0113a2

1 What is the equation of the graph shown below?

1) $y=2^{x}$
2) $y=2^{-x}$
3) $x=2^{y}$
4) $x=2^{-y}$

2 Which ordered pair is a solution of the system of equations shown below? $x+y=5$

$$
(x+3)^{2}+(y-3)^{2}=53
$$

1) $(2,3)$
2) $(5,0)$
3) $(-5,10)$
4) $(-4,9)$

3 The relationship between t, a student's test scores, and d, the student's success in college, is modeled by the equation $d=0.48 t+75.2$. Based on this linear regression model, the correlation coefficient could be

1) between -1 and 0
2) between 0 and 1
3) equal to -1
4) equal to 0

4 What is the common ratio of the geometric sequence shown below?

$$
-2,4,-8,16, \ldots
$$

1) $-\frac{1}{2}$
2) 2
3) -2
4) -6

5 Given the relation $\{(8,2),(3,6),(7,5),(k, 4)\}$, which value of k will result in the relation not being a function?

1) 1
2) 2
3) 3
4) 4

6 Which expression is equivalent to $\left(9 x^{2} y^{6}\right)^{-\frac{1}{2}}$?

1) $\frac{1}{3 x y^{3}}$
2) $3 x y^{3}$
3) $\frac{3}{x y^{3}}$
4) $\frac{x y^{3}}{3}$

7 In a certain high school, a survey revealed the mean amount of bottled water consumed by students each day was 153 bottles with a standard deviation of 22 bottles. Assuming the survey represented a normal distribution, what is the range of the number of bottled waters that approximately 68.2% of the students drink?

1) 131-164
2) 131-175
3) $142-164$
4) $142-175$

8 What is the fourth term in the binomial expansion $(x-2)^{8}$?

1) $448 x^{5}$
2) $448 x^{4}$
3) $-448 x^{5}$
4) $-448 x^{4}$

9 Which value of k satisfies the equation $8^{3 k+4}=4^{2 k-1}$?

1) -1
2) $-\frac{9}{4}$
3) -2
4) $-\frac{14}{5}$

10 There are eight people in a tennis club. Which expression can be used to find the number of different ways they can place first, second, and third in a tournament?

1) ${ }_{8} P_{3}$
2) ${ }_{8} C_{3}$
3) ${ }_{8} P_{5}$
4) ${ }_{8} C_{5}$

11 If $\sin A=\frac{1}{3}$, what is the value of $\cos 2 A$?

1) $-\frac{2}{3}$
2) $\frac{2}{3}$
3) $-\frac{7}{9}$
4) $\frac{7}{9}$

12 In the interval $0^{\circ} \leq x<360^{\circ}, \tan x$ is undefined when x equals

1) 0° and 90°
2) 90° and 180°
3) 180° and 270°
4) 90° and 270°

13 If $\mathrm{f}(x)=\sqrt{9-x^{2}}$, what are its domain and range?

1) domain: $\{x \mid-3 \leq x \leq 3\}$; range: $\{y \mid 0 \leq y \leq 3\}$
2) domain: $\{x \mid x \neq \pm 3\}$; range: $\{y \mid 0 \leq y \leq 3\}$
3) domain: $\{x \mid x \leq-3$ or $x \geq 3\}$; range: $\{y \mid y \neq 0\}$
4) domain: $\{x \mid x \neq 3\}$; range: $\{y \mid y \geq 0\}$

14 When $x^{2}+3 x-4$ is subtracted from $x^{3}+3 x^{2}-2 x$, the difference is

1) $x^{3}+2 x^{2}-5 x+4$
2) $x^{3}+2 x^{2}+x-4$
3) $-x^{3}+4 x^{2}+x-4$
4) $-x^{3}-2 x^{2}+5 x+4$

15 In the diagram below, the length of which line segment is equal to the exact value of $\sin \theta$?

1) $\overline{T O}$
2) $\overline{T S}$
3) $\overline{O R}$
4) $\overline{O S}$

16 The area of triangle $A B C$ is 42 . If $A B=8$ and $\mathrm{m} \angle B=61$, the length of $\overline{B C}$ is approximately

