JMAP
 REGENTS BY COMMON CORE STATE STANDARD: TOPIC

NY Geometry Regents Exam Questions from Spring 2014 to August 2016 Sorted by CCSS:Topic www.jmap.org

TABLE OF CONTENTS

TOPIC	P.I.: SUBTOPIC QUESTION NUMBER
TOOLS OF GEOMETRY	G.CO.D.12-13: Constructions ..1-8
LINES AND ANGLES	G.GPE.B.6: Directed Line Segments...-. 14 G.GPE.B.5: Parallel and Perpendicular Lines15-19 G.CO.C.9: Lines and Angles ..20-25
TRIANGLES	
POLYGONS	G.CO.C.11: Parallelograms ..45-44 G.GPE.4, 7: Polygons in the Coordinate Plane
CONICS	
MEASURING IN THE PLANE AND SPACE	
TRANSFORMATIONS	
TRIGONOMETRY	
LOGIC	

Geometry Regents Exam Questions by Common Core State Standard: Topic

TOOLS OF GEOMETRY

G.CO.D.12-13: CONSTRUCTIONS

1 Triangle $X Y Z$ is shown below. Using a compass and straightedge, on the line below, construct and label $\triangle A B C$, such that $\triangle A B C \cong \triangle X Y Z$. [Leave all construction marks.] Based on your construction, state the theorem that justifies why $\triangle A B C$ is congruent to $\triangle X Y Z$.

2 Using a compass and straightedge, construct an altitude of triangle $A B C$ below. [Leave all construction marks.]

3 In the diagram below, radius $\overline{O A}$ is drawn in circle O. Using a compass and a straightedge, construct a line tangent to circle O at point A. [Leave all construction marks.]

4 In the diagram of $\triangle A B C$ shown below, use a compass and straightedge to construct the median to $\overline{A B}$. [Leave all construction marks.]

5 Using a compass and straightedge, construct and label $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a dilation with a scale factor of 2 and centered at B. [Leave all construction marks.] Describe the relationship between the lengths of $\overline{A C}$ and $\overline{A^{\prime} C^{\prime}}$.

6 Using a straightedge and compass, construct a square inscribed in circle O below. [Leave all construction marks.]

Determine the measure of the arc intercepted by two adjacent sides of the constructed square. Explain your reasoning.

Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org

7 Use a compass and straightedge to construct an inscribed square in circle T shown below. [Leave all construction marks.]

8 Construct an equilateral triangle inscribed in circle T shown below. [Leave all construction marks.]

LINES AND ANGLES
 G.GPE.B.6: DIRECTED LINE SEGMENTS

9 What are the coordinates of the point on the directed line segment from $K(-5,-4)$ to $L(5,1)$ that partitions the segment into a ratio of 3 to 2 ?
1 (-3,-3)
$2(-1,-2)$
$3 \quad\left(0,-\frac{3}{2}\right)$
4 (1,-1)

10 The coordinates of the endpoints of $\overline{A B}$ are $A(-6,-5)$ and $B(4,0)$. Point P is on $\overline{A B}$. Determine and state the coordinates of point P, such that $A P: P B$ is $2: 3$. [The use of the set of axes below is optional.]

Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org

11 The endpoints of $\overline{D E F}$ are $D(1,4)$ and $F(16,14)$. Determine and state the coordinates of point E, if $D E: E F=2: 3$.

12 Directed line segment $P T$ has endpoints whose coordinates are $P(-2,1)$ and $T(4,7)$. Determine the coordinates of point J that divides the segment in the ratio 2 to 1 . [The use of the set of axes below is optional.]

13 Point P is on segment $A B$ such that $A P: P B$ is $4: 5$. If A has coordinates $(4,2)$, and B has coordinates $(22,2)$, determine and state the coordinates of P.

14 Point P is on the directed line segment from point $X(-6,-2)$ to point $Y(6,7)$ and divides the segment in the ratio 1:5. What are the coordinates of point P ?
$1 \quad\left(4,5 \frac{1}{2}\right)$
$2\left(-\frac{1}{2},-4\right)$
$3\left(-4 \frac{1}{2}, 0\right)$
$4\left(-4,-\frac{1}{2}\right)$

G.GPE.B.5: PARALLEL AND PERPENDICULAR LINES

15 Which equation represents a line that is perpendicular to the line represented by $2 x-y=7$?
$1 \quad y=-\frac{1}{2} x+6$
$2 \quad y=\frac{1}{2} x+6$
$3 y=-2 x+6$
$4 \quad y=2 x+6$

Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org

16 Given $\overline{M N}$ shown below, with $M(-6,1)$ and $N(3,-5)$, what is an equation of the line that passes through point $P(6,1)$ and is parallel to $\overline{M N}$?

$1 \quad y=-\frac{2}{3} x+5$
$2 y=-\frac{2}{3} x-3$
$3 \quad y=\frac{3}{2} x+7$
$4 \quad y=\frac{3}{2} x-8$

17 An equation of a line perpendicular to the line represented by the equation $y=-\frac{1}{2} x-5$ and passing through $(6,-4)$ is
$1 \quad y=-\frac{1}{2} x+4$
$2 y=-\frac{1}{2} x-1$
$3 y=2 x+14$
$4 y=2 x-16$

18 Line segment $N Y$ has endpoints $N(-11,5)$ and $Y(5,-7)$. What is the equation of the perpendicular bisector of $\overline{N Y}$?
$1 \quad y+1=\frac{4}{3}(x+3)$
$2 y+1=-\frac{3}{4}(x+3)$
$3 y-6=\frac{4}{3}(x-8)$
$4 \quad y-6=-\frac{3}{4}(x-8)$

19 In the diagram below, $\triangle A B C$ has vertices $A(4,5)$, $B(2,1)$, and $C(7,3)$.

What is the slope of the altitude drawn from A to $\overline{B C}$?
$1 \frac{2}{5}$
$2 \quad \frac{3}{2}$
$3-\frac{1}{2}$
$4-\frac{5}{2}$

Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org

G.CO.C.9: LINES \& ANGLES

20 Steve drew line segments $A B C D, E F G, B F$, and $C F$ as shown in the diagram below. Scalene $\triangle B F C$ is formed.

Which statement will allow Steve to prove $\overline{A B C D} \| \overline{E F G}$?
$1 \angle C F G \cong \angle F C B$
$2 \angle A B F \cong \angle B F C$
$3 \angle E F B \cong \angle C F B$
$4 \angle C B F \cong \angle G F C$

21 In the diagram below, $\overline{E F}$ intersects $\overline{A B}$ and $\overline{C D}$ at G and H, respectively, and $\overline{G I}$ is drawn such that $\overline{G H} \cong \overline{I H}$.

If $\mathrm{m} \angle E G B=50^{\circ}$ and $\mathrm{m} \angle D I G=115^{\circ}$, explain why
$A B$$\overline{C D}$.

22 In the diagram below, $\overleftrightarrow{F E}$ bisects $\overline{A C}$ at B, and $\overleftrightarrow{G E}$ bisects $\overline{B D}$ at C.

Which statement is always true?
$1 \overline{A B} \cong \overline{D C}$
$2 \overline{F B} \cong \overline{E B}$
$3 \overleftrightarrow{B D}$ bisects $\overline{G E}$ at C.
$4 \quad \overleftrightarrow{A C}$ bisects $\overline{F E}$ at B.

Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org

23 In the diagram below, $\overline{D B}$ and $\overline{A F}$ intersect at point C, and $\overline{A D}$ and $\overline{F B E}$ are drawn.

If $A C=6, D C=4, F C=15, \mathrm{~m} \angle D=65^{\circ}$, and $\mathrm{m} \angle C B E=115^{\circ}$, what is the length of $\overline{C B}$?
110
212
$3 \quad 17$
422.5

24 In the diagram below, lines ℓ, m, n, and p intersect line r.

Which statement is true?
$1 \quad \ell \| n$
$2 \quad \ell \| p$
$3 \quad m \| p$
$4 \quad m \| n$

25 Segment $C D$ is the perpendicular bisector of $\overline{A B}$ at E. Which pair of segments does not have to be congruent?
$1 \overline{A D}, \overline{B D}$
$2 \overline{A C}, \overline{B C}$
$3 \overline{A E}, \overline{B E}$
$4 \overline{D E}, \overline{C E}$

Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org

TRIANGLES
 G.CO.C.10: INTERIOR AND EXTERIOR ANGLES OF TRIAGLES

26 In the diagram below, $\mathrm{m} \angle B D C=100^{\circ}$, $\mathrm{m} \angle A=50^{\circ}$, and $\mathrm{m} \angle D B C=30^{\circ}$.

Which statement is true?
$1 \triangle A B D$ is obtuse.
$2 \triangle A B C$ is isosceles.
$3 \mathrm{~m} \angle A B D=80^{\circ}$
$4 \triangle A B D$ is scalene.

G.SRT.C.8: PYTHAGOREAN THEOREM

27 Linda is designing a circular piece of stained glass with a diameter of 7 inches. She is going to sketch a square inside the circular region. To the nearest tenth of an inch, the largest possible length of a side of the square is
13.5
24.9
35.0
46.9

28 The aspect ratio (the ratio of screen width to height) of a rectangular flat-screen television is 16:9. The length of the diagonal of the screen is the television's screen size. Determine and state, to the nearest inch, the screen size (diagonal) of this flat-screen television with a screen height of 20.6 inches.

29 An equilateral triangle has sides of length 20. To the nearest tenth, what is the height of the equilateral triangle?
$1 \quad 10.0$
211.5
317.3
$4 \quad 23.1$

G.SRT.B.5: ISOSCELES TRIANGLE THEOREM

30 In isosceles $\triangle M N P$, line segment $N O$ bisects vertex $\angle M N P$, as shown below. If $M P=16$, find the length of $\overline{M O}$ and explain your answer.

Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org

G.SRT.B.5: SIDE SPLITTER THEOREM

31 In the diagram of $\triangle A D C$ below, $\overline{E B} \| \overline{D C}, A E=9$, $E D=5$, and $A B=9.2$.

What is the length of $\overline{A C}$, to the nearest tenth?
15.1
25.2
$3 \quad 14.3$
414.4

32 In the diagram below, $\triangle A B C \sim \triangle A D E$.

Which measurements are justified by this similarity?
$1 A D=3, A B=6, A E=4$, and $A C=12$
$2 A D=5, A B=8, A E=7$, and $A C=10$
$3 A D=3, A B=9, A E=5$, and $A C=10$
$4 A D=2, A B=6, A E=5$, and $A C=15$

33 In the diagram of $\triangle A B C$, points D and E are on $\overline{A B}$ and $\overline{C B}$, respectively, such that $\overline{A C} \| \overline{D E}$.

If $A D=24, D B=12$, and $D E=4$, what is the length of $\overline{A C}$?
18
$2 \quad 12$
316
472

34 In $\triangle C E D$ as shown below, points A and B are located on sides $\overline{C E}$ and $\overline{E D}$, respectively. Line segment $A B$ is drawn such that $A E=3.75, A C=5$, $E B=4.5$, and $B D=6$.

Explain why $\overline{A B}$ is parallel to $\overline{C D}$.

G.GPE.B.4: TRIANGLES IN THE COORDINATE PLANE

35 Triangle $A B C$ has vertices with $A(x, 3), B(-3,-1)$, and $C(-1,-4)$. Determine and state a value of x that would make triangle $A B C$ a right triangle. Justify why $\triangle A B C$ is a right triangle. [The use of the set of axes below is optional.]

36 The coordinates of the vertices of $\triangle R S T$ are $R(-2,-3), S(8,2)$, and $T(4,5)$. Which type of triangle is $\triangle R S T$?
1 right
2 acute
3 obtuse
4 equiangular

POLYGONS

G.CO.C.11: PARALLELOGRAMS

37 Quadrilateral $A B C D$ has diagonals $\overline{A C}$ and $\overline{B D}$. Which information is not sufficient to prove $A B C D$ is a parallelogram?
$1 \quad \overline{A C}$ and $\overline{B D}$ bisect each other.
$2 \overline{A B} \cong \overline{C D}$ and $\overline{B C} \cong \overline{A D}$
$3 \overline{A B} \cong \overline{C D}$ and $\overline{A B} \| \overline{C D}$
$4 \overline{A B} \cong \overline{C D}$ and $\overline{B C} \| \overline{A D}$

38 The diagram below shows parallelogram $L M N O$ with diagonal $\overline{L N}, \mathrm{~m} \angle M=118^{\circ}$, and $\mathrm{m} \angle L N O=22^{\circ}$.

Explain why $\mathrm{m} \angle N L O$ is 40 degrees.

39 A parallelogram must be a rectangle when its 1 diagonals are perpendicular 2 diagonals are congruent 3 opposite sides are parallel 4 opposite sides are congruent

Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org

40 In the diagram of parallelogram $F R E D$ shown below, $\overline{E D}$ is extended to A, and $\overline{A F}$ is drawn such that $\overline{A F} \cong \overline{D F}$.

If $\mathrm{m} \angle R=124^{\circ}$, what is $\mathrm{m} \angle A F D$?
1124°
2112°
368°
456°

41 In parallelogram $Q R S T$ shown below, diagonal $\overline{T R}$ is drawn, U and V are points on $\overline{T S}$ and $\overline{Q R}$, respectively, and $\overline{U V}$ intersects $\overline{T R}$ at W.

If $\mathrm{m} \angle S=60^{\circ}, \mathrm{m} \angle S R T=83^{\circ}$, and $\mathrm{m} \angle T W U=35^{\circ}$, what is $\mathrm{m} \angle W V Q$?
137°
260°
372°
483°

42 In parallelogram $A B C D$, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E. Which statement does not prove parallelogram $A B C D$ is a rhombus?
$1 \quad \overline{A C} \cong \overline{D B}$
$2 \overline{A B} \cong \overline{B C}$
$3 \quad \overline{A C} \perp \overline{D B}$
$4 \overline{A C}$ bisects $\angle D C B$

43 Quadrilateral $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}$ is shown in the diagram below.

Which information is not enough to prove $A B C D$ is a parallelogram?
$1 \overline{A B} \cong \overline{C D}$ and $\overline{A B} \| \overline{D C}$
$2 \overline{A B} \cong \overline{C D}$ and $\overline{B C} \cong \overline{D A}$
$3 \overline{A B} \cong \overline{C D}$ and $\overline{B C} \| \overline{A D}$
$4 \quad \overline{A B} \| \overline{D C}$ and $\overline{B C} \| \overline{A D}$

Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org

44 In the diagram below, $A B C D$ is a parallelogram, $\overline{A B}$ is extended through B to E, and $\overline{C E}$ is drawn.

If $\overline{C E} \cong \overline{B E}$ and $\mathrm{m} \angle D=112^{\circ}$, what is $\mathrm{m} \angle E$?
144°
256°
368°
4112°

G.GPE.B.4, 7: POLYGONS IN THE COORDINATE PLANE

45 In rhombus MATH, the coordinates of the endpoints of the diagonal $\overline{M T}$ are $M(0,-1)$ and $T(4,6)$. Write an equation of the line that contains diagonal $\overline{A H}$. [Use of the set of axes below is optional.] Using the given information, explain how you know that your line contains diagonal $\overline{A H}$.

