0613a2

1 A market research firm needs to collect data on viewer preferences for local news programming in Buffalo. Which method of data collection is most appropriate?

1) census
2) survey
3) observation
4) controlled experiment

2 What is the number of degrees in an angle whose radian measure is $\frac{8 \pi}{5}$?

1) 576
2) 288
3) 225
4) 113

3 Which diagram represents a relation that is both one-to-one and onto?
1)

2)

3)

4 The sum of the first eight terms of the series $3-12+48-192+\ldots$ is

1) $-13,107$
2) $-21,845$
3) $-39,321$
4) $-65,535$

5 The simplest form of $\frac{1-\frac{4}{x}}{1-\frac{2}{x}-\frac{8}{x^{2}}}$ is

1) $\frac{1}{2}$
2) $\frac{x}{x+2}$
3) $\frac{x}{3}$
4) $-\frac{x}{x-2}$

6 Which equation represents the graph below?

1) $y=-2 \sin 2 x$
2) $y=-2 \sin \frac{1}{2} x$
3) $y=-2 \cos 2 x$
4) $y=-2 \cos \frac{1}{2} x$

7 What is the graph of the solution set of $|2 x-1|>5$?
1)
)

8 What is the range of the function shown below?

1) $x \leq 0$
2) $x \geq 0$
3) $y \leq 0$
4) $y \geq 0$

9 The expression $\sin (\theta+90)^{\circ}$ is equivalent to

1) $-\sin \theta$
2) $-\cos \theta$
3) $\sin \theta$
4) $\cos \theta$

10 The points $(2,3),\left(4, \frac{3}{4}\right)$, and $(6, d)$ lie on the graph of a function. If y is inversely proportional to the square of x, what is the value of d ?

1) 1
2) $\frac{1}{3}$
3) 3
4) 27

11 In the right triangle shown below, what is the measure of angle S, to the nearest minute?

1) $28^{\circ} 1^{\prime}$
2) $28^{\circ} 4^{\prime}$
3) $61^{\circ} 56{ }^{\prime}$
4) $61^{\circ} 93^{\prime}$

12 Which ordered pair is in the solution set of the system of equations shown below?

$$
\begin{array}{r}
y^{2}-x^{2}+32=0 \\
3 y-x=0
\end{array}
$$

1) $(2,6)$
2) $(3,1)$
3) $(-1,-3)$
4) $(-6,-2)$

13 Susie invests $\$ 500$ in an account that is compounded continuously at an annual interest rate of 5%, according to the formula $A=P e^{r t}$, where A is the amount accrued, P is the principal, r is the rate of interest, and t is the time, in years.
Approximately how many years will it take for Susie's money to double?

1) 1.4
2) 6.0
3) 13.9
4) 14.7

14 If n is a negative integer, then which statement is always true?

1) $6 n^{-2}<4 n^{-1}$
2) $\frac{n}{4}>-6 n^{-1}$
3) $6 n^{-1}<4 n^{-1}$
4) $4 n^{-1}>(6 n)^{-1}$

15 The expression $4+\sum_{k=2}^{5} 3(k-x)$ is equal to

1) $58-4 x$
2) $46-4 x$
3) $58-12 x$
4) $46-12 x$

16 Which value of r represents data with a strong positive linear correlation between two variables?

1) 0.89
2) 0.34
3) 1.04
4) 0.01

17 Which problem involves evaluating ${ }_{6} P_{4}$?

1) How many different four-digit ID numbers can be formed using $1,2,3,4,5$, and 6 without repetition?
2) How many different subcommittees of four can be chosen from a committee having six members?
3) How many different outfits can be made using six shirts and four pairs of pants?
4) How many different ways can one boy and one girl be selected from a group of four boys and six girls?

