## 0611 a 2

1 A doctor wants to test the effectiveness of a new drug on her patients. She separates her sample of patients into two groups and administers the drug to only one of these groups. She then compares the results. Which type of study best describes this situation?

1) census
2) survey
3) observation
4) controlled experiment

2 If $\mathrm{f}(x)=\frac{x}{x^{2}-16}$, what is the value of $\mathrm{f}(-10)$ ?

1) $-\frac{5}{2}$
2) $-\frac{5}{42}$
3) $\frac{5}{58}$
4) $\frac{5}{18}$

3 An auditorium has 21 rows of seats. The first row has 18 seats, and each succeeding row has two more seats than the previous row. How many seats are in the auditorium?

1) 540
2) 567
3) 760
4) 798

4 Expressed as a function of a positive acute angle, $\cos \left(-305^{\circ}\right)$ is equal to

1) $-\cos 55^{\circ}$
2) $\cos 55^{\circ}$
3) $-\sin 55^{\circ}$
4) $\sin 55^{\circ}$

5 The value of $x$ in the equation $4^{2 x+5}=8^{3 x}$ is

1) 1
2) 2
3) 5
4) -10

6 What is the value of $x$ in the equation $\log _{5} x=4$ ?

1) 1.16
2) 20
3) 625
4) 1,024

7 The expression $\sqrt[4]{16 x^{2} y^{7}}$ is equivalent to

1) $2 x^{\frac{1}{2}} y^{\frac{7}{4}}$
2) $2 x^{8} y^{28}$
3) $4 x^{\frac{1}{2}} y^{\frac{7}{4}}$
4) $4 x^{8} y^{28}$

8 Which equation is represented by the graph below?


1) $y=5^{x}$
2) $y=0.5^{x}$
3) $y=5^{-x}$
4) $y=0.5^{-x}$

9 What is the fifteenth term of the geometric sequence $-\sqrt{5}, \sqrt{10},-2 \sqrt{5}, \ldots$ ?

1) $-128 \sqrt{5}$
2) $128 \sqrt{10}$
3) $-16384 \sqrt{5}$
4) $16384 \sqrt{10}$

10 In $\triangle A B C, a=15, b=14$, and $c=13$, as shown in the diagram below. What is the $\mathrm{m} \angle C$, to the nearest degree?


1) 53
2) 59
3) 67
4) 127

11 What is the period of the function $\mathrm{f}(\theta)=-2 \cos 3 \theta$ ?

1) $\pi$
2) $\frac{2 \pi}{3}$
3) $\frac{3 \pi}{2}$
4) $2 \pi$

12 What is the range of $\mathrm{f}(x)=(x+4)^{2}+7$ ?

1) $y \geq-4$
2) $y \geq 4$
3) $y=7$
4) $y \geq 7$

13 Ms. Bell's mathematics class consists of 4 sophomores, 10 juniors, and 5 seniors. How many different ways can Ms. Bell create a four-member committee of juniors if each junior has an equal chance of being selected?

1) 210
2) 3,876
3) 5,040
4) 93,024

14 Which graph represents a relation that is not a function?
1)

2)

3)


15 The value of $\tan 126^{\circ} 43^{\prime}$ to the nearest ten-thousandth is

1) -1.3407
2) -1.3408
3) -1.3548
4) -1.3549

16 The expression $\frac{4}{5-\sqrt{13}}$ is equivalent to

1) $\frac{4 \sqrt{13}}{5 \sqrt{13}-13}$
2) $\frac{4(5-\sqrt{13})}{38}$
3) $\frac{5+\sqrt{13}}{3}$
4) $\frac{4(5+\sqrt{13})}{38}$

17 Akeem invests $\$ 25,000$ in an account that pays $4.75 \%$ annual interest compounded continuously.
Using the formula $A=P e^{r t}$, where $A=$ the amount in the account after $t$ years, $P=$ principal invested, and $r=$ the annual interest rate, how many years, to the nearest tenth, will it take for Akeem's investment to triple?

