Tuesday, January 26 , 1904-9.15 a. m. to 12.15 p. m., only

Abstract

Answer eight questions but no more. If more than eight are answerit only the first eight answers zuill be considered. Give all operations (except mental ones) necessary to find results. Reduce each result to its simpless form and mark it Ans. Each complete answer will receive $121 / 2$ credzt. Papers entitled to 75 ar more credits will be accepted.

I Define detached coefficient, derived polynomial, logarithm. commensurable root, recurring series.

2 Solve as a quadratic $\sqrt{2}-10 x+46+(x-5)^{2}=9$
3 Expand $(x+1)^{\frac{3}{2}}$ to four terms by the method of undetermined coefficients.

4 B travels 3 miles the first day, γ miles the second day, 1 ? miles the third day etc. ; in how many days will B overtake A who started from the same point 8 days in advance and wh. travels uniformly 15 miles a day?

5 Form an equation of the fourth degree with rational eeefficients, one of whose roots is $\sqrt{3}+\sqrt{-2}$

6 Assuming that $a: b:: b: c:: c: d$, prove that $a: d:: a^{3}: b^{3}$
7 Express $\frac{1}{2+} \frac{1}{1+} \frac{1}{1+} \frac{1}{1+} \frac{1}{2+} \frac{1}{8}$ as a common fraction and finc: the fifth convergent.

8 Derive a formula for finding (a) the number of permutic tions of n quantities taken r at a time, (b) the number of combinations of u quantities taken r at a time.

9 Transform the following equation into one whose coefficients are integral, that of the first term being unity:

$$
2 x^{3}+2 \frac{1}{6} x^{2}+\frac{1}{8} x-\frac{1}{12}=0
$$

ıo Given the inequality $x-z<y$, the terms x, y and z beins positive ; show the effect of multiplying the inèquality by $\rightarrow a$. by $-a$; of changing the signs of all the terms; of transposing z
${ }_{11}$ Given $\log \frac{1}{2}=\overline{1} .6990$; solve by use of logarithms $8^{x+3}=5^{2 x-\text { : }}$
12 Using Horner's method of approximation, compute te three places of decimals the root of $x^{3}+2 x^{2}-23 x-70=0$, that lies between 5 and 6 .

