JMAP REGENTS BY TYPE

The NY Geometry CCSS Regents Exam Questions from Fall 2014 to January 2016 Sorted by Type

www.jmap.org

Geometry Common Core State Standards Multiple Choice Regents Exam Questions

1 Triangle FGH is inscribed in circle O, the length of radius \overline{OH} is 6, and $\overline{FH} \cong \overline{OG}$.

What is the area of the sector formed by angle *FOH*?

- 1) 2*π*
- 2) $\frac{3}{2}\pi$
- 3) $6\pi^{2}$
- 4) 24π
- 2 A circle with a radius of 5 was divided into 24 congruent sectors. The sectors were then rearranged, as shown in the diagram below.

To the *nearest integer*, the value of *x* is

- 1) 31
- 2) 16
- 3) 12
- 4) 10

3 In the diagram below, a square is graphed in the coordinate plane.

A reflection over which line does *not* carry the square onto itself?

- 1) x = 5
- 2) *y* = 2
- 3) y = x
- 4) x + y = 4
- 4 In the diagram below, $\triangle ABC \sim \triangle DEF$.

If AB = 6 and AC = 8, which statement will justify similarity by SAS?

- 1) DE = 9, DF = 12, and $\angle A \cong \angle D$
- 2) DE = 8, DF = 10, and $\angle A \cong \angle D$
- 3) DE = 36, DF = 64, and $\angle C \cong \angle F$
- 4) $DE = 15, DF = 20, \text{ and } \angle C \cong \angle F$

5 A sequence of transformations maps rectangle *ABCD* onto rectangle *A"B"C"D"*, as shown in the diagram below.

Which sequence of transformations maps *ABCD* onto *A'B'C'D'* and then maps *A'B'C'D'* onto *A''B''C''D''*?

- 1) a reflection followed by a rotation
- 2) a reflection followed by a translation
- 3) a translation followed by a rotation
- 4) a translation followed by a reflection
- 6 A fish tank in the shape of a rectangular prism has dimensions of 14 inches, 16 inches, and 10 inches. The tank contains 1680 cubic inches of water. What percent of the fish tank is empty?
 - 1) 10
 - 2) 25
 - 3) 50
 - 4) 75

7 In the diagram of $\triangle ADC$ below, $\overline{EB} \parallel \overline{DC}$, AE = 9, ED = 5, and AB = 9.2.

What is the length of \overline{AC} , to the *nearest tenth*?

- 1) 5.1
- 2) 5.2
- 3) 14.3
- 4) 14.4
- 8 Which object is formed when right triangle RST shown below is rotated around leg \overline{RS} ?

- 1) a pyramid with a square base
- 2) an isosceles triangle
- 3) a right triangle
- 4) a cone

9 In the diagram below, \overline{CD} is the altitude drawn to the hypotenuse \overline{AB} of right triangle ABC.

Which lengths would *not* produce an altitude that measures $6\sqrt{2}$?

- 1) AD = 2 and DB = 36
- 2) AD = 3 and AB = 24
- 3) AD = 6 and DB = 12
- 4) AD = 8 and AB = 17
- 10 In $\triangle SCU$ shown below, points T and O are on \overline{SU} and \overline{CU} , respectively. Segment OT is drawn so that $\angle C \cong \angle OTU$.

If TU = 4, OU = 5, and OC = 7, what is the length of \overline{ST} ?

- 1) 5.6
- 2) 8.75
- 3) 11
- 4) 15

- 11 The vertices of $\triangle JKL$ have coordinates J(5,1), K(-2,-3), and L(-4,1). Under which transformation is the image $\triangle J'K'L'$ not congruent to $\triangle JKL$?
 - 1) a translation of two units to the right and two units down
 - 2) a counterclockwise rotation of 180 degrees around the origin
 - 3) a reflection over the *x*-axis
 - 4) a dilation with a scale factor of 2 and centered at the origin
- 12 In the diagram below of circle *O*, the area of the shaded sector *LOM* is 2π cm².

If the length of \overline{NL} is 6 cm, what is m $\angle N$?

- 1) 10°
- 2) 20°
- 3) 40°
- 4) 80°
- 13 Line y = 3x 1 is transformed by a dilation with a scale factor of 2 and centered at (3,8). The line's image is
 - $1) \quad y = 3x 8$

$$2) \quad y = 3x - 4$$

3)
$$y = 3x - 2$$

 $4) \quad y = 3x - 1$

14 In the diagram below, the circle shown has radius 10. Angle *B* intercepts an arc with a length of 2π .

What is the measure of angle *B*, in radians?

- 1) $10 + 2\pi$
- 2) 20*π*
- 3) $\frac{\pi}{5}$
- 4) $\frac{5}{\pi}$
- 15 The diameter of a basketball is approximately 9.5 inches and the diameter of a tennis ball is approximately 2.5 inches. The volume of the basketball is about how many times greater than the volume of the tennis ball?
 - 1) 3591
 - 2) 65
 - 3) 55
 - 4) 4
- 16 The ratio of similarity of $\triangle BOY$ to $\triangle GRL$ is 1:2. If BO = x + 3 and GR = 3x - 1, then the length of \overline{GR} is
 - 1) 5
 - 2) 7
 - 3) 10
 - 4) 20

17 The image of $\triangle ABC$ after a rotation of 90° clockwise about the origin is $\triangle DEF$, as shown below.

Which statement is true?

- 1) $\underline{BC} \cong \underline{DE}$
- 2) $\overline{AB} \cong \overline{DF}$
- 3) $\angle C \cong \angle E$
- 4) $\angle A \cong \angle D$
- 18 In parallelogram QRST shown below, diagonal \overline{TR} is drawn, U and V are points on \overline{TS} and \overline{QR} , respectively, and \overline{UV} intersects \overline{TR} at W.

If $m \angle S = 60^\circ$, $m \angle SRT = 83^\circ$, and $m \angle TWU = 35^\circ$, what is $m \angle WVQ$?

- 1) 37°
- 2) 60°
- 3) 72°
- 4) 83°

19 William is drawing pictures of cross sections of the right circular cone below.

Which drawing can *not* be a cross section of a cone?

- 20 A gallon of paint will cover approximately 450 square feet. An artist wants to paint all the outside surfaces of a cube measuring 12 feet on each edge. What is the *least* number of gallons of paint he must buy to paint the cube?
 - 1) 1
 - 2) 2
 - 3) 3
 - 4) 4

- 21 The line 3y = -2x + 8 is transformed by a dilation centered at the origin. Which linear equation could be its image?
 - 1) 2x + 3y = 5
 - 2) 2x 3y = 5
 - $3) \quad 3x + 2y = 5$
 - $4) \quad 3x 2y = 5$
- 22 A parallelogram must be a rectangle when its
 - 1) diagonals are perpendicular
 - 2) diagonals are congruent
 - 3) opposite sides are parallel
 - 4) opposite sides are congruent
- 23 A designer needs to create perfectly circular necklaces. The necklaces each need to have a radius of 10 cm. What is the largest number of necklaces that can be made from 1000 cm of wire?
 - 1) 15
 - 2) 16
 - 3) 31
 - 4) 32
- 24 Which regular polygon has a minimum rotation of 45° to carry the polygon onto itself?
 - 1) octagon
 - decagon
 - 3) hexagon
 - 4) pentagon

25 Quadrilateral *ABCD* is graphed on the set of axes below.

When ABCD is rotated 90° in a counterclockwise direction about the origin, its image is quadrilateral A'B'C'D'. Is distance preserved under this rotation, and which coordinates are correct for the given vertex?

- 1) no and C'(1,2)
- 2) no and D'(2,4)
- 3) yes and A'(6,2)
- 4) yes and B'(-3,4)
- 26 In the diagram below, $\triangle ABC \sim \triangle DEC$.

If AC = 12, DC = 7, DE = 5, and the perimeter of $\triangle ABC$ is 30, what is the perimeter of $\triangle DEC$?

- 1) 12.5
- 2) 14.0
- 3) 14.8
- 4) 17.5

27 In the diagram below, \overline{CD} is the image of \overline{AB} after a dilation of scale factor k with center E.

Which ratio is equal to the scale factor k of the dilation?

- 1) $\frac{EC}{EA}$ 2) $\frac{BA}{EA}$ 3) $\frac{EA}{BA}$
- $4) \quad \frac{EA}{EC}$
- 28 The endpoints of one side of a regular pentagon are (-1,4) and (2,3). What is the perimeter of the pentagon?
 - 1) $\sqrt{10}$
 - 2) $5\sqrt{10}$
 - 3) $5\sqrt{2}$
 - 4) $25\sqrt{2}$

29 In the diagram below, \overline{DC} , \overline{AC} , \overline{DOB} , \overline{CB} , and \overline{AB} are chords of circle O, \overline{FDE} is tangent at point D, and radius \overline{AO} is drawn. Sam decides to apply this theorem to the diagram: "An angle inscribed in a semi-circle is a right angle."

Which angle is Sam referring to?