46 In the coordinate plane, the vertices of $\triangle R S T$ are $R(6,-1), S(1,-4)$, and $T(-5,6)$. Prove that $\triangle R S T$ is a right triangle. State the coordinates of point P such that quadrilateral $R S T P$ is a rectangle. Prove that your quadrilateral RSTP is a rectangle. [The use of the set of axes below is optional.]

47 A quadrilateral has vertices with coordinates $(-3,1),(0,3),(5,2)$, and $(-1,-2)$. Which type of quadrilateral is this?
1 rhombus
2 rectangle
3 square
4 trapezoid

48 The diagonals of rhombus TEAM intersect at $P(2,1)$. If the equation of the line that contains diagonal $\overline{T A}$ is $y=-x+3$, what is the equation of a line that contains diagonal $E M$?
$1 y=x-1$
$2 y=x-3$
$3 y=-x-1$
$4 \quad y=-x-3$

49 The endpoints of one side of a regular pentagon are $(-1,4)$ and $(2,3)$. What is the perimeter of the pentagon?
$1 \sqrt{10}$
$2 \quad 5 \sqrt{10}$
$3 \quad 5 \sqrt{2}$
$4 \quad 25 \sqrt{2}$

50 Triangle RST is graphed on the set of axes below.

How many square units are in the area of $\triangle R S T$?
$1 \quad 9 \sqrt{3}+15$
$2 \quad 9 \sqrt{5}+15$
345
490

Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org

51 The coordinates of vertices A and B of $\triangle A B C$ are $A(3,4)$ and $B(3,12)$. If the area of $\triangle A B C$ is 24 square units, what could be the coordinates of point C ?
$1(3,6)$
$2(8,-3)$
$3(-3,8)$
$4(6,3)$

CONICS

G.C.B.5: ARC LENGTH

52 In the diagram below, the circle shown has radius 10 . Angle B intercepts an arc with a length of 2π.

What is the measure of angle B, in radians?
$1 \quad 10+2 \pi$
220π
$3 \quad \frac{\pi}{5}$
$4 \frac{5}{\pi}$

53 In the diagram below, Circle 1 has radius 4, while Circle 2 has radius 6.5. Angle A intercepts an arc of length π, and angle B intercepts an arc of length $\frac{13 \pi}{8}$.

Dominic thinks that angles A and B have the same radian measure. State whether Dominic is correct or not. Explain why.

G.C.B.5: SECTORS

54 In the diagram below of circle O, diameter $\overline{A B}$ and radii $\overline{O C}$ and $\overline{O D}$ are drawn. The length of $\overline{A B}$ is 12 and the measure of $\angle C O D$ is 20 degrees.

If $\overparen{A C} \cong \overparen{B D}$, find the area of sector $B O D$ in terms of π.

Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org

55 In the diagram below of circle O, the area of the shaded sector $A O C$ is 12π in 2 and the length of $\overline{O A}$ is 6 inches. Determine and state $\mathrm{m} \angle A O C$.

56 Triangle $F G H$ is inscribed in circle O, the length of radius $\overline{O H}$ is 6 , and $\overline{F H} \cong \overline{O G}$.

What is the area of the sector formed by angle FOH?
12π
$2 \frac{3}{2} \pi$
36π
424π

57 In the diagram below of circle O, the area of the shaded sector $L O M$ is $2 \pi \mathrm{~cm}^{2}$.

If the length of $\overline{N L}$ is 6 cm , what is $\mathrm{m} \angle N$?
110°
$2 \quad 20^{\circ}$
340°
480°

58 What is the area of a sector of a circle with a radius of 8 inches and formed by a central angle that measures 60° ?
$1 \quad \frac{8 \pi}{3}$
$2 \frac{16 \pi}{3}$
$3 \quad \frac{32 \pi}{3}$
$4 \frac{64 \pi}{3}$

59 In circle O, diameter $\overline{A B}$, chord $\overline{B C}$, and radius $\overline{O C}$ are drawn, and the measure of arc $B C$ is 108°.

Some students wrote these formulas to find the area of sector COB:

Amy $\frac{3}{10} \cdot \pi \cdot(B C)^{2}$
Beth $\frac{108}{360} \cdot \pi \cdot(O C)^{2}$
Carl $\frac{3}{10} \cdot \pi \cdot\left(\frac{1}{2} A B\right)^{2}$
Dex $\frac{108}{360} \cdot \pi \cdot \frac{1}{2}(A B)^{2}$
Which students wrote correct formulas?
1 Amy and Dex
2 Beth and Carl
3 Carl and Amy
4 Dex and Beth

G.GMD.A.1, G.MG.A.3, G.C.A.1: PROPERTIES OF CIRCLES

60 As shown in the diagram below, circle A has a radius of 3 and circle B has a radius of 5 .

Use transformations to explain why circles A and B are similar.

61 A circle with a radius of 5 was divided into 24 congruent sectors. The sectors were then rearranged, as shown in the diagram below.

To the nearest integer, the value of x is
131
$2 \quad 16$
312
410

62 A designer needs to create perfectly circular necklaces. The necklaces each need to have a radius of 10 cm . What is the largest number of necklaces that can be made from 1000 cm of wire?
115
$2 \quad 16$
$3 \quad 31$
432

G.C.A.2: CHORDS, SECANTS AND TANGENTS

63 In the diagram of circle A shown below, chords $\overline{C D}$ and $\overline{E F}$ intersect at G, and chords $\overline{C E}$ and $\overline{F D}$ are drawn.

Which statement is not always true?
$1 \overline{C G} \cong \overline{F G}$
$2 \angle C E G \cong \angle F D G$
$3 \frac{C E}{E G}=\frac{F D}{D G}$
$4 \quad \triangle C E G \sim \triangle F D G$

64 In circle O shown below, diameter $\overline{A C}$ is perpendicular to $\overline{C D}$ at point C, and chords $\overline{A B}$, $\overline{B C}, \overline{A E}$, and $\overline{C E}$ are drawn.

Which statement is not always true?
$1 \quad \angle A C B \cong \angle B C D$
$2 \angle A B C \cong \angle A C D$
$3 \angle B A C \cong \angle D C B$
$4 \angle C B A \cong \angle A E C$

65 In the diagram shown below, $\overline{A C}$ is tangent to circle O at A and to circle P at $C, \overline{O P}$ intersects $\overline{A C}$ at $B, O A=4, A B=5$, and $P C=10$.

What is the length of $\overline{B C}$?
16.4

28
312.5

416

66 In the diagram below, $\overline{D C}, \overline{A C}, \overline{D O B}, \overline{C B}$, and $\overline{A B}$ are chords of circle $O, F D E$ is tangent at point D, and radius $\overline{A O}$ is drawn. Sam decides to apply this theorem to the diagram: "An angle inscribed in a semi-circle is a right angle."

Which angle is Sam referring to?
$1 \angle A O B$
$2 \angle B A C$
$3 \angle D C B$
$4 \angle F D B$

67 In the diagram below of circle O with diameter $\overline{B C}$ and radius $\overline{O A}$, chord $\overline{D C}$ is parallel to chord $\overline{B A}$.

If $\mathrm{m} \angle B C D=30^{\circ}$, determine and state $\mathrm{m} \angle A O B$.

68 In the diagram below of circle $O, \overline{O B}$ and $\overline{O C}$ are radii, and chords $\overline{A B}, \overline{B C}$, and $\overline{A C}$ are drawn.

Which statement must always be true?
$1 \angle B A C \cong \angle B O C$
$2 \mathrm{~m} \angle B A C=\frac{1}{2} \mathrm{~m} \angle B O C$
$3 \triangle B A C$ and $\triangle B O C$ are isosceles.
4 The area of $\triangle B A C$ is twice the area of $\triangle B O C$.

69 In the diagram below, $\overline{B C}$ is the diameter of circle A.

Point D, which is unique from points B and C, is plotted on circle A. Which statement must always be true?
$1 \quad \triangle B C D$ is a right triangle.
$2 \triangle B C D$ is an isosceles triangle.
$3 \quad \triangle B A D$ and $\triangle C B D$ are similar triangles.
$4 \quad \triangle B A D$ and $\triangle C A D$ are congruent triangles.

70 Lines $A E$ and $B D$ are tangent to circles O and P at A, E, B, and D, as shown in the diagram below. If $A C: C E=5: 3$, and $B D=56$, determine and state the length of $\overline{C D}$.

Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org

G.C.A.3: INSCRIBED QUADRILATERALS

71 In the diagram below, quadrilateral $A B C D$ is inscribed in circle P.

What is $\mathrm{m} \angle A D C$?
170°
272°
3108°
4110°
G.GPE.A.1: EQUATIONS OF CIRCLES

72 The equation of a circle is $x^{2}+y^{2}+6 y=7$. What are the coordinates of the center and the length of the radius of the circle?
1 center (0,3) and radius 4
2 center ($0,-3$) and radius 4
3 center (0,3) and radius 16
4 center ($0,-3$) and radius 16

73 If $x^{2}+4 x+y^{2}-6 y-12=0$ is the equation of a circle, the length of the radius is
125
$2 \quad 16$
35
44

74 What are the coordinates of the center and length of the radius of the circle whose equation is
$x^{2}+6 x+y^{2}-4 y=23$?
$1 \quad(3,-2)$ and 36
$2(3,-2)$ and 6
$3 \quad(-3,2)$ and 36
$4 \quad(-3,2)$ and 6

75 Kevin's work for deriving the equation of a circle is shown below.

$$
x^{2}+4 x=-\left(y^{2}-20\right)
$$

STEP $1 \quad x^{2}+4 x=-y^{2}+20$
STEP $2 x^{2}+4 x+4=-y^{2}+20-4$
STEP $3(x+2)^{2}=-y^{2}+20-4$
STEP $4(x+2)^{2}+y^{2}=16$
In which step did he make an error in his work?
1 Step 1
2 Step 2
3 Step 3
4 Step 4

76 The graph below shows $\overline{A B}$, which is a chord of circle O. The coordinates of the endpoints of $\overline{A B}$ are $A(3,3)$ and $B(3,-7)$. The distance from the midpoint of $\overline{A B}$ to the center of circle O is 2 units.

What could be a correct equation for circle O ?
$1(x-1)^{2}+(y+2)^{2}=29$
$2(x+5)^{2}+(y-2)^{2}=29$
$3(x-1)^{2}+(y-2)^{2}=25$
$4(x-5)^{2}+(y+2)^{2}=25$

77 What are the coordinates of the center and the length of the radius of the circle represented by the equation $x^{2}+y^{2}-4 x+8 y+11=0$?
1 center $(2,-4)$ and radius 3
2 center $(-2,4)$ and radius 3
3 center $(2,-4)$ and radius 9
4 center $(-2,4)$ and radius 9

G.GPE.B.4: CIRCLES IN THE COORDINATE PLANE

78 The center of circle Q has coordinates (3,-2). If circle Q passes through $R(7,1)$, what is the length of its diameter?
150
$2 \quad 25$
310
45

79 A circle has a center at $(1,-2)$ and radius of 4 .
Does the point $(3.4,1.2)$ lie on the circle? Justify your answer.

MEASURING IN THE PLANE AND SPACE
 G.GMD.B.4: ROTATIONS OF TWO-DIMENSIONAL OBJECTS

80 Which object is formed when right triangle RST shown below is rotated around leg $\overline{R S}$?

[^0]Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org

81 A student has a rectangular postcard that he folds in half lengthwise. Next, he rotates it continuously about the folded edge. Which three-dimensional object below is generated by this rotation?

1

2

3

4

82 If the rectangle below is continuously rotated about side w, which solid figure is formed?

1	pyramid
2	rectangular prism
3	cone
4	cylinder

83 If an equilateral triangle is continuously rotated around one of its medians, which 3-dimensional object is generated?
1 cone
2 pyramid
3 prism
4 sphere

Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org

G.GMD.B.4: CROSS-SECTIONS OF

 THREE-DIMENSIONAL OBJECTS84 Which figure can have the same cross section as a sphere?

1

85 William is drawing pictures of cross sections of the right circular cone below.

Which drawing can not be a cross section of a cone?

86 The cross section of a regular pyramid contains the altitude of the pyramid. The shape of this cross section is a
1 circle
2 square
3 triangle
4 rectangle

G.GMD.A.1, 3, G.MG.A.1, 3: VOLUME

87 Two stacks of 23 quarters each are shown below. One stack forms a cylinder but the other stack does not form a cylinder.

Use Cavelieri's principle to explain why the volumes of these two stacks of quarters are equal.

88 The Great Pyramid of Giza was constructed as a regular pyramid with a square base. It was built with an approximate volume of 2,592,276 cubic meters and a height of 146.5 meters. What was the length of one side of its base, to the nearest meter? 173
277
3133
4230

89 A fish tank in the shape of a rectangular prism has dimensions of 14 inches, 16 inches, and 10 inches. The tank contains 1680 cubic inches of water. What percent of the fish tank is empty?
110
$2 \quad 25$
350
475

90 As shown in the diagram below, a regular pyramid has a square base whose side measures 6 inches.

If the altitude of the pyramid measures 12 inches, its volume, in cubic inches, is
172
2144
$3 \quad 288$
4432

91 A company is creating an object from a wooden cube with an edge length of 8.5 cm . A right circular cone with a diameter of 8 cm and an altitude of 8 cm will be cut out of the cube. Which expression represents the volume of the remaining wood?
$1 \quad(8.5)^{3}-\pi(8)^{2}(8)$
$2 \quad(8.5)^{3}-\pi(4)^{2}(8)$
$3(8.5)^{3}-\frac{1}{3} \pi(8)^{2}(8)$
$4 \quad(8.5)^{3}-\frac{1}{3} \pi(4)^{2}(8)$

92 The diameter of a basketball is approximately 9.5 inches and the diameter of a tennis ball is approximately 2.5 inches. The volume of the basketball is about how many times greater than the volume of the tennis ball?
13591
265
355
44

93 A barrel of fuel oil is a right circular cylinder where the inside measurements of the barrel are a diameter of 22.5 inches and a height of 33.5 inches. There are 231 cubic inches in a liquid gallon. Determine and state, to the nearest tenth, the gallons of fuel that are in a barrel of fuel oil.

94 A water glass can be modeled by a truncated right cone (a cone which is cut parallel to its base) as shown below.

The diameter of the top of the glass is 3 inches, the diameter at the bottom of the glass is 2 inches, and the height of the glass is 5 inches. The base with a diameter of 2 inches must be parallel to the base with a diameter of 3 inches in order to find the height of the cone. Explain why. Determine and state, in inches, the height of the larger cone. Determine and state, to the nearest tenth of a cubic inch, the volume of the water glass.

95 Tennis balls are sold in cylindrical cans with the balls stacked one on top of the other. A tennis ball has a diameter of 6.7 cm . To the nearest cubic centimeter, what is the minimum volume of the can that holds a stack of 4 tennis balls?
1236
2282
3564
4945
G.MG.A.3: SURFACE AND LATERAL AREA

96 A gallon of paint will cover approximately 450 square feet. An artist wants to paint all the outside surfaces of a cube measuring 12 feet on each edge. What is the least number of gallons of paint he must buy to paint the cube?
11
22
33
44

G.MG.A.2: DENSITY

97 Trees that are cut down and stripped of their branches for timber are approximately cylindrical. A timber company specializes in a certain type of tree that has a typical diameter of 50 cm and a typical height of about 10 meters. The density of the wood is 380 kilograms per cubic meter, and the wood can be sold by mass at a rate of $\$ 4.75$ per kilogram. Determine and state the minimum number of whole trees that must be sold to raise at least $\$ 50,000$.

