0616a2

- 1 The expression $\frac{3}{4}\sqrt{-80}$ is equivalent to 1) $3i\sqrt{5}$
 - 2) $2i\sqrt{15}$
 - 2) $2i\sqrt{15}$ 3) $-3\sqrt{5}$
 - 4) $-2\sqrt{15}$
- 2 In $\triangle RST$, m $\angle S = 135$, r = 27, and t = 19. What is the area of $\triangle RST$ to the *nearest tenth of a square unit*?
 - 1) 90.7
 - 2) 181.4
 - 3) 256.5
 - 4) 362.7
- 3 The expression $\frac{\sqrt{5}}{7-\sqrt{5}}$ is equivalent to

1)
$$\frac{7\sqrt{5+5}}{54}$$

2) $\frac{7\sqrt{5-5}}{54}$

$$\begin{array}{r} 54 \\ 3) \quad \frac{7\sqrt{5}+5}{44} \\ 4) \quad \frac{7\sqrt{5}-5}{44} \end{array}$$

4 A multiple-choice test has 4 possible choices for each question. A person guesses on 10 questions. What is the probability the person gets *exactly* 8 questions correct?

1) ${}_{10}C_8\left(\frac{1}{4}\right)^2\left(\frac{3}{4}\right)^8$ 2) ${}_{10}C_8\left(\frac{1}{4}\right)^8\left(\frac{3}{4}\right)^2$ 3) ${}_{10}C_8\left(\frac{1}{10}\right)^2\left(\frac{9}{10}\right)^8$ 4) ${}_{10}C_8\left(\frac{1}{10}\right)^8\left(\frac{9}{10}\right)^2$

5 The summation
$$2\sum_{n=3}^{6} \cos\left(\frac{\pi}{n-2}\right)$$
 equals
1) $-\frac{2+\sqrt{2}}{2}$
2) $-2+\sqrt{2}$
3) $-\frac{1+\sqrt{2}}{2}$
4) $-1+\sqrt{2}$

6 The graph of a relation is shown below.

What is the domain of this relation?

- 1) $\{-2, -1, 0, 1\}$ 2) $\left\{-\frac{1}{2}, 0, \frac{1}{2}, 1\right\}$ 3) $\{x \mid -2 \le x < 2\}$ 4) $\{x \mid -2 \le x \le 2\}$
- 7 The Mathematics Club will select a president, a vice president, and a treasurer for the club. If there are 15 members in the club, how many different selections of a president, a vice president, and a treasurer are possible if each club member can be selected to only one position?
 - 1) 42
 - 2) 455
 - 3) 2730
 - 4) 3375

Algebra 2/Trigonometry Regents Exam 0616 www.jmap.org

- 8 For which equation will f(-2) = -6?
 - 1) $f(x) = x^3 + x$
 - 2) $f(x) = x^4 5x$
 - 3) $f(x) = 4x^3 + 6x^2 x$
 - 4) $f(x) = -3x^3 4x^2 + 4x$
- 9 What is the product of $x^2 2x + 3$ and x + 1?

1)
$$x^3 - x^2 + x + 3$$

2) $x^3 - 2x^2 + 3x$

3)
$$x^2 - 3x + 2$$

- 3) $x^2 3x + 2$ 4) $x^2 x + 4$
- 10 A principal is concerned about the decline in the number of students who purchase food from the cafeteria. A survey was developed to assist the principal. The most appropriate method would be for the principal to randomly select 100 students from
 - 1) the junior class
 - 2) the student directory
 - 3) the Algebra 2/Trigonometry classes
 - the students who are eating during fourth 4) period lunch in the cafeteria
- 11 The solution of $8^{1-p} = 16^{2p-1}$ is
 - $\frac{7}{11}$ 1)
 - 2) $\frac{3}{5}$

 - $\frac{4}{9}$ 3)
 - $\frac{2}{5}$ 4)
- 12 Which relation is *not* a function?

