0615a2

1 Which list of ordered pairs does not represent a one-to-one function?

1) $(1,-1),(2,0),(3,1),(4,2)$
2) $(1,2),(2,3),(3,4),(4,6)$
3) $(1,3),(2,4),(3,3),(4,1)$
4) $(1,5),(2,4),(3,1),(4,0)$

2 The terminal side of an angle measuring $\frac{4 \pi}{5}$ radians lies in Quadrant

1) I
2) II
3) III
4) IV

3 If $\mathrm{f}(x)=2 x^{2}+1$ and $\mathrm{g}(x)=3 x-2$, what is the value of $\mathrm{f}(\mathrm{g}(-2))$?

1) -127
2) -23
3) 25
4) 129

4 The expression $\sqrt[3]{27 a^{3}} \cdot \sqrt[4]{16 b^{8}}$ is equivalent to

1) $6 a b^{2}$
2) $6 a b^{4}$
3) $12 a b^{2}$
4) $12 a b^{4}$

5 If $x^{2}=12 x-7$ is solved by completing the square, one of the steps in the process is

1) $(x-6)^{2}=-43$
2) $(x+6)^{2}=-43$
3) $(x-6)^{2}=29$
4) $(x+6)^{2}=29$

6 Which expression is equivalent to $\frac{x^{-1} y^{2}}{x^{2} y^{-4}}$?

1) $\frac{x}{y^{2}}$
2) $\frac{x^{3}}{y^{6}}$
3) $\frac{y^{2}}{x}$
4) $\frac{y^{6}}{x^{3}}$

7 What is the solution of the inequality $9-x^{2}<0$?

1) $\{x \mid-3<x<3\}$
2) $\{x \mid x>3$ or $x<-3\}$
3) $\{x \mid x>3\}$
4) $\{x \mid x<-3\}$

8 What is the area of a parallelogram that has sides measuring 8 cm and 12 cm and includes an angle of 120° ?

1) $24 \sqrt{3}$
2) $48 \sqrt{3}$
3) $83 \sqrt{3}$
4) $96 \sqrt{3}$

9 The expression $\frac{5}{4-\sqrt{11}}$ is equivalent to

1) $4+\sqrt{11}$
2) $\frac{20+5 \sqrt{11}}{27}$
3) $4-\sqrt{11}$
4) $\frac{20-5 \sqrt{11}}{27}$

10 Given y varies inversely as x, when y is multiplied by $\frac{1}{2}$, then x is multiplied by

1) $\frac{1}{2}$
2) 2
3) $-\frac{1}{2}$
4) -2

11 What is the total number of different nine-letter arrangements that can be formed using the letters in the word "TENNESSEE"?

1) 3,780
2) 15,120
3) 45,360
4) 362,880

12 What is the fourth term of the sequence defined by $a_{1}=3 x y^{5}$
$a_{n}=\left(\frac{2 x}{y}\right) a_{n-1}$?

1) $12 x^{3} y^{3}$
2) $24 x^{2} y^{4}$
3) $24 x^{4} y^{2}$
4) $48 x^{5} y$

13 What is the solution set of $|x-2|=3 x+10$?

1) $\}$
2) $\{-2\}$
3) $\{-6\}$
4) $\{-2,-6\}$

14 By law, a wheelchair service ramp may be inclined no more than 4.76°. If the base of a ramp begins 15 feet from the base of a public building, which equation could be used to determine the maximum height, h, of the ramp where it reaches the building's entrance?

1) $\sin 4.76^{\circ}=\frac{h}{15}$
2) $\sin 4.76^{\circ}=\frac{15}{h}$
3) $\tan 4.76^{\circ}=\frac{h}{15}$
4) $\tan 4.76^{\circ}=\frac{15}{h}$

15 When $\frac{7}{8} x^{2}-\frac{3}{4} x$ is subtracted from $\frac{5}{8} x^{2}-\frac{1}{4} x+2$, the difference is

1) $-\frac{1}{4} x^{2}-x+2$
2) $\frac{1}{4} x^{2}-x+2$
3) $-\frac{1}{4} x^{2}+\frac{1}{2} x+2$
4) $\frac{1}{4} x^{2}-\frac{1}{2} x-2$

16 Which transformation of $y=f(x)$ moves the graph 7 units to the left and 3 units down?

1) $y=\mathrm{f}(x+7)-3$
2) $y=\mathrm{f}(x+7)+3$
3) $y=\mathrm{f}(x-7)-3$
4) $y=\mathrm{f}(x-7)+3$

17 If $\log x=2 \log a+\log b$, then x equals

1) $a^{2} b$
2) $2 a b$
3) $a^{2}+b$
4) $2 a+b$

18 Which value is in the domain of the function graphed below, but is not in its range?

1) 0
2) 2
3) 3
4) 7

19 How many full cycles of the function $y=3 \sin 2 x$ appear in π radians?

1) 1
2) 2
3) 3
4) 4

20 A theater has 35 seats in the first row. Each row has four more seats than the row before it. Which expression represents the number of seats in the nth row?

