \angle A B D \cong \angle C B D \\
3 & \triangle A E D \cong \triangle C E B \\
4 & \triangle D C E \cong \triangle B C E
\end{array}
$$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

757 In the diagram below of $\triangle D A E$ and $\triangle B C E, \overline{A B}$ and $\overline{C D}$ intersect at E, such that $\overline{A E} \cong \overline{C E}$ and $\angle B C E \cong \angle D A E$.

Triangle DAE can be proved congruent to triangle BCE by
1 ASA
2 SAS
3 SSS
4 HL

758 In the diagram below, four pairs of triangles are shown. Congruent corresponding parts are labeled in each pair.

Using only the information given in the diagrams, which pair of triangles can not be proven congruent?
1 A
2 B
3 C
4 D

G.G.29: TRIANGLE CONGRUENCY

759 In the diagram of trapezoid $A B C D$ below, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E and $\triangle A B C \cong \triangle D C B$.

Which statement is true based on the given information?
$\begin{array}{ll}1 & \overline{A C} \cong \overline{B C} \\ 2 & \overline{C D} \cong \overline{A D}\end{array}$
$3 \angle C D E \cong \angle B A D$
$4 \angle C D B \cong \angle B A C$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

760 In the diagram below, $\triangle A B C \cong \triangle X Y Z$.

Which two statements identify corresponding congruent parts for these triangles?
$1 \overline{A B} \cong \overline{X Y}$ and $\angle C \cong \angle Y$
$2 \overline{A B} \cong \overline{Y Z}$ and $\angle C \cong \angle X$
$3 \quad \overline{B C} \cong X Y$ and $\angle A \cong \angle Y$
$4 \quad \overline{B C} \cong \overline{Y Z}$ and $\angle A \cong \angle X$

761 If $\triangle J K L \cong \triangle M N O$, which statement is always true?
$1 \angle K L J \cong \angle N M O$
$2 \angle K J L \cong \angle M O N$
$3 \overline{J L} \cong \overline{M O}$
$4 \overline{J K} \cong \overline{O N}$

762 In the diagram below, $\triangle A B C \cong \triangle X Y Z$.

Which statement must be true?
$1 \angle C \cong \angle Y$
$2 \angle A \cong \angle X$
$3 \overline{A C} \cong \overline{Y Z}$
$4 \overline{C B} \cong \overline{X Z}$

763 The diagram below shows a pair of congruent triangles, with $\angle A D B \cong \angle C D B$ and $\angle A B D \cong \angle C B D$.

Which statement must be true?
$1 \angle A D B \cong \angle C B D$
$2 \angle A B C \cong \angle A D C$
$3 \overline{A B} \cong \overline{C D}$
$4 \overline{A D} \cong \overline{C D}$

764 If $\triangle M N P \cong \triangle V W X$ and $\overline{P M}$ is the shortest side of $\triangle M N P$, what is the shortest side of $\triangle V W X$?
$\begin{array}{ll}1 & \overline{X V} \\ 2 & \overline{W X} \\ 3 & \frac{V W}{N P} \\ 4 & \frac{N}{N P}\end{array}$

765 In the diagram below, $\triangle X Y V \cong \triangle T S V$.

Which statement can not be proven?
$1 \angle X V Y \cong \angle T V S$
$2 \angle V Y X \cong \angle V U T$
$3 \overline{X Y} \cong \overline{T S}$
$4 \quad \overline{Y V} \cong \overline{S V}$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

766 If $\triangle A B C \cong \triangle J K L \cong \triangle R S T$, then $\overline{B C}$ must be congruent to
$1 \overline{J L}$
$2 \overline{J K}$
$3 \quad \overline{S T}$
$4 \quad \overline{R S}$

767 In the diagram below, $\triangle A E C \cong \triangle B E D$.

Which statement is not always true?
$1 \overline{A C} \cong \overline{B D}$
$2 \overline{C E} \cong \overline{D E}$
$3 \angle E A C \cong \angle E B D$
$4 \angle A C E \cong \angle D B E$

768 In $\triangle A B C$ shown below with $\overline{A D C}, \overline{A E B}, \overline{C F E}$, and $B F D, \triangle A C E \cong \triangle A B D$.

Which statement must be true?
$1 \quad \angle A C F \cong \angle B C F$
$2 \angle D A E \cong \angle D F E$
$3 \angle B C D \cong \angle A B D$
$4 \angle A E F \cong \angle A D F$

G.G.27: LINE PROOFS

769 In the diagram below of $\overline{A B C D}, \overline{A C} \cong \overline{B D}$.

Using this information, it could be proven that
$1 \quad B C=A B$
$2 \quad A B=C D$
$3 \quad A D-B C=C D$
$4 A B+C D=A D$

770 In the diagram of $\overline{W X Y Z}$ below, $\overline{W Y} \cong \overline{X Z}$.

Which reasons can be used to prove $\overline{W X} \cong \overline{Y Z}$?
1 reflexive property and addition postulate
2 reflexive property and subtraction postulate
3 transitive property and addition postulate
4 transitive property and subtraction postulate

G.G.27: ANGLE PROOFS

771 When writing a geometric proof, which angle relationship could be used alone to justify that two angles are congruent?
1 supplementary angles
2 linear pair of angles
3 adjacent angles
4 vertical angles

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

G.G.27: TRIANGLE PROOFS

772 Given: $\triangle A B C$ and $\triangle E D C, C$ is the midpoint of $\overline{B D}$ and $\overline{A E}$
Prove: $\overline{A B} \| \overline{D E}$

773 Given: $\overline{A D}$ bisects $\overline{B C}$ at E.

$$
\begin{aligned}
& \overline{A B} \perp \overline{B C} \\
& \overline{D C} \perp \overline{B C}
\end{aligned}
$$

Prove: $\overline{A B} \cong \overline{D C}$

774 In $\triangle A E D$ with $\overline{A B C D}$ shown in the diagram below, $\overline{E B}$ and $\overline{E C}$ are drawn.

If $\overline{A B} \cong \overline{C D}$, which statement could always be proven?
$1 \overline{A C} \cong \overline{D B}$
$2 \overline{A E} \cong \overline{E D}$
$3 \overline{A B} \cong \overline{B C}$
$4 \overline{E C} \cong \overline{E A}$

775 In the diagram of $\triangle M A H$ below, $\overline{M H} \cong \overline{A H}$ and medians $\overline{A B}$ and $\overline{M T}$ are drawn. Prove: $\angle M B A \cong \angle A T M$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

776 Given: $\triangle A B C, \overline{B D}$ bisects $\angle A B C, \overline{B D} \perp \overline{A C}$
Prove: $\overline{A B} \cong \overline{C B}$

777 Given: $\overline{M T}$ and $\overline{H A}$ intersect at $B, \overline{M A} \| \overline{H T}$, and $\overline{M T}$ bisects $\overline{H A}$.

Prove: $\overline{M A} \cong \overline{H T}$

778 Given: $\overline{B E}$ and $\overline{A D}$ intersect at point C
$\overline{B C} \cong \overline{E C}$
$\overline{A C} \cong \overline{D C}$
$\overline{A B}$ and $\overline{D E}$ are drawn
Prove: $\triangle A B C \cong \triangle D E C$

G.G.27: QUADRILATERAL PROOFS

779 Given: Quadrilateral $A B C D$, diagonal $\overline{A F E C}$, $\overline{A E} \cong \overline{F C}, \overline{B F} \perp \overline{A C}, \overline{D E} \perp \overline{A C}, \angle 1 \cong \angle 2$ Prove: $A B C D$ is a parallelogram.

780 Given: $\underline{J K L} M$ is a parallelogram.

$$
\begin{aligned}
& \overline{J M} \cong \overline{L N} \\
& \angle L M N \cong \angle L N M
\end{aligned}
$$

Prove: JKLM is a rhombus.

781 Given: Quadrilateral $A B C D$ with $\overline{A B} \cong \overline{C D}$, $\overline{A D} \cong \overline{B C}$, and diagonal $\overline{B D}$ is drawn Prove: $\angle B D C \cong \angle A B D$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

782 In the diagram below of quadrilateral $A B C D$,
$\overline{A D} \cong \overline{B C}$ and $\angle D A E \cong \angle B C E$. Line segments
$A C, D B$, and $F G$ intersect at E. Prove:
$\triangle A E F \cong \triangle C E G$

783 Given that $A B C D$ is a parallelogram, a student wrote the proof below to show that a pair of its opposite angles are congruent.

Statement	Reason
$1 . A B C D$ is a parallelogram.	1. Given
2. $\overline{B C} \equiv \overline{A D}$ 2. Opposite sides of a parallelogram $\overline{A B} \equiv \overline{D C}$ are congruent.	
3. $\overline{A C} \equiv \overline{C A}$ 3. Reflexive Postulate of Congruency 4. $\triangle A B C \equiv \triangle C D A$ 4. Side-Side-Side $5 . \angle B \cong \angle D$ 5.	

What is the reason justifying that $\angle B \cong \angle D$?
1 Opposite angles in a quadrilateral are congruent.
2 Parallel lines have congruent corresponding angles.
3 Corresponding parts of congruent triangles are congruent.
4 Alternate interior angles in congruent triangles are congruent.

784 The diagram below shows rectangle $A B C D$ with points E and F on side $\overline{A B}$. Segments $C E$ and $D F$ intersect at G, and $\angle A D G \cong \angle B C G$. Prove: $\overline{A E} \cong \overline{B F}$

785 In the diagram below of quadrilateral $A B C D, E$ and F are points on $\overline{A B}$ and $\overline{C D}$, respectively, $\overline{B E} \cong \overline{D F}$, and $\overline{A E} \cong \overline{C F}$.

Which conclusion can be proven?
$1 \overline{E D} \cong \overline{F B}$
$2 \overline{A B} \cong \overline{C D}$
$3 \angle A \cong \angle C$
$4 \angle A E D \cong \angle C F B$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

786 The diagram below shows square $A B C D$ where E and F are points on $\overline{B C}$ such that $\overline{B E} \cong \overline{F C}$, and segments $A F$ and $D E$ are drawn. Prove that $\overline{A F} \cong \overline{D E}$.

787 Given: Parallelogram $D E F G, K$ and H are points on $\overrightarrow{D E}$ such that $\angle D G K \cong \angle E F H$ and $\overline{G K}$ and $\overline{F H}$ are drawn.

Prove: $\overline{D K} \cong \overline{E H}$

G.G.27: CIRCLE PROOFS

788 In the diagram below, quadrilateral $A B C D$ is inscribed in circle $O, \overline{A B} \| \overline{D C}$, and diagonals $\overline{A C}$ and $\overline{B D}$ are drawn. Prove that $\triangle A C D \cong \triangle B D C$.

789 In the diagram below, $\overline{P A}$ and $\overline{P B}$ are tangent to circle $O, \overline{O A}$ and $\overline{O B}$ are radii, and $\overline{O P}$ intersects the circle at C. Prove: $\angle A O P \cong \angle B O P$

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

790 In the diagram of circle O below, diameter $\overline{R S}$, chord $\overline{A S}$, tangent $\overrightarrow{T S}$, and secant $\overline{T A R}$ are drawn.

Complete the following proof to show $(R S)^{2}=R A \cdot R T$

Statements 1. circle O, diameter $\overline{B S}$, chord $\overline{A S}$, tangent $\overline{T S}$, and secant $\overline{T A R}$	Reasons 2. $\overline{R S} \perp \overrightarrow{\mathrm{~S}}$
1. Given	
3. $\angle R S T$ is a right angle	2.
4. $\angle R A S$ is a right angle	3. 1 lines form right angles
5. $\angle R S T \equiv \angle R A S$	5.
6. $\angle R \equiv \angle R$	6. Reflexive property
7. $\triangle R S T \sim \triangle R A S$	7.
8. $\frac{R S}{R A}=\frac{R T}{R S}$	8.
9. $(R S)^{2}=R A \cdot R T$	9.

G.G.44: SIMILARITY PROOFS

791 In the diagram below of $\triangle P R T, Q$ is a point on $\overline{P R}, S$ is a point on $\overline{T R}, \overline{Q S}$ is drawn, and $\angle R P T \cong \angle R S Q$.

Which reason justifies the conclusion that $\triangle P R T \sim \triangle S R Q$?
1 AA
2 ASA
3 SAS
4 SSS

792 In the diagram of $\triangle A B C$ and $\triangle E D C$ below, $\overline{A E}$ and $\overline{B D}$ intersect at C, and $\angle C A B \cong \angle C E D$.

Which method can be used to show that $\triangle A B C$ must be similar to $\triangle E D C$?
1 SAS
2 AA
3 SSS
4 HL

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

793 In the diagram below, $\overline{S Q}$ and $\overline{P R}$ intersect at T, $\overline{P Q}$ is drawn, and $\overline{P S} \| \overline{Q R}$.

What technique can be used to prove that
$\triangle P S T \sim \triangle R Q T$?
1 SAS
2 SSS
3 ASA
4 AA

794 In the diagram below, $\overline{B F C E}, \overline{A B} \perp \overline{B E}$, $\overline{D E} \perp \overline{B E}$, and $\angle B F D \cong \angle E C A$. Prove that $\triangle A B C \sim \triangle D E F$.

795 The diagram below shows $\triangle A B C$, with $\overline{A E B}$, $\overline{A D C}$, and $\angle A C B \cong \angle A E D$. Prove that $\triangle A B C$ is similar to $\triangle A D E$.

796 In $\triangle A B C$ and $\triangle D E F, \frac{A C}{D F}=\frac{C B}{F E}$. Which additional information would prove $\triangle A B C \sim \triangle D E F$?
$1 \quad A C=D F$
$2 C B=F E$
$3 \angle A C B \cong \angle D F E$
$4 \angle B A C \cong \angle E D F$

797 In triangles $A B C$ and $D E F, A B=4, A C=5$, $D E=8, D F=10$, and $\angle A \cong \angle D$. Which method could be used to prove $\triangle A B C \sim \triangle D E F$?
1 AA
2 SAS
3 SSS
4 ASA

Geometry Regents Exam Questions by Performance Indicator: Topic www.jmap.org

798 For which diagram is the statement $\triangle A B C \sim \triangle A D E$ not always true??

1

2

4

Geometry Regents Exam Questions by Performance Indicator: Topic Answer Section

1 ANS: 2
The slope of a line in standard form is $-\frac{A}{B}$ so the slope of this line is $-\frac{5}{3}$ Perpendicular lines have slope that are the opposite and reciprocal of each other.

PTS: 2 REF: fall0828ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
2 ANS: 4
The slope of $y=-\frac{2}{3} x-5$ is $-\frac{2}{3}$. Perpendicular lines have slope that are opposite reciprocals.
PTS: 2 REF: 080917ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
3 ANS: 3
$m=\frac{-A}{B}=-\frac{3}{4}$
PTS: 2 REF: 011025ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
4 ANS: 2 PTS: 2 REF: 061022ge STA: G.G. 62
TOP: Parallel and Perpendicular Lines
5 ANS: 3
$2 y=-6 x+8$ Perpendicular lines have slope the opposite and reciprocal of each other.

$$
y=-3 x+4
$$

$$
m=-3
$$

$m_{\perp}=\frac{1}{3}$
PTS: 2 REF: 081024ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
6 ANS:
$m=\frac{-A}{B}=\frac{6}{2}=3 . m_{\perp}=-\frac{1}{3}$.
PTS: 2 REF: 011134ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
7 ANS: 4
The slope of $3 x+5 y=4$ is $m=\frac{-A}{B}=\frac{-3}{5} . m_{\perp}=\frac{5}{3}$.
PTS: 2 REF: 061127ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
8 ANS: 2
The slope of $x+2 y=3$ is $m=\frac{-A}{B}=\frac{-1}{2} . \quad m_{\perp}=2$.
PTS: 2 REF: 081122ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines

9 ANS: 2
$m=\frac{-A}{B}=\frac{-20}{-2}=10 . m_{\perp}=-\frac{1}{10}$
PTS: 2 REF: 061219ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
10 ANS: 3
The slope of $9 x-3 y=27$ is $m=\frac{-A}{B}=\frac{-9}{-3}=3$, which is the opposite reciprocal of $-\frac{1}{3}$.
PTS: 2 REF: 081225ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
11 ANS: 2
The slope of $2 x+4 y=12$ is $m=\frac{-A}{B}=\frac{-2}{4}=-\frac{1}{2} . m_{\perp}=2$.
PTS: 2 REF: 011310ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
12 ANS: 2
$m=\frac{-A}{B}=\frac{-2}{3} m_{\perp}=\frac{3}{2}$
PTS: 2 REF: 061417ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
13 ANS: 2
$m=\frac{-A}{B}=\frac{-3}{-7}=\frac{3}{7} m_{\perp}=-\frac{7}{3}$
PTS: 2
REF: 081414ge
STA: G.G. 62
TOP: Parallel and Perpendicular Lines
14 ANS:
$\frac{x-1}{4}=\frac{-3}{8}$
$8 x-8=-12$
$8 x=-4$

$$
x=-\frac{1}{2}
$$

PTS: 2
REF: 011534ge
STA: G.G. 62
TOP: Parallel and Perpendicular Lines
15 ANS: 4
$3 y+1=6 x+4.2 y+1=x-9$

$$
\begin{array}{rlrl}
3 y & =6 x+3 & 2 y & =x-10 \\
y & =2 x+1 & y & =\frac{1}{2} x-5
\end{array}
$$

PTS: 2
REF: fall0822ge
STA: G.G. 63
TOP: Parallel and Perpendicular Lines

16 ANS: 2
The slope of $2 x+3 y=12$ is $-\frac{A}{B}=-\frac{2}{3}$. The slope of a perpendicular line is $\frac{3}{2}$. Rewritten in slope intercept form, (2) becomes $y=\frac{3}{2} x+3$.

PTS: 2 REF: 060926ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
17 ANS: 3
The slope of $y=x+2$ is 1 . The slope of $y-x=-1$ is $\frac{-A}{B}=\frac{-(-1)}{1}=1$.
PTS: 2
REF: 080909ge
STA: G.G. 63
TOP: Parallel and Perpendicular Lines
18 ANS: 3
$m=\frac{-A}{B}=\frac{5}{2} . m=\frac{-A}{B}=\frac{10}{4}=\frac{5}{2}$
PTS: 2 REF: 011014ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
19 ANS: 1

$$
\begin{aligned}
-2\left(-\frac{1}{2} y\right. & =6 x+10) \\
y & =-12 x-20
\end{aligned}
$$

PTS: 2 REF: 061027ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
20 ANS: 2
$y+\frac{1}{2} x=4 \quad 3 x+6 y=12$
$y=-\frac{1}{2} x+4$

$$
6 y=-3 x+12
$$

$y=-\frac{1}{2} x+4 \quad y=-\frac{3}{6} x+2$
$m=-\frac{1}{2}$

$$
y=-\frac{1}{2} x+2
$$

PTS: 2
REF: 081014ge
STA: G.G. 63
TOP: Parallel and Perpendicular Lines
21 ANS: 4
$x+6 y=12$

$$
3(x-2)=-y-4
$$

$$
6 y=-x+12
$$

$$
-3(x-2)=y+4
$$

$$
y=-\frac{1}{6} x+2
$$

$$
m=-3
$$

$$
m=-\frac{1}{6}
$$

PTS: 2
22 ANS: 1
REF: 011119ge
STA: G.G. 63
REF: 061113ge

TOP: Parallel and Perpendicular Lines STA: G.G. 63

TOP: Parallel and Perpendicular Lines

23 ANS:
The slope of $y=2 x+3$ is 2 . The slope of $2 y+x=6$ is $\frac{-A}{B}=\frac{-1}{2}$. Since the slopes are opposite reciprocals, the lines are perpendicular.

PTS: 2 REF: 011231ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
24 ANS:
The slope of $x+2 y=4$ is $m=\frac{-A}{B}=\frac{-1}{2}$. The slope of $4 y-2 x=12$ is $\frac{-A}{B}=\frac{2}{4}=\frac{1}{2}$. Since the slopes are neither equal nor opposite reciprocals, the lines are neither parallel nor perpendicular.

PTS: 2 REF: 061231ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
25 ANS: 3
$m=\frac{-A}{B}=\frac{-3}{-2}=\frac{3}{2}$
PTS: 2 REF: 011324ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
26 ANS: 4
$m_{A B}^{\overleftrightarrow{ }}=\frac{6-3}{7-5}=\frac{3}{2} . m_{C D}^{\leftrightarrows}=\frac{4-0}{6-9}=\frac{4}{-3}$
PTS: 2 REF: 061318ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
27 ANS: 4
$3 y+6=2 x \quad 2 y-3 x=6$

$$
\begin{array}{rlrl}
3 y & =2 x-6 & 2 y & =3 x+6 \\
y & =\frac{2}{3} x-2 & y & =\frac{3}{2} x+3 \\
m & =\frac{2}{3} & m & =\frac{3}{2}
\end{array}
$$

PTS: 2 REF: 081315ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
28 ANS:
Neither. The slope of $y=\frac{1}{2} x-1$ is $\frac{1}{2}$. The slope of $y+4=-\frac{1}{2}(x-2)$ is $-\frac{1}{2}$. The slopes are neither the same nor opposite reciprocals.