1) 5.1
2) 9.2
3) 12.0
4) 21.7

17 When factored completely, the expression $3 x^{3}-5 x^{2}-48 x+80$ is equivalent to

1) $\left(x^{2}-16\right)(3 x-5)$
2) $\left(x^{2}+16\right)(3 x-5)(3 x+5)$
3) $(x+4)(x-4)(3 x-5)$
4) $(x+4)(x-4)(3 x-5)(3 x-5)$

18 The value of $\sin (180+x)$ is equivalent to

1) $-\sin x$
2) $-\sin (90-x)$
3) $\sin x$
4) $\sin (90-x)$

19 The sum of $\sqrt[3]{6 a^{4} b^{2}}$ and $\sqrt[3]{162 a^{4} b^{2}}$, expressed in simplest radical form, is

1) $\sqrt[6]{168 a^{8} b^{4}}$
2) $2 a^{2} b \sqrt[3]{21 a^{2} b}$
3) $4 a \sqrt[3]{6 a b^{2}}$
4) $10 a^{2} b \sqrt[3]{8}$

20 Which equation is represented by the graph below?

1) $y=2 \cos 3 x$
2) $y=2 \sin 3 x$
3) $y=2 \cos \frac{2 \pi}{3} x$
4) $y=2 \sin \frac{2 \pi}{3} x$

21 The quantities p and q vary inversely. If $p=20$ when $q=-2$, and $p=x$ when $q=-2 x+2$, then x equals

1) -4 and 5
2) $\frac{20}{19}$
3) -5 and 4
4) $-\frac{1}{4}$

22 What is the solution set of the equation $-\sqrt{2} \sec x=2$ when $0^{\circ} \leq x<360^{\circ}$?

1) $\left\{45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ}\right\}$
2) $\left\{45^{\circ}, 315^{\circ}\right\}$
3) $\left\{135^{\circ}, 225^{\circ}\right\}$
4) $\left\{225^{\circ}, 315^{\circ}\right\}$

23 The discriminant of a quadratic equation is 24 .
The roots are

1) imaginary
2) real, rational, and equal
3) real, rational, and unequal
4) real, irrational, and unequal

24 How many different six-letter arrangements can be made using the letters of the word "TATTOO"?

1) 60
2) 90
3) 120
4) 720

25 Expressed in simplest form, $\frac{3 y}{2 y-6}+\frac{9}{6-2 y}$ is equivalent to

1) $\frac{-6 y^{2}+36 y-54}{(2 y-6)(6-2 y)}$
2) $\frac{3 y-9}{2 y-6}$
3) $\frac{3}{2}$
4) $-\frac{3}{2}$

26 If $\log 2=a$ and $\log 3=b$, the expression $\log \frac{9}{20}$ is equivalent to

1) $2 b-a+1$
2) $2 b-a-1$
3) $b^{2}-a+10$
4) $\frac{2 b}{a+1}$

27 The expression $(x+i)^{2}-(x-i)^{2}$ is equivalent to

1) 0
2) -2
3) $-2+4 x i$
4) $4 x i$

28 Determine the sum of the first twenty terms of the sequence whose first five terms are $5,14,23,32$, 41.

29 Determine the sum and the product of the roots of $3 x^{2}=11 x-6$.

30 If $\sec (a+15)^{\circ}=\csc (2 a)^{\circ}$, find the smallest positive value of a, in degrees.

31 The heights, in inches, of 10 high school varsity basketball players are $78,79,79,72,75,71,74,74$, 83 , and 71 . Find the interquartile range of this data set.

32 Solve the equation $6 x^{2}-2 x-3=0$ and express the answer in simplest radical form.

33 The number of bacteria present in a Petri dish can be modeled by the function $N=50 e^{3 t}$, where N is the number of bacteria present in the Petri dish after t hours. Using this model, determine, to the nearest hundredth, the number of hours it will take for N to reach 30,700.

34 Determine the solution of the inequality $|3-2 x| \geq 7$. [The use of the grid below is optional.]

35 Convert 3 radians to degrees and express the answer to the nearest minute.

36 Solve algebraically for all values of x :
$\log _{(x+4)}(17 x-4)=2$

37 The data collected by a biologist showing the growth of a colony of bacteria at the end of each hour are displayed in the table below.

