$0116 a^{2}$

1 A survey is to be conducted in a small upstate village to determine whether or not local residents should fund construction of a skateboard park by raising taxes. Which segment of the population would provide the most unbiased responses?

1) a club of local skateboard enthusiasts
2) senior citizens living on fixed incomes
3) a group opposed to any increase in taxes
4) every tenth person 18 years of age or older walking down Main St.

2 Which angle does not terminate in Quadrant IV when drawn on a unit circle in standard position?

1) -300°
2) -50°
3) 280°
4) 1030°

3 The expression $\frac{\frac{1}{x}+\frac{3}{y}}{\frac{2}{x y}}$ is equivalent to

1) $\frac{3}{2}$
2) $\frac{3 x+y}{2 x y}$
3) $\frac{3 x y}{2}$
4) $\frac{3 x+y}{2}$

4 Which relation does not represent a function?
2)
4)

5 In the diagram below, the spinner is divided into eight equal regions.

Which expression represents the probability of the spinner landing on B exactly three times in five spins?

1) ${ }_{8} C_{3}\left(\frac{1}{5}\right)^{3}\left(\frac{4}{5}\right)^{5}$
2) ${ }_{8} C_{3}\left(\frac{1}{5}\right)^{5}\left(\frac{4}{5}\right)^{3}$
3) ${ }_{5} C_{3}\left(\frac{1}{8}\right)^{2}\left(\frac{7}{8}\right)^{3}$
4) ${ }_{5} C_{3}\left(\frac{1}{8}\right)^{3}\left(\frac{7}{8}\right)^{2}$

6 The expression $\sqrt[3]{27 a^{-6} b^{3} c^{2}}$ is equivalent to

1) $\frac{3 b c^{\frac{2}{3}}}{a^{2}}$
2) $\frac{3 b^{9} c^{6}}{a^{18}}$
3) $\frac{3 b^{6} c^{5}}{a^{3}}$
4) $\frac{3 b^{3} \sqrt[3]{3 c^{2}}}{a^{2}}$

7 The amount of money in an account can be determined by the formula $A=P e^{r t}$, where P is the initial investment, r is the annual interest rate, and t is the number of years the money was invested. What is the value of a $\$ 5000$ investment after 18 years, if it was invested at 4% interest compounded continuously?

1) $\$ 9367.30$
2) $\$ 9869.39$
3) $\$ 10,129.08$
4) $\$ 10,272.17$

8 What is $\frac{x}{x-1}-\frac{1}{2-2 x}$ expressed as a single fraction?

1) $\frac{x+1}{x-1}$
2) $\frac{2 x-1}{2-2 x}$
3) $\frac{2 x+1}{2(x-1)}$
4) $\frac{2 x-1}{2(x-1)}$

9 What is the total number of points of intersection of the graphs of the equations $2 x^{2}-y^{2}=8$ and $y=x+2$?

1) 1
2) 2
3) 3
4) 0

10 Given the sequence: $x,(x+y),(x+2 y), \ldots$
Which expression can be used to determine the common difference of this sequence?

1) $x-(x+y)$
2) $(x+2 y)-(x+y)$
3) $\frac{x}{(x+y)}$
4) $\frac{(x+2 y)}{(x+y)}$

11 In a circle with a diameter of 24 cm , a central angle of $\frac{4 \pi}{3}$ radians intercepts an arc. The length of the arc, in centimeters, is

1) 8π
2) 9π
3) 16π
4) 32π

12 Which graph is the solution to the inequality $4|2 x+6|-5<27 ?$
1)

2)
3)
4)

13 What is the sum of the roots of the equation $-3 x^{2}+6 x-2=0$?

1) $\frac{2}{3}$
2) 2
3) $-\frac{2}{3}$
4) -2

14 The scores of 1000 students on a standardized test were normally distributed with a mean of 50 and a standard deviation of 5 . What is the expected number of students who had scores greater than 60 ?