PTS: 2 REF: 011433ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
29 ANS: 1
$k: \frac{-A}{B}=\frac{-1}{2} \quad p: \frac{-A}{B}=\frac{-6}{3}=-2 \mathrm{~m}: \frac{-A}{B}=\frac{-(-1)}{2}=\frac{1}{2}$
PTS: 2 REF: 081426ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines

30 ANS: 4
$m=\frac{-A}{B}=\frac{-4}{6}=-\frac{2}{3}$
PTS: 2 REF: 011520ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
31 ANS: 4
$k: m=\frac{2}{3} m: m=\frac{-A}{B}=\frac{-2}{3} n: m=\frac{3}{2}$
PTS: 2 REF: 061518ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
32 ANS: 2
The slope of $y=\frac{1}{2} x+5$ is $\frac{1}{2}$. The slope of a perpendicular line is $-2 . y=m x+b$

$$
\begin{aligned}
& 5=(-2)(-2)+b \\
& b=1
\end{aligned}
$$

PTS: 2 REF: 060907ge STA: G.G. 64 TOP: Parallel and Perpendicular Lines
33 ANS: 4
The slope of $y=-3 x+2$ is -3 . The perpendicular slope is $\frac{1}{3} .-1=\frac{1}{3}(3)+b$

$$
\begin{aligned}
-1 & =1+b \\
b & =-2
\end{aligned}
$$

PTS: 2 REF: 011018ge STA: G.G. 64 TOP: Parallel and Perpendicular Lines
34 ANS:
$y=\frac{2}{3} x+1.2 y+3 x=6 \quad . y=m x+b$

$$
\begin{array}{rlrl}
2 y & =-3 x+6 & 5 & =\frac{2}{3}(6)+b \\
y & =-\frac{3}{2} x+3 & 5 & =4+b \\
m & =-\frac{3}{2} & 1 & =b \\
m_{\perp} & =\frac{2}{3} & y & =\frac{2}{3} x+1
\end{array}
$$

PTS: 4
REF: 061036ge
STA: G.G. 64
REF: 011217ge
TOP: Parallel and Perpendicular Lines
35 ANS: 3
PTS: 2
STA: G.G. 64
TOP: Parallel and Perpendicular Lines

36 ANS: 4

$$
\begin{aligned}
m_{\perp}=-\frac{1}{3} \cdot y & =m x+b \\
6 & =-\frac{1}{3}(-9)+b \\
6 & =3+b \\
3 & =b
\end{aligned}
$$

PTS: 2 REF: 061215ge STA: G.G. 64 TOP: Parallel and Perpendicular Lines
37 ANS: 3
The slope of $2 y=x+2$ is $\frac{1}{2}$, which is the opposite reciprocal of $-2 . \quad 3=-2(4)+b$

$$
11=b
$$

PTS: 2
REF: 081228ge
STA: G.G. 64
TOP: Parallel and Perpendicular Lines
38 ANS: 4
$m=\frac{2}{3} \quad .2=-\frac{3}{2}(4)+b$
$m_{\perp}=-\frac{3}{2} \quad \begin{aligned} & 2=-6+b \\ & 8=b\end{aligned}$
PTS: 2
REF: 011319ge
STA: G.G. 64
TOP: Parallel and Perpendicular Lines
39 ANS: 2
$m=\frac{1}{3} \quad 12=-3(-9)+b$
$m_{\perp}=-3 \begin{aligned} 12 & =27+b \\ -15 & =b\end{aligned}$
PTS: 2 REF: 081404ge STA: G.G. 64 TOP: Parallel and Perpendicular Lines
40 ANS: 1
$m=\frac{6}{3}=2 m_{\perp}=-\frac{1}{2} 4=-\frac{1}{2}(2)+b$

$$
4=-1+b
$$

$$
5=b
$$

PTS: 2 REF: 061507ge STA: G.G. 64 TOP: Parallel and Perpendicular Lines
41 ANS:
$m=\frac{3}{2} ; m_{\perp}=-\frac{2}{3} \quad y=-\frac{2}{3} x$
PTS: 2 REF: 081533ge STA: G.G. 64 TOP: Parallel and Perpendicular Lines

42 ANS: 2
The slope of a line in standard form is $-\frac{A}{B}$, so the slope of this line is $\frac{-2}{-1}=2$. A parallel line would also have a slope of 2 . Since the answers are in slope intercept form, find the y-intercept: $\quad y=m x+b$

$$
\begin{aligned}
-11 & =2(-3)+b \\
-5 & =b
\end{aligned}
$$

PTS: 2 REF: fall0812ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
43 ANS:
$y=-2 x+14$. The slope of $2 x+y=3$ is $\frac{-A}{B}=\frac{-2}{1}=-2 . y=m x+b$

$$
\begin{aligned}
& 4=(-2)(5)+b \\
& b=14
\end{aligned}
$$

PTS: 2 REF: 060931ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
44 ANS:
$y=\frac{2}{3} x-9$. The slope of $2 x-3 y=11$ is $-\frac{A}{B}=\frac{-2}{-3}=\frac{2}{3} .-5=\left(\frac{2}{3}\right)(6)+b$

$$
\begin{aligned}
-5 & =4+b \\
b & =-9
\end{aligned}
$$

PTS: 2 REF: 080931ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
45 ANS: 4
The slope of a line in standard form is $-\frac{A}{B}$, so the slope of this line is $\frac{-4}{2}=-2$. A parallel line would also have a
slope of -2 . Since the answers are in slope intercept form, find the y-intercept: $y=m x+b$

$$
\begin{aligned}
3 & =-2(7)+b \\
17 & =b
\end{aligned}
$$

PTS: 2
REF: 081010ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines
46 ANS: 4
$y=m x+b$
$3=\frac{3}{2}(-2)+b$
$3=-3+b$
$6=b$
PTS: 2
REF: 011114ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines

47 ANS: 2
The slope of a line in standard form is $\frac{-A}{B}$, so the slope of this line is $\frac{-4}{3}$. A parallel line would also have a slope of $\frac{-4}{3}$. Since the answers are in standard form, use the point-slope formula. $y-2=-\frac{4}{3}(x+5)$

$$
\begin{aligned}
3 y-6 & =-4 x-20 \\
4 x+3 y & =-14
\end{aligned}
$$

PTS: 2
REF: 061123ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines
48 ANS: 2
$m=\frac{-A}{B}=\frac{-4}{2}=-2 \quad y=m x+b$
$2=-2(2)+b$
$6=b$
PTS: 2
REF: 081112ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines
49 ANS: 3
$y=m x+b$
$-1=2(2)+b$
$-5=b$
PTS: 2
REF: 011224ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines
50 ANS: 4

$$
\begin{aligned}
m=\frac{-A}{B}=\frac{-3}{2} . \quad y & =m x+b \\
-1 & =\left(\frac{-3}{2}\right)(2)+b \\
-1 & =-3+b \\
2 & =b
\end{aligned}
$$

PTS: 2 REF: 061226ge STA: G.G. 65 TOP: Parallel and Perpendicular Lines
51 ANS: 1

$$
\begin{aligned}
m=\frac{3}{2} \quad y & =m x+b \\
2 & =\frac{3}{2}(1)+b \\
\frac{1}{2} & =b
\end{aligned}
$$

PTS: 2
REF: 081217ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines

52 ANS: 3

$$
\begin{array}{rlrl}
2 y=3 x-4 . & & 1=\frac{3}{2}(6)+b \\
y=\frac{3}{2} x-2 & & 1 & =9+b \\
-8 & =b
\end{array}
$$

PTS: 2
REF: 061316ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines
53 ANS: 2

$$
\begin{aligned}
m=\frac{-A}{B}=\frac{-5}{1}=-5 \quad y & =m x+b \\
3 & =-5(5)+b \\
28 & =b
\end{aligned}
$$

PTS: 2
REF: 011410ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines
54 ANS: 1
$m=\frac{-A}{B}=\frac{1}{2}-1=\frac{1}{2}(4)+b$

$$
-1=2+b
$$

$$
-3=b
$$

PTS: 2
ANS: 2
REF: 061420ge
PTS: 2
TOP: Parallel and Perpendicular Lines
56 ANS:

$$
\begin{aligned}
m=\frac{1}{3} \quad 4 & =\frac{1}{3}(-3)+b \quad y=\frac{1}{3} x+5 \\
4 & =-1+b \\
5 & =b
\end{aligned}
$$

PTS: 2
REF: 011532ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines
57 ANS: 4
$\frac{2}{3}(x-4)=y-5$

$$
\begin{aligned}
2 x-8 & =3 y-15 \\
7 & =3 y-2 x
\end{aligned}
$$

PTS: 2
REF: 061528ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines

58 ANS: 3

$$
m=\frac{-A}{B}=\frac{-4}{-2}=2 \quad \begin{aligned}
y & =m x+b \\
1 & =2(-2)+b \\
1 & =-4+b \\
5 & =b
\end{aligned}
$$

PTS: 2
REF: 081509ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines
59 ANS:
$y=\frac{4}{3} x-6 . M_{x}=\frac{-1+7}{2}=3 \quad$ The perpendicular bisector goes through $(3,-2)$ and has a slope of $\frac{4}{3}$.

$$
\begin{aligned}
& M_{y}=\frac{1+(-5)}{2}=-2 \\
& m=\frac{1-(-5)}{-1-7}=-\frac{3}{4}
\end{aligned}
$$

$y-y_{M}=m\left(x-x_{M}\right)$.

$$
y-1=\frac{4}{3}(x-2)
$$

PTS: 4 REF: 080935ge STA: G.G. 68 TOP: Perpendicular Bisector
60 ANS: 1

$$
\begin{aligned}
& m=\left(\frac{8+0}{2}, \frac{2+6}{2}\right)=(4,4) m=\frac{6-2}{0-8}=\frac{4}{-8}=-\frac{1}{2} m_{\perp}=2 \quad y \\
&=m x+b \\
& 4=2(4)+b \\
&-4=b
\end{aligned}
$$

PTS: 2
REF: 081126ge STA: G.G. 68
TOP: Perpendicular Bisector
61 ANS: 4
$\overline{A B}$ is a vertical line, so its perpendicular bisector is a horizontal line through the midpoint of $\overline{A B}$, which is $(0,3)$.
PTS: 2
REF: 011225ge
STA: G.G. 68
TOP: Perpendicular Bisector

62 ANS:
$M=\left(\frac{3+3}{2}, \frac{-1+5}{2}\right)=(3,2) . y=2$.
PTS: 2 REF: 011334ge STA: G.G. 68 TOP: Perpendicular Bisector
63 ANS: 3
midpoint: $\left(\frac{6+8}{2}, \frac{8+4}{2}\right)=(7,6)$. slope: $\frac{8-4}{6-8}=\frac{4}{-2}=-2 ; m_{\perp}=\frac{1}{2} . \quad 6=\frac{1}{2}(7)+b$

$$
\begin{aligned}
& \frac{12}{2}=\frac{7}{2}+b \\
& \frac{5}{12}=b
\end{aligned}
$$

PTS: 2 REF: 081327ge STA: G.G. 68 TOP: Perpendicular Bisector
64
ANS:
$M=\left(\frac{4+8}{2}, \frac{2+6}{2}\right)=(6,4) m=\frac{6-2}{8-4}=\frac{4}{4}=1 m_{\perp}=-1 y-1=-(x-6)$
PTS: 4 REF: 081536ge STA: G.G. 68 TOP: Perpendicular Bisector
65 ANS: 3

PTS: 2
66
ANS: 1
$y=x^{2}-4 x=(4)^{2}-4(4)=0 .(4,0)$ is the only intersection.
PTS: 2 REF: 060923ge STA: G.G. 70 TOP: Quadratic-Linear Systems

67 ANS: 4
$y+x=4 . x^{2}-6 x+10=-x+4 . y+x=4 . y+2=4$

$y=-x+4$

$$
\begin{array}{cc}
x^{2}-5 x+6=0 & y+3=4 \\
(x-3)(x-2)=0 & y=2 \\
x=3 \text { or } 2 &
\end{array}
$$

PTS: 2 REF: 080912ge STA: G.G. 70 TOP: Quadratic-Linear Systems
68 ANS:

PTS: 6
REF: 011038ge
STA: G.G. 70
TOP: Quadratic-Linear Systems
69 ANS: 3

PTS: 2
REF: 061011ge
STA: G.G. 70
TOP: Quadratic-Linear Systems
70 ANS: 3

$$
\begin{aligned}
(x+3)^{2}-4 & =2 x+5 \\
x^{2}+6 x+9-4 & =2 x+5 \\
x^{2}+4 x & =0 \\
x(x+4) & =0 \\
x & =0,-4
\end{aligned}
$$

PTS: 2
REF: 081004ge
STA: G.G. 70
TOP: Quadratic-Linear Systems

71 ANS:

PTS: 4
72 ANS: 3

REF: 061137ge
STA: G.G. 70
TOP: Quadratic-Linear Systems

PTS: 2
REF: 081118ge STA: G.G. 70
ANS:

PTS: 6
74 ANS:

PTS: 4

REF: 061238ge STA: G.G. 70
TOP: Quadratic-Linear Systems

REF: 081237ge
STA: G.G. 70
TOP: Quadratic-Linear Systems

75 ANS: 3
$x^{2}+5^{2}=25$

$$
x=0
$$

PTS: 2
76 ANS: 2
PTS: 2
TOP: Quadratic-Linear Systems
77 ANS: 2

$$
\begin{aligned}
(x-4)^{2}-2 & =-2 x+6 . \quad y=-2(4)+6=-2 \\
x^{2}-8 x+16-2 & =-2 x+6 \quad y=-2(2)+6=2 \\
x^{2}-6 x+8 & =0 \\
(x-4)(x-2) & =0 \\
x & =4,2
\end{aligned}
$$

PTS: 2
REF: 081319ge
STA: G.G. 70
ANS: 2

$$
\begin{aligned}
x^{2}-2 & =x \\
x^{2}-x-2 & =0 \\
(x-2)(x+1) & =0 \\
x & =2,-1
\end{aligned}
$$

PTS: 2
REF: 011409ge STA: G.G. 70
TOP: Quadratic-Linear Systems
79 ANS: 2

$$
\begin{aligned}
x+2 x & =x^{2} \quad(0,0),(3,3) \\
0 & =x^{2}-3 x \\
0 & =x(x-3) \\
x & =0,3
\end{aligned}
$$

PTS: 2
REF: 061406ge
STA: G.G. 70
TOP: Quadratic-Linear Systems
80 ANS: 1

$$
\begin{array}{rlr}
x^{2}+5 & =x+5 & y=(0)+5=5 \\
x^{2}-x & =0 & y=(1)+5=6 \\
x(x-1) & =0 \\
x & =0,1
\end{array}
$$

PTS: 2
81 ANS: 4
REF: 081406ge
PTS: 2
TOP: Quadratic-Linear Systems

STA: G.G. 70
REF: 011501ge

TOP: Quadratic-Linear Systems STA: G.G. 70

82
ANS:

PTS: 4
REF: 061535ge
STA: G.G. 70
83 ANS: 4
$2 x+3=-x^{2}-x+1 \quad y=2(-2)+3=-1$
$x^{2}+3 x+2=0$
$(x+2)(x+1)=0$

$$
x=-2,-1
$$

PTS: 2
REF: 081516ge
STA: G.G. 70
TOP: Quadratic-Linear Systems
84 ANS: 2
$M_{x}=\frac{2+(-4)}{2}=-1 . M_{Y}=\frac{-3+6}{2}=\frac{3}{2}$.
PTS: 2
REF: fall0813ge
STA: G.G. 66
TOP: Midpoint
KEY: general
85 ANS: 4
$M_{x}=\frac{-6+1}{2}=-\frac{5}{2} . M_{y}=\frac{1+8}{2}=\frac{9}{2}$.
PTS: 2
REF: 060919ge
STA: G.G. 66
TOP: Midpoint
KEY: graph
86 ANS: 2
$M_{x}=\frac{-2+6}{2}=2 . M_{y}=\frac{-4+2}{2}=-1$

PTS: 2
REF: 080910ge
STA: G.G. 66
TOP: Midpoint
KEY: general

87 ANS:
$(6,-4) . C_{x}=\frac{Q_{x}+R_{x}}{2} . C_{y}=\frac{Q_{y}+R_{y}}{2}$.

$$
\begin{array}{rlrl}
3.5 & =\frac{1+R_{x}}{2} & 2 & =\frac{8+R_{y}}{2} \\
7 & =1+R_{x} & 4 & =8+R_{y} \\
6 & =R_{x} & -4 & =R_{y}
\end{array}
$$

PTS: 2 REF: 011031ge STA: G.G. 66 TOP: Midpoint
KEY: graph
88 ANS: 2
$M_{x}=\frac{3 x+5+x-1}{2}=\frac{4 x+4}{2}=2 x+2 . \quad M_{Y}=\frac{3 y+(-y)}{2}=\frac{2 y}{2}=y$.
PTS: 2 REF: 081019ge STA: G.G. 66 TOP: Midpoint
KEY: general
89 ANS: 2
$M_{x}=\frac{7+(-3)}{2}=2 . \quad M_{Y}=\frac{-1+3}{2}=1$.
PTS: 2 REF: 011106ge STA: G.G. 66 TOP: Midpoint
90 ANS:
$(2 a-3,3 b+2) .\left(\frac{3 a+a-6}{2}, \frac{2 b-1+4 b+5}{2}\right)=\left(\frac{4 a-6}{2}, \frac{6 b+4}{2}\right)=(2 a-3,3 b+2)$
PTS: 2 REF: 061134ge STA: G.G. 66 TOP: Midpoint
91 ANS: 1

$$
\begin{array}{rlrl}
1 & =\frac{-4+x}{2}, & 5 & =\frac{3+y}{2} . \\
-4+x & =2 & 3+y & =10 \\
x & =6 & y & =7
\end{array}
$$

PTS: 2 REF: 081115ge STA: G.G. 66 TOP: Midpoint
92
ANS: 4

$$
\begin{aligned}
-5 & =\frac{-3+x}{2} . & 2 & =\frac{6+y}{2} \\
-10 & =-3+x & & 4=6+y \\
-7 & =x & -2 & =y
\end{aligned}
$$

PTS: 2 REF: 081203ge STA: G.G. 66 TOP: Midpoint

93 ANS: 3

$$
\begin{array}{rlrl}
6 & =\frac{4+x}{2} . & 8 & =\frac{2+y}{2} . \\
4+x & =12 & 2+y & =16 \\
x & =8 & y & =14
\end{array}
$$

PTS: 2
REF: 011305ge
STA: G.G. 66
TOP: Midpoint
94 ANS: 2
$M_{x}=\frac{8+(-3)}{2}=2.5 . M_{Y}=\frac{-4+2}{2}=-1$.
PTS: 2
REF: 061312ge
STA: G.G. 66
TOP: Midpoint
95 ANS: 2
$\frac{6+x}{2}=4 . \frac{-4+y}{2}=2$

$$
x=2 \quad y=8
$$

PTS: 2 REF: 011401ge STA: G.G. 66 TOP: Midpoint
96 ANS: 1
$M_{x}=\frac{-5+3}{2}=\frac{-2}{2}=-1 . M_{y}=\frac{1+5}{2}=\frac{6}{2}=3$.
PTS: 2 REF: 061402ge STA: G.G. 66 TOP: Midpoint
97 ANS: 3
$M_{x}=\frac{1+10}{2}=\frac{11}{2}=5.5 M_{y}=\frac{3+7}{2}=\frac{10}{2}=5$.
PTS: 2
REF: 081407ge
STA: G.G. 66
TOP: Midpoint
KEY: graph
98 ANS: 4
$M_{x}=\frac{2+8}{2}=5 . M_{Y}=\frac{-5+3}{2}=-1$.
PTS: 2
REF: 011502ge
STA: G.G. 66
TOP: Midpoint
KEY: general
99 ANS: 2

$$
\begin{array}{rlrl}
2 & =\frac{10+x}{2} . & 8 & =\frac{12+y}{2} \\
4 & =10+x & 16 & =12+y \\
-6 & =x & 4 & =y
\end{array}
$$