- 1) ∠*AOB*
- 2) $\angle BAC$
- 3) ∠*DCB*
- 4) ∠*FDB*
- 30 If $\triangle ABC$ is dilated by a scale factor of 3, which statement is true of the image $\triangle A'B'C'$?
 - 1) 3A'B' = AB
 - $2) \quad B'C' = 3BC$
 - 3) $m \angle A' = 3(m \angle A)$
 - 4) $3(m \angle C') = m \angle C$
- 31 Molly wishes to make a lawn ornament in the form of a solid sphere. The clay being used to make the sphere weighs .075 pound per cubic inch. If the sphere's radius is 4 inches, what is the weight of the sphere, to the *nearest pound*?
 - 1) 34
 - 2) 20
 - 3) 15
 - 4) 4

- 32 A triangle is dilated by a scale factor of 3 with the center of dilation at the origin. Which statement is true?
 - 1) The area of the image is nine times the area of the original triangle.
 - 2) The perimeter of the image is nine times the perimeter of the original triangle.
 - 3) The slope of any side of the image is three times the slope of the corresponding side of the original triangle.
 - 4) The measure of each angle in the image is three times the measure of the corresponding angle of the original triangle.
- 33 A shipping container is in the shape of a right rectangular prism with a length of 12 feet, a width of 8.5 feet, and a height of 4 feet. The container is completely filled with contents that weigh, on average, 0.25 pound per cubic foot. What is the weight, in pounds, of the contents in the container?
 - 1) 1,632
 - 2) 408
 - 3) 102
 - 4) 92
- 34 In the diagram below, $\triangle ABC \sim \triangle ADE$.

Which measurements are justified by this similarity?

- 1) AD = 3, AB = 6, AE = 4, and AC = 12
- 2) AD = 5, AB = 8, AE = 7, and AC = 10
- 3) AD = 3, AB = 9, AE = 5, and AC = 10
- 4) AD = 2, AB = 6, AE = 5, and AC = 15

35 In the diagram of parallelogram *FRED* shown below, \overline{ED} is extended to *A*, and \overline{AF} is drawn such that $\overline{AF} \cong \overline{DF}$.

If $m \angle R = 124^\circ$, what is $m \angle AFD$?

- 1) 124°
- 2) 112°
- 3) 68°
- 4) 56°
- 36 In the diagram of circle A shown below, chords \overline{CD} and \overline{EF} intersect at G, and chords \overline{CE} and \overline{FD} are drawn.

Which statement is not always true?

- 1) $CG \cong FG$
- 2) $\angle CEG \cong \angle FDG$

3)
$$\frac{CE}{T} = \frac{FD}{T}$$

4) $\triangle CEG \sim \triangle FDG$

- 37 A man who is 5 feet 9 inches tall casts a shadow of 8 feet 6 inches. Assuming that the man is standing perpendicular to the ground, what is the angle of elevation from the end of the shadow to the top of the man's head, to the *nearest tenth of a degree*?
 1) 34.1
 - 34.1
 34.5
 - 3) 42.6
 - 4) 55.9
- 38 In the diagram below, congruent figures 1, 2, and 3 are drawn.

Which sequence of transformations maps figure 1 onto figure 2 and then figure 2 onto figure 3?

- 1) a reflection followed by a translation
- 2) a rotation followed by a translation
- 3) a translation followed by a reflection
- 4) a translation followed by a rotation

39 An equation of a line perpendicular to the line represented by the equation $y = -\frac{1}{2}x - 5$ and passing through (6,-4) is

1)
$$y = -\frac{1}{2}x + 4$$

2) $y = -\frac{1}{2}x - 1$

3)
$$y = 2x + 14$$

- $4) \quad y = 2x 16$
- 40 Steve drew line segments *ABCD*, *EFG*, *BF*, and *CF* as shown in the diagram below. Scalene $\triangle BFC$ is formed.

Which statement will allow Steve to prove $\overrightarrow{ABCD} \parallel \overrightarrow{EFG}$?

- 1) $\angle CFG \cong \angle FCB$
- 2) $\angle ABF \cong \angle BFC$
- 3) $\angle EFB \cong \angle CFB$
- 4) $\angle CBF \cong \angle GFC$
- 41 A line that passes through the points whose coordinates are (1, 1) and (5, 7) is dilated by a scale factor of 3 and centered at the origin. The image of the line
 - 1) is perpendicular to the original line
 - 2) is parallel to the original line
 - 3) passes through the origin
 - 4) is the original line

42 Given \overline{MN} shown below, with M(-6, 1) and N(3,-5), what is an equation of the line that passes through point P(6,1) and is parallel to \overline{MN} ?

1)
$$y = -\frac{2}{3}x + 5$$

2) $y = -\frac{2}{3}x - 3$
3) $y = \frac{3}{2}x + 7$
4) $y = \frac{3}{2}x - 8$

43 In scalene triangle *ABC* shown in the diagram below, $m \angle C = 90^{\circ}$.

Which equation is always true?

- 1) $\sin A = \sin B$
- 2) $\cos A = \cos B$
- 3) $\cos A = \sin C$
- 4) $\sin A = \cos B$

- 44 What are the coordinates of the center and length of the radius of the circle whose equation is
 - $x^{2} + 6x + y^{2} 4y = 23?$ 1) (3,-2) and 36
 - 2) (3, -2) and 6
 - 3) (-3,2) and 36
 - 4) (-3,2) and 6
- 45 In the diagram below, $\triangle DEF$ is the image of $\triangle ABC$ after a clockwise rotation of 180° and a dilation where AB = 3, BC = 5.5, AC = 4.5, DE = 6, FD = 9, and EF = 11.

Which relationship must always be true?

- $1) \quad \frac{m \angle A}{m \angle D} = \frac{1}{2}$
- $2) \quad \frac{\mathbf{m}\angle C}{\mathbf{m}\angle F} = \frac{2}{1}$

3)
$$\frac{\mathbf{m}\angle A}{\mathbf{m}\angle C} = \frac{\mathbf{m}\angle F}{\mathbf{m}\angle D}$$

- 4) $\frac{m \angle B}{m \angle E} = \frac{m \angle C}{m \angle F}$
- 46 In $\triangle ABC$, the complement of $\angle B$ is $\angle A$. Which statement is always true?
 - 1) $\tan \angle A = \tan \angle B$
 - 2) $\sin \angle A = \sin \angle B$
 - 3) $\cos \angle A = \tan \angle B$
 - 4) $\sin \angle A = \cos \angle B$

47 In the diagram below, $\triangle ABE$ is the image of $\triangle ACD$ after a dilation centered at the origin. The coordinates of the vertices are A(0,0), B(3,0), C(4.5,0), D(0,6), and E(0,4).

The ratio of the lengths of \overline{BE} to \overline{CD} is

- 1) $\frac{2}{3}$ 2) $\frac{3}{2}$ 3) $\frac{3}{4}$ 4) $\frac{4}{3}$
- 48 The Great Pyramid of Giza was constructed as a regular pyramid with a square base. It was built with an approximate volume of 2,592,276 cubic meters and a height of 146.5 meters. What was the length of one side of its base, to the *nearest meter*?
 1) 73
 - 2) 77
 - 3) 133
 - 4) 230

- 49 The equation of line *h* is 2x + y = 1. Line *m* is the image of line *h* after a dilation of scale factor 4 with respect to the origin. What is the equation of the line *m*?
 - $1) \quad y = -2x + 1$
 - $2) \quad y = -2x + 4$
 - $3) \quad y = 2x + 4$
 - $4) \quad y = 2x + 1$
- 50 Linda is designing a circular piece of stained glass with a diameter of 7 inches. She is going to sketch a square inside the circular region. To the *nearest tenth of an inch*, the largest possible length of a side of the square is
 - 1) 3.5
 - 2) 4.9
 - 3) 5.0
 - 4) 6.9
- 51 In the diagram shown below, \overline{AC} is tangent to circle O at A and to circle P at C, \overline{OP} intersects \overline{AC} at B, OA = 4, AB = 5, and PC = 10.

What is the length of \overline{BC} ?

- 1) 6.4
- 2) 8
- 3) 12.5
- 4) 16

- 52 Quadrilateral *ABCD* has diagonals \overline{AC} and \overline{BD} . Which information is *not* sufficient to prove *ABCD* is a parallelogram?
 - 1) AC and BD bisect each other.
 - 2) $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \cong \overline{AD}$
 - 3) $\overline{AB} \cong \overline{CD}$ and $\overline{AB} \parallel \overline{CD}$
 - 4) $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \parallel \overline{AD}$
- 53 Which equation represents a line that is perpendicular to the line represented by 2x y = 7?
 - 1) $y = -\frac{1}{2}x + 6$ 2) $y = \frac{1}{2}x + 6$ 3) y = -2x + 64) y = 2x + 6
- 54 The line y = 2x 4 is dilated by a scale factor of $\frac{3}{2}$

and centered at the origin. Which equation represents the image of the line after the dilation?

- 1) y = 2x 42) y = 2x - 6
- 2) y = 2x 03) y = 3x - 4
- 4) y = 3x 6
- 55 The coordinates of the vertices of $\triangle RST$ are R(-2,-3), S(8,2), and T(4,5). Which type of triangle is $\triangle RST$?
 - 1) right
 - 2) acute
 - 3) obtuse
 - 4) equiangular

56 Triangle *ABC* and triangle *DEF* are graphed on the set of axes below.

Which sequence of transformations maps triangle *ABC* onto triangle *DEF*?

- 1) a reflection over the *x*-axis followed by a reflection over the *y*-axis
- 2) a 180° rotation about the origin followed by a reflection over the line y = x
- a 90° clockwise rotation about the origin followed by a reflection over the *y*-axis
- a translation 8 units to the right and 1 unit up followed by a 90° counterclockwise rotation about the origin

58 In the diagram below, quadrilateral *ABCD* is inscribed in circle *P*.

What is m $\angle ADC$?

- 1) 70°
- 2) 72°
- 3) 108°
- 4) 110°
- 59 As shown in the diagram below, a regular pyramid has a square base whose side measures 6 inches.