Time, hour, (x)	Population (y)
0	250
1	330
2	580
3	800
4	1650
5	3000

Write an exponential regression equation to model these data. Round all values to the nearest thousandth. Assuming this trend continues, use this equation to estimate, to the nearest ten, the number of bacteria in the colony at the end of 7 hours.

38 As shown in the diagram below, fire-tracking station A is 100 miles due west of fire-tracking station B. A forest fire is spotted at F, on a bearing 47° northeast of station A and 15° northeast of station B. Determine, to the nearest tenth of a mile, the distance the fire is from both station A and station B. [N represents due north.]

39 Solve algebraically for x :
$\sqrt{x^{2}+x-1}+11 x=7 x+3$

$0113 a 2$

Answer Section
1 ANS: 2
PTS: 2
REF: 011301a2
STA: A2.A. 52
TOP: Identifying the Equation of a Graph
2 ANS: 3

$$
\begin{array}{rlrl}
x+y & =5 & .-5+y & =5 \\
y & =-x+5 & y & =10
\end{array}
$$

$$
\begin{aligned}
(x+3)^{2}+(-x+5-3)^{2} & =53 \\
x^{2}+6 x+9+x^{2}-4 x+4 & =53 \\
2 x^{2}+2 x-40 & =0 \\
x^{2}+x-20 & =0 \\
(x+5)(x-4) & =0 \\
x & =-5,4
\end{aligned}
$$

PTS: 2
REF: 011302a2 STA: A2.A.3
TOP: Quadratic-Linear Systems
KEY: equations
3 ANS: 2
Since the coefficient of t is greater than $0, r>0$.
PTS: 2
REF: 011303a2 STA: A2.S. 8
TOP: Correlation Coefficient
4 ANS: 3
$\frac{4}{-2}=-2$
PTS: 2
5 ANS: 3
REF: 011304a2
STA: A2.A. 31
TOP: Sequences
TOP: Defining Functions
6 ANS: $1 \quad$ PTS: 2
REF: 011305a2
STA: A2.A. 37

TOP: Negative and Fractional Exponents
7 ANS: 2

$$
\bar{x} \pm \sigma
$$

153 ± 22
131-175
PTS: 2
REF: 011307a2 STA: A2.S. 5
TOP: Normal Distributions
KEY: interval
8 ANS: 3
${ }_{8} C_{3} \cdot x^{8-3} \cdot(-2)^{3}=56 x^{5} \cdot(-8)=-448 x^{5}$

PTS: 2
REF: 011308a2
STA: A2.A. 36
TOP: Binomial Expansions

9 ANS: 4

$$
8^{3 k+4}=4^{2 k-1}
$$

$\left(2^{3}\right)^{3 k+4}=\left(2^{2}\right)^{2 k-1}$

$$
2^{9 k+12}=2^{4 k-2}
$$

$$
9 k+12=4 k-2
$$

$$
5 k=-14
$$

$$
k=-\frac{14}{5}
$$

PTS: 2
REF: 011309a2
STA: A2.A. 27
TOP: Exponential Equations
KEY: common base not shown
10 ANS: 1 PTS: 2
REF: 011310a2
STA: A2.S. 9
TOP: Differentiating Permutations and Combinations
11 ANS: 4
$\cos 2 A=1-2 \sin ^{2} A=1-2\left(\frac{1}{3}\right)^{2}=1-\frac{2}{9}=\frac{7}{9}$
PTS: 2 REF: 011311a2 STA: A2.A. 77 TOP: Double Angle Identities
KEY: evaluating
12 ANS: 4
PTS: 2
REF: 011312a2 STA: A2.A. 56
TOP: Determining Trigonometric Functions
REF: 011313a2
KEY: degrees, common angles
13 ANS: 1
PTS: 2
KEY: real domain
14 ANS: $1 \quad$ PTS: 2
TOP: Operations with Polynomials
15 ANS: 2
PTS: 2
REF: 011315a2 STA: A2.A. 55
TOP: Trigonometric Ratios
16 ANS: 3
$42=\frac{1}{2}(a)(8) \sin 61$
$42 \approx 3.5 a$
$12 \approx a$
PTS: 2 REF: 011316a2 STA: A2.A. 74 TOP: Using Trigonometry to Find Area
KEY: basic