PTS: 2
REF: 061505ge
STA: G.G. 66
TOP: Midpoint

100
ANS:
25. $d=\sqrt{(-3-4)^{2}+(1-25)^{2}}=\sqrt{49+576}=\sqrt{625}=25$.

PTS: 2 REF: fall0831ge STA: G.G. 67 TOP: Distance
KEY: general
ANS: 1
$d=\sqrt{(-4-2)^{2}+(5-(-5))^{2}}=\sqrt{36+100}=\sqrt{136}=\sqrt{4} \cdot \sqrt{34}=2 \sqrt{34}$.
PTS: 2 REF: 080919ge STA: G.G. 67 TOP: Distance
KEY: general
102 ANS: 4
$d=\sqrt{(-3-1)^{2}+(2-0)^{2}}=\sqrt{16+4}=\sqrt{20}=\sqrt{4} \cdot \sqrt{5}=2 \sqrt{5}$
PTS: 2 REF: 011017ge STA: G.G. 67 TOP: Distance
KEY: general
103 ANS: 4
$d=\sqrt{(146-(-4))^{2}+(52-2)^{2}}=\sqrt{25,000} \approx 158.1$
PTS: 2 REF: 061021ge STA: G.G. 67 TOP: Distance
KEY: general
104 ANS: 4
$d=\sqrt{(-6-2)^{2}+(4-(-5))^{2}}=\sqrt{64+81}=\sqrt{145}$
PTS: 2 REF: 081013ge STA: G.G. 67 TOP: Distance
KEY: general
105 ANS: 4
$d=\sqrt{(-5-3)^{2}+(4-(-6))^{2}}=\sqrt{64+100}=\sqrt{164}=\sqrt{4} \sqrt{41}=2 \sqrt{41}$
PTS: 2 REF: 011121ge STA: G.G. 67 TOP: Distance
KEY: general
106 ANS: 2
$d=\sqrt{(-1-7)^{2}+(9-4)^{2}}=\sqrt{64+25}=\sqrt{89}$
PTS: 2 REF: 061109ge STA: G.G. 67 TOP: Distance
KEY: general
107
ANS: 3
$d=\sqrt{(1-9)^{2}+(-4-2)^{2}}=\sqrt{64+36}=\sqrt{100}=10$
PTS: 2 REF: 081107ge STA: G.G. 67 TOP: Distance
KEY: general

108 ANS: 1
$d=\sqrt{(4-1)^{2}+(7-11)^{2}}=\sqrt{9+16}=\sqrt{25}=5$
PTS: 2 REF: 011205ge STA: G.G. 67 TOP: Distance
KEY: general
109 ANS: 3
$d=\sqrt{(-1-4)^{2}+(0-(-3))^{2}}=\sqrt{25+9}=\sqrt{34}$
PTS: 2 REF: 061217ge STA: G.G. 67 TOP: Distance
KEY: general
110 ANS:
$\sqrt{(-4-2)^{2}+(3-5)^{2}}=\sqrt{36+4}=\sqrt{40}=\sqrt{4} \sqrt{10}=2 \sqrt{10}$.
PTS: 2 REF: 081232ge STA: G.G. 67 TOP: Distance 111 ANS:
$\sqrt{(-1-3)^{2}+(4-(-2))^{2}}=\sqrt{16+36}=\sqrt{52}=\sqrt{4} \sqrt{13}=2 \sqrt{13}$
PTS: 2 REF: 081331ge STA: G.G. 67 TOP: Distance
112 ANS:
$\sqrt{(3-7)^{2}+(-4-2)^{2}}=\sqrt{16+36}=\sqrt{52}=\sqrt{4} \sqrt{13}=2 \sqrt{13}$.
PTS: 2 REF: 011431ge STA: G.G. 67 TOP: Distance
113 ANS: 3
$d=\sqrt{(-2-4)^{2}+(3-5)^{2}}=\sqrt{36+4}=\sqrt{40}=2 \sqrt{10}$
PTS: 2 REF: 061411ge STA: G.G. 67 TOP: Distance
KEY: general
114 ANS: 2
TOP: Distance
PTS: 2
REF: 081415ge
STA: G.G. 67
115 ANS: 1
$d=\sqrt{(5-1)^{2}+(3-6)^{2}}=\sqrt{16+9}=\sqrt{25}=5$
PTS: 2 REF: 011507ge STA: G.G. 67 TOP: Distance
KEY: general
116 ANS:
$\sqrt{(6-3)^{2}+(-1-8)^{2}}=\sqrt{9+81}=\sqrt{90}=\sqrt{9} \sqrt{10}=3 \sqrt{10}$.
PTS: 2 REF: 061533ge STA: G.G. 67 TOP: Distance
117 ANS: 3
PTS: 2
REF: fall0816ge STA: G.G. 1
TOP: Planes
118 ANS: 4 TOP: Planes

119	ANS: 3 TOP: Planes	PTS:	2	REF:	061017ge	STA:	G.G. 1
120	ANS: 4 TOP: Planes	PTS:	2	REF:	061118ge	STA:	G.G. 1
121	ANS: 3 TOP: Planes	PTS:	2	REF:	081218ge	STA:	G.G. 1
122	ANS: 4 TOP: Planes	PTS:	2	REF:	011315ge	STA:	G.G. 1
123	ANS: 3 TOP: Planes	PTS:	2	REF:	061522ge	STA:	G.G. 1
124	ANS: 1 TOP: Planes	PTS:	2	REF:	060918ge	STA:	G.G. 2
125	ANS: 1 TOP: Planes	PTS:	2	REF:	011128ge	STA:	G.G. 2
126	ANS: 1 TOP: Planes	PTS:	2	REF:	061310ge	STA:	G.G. 2
127	ANS: 1 TOP: Planes	PTS:	2	REF:	081514ge	STA:	G.G. 2
128	ANS: 1 TOP: Planes	PTS:	2	REF:	011024ge	STA:	G.G. 3
129	ANS: 1 TOP: Planes	PTS:	2	REF:	081008ge	STA:	G.G. 3
130	ANS: 1 TOP: Planes	PTS:	2	REF:	011218ge	STA:	G.G. 3
131	ANS: 1 TOP: Planes	PTS:	2	REF:	061418ge	STA:	G.G. 3
132	ANS: 1 TOP: Planes	PTS:	2	REF:	011512ge	STA:	G.G. 3
133	ANS: 1 TOP: Planes	PTS:	2	REF:	061514ge	STA:	G.G. 3
134	ANS: 2 TOP: Planes	PTS:	2	REF:	080927ge	STA:	G.G. 4
135 136	ANS: 4 TOP: Planes ANS: 3	PTS:	2	REF:	061213ge	STA:	G.G. 5

As originally administered, this question read, "Which fact is not sufficient to show that planes \mathbb{R} and S are perpendicular?" The State Education Department stated that since a correct solution was not provided for Question 11, all students shall be awarded credit for this question.

PTS: 2	REF: 081211ge	STA: G.G. 5	TOP: Planes	
137	ANS: 4	PTS: 2	REF: 080914ge	STA: G.G. 7
TOP: Planes				
138	ANS: 1	PTS: 2	REF: 081116ge	STA: G.G. 7
TOP: Planes				
139	ANS: 3	PTS: 2	REF: 060928ge	STA: G.G. 8
TOP: Planes				

140 ANS: 2 PTS: 2 REF: 081120ge STA: G.G. 8							
141	ANS: 2	PTS:	2	REF:	fall0806ge	STA:	G.G. 9
	TOP: Planes						
142	ANS: 3	PTS:	2	REF:	081002ge	STA:	G.G. 9
	TOP: Planes						
143	ANS: 2	PTS:	2	REF:	011109ge	STA:	G.G. 9
	TOP: Planes						
144	ANS: 1	PTS:	2	REF:	061108ge	STA:	G.G. 9
	TOP: Planes						
145	ANS: 4	PTS:	2	REF:	061203ge	STA:	G.G. 9
	TOP: Planes						
146	ANS: 4	PTS:	2	REF:	011306ge	STA:	G.G. 9
	TOP: Planes						
147	ANS: 1	PTS:	2	REF:	081323ge	STA:	G.G. 9
	TOP: Planes						
148	ANS: 1	PTS:	2	REF:	011404ge	STA:	G.G. 9
	TOP: Planes						
149	ANS: 3	PTS:	2	REF:	061401ge	STA:	G.G. 9
	TOP: Planes						
150	ANS: 3						

	PTS: 2	REF:	fall0808ge	STA:	G.G. 10	TOP:	Solids
151	ANS: 4	PTS:	2	REF:	061003ge	STA:	G.G. 10
	TOP: Solids						
152	ANS: 3	PTS:	2	REF:	011105ge	STA:	G.G. 10
	TOP: Solids						
153	ANS: 1	PTS:	2	REF:	011221ge	STA:	G.G. 10
	TOP: Solids						
154	ANS: 2	PTS:	2	REF:	081311ge	STA:	G.G. 10
	TOP: Solids						
155	ANS: 4	PTS:	2	REF:	011406ge	STA:	G.G. 10
	TOP: Solids						
156	ANS: 4	PTS:	2	REF:	081401ge	STA:	G.G. 10
	TOP: Solids						
157	ANS: 1	PTS:	2	REF:	011526ge	STA:	G.G. 10
	TOP: Solids						
158	ANS: 4	PTS:	2	REF:	061503ge	STA:	G.G. 10
	TOP: Solids						
159	ANS: 1	PTS:	2	REF:	081508ge	STA:	G.G. 10
	TOP: Solids						
160	ANS: 4	PTS:	2	REF:	060904ge	STA:	G.G. 13
	TOP: Solids						
161	ANS: 2	PTS:	2	REF:	061315ge	STA:	G.G. 13
	TOP: Solids						

162 ANS:

PTS: 2
163 ANS: 3
TOP: Constructions
164

165 ANS:

PTS: 2
166 ANS: 2
REF: 080932ge
PTS: 2
TOP: Constructions
ANS:

PTS: 2
168 ANS: 4
REF: 011133ge
PTS: 2
TOP: Constructions
169
ANS:

PTS: 2
REF: 011233ge

TOP: Constructions STA: G.G. 17
REF: 060925ge

REF: 080902ge

STA: G.G. 17

STA: G.G. 17
REF: 011004ge
TOP: Constructions
STA: G.G. 17

STA: G.G. 17 TOP: Constructions REF: 081106ge STA: G.G. 17

STA: G.G. 17
TOP: Constructions

170
ANS:

PTS: 2
171 ANS: 2
TOP: Constructions
REF: 061232ge
PTS: 2
STA: G.G. 17
REF: 081205ge
TOP: Constructions
STA: G.G. 17
172 ANS:

PTS: 2
173 ANS: 3
REF: 081330ge
PTS: 2
TOP: Constructions
174 ANS:

PTS: 4
175 ANS: 2
TOP: Constructions
176 ANS: 3
TOP: Constructions
177
ANS: 4
TOP: Constructions
178 ANS: 1
TOP: Constructions
179 ANS: 2
PTS: 2
TOP: Constructions
PTS: 2
PTS: 2

PTS: 2
PTS: 2

REF: 061437ge

STA: G.G. 17 TOP: Constructions
REF: 011509ge STA: G.G. 17
REF: fall0804ge STA: G.G. 18
REF: 081005ge STA: G.G. 18
REF: 011120ge STA: G.G. 18
REF: 061101ge STA: G.G. 18

180 ANS:

PTS: 2
181 ANS: 2
TOP: Constructions
182 ANS:

PTS: 2
REF: 011430ge
STA: G.G. 18
TOP: Constructions
183 ANS:

PTS: 4
REF: 081437ge
STA: G.G. 18

TOP: Constructions
STA: G.G. 18

PTS: 2
REF: 061305ge

TOP: Constructions

184 ANS:

PTS: 2 REF: 011530ge STA: G.G. 18 TOP: Constructions
185 ANS:

PTS: 2
186 ANS: 1
TOP: Constructions
187 ANS:

$$
\chi
$$

PTS: 2
REF: 060930ge
STA: G.G. 19
TOP: Constructions

PTS: 2
REF: 081233ge
192 ANS:

PTS: 2
ANS: 4
TOP: Constructions
194 ANS: 2
TOP: Constructions
195 ANS: 3
TOP: Constructions
196
ANS:

PTS: 2
197 ANS: 1
TOP: Constructions

REF: 011333ge
PTS: 2

PTS: 2

PTS: 2
\qquad

REF: 011032ge
PTS: 2

PTS: 2

PTS: 2

PTS: 2 \qquad

REF: 061208ge STA: G.G. 19
REF: 011009ge STA: G.G. 19

REF: 061020ge STA: G.G. 19

IA: G.G. 19

198 ANS:

PTS: 2
REF: 081032ge
STA: G.G. 20
TOP: Constructions
199 ANS:

PTS: 2
ANS: 1
TOP: Constructions
PTS: 2
TOP: Constructions
202 ANS:

STA: G.G. 20

TOP: Constructions
STA: G.G. 20
REF: 011207ge
REF: 011309ge STA: G.G. 20

PTS: 2
REF: 061332ge

TOP: Constructions

203 ANS:

PTS: 2
REF: 081532ge
STA: G.G. 20
TOP: Constructions
204
ANS:

PTS: 2
REF: 060932ge
STA: G.G. 22
TOP: Locus
205 ANS: 2
PTS: 2
REF: 011011ge STA: G.G. 22
TOP: Locus
206
ANS:

PTS: 2
REF: 061033ge
STA: G.G. 22
TOP: Locus

207 ANS:

$\begin{array}{llll}\text { PTS: } 2 & \text { REF: 081033ge } & \text { STA: G.G. } 22 & \text { TOP: Locus } \\ \text { ANS: } 2 & \text { PTS: } 2 & \text { REF: 061121ge } & \text { STA: G.G. } 22\end{array}$ TOP: Locus
209 ANS:

PTS: 2
210 ANS: 2 TOP: Locus
211 ANS: 4 TOP: Locus
212 ANS:

PTS: 2 REF: 081334ge STA: G.G. 22 TOP: Locus
213 ANS:

PTS: 2
REF: 011434ge
STA: G.G. 22
TOP: Locus

214 ANS:

PTS: 4
REF: 061537ge
STA: G.G. 22
TOP: Locus
215 ANS: 1
PTS: 2
REF: 081522ge
STA: G.G. 22
TOP: Locus
216 ANS:

217 ANS: 4 TOP: Locus
218 ANS:

PTS: 4

STA: G.G. 23
TOP: Locus

219 ANS:

PTS: 4 REF: 011037ge STA: G.G. 23 TOP: Locus

220 ANS:

PTS: 4
REF: 011135ge
STA: G.G. 23
TOP: Locus
221 ANS:

PTS: 4
222 ANS: 2
TOP: Locus

REF: 061135ge
PTS: 2

STA: G.G. 23 TOP: Locus
REF: 081117ge STA: G.G. 23

223 ANS:

PTS: 2
227 ANS: 2 TOP: Locus
228 ANS: 4 TOP: Locus

REF: 061333ge
PTS: 2

PTS: 2

REF: 011407ge
STA: G.G. 23
REF: 081316ge

PTS: 2
REF: 061234ge
224 ANS:

PTS: 2
REF: 081234ge
STA: G.G. 23
TOP: Locus
225 ANS:

PTS: 2
REF: 011331ge
STA: G.G. 23
TOP: Locus
226 ANS:

TOP: Locus
STA: G.G. 23
,

TOP: Locus
STA: G.G. 23
STA: G.G. 23

229 ANS:

PTS: 4
REF: 061436ge
STA: G.G. 23
TOP: Locus
230 ANS:

$(x-3)^{2}+(y+2)^{2}=25 m=\frac{-6--4}{0-2}=\frac{-2}{-2}=1 M\left(\frac{0+2}{2}, \frac{-6+-4}{2}\right)=M(1,-5)$ $m_{\perp}=-1$
$-5=(-1)(1)+b$
$-4=b$
$y=-x-4$
PTS: 6 REF: 081438ge STA: G.G. 23 TOP: Locus

231 ANS:

PTS: 4
REF: 011536ge
STA: G.G. 23
TOP: Locus
232 ANS:

PTS: 4
REF: 081535ge
STA: G.G. 23
TOP: Locus
233 ANS: 4
The marked 60° angle and the angle above it are on the same straight line and supplementary. This unmarked supplementary angle is 120°. Because the unmarked 120° angle and the marked 120° angle are alternate exterior angles and congruent, $d \| e$.

PTS: 2 REF: 080901ge STA: G.G. 35 TOP: Parallel Lines and Transversals
234 ANS: 2
PTS: 2
REF: 061007ge
STA: G.G. 35
TOP: Parallel Lines and Transversals
235 ANS:
Yes, $\mathrm{m} \angle A B D=\mathrm{m} \angle B D C=44180-(93+43)=44 x+19+2 x+6+3 x+5=180$. Because alternate interior

$$
\begin{aligned}
6 x+30 & =180 \\
6 x & =150 \\
x & =25 \\
x+19 & =44
\end{aligned}
$$

angles $\angle A B D$ and $\angle C D B$ are congruent, $\overline{A B}$ is parallel to $\overline{D C}$.
PTS: 4 REF: 081035ge STA: G.G. 35 TOP: Parallel Lines and Transversals

236 ANS: 2
$7 x=5 x+30$
$2 x=30$
$x=15$
PTS: 2
REF: 061106ge STA: G.G. 35
TOP: Parallel Lines and Transversals
237 ANS: 3
$7 x=5 x+30$
$2 x=30$
$x=15$
PTS: 2
REF: 081109ge
STA: G.G. 35
TOP: Parallel Lines and Transversals
238 ANS: 2
$6 x+42=18 x-12$

$$
\begin{aligned}
54 & =12 x \\
x & =\frac{54}{12}=4.5
\end{aligned}
$$

PTS: 2
REF: 011201ge
STA: G.G. 35
TOP: Parallel Lines and Transversals
239 ANS:
$180-(90+63)=27$
PTS: 2
REF: 061230ge
STA: G.G. 35
TOP: Parallel Lines and Transversals
240 ANS: 3
$4 x+14+8 x+10=180$

$$
\begin{aligned}
12 x & =156 \\
x & =13
\end{aligned}
$$

PTS: 2
REF: 081213ge
ANS: 3
PTS: 2
TOP: Parallel Lines and Transversals
242
ANS: 1
$7 x-36+5 x+12=180$

$$
12 x-24=180
$$

$$
12 x=204
$$

$$
x=17
$$

PTS: 2
REF: 011422ge
STA: G.G. 35
TOP: Parallel Lines and Transversals

Geometry Regents Exam Questions by Performance Indicator: Topic

 Answer Section243 ANS: 2
$5 x-22=3 x+10$

$$
\begin{aligned}
2 x & =32 \\
x & =16
\end{aligned}
$$

PTS: 2 REF: 061403ge STA: G.G. 35 TOP: Parallel Lines and Transversals
244 ANS: 4
$2 x+36+7 x-9=180 \mathrm{~m} \angle 1=2(17)+36=70$

$$
\begin{aligned}
9 x+27 & =180 \\
9 x & =153 \\
x & =17
\end{aligned}
$$

PTS: 2 REF: 081427ge STA: G.G. 35 TOP: Parallel Lines and Transversals
245 ANS: 4
$3 x+17+5 x-21=180 \mathrm{~m} \angle 1=3(23)+17=86$

$$
\begin{aligned}
8 x-4 & =180 \\
8 x & =184 \\
x & =23
\end{aligned}
$$

PTS: 2 REF: 011513ge STA: G.G. 35 TOP: Parallel Lines and Transversals
246 ANS: 1

$$
\begin{aligned}
a^{2}+(5 \sqrt{2})^{2} & =(2 \sqrt{15})^{2} \\
a^{2}+(25 \times 2) & =4 \times 15 \\
a^{2}+50 & =60 \\
a^{2} & =10 \\
a & =\sqrt{10}
\end{aligned}
$$

PTS: 2
REF: 011016ge
STA: G.G. 48
TOP: Pythagorean Theorem

247 ANS: 2

$$
\begin{aligned}
x^{2}+(x+7)^{2} & =13^{2} \\
x^{2}+x^{2}+7 x+7 x+49 & =169 \\
2 x^{2}+14 x-120 & =0 \\
x^{2}+7 x-60 & =0 \\
(x+12)(x-5) & =0 \\
x & =5 \\
2 x & =10
\end{aligned}
$$

PTS: 2 REF: 061024ge STA: G.G. 48 TOP: Pythagorean Theorem
248 ANS: 3
$8^{2}+24^{2} \neq 25^{2}$
PTS: 2 REF: 011111ge STA: G.G. 48 TOP: Pythagorean Theorem
249 ANS: 3
$x^{2}+7^{2}=(x+1)^{2} \quad x+1=25$
$x^{2}+49=x^{2}+2 x+1$
$48=2 x$
$24=x$
PTS: 2 REF: 081127ge STA: G.G. 48 TOP: Pythagorean Theorem
250 ANS: 2
$2^{2}+3^{2} \neq 4^{2}$
PTS: 2 REF: 011316ge STA: G.G. 48 TOP: Pythagorean Theorem
251 ANS: 4
$8^{2}+15^{2}=17^{2}$
PTS: 2 REF: 081418ge STA: G.G. 48 TOP: Pythagorean Theorem
252 ANS: 1
If $\angle A$ is at minimum $\left(50^{\circ}\right)$ and $\angle B$ is at minimum $\left(90^{\circ}\right), \angle C$ is at maximum of $40^{\circ}\left(180^{\circ}-\left(50^{\circ}+90^{\circ}\right)\right.$). If $\angle A$ is at maximum $\left(60^{\circ}\right)$ and $\angle B$ is at maximum $\left(100^{\circ}\right), \angle C$ is at minimum of $20^{\circ}\left(180^{\circ}-\left(60^{\circ}+100^{\circ}\right)\right)$.