If the altitude of the pyramid measures 12 inches, its volume, in cubic inches, is

- 1) 72
- 2) 144
- 3) 288
- 4) 432

57 A regular pentagon is shown in the diagram below.

If the pentagon is rotated clockwise around its center, the minimum number of degrees it must be rotated to carry the pentagon onto itself is

- 1) 54°
- 2) 72°
- 3) 108°
- 4) 360°

60 In the diagram of right triangle *ABC* shown below, AB = 14 and AC = 9.

What is the measure of $\angle A$, to the *nearest degree*?

- 1) 33
- 2) 40
- 3) 50
- 4) 57
- 61 Which figure can have the same cross section as a sphere?

- 62 What are the coordinates of the point on the directed line segment from K(-5, -4) to L(5, 1) that partitions the segment into a ratio of 3 to 2?
 - $\begin{array}{ll} 1) & (-3,-3) \\ 2) & (-1,-2) \end{array}$
 - 3) $\left(0, -\frac{3}{2}\right)$
 - 4) (1,-1)
- 63 Which transformation would result in the perimeter of a triangle being different from the perimeter of its image?
 - 1) $(x,y) \rightarrow (y,x)$
 - $2) \quad (x,y) \to (x,-y)$
 - 3) $(x,y) \rightarrow (4x,4y)$
 - 4) $(x,y) \rightarrow (x+2,y-5)$
- 64 A hemispherical tank is filled with water and has a diameter of 10 feet. If water weighs 62.4 pounds per cubic foot, what is the total weight of the water in a full tank, to the *nearest pound*?
 - 1) 16,336
 - 2) 32,673
 - 3) 130,690
 - 4) 261,381
- 65 If △A' B' C' is the image of △ABC, under which transformation will the triangles *not* be congruent?
 1) reflection over the *x*-axis
 - 1) reflection over the x-axis
 - 2) translation to the left 5 and down 4
 - dilation centered at the origin with scale factor
 2
 - 4) rotation of 270° counterclockwise about the origin

66 The image of $\triangle ABC$ after a dilation of scale factor *k* centered at point *A* is $\triangle ADE$, as shown in the diagram below.

Which statement is always true?

- 1) 2AB = AD
- $2) \quad AD \perp DE$
- 3) $\underline{AC} = \underline{CE}$
- 4) $\overline{BC} \parallel \overline{DE}$
- 67 In the diagram below, \overrightarrow{FE} bisects \overrightarrow{AC} at *B*, and \overrightarrow{GE} bisects \overrightarrow{BD} at *C*.

Which statement is always true?

- 1) $\overline{AB} \cong \overline{DC}$
- 2) $\overline{FB} \cong \overline{EB}$
- 3) \overrightarrow{BD} bisects \overrightarrow{GE} at C.
- 4) \overrightarrow{AC} bisects \overrightarrow{FE} at B.

68 As shown in the diagram below, the angle of elevation from a point on the ground to the top of the tree is 34°.

If the point is 20 feet from the base of the tree, what is the height of the tree, to the *nearest tenth of a foot*?

- 1) 29.7
- 2) 16.6
- 3) 13.5
- 4) 11.2
- 69 A quadrilateral has vertices with coordinates (-3, 1), (0, 3), (5, 2), and (-1, -2). Which type of quadrilateral is this?
 - 1) rhombus
 - 2) rectangle
 - 3) square
 - 4) trapezoid
- 70 Which expression is always equivalent to $\sin x$ when $0^{\circ} < x < 90^{\circ}$?
 - 1) $\cos(90^{\circ} x)$
 - 2) $\cos(45^{\circ} x)$
 - 3) $\cos(2x)$
 - 4) $\cos x$

71 As shown in the diagram below, \overline{AB} and \overline{CD} intersect at E, and $\overline{AC} \parallel \overline{BD}$.

Given $\triangle AEC \sim \triangle BED$, which equation is true?

- $\frac{CE}{DE} = \frac{EB}{EA}$ 1)
- $2) \quad \frac{AE}{BE} = \frac{AC}{BD}$
- 3) $\frac{EC}{AE} = \frac{BE}{ED}$
- 4) $\frac{ED}{EC} = \frac{AC}{BD}$
- 72 The center of circle Q has coordinates (3, -2). If circle Q passes through R(7,1), what is the length of its diameter?
 - 1) 50
 - 2) 25
 - 3) 10
 - 5 4)

73 In circle O shown below, diameter \overline{AC} is perpendicular to \overline{CD} at point C, and chords \overline{AB} , BC, AE, and CE are drawn.

Which statement is not always true?

- $\angle ACB \cong \angle BCD$ 1)
- $\angle ABC \cong \angle ACD$ 2)
- 3) $\angle BAC \cong \angle DCB$
- 4) $\angle CBA \cong \angle AEC$
- 74 If $x^2 + 4x + y^2 6y 12 = 0$ is the equation of a circle, the length of the radius is
 - 25 1)
 - 2) 16
 - 3) 5
 - 4) 4
- 75 If the rectangle below is continuously rotated about side w, which solid figure is formed?

- pyramid 1)
- 2) rectangular prism
- 3) cone
- 4) cylinder

- 76 The equation of a circle is $x^2 + y^2 + 6y = 7$. What are the coordinates of the center and the length of the radius of the circle?
 - center (0,3) and radius 4 1)
 - center (0, -3) and radius 4 2)
 - center (0,3) and radius 16 3)
 - 4) center (0, -3) and radius 16
- 77 In the diagram below, which single transformation was used to map triangle A onto triangle B?

- line reflection 1)
- 2) rotation
- dilation 3)
- 4) translation

78 Triangles ABC and DEF are drawn below.

If AB = 9, BC = 15, DE = 6, EF = 10, and $\angle B \cong \angle E$, which statement is true? 1) $\angle CAB \cong \angle DEF$

- $\frac{AB}{CB} = \frac{FE}{DE}$ 2)
- $\triangle ABC \sim \triangle DEF$ 3)
- $\frac{AB}{DE} = \frac{FE}{CB}$ 4)
- 79 Which statement is sufficient evidence that $\triangle DEF$ is congruent to $\triangle ABC$?

- AB = DE and BC = EF1)
- $\angle D \cong \angle A, \angle B \cong \angle E, \angle C \cong \angle F$ 2)
- There is a sequence of rigid motions that maps 3) AB onto DE, BC onto EF, and AC onto DF.
- There is a sequence of rigid motions that maps 4) point A onto point D, \overline{AB} onto \overline{DE} , and $\angle B$ onto $\angle E$.

Geometry Common Core State Standards 2 Point Regents Exam Questions

80 In the diagram below, triangles XYZ and UVZ are drawn such that $\angle X \cong \angle U$ and $\angle XZY \cong \angle UZV$.

Describe a sequence of similarity transformations that shows $\triangle XYZ$ is similar to $\triangle UVZ$.

- 81 A flagpole casts a shadow 16.60 meters long. Tim stands at a distance of 12.45 meters from the base of the flagpole, such that the end of Tim's shadow meets the end of the flagpole's shadow. If Tim is 1.65 meters tall, determine and state the height of the flagpole to the *nearest tenth of a meter*.
- 82 In isosceles $\triangle MNP$, line segment *NO* bisects vertex $\angle MNP$, as shown below. If MP = 16, find the length of \overline{MO} and explain your answer.

83 In the diagram below, $\triangle ABC$ and $\triangle XYZ$ are graphed.

Use the properties of rigid motions to explain why $\triangle ABC \cong \triangle XYZ$.

84 During an experiment, the same type of bacteria is grown in two petri dishes. Petri dish A has a diameter of 51 mm and has approximately 40,000 bacteria after 1 hour. Petri dish B has a diameter of 75 mm and has approximately 72,000 bacteria after 1 hour.

Determine and state which petri dish has the greater population density of bacteria at the end of the first hour.

85 A wooden cube has an edge length of 6 centimeters and a mass of 137.8 grams. Determine the density of the cube, to the *nearest thousandth*. State which type of wood the cube is made of, using the density table below.

Type of Wood	Density (g/cm ³)
Pine	0.373
Hemlock	0.431
Elm	0.554
Birch	0.601
Ash	0.638
Maple	0.676
Oak	0.711

- 86 After a reflection over a line, $\Delta A'B'C'$ is the image of ΔABC . Explain why triangle ABC is congruent to triangle $\Delta A'B'C'$.
- 87 In parallelogram *ABCD* shown below, diagonals \overline{AC} and \overline{BD} intersect at *E*.

Prove: $\angle ACD \cong \angle CAB$

88 Explain why cos(x) = sin(90 - x) for x such that 0 < x < 90.

89 As shown in the diagram below, circle *A* has a radius of 3 and circle *B* has a radius of 5.

Use transformations to explain why circles *A* and *B* are similar.

- 90 Line ℓ is mapped onto line *m* by a dilation centered at the origin with a scale factor of 2. The equation of line ℓ is 3x y = 4. Determine and state an equation for line *m*.
- 91 Use a compass and straightedge to construct an inscribed square in circle *T* shown below. [Leave all construction marks.]

92 The coordinates of the endpoints of \overline{AB} are A(-6,-5) and B(4,0). Point P is on \overline{AB} . Determine and state the coordinates of point P, such that AP:PB is 2:3.

[The use of the set of axes below is optional.]

93 The diagram below shows a ramp connecting the ground to a loading platform 4.5 feet above the ground. The ramp measures 11.75 feet from the ground to the top of the loading platform.

Determine and state, to the *nearest degree*, the angle of elevation formed by the ramp and the ground.