17 ANS: 3

$$
\begin{gathered}
3 x^{3}-5 x^{2}-48 x+80 \\
x^{2}(3 x-5)-16(3 x-5) \\
\left(x^{2}-16\right)(3 x-5) \\
(x+4)(x-4)(3 x-5)
\end{gathered}
$$

PTS: 2 REF: 011317a2 STA: A2.A. 7 TOP: Factoring by Grouping
18 ANS: 1
$\sin (180+x)=(\sin 180)(\cos x)+(\cos 180)(\sin x)=0+(-\sin x)=-\sin x$
PTS: 2 REF: 011318a2 STA: A2.A. 76 TOP: Angle Sum and Difference Identities
KEY: identities
19 ANS: 3
$\sqrt[3]{6 a^{4} b^{2}}+\sqrt[3]{(27 \cdot 6) a^{4} b^{2}}$
$a \sqrt[3]{6 a b^{2}}+3 a \sqrt[3]{6 a b^{2}}$

$$
4 a \sqrt[3]{6 a b^{2}}
$$

PTS: 2
REF: 011319a2
STA: A2.N. 2
ANS: 1
PTS: 2
REF: 011320a2
TOP: Operations with Radicals
TOP: Identifying the Equation of a Trigonometric Graph
21 ANS: 1

$$
\begin{aligned}
20(-2) & =x(-2 x+2) \\
-40 & =-2 x^{2}+2 x
\end{aligned}
$$

$2 x^{2}-2 x-40=0$
$x^{2}-x-20=0$
$(x+4)(x-5)=0$

$$
x=-4,5
$$

PTS: 2
REF: 011321a2 STA: A2.A.5
TOP: Inverse Variation

22 ANS: 3
$-\sqrt{2} \sec x=2$
$\sec x=-\frac{2}{\sqrt{2}}$
$\cos x=-\frac{\sqrt{2}}{2}$

$$
x=135,225
$$

PTS: 2
REF: 011322a2
STA: A2.A. 68 TOP: Trigonometric Equations
KEY: reciprocal functions
23 ANS: 4
PTS: 2
REF: 011323a2 STA: A2.A. 2
TOP: Using the Discriminant
KEY : determine nature of roots given equation
24 ANS: 1
$\frac{{ }_{6} P_{6}}{3!2!}=\frac{720}{12}=60$
PTS: 2
REF: 011324a2 STA: A2.S. 10
TOP: Permutations
ANS: 3
$\frac{3 y}{2 y-6}+\frac{9}{6-2 y}=\frac{3 y}{2 y-6}-\frac{9}{2 y-6}=\frac{3 y-9}{2 y-6}=\frac{3(y-3)}{2(y-3)}=\frac{3}{2}$
PTS: 2
REF: 011325a2 STA: A2.A. 16
TOP: Addition and Subtraction of Rationals
26 ANS: 2

$$
\log 9-\log 20
$$

$\log 3^{2}-\log (10 \cdot 2)$
$2 \log 3-(\log 10+\log 2)$

$$
\begin{gathered}
2 b-(1+a) \\
2 b-a-1
\end{gathered}
$$

PTS: 2 REF: 011326a2 STA: A2.A. 19 TOP: Properties of Logarithms
KEY: expressing logs algebraically
27
ANS. 4
$(x+i)^{2}-(x-i)^{2}=x^{2}+2 x i+i^{2}-\left(x^{2}-2 x i+i^{2}\right)=4 x i$
PTS: 2
REF: 011327a2 STA: A2.N. 9
TOP: Multiplication and Division of Complex Numbers