PTS: 2 REF: 060901ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
253 ANS: 1
In an equilateral triangle, each interior angle is 60° and each exterior angle is $120^{\circ}\left(180^{\circ}-120^{\circ}\right)$. The sum of the three interior angles is 180° and the sum of the three exterior angles is 360°.

PTS: 2 REF: 060909ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles

254 ANS:
26. $x+3 x+5 x-54=180$

$$
\begin{aligned}
9 x & =234 \\
x & =26
\end{aligned}
$$

PTS: 2
REF: 080933ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles
255 ANS: 1
$x+2 x+2+3 x+4=180$

$$
\begin{aligned}
6 x+6 & =180 \\
x & =29
\end{aligned}
$$

PTS: 2
REF: 011002ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles
ANS:
34. $2 x-12+x+90=180$

$$
\begin{aligned}
3 x+78 & =90 \\
3 x & =102 \\
x & =34
\end{aligned}
$$

PTS: 2
REF: 061031ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles
257 ANS: 1
$3 x+5+4 x-15+2 x+10=180 . \mathrm{m} \angle D=3(20)+5=65 . \mathrm{m} \angle E=4(20)-15=65$.

$$
\begin{aligned}
9 x & =180 \\
x & =20
\end{aligned}
$$

PTS: 2 REF: 061119ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles
258 ANS: 4
$\frac{5}{2+3+5} \times 180=90$
PTS: 2
REF: 081119ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles
259
ANS: 3
$\frac{3}{8+3+4} \times 180=36$
PTS: 2
REF: 011210ge
STA: G.G. 30
ANS: 4
PTS: 2
REF: 081206ge
TOP: Interior and Exterior Angles of Triangles
TOP: Interior and Exterior Angles of Triangles
261 ANS: 1
$\frac{180-52}{2}=64.180-(90+64)=26$
PTS: 2
REF: 011314ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles

262
ANS: 3
$3 x+1+4 x-17+5 x-20=180.3(18)+1=55$

$$
\begin{array}{rlrl}
12 x-36 & =180 & 4(18)-17=55 \\
12 x & =216 & 5(18)-20=70 \\
x & =18 & &
\end{array}
$$

PTS: 2 REF: 061308ge STA: G.G. 30 TOP: Interior and Exterior Angles of Triangles 263 ANS:
$A=2 B-15 \quad .2 B-15+B+2 B-15+B=180$
$C=A+B$

$$
6 B-30=180
$$

$C=2 B-15+B$

$$
6 B=210
$$

$$
B=35
$$

PTS: 2
REF: 081332ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles
264 ANS: 3
$\frac{4}{2+3+4} \times 180=80$
PTS: 2
REF: 061404ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles
265 ANS: 1

PTS: 2
REF: 011504ge
STA: G.G. 30
ANS:
$\frac{5}{5+6+7} \cdot 180=50$
PTS: 2
REF: 061529ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles
267 ANS: 4
$180-(40+40)=100$

PTS: 2
268 ANS: 3
REF: 080903ge
PTS: 2
TOP: Isosceles Triangle Theorem
269 ANS:
67. $\frac{180-46}{2}=67$

PTS: 2
REF: 011029ge
STA: G.G. 31
STA: G.G.31

TOP: Interior and Exterior Angles of Triangles

STA: G.G. 31
REF: 011007ge
TOP: Isosceles Triangle Theorem
STA: G.G. 31

TOP: Isosceles Triangle Theorem

270 ANS: $3 \quad$ PTS: 2
TOP: Isosceles Triangle Theorem
271 ANS:
30.

PTS: 2
272 ANS: 4
REF: 011129ge
TOP: Isosceles Triangle Theorem
273 ANS:

No, $\angle K G H$ is not congruent to $\angle G K H$.
PTS: 2
REF: 081135ge
STA: G.G. 31
TOP: Isosceles Triangle Theorem
274 ANS: 1

PTS: 2
REF: 061211ge
ANS: 2
$3 x+x+20+x+20=180$

$$
\begin{aligned}
5 x & =40 \\
x & =28
\end{aligned}
$$

PTS: 2
REF: 081222ge
STA: G.G. 31
TOP: Isosceles Triangle Theorem

276 ANS:
$x+3 x-60+5 x-30=180 \quad 5(30)-30=120 \quad 6 y-8=4 y-2 \quad \overline{D C}=10+10=20$ $9 x-90=180 \quad \mathrm{~m} \angle B A C=180-120=60 \quad 2 y=6$
$9 x=270$

PTS: 3
REF: 011435ge
STA: G.G. 31
TOP: Isosceles Triangle Theorem
277 ANS: 2
$x+x+x+15=180$

$$
3 x+15=180
$$

$$
3 x=165
$$

$$
x=15
$$

PTS: 2
REF: 061407ge
STA: G.G. 31
TOP: Isosceles Triangle Theorem
278
ANS: 3
$x+40=2 x+20 \quad G H=2(20)+20=60$

$$
20=x
$$

PTS: 2
REF: 081416ge
STA: G.G. 31
TOP: Isosceles Triangle Theorem
279 ANS: 4
$180-\frac{180-80}{2}=130$
PTS: 2
REF: 011508ge
STA: G.G. 31
TOP: Isosceles Triangle Theorem
280 ANS: 2
$180-2(58)=64$
PTS: 2
REF: 081510ge
STA: G.G. 31
TOP: Isosceles Triangle Theorem
281 ANS: 4
(4) is not true if $\angle P Q R$ is obtuse.

PTS: 2
REF: 060924ge STA: G.G. 32
TOP: Exterior Angle Theorem

282 ANS: 1

PTS: 2
REF: 011021ge
STA: G.G. 32
TOP: Exterior Angle Theorem 283 ANS:
110. $6 x+20=x+40+4 x-5$
$6 x+20=5 x+35$
$x=15$
$6((15)+20=110$
PTS: 2
REF: 081031ge
STA: G.G. 32
TOP: Exterior Angle Theorem 284 ANS: 3

$$
\begin{aligned}
x+2 x+15 & =5 x+15 \quad 2(5)+15=25 \\
3 x+15 & =5 x+5 \\
10 & =2 x \\
5 & =x
\end{aligned}
$$

PTS: 2 REF: 011127ge

STA: G.G. 32
REF: 061107ge
REF: 081111ge
REF: 011206ge
STA: G.G. 32

TOP: Exterior Angle Theorem
ANS: $3 \quad$ PTS: 2
TOP: Exterior Angle Theorem
TOP: Exterior Angle Theorem
288 ANS: 4
$x^{2}-6 x+2 x-3=9 x+27$

$$
\begin{aligned}
x^{2}-4 x-3 & =9 x+27 \\
x^{2}-13 x-30 & =0 \\
(x-15)(x+2) & =0 \\
x & =15,-2
\end{aligned}
$$

PTS: 2
REF: 061225ge
STA: G.G. 32
TOP: Exterior Angle Theorem

289 ANS: 4
$6 x=x+40+3 x+10 . \mathrm{m} \angle C A B=25+40=65$
$6 x=4 x+50$
$2 x=50$
$x=25$
PTS: 2
REF: 081310ge
STA: G.G. 32
TOP: Exterior Angle Theorem
290 ANS: 2
$\mathrm{m} \angle A B C=55$, so $\mathrm{m} \angle A C R=60+55=115$
PTS: 2
REF: 011414ge STA: G.G. 32
TOP: Exterior Angle Theorem
291 ANS: 2

$$
\begin{aligned}
x^{2}+5 x & =4 x+110 \mathrm{~m} \angle Q=4(10)=40 \\
x^{2}+x-110 & =0 \\
(x+11)(x-10) & =0 \\
10 & =x
\end{aligned}
$$

PTS: 2
REF: 061425ge
STA: G.G. 32
TOP: Exterior Angle Theorem
292 ANS: 1
$\mathrm{m} \angle A+\mathrm{m} \angle B=50$
$30.1+\mathrm{m} \angle B=50$
$\mathrm{m} \angle B=19.9$
PTS: 2
REF: 081424ge
STA: G.G. 32
REF: 061508ge
TOP: Exterior Angle Theorem
293 ANS: 3
PTS: 2
STA: G.G. 32
TOP: Exterior Angle Theorem
294 ANS: 2
$7+18>6+12$
PTS: 2
REF: fall0819ge
STA: G.G. 33
TOP: Triangle Inequality Theorem
295 ANS: 2
$6+17>22$
PTS: 2
REF: 080916ge
STA: G.G. 33
TOP: Triangle Inequality Theorem
296 ANS: 2
$5-3=2,5+3=8$
PTS: 2
REF: 011228ge
STA: G.G. 33
TOP: Triangle Inequality Theorem
297 ANS: 4
$3+6>8$
PTS: 2
REF: 061416ge
STA: G.G. 33
TOP: Triangle Inequality Theorem

298 ANS: 1
$10-4<s<10+4$
$6<s<14$
PTS: 2 REF: 011519ge STA: G.G. 33 TOP: Triangle Inequality Theorem
299 ANS: 4
$11-7=4,11+7=18$
PTS: 2 REF: 061525ge STA: G.G. 33 TOP: Triangle Inequality Theorem 300 ANS: 2

PTS: 2
REF: 081527ge
STA: G.G. 33
TOP: Triangle Inequality Theorem
301 ANS: 2
Longest side of a triangle is opposite the largest angle. Shortest side is opposite the smallest angle.
PTS: 2 REF: 060911ge STA: G.G. 34 TOP: Angle Side Relationship 302 ANS:
$\overline{A C} . \mathrm{m} \angle B C A=63$ and $\mathrm{m} \angle A B C=80 . \overline{A C}$ is the longest side as it is opposite the largest angle.
PTS: 2 REF: 080934ge STA: G.G. 34 TOP: Angle Side Relationship 303 ANS: 1

PTS: 2
REF: 061010ge STA: G.G. 34
TOP: Angle Side Relationship
304 ANS: 4
Longest side of a triangle is opposite the largest angle. Shortest side is opposite the smallest angle.
PTS: 2 REF: 081011ge STA: G.G. 34 TOP: Angle Side Relationship
305 ANS: 4
$\mathrm{m} \angle A=80$
PTS: 2 REF: 011115ge STA: G.G. 34 TOP: Angle Side Relationship
306 ANS: 4
PTS: 2
REF: 011222ge STA: G.G. 34
TOP: Angle Side Relationship
307
ANS: 1

PTS: 2 REF: 081219ge STA: G.G. 34 TOP: Angle Side Relationship

308 ANS:
$x^{2}+12+11 x+5+13 x-17=180 . \mathrm{m} \angle A=6^{2}+12=48 . \angle B$ is the largest angle, so $\overline{A C}$ in the longest side.

$$
\begin{array}{rlrl}
x^{2}+24 x-180 & =0 & \mathrm{~m} \angle B=11(6)+5=71 \\
(x+30)(x-6) & =0 & \mathrm{~m} \angle C=13(6)-7=61 \\
x & =6 &
\end{array}
$$

PTS: 4
309 ANS: 2
TOP: Angle Side Relationship
310 ANS: 2
PTS: 2
TOP: Angle Side Relationship
311 ANS: 1
PTS: 2
TOP: Angle Side Relationship
312 ANS:

PTS: 2
REF: 061430ge
ANS: 2

PTS: 2
314 ANS: 2
REF: 081422ge

TOP: Angle Side Relationship
315 ANS: 1
PTS: 2
TOP: Angle Side Relationship
316 ANS: 1
PTS: 2
TOP: Angle Side Relationship
317 ANS: 4
$\triangle A B C \sim \triangle D B E . \frac{\overline{A B}}{\overline{D B}}=\frac{\overline{A C}}{\overline{D E}}$

$$
\begin{aligned}
\frac{9}{2} & =\frac{x}{3} \\
x & =13.5
\end{aligned}
$$

PTS: 2
REF: 060927ge
STA: G.G. 46
TOP: Side Splitter Theorem

318 ANS:
5. $\frac{3}{x}=\frac{6+3}{15}$
$9 x=45$
$x=5$
PTS: 2
REF: 011033ge STA: G.G. 46
TOP: Side Splitter Theorem
319 ANS: 2
$\frac{3}{7}=\frac{6}{x}$
$3 x=42$
$x=14$
PTS: 2 REF: 081027ge STA: G.G. 46 TOP: Side Splitter Theorem
320 ANS:
32. $\frac{16}{20}=\frac{x-3}{x+5} \cdot \overline{A C}=x-3=35-3=32$

$$
16 x+80=20 x-60
$$

$$
140=4 x
$$

$$
35=x
$$

PTS: 4 REF: 011137ge STA: G.G. 46 TOP: Side Splitter Theorem
321 ANS:
16.7. $\frac{x}{25}=\frac{12}{18}$

$$
\begin{aligned}
18 x & =300 \\
x & \approx 16.7
\end{aligned}
$$

PTS: 2
REF: 061133ge
STA: G.G. 46
TOP: Side Splitter Theorem
322 ANS: 3
$\frac{5}{7}=\frac{10}{x}$
$5 x=70$
$x=14$
PTS: 2
REF: 081103ge
STA: G.G. 46
TOP: Side Splitter Theorem

323 ANS: 3

$8 x=24$
$x=3$
PTS: 2 REF: 061216ge STA: G.G. 46 TOP: Side Splitter Theorem
324 ANS: 3
$\frac{12}{8}=\frac{21}{x} \quad 21+14=35$
$12 x=168$

$$
x=14
$$

PTS: 2 REF: 061426ge STA: G.G. 46 TOP: Side Splitter Theorem
325 ANS: 2
$\frac{3}{6}=\frac{5}{x}$
$3 x=30$
$x=10$
PTS: 2 REF: 081423ge STA: G.G. 46 TOP: Side Splitter Theorem
326 ANS: 3

$$
\begin{aligned}
\frac{4}{6} & =\frac{x+2}{4 x-7} \\
16 x-28 & =6 x+12 \\
10 x & =40 \\
x & =4
\end{aligned}
$$

PTS: 2
REF: 011521ge
STA: G.G. 46
REF: 081507ge STA: G.G. 46
TOP: Side Splitter Theorem
327 ANS: 3
PTS: 2
TOP: Side Splitter Theorem

ANS:

PTS: 4
REF: fall0835ge STA: G.G. 42
TOP: Midsegments
329 ANS:
20. The sides of the triangle formed by connecting the midpoints are half the sides of the original triangle.
$5+7+8=20$.
PTS: 2
330 ANS: 3

PTS: 2
REF: 080920ge
STA: G.G. 42
TOP: Midsegments
331
ANS:
37. Since $\overline{D E}$ is a midsegment, $A C=14.10+13+14=37$

PTS: 2
REF: 061030ge STA: G.G. 42
TOP: Midsegments

332 ANS: 1

PTS: 2
REF: 081003ge
STA: G.G. 42
TOP: Midsegments
333 ANS: 2
$\frac{4 x+10}{2}=2 x+5$

PTS: 2
REF: 011103ge
STA: G.G. 42
TOP: Midsegments
334 ANS:
$M\left(\frac{-7+5}{2}, \frac{2+4}{2}\right)=M(-1,3) . N\left(\frac{3+5}{2}, \frac{-4+4}{2}\right)=N(4,0) . \overline{M N}$ is a midsegment.

PTS: 4
335 ANS: 4
REF: 011237ge STA: G.G. 42 TOP: Midsegments
$20+8+10+6=44$.

PTS: 2
336 ANS: 3
TOP: Midsegments
337 ANS: 3
TOP: Midsegments

REF: 061211ge
PTS: 2

PTS: 2
REF: 011311ge
STA: G.G. 42

338 ANS: 3
$3 x-15=2(6)$

$$
\begin{aligned}
3 x & =27 \\
x & =9
\end{aligned}
$$

$\begin{array}{lllll}\text { PTS: } 2 & \text { REF: 061311ge } & \text { STA: G.G. } 42 & \text { TOP: Midsegments } \\ \text { ANS: } 3 & \text { PTS: } 2 & \text { REF: 081320ge } & \text { STA: G.G. } 42\end{array}$ TOP: Midsegments
340 ANS: 1

PTS: 2
REF: 011413ge
STA: G.G. 42
TOP: Midsegments
341 ANS:

PTS: 2 REF: 081430ge STA: G.G. 42 TOP: Midsegments
342 ANS: 4

PTS: 2
REF: 061520ge STA: G.G. 42
TOP: Midsegments
343 ANS:
$2 x+7=25 \quad N T=4.5$

$$
\begin{aligned}
2 x & =18 \\
x & =9
\end{aligned}
$$

PTS: 2
REF: 081531ge
STA: G.G. 42
REF: fall0825ge
TOP: Midsegments
ANS: 3
PTS: 2
STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter

[^0]STA: G.G. 21

346 ANS: 4
$\overline{B G}$ is also an angle bisector since it intersects the concurrence of $\overline{C D}$ and $\overline{A E}$
PTS: 2 REF: 061025ge STA: G.G. 21
KEY: Centroid, Orthocenter, Incenter and Circumcenter
347
ANS: 1 PTS: 2 REF: 081028ge
STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
ANS: 3 PTS: 2 REF: 011110g

KEY: Centroid, Orthocenter, Incenter and Circumcenter
349 ANS:
$(7,5) m_{\overline{A B}}=\left(\frac{3+7}{2}, \frac{3+9}{2}\right)=(5,6) m_{B C}=\left(\frac{7+11}{2}, \frac{9+3}{2}\right)=(9,6)$

PTS: 2
REF: 081134ge STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
350 ANS: 3
PTS: 2
REF: 011202ge
STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
351
ANS: 1
PTS: 2
REF: 061214ge
STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
ANS: 4
PTS: 2
REF: 081224ge
STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
353 ANS: 1

PTS: 2
REF: 011516ge STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
ANS:
$180-\left(\frac{84}{2}+28\right)=180-70=110$
PTS: 2
REF: 061534ge STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter

355 ANS: 2
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.
PTS: 2 REF: 060914ge STA: G.G. 43 TOP: Centroid
356 ANS:
6. The centroid divides each median into segments whose lengths are in the ratio $2: 1 . \overline{T D}=6$ and $\overline{D B}=3$

PTS: 2 REF: 011034ge STA: G.G. 43 TOP: Centroid
357 ANS: 1
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.

$$
\begin{aligned}
\overline{G C} & =2 \overline{F G} \\
\overline{G C}+\overline{F G} & =24 \\
2 \overline{F G}+\overline{F G} & =24 \\
3 \overline{F G} & =24 \\
\overline{F G} & =8
\end{aligned}
$$

PTS: 2
REF: 081018ge
STA: G.G. 43
TOP: Centroid
358 ANS: 1
PTS: 2
REF: 061104ge
STA: G.G. 43
TOP: Centroid
359 ANS: 1
$7 x+4=2(2 x+5) . \quad P M=2(2)+5=9$
$7 x+4=4 x+10$
$3 x=6$
$x=2$
PTS: 2 REF: 011226ge STA: G.G. 43 TOP: Centroid
360 ANS: 4
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.
PTS: 2 REF: 081220ge STA: G.G. 43 TOP: Centroid
361 ANS: 3
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.
PTS: 2 REF: 081307ge STA: G.G. 43 TOP: Centroid
362 ANS: 1
$2 x+x=12 . \overline{B D}=2(4)=8$
$3 x=12$

$$
x=4
$$

PTS: 2
363 ANS: 3
REF: 011408ge
STA: G.G. 43
TOP: Centroid
TOP: Centroid
PTS: 2
REF: 061424ge
STA: G.G. 43

364
ANS:
$5 x=2(x+12) Q M=5(8)+(8)+12=60$
$5 x=2 x+24$
$3 x=24$
$x=8$
PTS: 2
365 ANS: 1
REF: 081433ge
STA: G.G. 43
TOP: Centroid
366 ANS: 3
$2.4+2(2.4)=7.2$
PTS: 2 REF: 081526ge STA: G.G. 43 TOP: Centroid
367 ANS: 1
Since $\overline{A C} \cong \overline{B C}, \mathrm{~m} \angle A=\mathrm{m} \angle B$ under the Isosceles Triangle Theorem.
PTS: 2
REF: fall0809ge
STA: G.G. 69
TOP: Triangles in the Coordinate Plane
$15+5 \sqrt{5}$.