1) 1.7
2) 23
3) 46
4) 304

15 If $T=\frac{10 x^{2}}{y}$, then $\log T$ is equivalent to

1) $(1+2 \log x)-\log y$
2) $\log (1+2 x)-\log y$
3) $(1-2 \log x)+\log y$
4) $2(1-\log x)+\log y$

16 Which statement regarding correlation is not true?

1) The closer the absolute value of the correlation coefficient is to one, the closer the data conform to a line.
2) A correlation coefficient measures the strength of the linear relationship between two variables.
3) A negative correlation coefficient indicates that there is a weak relationship between two variables.
4) A relation for which most of the data fall close to a line is considered strong.

17 What is the value of $\sum_{n=1}^{3} \cos \frac{n \pi}{2}$?

1) 1
2) -1
3) 0
4) $-\frac{1}{2}$

18 The roots of the equation $4\left(x^{2}-1\right)=-3 x$ are

1) imaginary
2) real, rational, equal
3) real, rational, unequal
4) real, irrational, unequal

19 If $f(x)=2 x^{2}-3 x+4$, then $f(x+3)$ is equal to

1) $2 x^{2}-3 x+7$
2) $2 x^{2}-3 x+13$
3) $2 x^{2}+9 x+13$
4) $2 x^{2}+9 x+25$

20 The expression $x\left(3 i^{2}\right)^{3}+2 x i^{12}$ is equivalent to

1) $2 x+27 x i$
2) $-7 x$
3) $-25 x$
4) $-29 x$

21 If the terminal side of angle θ passes through point $(-3,-4)$, what is the value of $\sec \theta$?

1) $\frac{5}{3}$
2) $-\frac{5}{3}$
3) $\frac{5}{4}$
4) $-\frac{5}{4}$

22 When the inverse of $\tan \theta$ is sketched, its domain is

1) $-1 \leq \theta \leq 1$
2) $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$
3) $0 \leq \theta \leq \pi$
4) $-\infty<\theta<\infty$

23 What is the third term of the recursive sequence below?

$$
\begin{aligned}
& a_{1}=-6 \\
& a_{n}=\frac{1}{2} a_{n-1}-n
\end{aligned}
$$

1) $-\frac{11}{2}$
2) $-\frac{5}{2}$
3) $-\frac{1}{2}$
4) -4

24 What is the equation of a circle with its center at $(0,-2)$ and passing through the point $(3,-5)$?

1) $x^{2}+(y+2)^{2}=9$
2) $(x+2)^{2}+y^{2}=9$
3) $x^{2}+(y+2)^{2}=18$
4) $(x+2)^{2}+y^{2}=18$

25 If angles A and B are complementary, then $\sec B$ equals

1) $\csc \left(90^{\circ}-B\right)$
2) $\csc \left(B-90^{\circ}\right)$
3) $\cos \left(B-90^{\circ}\right)$
4) $\cos \left(90^{\circ}-B\right)$

26 The legs of a right triangle are represented by $x+\sqrt{2}$ and $x-\sqrt{2}$. The length of the hypotenuse of the right triangle is represented by

1) $\sqrt{2 x^{2}+4}$
2) $2 x^{2}+4$
3) $x \sqrt{2}+2$
4) $\sqrt{x^{2}-2}$

27 What are the amplitude and the period of the graph represented by the equation $y=-3 \cos \frac{\theta}{3}$?

1) amplitude: -3 ; period: $\frac{\pi}{3}$
2) amplitude: -3 ; period: 6π
3) amplitude: 3; period: $\frac{\pi}{3}$
4) amplitude: 3 ; period: 6π

28 Solve algebraically for $x: \sqrt{2 x+1}+4=8$

29 Factor completely: $x^{3}+3 x^{2}+2 x+6$

36 Find the exact roots of $x^{2}+10 x-8=0$ by completing the square.
32 Express -130° in radian measure, to the nearest hundredth.

33 Determine the area, to the nearest integer, of $\triangle S R O$ shown below.

34 Prove that the equation shown below is an identity for all values for which the functions are defined: $\csc \theta \cdot \sin ^{2} \theta \cdot \cot \theta=\cos \theta$

35 Find the difference when $\frac{4}{3} x^{3}-\frac{5}{8} x^{2}+\frac{7}{9} x$ is subtracted from $2 x^{3}+\frac{3}{4} x^{2}-\frac{2}{9}$.

