JMAP REGENTS BY DATE

NY Geometry CCSS Regents Exam Questions from Spring, 2014 to January, 2016 Sorted by Date www.jmap.org

2014 Geometry Common Core State Standards Sample Items

1 What are the coordinates of the point on the directed line segment from $K(-5,-4)$ to $L(5,1)$ that partitions the segment into a ratio of 3 to 2 ?

1) $(-3,-3)$
2) $(-1,-2)$
3) $\left(0,-\frac{3}{2}\right)$
4) $(1,-1)$

2 A regular pentagon is shown in the diagram below.

If the pentagon is rotated clockwise around its center, the minimum number of degrees it must be rotated to carry the pentagon onto itself is

1) 54°
2) 72°
3) 108°
4) 360°

3 The equation of line h is $2 x+y=1$. Line m is the image of line h after a dilation of scale factor 4 with respect to the origin. What is the equation of the line m ?

1) $y=-2 x+1$
2) $y=-2 x+4$
3) $y=2 x+4$
4) $y=2 x+1$

4 As shown in the diagram below, circle A has a radius of 3 and circle B has a radius of 5 .

Use transformations to explain why circles A and B are similar.

5 Two stacks of 23 quarters each are shown below. One stack forms a cylinder but the other stack does not form a cylinder.

Use Cavelieri's principle to explain why the volumes of these two stacks of quarters are equal.

6 In the diagram below, triangles $X Y Z$ and $U V Z$ are drawn such that $\angle X \cong \angle U$ and $\angle X Z Y \cong \angle U Z V$.

Describe a sequence of similarity transformations that shows $\triangle X Y Z$ is similar to $\triangle U V Z$.

7 Explain why $\cos (x)=\sin (90-x)$ for x such that $0<x<90$.

8 In the diagram of $\triangle L A C$ and $\triangle D N C$ below, $\overline{L A} \cong \overline{D N}, \overline{C A} \cong \overline{C N}$, and $\overline{D A C} \perp \overline{L C N}$.

a) Prove that $\triangle L A C \cong \triangle D N C$.
b) Describe a sequence of rigid motions that will map $\triangle L A C$ onto $\triangle D N C$.

9 As shown below, a canoe is approaching a lighthouse on the coastline of a lake. The front of the canoe is 1.5 feet above the water and an observer in the lighthouse is 112 feet above the water.

At 5:00, the observer in the lighthouse measured the angle of depression to the front of the canoe to be 6°. Five minutes later, the observer measured and saw the angle of depression to the front of the canoe had increased by 49°. Determine and state, to the nearest foot per minute, the average speed at which the canoe traveled toward the lighthouse.

10 In the diagram below of circle O, diameter $\overline{A B}$ and radii $\overline{O C}$ and $\overline{O D}$ are drawn. The length of $\overline{A B}$ is 12 and the measure of $\angle C O D$ is 20 degrees.

If $\overparen{A B} \cong \overparen{B D}$, find the area of sector $B O D$ in terms of π.

11 Given: $\triangle X Y Z, \overline{X Y} \cong \overline{Z Y}$, and $\overline{Y W}$ bisects $\angle X Y Z$ Prove that $\angle Y W Z$ is a right angle.

12 Trees that are cut down and stripped of their branches for timber are approximately cylindrical. A timber company specializes in a certain type of tree that has a typical diameter of 50 cm and a typical height of about 10 meters. The density of the wood is 380 kilograms per cubic meter, and the wood can be sold by mass at a rate of $\$ 4.75$ per kilogram. Determine and state the minimum number of whole trees that must be sold to raise at least \$50,000.

13 In the diagram below, secant $\overline{A C D}$ and tangent $\overline{A B}$ are drawn from external point A to circle O.

Prove the theorem: If a secant and a tangent are drawn to a circle from an external point, the product of the lengths of the secant segment and its external segment equals the length of the tangent segment squared. $\left(A C \cdot A D=A B^{2}\right)$

14 Given: D is the image of A after a reflection over $\overleftrightarrow{C H}$
$\overleftrightarrow{C H}$ is the perpendicular bisector of $\overrightarrow{B C E}$ $\triangle A B C$ and $\triangle D E C$ are drawn
Prove: $\triangle A B C \cong \triangle D E C$

15 A man who is 5 feet 9 inches tall casts a shadow of 8 feet 6 inches. Assuming that the man is standing perpendicular to the ground, what is the angle of elevation from the end of the shadow to the top of the man's head, to the nearest tenth of a degree?

1) 34.1
2) 34.5
3) 42.6
4) 55.9

16 The image of $\triangle A B C$ after a rotation of 90° clockwise about the origin is $\triangle D E F$, as shown below.

Which statement is true?

1) $\overline{B C} \cong \overline{D E}$
2) $\overline{A B} \cong \overline{D F}$
3) $\angle C \cong \angle E$
4) $\angle A \cong \angle D$

17 The line $y=2 x-4$ is dilated by a scale factor of $\frac{3}{2}$ and centered at the origin. Which equation represents the image of the line after the dilation?

1) $y=2 x-4$
2) $y=2 x-6$
3) $y=3 x-4$
4) $y=3 x-6$

18 In the diagram below, the circle shown has radius
10 . Angle B intercepts an arc with a length of 2π.

What is the measure of angle B, in radians?

1) $10+2 \pi$
2) 20π
3) $\frac{\pi}{5}$
4) $\frac{5}{\pi}$

19 In isosceles $\triangle M N P$, line segment $N O$ bisects vertex $\angle M N P$, as shown below. If $M P=16$, find the length of $\overline{M O}$ and explain your answer.

20 A contractor needs to purchase 500 bricks. The dimensions of each brick are 5.1 cm by 10.2 cm by 20.3 cm , and the density of each brick is
$1920 \mathrm{~kg} / \mathrm{m}^{3}$. The maximum capacity of the contractor's trailer is 900 kg . Can the trailer hold the weight of 500 bricks? Justify your answer.

21 In right triangle $A B C$ with the right angle at C, $\sin A=2 x+0.1$ and $\cos B=4 x-0.7$. Determine and state the value of x. Explain your answer.

22 Given right triangles $A B C$ and $D E F$ where $\angle C$ and $\angle F$ are right angles, $\overline{A C} \cong \overline{D F}$ and $\overline{C B} \cong \overline{F E}$.
Describe a precise sequence of rigid motions which would show $\triangle A B C \cong \triangle D E F$.

23 Using a compass and straightedge, construct an altitude of triangle $A B C$ below. [Leave all construction marks.]

24 Prove the sum of the exterior angles of a triangle is 360°.

25 In rhombus MATH, the coordinates of the endpoints of the diagonal $\overline{M T}$ are $M(0,-1)$ and $T(4,6)$. Write an equation of the line that contains diagonal $\overline{A H}$. [Use of the set of axes below is optional.] Using the given information, explain how you know that your line contains diagonal $\overline{A H}$.

26 Using a straightedge and compass, construct a square inscribed in circle O below. [Leave all construction marks.]

Determine the measure of the arc intercepted by two adjacent sides of the constructed square. Explain your reasoning.

27 The map below shows the three tallest mountain peaks in New York State: Mount Marcy, Algonquin Peak, and Mount Haystack. Mount Haystack, the shortest peak, is 4960 feet tall. Surveyors have determined the horizontal distance between Mount Haystack and Mount Marcy is 6336 feet and the horizontal distance between Mount Marcy and Algonquin Peak is 20,493 feet.

The angle of depression from the peak of Mount Marcy to the peak of Mount Haystack is 3.47 degrees. The angle of elevation from the peak of Algonquin Peak to the peak of Mount Marcy is 0.64 degrees. What are the heights, to the nearest foot, of Mount Marcy and Algonquin Peak? Justify your answer.

0615geo

1 Which object is formed when right triangle RST shown below is rotated around leg $\overline{R S}$?

1) a pyramid with a square base
2) an isosceles triangle
3) a right triangle
4) a cone

2 The vertices of $\triangle J K L$ have coordinates $J(5,1)$, $K(-2,-3)$, and $L(-4,1)$. Under which transformation is the image $\triangle J^{\prime} K^{\prime} L^{\prime}$ not congruent to $\triangle J K L$?

1) a translation of two units to the right and two units down
2) a counterclockwise rotation of 180 degrees around the origin
3) a reflection over the x-axis
4) a dilation with a scale factor of 2 and centered at the origin

3 The center of circle Q has coordinates (3,-2). If circle Q passes through $R(7,1)$, what is the length of its diameter?

1) 50
2) 25
3) 10
4) 5

4 In the diagram below, congruent figures 1,2 , and 3 are drawn.

Which sequence of transformations maps figure 1 onto figure 2 and then figure 2 onto figure 3 ?

1) a reflection followed by a translation
2) a rotation followed by a translation
3) a translation followed by a reflection
4) a translation followed by a rotation

5 As shown in the diagram below, the angle of elevation from a point on the ground to the top of the tree is 34°.

If the point is 20 feet from the base of the tree, what is the height of the tree, to the nearest tenth of a foot?

1) 29.7
2) 16.6
3) 13.5
4) 11.2

6 Which figure can have the same cross section as a sphere?
1)

2)

4)

7 A shipping container is in the shape of a right rectangular prism with a length of 12 feet, a width of 8.5 feet, and a height of 4 feet. The container is completely filled with contents that weigh, on average, 0.25 pound per cubic foot. What is the weight, in pounds, of the contents in the container?

1) 1,632
2) 408
3) 102
4) 92

8 In the diagram of circle A shown below, chords $\overline{C D}$ and $\overline{E F}$ intersect at G, and chords $\overline{C E}$ and $\overline{F D}$ are drawn.

Which statement is not always true?

1) $\overline{C G} \cong \overline{F G}$
2) $\angle C E G \cong \angle F D G$
3) $\frac{C E}{E G}=\frac{F D}{D G}$
4) $\triangle C E G \sim \triangle F D G$

9 Which equation represents a line that is perpendicular to the line represented by $2 x-y=7$?

1) $y=-\frac{1}{2} x+6$
2) $y=\frac{1}{2} x+6$
3) $y=-2 x+6$
4) $y=2 x+6$

10 Which regular polygon has a minimum rotation of 45° to carry the polygon onto itself?

1) octagon
2) decagon
3) hexagon
4) pentagon

11 In the diagram of $\triangle A D C$ below, $\overline{E B} \| \overline{D C}, A E=9$, $E D=5$, and $A B=9.2$.

What is the length of $\overline{A C}$, to the nearest tenth?