18 Which equation is represented by the graph below?

1) $(x-3)^{2}+(y+1)^{2}=5$
2) $(x+3)^{2}+(y-1)^{2}=5$
3) $(x-1)^{2}+(y+3)^{2}=13$
4) $(x+3)^{2}+(y-1)^{2}=13$

19 If $x=3 i, y=2 i$, and $z=m+i$, the expression $x y^{2} z$ equals

1) $-12-12 m i$
2) $-6-6 m i$
3) $12-12 m i$
4) $6-6 \mathrm{mi}$

20 An angle, P, drawn in standard position, terminates in Quadrant II if

1) $\cos P<0$ and $\csc P<0$
2) $\sin P>0$ and $\cos P>0$
3) $\csc P>0$ and $\cot P<0$
4) $\tan P<0$ and $\sec P>0$

21 The expression $\log 4 m^{2}$ is equivalent to

1) $2(\log 4+\log m)$
2) $2 \log 4+\log m$
3) $\log 4+2 \log m$
4) $\log 16+2 \log m$

22 In $\triangle P Q R, p$ equals

1) $\frac{r \sin P}{\sin Q}$
2) $\frac{r \sin P}{\sin R}$
3) $\frac{r \sin R}{\sin P}$
4) $\frac{q \sin R}{\sin Q}$

23 If $\tan \left(\operatorname{Arccos} \frac{\sqrt{3}}{k}\right)=\frac{\sqrt{3}}{3}$, then k is

1) 1
2) 2
3) $\sqrt{2}$
4) $3 \sqrt{2}$

24 Which expression is equivalent to $\frac{2 x^{-2} y^{-2}}{4 y^{-5}}$?

1) $\frac{y^{3}}{2 x^{2}}$
2) $\frac{2 y^{3}}{x^{2}}$
3) $\frac{2 x^{2}}{y^{3}}$
4) $\frac{x^{2}}{2 y^{3}}$

25 Expressed with a rational denominator and in simplest form, $\frac{x}{x-\sqrt{x}}$ is

1) $\frac{x^{2}+x \sqrt{x}}{x^{2}-x}$
2) $-\sqrt{x}$
3) $\frac{x+\sqrt{x}}{1-x}$
4) $\frac{x+\sqrt{x}}{x-1}$

26 What is the common ratio of the sequence $\frac{1}{64} a^{5} b^{3},-\frac{3}{32} a^{3} b^{4}, \frac{9}{16} a b^{5}, \ldots$?

1) $-\frac{3 b}{2 a^{2}}$
2) $-\frac{6 b}{a^{2}}$
3) $-\frac{3 a^{2}}{b}$
4) $-\frac{6 a^{2}}{b}$

27 In $\triangle K L M, K L=20, L M=13$, and $\mathrm{m} \angle K=40$. The measure of $\angle M$?

1) must be between 0° and 90°
2) must equal 90°
3) must be between 90° and 180°
4) is ambiguous

28 Determine the sum and the product of the roots of the equation $12 x^{2}+x-6=0$.

29 Solve algebraically for $x: \log _{27}(2 x-1)=\frac{4}{3}$

30 Find the number of possible different 10-letter arrangements using the letters of the word "STATISTICS."

31 Express the product of $\cos 30^{\circ}$ and $\sin 45^{\circ}$ in simplest radical form.

32 Find, algebraically, the measure of the obtuse angle, to the nearest degree, that satisfies the equation $5 \csc \theta=8$.

33 If $\mathrm{g}(x)=(a x \sqrt{1-x})^{2}$, express $\mathrm{g}(10)$ in simplest form.

34 Express $\frac{\cot x \sin x}{\sec x}$ as a single trigonometric function, in simplest form, for all values of x for which it is defined.

35 On a multiple-choice test, Abby randomly guesses on all seven questions. Each question has four choices. Find the probability, to the nearest thousandth, that Abby gets exactly three questions correct.

36 Solve the equation below algebraically, and express the result in simplest radical form:

$$
\frac{13}{x}=10-x
$$

37 A ranch in the Australian Outback is shaped like triangle $A C E$, with $\mathrm{m} \angle A=42, \mathrm{~m} \angle E=103$, and $A C=15$ miles. Find the area of the ranch, to the nearest square mile.