98 A contractor needs to purchase 500 bricks. The dimensions of each brick are 5.1 cm by 10.2 cm by 20.3 cm , and the density of each brick is $1920 \mathrm{~kg} / \mathrm{m}^{3}$. The maximum capacity of the contractor's trailer is 900 kg . Can the trailer hold the weight of 500 bricks? Justify your answer.

99 A shipping container is in the shape of a right rectangular prism with a length of 12 feet, a width of 8.5 feet, and a height of 4 feet. The container is completely filled with contents that weigh, on average, 0.25 pound per cubic foot. What is the weight, in pounds, of the contents in the container?
1 1,632
2408
3102
492

100 A wooden cube has an edge length of 6 centimeters and a mass of 137.8 grams. Determine the density of the cube, to the nearest thousandth. State which type of wood the cube is made of, using the density table below.

Type of Wood	Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
Pine	0.373
Hemlock	0.431
Elm	0.554
Birch	0.601
Ash	0.638
Maple	0.676
Oak	0.711

101 The water tower in the picture below is modeled by the two-dimensional figure beside it. The water tower is composed of a hemisphere, a cylinder, and a cone. Let C be the center of the hemisphere and let D be the center of the base of the cone.

If $A C=8.5$ feet, $B F=25$ feet, and $\mathrm{m} \angle E F D=47^{\circ}$, determine and state, to the nearest cubic foot, the volume of the water tower. The water tower was constructed to hold a maximum of 400,000 pounds of water. If water weighs 62.4 pounds per cubic foot, can the water tower be filled to 85% of its volume and not exceed the weight limit? Justify your answer.

102 A hemispherical tank is filled with water and has a diameter of 10 feet. If water weighs 62.4 pounds per cubic foot, what is the total weight of the water in a full tank, to the nearest pound?
1 16,336
2 32,673
3 130,690
4 261,381

103 Walter wants to make 100 candles in the shape of a cone for his new candle business. The mold shown below will be used to make the candles. Each mold will have a height of 8 inches and a diameter of 3 inches. To the nearest cubic inch, what will be the total volume of 100 candles?

Walter goes to a hobby store to buy the wax for his candles. The wax costs $\$ 0.10$ per ounce. If the weight of the wax is 0.52 ounce per cubic inch, how much will it cost Walter to buy the wax for 100 candles? If Walter spent a total of $\$ 37.83$ for the molds and charges $\$ 1.95$ for each candle, what is Walter's profit after selling 100 candles?

104 Molly wishes to make a lawn ornament in the form of a solid sphere. The clay being used to make the sphere weighs .075 pound per cubic inch. If the sphere's radius is 4 inches, what is the weight of the sphere, to the nearest pound?
134
20
315
44

Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org

During an experiment, the same type of bacteria is grown in two petri dishes. Petri dish A has a diameter of 51 mm and has approximately 40,000 bacteria after 1 hour. Petri dish B has a diameter of 75 mm and has approximately 72,000 bacteria after 1 hour.

Determine and state which petri dish has the greater population density of bacteria at the end of the first hour.

106 Seawater contains approximately 1.2 ounces of salt per liter on average. How many gallons of seawater, to the nearest tenth of a gallon, would contain 1 pound of salt?
13.3
23.5
$\begin{array}{ll}3 & 4.7\end{array}$
$4 \quad 13.3$

107 A hemispherical water tank has an inside diameter of 10 feet. If water has a density of 62.4 pounds per cubic foot, what is the weight of the water in a full tank, to the nearest pound?
1 16,336
2 32,673
3 130,690
4 261,381

108 The density of the American white oak tree is 752 kilograms per cubic meter. If the trunk of an American white oak tree has a circumference of 4.5 meters and the height of the trunk is 8 meters, what is the approximate number of kilograms of the trunk?
$1 \quad 13$
$2 \quad 9694$
3 13,536
4 30,456

109 A snow cone consists of a paper cone completely filled with shaved ice and topped with a hemisphere of shaved ice, as shown in the diagram below. The inside diameter of both the cone and the hemisphere is 8.3 centimeters. The height of the cone is 10.2 centimeters.

The desired density of the shaved ice is $0.697 \mathrm{~g} / \mathrm{cm}^{3}$, and the cost, per kilogram, of ice is $\$ 3.83$. Determine and state the cost of the ice needed to make 50 snow cones.

Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org
G.SRT.A.2-3, G.SRT.B.5: TRIANGLE SIMILARITY

110 In the diagram below, triangles $X Y Z$ and $U V Z$ are drawn such that $\angle X \cong \angle U$ and $\angle X Z Y \cong \angle U Z V$.

Describe a sequence of similarity transformations that shows $\triangle X Y Z$ is similar to $\triangle U V Z$.

111 If $\triangle A B C$ is dilated by a scale factor of 3 , which statement is true of the image $\triangle A^{\prime} B^{\prime} C^{\prime}$?
$13 A^{\prime} B^{\prime}=A B$
$2 \quad B^{\prime} C^{\prime}=3 B C$
$3 \mathrm{~m} \angle A^{\prime}=3(\mathrm{~m} \angle A)$
$43\left(\mathrm{~m} \angle C^{\prime}\right)=\mathrm{m} \angle C$

112 The image of $\triangle A B C$ after a dilation of scale factor k centered at point A is $\triangle A D E$, as shown in the diagram below.

Which statement is always true?
$12 A B=A D$
$2 \overline{A D} \perp \overline{D E}$
$3 \quad A C=C E$
$4 \quad \overline{B C} \| \overline{D E}$

113 In the diagram below, $\triangle D E F$ is the image of $\triangle A B C$ after a clockwise rotation of 180° and a dilation where $A B=3, B C=5.5, A C=4.5$, $D E=6, F D=9$, and $E F=11$.

Which relationship must always be true?
$1 \frac{\mathrm{~m} \angle A}{\mathrm{~m} \angle D}=\frac{1}{2}$
$2 \frac{\mathrm{~m} \angle C}{\mathrm{~m} \angle F}=\frac{2}{1}$
$3 \frac{\mathrm{~m} \angle A}{\mathrm{~m} \angle C}=\frac{\mathrm{m} \angle F}{\mathrm{~m} \angle D}$
$4 \frac{\mathrm{~m} \angle B}{\mathrm{~m} \angle E}=\frac{\mathrm{m} \angle C}{\mathrm{~m} \angle F}$

114 A triangle is dilated by a scale factor of 3 with the center of dilation at the origin. Which statement is true?
1 The area of the image is nine times the area of the original triangle.
2 The perimeter of the image is nine times the perimeter of the original triangle.
3 The slope of any side of the image is three times the slope of the corresponding side of the original triangle.
4 The measure of each angle in the image is three times the measure of the corresponding angle of the original triangle.

115 In the diagram below, $\triangle A B E$ is the image of $\triangle A C D$ after a dilation centered at the origin. The coordinates of the vertices are $A(0,0), B(3,0)$, $C(4.5,0), D(0,6)$, and $E(0,4)$.

The ratio of the lengths of $\overline{B E}$ to $\overline{C D}$ is
$1 \frac{2}{3}$
$2 \quad \frac{3}{2}$
$3 \quad \frac{3}{4}$
$4 \quad \frac{4}{3}$

116 Using the information given below, which set of triangles can not be proven similar?

1

2

3

4

Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org

117 In the diagram below, $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a transformation.

Describe the transformation that was performed. Explain why $\triangle A^{\prime} B^{\prime} C^{\prime} \sim \triangle A B C$.

118 Triangles $A B C$ and $D E F$ are drawn below.

If $A B=9, B C=15, D E=6, E F=10$, and $\angle B \cong \angle E$, which statement is true?
$1 \angle C A B \cong \angle D E F$
$2 \frac{A B}{C B}=\frac{F E}{D E}$
$3 \triangle A B C \sim \triangle D E F$
$4 \quad \frac{A B}{D E}=\frac{F E}{C B}$

119 In the diagram below, $\triangle A B C \sim \triangle D E C$.

If $A C=12, D C=7, D E=5$, and the perimeter of $\triangle A B C$ is 30 , what is the perimeter of $\triangle D E C$?
112.5
214.0
$3 \quad 14.8$
417.5

120 A flagpole casts a shadow 16.60 meters long. Tim stands at a distance of 12.45 meters from the base of the flagpole, such that the end of Tim's shadow meets the end of the flagpole's shadow. If Tim is 1.65 meters tall, determine and state the height of the flagpole to the nearest tenth of a meter.

121 In the diagram below, the line of sight from the park ranger station, P, to the lifeguard chair, L, on the beach of a lake is perpendicular to the path joining the campground, C, and the first aid station, F. The campground is 0.25 mile from the lifeguard chair. The straight paths from both the campground and first aid station to the park ranger station are perpendicular.

If the path from the park ranger station to the campground is 0.55 mile, determine and state, to the nearest hundredth of a mile, the distance between the park ranger station and the lifeguard chair. Gerald believes the distance from the first aid station to the campground is at least 1.5 miles. Is Gerald correct? Justify your answer.

122 As shown in the diagram below, $\overline{A B}$ and $\overline{C D}$ intersect at E, and $\overline{A C} \| \overline{B D}$.

Given $\triangle A E C \sim \triangle B E D$, which equation is true?
$1 \frac{C E}{D E}=\frac{E B}{E A}$
$2 \frac{A E}{B E}=\frac{A C}{B D}$
$3 \frac{E C}{A E}=\frac{B E}{E D}$
$4 \quad \frac{E D}{E C}=\frac{A C}{B D}$

123 To find the distance across a pond from point B to point C, a surveyor drew the diagram below. The measurements he made are indicated on his diagram.

Use the surveyor's information to determine and state the distance from point B to point C, to the nearest yard.

124 Triangles RST and $X Y Z$ are drawn below. If $R S=6, S T=14, X Y=9, Y Z=21$, and $\angle S \cong \angle Y$, is $\triangle R S T$ similar to $\triangle X Y Z$? Justify your answer.

125 In the diagram below, $\triangle A B C \sim \triangle D E F$.

If $A B=6$ and $A C=8$, which statement will justify similarity by SAS?
$1 D E=9, D F=12$, and $\angle A \cong \angle D$
$2 D E=8, D F=10$, and $\angle A \cong \angle D$
$3 D E=36, D F=64$, and $\angle C \cong \angle F$
$4 D E=15, D F=20$, and $\angle C \cong \angle F$

126 The ratio of similarity of $\triangle B O Y$ to $\triangle G R L$ is 1:2. If $B O=x+3$ and $G R=3 x-1$, then the length of $\overline{G R}$ is
15
27
$3 \quad 10$
420

127 In the diagram below, $\overline{C D}$ is the altitude drawn to the hypotenuse $\overline{A B}$ of right triangle $A B C$.

Which lengths would not produce an altitude that measures $6 \sqrt{2}$?
$1 \quad A D=2$ and $D B=36$
$2 A D=3$ and $A B=24$
$3 \quad A D=6$ and $D B=12$
$4 \quad A D=8$ and $A B=17$

128 In $\triangle S C U$ shown below, points T and O are on $\overline{S U}$ and $\overline{C U}$, respectively. Segment $O T$ is drawn so that $\angle C \cong \angle O T U$.

If $\underline{T U}=4, O U=5$, and $O C=7$, what is the length of $\overline{S T}$?
15.6
28.75

311
415

Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org

129 In $\triangle R S T$ shown below, altitude $\overline{S U}$ is drawn to $\overline{R T}$ at U.

If $S U=h, U T=12$, and $R T=42$, which value of h will make $\triangle R S T$ a right triangle with $\angle R S T$ as a right angle?
$16 \sqrt{3}$
$2 \quad 6 \sqrt{10}$
$3 \quad 6 \sqrt{14}$
$4 \quad 6 \sqrt{35}$

130 In the diagram of right triangle $A B C, \overline{C D}$ intersects hypotenuse $\overline{A B}$ at D.

If $A D=4$ and $D B=6$, which length of $\overline{A C}$ makes $\overline{C D} \perp \overline{A B}$?
$12 \sqrt{6}$
$2 \quad 2 \sqrt{10}$
$3 \quad 2 \sqrt{15}$
$4 \quad 4 \sqrt{2}$

131 In triangle $C H R, O$ is on $\overline{H R}$, and D is on $\overline{C R}$ so that $\angle H \cong R D O$.

If $R D=4, R O=6$, and $O H=4$, what is the length of $\overline{C D}$?
$1 \quad 2 \frac{2}{3}$
$26 \frac{2}{3}$
$3 \quad 11$
415

TRANSFORMATIONS

G.SRT.A.1: LINE DILATIONS

132 The equation of line h is $2 x+y=1$. Line m is the image of line h after a dilation of scale factor 4 with respect to the origin. What is the equation of the line m ?
$1 \quad y=-2 x+1$
$2 y=-2 x+4$
$3 \quad y=2 x+4$
$4 \quad y=2 x+1$

133 The line $y=2 x-4$ is dilated by a scale factor of $\frac{3}{2}$ and centered at the origin. Which equation represents the image of the line after the dilation?
$1 \quad y=2 x-4$
$2 y=2 x-6$
$3 y=3 x-4$
$4 \quad y=3 x-6$

134 In the diagram below, $\overline{C D}$ is the image of $\overline{A B}$ after a dilation of scale factor k with center E.

Which ratio is equal to the scale factor k of the dilation?
$1 \frac{E C}{E A}$
$2 \frac{B A}{E A}$
$3 \frac{E A}{B A}$
$4 \frac{E A}{E C}$

135 The line $3 y=-2 x+8$ is transformed by a dilation centered at the origin. Which linear equation could be its image?
$1 \quad 2 x+3 y=5$
$2 \quad 2 x-3 y=5$
$3 \quad 3 x+2 y=5$
$4 \quad 3 x-2 y=5$

136 Line $y=3 x-1$ is transformed by a dilation with a scale factor of 2 and centered at $(3,8)$. The line's image is
$1 \quad y=3 x-8$
$2 y=3 x-4$
$3 y=3 x-2$
$4 y=3 x-1$

137 A line that passes through the points whose coordinates are $(1,1)$ and $(5,7)$ is dilated by a scale factor of 3 and centered at the origin. The image of the line
1 is perpendicular to the original line
2 is parallel to the original line
3 passes through the origin
4 is the original line

138 Line ℓ is mapped onto line m by a dilation centered at the origin with a scale factor of 2 . The equation of line ℓ is $3 x-y=4$. Determine and state an equation for line m.

Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org

139 A three-inch line segment is dilated by a scale factor of 6 and centered at its midpoint. What is the length of its image?
19 inches
22 inches
315 inches
$4 \quad 18$ inches

140 Line segment $A^{\prime} B^{\prime}$, whose endpoints are $(4,-2)$ and $(16,14)$, is the image of $\overline{A B}$ after a dilation of $\frac{1}{2}$ centered at the origin. What is the length of $\overline{A B}$?
15
$2 \quad 10$
320
440

G.CO.A.5: ROTATIONS

141 Which point shown in the graph below is the image of point P after a counterclockwise rotation of 90° about the origin?