1) 5.1
2) 5.2
3) 14.3
4) 14.4

12 In scalene triangle $A B C$ shown in the diagram below, $\mathrm{m} \angle C=90^{\circ}$.

Which equation is always true?

1) $\sin A=\sin B$
2) $\cos A=\cos B$
3) $\cos A=\sin C$
4) $\sin A=\cos B$

13 Quadrilateral $A B C D$ has diagonals $\overline{A C}$ and $\overline{B D}$. Which information is not sufficient to prove $A B C D$ is a parallelogram?

1) $\overline{A C}$ and $\overline{B D}$ bisect each other.
2) $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \cong \overline{A D}$
3) $\overline{A B} \cong \overline{C D}$ and $\overline{A B} \| \overline{C D}$
4) $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \| \overline{A D}$

14 The equation of a circle is $x^{2}+y^{2}+6 y=7$. What are the coordinates of the center and the length of the radius of the circle?

1) center $(0,3)$ and radius 4
2) center ($0,-3$) and radius 4
3) center $(0,3)$ and radius 16
4) center $(0,-3)$ and radius 16

15 Triangles $A B C$ and $D E F$ are drawn below.

If $A B=9, B C=15, D E=6, E F=10$, and $\angle B \cong \angle E$, which statement is true?

1) $\angle C A B \cong \angle D E F$
2) $\frac{A B}{C B}=\frac{F E}{D E}$
3) $\triangle A B C \sim \triangle D E F$
4) $\frac{A B}{D E}=\frac{F E}{C B}$

16 If $\triangle A B C$ is dilated by a scale factor of 3 , which statement is true of the image $\triangle A^{\prime} B^{\prime} C^{\prime}$?

1) $3 A^{\prime} B^{\prime}=A B$
2) $B^{\prime} C^{\prime}=3 B C$
3) $\mathrm{m} \angle A^{\prime}=3(\mathrm{~m} \angle A)$
4) $3\left(\mathrm{~m} \angle C^{\prime}\right)=\mathrm{m} \angle C$

17 Steve drew line segments $A B C D, E F G, B F$, and $C F$ as shown in the diagram below. Scalene $\triangle B F C$ is formed.

Which statement will allow Steve to prove
$\overline{A B C D} \| \overline{E F G}$?

1) $\angle C F G \cong \angle F C B$
2) $\angle A B F \cong \angle B F C$
3) $\angle E F B \cong \angle C F B$
4) $\angle C B F \cong \angle G F C$

18 In the diagram below, $\overline{C D}$ is the image of $\overline{A B}$ after a dilation of scale factor k with center E.

Which ratio is equal to the scale factor k of the dilation?

1) $\frac{E C}{E A}$
2) $\frac{B A}{E A}$
3) $\frac{E A}{B A}$
4) $\frac{E A}{E C}$

19 A gallon of paint will cover approximately 450 square feet. An artist wants to paint all the outside surfaces of a cube measuring 12 feet on each edge. What is the least number of gallons of paint he must buy to paint the cube?

1) 1
2) 2
3) 3
4) 4

20 In circle O shown below, diameter $\overline{A C}$ is perpendicular to $\overline{C D}$ at point C, and chords $\overline{A B}$, $\overline{B C}, \overline{A E}$, and $\overline{C E}$ are drawn.

Which statement is not always true?

1) $\angle A C B \cong \angle B C D$
2) $\angle A B C \cong \angle A C D$
3) $\angle B A C \cong \angle D C B$
4) $\angle C B A \cong \angle A E C$

21 In the diagram below, $\triangle A B C \sim \triangle D E C$.

If $A C=12, D C=7, D E=5$, and the perimeter of $\triangle A B C$ is 30 , what is the perimeter of $\triangle D E C$?

1) 12.5
2) 14.0
3) 14.8
4) 17.5

22 The line $3 y=-2 x+8$ is transformed by a dilation centered at the origin. Which linear equation could be its image?

1) $2 x+3 y=5$
2) $2 x-3 y=5$
3) $3 x+2 y=5$
4) $3 x-2 y=5$

23 A circle with a radius of 5 was divided into 24 congruent sectors. The sectors were then rearranged, as shown in the diagram below.

To the nearest integer, the value of x is

1) 31
2) 16
3) 12
4) 10

24 Which statement is sufficient evidence that $\triangle D E F$ is congruent to $\triangle A B C$?

1) $A B=D E$ and $B C=E F$
2) $\angle D \cong \angle A, \angle B \cong \angle E, \angle C \cong \angle F$
3) There is a sequence of rigid motions that maps $\overline{A B}$ onto $\overline{D E}, \overline{B C}$ onto $\overline{E F}$, and $\overline{A C}$ onto $\overline{D F}$.
4) There is a sequence of rigid motions that maps point A onto point $D, \overline{A B}$ onto $\overline{D E}$, and $\angle B$ onto $\angle E$.

25 Use a compass and straightedge to construct an inscribed square in circle T shown below. [Leave all construction marks.]

26 The diagram below shows parallelogram $L M N O$ with diagonal $\overline{L N}, \mathrm{~m} \angle M=118^{\circ}$, and $\mathrm{m} \angle L N O=22^{\circ}$.

Explain why $\mathrm{m} \angle N L O$ is 40 degrees.

27 The coordinates of the endpoints of $\overline{A B}$ are $A(-6,-5)$ and $B(4,0)$. Point P is on $\overline{A B}$. Determine and state the coordinates of point P, such that $A P: P B$ is $2: 3$.
[The use of the set of axes below is optional.]

28 The diagram below shows a ramp connecting the ground to a loading platform 4.5 feet above the ground. The ramp measures 11.75 feet from the ground to the top of the loading platform.

Determine and state, to the nearest degree, the angle of elevation formed by the ramp and the ground.

29 In the diagram below of circle O, the area of the shaded sector $A O C$ is 12π in 2 and the length of $\overline{O A}$ is 6 inches. Determine and state $\mathrm{m} \angle A O C$.

30 After a reflection over a line, $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$. Explain why triangle $A B C$ is congruent to triangle $\triangle A^{\prime} B^{\prime} C^{\prime}$.

31 A flagpole casts a shadow 16.60 meters long. Tim stands at a distance of 12.45 meters from the base of the flagpole, such that the end of Tim's shadow meets the end of the flagpole's shadow. If Tim is 1.65 meters tall, determine and state the height of the flagpole to the nearest tenth of a meter.

32 In the diagram below, $\overline{E F}$ intersects $\overline{A B}$ and $\overline{C D}$ at G and H, respectively, and $\overline{G I}$ is drawn such that $\overline{G H} \cong \overline{I H}$.

If $\mathrm{m} \angle E G B=50^{\circ}$ and $\mathrm{m} \angle D I G=115^{\circ}$, explain why $\overline{A B} \| \overline{C D}$.

33 Given: Quadrilateral $A B C D$ is a parallelogram with diagonals $\overline{A C}$ and $\overline{B D}$ intersecting at E

Prove: $\triangle A E D \cong \triangle C E B$
Describe a single rigid motion that maps $\triangle A E D$ onto $\triangle C E B$.

34 In the diagram below, the line of sight from the park ranger station, P, to the lifeguard chair, L, on the beach of a lake is perpendicular to the path joining the campground, C, and the first aid station, F. The campground is 0.25 mile from the lifeguard chair. The straight paths from both the campground and first aid station to the park ranger station are perpendicular.

If the path from the park ranger station to the campground is 0.55 mile, determine and state, to the nearest hundredth of a mile, the distance between the park ranger station and the lifeguard chair. Gerald believes the distance from the first aid station to the campground is at least 1.5 miles. Is Gerald correct? Justify your answer.

35 The water tower in the picture below is modeled by the two-dimensional figure beside it. The water tower is composed of a hemisphere, a cylinder, and a cone. Let C be the center of the hemisphere and let D be the center of the base of the cone.

If $A C=8.5$ feet, $B F=25$ feet, and $\mathrm{m} \angle E F D=47^{\circ}$, determine and state, to the nearest cubic foot, the volume of the water tower. The water tower was constructed to hold a maximum of 400,000 pounds of water. If water weighs 62.4 pounds per cubic foot, can the water tower be filled to 85% of its volume and not exceed the weight limit? Justify your answer.

36 In the coordinate plane, the vertices of $\triangle R S T$ are $R(6,-1), S(1,-4)$, and $T(-5,6)$. Prove that $\triangle R S T$ is a right triangle. State the coordinates of point P such that quadrilateral $R S T P$ is a rectangle. Prove that your quadrilateral RSTP is a rectangle. [The use of the set of axes below is optional.]

0815geo

1 A parallelogram must be a rectangle when its

1) diagonals are perpendicular
2) diagonals are congruent
3) opposite sides are parallel
4) opposite sides are congruent

2 If $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$, under which transformation will the triangles not be congruent?

1) reflection over the x-axis
2) translation to the left 5 and down 4
3) dilation centered at the origin with scale factor 2
4) rotation of 270° counterclockwise about the origin

3 If the rectangle below is continuously rotated about side w, which solid figure is formed?

1) pyramid
2) rectangular prism
3) cone
4) cylinder

4 Which expression is always equivalent to $\sin x$ when $0^{\circ}<x<90^{\circ}$?

1) $\cos \left(90^{\circ}-x\right)$
2) $\cos \left(45^{\circ}-x\right)$
3) $\cos (2 x)$
4) $\cos x$

5 In the diagram below, a square is graphed in the coordinate plane.

A reflection over which line does not carry the square onto itself?

1) $x=5$
2) $y=2$
3) $y=x$
4) $x+y=4$

6 The image of $\triangle A B C$ after a dilation of scale factor k centered at point A is $\triangle A D E$, as shown in the diagram below.

Which statement is always true?

1) $2 A B=A D$
2) $A C=C E$
3) $\overline{B C} \| \overline{D E}$

7 A sequence of transformations maps rectangle $A B C D$ onto rectangle $A " B " C " D$ ", as shown in the diagram below.