- 94 In right triangle *ABC* with the right angle at *C*, $\sin A = 2x + 0.1$ and $\cos B = 4x - 0.7$. Determine and state the value of *x*. Explain your answer.
- 95 Given right triangles <u>ABC</u> and <u>DEF</u> where $\angle C$ and $\angle F$ are right angles, $\overline{AC} \cong \overline{DF}$ and $\overline{CB} \cong \overline{FE}$. Describe a precise sequence of rigid motions which would show $\triangle ABC \cong \triangle DEF$.

96 Triangle *ABC* is graphed on the set of axes below. Graph and label $\triangle A'B'C'$, the image of $\triangle ABC$ after a reflection over the line x = 1.

97 The endpoints of \overline{DEF} are D(1,4) and F(16,14). Determine and state the coordinates of point *E*, if DE:EF = 2:3.

- 98 A contractor needs to purchase 500 bricks. The dimensions of each brick are 5.1 cm by 10.2 cm by 20.3 cm, and the density of each brick is 1920 kg/m³. The maximum capacity of the contractor's trailer is 900 kg. Can the trailer hold the weight of 500 bricks? Justify your answer.
- 99 To find the distance across a pond from point *B* to point *C*, a surveyor drew the diagram below. The measurements he made are indicated on his diagram.

Use the surveyor's information to determine and state the distance from point *B* to point *C*, to the *nearest yard*.

100 A carpenter leans an extension ladder against a house to reach the bottom of a window 30 feet above the ground. As shown in the diagram below, the ladder makes a 70° angle with the ground. To the *nearest foot*, determine and state the length of the ladder.

101 Triangles *RST* and *XYZ* are drawn below. If RS = 6, ST = 14, XY = 9, YZ = 21, and $\angle S \cong \angle Y$, is $\triangle RST$ similar to $\triangle XYZ$? Justify your answer.

102 In the diagram below of circle *O*, the area of the shaded sector *AOC* is 12π in² and the length of *OA* is 6 inches. Determine and state m $\angle AOC$.

103 The diagram below shows parallelogram *LMNO* with diagonal \overline{LN} , m $\angle M = 118^\circ$, and m $\angle LNO = 22^\circ$.

Explain why m $\angle NLO$ is 40 degrees.

104 Directed line segment *PT* has endpoints whose coordinates are P(-2, 1) and T(4, 7). Determine the coordinates of point *J* that divides the segment in the ratio 2 to 1. [The use of the set of axes below is optional.]

105 As graphed on the set of axes below, $\triangle A'B'C'$ is the image of $\triangle ABC$ after a sequence of transformations.

Is $\triangle A'B'C'$ congruent to $\triangle ABC$? Use the properties of rigid motion to explain your answer.

106 In the diagram below of circle O with diameter \overline{BC} and radius \overline{OA} , chord \overline{DC} is parallel to chord \overline{BA} .

If $m \angle BCD = 30^\circ$, determine and state $m \angle AOB$.

107 Using a compass and straightedge, construct an altitude of triangle *ABC* below. [Leave all construction marks.]

108 Two stacks of 23 quarters each are shown below. One stack forms a cylinder but the other stack does not form a cylinder.

Use Cavelieri's principle to explain why the volumes of these two stacks of quarters are equal.

109 Construct an equilateral triangle inscribed in circle *T* shown below. [Leave all construction marks.]

Geometry Common Core State Standards 4 Point Regents Exam Questions

110 In the diagram below of circle *O*, diameter \overline{AB} and radii \overline{OC} and \overline{OD} are drawn. The length of \overline{AB} is 12 and the measure of $\angle COD$ is 20 degrees.

If $AB \cong BD$, find the area of sector *BOD* in terms of π .

111 Prove the sum of the exterior angles of a triangle is 360°.

112 The aspect ratio (the ratio of screen width to height) of a rectangular flat-screen television is 16:9. The length of the diagonal of the screen is the television's screen size. Determine and state, to the *nearest inch*, the screen size (diagonal) of this flat-screen television with a screen height of 20.6 inches. 113 As shown in the diagram below, a ship is heading directly toward a lighthouse whose beacon is 125 feet above sea level. At the first sighting, point *A*, the angle of elevation from the ship to the light was 7°. A short time later, at point *D*, the angle of elevation was 16°.

To the *nearest foot*, determine and state how far the ship traveled from point A to point D.

114 In the diagram below, \overline{EF} intersects \overline{AB} and \overline{CD} at \overline{G} and \overline{H} , respectively, and \overline{GI} is drawn such that $\overline{GH} \cong \overline{IH}$.

If $m \angle EGB = 50^\circ$ and $m \angle DIG = 115^\circ$, explain why $\overline{AB} \parallel \overline{CD}$.

115 Given: $\triangle XYZ$, $XY \cong ZY$, and YW bisects $\angle XYZ$ Prove that $\angle YWZ$ is a right angle.

116 In the diagram below, $\overline{AC} \cong \overline{DF}$ and points A, C, D, and F are collinear on line ℓ .

Let $\Delta D' E' F$ be the image of ΔDEF after a translation along ℓ , such that point D is mapped onto point A. Determine and state the location of F'. Explain your answer. Let $\Delta D''E''F''$ be the image of $\Delta D' E' F$ after a reflection across line ℓ . Suppose that E'' is located at B. Is ΔDEF congruent to ΔABC ? Explain your answer.

117 In the diagram below, the line of sight from the park ranger station, *P*, to the lifeguard chair, *L*, on the beach of a lake is perpendicular to the path joining the campground, *C*, and the first aid station, *F*. The campground is 0.25 mile from the lifeguard chair. The straight paths from both the campground and first aid station to the park ranger station are perpendicular.

If the path from the park ranger station to the campground is 0.55 mile, determine and state, to the *nearest hundredth of a mile*, the distance between the park ranger station and the lifeguard chair. Gerald believes the distance from the first aid station to the campground is at least 1.5 miles. Is Gerald correct? Justify your answer.

118 Trees that are cut down and stripped of their branches for timber are approximately cylindrical. A timber company specializes in a certain type of tree that has a typical diameter of 50 cm and a typical height of about 10 meters. The density of the wood is 380 kilograms per cubic meter, and the wood can be sold by mass at a rate of \$4.75 per kilogram. Determine and state the minimum number of whole trees that must be sold to raise at least \$50,000.

119 Given the theorem, "The sum of the measures of the interior angles of a triangle is 180°," complete the proof for this theorem.

Given: $\triangle ABC$ Prove: $m \angle 1 + m \angle 2 + m \angle 3 = 180^{\circ}$ Fill in the missing reasons below.

Statements	Reasons
(1) $\triangle ABC$	(1) Given
(2) Through point <i>C</i> , draw \overrightarrow{DCE} parallel to \overrightarrow{AB} .	(2)
(3) $m \angle 1 = m \angle ACD$, $m \angle 3 = m \angle BCE$	(3)
(4) m $\angle ACD$ + m $\angle 2$ + m $\angle BCE$ = 180°	(4)
(5) m $\angle 1$ + m $\angle 2$ + m $\angle 3$ = 180°	(5)

120 Given: Quadrilateral *ABCD* is a parallelogram with diagonals \overline{AC} and \overline{BD} intersecting at *E*

Prove: $\triangle AED \cong \triangle CEB$ Describe a single rigid motion that maps $\triangle AED$ onto $\triangle CEB$.

121 As shown below, a canoe is approaching a lighthouse on the coastline of a lake. The front of the canoe is 1.5 feet above the water and an observer in the lighthouse is 112 feet above the water.

At 5:00, the observer in the lighthouse measured the angle of depression to the front of the canoe to be 6° . Five minutes later, the observer measured and saw the angle of depression to the front of the canoe had increased by 49°. Determine and state, to the *nearest foot per minute*, the average speed at which the canoe traveled toward the lighthouse. 122 Triangle XYZ is shown below. Using a compass and straightedge, on the line below, construct and label $\triangle ABC$, such that $\triangle ABC \cong \triangle XYZ$. [Leave all construction marks.] Based on your construction, state the theorem that justifies why $\triangle ABC$ is congruent to $\triangle XYZ$.

123 In rhombus *MATH*, the coordinates of the endpoints of the diagonal \overline{MT} are M(0,-1) and T(4,6). Write an equation of the line that contains diagonal \overline{AH} . [Use of the set of axes below is optional.] Using the given information, explain how you know that your line contains diagonal \overline{AH} .

124 In the diagram of $\triangle LAC$ and $\triangle DNC$ below, $\overline{LA} \cong \overline{DN}, \overline{CA} \cong \overline{CN}, \text{ and } \overline{DAC} \perp \overline{LCN}.$

a) Prove that $\triangle LAC \cong \triangle DNC$. b) Describe a sequence of rigid motions that will map $\triangle LAC$ onto $\triangle DNC$.

125 Triangle *ABC* has vertices with A(x,3), B(-3,-1), and C(-1,-4). Determine and state a value of x that would make triangle *ABC* a right triangle. Justify why $\triangle ABC$ is a right triangle. [The use of the set of axes below is optional.]

Geometry 6 Point Regents Exam Questions

126 In the coordinate plane, the vertices of $\triangle RST$ are R(6,-1), S(1,-4), and T(-5,6). Prove that $\triangle RST$ is a right triangle. State the coordinates of point *P* such that quadrilateral *RSTP* is a rectangle. Prove that your quadrilateral *RSTP* is a rectangle. [The use of the set of axes below is optional.]

127 Given: Parallelogram ANDR with \overline{AW} and \overline{DE} bisecting \overline{NWD} and \overline{REA} at points W and E, respectively

Prove that $\triangle ANW \cong \triangle DRE$. Prove that quadrilateral *AWDE* is a parallelogram.