1 A
2 B
3 C
4 D

142 The grid below shows $\triangle A B C$ and $\triangle D E F$.

Let $\triangle A^{\prime} B^{\prime} C^{\prime}$ be the image of $\triangle A B C$ after a rotation about point A. Determine and state the location of B^{\prime} if the location of point C^{\prime} is $(8,-3)$. Explain your answer. Is $\triangle D E F$ congruent to $\triangle A^{\prime} B^{\prime} C^{\prime}$? Explain your answer.

G.CO.A.5: REFLECTIONS

143 Triangle $A B C$ is graphed on the set of axes below. Graph and label $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a reflection over the line $x=1$.

Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org
G.CO.A.3: MAPPING A POLYGON ONTO ITSELF

144 A regular pentagon is shown in the diagram below.

If the pentagon is rotated clockwise around its center, the minimum number of degrees it must be rotated to carry the pentagon onto itself is
154°
272°
3108°
4360°

145 Which regular polygon has a minimum rotation of 45° to carry the polygon onto itself?
1 octagon
2 decagon
3 hexagon
4 pentagon

146 In the diagram below, a square is graphed in the coordinate plane.

A reflection over which line does not carry the square onto itself?

1	$x=5$
2	$y=2$
3	$y=x$
4	$x+y=4$

147 A regular hexagon is rotated in a counterclockwise direction about its center. Determine and state the minimum number of degrees in the rotation such that the hexagon will coincide with itself.

Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org

G.CO.B.6: PROPERTIES OF
 TRANSFORMATIONS

148 The image of $\triangle A B C$ after a rotation of 90° clockwise about the origin is $\triangle D E F$, as shown below.

Which statement is true?
$1 \overline{B C} \cong \overline{D E}$
$2 \overline{A B} \cong \overline{D F}$
$3 \angle C \cong \angle E$
$4 \angle A \cong \angle D$

149 Quadrilateral $A B C D$ is graphed on the set of axes below.

When $A B C D$ is rotated 90° in a counterclockwise direction about the origin, its image is quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. Is distance preserved under this rotation, and which coordinates are correct for the given vertex?
1 no and $C^{\prime}(1,2)$
2 no and $D^{\prime}(2,4)$
3 yes and $A^{\prime}(6,2)$
4 yes and $B^{\prime}(-3,4)$

150 Triangle MNP is the image of triangle $J K L$ after a 120° counterclockwise rotation about point Q. If the measure of angle L is 47° and the measure of angle N is 57°, determine the measure of angle M. Explain how you arrived at your answer.

G.CO.A.5: IDENTIFYING
 TRANSFORMATIONS

151 The vertices of $\triangle J K L$ have coordinates $J(5,1)$, $K(-2,-3)$, and $L(-4,1)$. Under which transformation is the image $\Delta J^{\prime} K^{\prime} L^{\prime}$ not congruent to $\triangle J K L$?
1 a translation of two units to the right and two units down
2 a counterclockwise rotation of 180 degrees around the origin
3 a reflection over the x-axis
4 a dilation with a scale factor of 2 and centered at the origin

152 If $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$, under which transformation will the triangles not be congruent?
1 reflection over the x-axis
2 translation to the left 5 and down 4
3 dilation centered at the origin with scale factor 2
4 rotation of 270° counterclockwise about the origin

153 In the diagram below, which single transformation was used to map triangle A onto triangle B ?

1 line reflection
2 rotation
3 dilation
4 translation

154 Which transformation of $\overline{O A}$ would result in an image parallel to $\overline{O A}$?

1 a translation of two units down
2 a reflection over the x-axis
3 a reflection over the y-axis
4 a clockwise rotation of 90° about the origin

Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org

155 On the set of axes below, rectangle $A B C D$ can be proven congruent to rectangle KLMN using which transformation?

1 rotation
2 translation
3 reflection over the x-axis
4 reflection over the y-axis

156 Which transformation would not always produce an image that would be congruent to the original figure?
1 translation
2 dilation
3 rotation
4 reflection

G.CO.A.2: ANALYTICAL REPRESENTATIONS

 OF TRANSFORMATIONS157 Which transformation would result in the perimeter of a triangle being different from the perimeter of its image?
$1 \quad(x, y) \rightarrow(y, x)$
$2(x, y) \rightarrow(x,-y)$
$3 \quad(x, y) \rightarrow(4 x, 4 y)$
$4(x, y) \rightarrow(x+2, y-5)$

G.CO.A.5, G.SRT.A.2: COMPOSITIONS OF TRANSFORMATIONS

158 In the diagram below, congruent figures 1,2 , and 3 are drawn.

Which sequence of transformations maps figure 1 onto figure 2 and then figure 2 onto figure 3 ?
1 a reflection followed by a translation
2 a rotation followed by a translation
3 a translation followed by a reflection
4 a translation followed by a rotation

Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org

159 A sequence of transformations maps rectangle $A B C D$ onto rectangle $A " B " C " D$ ", as shown in the diagram below.

Which sequence of transformations maps $A B C D$ onto $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ and then maps $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ onto A"B"C"D"?
1 a reflection followed by a rotation
2 a reflection followed by a translation
3 a translation followed by a rotation
4 a translation followed by a reflection

160 Triangle $A B C$ and triangle $D E F$ are graphed on the set of axes below.

Which sequence of transformations maps triangle $A B C$ onto triangle $D E F$?
1 a reflection over the x-axis followed by a reflection over the y-axis
2 a 180° rotation about the origin followed by a reflection over the line $y=x$
3 a 90° clockwise rotation about the origin followed by a reflection over the y-axis
4 a translation 8 units to the right and 1 unit up followed by a 90° counterclockwise rotation about the origin

Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org

161 Describe a sequence of transformations that will map $\triangle A B C$ onto $\triangle D E F$ as shown below.

163 Which sequence of transformations will map $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}$?

1 reflection and translation
2 rotation and reflection
3 translation and dilation
4 dilation and rotation

162 In the diagram below, $\triangle A B C$ has coordinates $A(1,1), B(4,1)$, and $C(4,5)$. Graph and label $\triangle A " B^{\prime \prime} C^{\prime}$, the image of $\triangle A B C$ after the translation five units to the right and two units up followed by the reflection over the line $y=0$.

Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org

164 Given: $\triangle A E C, \triangle D E F$, and $\overline{F E} \perp \overline{C E}$

What is a correct sequence of similarity transformations that shows $\triangle A E C \sim \triangle D E F$?
1 a rotation of 180 degrees about point E followed by a horizontal translation
2 a counterclockwise rotation of 90 degrees about point E followed by a horizontal translation
3 a rotation of 180 degrees about point E followed by a dilation with a scale factor of 2 centered at point E
4 a counterclockwise rotation of 90 degrees about point E followed by a dilation with a scale factor of 2 centered at point E

TRIGONOMETRY

G.SRT.C.6: TRIGONOMETRIC RATIOS

165 In the diagram below, $\triangle E R M \sim \triangle J T M$.

Which statement is always true?
$1 \cos J=\frac{R M}{R E}$
$2 \cos R=\frac{J M}{J T}$
$3 \tan T=\frac{R M}{E M}$
$4 \tan E=\frac{T M}{J M}$

G.SRT.C.7: COFUNCTIONS

166 Explain why $\cos (x)=\sin (90-x)$ for x such that $0<x<90$.

167 In right triangle $A B C$ with the right angle at C, $\sin A=2 x+0.1$ and $\cos B=4 x-0.7$. Determine and state the value of x. Explain your answer.

Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org

168 In scalene triangle $A B C$ shown in the diagram below, $\mathrm{m} \angle C=90^{\circ}$.

Which equation is always true?
$1 \quad \sin A=\sin B$
$2 \quad \cos A=\cos B$
$3 \cos A=\sin C$
$4 \sin A=\cos B$

169 Which expression is always equivalent to $\sin x$ when $0^{\circ}<x<90^{\circ}$?
$1 \cos \left(90^{\circ}-x\right)$
$2 \cos \left(45^{\circ}-x\right)$
$3 \cos (2 x)$
$4 \cos x$

170 In $\triangle A B C$, the complement of $\angle B$ is $\angle A$. Which statement is always true?
$1 \tan \angle A=\tan \angle B$
$2 \sin \angle A=\sin \angle B$
$3 \cos \angle A=\tan \angle B$
$4 \sin \angle A=\cos \angle B$

171 Find the value of R that will make the equation $\sin 73^{\circ}=\cos R$ true when $0^{\circ}<R<90^{\circ}$. Explain your answer.

172 In $\triangle A B C$, where $\angle C$ is a right angle, $\cos A=\frac{\sqrt{21}}{5}$. What is $\sin B$?
$1 \frac{\sqrt{21}}{5}$
$2 \frac{\sqrt{21}}{2}$
$3 \quad \frac{2}{5}$
$4 \quad \frac{5}{\sqrt{21}}$
G.SRT.C.8: USING TRIGONOMETRY TO FIND A SIDE

173 As shown below, a canoe is approaching a lighthouse on the coastline of a lake. The front of the canoe is 1.5 feet above the water and an observer in the lighthouse is 112 feet above the water.

At 5:00, the observer in the lighthouse measured the angle of depression to the front of the canoe to be 6°. Five minutes later, the observer measured and saw the angle of depression to the front of the canoe had increased by 49°. Determine and state, to the nearest foot per minute, the average speed at which the canoe traveled toward the lighthouse.

Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org

174 The map below shows the three tallest mountain peaks in New York State: Mount Marcy, Algonquin Peak, and Mount Haystack. Mount Haystack, the shortest peak, is 4960 feet tall. Surveyors have determined the horizontal distance between Mount Haystack and Mount Marcy is 6336 feet and the horizontal distance between Mount Marcy and Algonquin Peak is 20,493 feet.

The angle of depression from the peak of Mount Marcy to the peak of Mount Haystack is 3.47 degrees. The angle of elevation from the peak of Algonquin Peak to the peak of Mount Marcy is 0.64 degrees. What are the heights, to the nearest foot, of Mount Marcy and Algonquin Peak? Justify your answer.

175 As shown in the diagram below, the angle of elevation from a point on the ground to the top of the tree is 34°.

If the point is 20 feet from the base of the tree, what is the height of the tree, to the nearest tenth of a foot?
129.7
$2 \quad 16.6$
313.5
$4 \quad 11.2$

176 As shown in the diagram below, a ship is heading directly toward a lighthouse whose beacon is 125 feet above sea level. At the first sighting, point A, the angle of elevation from the ship to the light was 7°. A short time later, at point D, the angle of elevation was 16°.

To the nearest foot, determine and state how far the ship traveled from point A to point D.

A carpenter leans an extension ladder against a house to reach the bottom of a window 30 feet above the ground. As shown in the diagram below, the ladder makes a 70° angle with the ground. To the nearest foot, determine and state the length of the ladder.

178 Cathy wants to determine the height of the flagpole shown in the diagram below. She uses a survey instrument to measure the angle of elevation to the top of the flagpole, and determines it to be 34.9°. She walks 8 meters closer and determines the new measure of the angle of elevation to be 52.8°. At each measurement, the survey instrument is 1.7 meters above the ground.

Determine and state, to the nearest tenth of a meter, the height of the flagpole.

179 A 20-foot support post leans against a wall, making a 70° angle with the ground. To the nearest tenth of a foot, how far up the wall will the support post reach?
16.8
26.9
$3 \quad 18.7$
$4 \quad 18.8$

180 In the diagram below, a window of a house is 15 feet above the ground. A ladder is placed against the house with its base at an angle of 75° with the ground. Determine and state the length of the ladder to the nearest tenth of a foot.

G.SRT.C.8: USING TRIGONOMETRY TO FIND AN ANGLE

181 A man who is 5 feet 9 inches tall casts a shadow of 8 feet 6 inches. Assuming that the man is standing perpendicular to the ground, what is the angle of elevation from the end of the shadow to the top of the man's head, to the nearest tenth of a degree?
$1 \quad 34.1$
234.5
342.6
455.9

Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org

182 The diagram below shows a ramp connecting the ground to a loading platform 4.5 feet above the ground. The ramp measures 11.75 feet from the ground to the top of the loading platform.

Determine and state, to the nearest degree, the angle of elevation formed by the ramp and the ground.

183 In the diagram of right triangle $A B C$ shown below, $A B=14$ and $A C=9$.

What is the measure of $\angle A$, to the nearest degree?
133
$2 \quad 40$
350
$4 \quad 57$

184 A ladder leans against a building. The top of the ladder touches the building 10 feet above the ground. The foot of the ladder is 4 feet from the building. Find, to the nearest degree, the angle that the ladder makes with the level ground.

185 As modeled below, a movie is projected onto a large outdoor screen. The bottom of the 60 -foot-tall screen is 12 feet off the ground. The projector sits on the ground at a horizontal distance of 75 feet from the screen.

Determine and state, to the nearest tenth of a degree, the measure of θ, the projection angle.

LOGIC

G.CO.B.7-8: TRIANGLE CONGRUENCY

186 Which statement is sufficient evidence that $\triangle D E F$ is congruent to $\triangle A B C$?

$1 \quad A B=D E$ and $B C=E F$
$2 \angle D \cong \angle A, \angle B \cong \angle E, \angle C \cong \angle F$
3 There is a sequence of rigid motions that maps $\overline{A B}$ onto $\overline{D E}, \overline{B C}$ onto $\overline{E F}$, and $\overline{A C}$ onto $\overline{D F}$.
4 There is a sequence of rigid motions that maps point A onto point $D, \overline{A B}$ onto $\overline{D E}$, and $\angle B$ onto $\angle E$.

Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org

187 After a reflection over a line, $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$. Explain why triangle $A B C$ is congruent to triangle $\triangle A^{\prime} B^{\prime} C^{\prime}$.

188
Given: D is the image of A after a reflection over $\overleftrightarrow{C H}$
$\overleftrightarrow{C H}$ is the perpendicular bisector of $\overrightarrow{B C E}$ $\triangle A B C$ and $\triangle D E C$ are drawn
Prove: $\triangle A B C \cong \triangle D E C$

189 Given right triangles $A B C$ and $D E F$ where $\angle C$ and $\angle F$ are right angles, $\overline{A C} \cong \overline{D F}$ and $\overline{C B} \cong \overline{F E}$. Describe a precise sequence of rigid motions which would show $\triangle A B C \cong \triangle D E F$.

190 In the diagram below, $\triangle A B C$ and $\triangle X Y Z$ are graphed.

Use the properties of rigid motions to explain why $\triangle A B C \cong \triangle X Y Z$.

191 In the diagram below, $\overline{A C} \cong \overline{D F}$ and points A, C, D, and F are collinear on line ℓ.

Let $\triangle D^{\prime} E^{\prime} F^{\prime}$ be the image of $\triangle D E F$ after a translation along ℓ, such that point D is mapped onto point A. Determine and state the location of F^{\prime}. Explain your answer. Let $\triangle D^{\prime \prime} E " F "$ be the image of $\triangle D^{\prime} E^{\prime} F^{\prime}$ after a reflection across line ℓ. Suppose that E " is located at B. Is $\triangle D E F$ congruent to $\triangle A B C$? Explain your answer.

Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org

192 As graphed on the set of axes below, $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a sequence of transformations.

Is $\triangle A^{\prime} B^{\prime} C^{\prime}$ congruent to $\triangle A B C$? Use the properties of rigid motion to explain your answer.