Which sequence of transformations maps $A B C D$ onto $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ and then maps $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ onto A"B"C"D"?

1) a reflection followed by a rotation
2) a reflection followed by a translation
3) a translation followed by a rotation
4) a translation followed by a reflection

8 In the diagram of parallelogram $F R E D$ shown below, $\overline{E D}$ is extended to A, and $\overline{A F}$ is drawn such that $\overline{A F} \cong \overline{D F}$.

If $\mathrm{m} \angle R=124^{\circ}$, what is $\mathrm{m} \angle A F D$?

1) 124°
2) 112°
3) 68°
4) 56°

9 If $x^{2}+4 x+y^{2}-6 y-12=0$ is the equation of a circle, the length of the radius is

1) 25
2) 16
3) 5
4) 4

10 Given $\overline{M N}$ shown below, with $M(-6,1)$ and $N(3,-5)$, what is an equation of the line that passes through point $P(6,1)$ and is parallel to $\overline{M N}$?

1) $y=-\frac{2}{3} x+5$
2) $y=-\frac{2}{3} x-3$
3) $y=\frac{3}{2} x+7$
4) $y=\frac{3}{2} x-8$

11 Linda is designing a circular piece of stained glass with a diameter of 7 inches. She is going to sketch a square inside the circular region. To the nearest tenth of an inch, the largest possible length of a side of the square is

1) 3.5
2) 4.9
3) 5.0
4) 6.9

12 In the diagram shown below, $\overline{A C}$ is tangent to circle O at A and to circle P at $C, \overline{O P}$ intersects $\overline{A C}$ at $B, O A=4, A B=5$, and $P C=10$.

What is the length of $\overline{B C}$?

1) 6.4
2) 8
3) 12.5
4) 16

13 In the diagram below, which single transformation was used to map triangle A onto triangle B ?

1) line reflection
2) rotation
3) dilation
4) translation

14 In the diagram below, $\triangle D E F$ is the image of $\triangle A B C$ after a clockwise rotation of 180° and a dilation where $A B=3, B C=5.5, A C=4.5$, $D E=6, F D=9$, and $E F=11$.

Which relationship must always be true?

1) $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle D}=\frac{1}{2}$
2) $\frac{\mathrm{m} \angle C}{\mathrm{~m} \angle F}=\frac{2}{1}$
3) $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle C}=\frac{\mathrm{m} \angle F}{\mathrm{~m} \angle D}$
4) $\frac{\mathrm{m} \angle B}{\mathrm{~m} \angle E}=\frac{\mathrm{m} \angle C}{\mathrm{~m} \angle F}$

15 In the diagram below, quadrilateral $A B C D$ is inscribed in circle P.

What is $\mathrm{m} \angle A D C$?

1) 70°
2) 72°
3) 108°
4) 110°

16 A hemispherical tank is filled with water and has a diameter of 10 feet. If water weighs 62.4 pounds per cubic foot, what is the total weight of the water in a full tank, to the nearest pound?

1) 16,336
2) 32,673
3) 130,690
4) 261,381

17 In the diagram below, $\triangle A B C \sim \triangle A D E$.

Which measurements are justified by this similarity?

1) $A D=3, A B=6, A E=4$, and $A C=12$
2) $A D=5, A B=8, A E=7$, and $A C=10$
3) $A D=3, A B=9, A E=5$, and $A C=10$
4) $A D=2, A B=6, A E=5$, and $A C=15$

18 Triangle $F G H$ is inscribed in circle O, the length of radius $\overline{O H}$ is 6 , and $\overline{F H} \cong \overline{O G}$.

What is the area of the sector formed by angle FOH?

1) 2π
2) $\frac{3}{2} \pi$
3) 6π
4) 24π

19 As shown in the diagram below, $\overline{A B}$ and $\overline{C D}$ intersect at E, and $\overline{A C} \| \overline{B D}$.

Given $\triangle A E C \sim \triangle B E D$, which equation is true?

1) $\frac{C E}{D E}=\frac{E B}{E A}$
2) $\frac{A E}{B E}=\frac{A C}{B D}$
3) $\frac{E C}{A E}=\frac{B E}{E D}$
4) $\frac{E D}{E C}=\frac{A C}{B D}$

20 A triangle is dilated by a scale factor of 3 with the center of dilation at the origin. Which statement is true?

1) The area of the image is nine times the• area of the original triangle.
2) The perimeter of the image is nine times the perimeter of the original triangle.
3) The slope of any side of the image is three times the slope of the corresponding side of the original triangle.
4) The measure of each angle in the image is three times the measure of the corresponding angle of the original triangle.

21 The Great Pyramid of Giza was constructed as a regular pyramid with a square base. It was built with an approximate volume of $2,592,276$ cubic meters and a height of 146.5 meters. What was the length of one side of its base, to the nearest meter?

1) 73
2) 77
3) 133
4) 230

22 A quadrilateral has vertices with coordinates $(-3,1),(0,3),(5,2)$, and $(-1,-2)$. Which type of quadrilateral is this?

1) rhombus
2) rectangle
3) square
4) trapezoid

23 In the diagram below, $\triangle A B E$ is the image of $\triangle A C D$ after a dilation centered at the origin. The coordinates of the vertices are $A(0,0), B(3,0)$, $C(4.5,0), D(0,6)$, and $E(0,4)$.

The ratio of the lengths of $\overline{B E}$ to $\overline{C D}$ is

1) $\frac{2}{3}$
2) $\frac{3}{2}$
3) $\frac{3}{4}$
4) $\frac{4}{3}$

24 Line $y=3 x-1$ is transformed by a dilation with a scale factor of 2 and centered at $(3,8)$. The line's image is

1) $y=3 x-8$
2) $y=3 x-4$
3) $y=3 x-2$
4) $y=3 x-1$

25 A wooden cube has an edge length of 6 centimeters and a mass of 137.8 grams. Determine the density of the cube, to the nearest thousandth. State which type of wood the cube is made of, using the density table below.

Type of Wood	Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
Pine	0.373
Hemlock	0.431
Elm	0.554
Birch	0.601
Ash	0.638
Maple	0.676
Oak	0.711

26 Construct an equilateral triangle inscribed in circle T shown below. [Leave all construction marks.]

27 To find the distance across a pond from point B to point C, a surveyor drew the diagram below. The measurements he made are indicated on his diagram.

Use the surveyor's information to determine and state the distance from point B to point C, to the nearest yard.

28 In parallelogram $A B C D$ shown below, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E.

Prove: $\angle A C D \cong \angle C A B$

29 Triangles RST and XYZ are drawn below. If $R S=6, S T=14, X Y=9, Y Z=21$, and $\angle S \cong \angle Y$, is $\triangle R S T$ similar to $\triangle X Y Z$? Justify your answer.

30 In the diagram below, $\triangle A B C$ and $\triangle X Y Z$ are graphed.

Use the properties of rigid motions to explain why $\triangle A B C \cong \triangle X Y Z$.

31 The endpoints of $\overline{D E F}$ are $D(1,4)$ and $F(16,14)$. Determine and state the coordinates of point E, if $D E: E F=2: 3$.

32 As shown in the diagram below, a ship is heading directly toward a lighthouse whose beacon is 125 feet above sea level. At the first sighting, point A, the angle of elevation from the ship to the light was 7°. A short time later, at point D, the angle of elevation was 16°.

To the nearest foot, determine and state how far the ship traveled from point A to point D.

33 Triangle $A B C$ has vertices with $A(x, 3), B(-3,-1)$, and $C(-1,-4)$. Determine and state a value of x that would make triangle $A B C$ a right triangle. Justify why $\triangle A B C$ is a right triangle. [The use of the set of axes below is optional.]

34 In the diagram below, $\overline{A C} \cong \overline{D F}$ and points A, C, D, and F are collinear on line ℓ.

Let $\triangle D^{\prime} E^{\prime} F^{\prime}$ be the image of $\triangle D E F$ after a translation along ℓ, such that point D is mapped onto point A. Determine and state the location of F^{\prime}. Explain your answer. Let $\triangle D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}$ be the image of $\triangle D^{\prime} E^{\prime} F^{\prime}$ after a reflection across line ℓ. Suppose that $E^{\prime \prime}$ is located at B. Is $\triangle D E F$ congruent to $\triangle A B C$? Explain your answer.

35 In the diagram of parallelogram $A B C D$ below, $\overline{B E} \perp \overline{C E D}, \overline{D F} \perp \overline{B F C}, \overline{C E} \cong \overline{C F}$.

Prove $A B C D$ is a rhombus.

36 Walter wants to make 100 candles in the shape of a cone for his new candle business. The mold shown below will be used to make the candles. Each mold will have a height of 8 inches and a diameter of 3 inches. To the nearest cubic inch, what will be the total volume of 100 candles?

Walter goes to a hobby store to buy the wax for his candles. The wax costs $\$ 0.10$ per ounce. If the weight of the wax is 0.52 ounce per cubic inch, how much will it cost Walter to buy the wax for 100 candles? If Walter spent a total of $\$ 37.83$ for the molds and charges $\$ 1.95$ for each candle, what is Walter's profit after selling 100 candles?

0116geo

1 William is drawing pictures of cross sections of the right circular cone below.

Which drawing can not be a cross section of a cone?
1)

2)

3)

4)

2 An equation of a line perpendicular to the line represented by the equation $y=-\frac{1}{2} x-5$ and passing through $(6,-4)$ is

1) $y=-\frac{1}{2} x+4$
2) $y=-\frac{1}{2} x-1$
3) $y=2 x+14$
4) $y=2 x-16$

3 In parallelogram $Q R S T$ shown below, diagonal $\overline{T R}$ is drawn, U and V are points on $\overline{T S}$ and $\overline{Q R}$, respectively, and $\overline{U V}$ intersects $\overline{T R}$ at W.

If $\mathrm{m} \angle S=60^{\circ}, \mathrm{m} \angle S R T=83^{\circ}$, and $\mathrm{m} \angle T W U=35^{\circ}$, what is $\mathrm{m} \angle W V Q$?