$$1) \quad \left\{ (x,y) : y = |x| \right\}$$

2)
$$\{(x,y): y = -x^2\}$$

3)
$$\{(x,y): y = x\}$$

4) $\left\{ (x,y) : y = \pm \sqrt{x} \right\}$

- 13 What does the correlation coefficient of -0.975 on a linear regression indicate?
 - The slope is positive. 1)
 - 2) One variable causes the other.
 - The scatterplot shows no association of the 3) variables.
 - One variable has a strong relationship with the 4) other.
- 14 Which angle has the same terminal side as an angle of 155°?
 - 1) -205°
 - 2) -155°
 - 3) 25°
 - 4) 335°
- 15 For any power of i, the imaginary unit, where b is a whole number, i^{4b+3} equals
 - 1) 1
 - 2) *i*
 - 3) -1
 - 4) -i
- 16 What is the solution set of $x \frac{10}{x} + 3 = 0$?
 - 1) $\{-5,2\}$
 - 2) $\{-2,5\}$
 - 3) $\{-1, 10\}$
 - 4) $\{-10,1\}$
- 17 In triangle ABC, if $m \angle A = 40$, BC = 10, and AB = 12, then $m \angle C$ can be
 - 1) an acute angle, only
 - 2) a right angle, only
 - 3) an obtuse angle, only
 - 4) either an acute or an obtuse angle
- 18 To the *nearest thousandth*, what is 23°50', in radian measure?
 - 1) 0.416
 - 2) 0.415
 - 3) 0.410
 - 4) 0.409

Algebra 2/Trigonometry Regents Exam 0616 www.jmap.org

- 19 When $f(x) = \frac{x-7}{2}$, what is the value of $(f \circ f^{-1})(3)$? 1) 2x + 72) -23) 3
 - 4) *x*
- 20 What is the equation of the circle passing through the point (-5, -2) whose center is at (-2, 3)?
 - 1) $(x+5)^{2} + (y+2)^{2} = 34$ 2) $(x+5)^{2} + (y+2)^{2} = 50$ 3) $(x+2)^{2} + (y-3)^{2} = 34$ 4) $(x+2)^{2} + (y-3)^{2} = 50$
- 21 If a = -2 and b = -3, what is the value of the expression $\frac{c^a}{c^b} - \frac{c^b}{c^a}$, when $c \neq 0$? 1) 0 2) $\frac{c^2 + 1}{c}$ 3) 2c4) $\frac{c^2 - 1}{c}$
- 22 What is the fourth term in the expansion of $(2x-1)^6$?
 - 1) $-160x^3$
 - 2) $-40x^3$
 - 3) $16x^4$
 - 4) $240x^4$
- 23 If the roots of a quadratic equation are real, irrational, and unequal, the discriminant could have a value of
 - 1) 1
 - 2) 0
 - 3) 8
 - 4) -6

- 24 What is the *n*th term of the sequence $-1, 3, 7, 11, \ldots$?
 - 1) $a_n = -1 4(n-1)$
 - 2) $a_n = -1 + 4(n-1)$
 - $3) \quad a_n = 4 (n-1)$
 - 4) $a_n = 4 + (n-1)$
- 25 What is the sample standard deviation of the data in the table below, rounded to the *nearest tenth*?

Scores	Frequency
50	1
60	2
70	7
80	6
90	3
100	2

- 1) 12.5
- 2) 12.8
- 3) 17.1
- 4) 18.7
- 26 Which equation is *not* true?
 - 1) $\cot^2 \theta = 1 \sec^2 \theta$
 - 2) $\sin^2\theta = 1 \cos^2\theta$
 - 3) $\sec^2 \theta = \tan^2 \theta + 1$
 - 4) $\csc^2 \theta = 1 + \cot^2 \theta$
- 27 Which quadratic equation has roots whose sum is
 - $-\frac{9}{4} \text{ and product is } \frac{2}{3}?$ 1) $12x^2 + 8x + 27 = 0$ 2) $12x^2 27x + 8 = 0$
 - $\begin{array}{l} 2) & 12x & 27x + 6 = 0 \\ 3) & 12x^2 8x 27 = 0 \end{array}$
 - 4) $12x^2 + 27x + 8 = 0$
- 28 Factor $6x^3 + 33x^2 63x$ completely.

Algebra 2/Trigonometry Regents Exam 0616 www.jmap.org

29 Five thousand dollars is invested at an interest rate of 3.5% compounded quarterly. No money is deposited or withdrawn from the account. Using the formula below, determine, to the *nearest cent*, how much this investment will be worth in 18 years.