PTS: 4
369 ANS: 2
TOP: Triangles in the Coordinate Plane
ANS: 2
PTS: 2
TOP: Triangles in the Coordinate Plane
ANS: 3
$A B=8-4=4 . B C=\sqrt{(-2-(-5))^{2}+(8-6)^{2}}=\sqrt{13} \cdot A C=\sqrt{(-2-(-5))^{2}+(4-6)^{2}}=\sqrt{13}$
PTS: 2 REF: 011328ge STA: G.G. 69 TOP: Triangles in the Coordinate Plane 372

ANS:
$\sqrt{(7-3)^{2}+(-8-0)^{2}}=\sqrt{16+64}=\sqrt{80}=4 \sqrt{5}$
PTS: 2
REF: 061331ge
STA: G.G. 69
TOP: Triangles in the Coordinate Plane

373 ANS: 3

. The sum of the interior angles of a pentagon is $(5-2) 180=540$.
PTS: 2
REF: 011023ge STA: G.G. 36
TOP: Interior and Exterior Angles of Polygons
374 ANS: 4
sum of interior $\angle \mathrm{s}=$ sum of exterior $\angle \mathrm{s}$

$$
\begin{aligned}
(n-2) 180 & =n\left(180-\frac{(n-2) 180}{n}\right) \\
180 n-360 & =180 n-180 n+360 \\
180 n & =720 \\
n & =4
\end{aligned}
$$

PTS: 2
REF: 081016ge
STA: G.G. 36
TOP: Interior and Exterior Angles of Polygons
375 ANS: 3
$(n-2) 180=(5-2) 180=540$

PTS: 2
376 ANS: 3
REF: 011223ge
STA: G.G. 36
TOP: Interior and Exterior Angles of Polygons
377
ANS: 3
$180(n-2)=n\left(180-\frac{180(n-2)}{n}\right)$
$180 n-360=180 n-180 n+360$

$$
180 n=720
$$

$$
n=4
$$

PTS: 2
REF: 081223ge
STA: G.G. 36
ANS: 4
$(n-2) 180=(8-2) 180=1080 . \frac{1080}{8}=135$.
PTS: 2
REF: fall0827ge STA: G.G. 37
ANS: 1
$\angle A=\frac{(n-2) 180}{n}=\frac{(5-2) 180}{5}=108 \angle A E B=\frac{180-108}{2}=36$
PTS: 2
REF: 081022ge STA: G.G. 37

TOP: Interior and Exterior Angles of Polygons

380 ANS:
$(5-2) 180=540 . \frac{540}{5}=108$ interior. $180-108=72$ exterior
PTS: 2 REF: 011131ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons
381 ANS: 2
$(n-2) 180=(6-2) 180=720 . \frac{720}{6}=120$.
PTS: 2 REF: 081125ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons 382 ANS: 2
$\frac{(n-2) 180}{n}=120$.
$180 n-360=120 n$

$$
\begin{aligned}
60 n & =360 \\
n & =6
\end{aligned}
$$

PTS: 2 REF: 011326ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons 383

ANS:
$(n-2) 180=(8-2) 180=1080 . \frac{1080}{8}=135$.
PTS: 2 REF: 061330ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons
384 ANS: 4
$(n-2) 180-n\left(\frac{(n-2) 180}{n}\right)=180 n-360-180 n+180 n-360=180 n-720$.
$180(5)-720=180$
PTS: 2 REF: 081322ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons ANS: 3
The regular polygon with the smallest interior angle is an equilateral triangle, with $60^{\circ} .180^{\circ}-60^{\circ}=120^{\circ}$
PTS: 2 REF: 011417ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons
386 ANS: 2

$$
180-\frac{(n-2) 180}{n}=45
$$

$$
180 n-180 n+360=45 n
$$

$$
\begin{aligned}
360 & =45 n \\
n & =8
\end{aligned}
$$

PTS: 2
REF: 061413ge
STA: G.G. 37
TOP: Interior and Exterior Angles of Polygons

387
ANS:
$(n-2) 180=540 . \frac{540}{5}=108$

$$
\begin{aligned}
n-2 & =3 \\
n & =5
\end{aligned}
$$

PTS: 2 REF: 081434ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons 388

ANS:
$\frac{(n-2) 180}{n}=\frac{(10-2) 180}{10}=144$
PTS: 2 REF: 011531ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons
389 ANS: 3

$$
180-\frac{(n-2) 180}{n}=40
$$

$180 n-180 n+360=40 n$

$$
\begin{aligned}
360 & =40 n \\
n & =9
\end{aligned}
$$

PTS: 2 REF: 061519ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons
390 ANS: 2
$180(n-2)=720$

$$
\begin{aligned}
n-2 & =4 \\
n & =6
\end{aligned}
$$

PTS: 2 REF: 061521ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons
391 ANS: 2
$(n-2) 180=(8-2) 180=1080 . \frac{1080}{8}=135$.
PTS: 2 REF: 081521ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons
392 ANS: 1
$\angle D C B$ and $\angle A D C$ are supplementary adjacent angles of a parallelogram. $180-120=60 . \angle 2=60-45=15$.
PTS: 2 REF: 080907ge STA: G.G. 38 TOP: Parallelograms
ANS: 1
Opposite sides of a parallelogram are congruent. $4 x-3=x+3 . S V=(2)+3=5$.

$$
\begin{aligned}
3 x & =6 \\
x & =2
\end{aligned}
$$

PTS: 2
REF: 011013ge
STA: G.G. 38
REF: 011104ge
TOP: Parallelograms
ANS: 3
PTS: 2
STA: G.G. 38
TOP: Parallelograms

395 ANS: 3
PTS: 2
REF: 061111ge STA: G.G. 38
TOP: Parallelograms
396 ANS:
11. $x^{2}+6 x=x+14.6(2)-1=11$

$$
\begin{aligned}
x^{2}+5 x-14 & =0 \\
(x+7)(x-2) & =0 \\
x & =2
\end{aligned}
$$

PTS: 2
REF: 081235ge
STA: G.G. 38
TOP: Parallelograms
397 ANS: 3

PTS: 2
398 ANS: 2
REF: 081402ge
STA: G.G. 38
TOP: Parallelograms
TOP: Parallelograms
399 PTS: 2

REF: 011522ge STA: G.G. 38

ANS:
$6 x-6=4 x+2 \mathrm{~m} \angle B C A=4(4)+2=18 \quad 7 y-15=5 y-1 \mathrm{~m} \angle B A C=5(7)-1=34 \mathrm{~m} \angle B=180-(18+34)=128$

$$
\begin{array}{r}
2 x=8 \\
x=4
\end{array}
$$

$$
\begin{aligned}
2 y & =14 \\
y & =7
\end{aligned}
$$

PTS: 4
REF: 061536ge
STA: G.G. 38
TOP: Parallelograms
400 ANS: 2

$$
\begin{aligned}
L+L-30 & =180 \\
2 L & =210 \\
L & =105
\end{aligned}
$$

PTS: 2
REF: 081519ge STA: G.G. 38
TOP: Parallelograms

401 ANS:

$$
\begin{array}{rlrl}
8 x-5 & =3 x+30 . & 4 z-8 & =3 z . \\
5 x & =35+8+5 y-2 & =90 . \\
x & =7 & & =8 \\
& & 14 y+6 & =90 \\
14 y & =84 \\
y & =6
\end{array}
$$

PTS: 6
REF: 061038ge
STA: G.G. 39
REF: 011112ge
TOP: Special Parallelograms STA: G.G. 39
ANS: 1 PTS: 2

- 011112 g

TOP: Special Parallelograms
403 ANS: 3
$\sqrt{5^{2}+12^{2}}=13$

| | PTS: 2 | REF: 061116ge | STA: G.G.39 | TOP: Special Parallelograms |
| :--- | :--- | :---: | :--- | :--- | :--- |
| 404 | ANS: 1 | PTS: 2 | REF: 061125ge | STA: G.G. 39 |
| | TOP: Special Parallelograms | | | |
| 405 | ANS: 1 | PTS: 2 | REF: 081121ge | STA: G.G. 39 |
| | TOP: Special Parallelograms | | | |
| 406 | ANS: 3 | PTS: 2 | REF: 081128ge | STA: G.G. 39 |
| | TOP: Special Parallelograms | | | |
| 407 | ANS: 2 | | | |

The diagonals of a rhombus are perpendicular. $180-(90+12)=78$
PTS: 2 REF: 011204ge STA: G.G. 39 TOP: Special Parallelograms
ANS: 3
PTS: 2
REF: 061228ge
STA: G.G. 39
TOP: Special Parallelograms
409 ANS: 4
$2 x-8=x+2 . A E=10+2=12 . A C=2(A E)=2(12)=24$
$x=10$

PTS: 2
REF: 011327ge
STA: G.G. 39
TOP: Special Parallelograms
410 ANS: 2
$\sqrt{8^{2}+15^{2}}=17$
PTS: 2
REF: 061326ge
STA: G.G. 39
TOP: Special Parallelograms

411 ANS: 2

$$
\begin{aligned}
s^{2}+s^{2} & =(3 \sqrt{2})^{2} \\
2 s^{2} & =18 \\
s^{2} & =9 \\
s & =3
\end{aligned}
$$

PTS: 2
412 ANS: 3
REF: 011420ge
TOP: Special Parallelograms
413 ANS: 2

PTS: 2
REF: 061414ge
STA: G.G. 39
TOP: Special Parallelograms
414 ANS: 3
PTS: 2
TOP: Special Parallelograms
415 ANS: 1

PTS: 2 REF: 011505ge STA: G.G. 39 TOP: Special Parallelograms
416 ANS: 3
Diagonals of rectangles and trapezoids do not bisect opposite angles. $\mathrm{m} \angle D A B=90$ if $A B C D$ is a square.
PTS: 2 REF: 061511ge STA: G.G. 39 TOP: Special Parallelograms
417 ANS: 3
The diagonals of an isosceles trapezoid are congruent. $5 x+3=11 x-5$.

$$
\begin{aligned}
6 x & =18 \\
x & =3
\end{aligned}
$$

PTS: 2 REF: fall0801ge STA: G.G. 40 TOP: Trapezoids
418 ANS:
3. The non-parallel sides of an isosceles trapezoid are congruent. $2 x+5=3 x+2$

$$
x=3
$$

PTS: 2
REF: 080929ge
STA: G.G. 40
TOP: Trapezoids

419 ANS: 2
The length of the midsegment of a trapezoid is the average of the lengths of its bases. $\frac{x+30}{2}=44$.

$$
\begin{array}{r}
x+30=88 \\
x=58
\end{array}
$$

PTS: 2 REF: 011001ge STA: G.G. 40 TOP: Trapezoids
ANS: 4
PTS: 2
REF: 061008ge
STA: G.G. 40
TOP: Trapezoids
421 ANS: 3

PTS: 2
REF: 061016ge
STA: G.G. 40
TOP: Trapezoids
422 ANS:
70. $3 x+5+3 x+5+2 x+2 x=180$

$$
\begin{aligned}
10 x+10 & =360 \\
10 x & =350 \\
x & =35 \\
2 x & =70
\end{aligned}
$$

PTS: 2 REF: 081029ge STA: G.G. 40 TOP: Trapezoids 423 ANS: 4
$\sqrt{25^{2}-\left(\frac{26-12}{2}\right)^{2}}=24$
PTS: 2 REF: 011219ge STA: G.G. 40 TOP: Trapezoids 424 ANS: 1
$\frac{40-24}{2}=8 . \sqrt{10^{2}-8^{2}}=6$.
PTS: 2
REF: 061204ge
STA: G.G. 40
TOP: Trapezoids

425 ANS: 1
The length of the midsegment of a trapezoid is the average of the lengths of its bases. $\frac{x+3+5 x-9}{2}=2 x+2$.

$$
\begin{aligned}
6 x-6 & =4 x+4 \\
2 x & =10 \\
x & =5
\end{aligned}
$$

PTS: 2 REF: 081221ge STA: G.G. 40 TOP: Trapezoids
426 ANS: 3
$2(4 x+20)+2(3 x-15)=360 . \angle D=3(25)-15=60$

$$
8 x+40+6 x-30=360
$$

$$
14 x+10=360
$$

$$
14 x=350
$$

$$
x=25
$$

PTS: 2 REF: 011321ge STA: G.G. 40 TOP: Trapezoids
427 ANS: 2
Isosceles or not, $\triangle R S V$ and $\triangle R S T$ have a common base, and since $\overline{R S}$ and $\overline{V T}$ are bases, congruent altitudes.
PTS: 2 REF: 061301ge STA: G.G. 40 TOP: Trapezoids
428 ANS:

$$
\begin{array}{rlrl}
12 x-4+7 x+13 & =180 . & 16 y+1 & =\frac{12 y+1+18 y+6}{2} \\
19 x+9 & =180 & 32 y+2 & =30 y+7 \\
19 x & =171 & 2 y & =5 \\
x & =9 & y & =\frac{5}{2}
\end{array}
$$

PTS: 4
REF: 081337ge
STA: G.G. 40
TOP: Trapezoids
429 ANS: 1
$180-123=57$
PTS: 2
REF: 061419ge
STA: G.G. 40
TOP: Trapezoids
430 ANS: 2
$5 x+3=7 x-15 \quad 5(9)+3=48$
$18=2 x$
$9=x$
PTS: 2
REF: 011515ge
STA: G.G. 40
431 ANS: 1
PTS: 2
REF: 080918ge
TOP: Trapezoids
STA: G.G. 41
TOP: Special Quadrilaterals

ANS: 1 PTS: 2 REF: 081517ge STA: G.G. 41
TOP: Special Quadrilaterals
433 ANS: 2
Adjacent sides of a rectangle are perpendicular and have opposite and reciprocal slopes.
PTS: 2 REF: 061028ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane
ANS:

$\overline{A B} \| \overline{C D}$ and $\overline{A D} \| \overline{C B}$ because their slopes are equal. $A B C D$ is a parallelogram because opposite side are parallel. $\overline{A B} \neq \overline{B C}$. $A B C D$ is not a rhombus because all sides are not equal. $\overline{A B} \sim \perp \overline{B C}$ because their slopes are not opposite reciprocals. $A B C D$ is not a rectangle because $\angle A B C$ is not a right angle.

PTS: 4 REF: 081038ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane
435 ANS:

The length of each side of quadrilateral is 5 . Since each side is congruent, quadrilateral MATH is a rhombus. The slope of $\overline{M H}$ is 0 and the slope of $\overline{H T}$ is $-\frac{4}{3}$. Since the slopes are not negative reciprocals, the sides are not perpendicular and do not form rights angles. Since adjacent sides are not perpendicular, quadrilateral MATH is not a square.

PTS: 6
REF: 011138ge
STA: G.G. 69
TOP: Quadrilaterals in the Coordinate Plane

436 ANS:
$m_{A B}=\left(\frac{-6+2}{2}, \frac{-2+8}{2}\right)=D(2,3) m_{B C}=\left(\frac{2+6}{2}, \frac{8+-2}{2}\right)=E(4,3) F(0,-2)$. To prove that $A D E F$ is a
parallelogram, show that both pairs of opposite sides of the parallelogram are parallel by showing the opposite sides have the same slope: $\mathrm{m}_{\overline{A D}}=\frac{3--2}{-2--6}=\frac{5}{4} \quad \overline{A F} \| \overline{D E}$ because all horizontal lines have the same slope. ADEF

$$
\mathrm{m}_{F E}=\frac{3--2}{4-0}=\frac{5}{4}
$$

is not a rhombus because not all sides are congruent. $A D=\sqrt{5^{2}+4^{2}}=\sqrt{41} \quad A F=6$
PTS: 6 REF: 081138ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane
437 ANS: 1
The diagonals of a parallelogram intersect at their midpoints. $M_{\overline{A C}}\left(\frac{1+3}{2}, \frac{5+(-1)}{2}\right)=(2,2)$
PTS: 2 REF: 061209ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane
438 ANS: 2
$\sqrt{(-2-4)^{2}+(-3-(-1))^{2}}=\sqrt{40}=\sqrt{4} \sqrt{10}=2 \sqrt{10}$
PTS: 2 REF: 011313ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane
439 ANS:
$m_{\overline{A B}}=\frac{4-1}{4-2}=\frac{3}{2} . m_{B C}=-\frac{2}{3}$
PTS: 4
REF: 061334ge
STA: G.G. 69
TOP: Quadrilaterals in the Coordinate Plane

ANS:
$M\left(\frac{-7+-3}{2}, \frac{4+6}{2}\right)=M(-5,5) . m_{M N}=\frac{5-3}{-5-0}=\frac{2}{-5}$. Since both opposite sides have equal slopes and are
$N\left(\frac{-3+3}{2}, \frac{6+0}{2}\right)=N(0,3) \quad m_{P Q}=\frac{-4--2}{2--3}=\frac{-2}{5}$
$P\left(\frac{3+1}{2}, \frac{0+-8}{2}\right)=P(2,-4) \quad m_{N A}=\frac{3--4}{0-2}=\frac{7}{-2}$
$Q\left(\frac{-7+1}{2}, \frac{4+-8}{2}\right)=Q(-3,-2) \quad m_{\overline{Q M}}=\frac{-2-5}{-3--5}=\frac{-7}{2}$
parallel, $M N P Q$ is a parallelogram. $\overline{M N}=\sqrt{(-5-0)^{2}+(5-3)^{2}}=\sqrt{29} \cdot \overline{M N}$ is not congruent to $\overline{N P}$, so $M N P Q$

$$
\overline{N A}=\sqrt{(0-2)^{2}+(3--4)^{2}}=\sqrt{53}
$$

is not a rhombus since not all sides are congruent.

PTS: 6 REF: 081338ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane 441 ANS:
$m_{J M}=\frac{1-4}{-3-3}=\frac{-3}{-6}=\frac{1}{2} \quad$ Since both opposite sides have equal slopes and are parallel, JKLM is a parallelogram.
$m_{=\overline{M L}}=\frac{4--2}{3-7}=\frac{6}{-4}=-\frac{3}{2}$
$m_{L K}=\frac{-2--5}{7-1}=\frac{3}{6}=\frac{1}{2}$
$m_{\overline{K J}}=\frac{-5-1}{1--3}=\frac{-6}{4}=-\frac{3}{2}$
$\overline{J M}=\sqrt{(-3-3)^{2}+(1-4)^{2}}=\sqrt{45} \cdot \overline{J M}$ is not congruent to $\overline{M L}$, so $J K L M$ is not a rhombus since not all sides
$\overline{M L}=\sqrt{(7-3)^{2}+(-2-4)^{2}}=\sqrt{52}$
are congruent.
PTS: 6 REF: 061438ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane
442 ANS: 3
Both pairs of opposite sides are parallel, so not a trapezoid. None of the angles are right angles, so not a rectangle or square. All sides are congruent, so a rhombus.