1) 37°
2) 60°
3) 72°
4) 83°

4 A fish tank in the shape of a rectangular prism has dimensions of 14 inches, 16 inches, and 10 inches. The tank contains 1680 cubic inches of water. What percent of the fish tank is empty?

1) 10
2) 25
3) 50
4) 75

5 Which transformation would result in the perimeter of a triangle being different from the perimeter of its image?

1) $(x, y) \rightarrow(y, x)$
2) $(x, y) \rightarrow(x,-y)$
3) $(x, y) \rightarrow(4 x, 4 y)$
4) $(x, y) \rightarrow(x+2, y-5)$

6 In the diagram below, $\overleftrightarrow{F E}$ bisects $\overrightarrow{A C}$ at B, and $\overleftrightarrow{G E}$ bisects $\overline{B D}$ at C.

Which statement is always true?

1) $\overline{A B} \cong \overline{D C}$
2) $\overline{F B} \cong \overline{E B}$
3) $\overleftrightarrow{B D}$ bisects $\overline{G E}$ at C.
4) $\overleftrightarrow{A C}$ bisects $\overline{F E}$ at B.

7 As shown in the diagram below, a regular pyramid has a square base whose side measures 6 inches.

If the altitude of the pyramid measures 12 inches, its volume, in cubic inches, is

1) 72
2) 144
3) 288
4) 432

8 Triangle $A B C$ and triangle $D E F$ are graphed on the set of axes below.

Which sequence of transformations maps triangle $A B C$ onto triangle $D E F$?

1) a reflection over the x-axis followed by a reflection over the y-axis
2) a 180° rotation about the origin followed by a reflection over the line $y=x$
3) a 90° clockwise rotation about the origin followed by a reflection over the y-axis
4) a translation 8 units to the right and 1 unit up followed by a 90° counterclockwise rotation about the origin

9 In $\triangle A B C$, the complement of $\angle B$ is $\angle A$. Which statement is always true?

1) $\tan \angle A=\tan \angle B$
2) $\sin \angle A=\sin \angle B$
3) $\cos \angle A=\tan \angle B$
4) $\sin \angle A=\cos \angle B$

10 A line that passes through the points whose coordinates are $(1,1)$ and $(5,7)$ is dilated by a scale factor of 3 and centered at the origin. The image of the line

1) is perpendicular to the original line
2) is parallel to the original line
3) passes through the origin
4) is the original line

11 Quadrilateral $A B C D$ is graphed on the set of axes below.

When $A B C D$ is rotated 90° in a counterclockwise direction about the origin, its image is quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. Is distance preserved under this rotation, and which coordinates are correct for the given vertex?

1) no and $C^{\prime}(1,2)$
2) no and $D^{\prime}(2,4)$
3) yes and $A^{\prime}(6,2)$
4) yes and $B^{\prime}(-3,4)$

12 In the diagram below of circle O, the area of the shaded sector $L O M$ is $2 \pi \mathrm{~cm}^{2}$.

If the length of $\overline{N L}$ is 6 cm , what is $\mathrm{m} \angle \mathrm{N}$?

1) 10°
2) 20°
3) 40°
4) 80°

13 In the diagram below, $\triangle A B C \sim \triangle D E F$.

If $A B=6$ and $A C=8$, which statement will justify similarity by SAS?

1) $D E=9, D F=12$, and $\angle A \cong \angle D$
2) $D E=8, D F=10$, and $\angle A \cong \angle D$
3) $D E=36, D F=64$, and $\angle C \cong \angle F$
4) $D E=15, D F=20$, and $\angle C \cong \angle F$

14 The diameter of a basketball is approximately 9.5 inches and the diameter of a tennis ball is approximately 2.5 inches. The volume of the basketball is about how many times greater than the volume of the tennis ball?

1) 3591
2) 65
3) 55
4) 4

15 The endpoints of one side of a regular pentagon are $(-1,4)$ and $(2,3)$. What is the perimeter of the pentagon?

1) $\sqrt{10}$
2) $5 \sqrt{10}$
3) $5 \sqrt{2}$
4) $25 \sqrt{2}$

16 In the diagram of right triangle $A B C$ shown below, $A B=14$ and $A C=9$.

What is the measure of $\angle A$, to the nearest degree?

1) 33
2) 40
3) 50
4) 57

17 What are the coordinates of the center and length of the radius of the circle whose equation is
$x^{2}+6 x+y^{2}-4 y=23 ?$

1) $(3,-2)$ and 36
2) $(3,-2)$ and 6
3) $(-3,2)$ and 36
4) $(-3,2)$ and 6

18 The coordinates of the vertices of $\triangle R S T$ are $R(-2,-3), S(8,2)$, and $T(4,5)$. Which type of triangle is $\triangle R S T$?

1) right
2) acute
3) obtuse
4) equiangular

19 Molly wishes to make a lawn ornament in the form of a solid sphere. The clay being used to make the sphere weighs .075 pound per cubic inch. If the sphere's radius is 4 inches, what is the weight of the sphere, to the nearest pound?

1) 34
2) 20
3) 15
4) 4

20 The ratio of similarity of $\triangle B O Y$ to $\triangle G R L$ is $1: 2$. If $B O=x+3$ and $G R=3 x-1$, then the length of $\overline{G R}$ is

1) 5
2) 7
3) 10
4) 20

21 In the diagram below, $\overline{D C}, \overline{A C}, \overline{D O B}, \overline{C B}$, and $\overline{A B}$ are chords of circle $O, \overleftrightarrow{F D E}$ is tangent at point D, and radius $\overline{A O}$ is drawn. Sam decides to apply this theorem to the diagram: "An angle inscribed in a semi-circle is a right angle."

Which angle is Sam referring to?

1) $\angle A O B$
2) $\angle B A C$
3) $\angle D C B$
4) $\angle F D B$

22 In the diagram below, $\overline{C D}$ is the altitude drawn to the hypotenuse $\overline{A B}$ of right triangle $A B C$.

Which lengths would not produce an altitude that measures $6 \sqrt{2}$?

1) $A D=2$ and $D B=36$
2) $A D=3$ and $A B=24$
3) $A D=6$ and $D B=12$
4) $A D=8$ and $A B=17$

23 A designer needs to create perfectly circular necklaces. The necklaces each need to have a radius of 10 cm . What is the largest number of necklaces that can be made from 1000 cm of wire?

1) 15
2) 16
3) 31
4) 32

24 In $\triangle S C U$ shown below, points T and O are on $\overline{S U}$ and $\overline{C U}$, respectively. Segment $O T$ is drawn so that $\angle C \cong \angle O T U$.

If $T U=4, O U=5$, and $O C=7$, what is the length of $\overline{S T}$?

1) 5.6
2) 8.75
3) 11
4) 15

25 Triangle $A B C$ is graphed on the set of axes below. Graph and label $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a reflection over the line $x=1$.

26 In the diagram below of circle O with diameter $\overline{B C}$ and radius $\overline{O A}$, chord $\overline{D C}$ is parallel to chord $\overline{B A}$.

If $\mathrm{m} \angle B C D=30^{\circ}$, determine and state $\mathrm{m} \angle A O B$.
27 Directed line segment $P T$ has endpoints whose coordinates are $P(-2,1)$ and $T(4,7)$. Determine the coordinates of point J that divides the segment in the ratio 2 to 1 . [The use of the set of axes below is optional.]

28 As graphed on the set of axes below, $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a sequence of transformations.

Is $\triangle A^{\prime} B^{\prime} C^{\prime}$ congruent to $\triangle A B C$? Use the properties of rigid motion to explain your answer.

29 A carpenter leans an extension ladder against a house to reach the bottom of a window 30 feet above the ground. As shown in the diagram below, the ladder makes a 70° angle with the ground. To the nearest foot, determine and state the length of the ladder.

30 During an experiment, the same type of bacteria is grown in two petri dishes. Petri dish A has a diameter of 51 mm and has approximately 40,000 bacteria after 1 hour. Petri dish B has a diameter of 75 mm and has approximately 72,000 bacteria after 1 hour.

Determine and state which petri dish has the greater population density of bacteria at the end of the first hour.

31 Line ℓ is mapped onto line m by a dilation centered at the origin with a scale factor of 2 . The equation of line ℓ is $3 x-y=4$. Determine and state an equation for line m.

32 The aspect ratio (the ratio of screen width to height) of a rectangular flat-screen television is 16:9. The length of the diagonal of the screen is the television's screen size. Determine and state, to the nearest inch, the screen size (diagonal) of this flat-screen television with a screen height of 20.6 inches.

Geometry CCSS Regents Exam 0116
www.jmap.org
33 Given the theorem, "The sum of the measures of the interior angles of a triangle is 180°," complete the proof for this theorem.

Given: $\triangle A B C$
Prove: $\mathrm{m} \angle 1+\mathrm{m} \angle 2+\mathrm{m} \angle 3=180^{\circ}$
Fill in the missing reasons below.

Statements	Reasons
(1) $\triangle A B C$ (2) Through point C, draw $\overleftrightarrow{D C E}$ parallel to $\overline{A B}$.	(1) Given
(2) (3) $\mathrm{m} \angle 1=\mathrm{m} \angle A C D, \mathrm{~m} \angle 3=\mathrm{m} \angle B C E$ (4) $\mathrm{m} \angle A C D+\mathrm{m} \angle 2+\mathrm{m} \angle B C E=180^{\circ}$ (3)	

34 Triangle $X Y Z$ is shown below. Using a compass and straightedge, on the line below, construct and label $\triangle A B C$, such that $\triangle A B C \cong \triangle X Y Z$. [Leave all construction marks.] Based on your construction, state the theorem that justifies why $\triangle A B C$ is congruent to $\triangle X Y Z$.

35 Given: Parallelogram $A N D R$ with $\overline{A W}$ and $\overline{D E}$ bisecting $\overline{N W D}$ and $\overline{R E A}$ at points W and E, respectively

Prove that $\triangle A N W \cong \triangle D R E$. Prove that quadrilateral $A W D E$ is a parallelogram.

36 Cathy wants to determine the height of the flagpole shown in the diagram below. She uses a survey instrument to measure the angle of elevation to the top of the flagpole, and determines it to be 34.9°. She walks 8 meters closer and determines the new measure of the angle of elevation to be 52.8°. At each measurement, the survey instrument is 1.7 meters above the ground.