38 Ten teams competed in a cheerleading competition at a local high school. Their scores were 29,28 , $39,37,45,40,41,38,37$, and 48 . How many scores are within one population standard deviation from the mean? For these data, what is the interquartile range?

39 Solve algebraically for all values of x :

$$
x^{4}+4 x^{3}+4 x^{2}=-16 x
$$

0613a2
Answer Section
1 ANS: $2 \quad$ PTS: 2
REF: 061301a2
STA: A2.S. 1
TOP: Analysis of Data
2 ANS: 2
$\frac{8 \pi}{5} \cdot \frac{180}{\pi}=288$
PTS: 2 REF: 061302a2 STA: A2.M. 2 TOP: Radian Measure
KEY: degrees
3 ANS: 4 PTS: 2
REF: 061303a2 STA: A2.A. 43
TOP: Defining Functions
4 ANS: 3
$S_{8}=\frac{3\left(1-(-4)^{8}\right)}{1-(-4)}=\frac{196,605}{5}=-39,321$

PTS: 2 REF: 061304a2 STA: A2.A. 35 TOP: Summations
KEY: geometric
5 ANS: 2
$\frac{1-\frac{4}{x}}{1-\frac{2}{x}-\frac{8}{x^{2}}} \times \frac{x^{2}}{x^{2}}=\frac{x^{2}-4 x}{x^{2}-2 x-8}=\frac{x(x-4)}{(x-4)(x+2)}=\frac{x}{x+2}$

PTS: 2
REF: 061305a2
STA: A2.A. 17
TOP: Complex Fractions
6 ANS: 3
PTS: 2
REF: 061306a2
STA: A2.A. 72
TOP: Identifying the Equation of a Trigonometric Graph
7 ANS: 1
$2 x-1>5.2 x-1<-5$

$$
\begin{array}{rlrl}
2 x & >6 & 2 x & >-4 \\
x & >3 & x & <-2
\end{array}
$$

PTS: 2 REF: 061307a2 STA: A2.A. 1 TOP: Absolute Value Inequalities
KEY: graph
8 ANS: 3 PTS: 2 REF: 061308a2 STA: A2.A.51
TOP: Domain and Range
9 ANS: 4
$\sin (\theta+90)=\sin \theta \cdot \cos 90+\cos \theta \cdot \sin 90=\sin \theta \cdot(0)+\cos \theta \cdot(1)=\cos \theta$
PTS: 2 REF: 061309a2 STA: A2.A.76 TOP: Angle Sum and Difference Identities
KEY: identities

10 ANS: 2
$2^{2} \cdot 3=12.6^{2} d=12$
$4^{2} \cdot \frac{3}{4}=12 \quad 36 d=12$ $d=\frac{1}{3}$

PTS: 2
REF: 061310a2 STA: A2.A. 5
TOP: Inverse Variation
11 ANS: 2

$\sin ^{-1}\left(\frac{1}{17}\right) \cdot[15$
$28^{6} 4{ }^{\prime} 20.953 \prime \prime$

$$
\begin{aligned}
& S=\sin ^{-1} \frac{8}{17} \\
& S \approx 28^{\circ} 4^{\prime}
\end{aligned}
$$

PTS: 2 REF: 061311a2 STA: A2.A. 55 TOP: Trigonometric Ratios
12 ANS: 4
$x=3 y . y^{2}-(3 y)^{2}+32=0 \quad . x=3(-2)=-6$

$$
\begin{aligned}
y^{2}-9 y^{2} & =-32 \\
-8 y^{2} & =-32 \\
y^{2} & =4 \\
y & = \pm 2
\end{aligned}
$$

PTS: 2
REF: 061312a2 STA: A2.A.3
TOP: Quadratic-Linear Systems
KEY: equations
13 ANS: 3
$1000=500 e^{.05 t}$

$$
2=e^{.05 t}
$$

$\ln 2=\ln e^{.05 t}$
$\frac{\ln 2}{.05}=\frac{.05 t \cdot \ln e}{.05}$
$13.9 \approx t$
PTS: 2
REF: 061313a2
STA: A2.A. 6
TOP: Exponential Growth