1) 10.0
2) 14.6
3) 23.1
4) 24.0

18 The value of the expression $\sum_{r=3}^{5}\left(-r^{2}+r\right)$ is

1) -38
2) -12
3) 26
4) 62

19 Which graph shows $y=\cos ^{-1} x$ ?


20 If $r=\sqrt[3]{\frac{A^{2} B}{C}}$, then $\log r$ can be represented by

1) $\frac{1}{6} \log A+\frac{1}{3} \log B-\log C$
2) $3\left(\log A^{2}+\log B-\log C\right)$
3) $\frac{1}{3} \log \left(A^{2}+B\right)-C$
4) $\frac{2}{3} \log A+\frac{1}{3} \log B-\frac{1}{3} \log C$

21 The solution set of $\sqrt{3 x+16}=x+2$ is

1) $\{-3,4\}$
2) $\{-4,3\}$
3) $\{3\}$
4) $\{-4\}$

22 Brian correctly used a method of completing the square to solve the equation $x^{2}+7 x-11=0$. Brian's first step was to rewrite the equation as $x^{2}+7 x=11$. He then added a number to both sides of the equation. Which number did he add?

1) $\frac{7}{2}$
2) $\frac{49}{4}$
3) $\frac{49}{2}$
4) 49

23 The expression $\frac{\sin ^{2} \theta+\cos ^{2} \theta}{1-\sin ^{2} \theta}$ is equivalent to

1) $\cos ^{2} \theta$
2) $\sin ^{2} \theta$
3) $\sec ^{2} \theta$
4) $\csc ^{2} \theta$

24 The number of minutes students took to complete a quiz is summarized in the table below.

| Minutes | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | ---: |
| Number of Students | 5 | 3 | x | 5 | 2 | 10 | 1 |

If the mean number of minutes was 17 , which equation could be used to calculate the value of $x$ ?

1) $17=\frac{119+x}{x}$
2) $17=\frac{119+16 x}{x}$
3) $17=\frac{446+x}{26+x}$
4) $17=\frac{446+16 x}{26+x}$

25 What is the radian measure of the smaller angle formed by the hands of a clock at 7 o'clock?

1) $\frac{\pi}{2}$
2) $\frac{2 \pi}{3}$
3) $\frac{5 \pi}{6}$
4) $\frac{7 \pi}{6}$

26 What is the coefficient of the fourth term in the expansion of $(a-4 b)^{9}$ ?

1) $-5,376$
2) -336
3) 336
4) 5,376

27 Samantha constructs the scatter plot below from a set of data.


Based on her scatter plot, which regression model would be most appropriate?

1) exponential
2) linear
3) logarithmic
4) power

28 Express the product of $\left(\frac{1}{2} y^{2}-\frac{1}{3} y\right)$ and $\left(12 y+\frac{3}{5}\right)$ as a trinomial.

29 In a study of 82 video game players, the researchers found that the ages of these players were normally distributed, with a mean age of 17 years and a standard deviation of 3 years. Determine if there were 15 video game players in this study over the age of 20 . Justify your answer.

30 Write a quadratic equation such that the sum of its roots is 6 and the product of its roots is -27 .

31 Evaluate $e^{x \ln y}$ when $x=3$ and $y=2$.
32 If $\mathrm{f}(x)=x^{2}-6$, find $\mathrm{f}^{-1}(x)$.
33 Factor the expression $12 t^{8}-75 t^{4}$ completely.

34 Simplify the expression $\frac{3 x^{-4} y^{5}}{\left(2 x^{3} y^{-7}\right)^{-2}}$ and write the answer using only positive exponents.

35 If $\mathrm{f}(x)=x^{2}-6$ and $\mathrm{g}(x)=2^{x}-1$, determine the value of $(g \circ f)(-3)$.

36 Express as a single fraction the exact value of $\sin 75^{\circ}$.

37 Solve the inequality $-3|6-x|<-15$ for $x$. Graph the solution on the line below.

38 The probability that a professional baseball player will get a hit is $\frac{1}{3}$. Calculate the exact probability that he will get at least 3 hits in 5 attempts.