Determine and state, to the nearest tenth of a meter, the height of the flagpole.

2014 Geometry Common Core State Standards Sample Items

Answer Section

1 ANS: 4

$$
\begin{array}{cc}
-5+\frac{3}{5}(5--5) & -4+\frac{3}{5}(1--4) \\
-5+\frac{3}{5}(10) & -4+\frac{3}{5}(5) \\
-5+6 & -4+3 \\
1 & -1
\end{array}
$$

PTS: 2 REF: spr1401geo NAT: G.GPE. 6 TOP: Directed Line Segments
2 ANS: 2
Segments drawn from the center of the regular pentagon bisect each angle of the pentagon, and create five isosceles triangles as shown in the diagram below. Since each exterior angle equals the angles formed by the segments drawn from the center of the regular pentagon, the minimum degrees necessary to carry a regular polygon onto itself are equal to the measure of an exterior angle of the regular polygon.

PTS: 2 REF: spr1402geo NAT: G.CO. 3 TOP: Mapping a Polygon onto Itself
3 ANS: 2
The given line $h, 2 x+y=1$, does not pass through the center of dilation, the origin, because the y-intercept is at $(0,1)$. The slope of the dilated line, m, will remain the same as the slope of line $h, 2$. All points on line h, such as $(0,1)$, the y-intercept, are dilated by a scale factor of 4 ; therefore, the y-intercept of the dilated line is $(0,4)$ because the center of dilation is the origin, resulting in the dilated line represented by the equation $y=-2 x+4$.

PTS: 2 REF: spr1403geo NAT: G.SRT. 1 TOP: Dilations
4 ANS:
Circle A can be mapped onto circle B by first translating circle A along vector $\overline{A B}$ such that A maps onto B, and then dilating circle A, centered at A, by a scale factor of $\frac{5}{3}$. Since there exists a sequence of transformations that maps circle A onto circle B, circle A is similar to circle B.

PTS: 2 REF: spr1404geo NAT: G.C. 1 TOP: Similarity
5 ANS:
Each quarter in both stacks has the same base area. Therefore, each corresponding cross-section of the stacks will have the same area. Since the two stacks of quarters have the same height of 23 quarters, the two volumes must be the same.

PTS: 2 REF: spr1405geo NAT: G.GMD. 1 TOP: Cavelieri’s Principle

6 ANS:
Triangle $X^{\prime} Y^{\prime} Z^{\prime}$ is the image of $\triangle X Y Z$ after a rotation about point Z such that $\overline{Z X}$ coincides with $\overline{Z U}$. Since rotations preserve angle measure, $\overline{Z Y}$ coincides with $\overline{Z V}$, and corresponding angles X and Y, after the rotation, remain congruent, so $\overline{X Y} \| \overline{U V}$. Then, dilate $\Delta X^{\prime} Y^{\prime} Z^{\prime}$ by a scale factor of $\frac{Z U}{Z X}$ with its center at point Z. Since dilations preserve parallelism, $\overline{X Y}$ maps onto $\overline{U V}$. Therefore, $\triangle X Y Z \sim \triangle U V Z$.

PTS: 2 REF: spr1406geo NAT: G.SRT. 2 TOP: Similarity
7 ANS:
The acute angles in a right triangle are always complementary. The sine of any acute angle is equal to the cosine of its complement.

PTS: 2 REF: spr1407geo NAT: G.SRT. 7 TOP: Cofunctions
8 ANS:
$\overline{L A} \cong \overline{D N}, \overline{C A} \cong \overline{C N}$, and $\overline{D A C} \perp \overline{L C N}$ (Given). $\angle L C A$ and $\angle D C N$ are right angles (Definition of perpendicular lines). $\triangle L A C$ and $\triangle D N C$ are right triangles (Definition of a right triangle). $\triangle L A C \cong \triangle D N C$ (HL).
$\triangle L A C$ will map onto $\triangle D N C$ after rotating $\triangle L A C$ counterclockwise 90° about point C such that point L maps onto point D.

PTS: 4 REF: spr1408geo NAT: G.SRT.5|G.CO. 5
TOP: Triangle Congruency | Identifying Transformations
9 ANS:
x represents the distance between the lighthouse and the canoe at 5:00; y represents the distance between the lighthouse and the canoe at 5:05. $\tan 6=\frac{112-1.5}{x} \tan (49+6)=\frac{112-1.5}{y} \frac{1051.3-77.4}{5} \approx 195$

$$
x \approx 1051.3 \quad y \approx 77.4
$$

PTS: 4 REF: spr1409geo NAT: G.SRT. 8 TOP: Using Trigonometry to Find a Side 10 ANS:
$\frac{\left(\frac{180-20}{2}\right)}{360} \times \pi(6)^{2}=\frac{80}{360} \times 36 \pi=8 \pi$
PTS: 4 REF: spr1410geo NAT: G.C. 5 TOP: Sectors

11 ANS:

$\triangle X Y Z, \overline{X Y} \cong \overline{Z Y}$, and $\overline{Y W}$ bisects $\angle X Y Z$ (Given). $\triangle X Y Z$ is isosceles
(Definition of isosceles triangle). $\overline{Y W}$ is an altitude of $\triangle X Y Z$ (The angle bisector of the vertex of an isosceles triangle is also the altitude of that triangle). $\overline{Y W} \perp \overline{X Z}$ (Definition of altitude). $\angle Y W Z$ is a right angle (Definition of perpendicular lines).

PTS: 4 REF: spr1411geo NAT: G.CO. 10 TOP: Triangle Proofs
12 ANS:
$r=25 \mathrm{~cm}\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)=0.25 \mathrm{~m} \quad V=\pi(0.25 \mathrm{~m})^{2}(10 \mathrm{~m})=0.625 \pi \mathrm{~m}^{3} \quad W=0.625 \pi \mathrm{~m}^{3}\left(\frac{380 \mathrm{~K}}{1 \mathrm{~m}^{3}}\right) \approx 746.1 \mathrm{~K}$
$n=\frac{\$ 50,000}{\left(\frac{\$ 4.75}{\mathrm{~K}}\right)(746.1 \mathrm{~K})}=14.1 \quad 15$ trees

PTS: 4 REF: spr1412geo NAT: G.MG. 1 TOP: Volume
13 ANS:
Circle O, secant $\overline{A C D}$, tangent $\overline{A B}$ (Given). Chords $\overline{B C}$ and $\overline{B D}$ are drawn (Auxiliary lines). $\angle A \cong \angle A$, $\overparen{B C} \cong \overparen{B C}$ (Reflexive property). $\mathrm{m} \angle B D C=\frac{1}{2} \mathrm{~m} \overparen{B C}$ (The measure of an inscribed angle is half the measure of the intercepted arc). $\mathrm{m} \angle C B A=\frac{1}{2} \mathrm{~m} \overparen{B C}$ (The measure of an angle formed by a tangent and a chord is half the measure of the intercepted arc). $\angle B D C \cong \angle C B A$ (Angles equal to half of the same arc are congruent).
$\triangle A B C \sim \triangle A D B(A A) . \frac{A B}{A C}=\frac{A D}{A B}$ (Corresponding sides of similar triangles are proportional). $A C \cdot A D=A B^{2}$ (In a proportion, the product of the means equals the product of the extremes).

PTS: 6
REF: spr1413geo NAT: G.SRT. 5 TOP: Similarity Proofs

14 ANS:
It is given that point D is the image of point A after a reflection in line $C H$. It is given that $\overleftrightarrow{C H}$ is the perpendicular bisector of $\overline{B C E}$ at point C. Since a bisector divides a segment into two congruent segments at its midpoint, $\overline{B C} \cong \overline{E C}$. Point E is the image of point B after a reflection over the line $C H$, since points B and E are equidistant from point C and it is given that $\overleftrightarrow{C H}$ is perpendicular to $\overrightarrow{B E}$. Point C is on $\overleftrightarrow{C H}$, and therefore, point C maps to itself after the reflection over $\overleftrightarrow{C H}$. Since all three vertices of triangle $A B C$ map to all three vertices of triangle $D E C$ under the same line reflection, then $\triangle A B C \cong \triangle D E C$ because a line reflection is a rigid motion and triangles are congruent when one can be mapped onto the other using a sequence of rigid motions.

PTS: 6 REF: spr1414geo NAT: G.CO. 6 TOP: Properties of Transformations
15 ANS: 1
The man's height, 69 inches, is opposite to the angle of elevation, and the shadow length, 102 inches, is adjacent to the angle of elevation. Therefore, tangent must be used to find the angle of elevation. $\tan x=\frac{69}{102}$

$$
x \approx 34.1
$$

PTS: 2 REF: fall1401geo NAT: G.SRT. 8 TOP: Using Trigonometry to Find an Angle
16 ANS: 4
The measures of the angles of a triangle remain the same after all rotations because rotations are rigid motions which preserve angle measure.

PTS: 2 REF: fall1402geo NAT: G.CO. 6 TOP: Properties of Transformations
17 ANS: 2
The line $y=2 x-4$ does not pass through the center of dilation, so the dilated line will be distinct from $y=2 x-4$. Since a dilation preserves parallelism, the line $y=2 x-4$ and its image will be parallel, with slopes of 2 . To obtain the y-intercept of the dilated line, the scale factor of the dilation, $\frac{3}{2}$, can be applied to the y-intercept, $(0,4)$.
Therefore, $\left(0 \cdot \frac{3}{2},-4 \cdot \frac{3}{2}\right) \rightarrow(0,-6)$. So the equation of the dilated line is $y=2 x-6$.
PTS: 2 REF: fall1403geo NAT: G.SRT. 1 TOP: Dilations
18 ANS: 3
$\theta=\frac{s}{r}=\frac{2 \pi}{10}=\frac{\pi}{5}$
PTS: 2 REF: fall1404geo NAT: G.C. 5 TOP: Arc Length
19 ANS:
$\triangle M N O$ is congruent to $\triangle P N O$ by SAS. Since $\triangle M N O \cong \triangle P N O$, then $\overline{M O} \cong \overline{P O}$ by CPCTC. So $\overline{N O}$ must divide $\overline{M P}$ in half, and $M O=8$.