193 Given: $\triangle A B E$ and $\triangle C B D$ shown in the diagram below with $\overline{D B} \cong \overline{B E}$

Which statement is needed to prove $\triangle A B E \cong \triangle C B D$ using only SAS \cong SAS? $1 \angle C D B \cong \angle A E B$
$2 \angle A F D \cong \angle E F C$
$3 \overline{A D} \cong \overline{C E}$
$4 \overline{A E} \cong \overline{C D}$

Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org

G.CO.C.10, G.SRT.B.4: TRIANGLE PROOFS

194 Given the theorem, "The sum of the measures of the interior angles of a triangle is 180°," complete the proof for this theorem.

Given: $\triangle A B C$
Prove: $\mathrm{m} \angle 1+\mathrm{m} \angle 2+\mathrm{m} \angle 3=180^{\circ}$
Fill in the missing reasons below.

Statements	Reasons
(1) $\triangle A B C$ (2) Through point C, draw $\overleftrightarrow{D C E}$ parallel to $\overline{A B}$.	(2) Given
(3) $\mathrm{m} \angle 1=\mathrm{m} \angle A C D, \mathrm{~m} \angle 3=\mathrm{m} \angle B C E$ (3) (4) $\mathrm{m} \angle A C D+\mathrm{m} \angle 2+\mathrm{m} \angle B C E=180^{\circ}$	

Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org

195 Given: $\triangle X Y Z, \overline{X Y} \cong \overline{Z Y}$, and $\overline{Y W}$ bisects $\angle X Y Z$ Prove that $\angle Y W Z$ is a right angle.

196 Prove the sum of the exterior angles of a triangle is 360°.

197 Two right triangles must be congruent if 1 an acute angle in each triangle is congruent 2 the lengths of the hypotenuses are equal 3 the corresponding legs are congruent 4 the areas are equal

198 In the diagram of $\triangle L A C$ and $\triangle D N C$ below, $\overline{L A} \cong \overline{D N}, \overline{C A} \cong \overline{C N}$, and $\overline{D A C} \perp \overline{L C N}$.

a) Prove that $\triangle L A C \cong \triangle D N C$.
b) Describe a sequence of rigid motions that will map $\triangle L A C$ onto $\triangle D N C$.

199 Line segment $E A$ is the perpendicular bisector of $\overline{Z T}$, and $\overline{Z E}$ and $\overline{T E}$ are drawn.

Which conclusion can not be proven?
$1 \overline{E A}$ bisects angle ZET.
2 Triangle EZT is equilateral.
$3 \quad E A$ is a median of triangle EZT.
4 Angle Z is congruent to angle T.

Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org
G.CO.C.11, G.SRT.B.5: QUADRILATERAL PROOFS

200 Given: Quadrilateral $A B C D$ is a parallelogram with diagonals $\overline{A C}$ and $\overline{B D}$ intersecting at E

Prove: $\triangle A E D \cong \triangle C E B$
Describe a single rigid motion that maps $\triangle A E D$ onto $\triangle C E B$.

201 Given: Quadrilateral $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}$ that bisect each other, and $\angle 1 \cong \angle 2$

Prove: $\triangle A C D$ is an isosceles triangle and $\triangle A E B$ is a right triangle
$202 \frac{\text { In parallelogram } A B C D \text { shown below, diagonals }}{\overline{A C}} \overline{B D}$ intersect E. $A C$ and $B D$ intersect at E.

Prove: $\angle A C D \cong \angle C A B$

203 In the diagram of parallelogram $A B C D$ below, $\overline{B E} \perp \overline{C E D}, \overline{D F} \perp \overline{B F C}, \overline{C E} \cong \overline{C F}$.

Prove $A B C D$ is a rhombus.

Geometry Regents Exam Questions by Common Core State Standard: Topic www.jmap.org

204 Given: Parallelogram $\overline{A N D R}$ with $\overline{A W}$ and $\overline{D E}$ bisecting $\overline{N W D}$ and $\overline{R E A}$ at points W and E, respectively

Prove that $\triangle A N W \cong \triangle D R E$. Prove that quadrilateral $A W D E$ is a parallelogram.

205 Given: Parallelogram $A B C D, \overline{E F G}$, and diagonal $\overline{D F B}$

Prove: $\triangle D E F \sim \triangle B G F$

G.SRT.B.5: CIRCLE PROOFS

206 In the diagram below, secant $\overline{A C D}$ and tangent $\overline{A B}$ are drawn from external point A to circle O.

Prove the theorem: If a secant and a tangent are drawn to a circle from an external point, the product of the lengths of the secant segment and its external segment equals the length of the tangent segment squared. $\left(A C \cdot A D=A B^{2}\right)$

207 Given: Circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E

Theorem: If two chords intersect in a circle, the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments of the other chord. Prove this theorem by proving $A E \cdot E B=C E \cdot E D$.

Geometry Regents Exam Questions by Common Core State Standard: Topic Answer Section

1 ANS:

PTS: 4 REF: 011634geo NAT: G.CO.D. 12 TOP: Constructions
2 ANS:

PTS: 2 REF: fall1409geo NAT: G.CO.D. 12 TOP: Constructions
3 ANS:

PTS: 2
REF: 061631geo
NAT: G.CO.D. 12 TOP: Constructions

4 ANS:

PTS: 2
REF: 081628geo NAT: G.CO.D. 12 TOP: Constructions
5 ANS:

The length of $\overline{A^{\prime} C}$ is twice $\overline{A C}$.
PTS: 4 REF: 081632geo NAT: G.CO.D. 12 TOP: Constructions
6 ANS:

Since the square is inscribed, each vertex of the square is on the circle and the diagonals of the square are diameters of the circle. Therefore, each angle of the square is an inscribed angle in the circle that intercepts the circle at the endpoints of the diameters. Each angle of the square, which is an inscribed angle, measures 90 degrees. Therefore, the measure of the arc intercepted by two adjacent sides of the square is 180 degrees because it is twice the measure of its inscribed angle.

PTS: 4
REF: fall1412geo NAT: G.CO.D. 13 TOP: Constructions

7 ANS:

PTS: 2 REF: 061525geo NAT: G.CO.D. 13 TOP: Constructions
8 ANS:

PTS: 2 REF: 081526geo NAT: G.CO.D. 13 TOP: Constructions
9 ANS: 4

$$
\begin{array}{cc}
-5+\frac{3}{5}(5--5) & -4+\frac{3}{5}(1--4) \\
-5+\frac{3}{5}(10) & -4+\frac{3}{5}(5) \\
-5+6 & -4+3 \\
1 & -1
\end{array}
$$

PTS: 2
REF: spr1401geo NAT: G.GPE.B. 6 TOP: Directed Line Segments

10 ANS:

$$
\begin{array}{cc}
-6+\frac{2}{5}(4--6) & -5+\frac{2}{5}(0--5) \\
-6+\frac{2}{5}(10) & -5+\frac{2}{5}(5) \\
-6+4 & -5+2 \\
-2 & -3
\end{array}
$$

PTS: 2 REF: 061527geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
11 ANS:
$\frac{2}{5} \cdot(16-1)=6 \frac{2}{5} \cdot(14-4)=4 \quad(1+6,4+4)=(7,8)$
PTS: 2 REF: 081531geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
12 ANS:

$x=\frac{2}{3}(4--2)=4-2+4=2 J(2,5)$
$y=\frac{2}{3}(7-1)=4 \quad 1+4=5$
PTS: 2
REF: 011627geo NAT: G.GPE.B. 6 TOP: Directed Line Segments

13 ANS:
$4+\frac{4}{9}(22-4) 2+\frac{4}{9}(2-2)(12,2)$

$$
4+\frac{4}{9}(18) \quad 2+\frac{4}{9}(0)
$$

$4+8 \quad 2+0$
122
PTS: 2 REF: 061626geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
14 ANS: 4
$x=-6+\frac{1}{6}(6--6)=-6+2=-4 \quad y=-2+\frac{1}{6}(7--2)=-2+\frac{9}{6}=-\frac{1}{2}$
PTS: 2 REF: 081618geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
15 ANS: 1
$m=\frac{-A}{B}=\frac{-2}{-1}=2$
$m_{\perp}=-\frac{1}{2}$
PTS: 2 REF: 061509geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: identify perpendicular lines
16 ANS: 1

$$
\begin{aligned}
m=-\frac{2}{3} 1 & =\left(-\frac{2}{3}\right) 6+b \\
1 & =-4+b \\
5 & =b
\end{aligned}
$$

PTS: 2 REF: 081510geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: write equation of parallel line
17 ANS: 4
$m=-\frac{1}{2} \quad-4=2(6)+b$
$m_{\perp}=2 \quad \begin{aligned}-4 & =12+b \\ -16 & =b\end{aligned}$

PTS: 2 REF: 011602geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: write equation of perpendicular line
18 ANS: 1
$m=\left(\frac{-11+5}{2}, \frac{5+-7}{2}\right)=(-3,-1) m=\frac{5--7}{-11-5}=\frac{12}{-16}=-\frac{3}{4} m_{\perp}=\frac{4}{3}$
PTS: 2
REF: 061612geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: perpendicular bisector

19 ANS: 4
The slope of $\overline{B C}$ is $\frac{2}{5}$. Altitude is perpendicular, so its slope is $-\frac{5}{2}$.
PTS: 2 REF: 061614geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: find slope of perpendicular line
20 ANS: 1
Alternate interior angles
PTS: 2 REF: 061517geo NAT: G.CO.C. 9 TOP: Lines and Angles
21 ANS:
Since linear angles are supplementary, $\mathrm{m} \angle G I H=65^{\circ}$. Since $\overline{G H} \cong \overline{I H}, \mathrm{~m} \angle G H I=50^{\circ}(180-(65+65))$. Since $\angle E G B \cong \angle G H I$, the corresponding angles formed by the transversal and lines are congruent and $\overline{A B} \| \overline{C D}$.

PTS: 4 REF: 061532geo NAT: G.CO.C. 9 TOP: Lines and Angles
22 ANS: 1 PTS: 2 REF: 011606geo NAT: G.CO.C. 9
TOP: Lines and Angles
23 ANS: 1
$\frac{f}{4}=\frac{15}{6}$
$f=10$
PTS: 2 REF: 061617geo NAT: G.CO.C. 9 TOP: Lines and Angles
24 ANS: 2
PTS: 2
REF: 081601geo NAT: G.CO.C. 9
TOP: Lines and Angles
25 ANS: $4 \quad$ PTS: 2
REF: 081611geo NAT: G.CO.C. 9
TOP: Lines and Angles
26 ANS: 2

PTS: 2 REF: 081604geo NAT: G.CO.C. 10 TOP: Interior and Exterior Angles of Triangles
27 ANS: 2
$s^{2}+s^{2}=7^{2}$
$2 s^{2}=49$
$s^{2}=24.5$ $s \approx 4.9$

PTS: 2 REF: 081511geo NAT: G.SRT.C. 8 TOP: Pythagorean Theorem

28 ANS:
$\frac{16}{9}=\frac{x}{20.6} \quad D=\sqrt{36.6^{2}+20.6^{2}} \approx 42$

$$
x \approx 36.6
$$

PTS: 4 REF: 011632geo NAT: G.SRT.C. 8 TOP: Pythagorean Theorem
KEY: without graphics
29 ANS: 3
$\sqrt{20^{2}-10^{2}} \approx 17.3$
PTS: 2 REF: 081608geo NAT: G.SRT.C. 8 TOP: Pythagorean Theorem
KEY: without graphics
30 ANS:
$\triangle M N O$ is congruent to $\triangle P N O$ by SAS. Since $\triangle M N O \cong \triangle P N O$, then $\overline{M O} \cong \overline{P O}$ by СРCTC. So $\overline{N O}$ must divide $\overline{M P}$ in half, and $M O=8$.

PTS: 2 REF: fall1405geo NAT: G.SRT.B. 5 TOP: Isosceles Triangles
31 ANS: 3
$\frac{9}{5}=\frac{9.2}{x} 5.1+9.2=14.3$
$9 x=46$
$x \approx 5.1$
PTS: 2 REF: 061511geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
32 ANS: 4
$\frac{2}{6}=\frac{5}{15}$
PTS: 2 REF: 081517geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
33 ANS: 2
$\frac{12}{4}=\frac{36}{x}$
$12 x=144$
$x=12$
PTS: 2 REF: 061621geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
34 ANS:
$\frac{3.75}{5}=\frac{4.5}{6} \quad \overline{A B}$ is parallel to $\overline{C D}$ because $\overline{A B}$ divides the sides proportionately.
$39.375=39.375$
PTS: 2 REF: 061627geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem

35 ANS:
The slopes of perpendicular line are opposite reciprocals. Since the lines are perpendicular, they form right angles
and a right triangle. $m_{B C}=-\frac{3}{2}-1=\frac{2}{3}(-3)+b$ or $-4=\frac{2}{3}(-1)+b$

$$
\begin{aligned}
& m_{\perp}=\frac{2}{3} \quad-1=-2+b \quad \frac{-12}{3}=\frac{-2}{3}+b \\
& 3=\frac{2}{3} x+1 \quad-\frac{10}{3}=b \\
& 2=\frac{2}{3} x \quad 3=\frac{2}{3} x-\frac{10}{3} \\
& 3=x \\
& 9=2 x-10 \\
& 19=2 x \\
& 9.5=x
\end{aligned}
$$

PTS: 4 REF: 081533geo NAT: G.GPE.B. 4 TOP: Triangles in the Coordinate Plane
ANS: 1
$m_{\overline{R T}}=\frac{5--3}{4--2}=\frac{8}{6}=\frac{4}{3} m_{\overline{S T}}=\frac{5-2}{4-8}=\frac{3}{-4}=-\frac{3}{4}$ Slopes are opposite reciprocals, so lines form a right angle.
PTS: 2 REF: 011618geo NAT: G.GPE.B. 4 TOP: Triangles in the Coordinate Plane
37 ANS: 4
PTS: 2
REF: 061513geo NAT: G.CO.C. 11
TOP: Parallelograms
38 ANS:
Opposite angles in a parallelogram are congruent, so $\mathrm{m} \angle O=118^{\circ}$. The interior angles of a triangle equal 180°. $180-(118+22)=40$.

PTS: 2
REF: 061526geo
NAT: G.CO.C. 11 TOP: Parallelograms
39
ANS: 2
PTS: 2
REF: 081501geo NAT: G.CO.C.11
TOP: Parallelograms

40 ANS: 3

PTS: 2 REF: 081508geo NAT: G.CO.C. 11 TOP: Parallelograms
41 ANS: 3

PTS: 2 REF: 011603geo NAT: G.CO.C. 11 TOP: Parallelograms
42 ANS: 1

1) opposite sides; 2) adjacent sides; 3) perpendicular diagonals; 4) diagonal bisects angle

PTS: 2 REF: 061609geo NAT: G.CO.C. 11 TOP: Parallelograms
43 ANS: 3
(3) Could be a trapezoid.

PTS: 2 REF: 081607geo NAT: G.CO.C. 11 TOP: Parallelograms
44 ANS: 1
180-(68•2)
PTS: 2 REF: 081624geo NAT: G.CO.C. 11 TOP: Parallelograms
45 ANS:
$M\left(\frac{4+0}{2}, \frac{6-1}{2}\right)=M\left(2, \frac{5}{2}\right) m=\frac{6--1}{4-0}=\frac{7}{4} m_{\perp}=-\frac{4}{7} y-2.5=-\frac{4}{7}(x-2)$ The diagonals, $\overline{M T}$ and $\overline{A H}$, of rhombus MATH are perpendicular bisectors of each other.