PTS: 2 REF: 081411ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane

443 ANS:
$\left(\frac{0+1}{2}, \frac{4+-4}{2}\right)$
$\left(\frac{1}{2}, 0\right)$
PTS: 2 REF: 081534ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane
444 ANS: 3
Because $\overline{O C}$ is a radius, its length is 5. Since $C E=2 O E=3 . \triangle E D O$ is a 3-4-5 triangle. If $E D=4, B D=8$.
PTS: 2 REF: fall0811ge STA: G.G. 49 TOP: Chords
445 ANS: 1
The closer a chord is to the center of a circle, the longer the chord.
PTS: 2
REF: 011005ge
STA: G.G. 49
TOP: Chords
446 ANS: 3

PTS: 2
REF: 011112ge
STA: G.G. 49
TOP: Chords
447 ANS: 4
$\sqrt{6^{2}-2^{2}}=\sqrt{32}=\sqrt{16} \sqrt{2}=4 \sqrt{2}$
PTS: 2
REF: 081124ge
STA: G.G. 49
TOP: Chords
448
ANS:
$E O=6 . C E=\sqrt{10^{2}-6^{2}}=8$
PTS: 2
REF: 011234ge
STA: G.G. 49
TOP: Chords

449 ANS: 2

$\sqrt{17^{2}-15^{2}}=8.17-8=9$
PTS: 2
450 ANS: 3
TOP: Chords
451 ANS:

$$
\begin{aligned}
2(y+10) & =4 y-20 . \overline{D F}=y+10=20+10=30 . \overline{O A}=\overline{O D}=\sqrt{16^{2}+30^{2}}=34 \\
2 y+20 & =4 y-20 \\
40 & =2 y \\
20 & =y
\end{aligned}
$$

PTS: 4 REF: 061336ge STA: G.G. 49 TOP: Chords
452 ANS: 4
PTS: 2
REF: 081308ge STA: G.G. 49
TOP: Chords
453 ANS: 2
$\sqrt{17^{2}-15^{2}}=\sqrt{289-225}=\sqrt{64}=8$
PTS: 2 REF: 011424ge STA: G.G. 49 TOP: Chords
454 ANS: 4 PTS: 2 REF: 081403ge STA: G.G. 49
TOP: Chords
455 ANS: 2
Parallel chords intercept congruent arcs. $\mathrm{m} \overparen{A D}=\mathrm{m} \overparen{B C}=60 . \mathrm{m} \angle C D B=\frac{1}{2} \mathrm{~m} \overparen{B C}=30$.
PTS: 2 REF: 060906ge STA: G.G. 52 TOP: Chords and Secants
456 ANS: 2
Parallel chords intercept congruent arcs. $\mathrm{m} \overparen{A C}=\mathrm{m} \overparen{B D}=30 \cdot 180-30-30=120$.
PTS: 2 REF: 080904ge STA: G.G. 52 TOP: Chords and Secants
457 ANS: 1
Parallel lines intercept congruent arcs.
PTS: 2 REF: 061001ge STA: G.G. 52 TOP: Chords and Secants 458 ANS: 1

Parallel lines intercept congruent arcs.
PTS: 2 REF: 061105ge STA: G.G. 52 TOP: Chords and Secants

459 ANS:
$\frac{180-80}{2}=50$
PTS: 2 REF: 081129ge STA: G.G. 52 TOP: Chords and Secants
460 ANS:
$2 x-20=x+20 . \mathrm{m} \overparen{A B}=x+20=40+20=60$
$x=40$
PTS: 2 REF: 011229ge STA: G.G. 52 TOP: Chords and Secants 461 ANS: 3
$\frac{180-70}{2}=55$
PTS: 2 REF: 061205ge STA: G.G. 52 TOP: Chords and Secants
462 ANS: 4
Parallel lines intercept congruent arcs.
PTS: 2 REF: 081201ge STA: G.G. 52 TOP: Chords and Secants
463 ANS: 2
Parallel chords intercept congruent arcs. $\frac{360-(104+168)}{2}=44$
PTS: 2 REF: 011302ge STA: G.G. 52 TOP: Chords and Secants 464 ANS: 1

Parallel chords intercept congruent arcs. $\mathrm{m} \overparen{A C}=\mathrm{m} \overparen{B D} \cdot \frac{180-110}{2}=35$.

PTS: 2 REF: 081302ge STA: G.G. 52 TOP: Chords and Secants 465 ANS: 3

Parallel lines intercept congruent arcs.
PTS: 2 REF: 061409ge STA: G.G. 52 TOP: Chords and Secants
466 ANS: 1
Parallel lines intercept congruent arcs.
PTS: 2 REF: 081413ge STA: G.G. 52 TOP: Chords and Secants
467 ANS: 4
$9 x-10=5 x+305(10)+30=80$
$4 x=40$
$x=10$

PTS: 2 REF: 011525ge STA: G.G. 52 TOP: Chords and Secants
468 ANS: 2
PTS: 2
REF: 061516ge STA: G.G. 52
TOP: Chords and Secants

469 ANS: 2
Parallel secants intercept congruent arcs. $\frac{360-(106+24)}{2}=\frac{230}{2}=115$
PTS: 2 REF: 081503ge STA: G.G. 52 TOP: Chords and Secants
470 ANS: 4
TOP: Tangents
PTS: 2
REF: fall0824ge
STA: G.G. 50
471 ANS:
18. If the ratio of $T A$ to $A C$ is $1: 3$, the ratio of $T E$ to $E S$ is also $1: 3 . x+3 x=24.3(6)=18$.

$$
x=6
$$

PTS: 4 REF: 060935ge STA: G.G. 50 TOP: Tangents
KEY: common tangency
472 ANS: 3
PTS: 2 REF: 080928ge STA: G.G. 50
TOP: Tangents KEY: common tangency
473 ANS: 1 PTS: 2 REF: 061013ge STA: G.G. 50
TOP: Tangents KEY: point of tangency
474 PTS: 2 REF: 081012ge STA: G.G. 50
TOP: Tangents KEY: two tangents
475 ANS: 4
$\sqrt{25^{2}-7^{2}}=24$
PTS: 2 REF: 081105ge STA: G.G. 50 TOP: Tangents
KEY: point of tangency
476 ANS: 2 PTS: 2 REF: 081214ge STA: G.G. 50
TOP: Tangents KEY: point of tangency
477 ANS:

PTS: 2 REF: 011330ge STA: G.G. 50 TOP: Tangents
KEY: common tangency
478 ANS: 2
$\sqrt{15^{2}-12^{2}}=9$
PTS: 2 REF: 081325ge STA: G.G. 50 TOP: Tangents
KEY: point of tangency
479 ANS: 3
$180-38=142$
PTS: 2
REF: 011419ge
STA: G.G. 50 TOP: Tangents
KEY: two tangents

480 ANS: 2
$180-2(66)=48$
PTS: 2 REF: 061513ge STA: G.G. 50 TOP: Tangents
KEY: two tangents

Geometry Regents Exam Questions by Performance Indicator: Topic

Answer Section

481
ANS: 4
TOP: Tangents
ANS:
$x^{2}+7^{2}=25^{2}$
$x^{2}+49=625$

$$
\begin{aligned}
x^{2} & =576 \\
x & =24
\end{aligned}
$$

PTS: 2 REF: 061433ge STA: G.G. 50 TOP: Tangents
KEY: point of tangency
483 ANS: 3
$\sqrt{20^{2}+7^{2}} \approx 21$
PTS: 2 REF: 081525ge STA: G.G. 50 TOP: Tangents
KEY: point of tangency
484 ANS:
$\angle D, \angle G$ and 24° or $\angle E, \angle F$ and $84^{\circ} . \mathrm{m} \overparen{F E}=\frac{2}{15} \times 360=48$. Since the chords forming $\angle D$ and $\angle G$ are intercepted by $\overparen{F E}$, their measure is 24°. m $\overparen{G D}=\frac{7}{15} \times 360=168$. Since the chords forming $\angle E$ and $\angle F$ are intercepted by $\overparen{G D}$, their measure is 84°.

PTS: 4
KEY: inscribed
485 ANS: 2
$\frac{87+35}{2}=\frac{122}{2}=61$
PTS: 2
REF: 011015ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inside circle
486 ANS: 3
$\frac{36+20}{2}=28$
PTS: 2
KEY: inside circle
REF: 061019ge
STA: G.G. 51
TOP: Arcs Determined by Angles

STA: G.G. 51
TOP: Arcs Determined by Angles
REF: fall0836ge

- Arcs Detined

487 ANS: 2

PTS: 2
REF: 061026ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inscribed
488 ANS: 2
$\frac{140-\overline{R S}}{2}=40$

$$
140-\overline{R S}=80
$$

$$
\overline{R S}=60
$$

PTS: 2
REF: 081025ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: outside circle
489
ANS: 4 PTS: 2
TOP: Arcs Determined by Angles
REF: 011124ge STA: G.G. 51
ANS:
30. $3 x+4 x+5 x=360 . \mathrm{m} \overparen{\mathrm{LN}}: \mathrm{m} \overparen{\mathrm{NK}}: \mathrm{m} \overparen{\mathrm{KL}}=90: 120: 150 . \frac{150-90}{2}=30$

$$
x=20
$$

PTS: 4
REF: 061136ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: outside circle
491 ANS: 2

$$
\begin{aligned}
\frac{50+x}{2} & =34 \\
50+x & =68 \\
x & =18
\end{aligned}
$$

PTS: 2
REF: 011214ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inside circle

492 ANS:
52, 40, 80. $360-(56+112)=192 . \frac{192-112}{2}=40 . \frac{112+48}{2}=80$

$$
\begin{aligned}
& \frac{1}{4} \times 192=48 \\
& \frac{56+48}{2}=52
\end{aligned}
$$

PTS: 6 REF: 081238ge STA: G.G. 51 TOP: Arcs Determined by Angles
KEY: mixed
493 ANS: 1
$\frac{70-20}{2}=25$
PTS: 2
REF: 011325ge STA: G.G. 5
TOP: Arcs Determined by Angles
KEY: outside circle
494 ANS: 2
PTS: 2
TOP: Arcs Determined by Angles
REF: 061322ge
STA: G.G. 51
495 ANS:
$86^{\circ} \cdot 2=172^{\circ} 180^{\circ}-86^{\circ}=94^{\circ}$
PTS: 2
REF: 081432ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inscribed
PTS: 2
REF: 011523ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inscribed
ANS: 1 PTS: 2
REF: 081518ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inscribed
498 ANS: 2

$$
x^{2}=3(x+18)
$$

$x^{2}-3 x-54=0$
$(x-9)(x+6)=0$

$$
x=9
$$

PTS: 2
REF: fall0817ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: tangent and secant
499 ANS: 3

$$
\begin{aligned}
4(x+4) & =8^{2} \\
4 x+16 & =64 \\
x & =12
\end{aligned}
$$

PTS: 2
REF: 060916ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: tangent and secant

500 ANS: 2

$$
\begin{aligned}
4(4 x-3) & =3(2 x+8) \\
16 x-12 & =6 x+24 \\
10 x & =36 \\
x & =3.6
\end{aligned}
$$

PTS: 2
REF: 080923ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: two chords
ANS: 4
$x^{2}=(4+5) \times 4$
$x^{2}=36$
$x=6$
PTS: 2
REF: 011008ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: tangent and secant
502

$$
\begin{aligned}
(d+4) 4 & =12(6) \\
4 d+16 & =72 \\
d & =14 \\
r & =7
\end{aligned}
$$

PTS: 2
REF: 061023ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: two secants
503 ANS: 1
$4 x=6 \cdot 10$

$x=15$
PTS: 2
REF: 081017ge
STA: G.G. 53
TOP: Segments Intercepted by Circle KEY: two chords

504 ANS: 3

PTS: 2
REF: 011101ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: two tangents
505 ANS:
$x^{2}=9 \cdot 8$
$x=\sqrt{72}$
$x=\sqrt{36} \sqrt{2}$
$x=6 \sqrt{2}$
PTS: 2 REF: 011132ge STA: G.G. 53 TOP: Segments Intercepted by Circle
KEY: two chords
506 ANS: 4
$4(x+4)=8^{2}$
$4 x+16=64$
$4 x=48$
$x=12$
PTS: 2
REF: 061117ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: tangent and secant
507 ANS: 4
PTS: 2
TOP: Segments Intercepted by Circle
REF: 011208ge

STA: G.G. 53
KEY: two tangents

508 ANS:

$$
\begin{array}{rlrl}
x(x+2) & =12 \cdot 2 . \overline{R T}=6+4=10 . y \cdot y & =18 \cdot 8 \\
x^{2}+2 x-24 & =0 & y^{2} & =144 \\
(x+6)(x-4) & =0 & y & =12 \\
x & =4 &
\end{array}
$$

PTS: 4
REF: 061237ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: tangent and secant
509 ANS: 1
$12(8)=x(6)$
$96=6 x$
$16=x$
PTS: 2
REF: 061328ge
STA: G.G. 53
TOP: Segments Intercepted by Circle KEY: two secants
510 ANS: 1
$8 \times 12=16 x$
$6=x$

PTS: 2
REF: 081328ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
511 ANS:
$24 \cdot 6=w \cdot 8$
$144=8 w$

$$
18=w
$$

PTS: 2
REF: 011533ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: two secants

512 ANS: 1
$M_{x}=\frac{-2+6}{2}=2 . M_{y}=\frac{3+3}{2}=3$. The center is (2,3). $d=\sqrt{(-2-6)^{2}+(3-3)^{2}}=\sqrt{64+0}=8$. If the diameter is 8 , the radius is 4 and $r^{2}=16$.

	PTS: 2	REF: fall0820ge	STA: G.G.71	TOP: Equations of Circles	
513	ANS: 2	PTS: 2	REF: 060910 ge	STA:	G.G. 71
	TOP: Equations of Circles				
514	ANS: 3	PTS: 2	REF: 011010 ge	STA: G.G. 71	
	TOP: Equations of Circles				

Midpoint: $\left(\frac{-4+4}{2}, \frac{2+(-4)}{2}\right)=(0,-1)$. Distance: $d=\sqrt{(-4-4)^{2}+(2-(-4))^{2}}=\sqrt{100}=10$

$$
\begin{gathered}
r=5 \\
r^{2}=25
\end{gathered}
$$

$x^{2}+(y+1)^{2}=25$
PTS: 4 REF: 061037ge STA: G.G. 71 TOP: Equations of Circles
516 ANS: 3
PTS: 2 REF: 011116ge
STA: G.G. 71
TOP: Equations of Circles
517 ANS: $4 \quad$ PTS: 2
REF: 081110ge STA: G.G. 71
TOP: Equations of Circles
518 ANS: 4 PTS: 2
TOP: Equations of Circles
519 ANS: $3 \quad$ PTS: 2
TOP: Equations of Circles
520 ANS: 3 PTS: 2 REF: 081209ge STA: G.G. 71
TOP: Equations of Circles
521 ANS:
If $r=5$, then $r^{2}=25 .(x+3)^{2}+(y-2)^{2}=25$
PTS: 2
REF: 011332ge
STA: G.G. 71
PTS: 2 REF: 061306ge
TOP: Equations of Circles
522 ANS: 3
STA: G.G. 71
TOP: Equations of Circles
523 ANS: $4 \quad$ PTS: 2
REF: 081305ge
STA: G.G. 71
TOP: Equations of Circles
524 ANS: 1 PTS: 2 REF: 011423ge STA: G.G. 71
TOP: Equations of Circles
525 ANS: 1

$$
\begin{aligned}
\left(\frac{2+2}{2}, \frac{0+(-8)}{2}\right)=(2,-4) \sqrt{(2-2)^{2}+(-8-0)^{2}} & =8=d \\
4 & =r \\
16 & =r^{2}
\end{aligned}
$$

PTS: 2 REF: 061428ge STA: G.G. 71 TOP: Equations of Circles

526 ANS: $2 \quad$ PTS: 2
TOP: Equations of Circles
527 ANS: 2
PTS: 2
TOP: Equations of Circles
528 ANS: 2 PTS: 2
TOP: Equations of Circles
529 ANS: 4
The radius is 4. $r^{2}=16$.
PTS: 2 REF: 061014ge STA: G.G. 72 TOP: Equations of Circles 530 ANS:
$(x+1)^{2}+(y-2)^{2}=36$

	PTS: 2
531	ANS: 1
	TOP: Equations of Circ
532	ANS:
	$(x-5)^{2}+(y+4)^{2}=36$

PTS: 2 REF: 081132ge
533 ANS: 1
PTS: 2
TOP: Equations of Circles
534 ANS: 2 PTS: 2
TOP: Equations of Circles
535 ANS: $4 \quad$ PTS:
TOP: Equations of Circles
536 ANS: $3 \quad$ PTS:
TOP: Equations of Circles
537 ANS: 3 PTS: 2
TOP: Equations of Circles
538 ANS: 4 PTS: 2
TOP: Equations of Circles
539 ANS: $1 \quad$ PTS: 2
TOP: Equations of Circles
540 ANS: 4
PTS: 2
TOP: Equations of Circles
541 ANS: 3 PTS:
TOP: Equations of Circles
542 ANS: 1 PTS: 2
TOP: Equations of Circles
543 ANS: 2
PTS: 2
TOP: Equations of Circles
544 ANS: 3
PTS: 2
TOP: Equations of Circles
545 ANS: 4 PTS: 2
TOP: Equations of Circles

REF: 011511ge STA: G.G. 71
REF: 061524ge STA: G.G.71
REF: 080921ge STA: G.G. 72

STA: G.G. 72 TOP: Equations of Circles
REF: 061110ge STA: G.G. 72

STA: G.G. 72 TOP: Equations of Circles
REF: 011220ge STA: G.G. 72
REF: 081212ge STA: G.G. 72
REF: 011323ge STA: G.G. 72
REF: 061309ge STA: G.G. 72
REF: 081312ge STA: G.G. 72
REF: 011415ge STA: G.G. 72

REF: 061408ge STA: G.G. 72
REF: 081409ge STA: G.G. 72
REF: 011514ge STA: G.G. 72

REF: 061510ge STA: G.G. 72
REF: 081520ge STA: G.G. 72
REF: fall0814ge STA: G.G. 73
REF: 060922ge STA: G.G. 73

546 ANS: $1 \quad$ PTS: 2
TOP: Equations of Circles
547 ANS: 1
PTS: 2
TOP: Equations of Circles
548 ANS: 4 PTS: 2
TOP: Equations of Circles
549 ANS: 2 PTS: 2
TOP: Equations of Circles
550 ANS: 1 PTS: 2
TOP: Equations of Circles
551 ANS: 4 PTS: 2
TOP: Equations of Circles
552 ANS: 4 PTS: 2
TOP: Equations of Circles
553 ANS:
center: $(3,-4)$; radius: $\sqrt{10}$
PTS: 2 REF: 081333ge
554 ANS: 4
PTS: 2
TOP: Equations of Circles
555 ANS: 4 PTS: 2
TOP: Equations of Circles
556 ANS: 4 PTS: 2
TOP: Equations of Circles
557 ANS: 1
$r^{2}=48$
$r=\sqrt{48}=\sqrt{16} \cdot \sqrt{3}=4 \sqrt{3}$
PTS: 2 REF: 081412ge STA: G.G. 73 TOP: Equations of Circles
558 ANS: 3
$r^{2}=50$
$r=\sqrt{50}=\sqrt{25} \sqrt{2}=5 \sqrt{2}$
PTS: 2 REF: 061515ge
559 ANS: 3
PTS: 2
TOP: Equations of Circles
560 ANS: $1 \quad$ PTS: 2
TOP: Graphing Circles
561 ANS: $2 \quad$ PTS: 2
TOP: Graphing Circles
562 ANS: 2
PTS: 2
TOP: Graphing Circles
563 ANS: $3 \quad$ PTS: 2
TOP: Graphing Circles

REF: 080911ge STA: G.G. 73
REF: 081009ge STA: G.G. 73
REF: 061114ge STA: G.G. 73
REF: 011203ge STA: G.G. 73
REF: 061223ge STA: G.G. 73
REF: 011318ge STA: G.G. 73
REF: 061319ge STA: G.G. 73

STA: G.G. 73 TOP: Equations of Circles
REF: 011403ge STA: G.G. 73
REF: 011426ge STA: G.G. 73
REF: 061422ge STA: G.G. 73

STA: G.G. 73 TOP: Equations of Circles
REF: 081502ge STA: G.G. 73
REF: 060920ge STA: G.G. 74
REF: 011020ge STA: G.G.74
REF: 011125ge STA: G.G. 74
REF: 061220ge STA: G.G. 74

PTS: 2
REF: 061325ge STA: G.G.74
TOP: Graphing Circles
565 ANS: 1
PTS: 2
REF: 081324ge STA: G.G. 74
TOP: Graphing Circles
566 ANS: 2 PT
TOP: Graphing Circles
567
ANS: 3 PTS: 2
REF: 011518ge
TA: G.G. 74
TOP: Graphing Circles
568 ANS:

PTS: 4
REF: 081537ge
STA: G.G. 74
TOP: Graphing Circles
569 ANS:
4. $l_{1} w_{1} h_{1}=l_{2} w_{2} h_{2}$
$10 \times 2 \times h=5 \times w_{2} \times h$
$20=5 w_{2}$
$w_{2}=4$
PTS: 2
REF: 011030ge
STA: G.G. 11
TOP: Volume
570 ANS: 3
$25 \times 9 \times 12=15^{2} h$

$$
\begin{aligned}
2700 & =15^{2} h \\
12 & =h
\end{aligned}
$$

PTS: 2
REF: 061323ge
STA: G.G. 11
TOP: Volume
571 ANS: 1
If two prisms have equal heights and volume, the area of their bases is equal.
PTS: 2
REF: 081321ge
STA: G.G. 11
TOP: Volume
572 ANS:
$5 \cdot 5=10 w$
$25=10 w$
$2.5=w$
PTS: 2
REF: 061432ge
STA: G.G. 11
TOP: Volume

573 ANS: 3
$720=5 B$
$144=B$
PTS: 2 REF: 081523ge STA: G.G. 11 TOP: Volume
574 ANS: 1
$\frac{3 x^{2}+18 x+24}{3(x+2)}$
$\frac{3\left(x^{2}+6 x+8\right)}{3(x+2)}$
$\frac{3(x+4)(x+2)}{3(x+2)}$

$$
x+4
$$

PTS: 2 REF: fall0815ge STA: G.G. 12 TOP: Volume
575 ANS:
9.1. $(11)(8) h=800$ $h \approx 9.1$