1) $35+(n+4)$
2) $35+(4 n)$
3) $35+(n+1)(4)$
4) $35+(n-1)(4)$

21 What is the inverse of the function $\mathrm{f}(x)=\log _{4} x$?

1) $\mathrm{f}^{-1}(x)=x^{4}$
2) $\mathrm{f}^{-1}(x)=4^{x}$
3) $\mathrm{f}^{-1}(x)=\log _{x} 4$
4) $\mathrm{f}^{-1}(x)=-\log _{x} 4$

22 The expression $\frac{1+\cos 2 A}{\sin 2 A}$ is equivalent to

1) $\cot A$
2) $\tan A$
3) $\sec A$
4) $1+\cot 2 A$

23 A video-streaming service can choose from six half-hour shows and four one-hour shows. Which expression could be used to calculate the number of different ways the service can choose four half-hour shows and two one-hour shows?

1) ${ }_{6} P_{4} \cdot{ }_{4} P_{2}$
2) ${ }_{6} P_{4}+{ }_{4} P_{2}$
3) ${ }_{6} C_{4} \cdot{ }_{4} C_{2}$
4) ${ }_{6} C_{4}+{ }_{4} C_{2}$

24 The roots of $3 x^{2}+x=14$ are

1) imaginary
2) real, rational, and equal
3) real, rational, and unequal
4) real, irrational, and unequal

25 Circle O has a radius of 2 units. An angle with a measure of $\frac{\pi}{6}$ radians is in standard position. If the terminal side of the angle intersects the circle at point B, what are the coordinates of B ?

1) $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
2) $(\sqrt{3}, 1)$
3) $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
4) $(1, \sqrt{3})$

26 What is the value of $\sum_{x=0}^{2}(3-2 a)^{x}$?

1) $4 a^{2}-2 a+12$
2) $4 a^{2}-2 a+13$
3) $4 a^{2}-14 a+12$
4) $4 a^{2}-14 a+13$

27 A population, $\mathrm{p}(x)$, of wild turkeys in a certain area is represented by the function $\mathrm{p}(x)=17(1.15)^{2 x}$, where x is the number of years since 2010. How many more turkeys will be in the population for the year 2015 than 2010?

1) 46
2) 49
3) 51
4) 68

28 Solve algebraically for $x: 5^{4 x}=125^{x-1}$

29 In triangle $A B C$, determine the number of distinct triangles that can be formed if $\mathrm{m} \angle A=85$, side $a=8$, and side $c=2$. Justify your answer.

30 The probability that Kay and Joseph Dowling will have a redheaded child is 1 out of 4 . If the Dowlings plan to have three children, what is the exact probability that only one child will have red hair?

31 If $\log _{(x+1)} 64=3$, find the value of x.

32 Factor completely: $x^{3}-6 x^{2}-25 x+150$

33 Express $x i^{8}-y i^{6}$ in simplest form.

34 Given the equation $3 x^{2}+2 x+k=0$, state the sum and product of the roots.

35 Determine which set of data given below has the stronger linear relationship between x and y. Justify your choice.

Set A

\mathbf{x}	1	2	3	4	5	6
\mathbf{y}	24	30	36	51	70	86

Set B | \mathbf{x} | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| \mathbf{y} | 81 | 64 | 49 | 36 | 25 | 16 |

36 Find the measure of the smallest angle, to the nearest degree, of a triangle whose sides measure 28,47 , and 34 .

37 Solve algebraically for x : $\frac{3}{x}+\frac{x}{x+2}=-\frac{2}{x+2}$

38 The table below shows the final examination scores for Mr. Spear's class last year.

Test Score	Frequency
72	1
76	1
79	4
83	5
85	7
88	5
94	3

Find the population standard deviation based on these data, to the nearest hundredth. Determine the number of students whose scores are within one population standard deviation of the mean.

39 In the interval $0^{\circ} \leq \theta<360^{\circ}$, solve the equation $5 \cos \theta=2 \sec \theta-3$ algebraically for all values of θ, to the nearest tenth of a degree.