30 Solve algebraically for the exact value of x : $\log _{8} 16=x+1$

31 Determine how many eleven-letter arrangements can be formed from the word "CATTARAUGUS."

Algebra 2/Trigonometry Regents Exam 0116
www.jmap.org
37 The table below gives the relationship between x and y.

\mathbf{x}	1	2	3	4	5
\mathbf{y}	4.2	33.5	113.1	268.1	523.6

Use exponential regression to find an equation for y as a function of x, rounding all values to the nearest hundredth. Using this equation, predict the value of x if y is 426.21 , rounding to the nearest tenth. [Only an algebraic solution can receive full credit.]

38 Solve the equation $\cos 2 x=\cos x$ algebraically for all values of x in the interval $0^{\circ} \leq x<360^{\circ}$.

39 Given: $D C=10, A G=15, B E=6, F E=10$, $\mathrm{m} \angle A B G=40, \mathrm{~m} \angle G B D=90, \mathrm{~m} \angle C<90$, $\overline{B E} \cong \overline{E D}$, and $\overline{G F} \cong \overline{F B}$

Find $\mathrm{m} \angle A$ to the nearest tenth. Find $B C$ to the nearest tenth.

$0116 a 2$

Answer Section

1 ANS: 4
PTS: 2
REF: 011601a2
STA: A2.S. 2
TOP: Analysis of Data
2 ANS: 1
$-300^{\circ}+360^{\circ}=60^{\circ}$, which terminates in Quadrant I.
PTS: 2
REF: 011602a2 STA: A2 A. 60
TOP: Unit Circle
3 ANS: 4
$\frac{\frac{3 x+y}{x y}}{\frac{2}{x y}}=\frac{3 x+y}{x y} \cdot \frac{x y}{2}=\frac{3 x+y}{2}$

PTS: 2 REF: 011603a2
STA: A2.A. 17
TOP: Complex Fractions
4 ANS: 3
PTS: 2
REF: 011604a2
KEY: ordered pairs
REF: 011605a2
STA: A2.S. 15
KEY: modeling
6 ANS: 1
$\sqrt[3]{27 a^{-6} b^{3} c^{2}}=3 a^{-2} b c^{\frac{2}{3}}=\frac{3 b c^{\frac{2}{3}}}{a^{2}}$

PTS: 2 REF: 011606a2 STA: A2.A. 11 TOP: Radicals as Fractional Exponents
7 ANS: 4
$A=5000 e^{(.04)(18)} \approx 10272.17$
PTS: 2 REF: 011607a2 STA: A2.A. 12 TOP: Evaluating Exponential Expressions
8 ANS: 3
$\frac{x}{x-1}+\frac{1}{2 x-2}=\frac{2 x}{2(x-1)}+\frac{1}{2(x-1)}=\frac{2 x+1}{2(x-1)}$

PTS: 2
REF: 011608a2 STA: A2.A. 16
TOP: Addition and Subtraction of Rationals
9 ANS: 2

$$
\begin{aligned}
2 x^{2}-(x+2)^{2} & =8 \\
2 x^{2}-\left(x^{2}+4 x+4\right)-8 & =0 \\
x^{2}-4 x-12 & =0 \\
(x-6)(x+2) & =0 \\
x & =6,-2
\end{aligned}
$$

PTS: 2
REF: 011609a2
STA: A2.A. 3
TOP: Quadratic-Linear Systems
KEY: equations

10 ANS: 2 PTS: 2 REF: 011610a2 STA: A2.A.30
TOP: Sequences
11 ANS: 3
$s=\theta r=\frac{4 \pi}{3} \cdot \frac{24}{2}=16 \pi$