14 ANS: 3
$6 n^{-1}<4 n^{-1}$. Flip sign when multiplying each side of the inequality by n, since a negative number.
$\frac{6}{n}<\frac{4}{n}$
$6>4$
PTS: 2 REF: 061314a2 STA: A2.N. 1 TOP: Negative and Fractional Exponents
15 ANS: 4
$4+3(2-x)+3(3-x)+3(4-x)+3(5-x)$

$$
\begin{gathered}
4+6-3 x+9-3 x+12-3 x+15-3 x \\
46-12 x
\end{gathered}
$$

PTS: 2 REF: 061315a2 STA: A2.N. 10 TOP: Sigma Notation
KEY: basic
16 ANS: 1 PTS: 2 REF: 061316a2 STA: A2.S. 8
TOP: Correlation Coefficient
17 ANS: $1 \quad$ PTS: 2
REF: 061317a2
STA: A2.S. 9
TOP: Differentiating Permutations and Combinations
18 ANS: 4 PTS: 2 REF: 061318a2 STA: A2.A. 49
TOP: Equations of Circles
19 ANS: 3
(3i) $(2 i)^{2}(m+i)$
(3i) $\left(4 i^{2}\right)(m+i)$
$(3 i)(-4)(m+i)$
$(-12 i)(m+i)$
$-12 m i-12 i^{2}$
$-12 m i+12$
PTS: 2
REF: 061319a2 STA: A2.N.9
TOP: Multiplication and Division of Complex Numbers
20 ANS: 3
If $\csc P>0, \sin P>0$. If $\cot P<0$ and $\sin P>0, \cos P<0$
PTS: 2 REF: 061320a2 STA: A2.A. 60 TOP: Finding the Terminal Side of an Angle
21 ANS: 3
$\log 4 m^{2}=\log 4+\log m^{2}=\log 4+2 \log m$
PTS: 2
REF: 061321a2
STA: A2.A. 19
TOP: Properties of Logarithms
KEY: splitting logs
22
TOP: Law of Sines
PTS: 2
REF: 061322a2 STA: A2.A. 73
KEY: side, without calculator

23 ANS: 2
$\tan 30=\frac{\sqrt{3}}{3} . \operatorname{Arccos} \frac{\sqrt{3}}{k}=30$

$$
\begin{aligned}
\frac{\sqrt{3}}{k} & =\cos 30 \\
k & =2
\end{aligned}
$$

PTS: 2
REF: 061323a2
STA: A2.A. 64
KEY: advanced
24 ANS: 1
PTS: 2
REF: 061324a2 STA: A2.A.9
TOP: Negative Exponents
25 ANS: 4
$\frac{x}{x-\sqrt{x}} \times \frac{x+\sqrt{x}}{x+\sqrt{x}}=\frac{x^{2}+x \sqrt{x}}{x^{2}-x}=\frac{x(x+\sqrt{x})}{x(x-1)}=\frac{x+\sqrt{x}}{x-1}$
PTS: 2
REF: 061325a2 STA: A2.A. 15
TOP: Rationalizing Denominators
KEY: index $=2$
26
ANS: 2
$\frac{-\frac{3}{32} a^{3} b^{4}}{\frac{1}{64} a^{5} b^{3}}=-\frac{6 b}{a^{2}}$
PTS: 2
REF: 061326a2
STA: A2.A. 31
TOP: Sequences
27
ANS: 4
$\frac{13}{\sin 40}=\frac{20}{\sin M} .81+40<180 .(180-81)+40<180$
$M \approx 81$

PTS: 2
REF: 061327a2
STA: A2.A. 75
TOP: Law of Sines - The Ambiguous Case
ANS:
$\operatorname{Sum} \frac{-b}{a}=-\frac{1}{12}$. Product $\frac{c}{a}=-\frac{1}{2}$
PTS: 2
REF: 061328a2
STA: A2.A. 20
TOP: Roots of Quadratics