39 Solve the following systems of equations algebraically: $5=y-x$

$$
4 x^{2}=-17 x+y+4
$$

$0611 a 2$
Answer Section
1 ANS: $4 \quad$ PTS: 2
REF: 061101a2
STA: A2.S. 1
TOP: Analysis of Data
2 ANS: 2
$f(10)=\frac{-10}{(-10)^{2}-16}=\frac{-10}{84}=-\frac{5}{42}$
PTS: 2
REF: 061102a2 STA: A2.A. 41
TOP: Functional Notation
3 ANS: 4
$S_{n}=\frac{n}{2}[2 a+(n-1) d]=\frac{21}{2}[2(18)+(21-1) 2]=798$
PTS: 2
REF: 061103a2
STA: A2.A. 35
TOP: Series
KEY: arithmetic
4 ANS: 2
$\cos \left(-305^{\circ}+360^{\circ}\right)=\cos \left(55^{\circ}\right)$
PTS: 2
REF: 061104a2
STA: A2.A. 57
TOP: Reference Angles
5 ANS: 2

$$
\begin{aligned}
4^{2 x+5} & =8^{3 x} \\
\left(2^{2}\right)^{2 x+5} & =\left(2^{3}\right)^{3 x} \\
2^{4 x+10} & =2^{9 x} \\
4 x+10 & =9 x \\
10 & =5 x \\
2 & =x
\end{aligned}
$$

PTS: 2
REF: 061105a2 STA: A2.A. 27
KEY: common base not shown
6 ANS: 3
$x=5^{4}=625$
PTS: 2 REF: 061106a2 STA: A2.A. 28 TOP: Logarithmic Equations
KEY: basic
7 ANS: 1
$\sqrt[4]{16 x^{2} y^{7}}=16^{\frac{1}{4}} x^{\frac{2}{4}} y^{\frac{7}{4}}=2 x^{\frac{1}{2}} y^{\frac{7}{4}}$

PTS: 2
REF: 061107a2
8 ANS: 2
PTS: 2
STA: A2.A. 11
REF: 061108a2
TOP: Identifying the Equation of a Graph

TOP: Exponential Equations
(Op. Expor Eq.
,

- Explon

9 ANS: 1
$a_{n}=-\sqrt{5}(-\sqrt{2})^{n-1}$
$a_{15}=-\sqrt{5}(-\sqrt{2})^{15-1}=-\sqrt{5}(-\sqrt{2})^{14}=-\sqrt{5} \cdot 2^{7}=-128 \sqrt{5}$
PTS: 2 REF: 061109a2 STA: A2.A. 32 TOP: Sequences
10 ANS: 1

$$
\begin{aligned}
13^{2} & =15^{2}+14^{2}-2(15)(14) \cos C \\
169 & =421-420 \cos C \\
-252 & =-420 \cos C
\end{aligned}
$$

$$
\begin{aligned}
& \frac{252}{420}=\cos C \\
& 53 \approx C
\end{aligned}
$$

PTS: 2 REF: 061110a2 STA: A2.A. 73 TOP: Law of Cosines
KEY: find angle
11 ANS: 2
$\frac{2 \pi}{b}=\frac{2 \pi}{3}$
PTS: 2
REF: 061111a2 STA: A2.A. 69
TOP: Properties of Graphs of Trigonometric Functions
12 ANS: 4 PTS: 2
TOP: Domain and Range
REF: 061112a2
KEY: real domain
13 ANS: 1
${ }_{10} C_{4}=210$
PTS: 2
14 ANS: 3
REF: 061113a2
STA: A2.S. 11
REF: 061114a2
TOP: Defining Functions
KEY: graphs
15 ANS: 2
tan<126.43')