PTS: 2 REF: fall1405geo NAT: G.SRT. 5 TOP: Isosceles Triangles

20 ANS:
No, the weight of the bricks is greater than $900 \mathrm{~kg} .500 \times(5.1 \mathrm{~cm} \times 10.2 \mathrm{~cm} \times 20.3 \mathrm{~cm})=528,003 \mathrm{~cm}^{3}$.
$528,003 \mathrm{~cm}^{3} \times \frac{1 \mathrm{~m}^{3}}{100 \mathrm{~cm}^{3}}=0.528003 \mathrm{~m}^{3} . \frac{1920 \mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.528003 \mathrm{~m}^{3} \approx 1013 \mathrm{~kg}$.
PTS: 2 REF: fall1406geo NAT: G.MG. 3 TOP: Volume
21 ANS:
$4 x-.07=2 x+.01 \operatorname{Sin} A$ is the ratio of the opposite side and the hypotenuse while $\cos B$ is the ratio of the adjacent

$$
2 x=0.8
$$

$$
x=0.4
$$

side and the hypotenuse. The side opposite angle A is the same side as the side adjacent to angle B. Therefore, $\sin A=\cos B$.

PTS: 2 REF: fall1407geo NAT: G.SRT. 7 TOP: Cofunctions
22 ANS:
Translate $\triangle A B C$ along $\overline{C F}$ such that point C maps onto point F, resulting in image $\triangle A^{\prime} B^{\prime} C^{\prime}$. Then reflect $\triangle A^{\prime} B^{\prime} C^{\prime}$ over $\overline{D F}$ such that $\triangle A^{\prime} B^{\prime} C^{\prime}$ maps onto $\triangle D E F$.
or
Reflect $\triangle A B C$ over the perpendicular bisector of $\overline{E B}$ such that $\triangle A B C$ maps onto $\triangle D E F$.
PTS: 2 REF: fall1408geo NAT: G.CO. 6 TOP: Compositions of Transformations
23 ANS:

PTS: 2 REF: fall1409geo NAT: G.CO. 12 TOP: Constructions
24 ANS:
As the sum of the measures of the angles of a triangle is $180^{\circ}, \mathrm{m} \angle A B C+\mathrm{m} \angle B C A+\mathrm{m} \angle C A B=180^{\circ}$. Each interior angle of the triangle and its exterior angle form a linear pair. Linear pairs are supplementary, so $\mathrm{m} \angle A B C+\mathrm{m} \angle F B C=180^{\circ}, \mathrm{m} \angle B C A+\mathrm{m} \angle D C A=180^{\circ}$, and $\mathrm{m} \angle C A B+\mathrm{m} \angle E A B=180^{\circ}$. By addition, the sum of these linear pairs is 540°. When the angle measures of the triangle are subtracted from this sum, the result is 360°, the sum of the exterior angles of the triangle.

PTS: 4
REF: fall1410geo NAT: G.CO. 10
TOP: Interior and Exterior Angles of Triangles

25
ANS:
$M\left(\frac{4+0}{2}, \frac{6-1}{2}\right)=M\left(2, \frac{5}{2}\right) m=\frac{6--1}{4-0}=\frac{7}{4} m_{\perp}=-\frac{4}{7} y-2.5=-\frac{4}{7}(x-2)$ The diagonals, $\overline{M T}$ and $\overline{A H}$, of rhombus MATH are perpendicular bisectors of each other.

PTS: 4 REF: fall1411geo NAT: G.GPE. 5 TOP: Quadrilaterals in the Coordinate Plane
26 ANS:

Since the square is inscribed, each vertex of the square is on the circle and the diagonals of the square are diameters of the circle. Therefore, each angle of the square is an inscribed angle in the circle that intercepts the circle at the endpoints of the diameters. Each angle of the square, which is an inscribed angle, measures 90 degrees. Therefore, the measure of the arc intercepted by two adjacent sides of the square is 180 degrees because it is twice the measure of its inscribed angle.

PTS: 4
REF: fall1412geo NAT: G.CO. 13 TOP: Constructions
27
ANS:

$$
4960+384=5344
$$

PTS: 6
REF: fall1413geo NAT: G.SRT. 8
TOP: Using Trigonometry to Find a Side

0615geo

Answer Section

1 ANS: 4
PTS: 2
REF: 061501geo NAT: G.GMD. 4
TOP: Rotations of Two-Dimensional Objects
2 ANS: 4 PTS: 2 REF: 061502geo NAT: G.CO. 6
TOP: Properties of Transformations
3 ANS: 3
$r=\sqrt{(7-3)^{2}+(1--2)^{2}}=\sqrt{16+9}=5$
PTS: 2 REF: 061503geo NAT: G.GPE. 4 TOP: Properties of Circles
4 ANS: 4 PTS: 2 REF: 061504geo NAT: G.CO. 5
TOP: Identifying Transformations
5 ANS: 3
$\tan 34=\frac{T}{20}$
$T \approx 13.5$
PTS: 2 REF: 061505geo NAT: G.SRT. 8 TOP: Using Trigonometry to Find a Side
6 ANS: 2
PTS: 2
REF: 061506geo
NAT: G.GMD. 4
TOP: Cross-Sections of Three-Dimensional Objects
7 ANS: 3
$V=12 \cdot 8.5 \cdot 4=408$
$W=408 \cdot 0.25=102$
PTS: 2 REF: 061507geo NAT: G.MG. 2 TOP: Density
8 ANS: 1
PTS: 2
REF: 061508geo
NAT: G.SRT. 5
TOP: Chords, Secants and Tangents
9 ANS: 1
$m=\frac{-A}{B}=\frac{-2}{-1}=2$
$m_{\perp}=-\frac{1}{2}$
PTS: 2 REF: 061509geo NAT: G.GPE. 5 TOP: Parallel and Perpendicular Lines
10 ANS: 1
$\frac{360^{\circ}}{45^{\circ}}=8$

PTS: 2
REF: 061510geo
NAT: G.CO. 3
TOP: Mapping a Polygon onto Itself

11 ANS: 3
$\frac{9}{5}=\frac{9.2}{x} 5.1+9.2=14.3$
$9 x=46$
$x \approx 5.1$
PTS: 2
12 ANS: 4
REF: 061511geo
NAT: G.SRT. 5
TOP: Side Splitter Theorem
TOP: Cofunctions
13 ANS: 4
PTS: 2
REF: 061513geo
NAT: G.CO. 11
TOP: Parallelograms
14 ANS: 2
$x^{2}+y^{2}+6 y+9=7+9$

$$
x^{2}+(y+3)^{2}=16
$$

PTS: 2
REF: 061514geo
NAT: G.GPE. 1
TOP: Equations of Circles
15 ANS: 3
$\frac{A B}{B C}=\frac{D E}{E F}$
$\frac{9}{15}=\frac{6}{10}$
$90=90$
$\begin{array}{llll}\text { PTS: } 2 & \text { REF: } 061515 g e o & \text { NAT: G.SRT. } 5 & \text { TOP: Triangle Similarity } \\ \text { ANS: } 2 & \text { PTS: } 2 & \text { REF: 061516geo } & \text { NAT: G.SRT. } 5\end{array}$
TOP: Polygon Dilations
17 ANS: 1
Alternate interior angles
PTS: 2 REF: 061517geo NAT: G.CO. 9 TOP: Parallel Lines and Transversals
18 ANS: 1
PTS: 2
REF: 061518geo
NAT: G.SRT. 1
TOP: Line Dilations
19 ANS: 2
$S A=6 \cdot 12^{2}=864$
$\frac{864}{450}=1.92$
PTS: 2
REF: 061519geo
NAT: G.MG. 3
TOP: Surface and Lateral Area
20 ANS: 1
PTS: 2
TOP: Chords, Secants and Tangents

21 ANS: 4
$\frac{7}{12} \cdot 30=17.5$
PTS: 2 REF: 061521geo NAT: G.SRT. 5 TOP: Triangle Similarity
22 ANS: 1
The line $3 y=-2 x+8$ does not pass through the center of dilation, so the dilated line will be distinct from $3 y=-2 x+8$. Since a dilation preserves parallelism, the line $3 y=-2 x+8$ and its image $2 x+3 y=5$ are parallel, with slopes of $-\frac{2}{3}$.

PTS: 2
23 ANS: 2
x is $\frac{1}{2}$ the circumference. $\frac{C}{2}=\frac{10 \pi}{2} \approx 16$
PTS: 2
REF: 061523geo
NAT: G.GMD. 1
TOP: Properties of Circles
24 ANS: 3
PTS: 2
REF: 061524geo
NAT: G.CO. 7
TOP: Triangle Congruency
25 ANS:

PTS: 2 REF: 061525geo NAT: G.CO. 13 TOP: Constructions
26
ANS:
Opposite angles in a parallelogram are congruent, so $\mathrm{m} \angle O=118^{\circ}$. The interior angles of a triangle equal 180°. $180-(118+22)=40$.

PTS: 2 REF: 061526geo NAT: G.CO. 11 TOP: Parallelograms

27 ANS:

$$
\begin{array}{cc}
-6+\frac{2}{5}(4--6) & -5+\frac{2}{5}(0--5) \\
-6+\frac{2}{5}(10) & -5+\frac{2}{5}(5) \\
-6+4 & -5+2 \\
-2 & -3
\end{array}
$$

PTS: 2 REF: 061527geo NAT: G.GPE. 6 TOP: Directed Line Segments
28 ANS:
$\sin x=\frac{4.5}{11.75}$
$x \approx 23$
PTS: 2 REF: 061528geo NAT: G.SRT. 8 TOP: Using Trigonometry to Find an Angle
29 ANS:
$A=6^{2} \pi=36 \pi 36 \pi \cdot \frac{x}{360}=12 \pi$

$$
\begin{aligned}
& x=360 \cdot \frac{12}{36} \\
& x=120
\end{aligned}
$$

PTS: 2
REF: 061529geo
NAT: G.C. 5
TOP: Sectors
30 ANS:
Reflections are rigid motions that preserve distance.
PTS: 2
REF: 061530geo NAT: G.CO. 7
TOP: Triangle Congruency

31
ANS:

$$
\begin{aligned}
\frac{1.65}{4.15} & =\frac{x}{16.6} \\
4.15 x & =27.39 \\
x & =6.6
\end{aligned}
$$

PTS: 2 REF: 061531geo NAT: G.SRT. 5 TOP: Triangle Similarity
32 ANS:
Since linear angles are supplementary, $\mathrm{m} \angle G I H=65^{\circ}$. Since $\overline{G H} \cong \overline{I H}, \mathrm{~m} \angle G H I=50^{\circ}(180-(65+65))$. Since $\angle E G B \cong \angle G H I$, the corresponding angles formed by the transversal and lines are congruent and $\overline{A B} \| \overline{C D}$.