128 In the diagram below, secant \overline{ACD} and tangent \overline{AB} are drawn from external point A to circle O.

Prove the theorem: If a secant and a tangent are drawn to a circle from an external point, the product of the lengths of the secant segment and its external segment equals the length of the tangent segment squared. $(AC \cdot AD = AB^2)$

129 In the diagram of parallelogram *ABCD* below, $\overline{BE} \perp \overline{CED}, \overline{DF} \perp \overline{BFC}, \overline{CE} \cong \overline{CF}.$

Prove *ABCD* is a rhombus.

130 Cathy wants to determine the height of the flagpole shown in the diagram below. She uses a survey instrument to measure the angle of elevation to the top of the flagpole, and determines it to be 34.9°. She walks 8 meters closer and determines the new measure of the angle of elevation to be 52.8°. At each measurement, the survey instrument is 1.7 meters above the ground.

Determine and state, to the *nearest tenth of a meter*, the height of the flagpole.

131 Given: D is the image of A after a reflection over \overleftrightarrow{CH} .

CH is the perpendicular bisector of BCE $\triangle ABC$ and $\triangle DEC$ are drawn Prove: $\triangle ABC \cong \triangle DEC$

132 Walter wants to make 100 candles in the shape of a cone for his new candle business. The mold shown below will be used to make the candles. Each mold will have a height of 8 inches and a diameter of 3 inches. To the *nearest cubic inch*, what will be the total volume of 100 candles?

Walter goes to a hobby store to buy the wax for his candles. The wax costs \$0.10 per ounce. If the weight of the wax is 0.52 ounce per cubic inch, how much will it cost Walter to buy the wax for 100 candles? If Walter spent a total of \$37.83 for the molds and charges \$1.95 for each candle, what is Walter's profit after selling 100 candles?

133 The water tower in the picture below is modeled by the two-dimensional figure beside it. The water tower is composed of a hemisphere, a cylinder, and a cone. Let *C* be the center of the hemisphere and let *D* be the center of the base of the cone.

If AC = 8.5 feet, BF = 25 feet, and m $\angle EFD = 47^{\circ}$, determine and state, to the *nearest cubic foot*, the volume of the water tower. The water tower was constructed to hold a maximum of 400,000 pounds of water. If water weighs 62.4 pounds per cubic foot, can the water tower be filled to 85% of its volume and *not* exceed the weight limit? Justify your answer.

134 The map below shows the three tallest mountain peaks in New York State: Mount Marcy, Algonquin Peak, and Mount Haystack. Mount Haystack, the shortest peak, is 4960 feet tall. Surveyors have determined the horizontal distance between Mount Haystack and Mount Marcy is 6336 feet and the horizontal distance between Mount Marcy and Algonquin Peak is 20,493 feet.

The angle of depression from the peak of Mount Marcy to the peak of Mount Haystack is 3.47 degrees. The angle of elevation from the peak of Algonquin Peak to the peak of Mount Marcy is 0.64 degrees. What are the heights, to the *nearest foot*, of Mount Marcy and Algonquin Peak? Justify your answer.

Geometry Common Core State Standards 2 Point Regents Exam Questions Answer Section

80 ANS:

Triangle X Y Z is the image of $\triangle XYZ$ after a rotation about point Z such that \overline{ZX} coincides with \overline{ZU} . Since rotations preserve angle measure, \overline{ZY} coincides with \overline{ZV} , and corresponding angles X and Y, after the rotation, remain congruent, so $\overline{XY} \parallel \overline{UV}$. Then, dilate $\triangle X Y Z$ by a scale factor of $\frac{ZU}{ZX}$ with its center at point Z. Since dilations preserve parallelism, \overline{XY} maps onto \overline{UV} . Therefore, $\triangle XYZ \sim \triangle UVZ$.

PTS: 2 REF: spr1406geo TOP: Triangle Similarity

PTS: 2 REF: 061531geo TOP: Triangle Similarity

82 ANS:

 $\triangle MNO$ is congruent to $\triangle PNO$ by SAS. Since $\triangle MNO \cong \triangle PNO$, then $\overline{MO} \cong \overline{PO}$ by CPCTC. So \overline{NO} must divide \overline{MP} in half, and MO = 8.

PTS: 2 REF: fall1405geo TOP: Isosceles Triangles

83 ANS: The transformation is a rotation, which is a rigid motion.

PTS: 2 REF: 081530geo TOP: Properties of Transformations 84 ANS: $\frac{40000}{\pi \left(\frac{51}{2}\right)^2} \approx 19.6 \frac{72000}{\pi \left(\frac{75}{2}\right)^2} \approx 16.3 \text{ Dish } A$ PTS: 2 REF: 011630geo TOP: Density 85 ANS: $\frac{137.8}{6^3} \approx 0.638 \text{ Ash}$

PTS: 2 REF: 081525geo TOP: Density

Reflections are rigid motions that preserve distance.

PTS: 2 REF: 061530geo TOP: Triangle Congruency

87 ANS:

Parallelogram *ABCD*, diagonals \overline{AC} and \overline{BD} intersect at E (given). $\overline{DC} \parallel \overline{AB}$; $\overline{DA} \parallel \overline{CB}$ (opposite sides of a parallelogram are parallel). $\angle ACD \cong \angle CAB$ (alternate interior angles formed by parallel lines and a transversal are congruent).

PTS: 2 REF: 081528geo TOP: Quadrilateral Proofs

88 ANS:

The acute angles in a right triangle are always complementary. The sine of any acute angle is equal to the cosine of its complement.

PTS: 2 REF: spr1407geo TOP: Cofunctions

89 ANS:

Circle *A* can be mapped onto circle *B* by first translating circle *A* along vector *AB* such that *A* maps onto *B*, and then dilating circle *A*, centered at *A*, by a scale factor of $\frac{5}{3}$. Since there exists a sequence of transformations that maps circle *A* onto circle *B*, circle *A* is similar to circle *B*.

PTS: 2 REF: spr1404geo TOP: Properties of Circles 90 ANS:

 $\ell: y = 3x - 4$

m: y = 3x - 8

PTS: 2 REF: 011631geo TOP: Directed Line Segments

91 ANS:

PTS: 2

REF: 061525geo

TOP: Constructions

94 ANS:

4x - .07 = 2x + .01 Sin*A* is the ratio of the opposite side and the hypotenuse while $\cos B$ is the ratio of the adjacent

2x = 0.8

x = 0.4

side and the hypotenuse. The side opposite angle A is the same side as the side adjacent to angle B. Therefore, $\sin A = \cos B$.

PTS: 2 REF: fall1407geo TOP: Cofunctions

95 ANS:

Translate $\triangle ABC$ along \overline{CF} such that point C maps onto point F, resulting in image $\triangle A'B'C$. Then reflect $\triangle A'B'C$ over \overline{DF} such that $\triangle A'B'C$ maps onto $\triangle DEF$. or

Reflect $\triangle ABC$ over the perpendicular bisector of \overline{EB} such that $\triangle ABC$ maps onto $\triangle DEF$.

PTS: 2 REF: fall1408geo TOP: Properties of Transformations

REF: 011625geo TOP: Properties of Transformations PTS: 2 97 ANS: $\frac{2}{5} \cdot (16 - 1) = 6 \ \frac{2}{5} \cdot (14 - 4) = 4 \ (1 + 6, 4 + 4) = (7, 8)$ PTS: 2 REF: 081531geo TOP: Directed Line Segments 98 ANS: No, the weight of the bricks is greater than 900 kg. $500 \times (5.1 \text{ cm} \times 10.2 \text{ cm} \times 20.3 \text{ cm}) = 528,003 \text{ cm}^3$. $528,003 \text{ cm}^3 \times \frac{1 \text{ m}^3}{100 \text{ cm}^3} = 0.528003 \text{ m}^3. \quad \frac{1920 \text{ kg}}{\text{m}^3} \times 0.528003 \text{ m}^3 \approx 1013 \text{ kg}.$ PTS: 2 REF: fall1406geo TOP: Density 99 ANS: $\frac{120}{230} = \frac{x}{315}$ *x* = 164 PTS: 2 REF: 081527geo TOP: Triangle Similarity 100 ANS: $\sin 70 = \frac{30}{L}$ $L \approx 32$ PTS: 2 REF: 011629geo TOP: Using Trigonometry to Find a Side 101 ANS: $\frac{6}{14} = \frac{9}{21}$ SAS 126 = 126PTS: 2 REF: 081529geo TOP: Triangle Similarity

$$A = 6^{2} \pi = 36\pi \quad 36\pi \cdot \frac{x}{360} = 12\pi$$
$$x = 360 \cdot \frac{12}{36}$$
$$x = 120$$

PTS: 2 REF: 061529geo TOP: Sectors

103 ANS:

Opposite angles in a parallelogram are congruent, so $m \angle O = 118^{\circ}$. The interior angles of a triangle equal 180° . 180 - (118 + 22) = 40.

- PTS: 2 REF: 061526geo TOP: Parallelograms
- 104 ANS:

PTS: 2 REF: 011627geo TOP: Directed Line Segments

105 ANS:

Yes. The sequence of transformations consists of a reflection and a translation, which are isometries which preserve distance and congruency.

PTS: 2 REF: 011628geo TOP: Properties of Transformations 106 ANS: $\begin{pmatrix} & & & \\ & & & & \\ & & & \\ & & & & \\$

PTS: 2 REF: 011626geo TOP: Chords, Secants and Tangents

PTS: 2 REF: fall1409geo TOP: Constructions

Each quarter in both stacks has the same base area. Therefore, each corresponding cross-section of the stacks will have the same area. Since the two stacks of quarters have the same height of 23 quarters, the two volumes must be the same.