0615a2

Answer Section

1 ANS: $3 \quad$ PTS: 2
TOP: Defining Functions
2 ANS: $2 \quad$ PTS: 2
TOP: Radian Measure
3 ANS: 4
$g(-2)=3(-2)-2=-8 f(-8)=2(-8)^{2}+1=128+1=129$
PTS: 2
REF: 061503a2
STA: A2.A. 42
TOP: Compositions of Functions
KEY: numbers
4 ANS: 1
$\sqrt[3]{27 a^{3}} \cdot \sqrt[4]{16 b^{8}}=3 a \cdot 2 b^{2}=6 a b^{2}$
PTS: 2
REF: 061504a2 STA: A2.A. 14
KEY: with variables \mid index >2
5 ANS: 3

$$
\begin{aligned}
x^{2} & =12 x-7 \\
x^{2}-12 x & =-7 \\
x^{2}-12 x+36 & =-7+36 \\
(x-6)^{2} & =29
\end{aligned}
$$

PTS: 2
REF: 061505a2
STA: A2.A. 24
REF: 061506a2 STA: A2.A. 9
6 ANS: 4
PTS: 2
TOP: Negative Exponents
7 ANS: 2

$$
\begin{aligned}
9-x^{2} & <0 & \text { or } x+3 & <0 \text { and } x-3
\end{aligned}<0
$$

PTS: 2
REF: 061507a2 STA: A2.A. 4
KEY: one variable

REF: 061501a2 STA: A2.A. 43
REF: 061502a2 STA: A2.M. 1

TOP: Operations with Radicals

8
ANS: 2
$K=8 \cdot 12 \sin 120=96 \cdot \frac{\sqrt{3}}{2}=48 \sqrt{3}$

PTS: 2 REF: 061508a2 STA: A2.A. 74 TOP: Using Trigonometry to Find Area
KEY: parallelograms
9 ANS: 1
$\frac{5}{4-\sqrt{11}} \cdot \frac{4+\sqrt{11}}{4+\sqrt{11}}=\frac{5(4+\sqrt{11})}{16-11}=\frac{5(4+\sqrt{11})}{5}=4+\sqrt{11}$
PTS: 2 REF: 061509a2 STA: A2.N. 5
10 ANS: 2
PTS: 2
REF: 061510a2
TOP: Inverse Variation
11 ANS: 1
$\frac{{ }_{9} P_{9}}{4!\cdot 2!\cdot 2!}=\frac{362,880}{96}=3,780$
PTS: 2 REF: 061511a2 STA: A2.S. 10 TOP: Permutations
12 ANS: 3
$a_{4}=3 x y^{5}\left(\frac{2 x}{y}\right)^{3}=3 x y^{5}\left(\frac{8 x^{3}}{y^{3}}\right)=24 x^{4} y^{2}$
PTS: 2 REF: 061512a2 STA: A2.A. 33 TOP: Sequences
13 ANS: 2
$x-2=3 x+10-6$ is extraneous. $x-2=-3 x-10$

$$
\begin{array}{rlrl}
-12 & =2 x & 4 x & =-8 \\
-6 & =x & x & =-2
\end{array}
$$

PTS: 2
REF: 061513a2 STA: A2.A. 1
14 ANS: 3
PTS: 2
REF: 061514a2
TOP: Trigonometric Ratios
15 ANS: 3 PTS: 2
REF: 061515a2
TOP: Operations with Polynomials
16 ANS: 1
PTS: 2
REF: 061516a2
STA: A2.A. 46
TOP: Transformations with Functions and Relations
17 ANS: 1

$$
\begin{aligned}
\log x & =\log a^{2}+\log b \\
\log x & =\log a^{2} b \\
x & =a^{2} b
\end{aligned}
$$

PTS: 2
REF: 061517a2
STA: A2.A. 19
TOP: Properties of Logarithms
KEY: antilogarithms

18 ANS: $4 \quad$ PTS: 2
REF: 061518a2
STA: A2.A. 51
TOP: Domain and Range
19 ANS: 1
$\frac{2 \pi}{2}=\pi$
$\frac{\pi}{\pi}=1$

PTS: 2 REF: 061519a2 STA: A2.A. 69
TOP: Properties of Graphs of Trigonometric Functions
20 ANS: 4
PTS: 2
REF: 061520a2
KEY: period
TOP: Sequences
21 ANS: 2 PTS: 2
TOP: Inverse of Functions
REF: 061521a2
STA: A2.A. 44

22 ANS: 1
$\frac{1+\cos 2 A}{\sin 2 A}=\frac{1+2 \cos ^{2} A-1}{2 \sin A \cos A}=\frac{\cos A}{\sin A}=\cot A$
PTS: 2 REF: 061522a2 STA: A2.A. 77 TOP: Double Angle Identities
KEY: simplifying
23 ANS: 3 PTS: 2
REF: 061523a2 STA: A2.S. 9
TOP: Differentiating Permutations and Combinations
24 ANS: 3
$3 x^{2}+x-14=01^{2}-4(3)(-14)=1+168=169=13^{2}$
PTS: 2 REF: 061524a2 STA: A2.A. 2 TOP: Using the Discriminant
KEY: determine nature of roots given equation
25 ANS: 2
$x=2 \cdot \frac{\sqrt{3}}{2}=\sqrt{3} \quad y=2 \cdot \frac{1}{2}=1$
PTS: 2 REF: 061525a2 STA: A2.A. 62 TOP: Determining Trigonometric Functions
26 ANS: 4
$(3-2 a)^{0}+(3-2 a)^{1}+(3-2 a)^{2}=1+3-2 a+9-12 a+4 a^{2}=4 a^{2}-14 a+13$
PTS: 2
REF: 061526a2 STA: A2.N. 10 TOP: Sigma Notation
KEY: advanced
27
ANS: 3
$\mathrm{p}(5)-\mathrm{p}(0)=17(1.15)^{2(5)}-17(1.15)^{2(0)} \approx 68.8-17 \approx 51$
PTS: 2 REF: 061527a2 STA: A2.A. 12 TOP: Evaluating Exponential Expressions