28 ANS:
$a_{n}=9 n-4 \quad . S_{n}=\frac{20(5+176)}{2}=1810$
$a_{1}=9(1)-4=5$
$a_{20}=9(20)-4=176$
PTS: 2
REF: 011328a2
STA: A2.A. 35
TOP: Summations
KEY: arithmetic
29 ANS:
$3 x^{2}-11 x+6=0 . \operatorname{Sum} \frac{-b}{a}=\frac{11}{3}$. Product $\frac{c}{a}=\frac{6}{3}=2$
PTS: 2
REF: 011329a2 STA: A2.A. 20
TOP: Roots of Quadratics
30 ANS:
$a+15+2 a=90$

$$
\begin{aligned}
3 a+15 & =90 \\
3 a & =75 \\
a & =25
\end{aligned}
$$

PTS: 2 REF: 011330a2 STA: A2.A. 58 TOP: Cofunction Trigonometric Relationships
31 ANS:
Ordered, the heights are $71,71,72,74,74,75,78,79,79,83 . Q_{1}=72$ and $Q_{3}=79.79-72=7$.
PTS: 2 REF: 011331a2 STA: A2.S. 4 TOP: Dispersion
KEY: range, quartiles, interquartile range, variance
32
ANS:
$\frac{2 \pm \sqrt{(-2)^{2}-4(6)(-3)}}{2(6)}=\frac{2 \pm \sqrt{76}}{12}=\frac{2 \pm \sqrt{4} \sqrt{19}}{12}=\frac{2 \pm 2 \sqrt{19}}{12}=\frac{1 \pm \sqrt{19}}{6}$
PTS: 2 REF: 011332a2 STA: A2.A. 25 TOP: Quadratics with Irrational Solutions
33 ANS:

$$
\begin{aligned}
30700 & =50 e^{3 t} \\
614 & =e^{3 t} \\
\ln 614 & =\ln e^{3 t} \\
\ln 614 & =3 t \ln e \\
\ln 614 & =3 t \\
2.14 & \approx t
\end{aligned}
$$

PTS: 2 REF: 011333a2 STA: A2.A. 6 TOP: Exponential Growth

34 ANS:
$3-2 x \geq 7$ or $3-2 x \leq-7$

$$
\begin{array}{rlrl}
-2 x & \geq 4 & -2 x & \leq-10 \\
x & \leq-2 & x & \geq 5
\end{array}
$$

PTS: 2
KEY: graph
35 ANS:
$3 \times \frac{180}{\pi} \approx 171.89^{\circ} \approx 171^{\circ} 53^{\prime}$.
$\left(\begin{array}{c}\left(3 * \frac{100}{0}\right)+\text { ㅁMI } \\ 171^{10} 5314.419 "\end{array}\right.$

PTS: 2
REF: 011335a2
STA: A2.M. 2
TOP: Radian Measure
KEY: degrees
36 ANS:

$$
\begin{aligned}
(x+4)^{2} & =17 x-4 \\
x^{2}+8 x+16 & =17 x-4 \\
x^{2}-9 x+20 & =0 \\
(x-4)(x-5) & =0 \\
x & =4,5
\end{aligned}
$$

PTS: 4
REF: 011336a2 STA: A2.A. 28
KEY: basic
37
$y=215.983(1.652)^{x} .215 .983(1.652)^{7} \approx 7250$
PTS: 4
REF: 011337a2
STA: A2.S. 7
TOP: Exponential Regression
ANS:

$$
\begin{array}{rlrl}
\frac{100}{\sin 32} & =\frac{b}{\sin 105} \cdot \frac{100}{\sin 32} & =\frac{a}{\sin 43} \\
b & \approx 182.3 & a & \approx 128.7
\end{array}
$$

PTS: 4
KEY: basic
REF: 011338a2
STA: A2.A. 73
TOP: Law of Sines

39 ANS:

$$
\begin{array}{rlrl}
\sqrt{x^{2}+x-1} & =-4 x+3 & -4\left(\frac{2}{3}\right)+3 \geq 0 \\
x^{2}+x-1 & =16 x^{2}-24 x+9 & & \\
0 & =15 x^{2}-25 x+10 & \frac{1}{3} \geq 0 \\
0 & =3 x^{2}-5 x+2 & -4(1)+3<0 \\
0 & =(3 x-2)(x-1) & & 1 \text { is extraneous } \\
x & =\frac{2}{3}, x \neq 1 &
\end{array}
$$

PTS: 6 REF: 011339a2 STA: A2.A. 22 TOP: Solving Radicals KEY: extraneous solutions