PTS: 2 REF: spr1405geo TOP: Cavalieri's Principle

109 ANS:

PTS: 2 REF: 081526geo TOP: Constructions

Geometry Common Core State Standards Multiple Choice Regents Exam Questions Answer Section

1 ANS: 3 $\frac{60}{360} \cdot 6^2 \pi = 6\pi$ PTS: 2 REF: 081518geo TOP: Sectors 2 ANS: 2 x is $\frac{1}{2}$ the circumference. $\frac{C}{2} = \frac{10\pi}{2} \approx 16$ PTS: 2 REF: 061523geo **TOP:** Properties of Circles 3 ANS: 1 PTS: 2 REF: 081505geo TOP: Mapping a Polygon onto Itself 4 ANS: 1 $\frac{6}{8} = \frac{9}{12}$ PTS: 2 TOP: Triangle Similarity REF: 011613geo 5 ANS: 1 PTS: 2 REF: 081507geo **TOP:** Identifying Transformations 6 ANS: 2 $14 \times 16 \times 10 = 2240 \quad \frac{2240 - 1680}{2240} = 0.25$ PTS: 2 REF: 011604geo TOP: Volume 7 ANS: 3 $\frac{9}{5} = \frac{9.2}{x}$ 5.1 + 9.2 = 14.3 9x = 46 $x \approx 5.1$ PTS: 2 REF: 061511geo TOP: Side Splitter Theorem PTS: 2 8 ANS: 4 TOP: Rotations of Two-Dimensional Objects REF: 061501geo 9 ANS: 2 $\sqrt{3 \cdot 21} = \sqrt{63} = 3\sqrt{7}$ PTS: 2 REF: 011622geo TOP: Triangle Similarity 10 ANS: 3 $\frac{12}{4} = \frac{x}{5}$ 15 - 4 = 11 *x* = 15 PTS: 2 REF: 011624geo TOP: Triangle Similarity PTS: 2 11 ANS: 4 REF: 061502geo **TOP:** Properties of Transformations

12 ANS: 3 $\frac{x}{360} \cdot 3^2 \pi = 2\pi$ x = 80PTS: 2 REF: 011612geo **TOP:** Sectors 13 ANS: 4 The line y = 3x - 1 passes through the center of dilation, so the dilated line is not distinct. PTS: 2 REF: 081524geo **TOP:** Line Dilations 14 ANS: 3 $\theta = \frac{s}{r} = \frac{2\pi}{10} = \frac{\pi}{5}$ PTS: 2 REF: fall1404geo TOP: Arc Length KEY: angle 15 ANS: 3 $\frac{\frac{4}{3}\pi\left(\frac{9.5}{2}\right)^3}{\frac{4}{3}\pi\left(\frac{2.5}{2}\right)^3} \approx 55$ PTS: 2 TOP: Volume REF: 011614geo 16 ANS: 4 $\frac{1}{2} = \frac{x+3}{3x-1} \quad GR = 3(7) - 1 = 20$ 3x - 1 = 2x + 6*x* = 7 **PTS: 2** REF: 011620geo **TOP:** Triangle Similarity

17 ANS: 4

The measures of the angles of a triangle remain the same after all rotations because rotations are rigid motions which preserve angle measure.

PTS: 2 REF: fall1402geo TOP: Properties of Transformations 18 ANS: 3

	PTS:	2	REF:	011603geo	TOP:	Parallelograms
19	ANS:	1	PTS:	2	REF:	011601geo
	TOP:	Cross-Sections of Three-Dimensional Objects				

20 ANS: 2 $SA = 6 \cdot 12^2 = 864$ $\frac{864}{450} = 1.92$ PTS: 2 REF: 061519geo TOP: Surface and Lateral Area 21 ANS: 1 The line 3y = -2x + 8 does not pass through the center of dilation, so the dilated line will be distinct from 3y = -2x + 8. Since a dilation preserves parallelism, the line 3y = -2x + 8 and its image 2x + 3y = 5 are parallel, with slopes of $-\frac{2}{3}$. PTS: 2 REF: 061522geo **TOP:** Line Dilations 22 ANS: 2 REF: 081501geo PTS: 2 **TOP:** Parallelograms 23 ANS: 1 $\frac{1000}{20\pi} \approx 15.9$ PTS: 2 TOP: Circumference REF: 011623geo 24 ANS: 1 $\frac{360^{\circ}}{45^{\circ}} = 8$ PTS: 2 REF: 061510geo TOP: Mapping a Polygon onto Itself 25 ANS: 4 PTS: 2 REF: 011611geo **TOP:** Properties of Transformations 26 ANS: 4 $\frac{7}{12} \cdot 30 = 17.5$ PTS: 2 TOP: Triangle Similarity REF: 061521geo 27 ANS: 1 PTS: 2 REF: 061518geo TOP: Line Dilations 28 ANS: 2 $\sqrt{(-1-2)^2 + (4-3)^2} = \sqrt{10}$ PTS: 2 TOP: Polygons in the Coordinate Plane REF: 011615geo 29 ANS: 3 PTS: 2 REF: 011621geo TOP: Chords, Secants and Tangents 30 ANS: 2 PTS: 2 REF: 061516geo **TOP:** Polygon Dilations 31 ANS: 2 $\frac{4}{3}\pi \cdot 4^3 + 0.075 \approx 20$ TOP: Density PTS: 2 REF: 011619geo 32 ANS: 1 $3^2 = 9$ PTS: 2 REF: 081520geo **TOP:** Polygon Dilations

33 ANS: 3 $V = 12 \cdot 8.5 \cdot 4 = 408$ $W = 408 \cdot 0.25 = 102$ PTS: 2 REF: 061507geo TOP: Density 34 ANS: 4 $\frac{2}{6} = \frac{5}{15}$ PTS: 2 REF: 081517geo TOP: Triangle Similarity 35 ANS: 3 124 PTS: 2 REF: 081508geo TOP: Parallelograms 36 ANS: 1 PTS: 2 REF: 061508geo TOP: Chords, Secants and Tangents 37 ANS: 1 The man's height, 69 inches, is opposite to the angle of elevation, and the shadow length, 102 inches, is adjacent to the angle of elevation. Therefore, tangent must be used to find the angle of elevation. $\tan x = \frac{69}{102}$ $x \approx 34.1$ PTS: 2 TOP: Using Trigonometry to Find an Angle REF: fall1401geo 38 ANS: 4 PTS: 2 REF: 061504geo TOP: Identifying Transformations 39 ANS: 4 $m = -\frac{1}{2}$ -4 = 2(6) + b $m_{\perp} = 2 \qquad -4 = 12 + b$ -16 = bPTS: 2 REF: 011602geo TOP: Parallel and Perpendicular Lines 40 ANS: 1 Alternate interior angles PTS: 2 REF: 061517geo TOP: Parallel Lines and Transversals 41 ANS: 2 PTS: 2 **TOP:** Line Dilations REF: 011610geo 42 ANS: 1 $m = -\frac{2}{3} \quad 1 = \left(-\frac{2}{3}\right)6 + b$ 1 = -4 + b5 = b

PTS: 2 REF: 081510geo TOP: Parallel and Perpendicular Lines

43 ANS: 4 PTS: 2 REF: 061512geo **TOP:** Cofunctions 44 ANS: 4 $x^{2} + 6x + 9 + y^{2} - 4y + 4 = 23 + 9 + 4$ $(x+3)^{2} + (v-2)^{2} = 36$ **PTS: 2** REF: 011617geo TOP: Equations of Circles 45 ANS: 4 PTS: 2 REF: 081514geo TOP: Triangle Similarity 46 ANS: 4 PTS: 2 REF: 011609geo **TOP:** Cofunctions 47 ANS: 1 $\frac{4}{6} = \frac{3}{4.5} = \frac{2}{3}$ **PTS: 2** REF: 081523geo **TOP:** Polygon Dilations 48 ANS: 4 $2592276 = \frac{1}{3} \cdot s^2 \cdot 146.5$ $230 \approx s$ PTS: 2 REF: 081521geo TOP: Volume 49 ANS: 2 The given line h, 2x + y = 1, does not pass through the center of dilation, the origin, because the y-intercept is at

(0,1). The slope of the dilated line, *m*, will remain the same as the slope of line *h*, 2. All points on line *h*, such as (0,1), the *y*-intercept, are dilated by a scale factor of 4; therefore, the *y*-intercept of the dilated line is (0,4) because the center of dilation is the origin, resulting in the dilated line represented by the equation y = -2x + 4.

PTS: 2 REF: spr1403geo **TOP:** Line Dilations 50 ANS: 2 $s^{2} + s^{2} = 7^{2}$ $2s^2 = 49$ $s^2 = 24.5$ $s \approx 4.9$ PTS: 2 TOP: Inscribed Quadrilaterals REF: 081511geo 51 ANS: 3 $5 \cdot \frac{10}{4} = \frac{50}{4} = 12.5$ PTS: 2 REF: 081512geo TOP: Properties of Circles 52 ANS: 4 PTS: 2 REF: 061513geo **TOP:** Parallelograms 53 ANS: 1 $m = \frac{-A}{B} = \frac{-2}{-1} = 2$ $m_{\perp} = -\frac{1}{2}$

PTS: 2 REF: 061509geo TOP: Parallel and Perpendicular Lines 54 ANS: 2

The line y = 2x - 4 does not pass through the center of dilation, so the dilated line will be distinct from y = 2x - 4. Since a dilation preserves parallelism, the line y = 2x - 4 and its image will be parallel, with slopes of 2. To

obtain the y-intercept of the dilated line, the scale factor of the dilation, $\frac{3}{2}$, can be applied to the y-intercept, (0,4).