PTS: 2
REF: 011611a2
STA: A2.A. 61
TOP: Arc Length
KEY: arc length
12 ANS: 2

$$
\begin{array}{rlrlrl}
4|2 x+6| & <32 & 2 x+6 & <8 & 2 x+6 & >-8 \\
|2 x+6| & <8 & 2 x & <2 & 2 \dot{x} & >-14 \\
x & <1 & x & >-7
\end{array}
$$

PTS: 2
REF: 011612a2
STA: A2.A. 1
TOP: Absolute Value Inequalities
KEY: graph
13 ANS: 2
$\frac{-b}{a}=\frac{-6}{-3}=2$
PTS: 2
REF: 011613a2
STA: A2.A. 20
TOP: Roots of Quadratics
14 ANS: 2
$\frac{60-50}{5}=2$ standards above the mean or $2.3 \% 2.3 \% \cdot 1000=23$
PTS: 2
REF: 011614a2 STA: A2.S. 5
TOP: Normal Distributions
KEY: predict
15 ANS: 1
$\log T=\log \frac{10 x^{2}}{y}=\log 10+\log x^{2}-\log y=1+2 \log x-\log y$
PTS: 2
REF: 011615a2 STA: A2.A. 19
TOP: Properties of Logarithms
KEY: splitting logs
16 ANS: 3 PTS: 2
TOP: Correlation Coefficient
17 ANS: 2
$\cos \frac{\pi}{2}+\cos \pi+\cos \frac{3 \pi}{2}=0+-1+0=-1$
PTS: 2
REF: 011617a2 STA: A2.N. 10
TOP: Sigma Notation
KEY: advanced
18 ANS: 4
$4 x^{2}+3 x-4=0 \quad b^{2}-4 a c=3^{2}-4(4)(-4)=9+64=73$
PTS: 2 REF: 011618a2 STA: A2.A. 2 TOP: Using the Discriminant
KEY: determine nature of roots given equation

19 ANS: 3
$f(x+3)=2(x+3)^{2}-3(x+3)+4=2 x^{2}+12 x+18-3 x-9+4=2 x^{2}+9 x+13$
PTS: 2 REF: 011619a2 STA: A2.A. 41 TOP: Functional Notation
20 ANS: 3
$x\left(27 i^{6}\right)+x\left(2 i^{12}\right)=-27 x+2 x=-25 x$
PTS: 2 REF: 011620a2 STA: A2.N. 7 TOP: Imaginary Numbers
21 ANS: 2
$\cos \theta=-\frac{3}{5} \quad \sec \theta=-\frac{5}{3}$
PTS: 2
REF: 011621a2
ANS: 4
PTS: 2
STA: A2.A. 62
REF: 011622a2
TOP: Determining Trigonometric Functions
TOP: Domain and Range
23 ANS: 1
$a_{2}=\frac{1}{2}(-6)-2=-5$
$a_{3}=\frac{1}{2}(-5)-3=-\frac{11}{2}$
PTS: 2 REF: 011623a2 STA: A2.A. 33 TOP: Sequences
24 ANS: 3
$r=\sqrt{(3-0)^{2}+(-5-(-2))^{2}}=\sqrt{9+9}=\sqrt{18}$
PTS: 2 REF: 011624a2 STA: A2.A. 48 TOP: Equations of Circles
25 ANS: 3
Cofunctions secant and cosecant are complementary
PTS: 2 REF: 011625a2 STA: A2.A. 58 TOP: Cofunction Trigonometric Relationships
ANS: 1
$c=\sqrt{(x+\sqrt{2})^{2}+(x-\sqrt{2})^{2}}=\sqrt{x^{2}+2 \sqrt{2} x+2+x^{2}-2 \sqrt{2} x+2}=\sqrt{2 x^{2}+4}$
PTS: 2 REF: 011626a2 STA: A2.A. 14 TOP: Operations with Radicals
KEY: with variables \mid index $=2$
27
PTS: 2

REF: 011627a2
STA: A2.A. 69
TOP: Properties of Graphs of Trigonometric Functions
KEY: period