PTS: 2
576 ANS: 3
REF: 061131ge
STA: G.G. 12
REF: 081123ge
TOP: Volume
TOP: Volume
577 ANS: 2
PTS: 2 STA: G.G. 12

TOP: Volume
578 ANS:
$B h=V$
$12 h=84$
$h=7$
PTS: 2
REF: 011432ge
STA: G.G. 12
TOP: Volume
579 ANS:
2016. $V=\frac{1}{3} B h=\frac{1}{3} s^{2} h=\frac{1}{3} 12^{2} \cdot 42=2016$

PTS: 2
REF: 080930ge
STA: G.G. 13
TOP: Volume

580 ANS:
18. $\quad V=\frac{1}{3} B h=\frac{1}{3} l w h$

$$
\begin{aligned}
288 & =\frac{1}{3} \cdot 8 \cdot 6 \cdot h \\
288 & =16 h \\
18 & =h
\end{aligned}
$$

PTS: 2
REF: 061034ge
STA: G.G. 13
TOP: Volume
581 ANS: 1
$256=\frac{1}{3} B \cdot 12$
$64=B$
$8=s$
PTS: 2
REF: 081428ge
STA: G.G. 13
TOP: Volume
582 ANS:
22.4.

$$
\begin{aligned}
V & =\pi r^{2} h \\
12566.4 & =\pi r^{2} \cdot 8 \\
r^{2} & =\frac{12566.4}{8 \pi} \\
r & \approx 22.4
\end{aligned}
$$

PTS: 2
REF: fall0833ge
STA: G.G. 14
TOP: Volume and Lateral Area
583 ANS: 1

$$
\begin{aligned}
V & =\pi r^{2} h \\
1000 & =\pi r^{2} \cdot 8 \\
r^{2} & =\frac{1000}{8 \pi} \\
r & \approx 6.3
\end{aligned}
$$

PTS: 2
REF: 080926ge STA: G.G. 14
TOP: Volume and Lateral Area
584 ANS: 3
$V=\pi r^{2} h=\pi \cdot 6^{2} \cdot 27=972 \pi$
PTS: 2
REF: 011027ge
STA: G.G. 14
TOP: Volume and Lateral Area
585 ANS: 4
$L=2 \pi r h=2 \pi \cdot 5 \cdot 11 \approx 345.6$
PTS: 2
REF: 061006ge
STA: G.G. 14
TOP: Volume and Lateral Area

586 ANS: 2
$V=\pi r^{2} h=\pi \cdot 6^{2} \cdot 15=540 \pi$
PTS: 2 REF: 011117ge STA: G.G. 14 TOP: Volume and Lateral Area 587 ANS:

$$
\begin{aligned}
V & =\pi r^{2} h \quad . L=2 \pi r h=2 \pi \cdot 5 \sqrt{2} \cdot 12 \approx 533.1 \\
600 \pi & =\pi r^{2} \cdot 12 \\
50 & =r^{2} \\
\sqrt{25} \sqrt{2} & =r \\
5 \sqrt{2} & =r
\end{aligned}
$$

PTS: 4
REF: 011236ge
STA: G.G. 14
TOP: Volume and Lateral Area 588 ANS:
$L=2 \pi r h=2 \pi \cdot 12 \cdot 22 \approx 1659 . \frac{1659}{600} \approx 2.8 .3$ cans are needed.
PTS: 2 REF: 061233ge STA: G.G. 14 TOP: Volume and Lateral Area 589 ANS:
$V=\pi r^{2} h=\pi(5)^{2} \cdot 7=175 \pi$
PTS: 2 REF: 081231ge STA: G.G. 14 TOP: Volume and Lateral Area 590 ANS:
$L=2 \pi r h=2 \pi \cdot 3 \cdot 5 \approx 94.25 . V=\pi r^{2} h=\pi(3)^{2}(5) \approx 141.37$
PTS: 4 REF: 011335ge STA: G.G. 14 TOP: Volume and Lateral Area 591 ANS:
$L=2 \pi r h=2 \pi \cdot 3 \cdot 7=42 \pi$
PTS: 2 REF: 061329ge STA: G.G. 14 TOP: Volume and Lateral Area 592 ANS: 2
$18 \pi \cdot 42 \approx 2375$
PTS: 2
REF: 011418ge STA: G.G. 14
TOP: Volume and Lateral Area
593 ANS: 3
$L=2 \pi r h=2 \pi \cdot \frac{6}{2} \cdot 15=90 \pi$
PTS: 2 REF: 061405ge STA: G.G. 14 TOP: Volume and Lateral Area
594 ANS: 1
$V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi \cdot 4^{2} \cdot 12 \approx 201$
PTS: 2
REF: 060921ge
STA: G.G. 15
TOP: Volume

595 ANS:
$375 \pi L=\pi r l=\pi(15)(25)=375 \pi$
PTS: 2 REF: 081030ge STA: G.G. 15 TOP: Lateral Area
596 ANS: 3
$120 \pi=\pi(12)(l)$

$$
10=l
$$

PTS: 2 REF: 081314ge STA: G.G. 15 TOP: Volume and Lateral Area 597 ANS:
$l=\sqrt{10^{2}+3^{2}}=\sqrt{109} \quad L=\pi r l=\pi(3)(\sqrt{109}) \approx 98.4$
PTS: 4 REF: 081436ge STA: G.G. 15 TOP: Volume and Lateral Area 598 ANS:
$h=\sqrt{5^{2}-3^{2}}=4 \quad V=\frac{1}{3} \pi \cdot 3^{2} \cdot 4=12 \pi \quad V=\pi \cdot 4^{2} \cdot 6=96 \pi \quad \frac{96 \pi}{12 \pi}=8$
PTS: 4 REF: 011537ge STA: G.G. 15 TOP: Volume and Lateral Area 599 ANS:
$l=\sqrt{12^{2}+5^{2}}=\sqrt{169}=13 L=\pi r l=\pi(5)(13)=65 \pi$
PTS: 2 REF: 061531ge STA: G.G. 15 TOP: Volume and Lateral Area
600 ANS:
$V=\frac{1}{3} \pi\left(3^{2}\right)(8)=24 \pi$
PTS: 2 REF: 081530ge STA: G.G. 15 TOP: Volume and Lateral Area
601 ANS:
452. $S A=4 \pi r^{2}=4 \pi \cdot 6^{2}=144 \pi \approx 452$

PTS: 2 REF: 061029ge STA: G.G. 16 TOP: Volume and Surface Area
602 ANS: 4

$$
\begin{aligned}
\mathrm{SA} & =4 \pi r^{2} \quad V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot 6^{3}=288 \pi \\
144 \pi & =4 \pi r^{2} \\
36 & =r^{2} \\
6 & =r
\end{aligned}
$$

PTS: 2 REF: 081020ge STA: G.G. 16 TOP: Surface Area
603 ANS: 2
$V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot 3^{3}=36 \pi$
PTS: 2 REF: 061112ge STA: G.G. 16 TOP: Volume and Surface Area

604 ANS:
$V=\frac{4}{3} \pi \cdot 9^{3}=972 \pi$
PTS: 2 REF: 081131ge STA: G.G. 16 TOP: Volume and Surface Area
605 ANS: 2
$V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot\left(\frac{15}{2}\right)^{3} \approx 1767.1$
PTS: 2
REF: 061207ge
STA: G.G. 16
TOP: Volume and Surface Area
606 ANS: 2
$V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \cdot\left(\frac{6}{2}\right)^{3} \approx 36 \pi$

PTS: 2
REF: 081215ge
STA: G.G. 16
TOP: Volume and Surface Area
607 ANS: 1
$V=\frac{4}{3} \pi r^{3}$
$44.6022=\frac{4}{3} \pi r^{3}$
$10.648 \approx r^{3}$
$2.2 \approx r$
PTS: 2
REF: 061317ge
STA: G.G. 16
TOP: Volume and Surface Area
608 ANS:
$S A=4 \pi r^{2}=4 \pi \cdot 2.5^{2}=25 \pi \approx 78.54$
PTS: 2
REF: 011429ge
STA: G.G. 16
TOP: Volume and Surface Area
609 ANS: 3
$144 \pi=4 \pi r^{2}$

$$
\begin{array}{r}
36=r^{2} \\
6=r
\end{array}
$$

PTS: 2
REF: 061415ge
STA: G.G. 16
TOP: Volume and Surface Area $V=\frac{2}{3} \pi\left(\frac{12}{2}\right)^{3} \approx 905$

PTS: 2
REF: 061502ge
STA: G.G. 16
TOP: Volume and Surface Area

611 ANS: 4
Corresponding angles of similar triangles are congruent.
PTS: 2 REF: fall0826ge STA: G.G. 45 TOP: Similarity
KEY: perimeter and area
612 ANS:
20. $5 x+10=4 x+30$

$$
x=20
$$

PTS: 2
REF: 060934ge
STA: G.G. 45
TOP: Similarity
KEY: basic
613 ANS: 2
Because the triangles are similar, $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle D}=1$

PTS: 2
REF: 011022ge
STA: G.G. 45
TOP: Similarity
KEY: perimeter and area
614 ANS: 4
$180-(50+30)=100$
PTS: 2
REF: 081006ge
STA: G.G. 45
TOP: Similarity
KEY: basic
615 ANS: 4
TOP: Similarity
PTS: 2
REF: 081023ge
STA: G.G. 45
616 ANS: 3
$\frac{7 x}{4}=\frac{7}{x} \cdot 7(2)=14$
$7 x^{2}=28$
$x=2$
PTS: 2 REF: 061120ge STA: G.G. 45 TOP: Similarity
KEY: basic
617 ANS:
$2 \quad \frac{x+2}{x}=\frac{x+6}{4}$

$$
\begin{aligned}
x^{2}+6 x & =4 x+8 \\
x^{2}+2 x-8 & =0 \\
(x+4)(x-2) & =0 \\
x & =2
\end{aligned}
$$

PTS: 4
KEY: basic
618 ANS: 3
TOP: Similarity
REF: 081137ge
STA: G.G. 45
TOP: Similarity
PTS: 2
KEY: basic
REF: 061224ge STA: G.G. 45
$\begin{array}{llll}619 & \text { ANS: } 4 & \text { PTS: 2 } & \text { REF: 081216ge } \\ \text { TOP: Similarity } & \text { KEY: basic } & & \end{array}$
620 ANS: 2
Perimeter of $\triangle D E F$ is $5+8+11=24 . \frac{5}{24}=\frac{x}{60}$

$$
\begin{aligned}
24 x & =300 \\
x & =12.5
\end{aligned}
$$

PTS: 2 REF: 011307ge STA: G.G. 45 TOP: Similarity
KEY: perimeter and area
621 ANS:
$x^{2}-8 x=5 x+30 . \mathrm{m} \angle C=4(15)-5=55$
$x^{2}-13 x-30=0$
$(x-15)(x+2)=0$
$x=15$
PTS: 4 REF: 061337ge STA: G.G. 45 TOP: Similarity
KEY: basic
622 ANS: 3
$\frac{15}{18}=\frac{5}{6}$
PTS: 2 REF: 081317ge STA: G.G. 45 TOP: Similarity
KEY: perimeter and area
623 ANS:
$\left(\frac{3}{2}\right)^{2}=\frac{27}{A}$

$$
\begin{aligned}
\frac{9}{4} & =\frac{27}{A} \\
9 A & =108 \\
A & =12
\end{aligned}
$$

PTS: 2
REF: 061434ge STA: G.G. 45
KEY: perimeter and area
624
TOP: Similarity
PTS: 2
REF: 061517ge
STA: G.G. 45

625
ANS: 2
$45 \cdot \frac{8}{20}=18$
PTS: 2
REF: 081511ge
STA: G.G. 45
TOP: Similarity KEY: perimeter and area

626 ANS:
$2 \sqrt{3} . x^{2}=3 \cdot 4$

$$
x=\sqrt{12}=2 \sqrt{3}
$$

PTS: 2 REF: fall0829ge STA: G.G. 47 TOP: Similarity KEY: altitude
627 ANS: 1
$\overline{A B}=10$ since $\triangle A B C$ is a 6-8-10 triangle. $6^{2}=10 x$ $3.6=x$

PTS: 2
REF: 060915ge STA: G.G. 47
TOP: Similarity
KEY: leg
628 ANS: 4
Let $\overline{A D}=x . \quad 36 x=12^{2}$

$$
x=4
$$

PTS: 2
REF: 080922ge
STA: G.G. 47
TOP: Similarity
KEY: leg
629 ANS:
2.4. $5 a=4^{2} \quad 5 b=3^{2} \quad h^{2}=a b$

$$
\begin{aligned}
a=3.2 \quad b=1.8 & h^{2}=3.2 \cdot 1.8 \\
& h=\sqrt{5.76}=2.4
\end{aligned}
$$

PTS: 4 REF: 081037ge STA: G.G. 47 TOP: Similarity
KEY: leg
630 ANS: 4
$6^{2}=x(x+5)$
$36=x^{2}+5 x$
$0=x^{2}+5 x-36$
$0=(x+9)(x-4)$
$x=4$
PTS: 2
REF: 011123ge
STA: G.G. 47
TOP: Similarity
KEY: leg

631 ANS: 1
$x^{2}=7(16-7)$
$x^{2}=63$
$x=\sqrt{9} \sqrt{7}$
$x=3 \sqrt{7}$
PTS: 2
REF: 061128ge
STA: G.G. 47
TOP: Similarity
KEY: altitude
632 ANS: 4
$x \cdot 4 x=6^{2} . P Q=4 x+x=5 x=5(3)=15$
$4 x^{2}=36$

$$
x=3
$$

PTS: 2 REF: 011227ge STA: G.G. 47 TOP: Similarity
KEY: altitude
633 ANS: 1
$x^{2}=3 \times 12$
$x=6$
PTS: 2 REF: 011308ge STA: G.G. 47 TOP: Similarity
KEY: altitude
634 ANS: 3
$x^{2}=3 \times 12 . \sqrt{6^{2}+3^{2}}=\sqrt{45}=\sqrt{9} \sqrt{5}=3 \sqrt{5}$
$x=6$
PTS: 2 REF: 061327ge STA: G.G. 47 TOP: Similarity
KEY: leg
635 ANS: 3
$x^{2}=2(2+10)$
$x^{2}=24$
$x=\sqrt{24}=\sqrt{4} \sqrt{6}=2 \sqrt{6}$
PTS: 2
REF: 081326ge
STA: G.G. 47
TOP: Similarity
KEY: leg

636 ANS:

$$
\begin{aligned}
4 x \cdot x & =6^{2} \\
4 x^{2} & =36 \\
x^{2} & =9 \\
x & =3 \\
\overline{B D} & =4(3)=12
\end{aligned}
$$

PTS: 4 REF: 011437ge STA: G.G. 47 TOP: Similarity
KEY: altitude
637 ANS:
$x^{2}=8(10+8)$
$x^{2}=144$
$x=12$
PTS: 2 REF: 061431ge STA: G.G. 47 TOP: Similarity
KEY: leg
638 ANS: 3
TOP: Similarity
PTS: 2
REF: 081410ge
STA: G.G. 47

639 ANS:

$$
\begin{array}{rlrl}
x(x+16) & =15^{2} & 25 \cdot 34=y^{2} \\
x^{2}+16 x-225 & =0 & 5 \sqrt{34}=y \\
(x+25)(x-9) & =0 & \\
x & =9 &
\end{array}
$$

PTS: 6
REF: 011538ge
STA: G.G. 47
TOP: Similarity
KEY: leg
640 ANS: 3
$x^{2}=8 \times 18$
$x^{2}=144$
$x=12$
PTS: 2
REF: 061506ge
STA: G.G. 47
TOP: Similarity
KEY: altitude

641 ANS: 3
$x^{2}=4 \cdot 7$
$x=\sqrt{4} \cdot \sqrt{7}$
$x=2 \sqrt{7}$
PTS: 2
REF: 081528ge
STA: G.G. 47
TOP: Similarity KEY: leg
642 ANS:
$R^{\prime}(-3,-2), S^{\prime}(-4,4)$, and $T^{\prime}(2,2)$.
PTS: 2 REF: 011232ge STA: G.G. 54 TOP: Rotations
643 ANS:

$$
A^{\prime}(-2,1), B^{\prime}(-3,-4) \text {, and } C^{\prime}(5,-3)
$$

PTS: 2
REF: 081230ge STA: G.G. 54
644 ANS: 4
$(x, y) \rightarrow(-x,-y)$
PTS: 2
REF: 061304ge
STA: G.G. 54
TOP: Rotations
645 ANS: 4
PTS: 2
REF: 011421ge
STA: G.G. 54
TOP: Rotations
646 ANS:
$(x, y) \rightarrow(-y, x)$
$B(5,1) \rightarrow B^{\prime}(-1,5)$
$C(-3,-2) \rightarrow C^{\prime}(2,-3)$

PTS: 2
647 ANS: 3
TOP: Reflections

REF: 061429ge
PTS: 2
KEY: basic

STA: G.G. 54 TOP: Rotations
REF: 060905ge STA: G.G. 54

648 ANS:

PTS: 2 REF: 061032ge STA: G.G. 54 TOP: Reflections KEY: grids
649 ANS:

PTS: 2 KEY: grids
650 ANS: 2 TOP: Reflections
651 ANS: 1 TOP: Reflections KEY: basic
652 ANS:

PTS: 2
REF: 061530ge
STA: G.G. 54
TOP: Reflections

PTS: 2
KEY: basic
REF: 011130ge
STA: G.G. 54
REF: 081108ge
REF: 081113ge
STA: G.G. 54 KEY: grids

653 ANS:

PTS: 2
KEY: grids
654 ANS: 1
$(x, y) \rightarrow(x+3, y+1)$
PTS: 2
REF: 081529ge

ANS: 3
$-5+3=-2 \quad 2+-4=-2$
PTS: 2
REF: 011107ge
STA: G.G. 54
ANS:
$T_{-2,1} A(0,1)$
PTS: 2
REF: 081431ge
STA: G.G. 54
ANS:
$A^{\prime}(2,2), B^{\prime}(3,0), C(1,-1)$
PTS: 2
REF: 081329ge
STA: G.G. 58
TOP: Dilations
658 ANS:

PTS: 2
659 ANS: 3
TOP: Dilations

REF: 081429ge PTS: 2

STA: G.G. 58
REF: 011524ge

TOP: Dilations
STA: G.G. 58

660 ANS:

PTS: 4
REF: 060937ge
STA: G.G. 54
TOP: Compositions of Transformations
KEY: grids
661 ANS: 1
$A^{\prime}(2,4)$
PTS: 2
REF: 011023ge
STA: G.G. 54
TOP: Compositions of Transformations
KEY: basic
662 ANS: 3
$(3,-2) \rightarrow(2,3) \rightarrow(8,12)$
PTS: 2 REF: 011126ge STA: G.G. 54 TOP: Compositions of Transformations
KEY: basic
663 ANS: 1
After the translation, the coordinates are $A^{\prime}(-1,5)$ and $B^{\prime}(3,4)$. After the dilation, the coordinates are $A^{\prime \prime}(-2,10)$ and $B^{\prime \prime}(6,8)$.