PTS: 4
REF: 061532geo
NAT: G.CO. 9
TOP: Parallel Lines and Transversals
ANS:
Quadrilateral $A B C D$ is a parallelogram with diagonals $\overline{A C}$ and $\overline{B D}$ intersecting at E (Given). $\overline{A D} \cong \overline{B C}$ (Opposite sides of a parallelogram are congruent. $\angle A E D \cong \angle C E B$ (Vertical angles are congruent). $\overline{B C} \| \overline{D A}$ (Definition of parallelogram). $\angle D B C \cong \angle B D A$ (Alternate interior angles are congruent). $\triangle A E D \cong \triangle C E B$ (AAS). 180° rotation of $\triangle A E D$ around point E.

PTS: 4 REF: 061533geo NAT: G.CO. 11 TOP: Quadrilateral Proofs
$x=\sqrt{.55^{2}-.25^{2}} \cong 0.49$ No, $.49^{2}=.25 y .9604+.25<1.5$
. $9604=y$
PTS: 4 REF: 061534geo NAT: G.SRT. 8 TOP: Right Triangle Similarity
35 ANS:
$\tan 47=\frac{x}{8.5} \quad$ Cone: $V=\frac{1}{3} \pi(8.5)^{2}(9.115) \approx 689.6$ Cylinder: $V=\pi(8.5)^{2}(25) \approx 5674.5$ Hemisphere: $x \approx 9.115$
$V=\frac{1}{2}\left(\frac{4}{3} \pi(8.5)^{3}\right) \approx 1286.3689 .6+5674.5+1286.3 \approx 7650$ No, because $7650 \cdot 62.4=477,360$ $477,360 \cdot 85=405,756$, which is greater than 400,000 .

PTS: 6
REF: 061535geo
NAT: G.MG. 2
TOP: Density

36
ANS:
$m_{\overline{T S}}=\frac{-10}{6}=-\frac{5}{3} m_{S R}=\frac{3}{5}$ Since the slopes of $\overline{T S}$ and $\overline{S R}$ are opposite reciprocals, they are perpendicular and form a right angle. $\triangle R S T$ is a right triangle because $\angle S$ is a right angle. $P(0,9) m_{\overline{R P}}=\frac{-10}{6}=-\frac{5}{3} m_{P T}=\frac{3}{5}$ Since the slopes of all four adjacent sides ($\overline{T S}$ and $\overline{S R}, \overline{S R}$ and $\overline{R P}, \overline{P T}$ and $\overline{T S}, \overline{R P}$ and $\overline{P T}$) are opposite reciprocals, they are perpendicular and form right angles. Quadrilateral $R S T P$ is a rectangle because it has four right angles.

PTS: 6
REF: 061536geo NAT: G.GPE. 4
TOP: Quadrilaterals in the Coordinate Plane

0815geo

Answer Section

TOP: Parallelograms
2 ANS: 3 PTS: 2
NAT: G.CO. 6
TOP: Properties of Transformations
3 ANS: 4 PTS. 2
REF: 081503geo NAT: G.GMD. 4
TOP: Rotations of Two-Dimensional Objects
4 ANS: $1 \quad$ PTS: 2
REF: 081504geo NAT: G.SRT. 7
TOP: Cofunctions
5 ANS: 1
PTS: 2
TOP: Mapping a Polygon onto Itself
6 ANS: 4 PTS: 2
TOP: Similarity
7 ANS: $1 \quad$ PTS: 2
REF: 081505geo NAT: G.CO. 3
REF: 081506geo NAT: G.SRT. 2

TOP: Identifying Transformations
8 ANS: 3

PTS: 2 REF: 081508geo NAT: G.CO. 11 TOP: Parallelograms
9 ANS: 3

$$
\begin{aligned}
x^{2}+4 x+4+y^{2}-6 y+9 & =12+4+9 \\
(x+2)^{2}+(y-3)^{2} & =25
\end{aligned}
$$

PTS: 2 REF: 081509geo NAT: G.GPE. 1 TOP: Equations of Circles
10 ANS: 1

$$
\begin{aligned}
m=-\frac{2}{3} 1 & =\left(-\frac{2}{3}\right) 6+b \\
1 & =-4+b \\
5 & =b
\end{aligned}
$$

PTS: 2 REF: 081510geo NAT: G.GPE. 5 TOP: Parallel and Perpendicular Lines
11 ANS: 2
$s^{2}+s^{2}=7^{2}$

$$
2 s^{2}=49
$$

$$
s^{2}=24.5
$$

$$
s \approx 4.9
$$

PTS: 2
REF: 081511geo
NAT: G.SRT. 8
TOP: Pythagorean Theorem

12 ANS: 3
$5 \cdot \frac{10}{4}=\frac{50}{4}=12.5$
PTS: 2 REF: 081512geo NAT: G.C. 1 TOP: Properties of Circles
13 ANS: 2 PTS: 2
TOP: Identifying Transformations
14 ANS: 4 PTS: 2
TOP: Triangle Similarity
15 ANS: $3 \quad$ PTS: 2
TOP: Inscribed Quadrilaterals
16 ANS: 1
$V=\frac{\frac{4}{3} \pi\left(\frac{10}{2}\right)^{3}}{2} \approx 261.8 \cdot 62.4=16,336$

PTS: 2 REF: 081516geo NAT: G.MG. 2 TOP: Density
17 ANS: 4
$\frac{2}{6}=\frac{5}{15}$
PTS: 2 REF: 081517geo NAT: G.SRT. 2 TOP: Similarity
18 ANS: 3
$\frac{60}{360} \cdot 6^{2} \pi=6 \pi$
PTS: 2
REF: 081518geo
NAT: G.C. 5 TOP: Sectors
19 ANS: 2
PTS: 2
REF: 081519geo
NAT: G.SRT. 5
TOP: Triangle Similarity
20 ANS: 1
$3^{2}=9$
PTS: 2 REF: 081520geo NAT: G.SRT. 2 TOP: Dilations
21 ANS: 4
$2592276=\frac{1}{3} \cdot s^{2} \cdot 146.5$
$230 \approx s$
PTS: 2 REF: 081521geo NAT: G.GMD. 3 TOP: Volume
22 ANS: 4
$\frac{-2-1}{-1--3}=\frac{-3}{2} \quad \frac{3-2}{0-5}=\frac{1}{-5} \quad \frac{3-1}{0--3}=\frac{2}{3} \quad \frac{2--2}{5--1}=\frac{4}{6}=\frac{2}{3}$
PTS: 2 REF: 081522geo NAT: G.GPE. 4 TOP: Coordinate Proofs

23 ANS: 1
$\frac{4}{6}=\frac{3}{4.5}=\frac{2}{3}$
PTS: 2 REF: 081523geo NAT: G.SRT. 2 TOP: Dilations
24 ANS: 4
The line $y=3 x-1$ passes through the center of dilation, so the dilated line is not distinct.
PTS: 2 REF: 081524geo NAT: G.SRT. 1 TOP: Dilations
25 ANS:
$\frac{137.8}{6^{3}} \approx 0.638$ Ash
PTS: 2 REF: 081525geo NAT: G.MG. 2 TOP: Density
26 ANS:

PTS: 2 REF: 081526geo NAT: G.CO. 13 TOP: Constructions
27 ANS:
$\frac{120}{230}=\frac{x}{315}$
$x=164$
PTS: 2 REF: 081527geo NAT: G.SRT. 5 TOP: Similarity
28 ANS:
Parallelogram $A B C D$, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E (given). $\overline{D C}\|\overline{A B} ; \overline{D A}\| \overline{C B}$ (opposite sides of a parallelogram are parallel). $\angle A C D \cong \angle C A B$ (alternate interior angles formed by parallel lines and a transversal are congruent).

PTS: 2 REF: 081528geo NAT: G.CO. 11 TOP: Quadrilateral Proofs
29 ANS:
$\frac{6}{14}=\frac{9}{21}$ SAS
$126=126$
PTS: 2 REF: 081529geo NAT: G.SRT. 2 TOP: Similarity

30 ANS:
The transformation is a rotation, which is a rigid motion.
PTS: 2 REF: 081530geo NAT: G.CO. 6 TOP: Properties of Transformations
31 ANS:
$\frac{2}{5} \cdot(16-1)=6 \frac{2}{5} \cdot(14-4)=4 \quad(1+6,4+4)=(7,8)$
PTS: 2 REF: 081531geo NAT: G.GPE. 6 TOP: Directed Line Segments
32 ANS:
$\tan 7=\frac{125}{x} \quad \tan 16=\frac{125}{y} \quad 1018-436 \approx 582$

$$
x \approx 1018 \quad y \approx 436
$$

PTS: 4 REF: 081532geo NAT: G.SRT. 8 TOP: Using Trigonometry to Find a Side
33 ANS:
The slopes of perpendicular line are opposite reciprocals. Since the lines are perpendicular, they form right angles
and a right triangle. $m_{\overline{B C}}=-\frac{3}{2}-1=\frac{2}{3}(-3)+b$ or $-4=\frac{2}{3}(-1)+b$

$$
\begin{aligned}
& m_{\perp}=\frac{2}{3} \quad-1=-2+b \quad \frac{-12}{3}=\frac{-2}{3}+b \\
& 3=\frac{2}{3} x+1 \quad-\frac{10}{3}=b \\
& 2=\frac{2}{3} x \quad 3=\frac{2}{3} x-\frac{10}{3} \\
& 3=x \\
& 9=2 x-10 \\
& 19=2 x \\
& 9.5=x
\end{aligned}
$$

PTS: 4
REF: 081533geo NAT: G.GPE. 5
TOP: Triangles in the Coordinate Plane

34 ANS:
Translations preserve distance. If point D is mapped onto point A, point F would map onto point C. $\triangle D E F \cong \triangle A B C$ as $\overline{A C} \cong \overline{D F}$ and points are collinear on line ℓ and a reflection preserves distance.