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

A = amount

P = principal

r =interest rate

n = number of times the interest rate

compounded annually

t = time in years

30 A colony of bacteria grows exponentially. The table below shows the data collected daily.

Day (x)	Population (y)
0	200
1	425
2	570
3	800
4	1035
5	1650
6	2600

State the exponential regression equation for the data, rounding all values to the *nearest hundredth*.

31 Express
$$\frac{2 + \frac{6}{x-3}}{\frac{x}{x-3}}$$
 in simplest form, where $x \neq 0$
and $x \neq 3$.

- 32 A central angle whose measure is $\frac{2\pi}{3}$ radians intercepts an arc with a length of 4π feet. Find the radius of the circle, *in feet*.
- 33 A sine function is graphed below.

Determine and state the amplitude and period of this function.

- 34 On the Algebra 2/Trigonometry midterm at Champion High School, the scores of 210 students were normally distributed with a mean of 82 and a standard deviation of 4.2. Determine how many students scored between 79.9 and 88.3.
- 35 Given $\tan \theta = -\frac{5}{12}$ and $\frac{\pi}{2} < \theta < \pi$, determine the *exact* value of the expression $\sin \theta \cot \theta$.
- 36 The lengths of the sides of a triangle are 6 cm, 11 cm, and 7 cm. Determine, to the *nearest tenth of a degree*, the measure of the largest angle of the triangle.
- 37 Solve algebraically for *c*: $\left|\frac{3}{2}c 10\right| 9 \le -1$
- 38 Solve $2\cos^2 \theta = \cos \theta$ for all values of θ in the interval $0^\circ \le \theta < 360^\circ$.
- 39 Solve for *p* algebraically:

$$\log_{16}(p^2 - p + 4) - \log_{16}(2p + 11) = \frac{3}{4}$$

1 ANS: 1 $\frac{3}{4}\sqrt{-1}\sqrt{16}\sqrt{5} = 3i\sqrt{5}$ STA: A2.N.6 PTS: 2 REF: 061601a2 TOP: Square Roots of Negative Numbers 2 ANS: 2 $K = \frac{1}{2} (27)(19) \sin 135 \approx 181.4$ PTS: 2 STA: A2.A.74 REF: 061602a2 TOP: Using Trigonometry to Find Area KEY: basic 3 ANS: 3 $\frac{\sqrt{5}}{7-\sqrt{5}} \cdot \frac{7+\sqrt{5}}{7+\sqrt{5}} = \frac{7\sqrt{5}+5}{49-5} = \frac{7\sqrt{5}+5}{44}$ PTS: 2 REF: 061603a2 STA: A2.N.5 **TOP:** Rationalizing Denominators 4 ANS: 2 REF: 061604a2 PTS: 2 STA: A2.S.15 **TOP:** Binomial Probability KEY: modeling 5 ANS: 4 $2\left(\cos\frac{\pi}{3-2} + \cos\frac{\pi}{4-2} + \cos\frac{\pi}{5-2} + \cos\frac{\pi}{6-2}\right) = 2\left(-1 + 0 + \frac{1}{2} + \frac{\sqrt{2}}{2}\right) = 2\left(-\frac{1}{2} + \frac{\sqrt{2}}{2}\right) = -1 + \sqrt{2}$ PTS: 2 REF: 061605a2 STA: A2.N.10 **TOP:** Sigma Notation KEY: advanced REF: 061606a2 6 ANS: 3 PTS: 2 STA: A2.A.51 TOP: Domain and Range KEY: graph 7 ANS: 3 $_{15}P_3 = 2730$ PTS: 2 REF: 061607a2 STA: A2.S.10 **TOP:** Permutations 8 ANS: 3 $f(-2) = 4(-2)^3 + 6(-2)^2 - (-2) = -32 + 24 + 2 = -6$ PTS: 2 REF: 061608a2 STA: A2.A.41 **TOP:** Functional Notation 9 ANS: 1 $(x^{2}-2x+3)(x+1) = x^{3}+x^{2}-2x^{2}-2x+3x+3 = x^{3}-x^{2}+x+3$ REF: 061609a2 STA: A2.N.3 **PTS:** 2 TOP: Operations with Polynomials **KEY:** multiplication

10 ANS: 2

To determine student interest, survey the widest range of students.