PTS: 2 REF: fall0823ge STA: G.G. 58 TOP: Compositions of Transformations 664 ANS:

$$
A^{\prime \prime}(8,2), B^{\prime \prime}(2,0), C^{\prime \prime}(6,-8)
$$

PTS: 4
REF: 081036ge STA: G.G. 58
TOP: Compositions of Transformations

665 ANS:

$$
G^{\prime \prime}(3,3), H^{\prime \prime}(7,7), S^{\prime \prime}(-1,9)
$$

PTS: 4
REF: 081136ge STA: G.G. 58
TOP: Compositions of Transformations
666 ANS:

$$
A^{\prime}(5,-4), B^{\prime}(5,1), C^{\prime}(2,1), D^{\prime}(2,-6) ; A^{\prime \prime}(5,4), B^{\prime \prime}(5,-1), C^{\prime \prime}(2,-1), D^{\prime \prime}(2,6)
$$

PTS: 4
REF: 061236ge
STA: G.G. 58
TOP: Compositions of Transformations KEY: grids
667 ANS:

PTS: 4 KEY: grids
668 ANS:

$A^{\prime \prime}(11,1), B^{\prime \prime}(3,7), C^{\prime \prime}(3,1)$
PTS: 4

STA: G.G. 58
TOP: Compositions of Transformations

669 ANS:

$$
S^{\prime \prime}(5,-3), W^{\prime \prime}(3,-4), A^{\prime \prime}(2,1), \text { and } N^{\prime \prime}(4,2)
$$

PTS: 4
REF: 061335ge
STA: G.G. 58
TOP: Compositions of Transformations KEY: grids
670 ANS:

$$
M^{\prime \prime}(1,-2), A^{\prime \prime}(6,-2), T^{\prime \prime}(5,-4), H^{\prime \prime}(3,-4)
$$

PTS: 4
REF: 081336ge
STA: G.G. 58
TOP: Compositions of Transformations
KEY: grids
671 ANS:

PTS: 3
REF: 011436ge
STA: G.G. 58
TOP: Compositions of Transformations
KEY: grids

672 ANS:

PTS: 4
REF: 061435ge
STA: G.G. 58
TOP: Compositions of Transformations KEY: grids
673 ANS:

$$
\begin{aligned}
& H^{\prime}(7,0), Y^{\prime}(6,4), P^{\prime}(3,4), E^{\prime}(3,1) \\
& H^{\prime \prime}(7,0), Y^{\prime \prime}(6,-4), P^{\prime \prime}(3,-4), E^{\prime \prime}(3,-1)
\end{aligned}
$$

PTS: 4
REF: 011535ge STA: G.G. 58
TOP: Compositions of Transformations KEY: grids
674 ANS:

PTS: 2
REF: fall0830ge
STA: G.G. 55
TOP: Properties of Transformations

675 ANS:

$$
D^{\prime}(-1,1), E^{\prime}(-1,5), G^{\prime}(-4,5)
$$

PTS: 4
676 ANS: 2
TOP: Properties of Transformations
677 ANS: $1 \quad$ PTS: 2
TOP: Properties of Transformations
678 ANS: $1 \quad$ PTS: 2
TOP: Properties of Transformations
679 ANS:
Yes. A reflection is an isometry.
PTS: 2
680 ANS: 3
REF: 061132ge
STA: G.G. 55
REF: 081104ge
REF: 011211ge
681 ANS: 2 PTS: 2

682 ANS:
$A^{\prime}(7,-4), B^{\prime}(7,-1) . C^{\prime}(9,-4)$. The areas are equal because translations preserve distance.

STA: G.G. 55
TOP: Properties of Transformations STA: G.G. 55

TOP: Properties of Transformations
STA: G.G. 55
REF: 061005ge STA: G.G. 55
REF: 011102ge STA: G.G. 55

684 ANS:

PTS: 4 683 ANS: 2

TOP: Properties of Transformations
Distance is preserved after the reflection. $2 x+13=9 x-8$

$$
\begin{aligned}
21 & =7 x \\
3 & =x
\end{aligned}
$$

PTS: 2	REF: 011329ge
685	ANS: 1

TOP: Properties of Transformations

STA: G.G. 55
REF: 081202ge

REF: 011235ge
PTS: 2

PTS: 2

STA: G.G. 55
REF: 061307ge

TOP: Properties of Transformations STA: G.G. 55

TOP: Properties of Transformations STA: G.G. 55

686 ANS: 4
Distance is preserved after a rotation.

693 ANS:

36, because a dilation does not affect angle measure. 10 , because a dilation does affect distance.

707 ANS: $3 \quad$ PTS: 2
REF: 011427ge
STA: G.G. 56
TOP: Identifying Transformations
708 ANS: 3 PTS: 2
TOP: Identifying Transformations
709 ANS: 4
(2) rotation is also a correct response

	PTS: 2	REF: 011527ge	ST
710	ANS: 3	PTS: 2	RE
	TOP: Identifying Transformations		
711	ANS: 2		
	A dilation affects distance, not angle measure.		

	PTS:		REF: 080906ge	STA: G.G. 60		Identify
712	ANS:	4	PTS: 2	REF: 061103ge	STA	G.G. 60
	TOP: Identifying Transformations					
713	ANS:	4	PTS: 2	REF: fall0818ge	STA	G.G. 61
	TOP: Analytical Representations of Transformations					
714	ANS:					
	Translations and reflections do not affect distance.					

PTS: 2
REF: 080908ge STA: G.G. 61
TOP: Analytical Representations of Transformations
715 ANS: 3 PTS: 2 REF: 061501ge STA: G.G. 61
TOP: Analytical Representations of Transformations
716 ANS: 1
$(2,-7) \rightarrow(2-3,-7+5)=(-1,-2)$
PTS: 2
REF: 061504ge STA: G.G. 61
TOP: Analytical Representations of Transformations

Geometry Regents Exam Questions by Performance Indicator: Topic

 Answer Section717 ANS:

$$
T^{\prime}(-6,3), A^{\prime}(-3,3), P^{\prime}(-3,-1)
$$

PTS: 2
REF: 061229ge STA: G.G. 61
TOP: Analytical Representations of Transformations
718 ANS: 3 PTS: 2 REF: 011304ge

TOP: Analytical Representations of Transformations
719 ANS: 2
PTS: 2
REF: 081504ge
STA: G.G. 61
TOP: Analytical Representations of Transformations
720 ANS: 4 PTS: 2 REF: fall0802ge STA: G.G. 24
TOP: Negations
721 ANS: 4
Median $\overline{B F}$ bisects $\overline{A C}$ so that $\overline{C F} \cong \overline{F A}$.

| | PTS: 2 | REF: fall0810ge | STA: G.G.24 | TOP: Statements |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 722 | ANS: 3 | PTS: 2 | REF: 080924ge | STA: G.G. 24 |
| TOP: Negations | | | | |
| 723 | ANS: 2 | PTS: 2 | REF: 061002ge | STA: G.G. 24 |

TOP: Negations
724 ANS:
The medians of a triangle are not concurrent. False.

	PTS: 2	REF: 061129ge	STA: G.G.24	TOP: Negations	
725	ANS: 1	PTS: 2	REF: 011213ge	STA: G.G. 24	
	TOP: Negations				
726	ANS: 2	PTS: 2	REF: 061202ge	STA: G.G. 24	

TOP: Negations
727 ANS:
2 is not a prime number, false.
PTS: 2 REF: 081229ge STA: G.G. 24 TOP: Negations
728 ANS: 1
TOP: Statements
729 ANS: 2
PTS: 2 REF: 011303ge
STA: G.G. 24

PTS: 2 REF: 081301ge STA: G.G. 24

750 ANS: 1
PTS: 2
REF: 081513ge STA: G.G. 26
TOP: Contrapositive
751 ANS: 3

PTS: 2
REF: 060902ge
STA: G.G. 28
PTS: 2
REF: 080913ge
TOP: Triangle Congruency
752
ANS: 3
STA: G.G. 28
ANS: 2

PTS: 2
REF: 081007ge
STA: G.G. 28
754 ANS: 1
PTS: 2
REF: 011122ge
TOP: Triangle Congruency
TOP: Triangle Congruency
755
ANS: 4

PTS: 2
REF: 081114ge
STA: G.G. 28
TOP: Triangle Congruency
756 ANS: 3

. Opposite sides of a parallelogram are congruent and the diagonals of a parallelogram bisect each other.

PTS: 2
REF: 061222ge
STA: G.G. 28
TOP: Triangle Congruency

757 ANS: 1

	PTS: 2	REF: 081210ge	STA: G.G.28	TOP: Triangle Congruency
758	ANS: 1	PTS: 2	REF: 011412ge	STA: G.G. 28
	TOP: Triangle Congruency			
759	ANS: 4	PTS: 2	REF: 080905ge	STA: G.G. 29
	TOP: Triangle Congruency			
760	ANS: 4			

	PTS: 2	REF: 081001ge	STA: G.G. 29	TOP: Triangle Congruency
761	ANS: 3	PTS: 2	REF: 061102ge	STA: G.G. 29
	TOP: Triangle Congruency			
762	ANS: 2	PTS: 2	REF: 081102ge	STA: G.G. 29
	TOP: Triangle Congruency			
763	ANS: 4	PTS: 2	REF: 011216ge	STA: G.G. 29
	TOP: Triangle Congruency			
764	ANS: 1	PTS: 2	REF: 011301ge	STA: G.G. 29
	TOP: Triangle Congruency			

ANS: 2
TOP: Line Proofs
ANS: 4

PTS: 2
REF: 061427ge
STA: G.G. 27

771 ANS: 4
PTS: 2
REF: 011108ge
STA: G.G. 27
TOP: Angle Proofs
772 ANS:
$\overline{A C} \cong \overline{E C}$ and $\overline{D C} \cong \overline{B C}$ because of the definition of midpoint. $\angle A C B \cong \angle E C D$ because of vertical angles.
$\triangle A B C \cong \triangle E D C$ because of SAS. $\angle C D E \cong \angle C B A$ because of CPCTC. $\overline{B D}$ is a transversal intersecting $\overline{A B}$ and
$\overline{E D}$. Therefore $\overline{A B} \| \overline{D E}$ because $\angle C D E$ and $\angle C B A$ are congruent alternate interior angles.

PTS: 6 REF: 060938ge STA: G.G. 27 TOP: Triangle Proofs
773 ANS:
$\angle B$ and $\angle C$ are right angles because perpendicular lines form right angles. $\angle B \cong \angle C$ because all right angles are congruent. $\angle A E B \cong \angle D E C$ because vertical angles are congruent. $\triangle A B E \cong \triangle D C E$ because of ASA. $\overline{A B} \cong \overline{D C}$ because СРСТС.

PTS: 4 REF: 061235ge STA: G.G. 27 TOP: Triangle Proofs
774 ANS: 1

$$
\begin{aligned}
A B & =C D \\
A B+B C & =C D+B C \\
A C & =B D
\end{aligned}
$$

PTS: 2 REF: 081207ge STA: G.G. 27 TOP: Triangle Proofs
775 ANS:
$\triangle M A H, \overline{M H} \cong \overline{A H}$ and medians $\overline{A B}$ and $\overline{M T}$ are given. $\overline{M A} \cong \overline{A M}$ (reflexive property). $\triangle M A H$ is an isosceles triangle (definition of isosceles triangle). $\angle A M B \cong \angle M A T$ (isosceles triangle theorem). B is the midpoint of $\overline{M H}$ and T is the midpoint of $\overline{A H}$ (definition of median). $\mathrm{m} \overline{M B}=\frac{1}{2} \mathrm{~m} \overline{M H}$ and $\mathrm{m} \overline{A T}=\frac{1}{2} \mathrm{~m} \overline{A H}$ (definition of midpoint). $\overline{M B} \cong \overline{A T}$ (multiplication postulate). $\triangle M B A \cong \triangle A T M$ (SAS). $\angle M B A \cong \angle A T M$ (CPCTC).

PTS: 6 REF: 061338ge STA: G.G. 27 TOP: Triangle Proofs
776 ANS:
$\triangle A B C, \overline{B D}$ bisects $\angle A B C, \overline{B D} \perp \overline{A C}$ (Given). $\angle C B D \cong \angle A B D$ (Definition of angle bisector). $\overline{B D} \cong \overline{B D}$ (Reflexive property). $\angle C D B$ and $\angle A D B$ are right angles (Definition of perpendicular). $\angle C D B \cong \angle A D B$ (All right angles are congruent). $\triangle C D B \cong \triangle A D B$ (SAS). $\overline{A B} \cong \overline{C B}$ (CPCTC).

PTS: 4 REF: 081335ge STA: G.G. 27 TOP: Triangle Proofs
777 ANS:
$\overline{M T}$ and $\overline{H A}$ intersect at $B, \overline{M A} \| \overline{H T}$, and $\overline{M T}$ bisects $\overline{H A}$ (Given). $\angle M B A \cong \angle T B H$ (Vertical Angles). $\angle A \cong \angle H$ (Alternate Interior Angles). $\overline{B H} \cong \overline{B A}$ (The bisection of a line segment creates two congruent segments). $\triangle M A B \cong \triangle T H B$ (ASA). $\overline{M A} \cong \overline{H T}$ (СРСТС).

PTS: 4
REF: 081435ge
STA: G.G. 27
TOP: Triangle Proofs

778
ANS:
$\overline{B E}$ and $\overline{A D}$ intersect at point $C, \overline{B C} \cong \overline{E C}, \overline{A C} \cong \overline{D C}, \overline{A B}$ and $\overline{D E}$ are drawn (Given). $\angle B C A \cong \angle E C D$ (Vertical Angles). $\triangle A B C \cong \triangle D E C$ (SAS).

PTS: 2 REF: 011529ge STA: G.G. 27 TOP: Triangle Proofs
ANS:

$$
\overline{F E} \cong \overline{F E} \text { (Reflexive Property); } \overline{A E}-\overline{F E} \cong \overline{F C}-\overline{E F} \text { (Line Segment Subtraction }
$$

Theorem); $\overline{A F} \cong \overline{C E}$ (Substitution); $\angle B F A \cong \angle D E C$ (All right angles are congruent); $\triangle B F A \cong \triangle D E C$ (AAS); $\overline{A B} \cong \overline{C D}$ and $\overline{B F} \cong \overline{D E}$ (CPCTC); $\angle B F C \cong \angle D E A$ (All right angles are congruent); $\triangle B F C \cong \triangle D E A$ (SAS);
$\overline{A D} \cong \overline{C B}$ (СРСТС); $A B C D$ is a parallelogram (opposite sides of quadrilateral $A B C D$ are congruent)
PTS: 6 REF: 080938ge STA: G.G. 27 TOP: Quadrilateral Proofs
780 ANS:
$\overline{J K} \cong \overline{L M}$ because opposite sides of a parallelogram are congruent. $\overline{L M} \cong \overline{L N}$ because of the Isosceles Triangle Theorem. $\overline{L M} \cong \overline{J M}$ because of the transitive property. JKLM is a rhombus because all sides are congruent.

PTS: 4 REF: 011036ge STA: G.G. 27 TOP: Quadrilateral Proofs
781 ANS:
$\overline{B D} \cong \overline{D B}$ (Reflexive Property); $\triangle A B D \cong \triangle C D B$ (SSS); $\angle B D C \cong \angle A B D$ (CPCTC).

PTS: 4 REF: 061035ge STA: G.G. 27 TOP: Quadrilateral Proofs
782 ANS:
Quadrilateral $A B C D, \overline{A D} \cong \overline{B C}$ and $\angle D A E \cong \angle B C E$ are given. $\overline{A D} \| \overline{B C}$ because if two lines are cut by a transversal so that a pair of alternate interior angles are congruent, the lines are parallel. $A B C D$ is a parallelogram because if one pair of opposite sides of a quadrilateral are both congruent and parallel, the quadrilateral is a parallelogram. $\overline{A E} \cong \overline{C E}$ because the diagonals of a parallelogram bisect each other. $\angle F E A \cong \angle G E C$ as vertical angles. $\triangle A E F \cong \triangle C E G$ by ASA.
$\begin{array}{llll}\text { PTS: } 6 & \text { REF: 011238ge } & \text { STA: G.G. } 27 & \text { TOP: Quadrilateral Proofs } \\ \text { ANS: } 3 & \text { PTS: } 2 & \text { REF: 081208ge } & \text { STA: G.G. } 27\end{array}$
TOP: Quadrilateral Proofs

ANS:
Rectangle $A B C D$ with points E and F on side $\overline{A B}$, segments $C E$ and $D F$ intersect at G, and $\angle A D G \cong \angle B C E$ are given. $\overline{A D} \cong \overline{B C}$ because opposite sides of a rectangle are congruent. $\angle A$ and $\angle B$ are right angles and congruent because all angles of a rectangle are right and congruent. $\triangle A D F \cong \triangle B C E$ by ASA. $\overline{A F} \cong \overline{B E}$ per CPCTC. $\overline{E F} \cong \overline{F E}$ under the Reflexive Property. $\overline{A F}-\overline{E F} \cong \overline{B E}-\overline{F E}$ using the Subtraction Property of Segments. $\overline{A E} \cong \overline{B F}$ because of the Definition of Segments.

785
786
PTS: 6
ANS: 2
TOP: Quadrilateral Proofs
ANS:

Square $A B C D ; E$ and F are points on $\overline{B C}$ such that $\overline{B E} \cong \overline{F C} ; \overline{A F}$ and $\overline{D E}$ drawn (Given). $\overline{A B} \cong \overline{C D}$ (All sides of a square are congruent). $\angle A B F \cong \angle D C E$ (All angles of a square are equiangular). $\overline{E F} \cong \overline{F E}$ (Reflexive property). $\overline{B E}+\overline{E F} \cong \overline{F C}+\overline{F E}$ (Additive property of line segments). $\overline{B F} \cong \overline{C E}$ (Angle addition). $\triangle A B F \cong \triangle D C E$ (SAS). $\overline{A F} \cong \overline{D E}$ (СРСТС).
PTS: 6
REF: 061538ge
STA: G.G. 27
TOP: Quadrilateral Proofs

ANS:
Parallelogram $D E F G, K$ and H are points on $\overrightarrow{D E}$ such that $\angle D G K \cong \angle E F H$ and $\overline{G K}$ and $\overline{F H}$ are drawn (given). $\overline{D G} \cong \overline{E F}$ (opposite sides of a parallelogram are congruent). $\overline{D G} \| \overline{E F}$ (opposite sides of a parallelogram are parallel). $\angle D \cong \angle F E H$ (corresponding angles formed by parallel lines and a transversal are congruent).
$\triangle D G K \cong \triangle E F H$ (ASA). $\overline{D K} \cong \overline{E H}$ (СРСТС).

PTS: 6 REF: 081538ge STA: G.G. 27 TOP: Quadrilateral Proofs

ANS:

Because $\overline{A B} \| \overline{D C}, \overparen{A D} \cong \overparen{B C}$ since parallel chords intersect congruent arcs. $\angle B D C \cong \angle A C D$ because inscribed angles that intercept congruent arcs are congruent. $\overline{A D} \cong \overline{B C}$ since congruent chords intersect congruent arcs. $\angle D A C \cong \angle D B C$ because inscribed angles that intercept the same arc are congruent. Therefore, $\triangle A C D \cong \triangle B D C$ because of AAS.

PTS: 6 REF: fall0838ge STA: G.G. 27 TOP: Circle Proofs

789 ANS:
$\overline{O A} \cong \overline{O B}$ because all radii are equal. $\overline{O P} \cong \overline{O P}$ because of the reflexive property. $\overline{O A} \perp \overline{P A}$ and $\overline{O B} \perp \overline{P B}$ because tangents to a circle are perpendicular to a radius at a point on a circle. $\angle P A O$ and $\angle P B O$ are right angles because of the definition of perpendicular. $\angle P A O \cong \angle P B O$ because all right angles are congruent.
$\triangle A O P \cong \triangle B O P$ because of HL. $\angle A O P \cong \angle B O P$ because of CPCTC.
PTS: 6 REF: 061138ge STA: G.G. 27 TOP: Circle Proofs
790 ANS:
2. The diameter of a circle is \perp to a tangent at the point of tangency. 4. An angle inscribed in a semicircle is a right angle. 5. All right angles are congruent. 7. AA. 8. Corresponding sides of congruent triangles are in proportion. 9. The product of the means equals the product of the extremes.

PTS: 6 REF: 011438ge STA: G.G. 27 TOP: Circle Proofs
791 ANS: 1
$\triangle P R T$ and $\triangle S R Q$ share $\angle R$ and it is given that $\angle R P T \cong \angle R S Q$.
PTS: 2 REF: fall0821ge STA: G.G. 44 TOP: Similarity Proofs
792 ANS: 2
$\angle A C B$ and $\angle E C D$ are congruent vertical angles and $\angle C A B \cong \angle C E D$.

PTS: 2 REF: 060917ge STA: G.G. 44 TOP: Similarity Proofs
ANS: 4
PTS: 2 REF: 011019ge
STA: G.G. 44
TOP: Similarity Proofs
794 ANS:
$\angle B$ and $\angle E$ are right angles because of the definition of perpendicular lines. $\angle B \cong \angle E$ because all right angles are congruent. $\angle B F D$ and $\angle D F E$ are supplementary and $\angle E C A$ and $\angle A C B$ are supplementary because of the definition of supplementary angles. $\angle D F E \cong \angle A C B$ because angles supplementary to congruent angles are congruent. $\triangle A B C \sim \triangle D E F$ because of AA.

PTS: 4 REF: 011136ge STA: G.G. 44 TOP: Similarity Proofs
795 ANS:
$\angle A C B \cong \angle A E D$ is given. $\angle A \cong \angle A$ because of the reflexive property. Therefore $\triangle A B C \sim \triangle A D E$ because of AA.

PTS: 2 REF: 081133ge STA: G.G. 44 TOP: Similarity Proofs
796 ANS: 3
PTS: 2
TOP: Similarity Proofs
797
ANS: 2
TOP: Similarity Proofs
798 ANS: 4 PTS: 2 REF: 011528ge STA: G.G. 44
TOP: Similarity Proofs

[^0]: ANS: 4
 PTS: 2
 REF: 080925ge
 TOP: Centroid, Orthocenter, Incenter and Circumcenter