PTS: 4
REF: fall1411geo NAT: G.GPE.B. 4 TOP: Polygons in the Coordinate Plane

46
ANS:
$m_{\overline{T S}}=\frac{-10}{6}=-\frac{5}{3} m_{\overline{S R}}=\frac{3}{5}$ Since the slopes of $\overline{T S}$ and $\overline{S R}$ are opposite reciprocals, they are perpendicular and form a right angle. $\triangle R S T$ is a right triangle because $\angle S$ is a right angle. $P(0,9) m_{\overline{R P}}=\frac{-10}{6}=-\frac{5}{3} m_{P T}=\frac{3}{5}$ Since the slopes of all four adjacent sides ($\overline{T S}$ and $\overline{S R}, \overline{S R}$ and $\overline{R P}, \overline{P T}$ and $\overline{T S}, \overline{R P}$ and $\overline{P T}$) are opposite reciprocals, they are perpendicular and form right angles. Quadrilateral $R S T P$ is a rectangle because it has four right angles.

PTS: 6 REF: 061536geo NAT: G.GPE.B. 4 TOP: Polygons in the Coordinate Plane
47 ANS: 4
$\frac{-2-1}{-1--3}=\frac{-3}{2} \quad \frac{3-2}{0-5}=\frac{1}{-5} \quad \frac{3-1}{0--3}=\frac{2}{3} \quad \frac{2--2}{5--1}=\frac{4}{6}=\frac{2}{3}$
PTS: 2 REF: 081522geo NAT: G.GPE.B. 4 TOP: Polygons in the Coordinate Plane
48 ANS: 1
$m_{T A}=-1 \quad y=m x+b$
$m_{\overline{E M}}=1 \quad 1=1(2)+b$
$-1=b$
PTS: 2 REF: 081614geo NAT: G.GPE.B. 4 TOP: Polygons in the Coordinate Plane
49 ANS: 2
$\sqrt{(-1-2)^{2}+(4-3)^{2}}=\sqrt{10}$
PTS: 2 REF: 011615geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
50 ANS: 3

$$
\begin{aligned}
& \sqrt{45}=3 \sqrt{5} \quad a=\frac{1}{2}(3 \sqrt{5})(6 \sqrt{5})=\frac{1}{2}(18)(5)=45 \\
& \sqrt{180}=6 \sqrt{5}
\end{aligned}
$$

PTS: 2
REF: 061622geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane

51 ANS: 3
$A=\frac{1}{2} a b \quad 3-6=-3=x$
$24=\frac{1}{2} a(8) \frac{4+12}{2}=8=y$
$a=6$
PTS: 2 REF: 081615geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
52 ANS: 3
$\theta=\frac{S}{r}=\frac{2 \pi}{10}=\frac{\pi}{5}$
PTS: 2 REF: fall1404geo NAT: G.C.B. 5 TOP: Arc Length
KEY: angle
53 ANS:
$s=\theta \cdot r \quad s=\theta \cdot r \quad$ Yes, both angles are equal.
$\pi=A \cdot 4 \frac{13 \pi}{8}=B \cdot 6.5$
$\frac{\pi}{4}=A$

$$
\frac{\pi}{4}=B
$$

PTS: 2
REF: 061629geo
NAT: G.C.B. 5
TOP: Arc Length
KEY: arc length
54 ANS:
$\frac{\left(\frac{180-20}{2}\right)}{360} \times \pi(6)^{2}=\frac{80}{360} \times 36 \pi=8 \pi$
PTS: 4 REF: spr1410geo NAT: G.C.B. 5 TOP: Sectors
55 ANS:
$A=6^{2} \pi=36 \pi \quad 36 \pi \cdot \frac{x}{360}=12 \pi$

$$
\begin{aligned}
& x=360 \cdot \frac{12}{36} \\
& x=120
\end{aligned}
$$

PTS: 2
REF: 061529geo
NAT: G.C.B. 5
TOP: Sectors
56 ANS: 3
$\frac{60}{360} \cdot 6^{2} \pi=6 \pi$
PTS: 2
REF: 081518geo
NAT: G.C.B. 5
TOP: Sectors

57 ANS: 3
$\frac{x}{360} \cdot 3^{2} \pi=2 \pi \quad 180-80=100$
$x=80 \quad \frac{180-100}{2}=40$
PTS: 2 REF: 011612geo NAT: G.C.B. 5 TOP: Sectors
58 ANS: 3
$\frac{60}{360} \cdot 8^{2} \pi=\frac{1}{6} \cdot 64 \pi=\frac{32 \pi}{3}$
PTS: 2 REF: 061624geo NAT: G.C.B. 5 TOP: Sectors
59 ANS: 2 PTS: 2 REF: 081619geo NAT: G.C.B. 5
TOP: Sectors
60 ANS:
Circle A can be mapped onto circle B by first translating circle A along vector $\overline{A B}$ such that A maps onto B, and then dilating circle A, centered at A, by a scale factor of $\frac{5}{3}$. Since there exists a sequence of transformations that maps circle A onto circle B, circle A is similar to circle B.

PTS: 2 REF: spr1404geo NAT: G.C.A. 1 TOP: Properties of Circles
61 ANS: 2
x is $\frac{1}{2}$ the circumference. $\frac{C}{2}=\frac{10 \pi}{2} \approx 16$
PTS: 2 REF: 061523geo NAT: G.GMD.A. 1 TOP: Properties of Circles
62 ANS: 1
$\frac{1000}{20 \pi} \approx 15.9$
PTS: 2 REF: 011623geo NAT: G.MG.A. 3 TOP: Properties of Circles
63 ANS: 1 PTS: 2 REF: 061508geo NAT: G.C.A. 2
TOP: Chords, Secants and Tangents
64 ANS: 1 PTS: 2 REF: 061520geo NAT: G.C.A. 2
TOP: Chords, Secants and Tangents
65 ANS: 3
$5 \cdot \frac{10}{4}=\frac{50}{4}=12.5$
PTS: 2 REF: 081512geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
66 ANS: 3 PTS: 2 REF: 011621geo NAT: G.C.A. 2
TOP: Chords, Secants and Tangents

67
ANS:

$$
180-2(30)=120
$$

PTS: 2
REF: 011626geo
NAT: G.C.A. 2
TOP: Chords, Secants and Tangents
68 ANS: 2
PTS: 2
REF: 061610geo
NAT: G.C.A. 2
TOP: Chords, Secants and Tangents
69 ANS: 1
The other statements are true only if $\overline{A D} \perp \overline{B C}$.
PTS: 2
REF: 081623geo
NAT: G.C.A. 2
TOP: Chords, Secants and Tangents
70 ANS:
$\frac{3}{8} \cdot 56=21$
PTS: 2 REF: 081625geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
71 ANS: $3 \quad$ PTS: 2
TOP: Inscribed Quadrilaterals
72 ANS: 2
$x^{2}+y^{2}+6 y+9=7+9$
$x^{2}+(y+3)^{2}=16$
PTS: 2 REF: 061514geo NAT: G.GPE.A. 1 TOP: Equations of Circles
73 ANS: 3
$x^{2}+4 x+4+y^{2}-6 y+9=12+4+9$

$$
(x+2)^{2}+(y-3)^{2}=25
$$

PTS: 2 REF: 081509geo NAT: G.GPE.A. 1 TOP: Equations of Circles
74 ANS: 4
$x^{2}+6 x+9+y^{2}-4 y+4=23+9+4$

$$
(x+3)^{2}+(y-2)^{2}=36
$$

PTS: 2
REF: 011617geo
NAT: G.GPE.A. 1 TOP: Equations of Circles
75 ANS: 2
PTS: 2
REF: 061603geo NAT: G.GPE.A. 1
TOP: Equations of Circles

ANS: 1

Since the midpoint of $\overline{A B}$ is $(3,-2)$, the center must be either $(5,-2)$ or $(1,-2)$.
$r=\sqrt{2^{2}+5^{2}}=\sqrt{29}$

PTS: 2 REF: 061623geo NAT: G.GPE.A. 1 TOP: Equations of Circles
77 ANS: 1
$x^{2}-4 x+4+y^{2}+8 y+16=-11+4+16$

$$
(x-2)^{2}+(y+4)^{2}=9
$$

PTS: 2 REF: 081616geo NAT: G.GPE.A. 1 TOP: Equations of Circles
78 ANS: 3
$r=\sqrt{(7-3)^{2}+(1--2)^{2}}=\sqrt{16+9}=5$

PTS: 2 REF: 061503geo NAT: G.GPE.B. 4 TOP: Circles in the Coordinate Plane
79 ANS:
Yes. $\quad(x-1)^{2}+(y+2)^{2}=4^{2}$

$$
\begin{aligned}
(3.4-1)^{2}+(1.2+2)^{2} & =16 \\
5.76+10.24 & =16 \\
16 & =16
\end{aligned}
$$

PTS: 2 REF: 081630geo NAT: G.GPE.B. 4 TOP: Circles in the Coordinate Plane
8 ANS: 4 PTS: 2 REF: 061501geo NAT: G.GMD.B. 4
TOP: Rotations of Two-Dimensional Objects
81 ANS: 3 PTS: 2 REF: 061601geo NAT: G.GMD.B. 4
TOP: Rotations of Two-Dimensional Objects
82 ANS: 4 PTS: 2 REF: 081503geo NAT: G.GMD.B. 4
TOP: Rotations of Two-Dimensional Objects
83 ANS: 1 PTS: 2 REF: 081603geo NAT: G.GMD.B. 4
TOP: Rotations of Two-Dimensional Objects
84 ANS: 2 PTS: 2 REF: 061506geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
85 ANS: 1 PTS: 2 REF: 011601geo NAT: G.GMD.B. 4 TOP: Cross-Sections of Three-Dimensional Objects
86 ANS: 3 PTS: 2 REF: 081613geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects

87 ANS:
Each quarter in both stacks has the same base area. Therefore, each corresponding cross-section of the stacks will have the same area. Since the two stacks of quarters have the same height of 23 quarters, the two volumes must be the same.

PTS: 2 REF: spr1405geo NAT: G.GMD.A. 1 TOP: Volume
88 ANS: 4
$2592276=\frac{1}{3} \cdot s^{2} \cdot 146.5$

$$
230 \approx s
$$

PTS: 2 REF: 081521geo NAT: G.GMD.A. 3 TOP: Volume
89 ANS: 2
$14 \times 16 \times 10=2240 \frac{2240-1680}{2240}=0.25$
PTS: 2 REF: 011604geo NAT: G.GMD.A. 3 TOP: Volume
90 ANS: 2
$V=\frac{1}{3} \cdot 6^{2} \cdot 12=144$

PTS: 2 REF: 011607geo NAT: G.GMD.A. 3 TOP: Volume
91 PTS: 2 REF: 061606geo NAT: G.GMD.A. 3
TOP: Volume
92 ANS: 3
$\frac{\frac{4}{3} \pi\left(\frac{9.5}{2}\right)^{3}}{\frac{4}{3} \pi\left(\frac{2.5}{2}\right)^{3}} \approx 55$
PTS: 2 REF: 011614geo NAT: G.MG.A. 1 TOP: Volume
93 ANS:
$\frac{\pi \cdot 11.25^{2} \cdot 33.5}{231} \approx 57.7$
PTS: 4 REF: 061632geo NAT: G.MG.A. 1 TOP: Volume

94 ANS:
Similar triangles are required to model and solve a proportion. $\frac{x+5}{1.5}=\frac{x}{1} \quad \frac{1}{3} \pi(1.5)^{2}(15)-\frac{1}{3} \pi(1)^{2}(10) \approx 24.9$

$$
\begin{aligned}
x+5 & =1.5 x \\
5 & =.5 x \\
10 & =x \\
10+5 & =15
\end{aligned}
$$

PTS: 6 REF: 061636geo NAT: G.MG.A. 1 TOP: Volume
95 ANS: 4
$V=\pi\left(\frac{6.7}{2}\right)^{2}(4 \cdot 6.7) \approx 945$
PTS: 2 REF: 081620geo NAT: G.MG.A. 3 TOP: Volume
96 ANS: 2
$S A=6 \cdot 12^{2}=864$
$\frac{864}{450}=1.92$
PTS: 2 REF: 061519geo NAT: G.MG.A. 3 TOP: Surface and Lateral Area
97 ANS:
$r=25 \mathrm{~cm}\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)=0.25 \mathrm{~m} \quad V=\pi(0.25 \mathrm{~m})^{2}(10 \mathrm{~m})=0.625 \pi \mathrm{~m}^{3} \quad W=0.625 \pi \mathrm{~m}^{3}\left(\frac{380 \mathrm{~K}}{1 \mathrm{~m}^{3}}\right) \approx 746.1 \mathrm{~K}$
$n=\frac{\$ 50,000}{\left(\frac{\$ 4.75}{\mathrm{~K}}\right)(746.1 \mathrm{~K})}=14.1 \quad 15$ trees
PTS: 4
REF: spr1412geo NAT: G.MG.A. 2 TOP: Density
98 ANS:
No, the weight of the bricks is greater than $900 \mathrm{~kg} .500 \times(5.1 \mathrm{~cm} \times 10.2 \mathrm{~cm} \times 20.3 \mathrm{~cm})=528,003 \mathrm{~cm}^{3}$.
$528,003 \mathrm{~cm}^{3} \times \frac{1 \mathrm{~m}^{3}}{100 \mathrm{~cm}^{3}}=0.528003 \mathrm{~m}^{3} . \frac{1920 \mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.528003 \mathrm{~m}^{3} \approx 1013 \mathrm{~kg}$.
PTS: 2 REF: fall1406geo NAT: G.MG.A. 2 TOP: Density
99 ANS: 3
$V=12 \cdot 8.5 \cdot 4=408$
$W=408 \cdot 0.25=102$
PTS: 2
REF: 061507geo NAT: G.MG.A. 2 TOP: Density

100 ANS:
$\frac{137.8}{6^{3}} \approx 0.638$ Ash
PTS: 2 REF: 081525geo NAT: G.MG.A. 2 TOP: Density
101 ANS:
$\tan 47=\frac{x}{8.5} \quad$ Cone: $V=\frac{1}{3} \pi(8.5)^{2}(9.115) \approx 689.6$ Cylinder: $V=\pi(8.5)^{2}(25) \approx 5674.5$ Hemisphere:

$$
x \approx 9.115
$$

$V=\frac{1}{2}\left(\frac{4}{3} \pi(8.5)^{3}\right) \approx 1286.3689 .6+5674.5+1286.3 \approx 7650$ No, because $7650 \cdot 62.4=477,360$
$477,360 \cdot 85=405,756$, which is greater than 400,000 .
PTS: 6 REF: 061535geo NAT: G.MG.A. 2 TOP: Density
102 ANS: 1
$V=\frac{\frac{4}{3} \pi\left(\frac{10}{2}\right)^{3}}{2} \approx 261.8 \cdot 62.4=16,336$
PTS: 2 REF: 081516geo NAT: G.MG.A. 2 TOP: Density
103 ANS:
$V=\frac{1}{3} \pi\left(\frac{3}{2}\right)^{2} \cdot 8 \approx 18.85 \cdot 100=18851885 \cdot 0.52 \cdot 0.10=98.021 .95(100)-(37.83+98.02)=59.15$
PTS: 6 REF: 081536geo NAT: G.MG.A. 2 TOP: Density
104 ANS: 2
$\frac{4}{3} \pi \cdot 4^{3}+0.075 \approx 20$
PTS: 2 REF: 011619geo NAT: G.MG.A. 2 TOP: Density
105 ANS:
$\frac{40000}{\pi\left(\frac{51}{2}\right)^{2}} \approx 19.6 \frac{72000}{\pi\left(\frac{75}{2}\right)^{2}} \approx 16.3$ Dish A