28 ANS:

$$
\begin{aligned}
\sqrt{2 x+1} & =4 \\
2 x+1 & =16 \\
2 x & =15 \\
x & =\frac{15}{2}
\end{aligned}
$$

PTS: 2 REF: 011628a2 STA: A2.A. 22 TOP: Solving Radicals
KEY: basic
29 ANS:
$x^{2}(x+3)+2(x+3)=\left(x^{2}+2\right)(x+3)$
PTS: 2 REF: 011629a2 STA: A2.A. 7 TOP: Factoring by Grouping
30 ANS:
$8^{x+1}=16$
$2^{3(x+1)}=2^{4}$
$3 x+3=4$
$3 x=1$
$x=\frac{1}{3}$
PTS: 2
REF: 011630a2
STA: A2.A. 28
TOP: Logarithmic Equations
KEY: basic
31 ANS:
$\frac{11!}{3!\cdot 2!\cdot 2!}=1,663,200$
PTS: 2
REF: 011631a2
STA: A2.S. 10
TOP: Permutations
32 ANS:
$-130 \cdot \frac{\pi}{180} \approx-2.27$
PTS: 2
REF: 011632a2 STA: A2.M.2
TOP: Radian Measure
KEY: radians
33
ANS:
$\frac{1}{2} \cdot 15 \cdot 31.6 \sin 125 \approx 194$
PTS: 2
REF: 011633a2
STA: A2.A. 74
TOP: Using Trigonometry to Find Area
KEY: advanced

34 ANS:
$\frac{1}{\sin \theta} \cdot \sin ^{2} \theta \cdot \frac{\cos \theta}{\sin \theta}=\cos \theta$ $\cos \theta=\cos \theta$

PTS: 2 REF: 011634a2 STA: A2.A. 67 TOP: Proving Trigonometric Identities
35 ANS:
$\frac{2}{3} x^{3}+\frac{11}{8} x^{2}-\frac{7}{9} x-\frac{2}{9}$
PTS: 2
REF: 011635a2 STA: A2.N.3
TOP: Operations with Polynomials
KEY: subtraction
36 ANS:
$x^{2}+10 x+25=8+25$

$$
\begin{aligned}
(x+5)^{2} & =33 \\
x+5 & = \pm \sqrt{33} \\
x & =-5 \pm \sqrt{33}
\end{aligned}
$$

PTS: 4
REF: 011636a2
STA: A2.A. 24
TOP: Completing the Square
37 ANS:
$y=2.19(3.23)^{x} 426.21=2.19(3.23)^{x}$

$$
\frac{426.21}{2.19}=(3.23)^{x}
$$

$$
\log \frac{426.21}{2.19}=x \log (3.23)
$$

$$
\frac{\log \frac{426.21}{2.19}}{\log (3.23)}=x
$$

$$
x \approx 4.5
$$

PTS: 4
REF: 011637a2
STA: A2.S. 7
TOP: Exponential Regression

$$
\begin{aligned}
2 \cos ^{2} x-1 & =\cos x \\
2 \cos ^{2} x-\cos x-1 & =0 \\
(2 \cos x+1)(\cos x-1) & =0 \\
\cos x & =-\frac{1}{2}, 1 \\
x & =0,120,240
\end{aligned}
$$

PTS: 4
REF: 011638a2
STA: A2.A. 68
TOP: Trigonometric Equations
KEY: double angle identities

39 ANS:

$$
\begin{aligned}
\frac{16}{\sin A} & =\frac{15}{\sin 40} & \frac{10}{\sin 50} & =\frac{12}{\sin C}
\end{aligned} \frac{d}{\sin 63.2}=\frac{12}{\sin 66.8}, ~ \begin{array}{rrrr}
\sin A & =\frac{16 \sin 40}{15} & \sin C & =\frac{12 \sin 50}{10} \\
A & \approx 43.3 & C & \approx \frac{12 \sin 63.2}{\sin 66.8} \\
& \approx 6.8 & d & \approx 11.7
\end{array}
$$

PTS: 6 REF: 011639a2 STA: A2.A. 73 TOP: Law of Sines
KEY: advanced