PTS: 2 STA: A.S.3 REF: 061610a2 TOP: Analysis of Data KEY: bias 11 ANS: 1 $(2^3)^{1-p} = (2^4)^{2p-1}$ 3 - 3p = 8p - 47 = 11p $\frac{7}{11} = p$ PTS: 2 REF: 061611a2 STA: A2.A.27 **TOP:** Exponential Equations KEY: common base not shown STA: A2.A.38 12 ANS: 4 PTS: 2 REF: 061612a2 **TOP:** Defining Functions 13 ANS: 4 PTS: 2 REF: 061613a2 STA: A2.S.8 **TOP:** Correlation Coefficient 14 ANS: 1 $-205^{\circ} + 360^{\circ} = 155^{\circ}$ PTS: 2 STA: A2.A.60 REF: 061614a2 TOP: Unit Circle 15 ANS: 4 PTS: 2 REF: 061615a2 STA: A2.N.7 TOP: Imaginary Numbers 16 ANS: 1 $x^{2} - 10 + 3x = 0$ $x^2 + 3x - 10 = 0$ (x+5)(x-2) = 0x = -5, 2**PTS: 2** REF: 061616a2 STA: A2.A.23 **TOP:** Solving Rationals KEY: rational solutions 17 ANS: 4 $\frac{10}{\sin 40} = \frac{12}{\sin C}$ 50.5 + 40 < 180 $C = \sin^{-1} \frac{12\sin 40}{10} \quad 129.5 + 40 < 180$ ≈ 50.5 PTS: 2 REF: 061617a2 STA: A2.A.75 TOP: Law of Sines - The Ambiguous Case

18 ANS: 1
23
$$\frac{6}{6} \left(\frac{\pi}{186}\right) \approx 0.416$$

PTS: 2
REF: radians
19 ANS: 3
 $x = \frac{v-7}{2} \int f^{-1}(3) = 2(3) + 7 = 13$
 $y = 2x + 7 \int f(13) = \frac{13 - 7}{2} = 3$
PTS: 2
REF: 061619a2 STA: A2.A.44 TOP: Inverse of Functions
KEY: equations
20 ANS: 3
 $r = \sqrt{(-5 - -2)^2 + (-2 - 3)^2} = \sqrt{9 + 25} = \sqrt{34}$
PTS: 2
REF: 061620a2 STA: A2.A.48 TOP: Equations of Circles
21 ANS: 4
 $\frac{c^{-2}}{c^{-3}} - \frac{c^{-3}}{c^{-2}} = c - \frac{1}{c} = \frac{c^2 - 1}{c}$
22 PTS: 2
REF: 061621a2 STA: A2.A.48 TOP: Equations of Circles
23 ANS: 3
 $rs - \sqrt{(-5)^2 + (-2 - 3)^2} = \sqrt{9 + 25} = \sqrt{34}$
PTS: 2
REF: 061621a2 STA: A2.A.18 TOP: Equations of Circles
24 ANS: 3
ANS: 3
ANS: 3
PTS: 2
REF: 061622a2 STA: A2.A.36 TOP: Binomial Expansions
25 ANS: 3
TOP: Using the Discriminant KFY: determine equation given nature of roots
24 ANS: 2
TOP: Sequences
25 ANS: 2
TOP: Dispersion KEY: basic, group frequency distributions
26 ANS: 1
 $cot^2 \theta = 1 - se^2 \theta$
 $\frac{cos^2}{sn^2} \theta = \frac{cos^2 \theta - 1}{cos^2 \theta}$
 $\frac{cos^2 \theta}{sn^2 \theta} = \frac{cos^2 \theta - 1}{cos^2 \theta}$
 $\frac{cos^2 \theta}{sn^2 \theta} = \frac{cos^2 \theta - 1}{cos^2 \theta}$
 $\frac{cos^2 \theta}{sn^2 \theta} = \frac{cos^2 \theta - 1}{cos^2 \theta}$
 $\frac{cos^2 \theta}{sn^2 \theta} = \frac{cos^2 \theta - 1}{cos^2 \theta}$
PTS: 2
REF: 061626a2 STA: A2.A.67 TOP: Simplifying Trigonometric Expressions