PTS: 2 REF: 011630geo NAT: G.MG.A. 2 TOP: Density
106 ANS: 2
$\frac{1 \mathrm{l}}{1.2 \mathrm{oz}}\left(\frac{16 \mathrm{oz}}{1 \mathrm{lb}}\right)=\frac{13 . \overline{3} \mathrm{l}}{\mathrm{lb}} \frac{13 . \overline{3} \mathrm{l}}{\mathrm{lb}}\left(\frac{1 \mathrm{~g}}{3.785 \mathrm{l}}\right) \approx \frac{3.5 \mathrm{~g}}{1 \mathrm{lb}}$
PTS: 2 REF: 061618geo NAT: G.MG.A. 2 TOP: Density

107 ANS: 1
$\frac{1}{2}\left(\frac{4}{3}\right) \pi \cdot 5^{3} \cdot 62.4 \approx 16,336$
PTS: 2 REF: 061620geo NAT: G.MG.A. 2 TOP: Density
108 ANS: 2
$C=\pi d \quad V=\pi\left(\frac{2.25}{\pi}\right)^{2} \cdot 8 \approx 12.8916 \quad W=12.8916 \cdot 752 \approx 9694$
$4.5=\pi d$
$\frac{4.5}{\pi}=d$
$\frac{2.25}{\pi}=r$
PTS: 2 REF: 081617geo NAT: G.MG.A. 2 TOP: Density
109 ANS:
$V=\frac{1}{3} \pi\left(\frac{8.3}{2}\right)^{2}(10.2)+\frac{1}{2} \cdot \frac{4}{3} \pi\left(\frac{8.3}{2}\right)^{3} \approx 183.961+149.693 \approx 333.65 \mathrm{~cm}^{3} 333.65 \times 50=16682.7 \mathrm{~cm}^{3}$
$16682.7 \times 0.697=11627.8 \mathrm{~g} 11.6278 \times 3.83=\$ 44.53$
PTS: 6 REF: 081636geo NAT: G.MG.A. 2 TOP: Density
110 ANS:
Triangle $X^{\prime} Y^{\prime} Z^{\prime}$ is the image of $\triangle X Y Z$ after a rotation about point Z such that $\overline{Z X}$ coincides with $\overline{Z U}$. Since rotations preserve angle measure, $\overline{Z Y}$ coincides with $\overline{Z V}$, and corresponding angles X and Y, after the rotation, remain congruent, so $\overline{X Y} \| \overline{U V}$. Then, dilate $\triangle X^{\prime} Y^{\prime} Z^{\prime}$ by a scale factor of $\frac{Z U}{Z X}$ with its center at point Z. Since dilations preserve parallelism, $\overline{X Y}$ maps onto $\overline{U V}$. Therefore, $\triangle X Y Z \sim \triangle U V Z$.

PTS: 2
111 ANS: 2
TOP: Similarity
112 ANS: 4
TOP: Similarity
113 ANS: 4
TOP: Similarity
114 ANS: 1
$3^{2}=9$
PTS: 2 REF: 081520geo NAT: G.SRT.A. 2 TOP: Similarity
115 ANS: 1
$\frac{4}{6}=\frac{3}{4.5}=\frac{2}{3}$
PTS: 2 REF: 081523geo NAT: G.SRT.A. 2 TOP: Similarity

116 ANS: 3

1) $\frac{12}{9}=\frac{4}{3}$ 2) AA 3) $\frac{32}{16} \neq \frac{8}{2}$ 4) SAS

PTS: 2 REF: 061605geo NAT: G.SRT.A. 2 TOP: Similarity
117 ANS:
A dilation of $\frac{5}{2}$ about the origin. Dilations preserve angle measure, so the triangles are similar by AA.
PTS: 4 REF: 061634geo NAT: G.SRT.A. 3 TOP: Similarity
118 ANS: 3
$\frac{A B}{B C}=\frac{D E}{E F}$
$\frac{9}{15}=\frac{6}{10}$
$90=90$
PTS: 2 REF: 061515geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
119 ANS: 4
$\frac{7}{12} \cdot 30=17.5$
PTS: 2 REF: 061521geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: perimeter and area
120 ANS:

$$
16.6 \quad \begin{aligned}
\frac{1.65}{4.15} & =\frac{x}{16.6} \\
4.15 x & =27.39 \\
x & =6.6
\end{aligned}
$$

PTS: 2 REF: 061531geo NAT: G.SRT.B. 5 TOP: Similarity KEY: basic
121
ANS.
$x=\sqrt{.55^{2}-.25^{2}} \cong 0.49$ No, $.49^{2}=.25 y .9604+.25<1.5$
$.9604=y$
PTS: 4
REF: 061534geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: leg

122 ANS: 2 PTS: 2 REF: 081519geo NAT: G.SRT.B. 5
TOP: Similarity KEY: basic
123 ANS:
$\frac{120}{230}=\frac{x}{315}$
$x=164$
PTS: 2
REF: 081527geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
124 ANS:
$\frac{6}{14}=\frac{9}{21}$ SAS
$126=126$
PTS: 2 REF: 081529geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
125 ANS: 1
$\frac{6}{8}=\frac{9}{12}$
PTS: 2 REF: 011613geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
126 ANS: 4

$$
\begin{aligned}
\frac{1}{2} & =\frac{x+3}{3 x-1} \quad G R=3(7)-1=20 \\
3 x-1 & =2 x+6 \\
x & =7
\end{aligned}
$$

PTS: 2 REF: 011620geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
127 ANS: 2
$\sqrt{3 \cdot 21}=\sqrt{63}=3 \sqrt{7}$
PTS: 2 REF: 011622geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
128 ANS: 3
$\frac{12}{4}=\frac{x}{5} \quad 15-4=11$
$x=15$
PTS: 2
REF: 011624geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic

129 ANS: 2
$h^{2}=30 \cdot 12$
$h^{2}=360$
$h=6 \sqrt{10}$
PTS: 2
REF: 061613geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
130 ANS: 2
$x^{2}=4 \cdot 10$
$x=\sqrt{40}$
$x=2 \sqrt{10}$
PTS: 2 REF: 081610geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: leg
131 ANS: 3
$\frac{x}{10}=\frac{6}{4} \quad \overline{C D}=15-4=11$
$x=15$
PTS: 2 REF: 081612geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
132 ANS: 2
The given line $h, 2 x+y=1$, does not pass through the center of dilation, the origin, because the y-intercept is at $(0,1)$. The slope of the dilated line, m, will remain the same as the slope of line $h, 2$. All points on line h, such as $(0,1)$, the y-intercept, are dilated by a scale factor of 4 ; therefore, the y-intercept of the dilated line is $(0,4)$ because the center of dilation is the origin, resulting in the dilated line represented by the equation $y=-2 x+4$.

PTS: 2 REF: spr1403geo NAT: G.SRT.A. 1 TOP: Line Dilations
133 ANS: 2
The line $y=2 x-4$ does not pass through the center of dilation, so the dilated line will be distinct from $y=2 x-4$. Since a dilation preserves parallelism, the line $y=2 x-4$ and its image will be parallel, with slopes of 2 . To obtain the y-intercept of the dilated line, the scale factor of the dilation, $\frac{3}{2}$, can be applied to the y-intercept, $(0,-4)$. Therefore, $\left(0 \cdot \frac{3}{2},-4 \cdot \frac{3}{2}\right) \rightarrow(0,-6)$. So the equation of the dilated line is $y=2 x-6$.

PTS: 2 REF: fall1403geo NAT: G.SRT.A. 1 TOP: Line Dilations
134 ANS: 1
PTS: 2 REF: 061518geo NAT: G.SRT.A. 1
TOP: Line Dilations

135 ANS: 1
The line $3 y=-2 x+8$ does not pass through the center of dilation, so the dilated line will be distinct from $3 y=-2 x+8$. Since a dilation preserves parallelism, the line $3 y=-2 x+8$ and its image $2 x+3 y=5$ are parallel, with slopes of $-\frac{2}{3}$.

PTS: 2 REF: 061522geo NAT: G.SRT.A. 1 TOP: Line Dilations
136 ANS: 4
The line $y=3 x-1$ passes through the center of dilation, so the dilated line is not distinct.
PTS: 2 REF: 081524geo NAT: G.SRT.A. 1 TOP: Line Dilations
ANS: 2 PTS: 2 REF: 011610geo NAT: G.SRT.A. 1
TOP: Line Dilations
138 ANS:
$\ell: y=3 x-4$
$m: y=3 x-8$
PTS: 2 REF: 011631geo NAT: G.SRT.A. 1 TOP: Line Dilations
139 ANS: 4
$3 \times 6=18$
PTS: 2 REF: 061602geo NAT: G.SRT.A. 1 TOP: Line Dilations
140 ANS: 4
$\sqrt{(32-8)^{2}+(28--4)^{2}}=\sqrt{576+1024}=\sqrt{1600}=40$
PTS: 2 REF: 081621geo NAT: G.SRT.A. 1 TOP: Line Dilations
141 ANS: 1 PTS: 2 REF: 081605geo NAT: G.CO.A. 5
TOP: Rotations KEY: grids
142 ANS:
$A B C$ - point of reflection $\rightarrow(-y, x)+$ point of reflection $\triangle D E F \cong \triangle A^{\prime} B^{\prime} C^{\prime}$ because $\triangle D E F$ is a reflection of
$A(2,-3)-(2,-3)=(0,0) \rightarrow(0,0)+(2,-3)=A^{\prime}(2,-3)$
$B(6,-8)-(2,-3)=(4,-5) \rightarrow(5,4)+(2,-3)=B^{\prime}(7,1)$
$C(2,-9)-(2,-3)=(0,-6) \rightarrow(6,0)+(2,-3)=C^{\prime}(8,-3)$
$\triangle A^{\prime} B^{\prime} C^{\prime}$ and reflections preserve distance.
PTS: 4
REF: 081633geo NAT: G.CO.A. 5 TOP: Rotations
KEY: grids

143
ANS:

PTS: 2
REF: 011625geo NAT: G.CO.A. 5 TOP: Reflections
KEY: grids
144 ANS: 2
Segments drawn from the center of the regular pentagon bisect each angle of the pentagon, and create five isosceles triangles as shown in the diagram below. Since each exterior angle equals the angles formed by the segments drawn from the center of the regular pentagon, the minimum degrees necessary to carry a regular polygon onto itself are equal to the measure of an exterior angle of the regular polygon.

PTS: 2 REF: spr1402geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
145 ANS: 1
$\frac{360^{\circ}}{45^{\circ}}=8$
PTS: 2 REF: 061510geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
146 ANS: 1 PTS: 2 REF: 081505geo NAT: G.CO.A. 3
TOP: Mapping a Polygon onto Itself
147 ANS:
$\frac{360}{6}=60$
PTS: 2 REF: 081627geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
148 ANS: 4
The measures of the angles of a triangle remain the same after all rotations because rotations are rigid motions which preserve angle measure.

PTS: 2 REF: fall1402geo NAT: G.CO.B. 6 TOP: Properties of Transformations
KEY: graphics
149
ANS: 4 PTS: 2
TOP: Properties of Transformations

REF: 011611geo NAT: G.CO.B. 6
KEY: graphics

150 ANS:
$M=180-(47+57)=76$ Rotations do not change angle measurements.
PTS: 2 REF: 081629geo NAT: G.CO.B. 6 TOP: Properties of Transformations
151 ANS: 4
PTS: 2
TOP: Identifying Transformations
REF: 061502geo NAT: G.CO.A. 2
KEY: basic
152 ANS: 3 PTS: 2
TOP: Identifying Transformations
153 ANS: $2 \quad$ PTS: 2
TOP: Identifying Transformations
REF: 081502geo NAT: G.CO.A. 2
KEY: basic
REF: 081513geo NAT: G.CO.A. 2
KEY: graphics
154 ANS: 1 PTS: 2
TOP: Identifying Transformations
155 ANS: $3 \quad$ PTS: 2
TOP: Identifying Transformations
REF: 061604geo NAT: G.CO.A. 2
KEY: graphics
REF: 061616geo NAT: G.CO.A. 2
KEY: graphics
156 ANS: 2 PTS: 2
TOP: Identifying Transformations
REF: 081602geo NAT: G.CO.A. 2
KEY: basic
157 ANS: $3 \quad$ PTS: 2
TOP: Analytical Representations of Transformations
NAT: G.CO.A. 2
158
ANS: 4 PTS: 2
TOP: Compositions of Transformations
159 ANS: $1 \quad$ PTS: 2
TOP: Compositions of Transformations
REF: 061504geo NAT: G.CO.A. 5
KEY: identify
REF: 081507geo NAT: G.CO.A. 5
KEY: identify
REF: 011608geo NAT: G.CO.A. 5
KEY: identify
161 ANS:
$T_{6,0}{ }^{\circ} R_{x \text {-xxis }}$
PTS: 2
REF: 061625geo
NAT: G.CO.A. 5
TOP: Compositions of Transformations
KEY: identify
ANS:

PTS: 2
KEY: grids
163

REF: 081626geo
NAT: G.CO.A. 5 TOP: Compositions of Transformations
REF: 061608geo NAT: G.SRT.A. 2
KEY: grids

ANS: 4 PTS: 2
REF: 081609geo NAT: G.SRT.A. 2
TOP: Compositions of Transformations
KEY: grids
165 ANS: 4 PTS: 2
REF: 061615geo NAT: G.SRT.C. 6
TOP: Trigonometric Ratios
166 ANS:
The acute angles in a right triangle are always complementary. The sine of any acute angle is equal to the cosine of its complement.

PTS: 2 REF: spr1407geo NAT: G.SRT.C. 7 TOP: Cofunctions
167 ANS:
$4 x-.07=2 x+.01 \operatorname{Sin} A$ is the ratio of the opposite side and the hypotenuse while $\cos B$ is the ratio of the adjacent
$2 x=0.8$
$x=0.4$
side and the hypotenuse. The side opposite angle A is the same side as the side adjacent to angle B. Therefore, $\sin A=\cos B$.