Therefore, $\left(0 \cdot \frac{3}{2}, -4 \cdot \frac{3}{2}\right) \rightarrow (0, -6)$. So the equation of the dilated line is y = 2x - 6.

REF: fall1403geo TOP: Line Dilations

55 ANS: 1 $m_{\overline{RT}} = \frac{5-3}{4-2} = \frac{8}{6} = \frac{4}{3}$ $m_{\overline{ST}} = \frac{5-2}{4-8} = \frac{3}{-4} = -\frac{3}{4}$ Slopes are opposite reciprocals, so lines form a right angle. PTS: 2 REF: 011618geo TOP: Triangles in the Coordinate Plane

56 ANS: 1 PTS: 2 REF: 011608geo TOP: Identifying Transformations

57 ANS: 2

PTS: 2

Segments drawn from the center of the regular pentagon bisect each angle of the pentagon, and create five isosceles triangles as shown in the diagram below. Since each exterior angle equals the angles formed by the segments drawn from the center of the regular pentagon, the minimum degrees necessary to carry a regular polygon onto itself are equal to the measure of an exterior angle of the regular polygon.

PTS: 2 REF: spr1402geo TOP: Mapping a Polygon onto Itself TOP: Inscribed Quadrilaterals 58 ANS: 3 PTS: 2 REF: 081515geo 59 ANS: 2 $V = \frac{1}{3} \cdot 6^2 \cdot 12 = 144$ PTS: 2 REF: 011607geo TOP: Volume 60 ANS: 3 $\cos A = \frac{9}{14}$ $A \approx 50^{\circ}$ PTS: 2 REF: 011616geo TOP: Using Trigonometry to Find an Angle

61 ANS: 2 PTS: 2 REF: 061506geo TOP: Cross-Sections of Three-Dimensional Objects 62 ANS: 4 $-5 + \frac{3}{5}(5 - -5) - 4 + \frac{3}{5}(1 - -4)$ $-5 + \frac{3}{5}(10) \qquad -4 + \frac{3}{5}(5)$ -5+6 -4+3 1 -1 PTS: 2 REF: spr1401geo TOP: Directed Line Segments 63 ANS: 3 PTS: 2 REF: 011605geo **TOP:** Properties of Transformations 64 ANS: 1 $V = \frac{\frac{4}{3}\pi \left(\frac{10}{2}\right)^3}{2} \approx 261.8 \cdot 62.4 = 16,336$ PTS: 2 REF: 081516geo TOP: Density 65 ANS: 3 PTS: 2 REF: 081502geo **TOP:** Properties of Transformations PTS: 2 66 ANS: 4 REF: 081506geo TOP: Triangle Similarity 67 ANS: 1 PTS: 2 REF: 011606geo **TOP:** Line Bisectors 68 ANS: 3 $\tan 34 = \frac{T}{20}$ $T \approx 13.5$ PTS: 2 REF: 061505geo TOP: Using Trigonometry to Find a Side 69 ANS: 4 $\frac{-2-1}{-1--3} = \frac{-3}{2} \quad \frac{3-2}{0-5} = \frac{1}{-5} \quad \frac{3-1}{0--3} = \frac{2}{3} \quad \frac{2--2}{5--1} = \frac{4}{6} = \frac{2}{3}$ PTS: 2 REF: 081522geo TOP: Quadrilaterals in the Coordinate Plane 70 ANS: 1 PTS: 2 REF: 081504geo **TOP:** Cofunctions PTS: 2 71 ANS: 2 REF: 081519geo TOP: Triangle Similarity 72 ANS: 3 $r = \sqrt{(7-3)^2 + (1-2)^2} = \sqrt{16+9} = 5$ PTS: 2 REF: 061503geo **TOP:** Properties of Circles 73 ANS: 1 PTS: 2 REF: 061520geo TOP: Chords, Secants and Tangents 74 ANS: 3 $x^{2} + 4x + 4 + y^{2} - 6y + 9 = 12 + 4 + 9$ $(x+2)^2 + (y-3)^2 = 25$ PTS: 2 REF: 081509geo TOP: Equations of Circles 75 ANS: 4 PTS: 2 REF: 081503geo TOP: Rotations of Two-Dimensional Objects 76 ANS: 2 $x^{2} + y^{2} + 6y + 9 = 7 + 9$ $x^2 + (y+3)^2 = 16$ PTS: 2 REF: 061514geo TOP: Equations of Circles 77 ANS: 2 PTS: 2 REF: 081513geo TOP: Identifying Transformations 78 ANS: 3 $\frac{AB}{BC} = \frac{DE}{EF}$ $\frac{9}{15} = \frac{6}{10}$ 90 = 90PTS: 2 REF: 061515geo TOP: Triangle Similarity 79 ANS: 3 PTS: 2 TOP: Triangle Congruency REF: 061524geo

Geometry Common Core State Standards 4 Point Regents Exam Questions Answer Section

110 ANS:

$$\frac{180-20}{2} \frac{1}{360} \times \pi(6)^2 = \frac{80}{360} \times 36\pi = 8\pi$$

PTS: 4 REF: spr1410geo TOP: Sectors

111 ANS:

As the sum of the measures of the angles of a triangle is 180° , $m\angle ABC + m\angle BCA + m\angle CAB = 180^\circ$. Each interior angle of the triangle and its exterior angle form a linear pair. Linear pairs are supplementary, so $m\angle ABC + m\angle FBC = 180^\circ$, $m\angle BCA + m\angle DCA = 180^\circ$, and $m\angle CAB + m\angle EAB = 180^\circ$. By addition, the sum of these linear pairs is 540°. When the angle measures of the triangle are subtracted from this sum, the result is 360°, the sum of the exterior angles of the triangle.

PTS: 4 REF: fall1410geo TOP: Interior and Exterior Angles of Triangles

112 ANS:

$$\frac{16}{9} = \frac{x}{20.6} \quad D = \sqrt{36.6^2 + 20.6^2} \approx 42$$
$$x \approx 36.6$$

PTS: 4 REF: 011632geo TOP: Pythagorean Theorem

113 ANS:

$$\tan 7 = \frac{125}{x}$$
 $\tan 16 = \frac{125}{y}$ $1018 - 436 \approx 582$
 $x \approx 1018$ $y \approx 436$

PTS: 4 REF: 081532geo TOP: Using Trigonometry to Find a Side

114 ANS:

Since linear angles are supplementary, $m\angle GIH = 65^{\circ}$. Since $GH \cong IH$, $m\angle GHI = 50^{\circ}$ (180 – (65 + 65)). Since $\angle EGB \cong \angle GHI$, the corresponding angles formed by the transversal and lines are congruent and $\overline{AB} \parallel \overline{CD}$.

PTS: 4 REF: 061532geo TOP: Parallel Lines and Transversals

 $\Delta XYZ, \overline{XY} \cong \overline{ZY}$, and \overline{YW} bisects $\angle XYZ$ (Given). ΔXYZ is isosceles

(Definition of isosceles triangle). \overline{YW} is an altitude of $\triangle XYZ$ (The angle bisector of the vertex of an isosceles triangle is also the altitude of that triangle). $\overline{YW} \perp \overline{XZ}$ (Definition of altitude). $\angle YWZ$ is a right angle (Definition of perpendicular lines).

PTS: 4 REF: spr1411geo TOP: Triangle Proofs

116 ANS:

Translations preserve distance. If point *D* is mapped onto point *A*, point *F* would map onto point *C*. $\triangle DEF \cong \triangle ABC$ as $\overline{AC} \cong \overline{DF}$ and points are collinear on line ℓ and a reflection preserves distance.

PTS: 4 REF: 081534geo TOP: Properties of Transformations 117 ANS: $x = \sqrt{.55^2 - .25^2} \cong 0.49$ No, $.49^2 = .25y$.9604 + .25 < 1.5 .9604 = y

PTS: 4 REF: 061534geo TOP: Right Triangle Similarity

118 ANS:

$$r = 25 \operatorname{cm}\left(\frac{1 \operatorname{m}}{100 \operatorname{cm}}\right) = 0.25 \operatorname{m} V = \pi (0.25 \operatorname{m})^2 (10 \operatorname{m}) = 0.625 \pi \operatorname{m}^3 W = 0.625 \pi \operatorname{m}^3 \left(\frac{380 \operatorname{K}}{1 \operatorname{m}^3}\right) \approx 746.1 \operatorname{K}$$

$$n = \frac{\$50,000}{\left(\frac{\$4.75}{\operatorname{K}}\right)(746.1 \operatorname{K})} = 14.1 \quad 15 \text{ trees}$$

PTS: 4 REF: spr1412geo TOP: Density

119 ANS:

(2) Euclid's Parallel Postulate; (3) Alternate interior angles formed by parallel lines and a transversal are congruent; (4) Angles forming a line are supplementary; (5) Substitution

PTS: 4 REF: 011633geo TOP: Triangle Proofs

Quadrilateral *ABCD* is a parallelogram with diagonals \overline{AC} and \overline{BD} intersecting at E (Given). $\overline{AD} \cong \overline{BC}$ (Opposite sides of a parallelogram are congruent. $\angle AED \cong \angle CEB$ (Vertical angles are congruent). $\overline{BC} \parallel \overline{DA}$ (Definition of parallelogram). $\angle DBC \cong \angle BDA$ (Alternate interior angles are congruent). $\triangle AED \cong \triangle CEB$ (AAS). 180° rotation of $\triangle AED$ around point E.