29 ANS:

$$
\begin{aligned}
2 x-1 & =27^{\frac{4}{3}} \\
2 x-1 & =81 \\
2 x & =82 \\
x & =41
\end{aligned}
$$

PTS: 2
REF: 061329a2 STA: A2.A. 28
TOP: Logarithmic Equations
KEY: advanced
30 ANS:
$\frac{{ }_{10} P_{10}}{3!\cdot 3!\cdot 2!}=\frac{3,628,800}{72}=50,400$
PTS: 2
REF: 0613302
STA: A2.S. 10
TOP: Permutations
31 ANS:
$\frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2}=\frac{\sqrt{6}}{4}$
PTS: 2
REF: 061331a2
STA: A2.A. 56
TOP: Determining Trigonometric Functions
KEY: degrees, common angles
32 ANS:
$5 \csc \theta=8$
$\csc \theta=\frac{8}{5}$
$\sin \theta=\frac{5}{8}$

$$
\theta \approx 141
$$

PTS: 2
REF: 061332a2
STA: A2.A. 68
TOP: Trigonometric Equations
KEY: reciprocal functions
33 ANS:
$\mathrm{g}(10)=(a(10) \sqrt{1-10})^{2}=100 a^{2}(-9)=-900 a^{2}$
PTS: 2 REF: 061333a2 STA: A2.A. 41 TOP: Functional Notation
34 ANS:
$\frac{\cot x \sin x}{\sec x}=\frac{\frac{\cos x}{\sin x} \sin x}{\frac{1}{\cos x}}=\cos ^{2} x$
PTS: 2
REF: 061334a2
STA: A2.A. 58
TOP: Reciprocal Trigonometric Relationships

35 ANS:
${ }_{7} C_{3}\left(\frac{1}{4}\right)^{3}\left(\frac{3}{4}\right)^{4}=35\left(\frac{1}{64}\right)\left(\frac{81}{256}\right)=\frac{2835}{16384} \approx 0.173$
PTS: 2 REF: 061335a2 STA: A2.S. 15 TOP: Binomial Probability
KEY: exactly
36 ANS:
$\frac{13}{x}=10-x \quad . x=\frac{10 \pm \sqrt{100-4(1)(13)}}{2(1)}=\frac{10 \pm \sqrt{48}}{2}=\frac{10 \pm 4 \sqrt{3}}{2}=5 \pm 2 \sqrt{3}$
$13=10 x-x^{2}$
$x^{2}-10 x+13=0$
PTS: 4 REF: 061336a2 STA: A2.A. 23 TOP: Solving Rationals
KEY: irrational and complex solutions
37 ANS:

$$
\begin{aligned}
\frac{15}{\sin 103} & =\frac{a}{\sin 42} \cdot \frac{1}{2}(15)(10.3) \sin 35 \approx 44 \\
a & \approx 10.3
\end{aligned}
$$

PTS: 4 REF: 061337a2 STA: A2.A. 74 TOP: Using Trigonometry to Find Area
KEY: advanced
38 ANS:
$\sigma_{x} \approx 5.96$ scores are within a population standard deviation of the mean. $Q_{3}-Q_{1}=41-37=4$
$\bar{x} \approx 38.2$
PTS: 4 REF: 061338a2 STA: A2.S. 4 TOP: Dispersion
KEY: advanced
39 ANS:

$$
\begin{aligned}
x^{4}+4 x^{3}+4 x^{2}+16 x & =0 \\
x\left(x^{3}+4 x^{2}+4 x+16\right) & =0 \\
x\left(x^{2}(x+4)+4(x+4)\right) & =0 \\
x\left(x^{2}+4\right)(x+4) & =0 \\
x & =0, \pm 2 i,-4
\end{aligned}
$$

PTS: 6
REF: 061339a2 STA: A2.A. 26
TOP: Solving Polynomial Equations