PTS: 2 REF: fall1407geo NAT: G.SRT.C. 7 TOP: Cofunctions
168 ANS: 4
PTS: 2 REF: 061512geo NAT: G.SRT.C. 7
TOP: Cofunctions
169 ANS: 1 PTS: 2 REF: 081504geo NAT: G.SRT.C. 7
TOP: Cofunctions
170 ANS: 4 PTS: 2 REF: 011609geo NAT: G.SRT.C. 7
TOP: Cofunctions
171 ANS:
$73+R=90$ Equal cofunctions are complementary.

$$
R=17
$$

PTS: 2 REF: 061628geo NAT: G.SRT.C. 7 TOP: Cofunctions
172 ANS: 1 PTS: 2 REF: 081606geo NAT: G.SRT.C. 7
TOP: Cofunctions
173 ANS:
x represents the distance between the lighthouse and the canoe at 5:00; y represents the distance between the lighthouse and the canoe at $5: 05 . \tan 6=\frac{112-1.5}{x} \tan (49+6)=\frac{112-1.5}{y} \frac{1051.3-77.4}{5} \approx 195$

$$
x \approx 1051.3 \quad y \approx 77.4
$$

PTS: 4
REF: spr1409geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side

174
ANS:
 $\tan 3.47=\frac{M}{6336}$

$$
M \approx 384
$$

$$
4960+384=5344
$$

$$
\begin{aligned}
A & \approx 229 \\
5344-229 & =5115
\end{aligned}
$$

PTS: 6 REF: fall1413geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
175 ANS: 3
$\tan 34=\frac{T}{20}$

$$
T \approx 13.5
$$

PTS: 2 REF: 061505geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side 176 ANS:

$$
\begin{aligned}
\tan 7 & =\frac{125}{x} \quad \tan 16
\end{aligned}=\frac{125}{y} \quad 1018-436 \approx 582
$$

PTS: 4 REF: 081532geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
$\sin 70=\frac{30}{L}$

$$
L \approx 32
$$

PTS: 2 REF: 011629geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
178 $\tan 52.8=\frac{h}{x}$
$h=x \tan 52.8$
$\tan 34.9=\frac{h}{x+8}$
$h=(x+8) \tan 34.9$

$$
\begin{aligned}
x \tan 52.8-x \tan 34.9 & =8 \tan 34.9 \\
x(\tan 52.8-\tan 34.9) & =8 \tan 34.9 \\
x & =\frac{8 \tan 34.9}{\tan 52.8-\tan 34.9}
\end{aligned}
$$

$$
x \approx 9
$$

PTS: 6
$\sin 70=\frac{x}{20}$

$$
x \approx 18.8
$$

PTS: 2
REF: 061611geo
NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side

180 ANS:

$$
\begin{aligned}
\sin 75 & =\frac{15}{x} \\
x & =\frac{15}{\sin 75} \\
x & \approx 15.5
\end{aligned}
$$

PTS: 2 REF: 081631geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
The man's height, 69 inches, is opposite to the angle of elevation, and the shadow length, 102 inches, is adjacent to the angle of elevation. Therefore, tangent must be used to find the angle of elevation. $\tan x=\frac{69}{102}$

$$
x \approx 34.1
$$

PTS: 2 REF: fall1401geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
ANS:
$\sin x=\frac{4.5}{11.75}$

$$
x \approx 23
$$

PTS: 2 REF: 061528geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
ANS: 3
$\cos A=\frac{9}{14}$

$$
A \approx 50^{\circ}
$$

PTS: 2 REF: 011616geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
184 ANS:

$$
\begin{aligned}
\tan x & =\frac{10}{4} \\
x & \approx 68
\end{aligned}
$$

PTS: 2 REF: 061630geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle

185
ANS:

$$
\tan x=\frac{12}{75} \quad \tan y=\frac{72}{75} \quad 43.83-9.09 \approx 34.7
$$

$$
x \approx 9.09 \quad y \approx 43.83
$$

PTS: 4 REF: 081634geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle ANS: 3 PTS: 2 REF: 061524geo NAT: G.CO.B. 7
TOP: Triangle Congruency

187
ANS:
Reflections are rigid motions that preserve distance.
PTS: 2 REF: 061530geo NAT: G.CO.B. 7 TOP: Triangle Congruency
188 ANS:
It is given that point D is the image of point A after a reflection in line $C H$. It is given that $\overleftrightarrow{C H}$ is the perpendicular bisector of $\overline{B C E}$ at point C. Since a bisector divides a segment into two congruent segments at its midpoint, $\overline{B C} \cong \overline{E C}$. Point E is the image of point B after a reflection over the line $C H$, since points B and E are equidistant from point C and it is given that $\overleftrightarrow{C H}$ is perpendicular to $\overrightarrow{B E}$. Point C is on $\overleftrightarrow{C H}$, and therefore, point C maps to itself after the reflection over $\overleftrightarrow{C H}$. Since all three vertices of triangle $A B C$ map to all three vertices of triangle $D E C$ under the same line reflection, then $\triangle A B C \cong \triangle D E C$ because a line reflection is a rigid motion and triangles are congruent when one can be mapped onto the other using a sequence of rigid motions.

PTS: 6 REF: spr1414geo NAT: G.CO.B. 8 TOP: Triangle Congruency
189 ANS:
Translate $\triangle A B C$ along $\overline{C F}$ such that point C maps onto point F, resulting in image $\triangle A^{\prime} B^{\prime} C^{\prime}$. Then reflect $\triangle A^{\prime} B^{\prime} C^{\prime}$ over $\overline{D F}$ such that $\triangle A^{\prime} B^{\prime} C^{\prime}$ maps onto $\triangle D E F$.
or
Reflect $\triangle A B C$ over the perpendicular bisector of $\overline{E B}$ such that $\triangle A B C$ maps onto $\triangle D E F$.
PTS: 2 REF: fall1408geo NAT: G.CO.B. 8 TOP: Triangle Congruency
190 ANS:
The transformation is a rotation, which is a rigid motion.
PTS: 2 REF: 081530geo NAT: G.CO.B. 8 TOP: Triangle Congruency
191 ANS:
Translations preserve distance. If point D is mapped onto point A, point F would map onto point C.
$\triangle D E F \cong \triangle A B C$ as $\overline{A C} \cong \overline{D F}$ and points are collinear on line ℓ and a reflection preserves distance.
PTS: 4 REF: 081534geo NAT: G.CO.B. 8 TOP: Triangle Congruency
192 ANS:
Yes. The sequence of transformations consists of a reflection and a translation, which are isometries which preserve distance and congruency.

PTS: 2 REF: 011628geo NAT: G.CO.B. 8 TOP: Triangle Congruency
193 ANS: 3 PTS: 2 REF: 081622geo NAT: C.CO.B. 8
TOP: Triangle Congruency
194 ANS:
(2) Euclid's Parallel Postulate; (3) Alternate interior angles formed by parallel lines and a transversal are congruent; (4) Angles forming a line are supplementary; (5) Substitution

PTS: 4 REF: 011633geo NAT: G.CO.C. 10 TOP: Triangle Proofs

ANS:

$\triangle X Y Z, \overline{X Y} \cong \overline{Z Y}$, and $\overline{Y W}$ bisects $\angle X Y Z$ (Given). $\triangle X Y Z$ is isosceles
(Definition of isosceles triangle). $\overline{Y W}$ is an altitude of $\triangle X Y Z$ (The angle bisector of the vertex of an isosceles triangle is also the altitude of that triangle). $\overline{Y W} \perp \overline{X Z}$ (Definition of altitude). $\angle Y W Z$ is a right angle (Definition of perpendicular lines).

PTS: 4 REF: spr1411geo NAT: G.CO.C. 10 TOP: Triangle Proofs
196 ANS:
As the sum of the measures of the angles of a triangle is $180^{\circ}, \mathrm{m} \angle A B C+\mathrm{m} \angle B C A+\mathrm{m} \angle C A B=180^{\circ}$. Each interior angle of the triangle and its exterior angle form a linear pair. Linear pairs are supplementary, so $\mathrm{m} \angle A B C+\mathrm{m} \angle F B C=180^{\circ}, \mathrm{m} \angle B C A+\mathrm{m} \angle D C A=180^{\circ}$, and $\mathrm{m} \angle C A B+\mathrm{m} \angle E A B=180^{\circ}$. By addition, the sum of these linear pairs is 540°. When the angle measures of the triangle are subtracted from this sum, the result is 360°, the sum of the exterior angles of the triangle.

PTS: 4 REF: fall1410geo NAT: G.CO.C. 10 TOP: Triangle Proofs
ANS: 3

1) only proves AA; 2) need congruent legs for HL; 3) SAS; 4) only proves product of altitude and base is equal

PTS: 2 REF: 061607geo NAT: G.CO.C. 10 TOP: Triangle Proofs
198 ANS:
$\overline{L A} \cong \overline{D N}, \overline{C A} \cong \overline{C N}$, and $\overline{D A C} \perp \overline{L C N}$ (Given). $\angle L C A$ and $\angle D C N$ are right angles (Definition of perpendicular lines). $\triangle L A C$ and $\triangle D N C$ are right triangles (Definition of a right triangle). $\triangle L A C \cong \triangle D N C$ (HL).
$\triangle L A C$ will map onto $\triangle D N C$ after rotating $\triangle L A C$ counterclockwise 90° about point C such that point L maps onto point D.

PTS: 4 REF: spr1408geo NAT: G.SRT.B. 4 TOP: Triangle Proofs
199 ANS: 2

PTS: 2
REF: 061619geo NAT: G.SRT.B. 4 TOP: Triangle Proofs

ANS:
Quadrilateral $A B C D$ is a parallelogram with diagonals $\overline{A C}$ and $\overline{B D}$ intersecting at E (Given). $\overline{A D} \cong \overline{B C}$ (Opposite sides of a parallelogram are congruent. $\angle A E D \cong \angle C E B$ (Vertical angles are congruent). $\overline{B C} \| \overline{D A}$ (Definition of parallelogram). $\angle D B C \cong \angle B D A$ (Alternate interior angles are congruent). $\triangle A E D \cong \triangle C E B$ (AAS). 180° rotation of $\triangle A E D$ around point E.

PTS: 4 REF: 061533geo NAT: G.CO.C. 11 TOP: Quadrilateral Proofs
ANS:
Quadrilateral $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}$ that bisect each other, and $\angle 1 \cong \angle 2$ (given); quadrilateral $A B C D$ is a parallelogram (the diagonals of a parallelogram bisect each other); $\overline{A B} \| \overline{C D}$ (opposite sides of a parallelogram are parallel); $\angle 1 \cong \angle 3$ and $\angle 2 \cong \angle 4$ (alternate interior angles are congruent); $\angle 2 \cong \angle 3$ and $\angle 3 \cong \angle 4$ (substitution); $\triangle A C D$ is an isosceles triangle (the base angles of an isosceles triangle are congruent); $\overline{A D} \cong \overline{D C}$ (the sides of an isosceles triangle are congruent); quadrilateral $A B C D$ is a rhombus (a rhombus has consecutive congruent sides); $\overline{A E} \perp \overline{B E}$ (the diagonals of a rhombus are perpendicular); $\angle B E A$ is a right angle (perpendicular lines form a right angle); $\triangle A E B$ is a right triangle (a right triangle has a right angle).

PTS: 6 REF: 061635geo NAT: G.CO.C. 11 TOP: Quadrilateral Proofs
202 ANS:
Parallelogram $A B C D$, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E (given). $\overline{D C}\|\overline{A B} ; \overline{D A}\| \overline{C B}$ (opposite sides of a parallelogram are parallel). $\angle A C D \cong \angle C A B$ (alternate interior angles formed by parallel lines and a transversal are congruent).

PTS: 2 REF: 081528geo NAT: G.CO.C. 11 TOP: Quadrilateral Proofs
203 ANS:
Parallelogram $A B C D, \overline{B E} \perp \overline{C E D}, \overline{D F} \perp \overline{B F C}, \overline{C E} \cong \overline{C F}$ (given). $\angle B E C \cong \angle D F C$ (perpendicular lines form right angles, which are congruent). $\angle F C D \cong \angle B C E$ (reflexive property). $\triangle B E C \cong \triangle D F C$ (ASA). $\overline{B C} \cong \overline{C D}$ (CPCTC). $A B C D$ is a rhombus (a parallelogram with consecutive congruent sides is a rhombus).

PTS: 6 REF: 081535geo NAT: G.CO.C. 11 TOP: Quadrilateral Proofs
204 ANS:
Parallelogram $A N D R$ with $\overline{A W}$ and $\overline{D E}$ bisecting $\overline{N W D}$ and $\overline{R E A}$ at points W and E (Given). $\overline{A N} \cong \overline{R D}$, $\overline{A R} \cong \overline{D N}$ (Opposite sides of a parallelogram are congruent). $A E=\frac{1}{2} A R, W D=\frac{1}{2} D N$, so $\overline{A E} \cong \overline{W D}$ (Definition of bisect and division property of equality). $\overline{A R} \| \overline{D N}$ (Opposite sides of a parallelogram are parallel). AWDE is a parallelogram (Definition of parallelogram). $R E=\frac{1}{2} A R, N W=\frac{1}{2} D N$, so $\overline{R E} \cong \overline{N W}$ (Definition of bisect and division property of equality). $\overline{E D} \cong \overline{A W}$ (Opposite sides of a parallelogram are congruent). $\triangle A N W \cong \triangle D R E$ (SSS).

PTS: 6 REF: 011635geo NAT: G.CO.C. 11 TOP: Quadrilateral Proofs

ANS:
Parallelogram $A B C D, \overline{E F G}$, and diagonal $\overline{D F B}$ (given); $\angle D F E \cong \angle B F G$ (vertical angles); $\overline{A D} \| \overline{C B}$ (opposite sides of a parallelogram are parallel); $\angle E D F \cong \angle G B F$ (alternate interior angles are congruent); $\triangle D E F \sim \triangle B G F$ (AA)

PTS: 4 REF: 061633geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs
ANS:
Circle O, secant $\overline{A C D}$, tangent $\overline{A B}$ (Given). Chords $\overline{B C}$ and $\overline{B D}$ are drawn (Auxiliary lines). $\angle A \cong \angle A$, $\overparen{B C} \cong \overparen{B C}$ (Reflexive property). $\mathrm{m} \angle B D C=\frac{1}{2} \mathrm{~m} \overparen{B C}$ (The measure of an inscribed angle is half the measure of the intercepted arc). $\mathrm{m} \angle C B A=\frac{1}{2} \mathrm{~m} \overparen{B C}$ (The measure of an angle formed by a tangent and a chord is half the measure of the intercepted arc). $\angle B D C \cong \angle C B A$ (Angles equal to half of the same arc are congruent).
$\triangle A B C \sim \triangle A D B$ (AA). $\frac{A B}{A C}=\frac{A D}{A B}$ (Corresponding sides of similar triangles are proportional). $A C \cdot A D=A B^{2}$ (In a proportion, the product of the means equals the product of the extremes).

PTS: 6 REF: spr1413geo NAT: G.SRT.B. 5 TOP: Circle Proofs
207 ANS:
Circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E (Given); Chords $\overline{C B}$ and $\overline{A D}$ are drawn (auxiliary lines drawn); $\angle C E B \cong \angle A E D$ (vertical angles); $\angle C \cong \angle A$ (Inscribed angles that intercept the same arc are congruent); $\triangle B C E \sim \triangle D A E$ (AA); $\frac{A E}{C E}=\frac{E D}{E B}$ (Corresponding sides of similar triangles are proportional);
$A E \cdot E B=C E \cdot E D$ (The product of the means equals the product of the extremes).
PTS: 6 REF: 081635geo NAT: G.SRT.B. 5 TOP: Circle Proofs

[^0]: 1 a pyramid with a square base
 2 an isosceles triangle
 3 a right triangle
 4 a cone