28 ANS:

$$
\begin{aligned}
5^{4 x} & =\left(5^{3}\right)^{x-1} \\
4 x & =3 x-3 \\
x & =-3
\end{aligned}
$$

PTS: 2
REF: 061528a2 STA: A2.A. 27
KEY: common base shown
29 ANS:

$$
\begin{array}{rll}
\frac{8}{\sin 85} & =\frac{2}{\sin C} & 85+14.4<180 \\
C & =\sin ^{-1}\left(\frac{2 \sin 85}{8}\right) & 85+165.6 \geq 180 \\
C & \approx 14.4
\end{array}
$$

PTS: 2
REF: 061529a2 STA: A2.A.75
TOP: Law of Sines - The Ambiguous Case
30
ANS:
${ }_{3} C_{1}\left(\frac{1}{4}\right)^{1}\left(\frac{3}{4}\right)^{2}=3 \cdot \frac{1}{4} \cdot \frac{9}{16}=\frac{27}{64}$
PTS: 2 REF: 061530a2 STA: A2.S. 15 TOP: Binomial Probability
KEY: exactly
31 ANS:

$$
\begin{aligned}
(x+1)^{3} & =64 \\
x+1 & =4 \\
x & =3
\end{aligned}
$$

PTS: 2 REF: 061531a2 STA: A2.A. 28 TOP: Logarithmic Equations
KEY: basic
32 ANS:
$x^{2}(x-6)-25(x-6)$
$\left(x^{2}-25\right)(x-6)$
$(x+5)(x-5)(x-6)$
PTS: 2
REF: 061532a2
STA: A2.A. 7
TOP: Factoring by Grouping
33 ANS:
$x i^{8}-y i^{6}=x(1)-y(-1)=x+y$
PTS: 2
REF: 061533a2
STA: A2.N. 7
TOP: Imaginary Numbers

34 ANS:
Sum $\frac{-b}{a}=\frac{-2}{3}$. Product $\frac{c}{a}=\frac{k}{3}$
PTS: 2 REF: 061534a2 STA: A2.A. 20 TOP: Roots of Quadratics
35 ANS:
$r_{A} \approx 0.976 r_{B} \approx 0.994$ Set B has the stronger linear relationship since r is higher.
PTS: 2 REF: 061535a2 STA: A2.S. 8 TOP: Correlation Coefficient
36 ANS:

$$
\begin{aligned}
28^{2} & =47^{2}+34^{2}-2(47)(34) \cos A \\
784 & =3365-3196 \cos A \\
-2581 & =-3196 \cos A \\
\frac{2581}{3196} & =\cos A \\
36 & \approx A
\end{aligned}
$$

PTS: 4 REF: 061536a2 STA: A2.A. 73 TOP: Law of Cosines
KEY: find angle
37 ANS:
$\frac{3}{x}+\frac{x}{x+2}=-\frac{2}{x+2}$

$$
\frac{x+2}{x+2}=-\frac{3}{x}
$$

$$
1=-\frac{3}{x}
$$

$$
x=-3
$$

PTS: 4 REF: 061537a2 STA: A2.A. 23 TOP: Solving Rationals
KEY: rational solutions
38 ANS.
$5.17 \quad 84.46 \pm 5.17$
79.29-89.63
$5+7+5=17$
PTS: 4
REF: 061538a2 STA: A2.S. 4
TOP: Dispersion
KEY: advanced, group frequency distributions

ANS:
$5 \cos \theta-2 \sec \theta+3=0$
$5 \cos \theta-\frac{2}{\cos \theta}+3=0$
$5 \cos ^{2} \theta+3 \cos \theta-2=0$
$(5 \cos \theta-2)(\cos \theta+1)=0$

$$
\begin{aligned}
\cos \theta & =\frac{2}{5},-1 \\
\theta & \approx 66.4,293.6,180
\end{aligned}
$$

PTS: 6 REF: 061539a2 STA: A2.A. 68 TOP: Trigonometric Equations KEY: reciprocal functions