PTS: 4 REF: 081534geo NAT: G.CO. 6 TOP: Properties of Transformations
35 ANS:
Parallelogram $A B C D, \overline{B E} \perp \overline{C E D}, \overline{D F} \perp \overline{B F C}, \overline{C E} \cong \overline{C F}$ (given). $\angle B E C \cong \angle D F C$ (perpendicular lines form right angles, which are congruent). $\angle F C D \cong \angle B C E$ (reflexive property). $\triangle B E C \cong \triangle D F C$ (ASA). $\overline{B C} \cong \overline{C D}$ (CPCTC). $A B C D$ is a rhombus (a parallelogram with consecutive congruent sides is a rhombus).

PTS: 6 REF: 081535geo NAT: G.CO. 11 TOP: Quadrilateral Proofs
36 ANS:
$V=\frac{1}{3} \pi\left(\frac{3}{2}\right)^{2} \cdot 8 \approx 18.85 \cdot 100=18851885 \cdot 0.52 \cdot 0.10=98.021 .95(100)-(37.83+98.02)=59.15$
PTS: 6 REF: 081536geo NAT: G.MG. 2 TOP: Density

0116geo

Answer Section

1 ANS: 1 PTS: 2 REF: 011601geo NAT: G.GMD. 4
TOP: Cross-Sections of Three-Dimensional Objects
2 ANS: 4

$$
\begin{aligned}
m=-\frac{1}{2} & -4 & =2(6)+b \\
m_{\perp}=2 & -4 & =12+b \\
& -16 & =b
\end{aligned}
$$

PTS: 2 REF: 011602geo NAT: G.GPE. 5 TOP: Parallel and Perpendicular Lines
3 ANS: 3

PTS: 2 REF: 011603geo NAT: G.CO. 11 TOP: Parallelograms
4 ANS: 2
$14 \times 16 \times 10=2240 \frac{2240-1680}{2240}=0.25$
PTS: 2 REF: 011604geo NAT: G.GMD. 3 TOP: Volume
5 ANS: 3 PTS: 2 REF: 011605geo NAT: G.CO. 6
TOP: Properties of Transformations
6 ANS: 1 PTS: 2 REF: 011606geo NAT: G.CO. 9
TOP: Line Bisectors
7 ANS: 2
$V=\frac{1}{3} \cdot 6^{2} \cdot 12=144$
PTS: 2 REF: 011607geo NAT: G.GMD. 3 TOP: Volume
8 ANS: 1 PTS: 2 REF: 011608geo NAT: G.CO. 5
TOP: Identifying Transformations
9 ANS: 4 PTS: 2 REF: 011609geo NAT: G.SRT. 7
TOP: Cofunctions
10 ANS: 2
PTS: 2
REF: 011610geo NAT: G.SRT. 1
TOP: Line Dilations
11 ANS: 4 PTS: 2
TOP: Properties of Transformations

12 ANS: 3
$\frac{x}{360} \cdot 3^{2} \pi=2 \pi$

$$
x=80
$$

PTS: 2
REF: 011612geo
NAT: G.C. 5
TOP: Sectors
13 ANS: 1 $\frac{6}{8}=\frac{9}{12}$

PTS: 2 REF: 011613geo NAT: G.SRT. 5 TOP: Triangle Similarity
14 ANS: 3
$\frac{\frac{4}{3} \pi\left(\frac{9.5}{2}\right)^{3}}{\frac{4}{3} \pi\left(\frac{2.5}{2}\right)^{3}} \approx 55$
PTS: 2 REF: 011614geo NAT: G.MG. 1 TOP: Volume
15 ANS: 2
$\sqrt{(-1-2)^{2}+(4-3)^{2}}=\sqrt{10}$
PTS: 2 REF: 011615geo NAT: G.GPE. 7 TOP: Polygons in the Coordinate Plane
16 ANS: 3
$\cos A=\frac{9}{14}$

$$
A \approx 50^{\circ}
$$

PTS: 2
REF: 011616geo NAT: G.SRT. 8
TOP: Using Trigonometry to Find an Angle
17 ANS: 4
$x^{2}+6 x+9+y^{2}-4 y+4=23+9+4$
$(x+3)^{2}+(y-2)^{2}=36$
PTS: 2 REF: 011617geo NAT: G.GPE. 1 TOP: Equations of Circles
18 ANS: 1
$m_{R T}=\frac{5--3}{4--2}=\frac{8}{6}=\frac{4}{3} m_{S T}=\frac{5-2}{4-8}=\frac{3}{-4}=-\frac{3}{4}$ Slopes are opposite reciprocals, so lines form a right angle.

PTS: 2 REF: 011618geo NAT: G.GPE. 4 TOP: Triangles in the Coordinate Plane
19 ANS: 2
$\frac{4}{3} \pi \cdot 4^{3}+0.075 \approx 20$
PTS: 2
REF: 011619geo
NAT: G.MG. 2
TOP: Density

20 ANS: 4

$$
\begin{aligned}
\frac{1}{2} & =\frac{x+3}{3 x-1} \quad G R=3(7)-1=20 \\
3 x-1 & =2 x+6 \\
x & =7
\end{aligned}
$$

PTS: 2
REF: 011620geo
NAT: G.SRT. 5
TOP: Triangle Similarity
21 ANS: 3
PTS: 2
TOP: Chords, Secants and Tangents
22 ANS: 2
$\sqrt{3 \cdot 21}=\sqrt{63}=3 \sqrt{7}$
PTS: 2 REF: 011622geo NAT: G.SRT. 5 TOP: Triangle Similarity
23 ANS: 1
$\frac{1000}{20 \pi} \approx 15.9$
PTS: 2 REF: 011623geo NAT: G.MG. 3 TOP: Circumference
24 ANS: 3
$\frac{12}{4}=\frac{x}{5} \quad 15-4=11$

$$
x=15
$$

PTS: 2 REF: 011624geo NAT: G.SRT. 5 TOP: Triangle Similarity
25 ANS:

PTS: 2
26
ANS:
REF: 011625geo
NAT: G.CO.6
TOP: Properties of Transformations

$$
180-2(30)=120
$$

PTS: 2
REF: 011626geo NAT: G.C. 2
TOP: Chords, Secants and Tangents

27 ANS:

$$
\begin{array}{ll}
x=\frac{2}{3}(4--2)=4 & -2+4=2 \quad J(2,5) \\
y=\frac{2}{3}(7-1)=4 & 1+4=5
\end{array}
$$

PTS: 2 REF: 011627geo NAT: G.GPE. 6 TOP: Directed Line Segments
28 ANS:
Yes. The sequence of transformations consists of a reflection and a translation, which are isometries which preserve distance and congruency.

PTS: 2 REF: 011628geo NAT: G.CO. 6 TOP: Properties of Transformations
29 ANS:
$\sin 70=\frac{30}{L}$
$L \approx 32$
PTS: 2 REF: 011629geo NAT: G.SRT. 8 TOP: Using Trigonometry to Find a Side
30 ANS:
$\frac{40000}{\pi\left(\frac{51}{2}\right)^{2}} \approx 19.6 \frac{72000}{\pi\left(\frac{75}{2}\right)^{2}} \approx 16.3 \operatorname{Dish} A$
PTS: 2 REF: 011630geo NAT: G.MG. 2 TOP: Density
31 ANS:
$\ell: y=3 x-4$
$m: y=3 x-8$
PTS: 2 REF: 011631geo NAT: G.SRT. 1 TOP: Directed Line Segments
32 ANS:

$$
\begin{aligned}
\frac{16}{9} & =\frac{x}{20.6} D=\sqrt{36.6^{2}+20.6^{2}} \approx 42 \\
x & \approx 36.6
\end{aligned}
$$

PTS: 4 REF: 011632geo NAT: G.SRT. 8 TOP: Pythagorean Theorem

33 ANS:
(2) Euclid's Parallel Postulate; (3) Alternate interior angles formed by parallel lines and a transversal are congruent; (4) Angles forming a line are supplementary; (5) Substitution

PTS: 4 REF: 011633geo NAT: G.CO. 10 TOP: Triangle Proofs
34 ANS:

PTS: 4 REF: 011634geo NAT: G.CO. 12 TOP: Constructions
35 ANS:
Parallelogram $A N D R$ with $\overline{A W}$ and $\overline{D E}$ bisecting $\overline{N W D}$ and $\overline{R E A}$ at points W and E (Given). $\overline{A N} \cong \overline{R D}$, $\overline{A R} \cong \overline{D N}$ (Opposite sides of a parallelogram are congruent). $A E=\frac{1}{2} A R$, $W D=\frac{1}{2} D N$, so $\overline{A E} \cong \overline{W D}$ (Definition of bisect and division property of equality). $\overline{A R} \| \overline{D N}$ (Opposite sides of a parallelogram are parallel). AWDE is a parallelogram (Definition of parallelogram). $R E=\frac{1}{2} A R, N W=\frac{1}{2} D N$, so $\overline{R E} \cong \overline{N W}$ (Definition of bisect and division property of equality). $\overline{E D} \cong \overline{A W}$ (Opposite sides of a parallelogram are congruent). $\triangle A N W \cong \triangle D R E$ (SSS).

PTS: 6 REF: 011635geo NAT: G.CO. 11 TOP: Quadrilateral Proofs
36 ANS:
$\tan 52.8=\frac{h}{x}$
$h=x \tan 52.8$
$x \tan 52.8-x \tan 34.9=8 \tan 34.9$
$11.86+1.7 \approx 13.6$
$\begin{aligned} h & =x \tan 52.8 \\ \tan 34.9 & =\frac{h}{x+8} \\ h & =(x+8) \tan 34.9\end{aligned}$
$x(\tan 52.8-\tan 34.9)=8 \tan 34.9$

PTS: 6 REF: 011636geo NAT: G.SRT. 8 TOP: Using Trigonometry to Find a Side