PTS: 4 REF: 061533geo TOP: Quadrilateral Proofs

121 ANS:

x represents the distance between the lighthouse and the canoe at 5:00; *y* represents the distance between the lighthouse and the canoe at 5:05. $\tan 6 = \frac{112 - 1.5}{x} \tan(49 + 6) = \frac{112 - 1.5}{y} \frac{1051.3 - 77.4}{5} \approx 195$

 $x \approx 1051.3$ $y \approx 77.4$

PTS: 4 REF: spr1409geo TOP: Using Trigonometry to Find a Side 122 ANS:

PTS: 4 REF: 011634geo TOP: Constructions

123 ANS:

$$M\left(\frac{4+0}{2},\frac{6-1}{2}\right) = M\left(2,\frac{5}{2}\right) \quad m = \frac{6--1}{4-0} = \frac{7}{4} \quad m_{\perp} = -\frac{4}{7} \quad y - 2.5 = -\frac{4}{7}(x-2) \text{ The diagonals, } \overline{MT} \text{ and } \overline{AH}, \text{ of } MT = -\frac{4}{7}(x-2) \text{ The diagonals, } \overline{MT} = -\frac{4}{7}(x-2) \text{ The diag$$

rhombus MATH are perpendicular bisectors of each other.

PTS: 4 REF: fall1411geo TOP: Quadrilaterals in the Coordinate Plane

124 ANS:

 $\overline{LA} \cong \overline{DN}$, $\overline{CA} \cong \overline{CN}$, and $\overline{DAC} \perp \overline{LCN}$ (Given). $\angle LCA$ and $\angle DCN$ are right angles (Definition of perpendicular lines). $\triangle LAC$ and $\triangle DNC$ are right triangles (Definition of a right triangle). $\triangle LAC \cong \triangle DNC$ (HL). $\triangle LAC$ will map onto $\triangle DNC$ after rotating $\triangle LAC$ counterclockwise 90° about point *C* such that point *L* maps onto point *D*.

PTS: 4 REF: spr1408geo TOP: Triangle Proofs

The slopes of perpendicular line are opposite reciprocals. Since the lines are perpendicular, they form right angles

and a right triangle.
$$m_{BC} = -\frac{3}{2} - 1 = \frac{2}{3}(-3) + b$$
 or $-4 = \frac{2}{3}(-1) + b$
 $m_{\perp} = \frac{2}{3} -1 = -2 + b$
 $1 = b$
 $3 = \frac{2}{3}x + 1$
 $-\frac{10}{3} = b$
 $2 = \frac{2}{3}x$
 $3 = \frac{2}{3}x - \frac{10}{3}$
 $3 = x$
 $9 = 2x - 10$
 $19 = 2x$
 $9.5 = x$

PTS: 4

REF: 081533geo

TOP: Triangles in the Coordinate Plane

Geometry 6 Point Regents Exam Questions Answer Section

126 ANS:

 $m_{\overline{TS}} = \frac{-10}{6} = -\frac{5}{3}$ $m_{\overline{SR}} = \frac{3}{5}$ Since the slopes of \overline{TS} and \overline{SR} are opposite reciprocals, they are perpendicular and

form a right angle. $\triangle RST$ is a right triangle because $\angle S$ is a right angle. P(0,9) $m_{\overline{RP}} = \frac{-10}{6} = -\frac{5}{3}$ $m_{\overline{PT}} = \frac{3}{5}$

Since the slopes of all four adjacent sides (\overline{TS} and \overline{SR} , \overline{SR} and \overline{RP} , \overline{PT} and \overline{TS} , \overline{RP} and \overline{PT}) are opposite reciprocals, they are perpendicular and form right angles. Quadrilateral *RSTP* is a rectangle because it has four right angles.

PTS: 6 REF: 061536geo TOP: Quadrilaterals in the Coordinate Plane 127 ANS:

Parallelogram ANDR with \overline{AW} and \overline{DE} bisecting \overline{NWD} and \overline{REA} at points W and E (Given). $\overline{AN} \cong \overline{RD}$, $\overline{AR} \cong \overline{DN}$ (Opposite sides of a parallelogram are congruent). $AE = \frac{1}{2}AR$, $WD = \frac{1}{2}DN$, so $\overline{AE} \cong \overline{WD}$ (Definition of bisect and division property of equality). $\overline{AR} \parallel \overline{DN}$ (Opposite sides of a parallelogram are parallel). AWDE is a parallelogram (Definition of parallelogram). $RE = \frac{1}{2}AR$, $NW = \frac{1}{2}DN$, so $\overline{RE} \cong \overline{NW}$ (Definition of bisect and division property of equality). $\overline{ED} \cong \overline{AW}$ (Opposite sides of a parallelogram are congruent). $\Delta ANW \cong \Delta DRE$ (SSS).

PTS: 6 REF: 011635geo TOP: Quadrilateral Proofs 128 ANS: Circle O, secant \overline{ACD} , tangent \overline{AB} (Given). Chords \overline{BC} and \overline{BD} are drawn (Auxiliary lines). $\angle A \cong \angle A$, $\overline{BC} \cong \overline{BC}$ (Reflexive property). m $\angle BDC = \frac{1}{2} \ mBC$ (The measure of an inscribed angle is half the measure of the intercepted arc). m $\angle CBA = \frac{1}{2} \ mBC$ (The measure of an angle formed by a tangent and a chord is half the measure of the intercepted arc). $\angle BDC \cong \angle CBA$ (Angles equal to half of the same arc are congruent). $\triangle ABC \sim \triangle ADB$ (AA). $\frac{AB}{AC} = \frac{AD}{AB}$ (Corresponding sides of similar triangles are proportional). $AC \cdot AD = AB^2$ (In a proportion, the product of the means equals the product of the extremes).

PTS: 6 REF: spr1413geo TOP: Similarity Proofs

Parallelogram ABCD, $\overline{BE} \perp \overline{CED}$, $\overline{DF} \perp \overline{BFC}$, $\overline{CE} \cong \overline{CF}$ (given). $\angle BEC \cong \angle DFC$ (perpendicular lines form right angles, which are congruent). $\angle FCD \cong \angle BCE$ (reflexive property). $\triangle BEC \cong \triangle DFC$ (ASA). $\overline{BC} \cong \overline{CD}$ (CPCTC). ABCD is a rhombus (a parallelogram with consecutive congruent sides is a rhombus).

PTS: 6 REF: 081535geo TOP: Quadrilateral Proofs 130 ANS: $\tan 52.8 = \frac{h}{x}$ $x \tan 52.8 = x \tan 34.9 + 8 \tan 34.9 \tan 52.8 \approx \frac{h}{9}$ 11.86 + 1.7 \approx 13.6 $h = x \tan 52.8$ $x \tan 52.8 - x \tan 34.9 = 8 \tan 34.9$ $x \approx 11.86$ $\tan 34.9 = \frac{h}{x+8}$ $x(\tan 52.8 - \tan 34.9) = 8 \tan 34.9$ $h = (x+8) \tan 34.9$ $x = \frac{8 \tan 34.9}{\tan 52.8 - \tan 34.9}$ $x \approx 9$

PTS: 6 REF: 011636geo TOP: Using Trigonometry to Find a Side 131 ANS:

It is given that point *D* is the image of point *A* after a reflection in line *CH*. It is given that *CH* is the perpendicular bisector of \overline{BCE} at point *C*. Since a bisector divides a segment into two congruent segments at its midpoint, $\overline{BC} \cong \overline{EC}$. Point *E* is the image of point *B* after a reflection over the line *CH*, since points *B* and *E* are equidistant from point *C* and it is given that \overrightarrow{CH} is perpendicular to \overline{BE} . Point *C* is on \overrightarrow{CH} , and therefore, point *C* maps to itself after the reflection over \overrightarrow{CH} . Since all three vertices of triangle *ABC* map to all three vertices of triangle *DEC* under the same line reflection, then $\triangle ABC \cong \triangle DEC$ because a line reflection is a rigid motion and triangles are congruent when one can be mapped onto the other using a sequence of rigid motions.

PTS: 6 REF: spr1414geo TOP: Properties of Transformations
132 ANS:

$$V = \frac{1}{3} \pi \left(\frac{3}{2}\right)^2 \cdot 8 \approx 18.85 \cdot 100 = 1885 \ 1885 \cdot 0.52 \cdot 0.10 = 98.02 \ 1.95(100) - (37.83 + 98.02) = 59.15$$

PTS: 6 REF: 081536geo TOP: Density

133 ANS:

$$\tan 47 = \frac{x}{8.5} \quad \text{Cone: } V = \frac{1}{3} \pi (8.5)^2 (9.115) \approx 689.6 \text{ Cylinder: } V = \pi (8.5)^2 (25) \approx 5674.5 \text{ Hemisphere:}$$
$$x \approx 9.115$$
$$V = \frac{1}{2} \left(\frac{4}{3} \pi (8.5)^3\right) \approx 1286.3 \quad 689.6 + 5674.5 + 1286.3 \approx 7650 \text{ No, because } 7650 \cdot 62.4 = 477,360$$
$$477,360 \cdot .85 = 405,756, \text{ which is greater than } 400,000.$$

PTS: 6 REF: 061535geo TOP: Density

PTS: 6 REF: fall1413geo TOP: Using Trigonometry to Find a Side