PTS: 2
REF: 061115a2 STA: A2.A. 66
16 ANS: 3
$\frac{4}{5-\sqrt{13}} \cdot \frac{5+\sqrt{13}}{5+\sqrt{13}}=\frac{4(5+\sqrt{13})}{25-13}=\frac{5+\sqrt{13}}{3}$
PTS: 2
REF: 061116a2
STA: A2.N. 5
TOP: Rationalizing Denominators

17 ANS: 3

$$
\begin{aligned}
75000 & =25000 e^{.0475 t} \\
3 & =e^{.0475 t} \\
\ln 3 & =\ln e^{.0475 t}
\end{aligned}
$$

$\frac{\ln 3}{.0475}=\frac{.0475 t \cdot \ln e}{.0475}$
$23.1 \approx t$
PTS: 2
REF: 061117a2 STA: A2.A. 6
TOP: Exponential Growth
18 ANS: 1

| $n$ | 3 | 4 | 5 | $\Sigma$ |
| :---: | :---: | :---: | :---: | :---: |
| $-r^{2}+r$ | $-3^{2}+3=-6$ | $-4^{2}+4=-12$ | $-5^{2}+5=-20$ | -38 |

PTS: 2
REF: 061118a2 STA: A2.N. 10
TOP: Sigma Notation
KEY: basic
19 ANS: 3
PTS: 2
REF: 061119a2
STA: A2.A. 65
TOP: Graphing Trigonometric Functions
20 ANS: 4
PTS: 2
REF: 061120a2
STA: A2.A. 19
TOP: Properties of Logarithms
KEY: splitting logs
21 ANS: 3
$3 x+16=(x+2)^{2} \quad .-4$ is an extraneous solution.
$3 x+16=x^{2}+4 x+4$
$0=x^{2}+x-12$
$0=(x+4)(x-3)$
$x=-4 x=3$
PTS: 2
REF: 061121a2
STA: A2.A. 22
TOP: Solving Radicals
KEY: extraneous solutions
22 ANS: 2
PTS: 2
REF: 061122a2 STA: A2.A. 24
TOP: Completing the Square
23 ANS: 3
$\frac{\sin ^{2} \theta+\cos ^{2} \theta}{1-\sin ^{2} \theta}=\frac{1}{\cos ^{2} \theta}=\sec ^{2} \theta$
PTS: 2
REF: 061123a2
PTS: 2
ANS: 4
TOP: Average Known with Missing Data

25 ANS: 3
$2 \pi \cdot \frac{5}{12}=\frac{10 \pi}{12}=\frac{5 \pi}{6}$
PTS: 2 REF: 061125a2 STA: A2.M. 1 TOP: Radian Measure
26 ANS: 1
${ }_{9} C_{3} a^{6}(-4 b)^{3}=-5376 a^{6} b^{3}$
PTS: 2 REF: 061126a2 STA: A2.A. 36 TOP: Binomial Expansions
ANS: 3 PTS: $2 \quad$ REF: 061127a2 STA: A2.S. 6
TOP: Regression
28 ANS:
$6 y^{3}-\frac{37}{10} y^{2}-\frac{1}{5} y \cdot\left(\frac{1}{2} y^{2}-\frac{1}{3} y\right)\left(12 y+\frac{3}{5}\right)=6 y^{3}+\frac{3}{10} y^{2}-4 y^{2}-\frac{1}{5} y=6 y^{3}-\frac{37}{10} y^{2}-\frac{1}{5} y$
PTS: 2 REF: 061128a2 STA: A2.N. 3 TOP: Operations with Polynomials
29 ANS:
no. over 20 is more than 1 standard deviation above the mean. $0.159 \cdot 82 \approx 13.038$
PTS: 2 REF: 061129a2 STA: A2.S. 5 TOP: Normal Distributions
KEY: predict
30 ANS:
$x^{2}-6 x-27=0, \frac{-b}{a}=6 . \frac{c}{a}=-27$. If $a=1$ then $b=-6$ and $c=-27$
PTS: 4 REF: 061130a2 STA: A2.A. 21 TOP: Roots of Quadratics
KEY: basic
31 ANS:
$e^{3 \ln 2}=e^{\ln 2^{3}}=e^{\ln 8}=8$
PTS: 2 REF: 061131a2 STA: A2.A. 12 TOP: Evaluating Exponential Expressions
32 ANS:
$y=x^{2}-6 . \mathrm{f}^{-1}(x)$ is not a function.
$x=y^{2}-6$
$x+6=y^{2}$
$\pm \sqrt{x+6}=y$
PTS: 2 REF: 061132a2 STA: A2.A. 44 TOP: Inverse of Functions
KEY: equations
33 ANS:
$12 t^{8}-75 t^{4}=3 t^{4}\left(4 t^{4}-25\right)=3 t^{4}\left(2 t^{2}+5\right)\left(2 t^{2}-5\right)$
PTS: 2
REF: 061133a2 STA: A2.A.7
TOP: Factoring the Difference of Perfect Squares
KEY: binomial