27 ANS: 4
sum of the roots,
$$\frac{-b}{a} = \frac{-27}{12} = -\frac{9}{4}$$
; product of the roots, $\frac{c}{a} = \frac{8}{12} = \frac{2}{3}$
PTS: 2
KEY: basic
(a³ + 33x² - 63x
(3(2x² + 11x - 21)
(x + 7)(2x - 3)
PTS: 2
ANS:
 $d = 5000 \left(1 + \frac{.035}{4}\right)^{4-18} \approx 9362.36$
PTS: 2
REF: 061629a2 STA: A2.A.12 TOP: Factoring Polynomials
 $x = 5000 \left(1 + \frac{.035}{4}\right)^{4-18} \approx 9362.36$
PTS: 2
REF: 061629a2 STA: A2.A.12 TOP: Evaluating Exponential Expressions
30
ANS:
 $y = 239.21(1.48)^4$
PTS: 2
REF: 061630a2 STA: A2.S.7 TOP: Regression
31
ANS:
 $\frac{2 + \frac{6}{3}}{\frac{x-3}{x-3}} \cdot \frac{\frac{x-3}{1}}{\frac{x-3}{1}} = \frac{2(x-3)+6}{x} = \frac{2x-6+6}{x} = 2$
PTS: 2
REF: 061631a2 STA: A2.A.17 TOP: Complex Fractions
32
ANS:
 $r = \frac{8}{\theta} = \frac{4\pi}{2\frac{\pi}{3}} = 6$
PTS: 2
REF: 061632a2 STA: A2.A.61 TOP: Arc Length
33
ANS:
2, 2 π
PTS: 2
REF: 061633a2 STA: A2.A.69
PTS: 2
PTS: 2
PTS: 2
REF: 061633a2 STA: A2.A.69
PTS: 2
P

34 ANS: $(0.191 + 0.433)210 \approx 131$ PTS: 2 REF: 061634a2 STA: A2.S.5 **TOP:** Normal Distributions KEY: predict 35 ANS: $\sin\theta\,\cot\theta = \left(-\frac{12}{5}\right)\left(\frac{5}{13}\right) = -\frac{60}{65}$ PTS: 2 REF: 061635a2 STA: A2.A.64 TOP: Using Inverse Trigonometric Functions KEY: advanced 36 ANS: $11^2 = 6^2 + 7^2 - 2(6)(7)\cos A$ $121 = 85 - 84 \cos A$ $36 = -84\cos A$ $-\frac{36}{84} = \cos A$ $115.4 \approx A$ PTS: 4 STA: A2.A.73 REF: 061636a2 TOP: Law of Cosines KEY: find angle 37 ANS: $\left|\frac{3}{2}c - 10\right| \le 8$ $\frac{3}{2}c - 10 \le 8$ and $\frac{3}{2}c - 10 \ge -8$ $\frac{3}{2}c \le 18 \qquad \qquad \frac{3}{2}c \ge 2$ $c \leq 12$ $c \geq \frac{4}{3}$ PTS: 4 REF: 061637a2 STA: A2.A.1 TOP: Absolute Value Inequalities 38 ANS: $2\cos^2\theta - \cos\theta = 0$ $\cos\theta(2\cos\theta - 1) = 0$ $\cos\theta = 0, \frac{1}{2}$ $\theta = 90,270,60,300$ STA: A2.A.68 PTS: 4 REF: 061638a2 TOP: Trigonometric Equations **KEY**: quadratics

39 ANS:

$$\log_{16} \left(\frac{p^2 - p + 4}{2p + 11} \right) = \frac{3}{4}$$

$$\frac{p^2 - p + 4}{2p + 11} = 16^{\frac{3}{4}}$$

$$\frac{p^2 - p + 4}{2p + 11} = 8$$

$$p^2 - p + 4 = 16p + 88$$

$$p^2 - 17p - 84 = 0$$

$$(p - 21)(p + 4) = 0$$

$$p = 21, -4$$

PTS: 6 REF: 061639a2 STA: A2.A.28 KEY: applying properties of logarithms

TOP: Logarithmic Equation	IS
---------------------------	----