34 ANS:
$\frac{12 x^{2}}{y^{9}} \cdot \frac{3 x^{-4} y^{5}}{\left(2 x^{3} y^{-7}\right)^{-2}}=\frac{3 y^{5}\left(2 x^{3} y^{-7}\right)^{2}}{x^{4}}=\frac{3 y^{5}\left(4 x^{6} y^{-14}\right)}{x^{4}}=\frac{12 x^{6} y^{-9}}{x^{4}}=\frac{12 x^{2}}{y^{9}}$
PTS: 2 REF: 061134a2 STA: A2.A. 9 TOP: Negative Exponents
35 ANS:
7. $\mathrm{f}(-3)=(-3)^{2}-6=3 . \mathrm{g}(x)=2^{3}-1=7$.

PTS: 2 REF: 061135a2 STA: A2.A. 42 TOP: Compositions of Functions
KEY: numbers
36 ANS:
$\sin (45+30)=\sin 45 \cos 30+\cos 45 \sin 30$

$$
=\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2} \cdot \frac{1}{2}=\frac{\sqrt{6}}{4}+\frac{\sqrt{2}}{4}=\frac{\sqrt{6}+\sqrt{2}}{4}
$$

PTS: 4 REF: 061136a2 STA: A2.A.76 TOP: Angle Sum and Difference Identities
KEY: evaluating
37 ANS:

$$
\begin{gathered}
-3|6-x|<-15 \\
|6-x|>5 \\
6-x>5 \text { or } 6-x<-5 \\
1>x \text { or } 11<x
\end{gathered}
$$

PTS: 2
REF: 061137a2 STA: A2.A. 1
TOP: Absolute Value Inequalities
KEY: graph
38
ANS:

$$
\begin{array}{r}
\frac{51}{243} \cdot{ }_{5} C_{3}\left(\frac{1}{3}\right)^{3}\left(\frac{2}{3}\right)^{2}=\frac{40}{243} \\
{ }_{5} C_{4}\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)^{1}=\frac{10}{243} \\
{ }_{5} C_{3}\left(\frac{1}{3}\right)^{5}\left(\frac{2}{3}\right)^{0}=\frac{1}{243}
\end{array}
$$

PTS: 4 REF: 061138a2 STA: A2.S. 15 TOP: Binomial Probability KEY: at least or at most

39 ANS:

$$
\begin{array}{rl}
\left(-\frac{9}{2}, \frac{1}{2}\right) \text { and }\left(\frac{1}{2}, \frac{11}{2}\right) \cdot y=x+5 & 4 x^{2}+17 x-4=x+5 \\
y=4 x^{2}+17 x-4 & 4 x^{2}+16 x-9=0 \\
& (2 x+9)(2 x-1)=0 \\
x & =-\frac{9}{2} \text { and } x=\frac{1}{2} \\
y & =-\frac{9}{2}+5=\frac{1}{2} \text { and } y=\frac{1}{2}+5=\frac{11}{2}
\end{array}
$$

PTS: 6
REF: 061139a2 STA: A2.A. 3 TOP: Quadratic-Linear Systems

