$0616 a 2$

1 The expression $\frac{3}{4} \sqrt{-80}$ is equivalent to

1) $3 i \sqrt{5}$
2) $2 i \sqrt{15}$
3) $-3 \sqrt{5}$
4) $-2 \sqrt{15}$

2 In $\triangle R S T, \mathrm{~m} \angle S=135, r=27$, and $t=19$. What is the area of $\triangle R S T$ to the nearest tenth of a square unit?

1) 90.7
2) 181.4
3) 256.5
4) 362.7

3 The expression $\frac{\sqrt{5}}{7-\sqrt{5}}$ is equivalent to

1) $\frac{7 \sqrt{5}+5}{54}$
2) $\frac{7 \sqrt{5}-5}{54}$
3) $\frac{7 \sqrt{5}+5}{44}$
4) $\frac{7 \sqrt{5}-5}{44}$

4 A multiple-choice test has 4 possible choices for each question. A person guesses on 10 questions. What is the probability the person gets exactly 8 questions correct?

1) ${ }_{10} C_{8}\left(\frac{1}{4}\right)^{2}\left(\frac{3}{4}\right)^{8}$
2) ${ }_{10} C_{8}\left(\frac{1}{4}\right)^{8}\left(\frac{3}{4}\right)^{2}$
3) ${ }_{10} C_{8}\left(\frac{1}{10}\right)^{2}\left(\frac{9}{10}\right)^{8}$
4) ${ }_{10} C_{8}\left(\frac{1}{10}\right)^{8}\left(\frac{9}{10}\right)^{2}$

5 The summation $2 \sum_{n=3}^{6} \cos \left(\frac{\pi}{n-2}\right)$ equals

1) $-\frac{2+\sqrt{2}}{2}$
2) $-2+\sqrt{2}$
3) $-\frac{1+\sqrt{2}}{2}$
4) $-1+\sqrt{2}$

6 The graph of a relation is shown below.

What is the domain of this relation?

1) $\{-2,-1,0,1\}$
2) $\left\{-\frac{1}{2}, 0, \frac{1}{2}, 1\right\}$
3) $\{x \mid-2 \leq x<2\}$
4) $\{x \mid-2 \leq x \leq 2\}$

7 The Mathematics Club will select a president, a vice president, and a treasurer for the club. If there are 15 members in the club, how many different selections of a president, a vice president, and a treasurer are possible if each club member can be selected to only one position?

1) 42
2) 455
3) 2730
4) 3375

8 For which equation will $f(-2)=-6$?

1) $f(x)=x^{3}+x$
2) $f(x)=x^{4}-5 x$
3) $f(x)=4 x^{3}+6 x^{2}-x$
4) $f(x)=-3 x^{3}-4 x^{2}+4 x$

9 What is the product of $x^{2}-2 x+3$ and $x+1$?

1) $x^{3}-x^{2}+x+3$
2) $x^{3}-2 x^{2}+3 x$
3) $x^{2}-3 x+2$
4) $x^{2}-x+4$

10 A principal is concerned about the decline in the number of students who purchase food from the cafeteria. A survey was developed to assist the principal. The most appropriate method would be for the principal to randomly select 100 students from

1) the junior class
2) the student directory
3) the Algebra 2/Trigonometry classes
4) the students who are eating during fourth period lunch in the cafeteria

11 The solution of $8^{1-p}=16^{2 p-1}$ is

1) $\frac{7}{11}$
2) $\frac{3}{5}$
3) $\frac{4}{9}$
4) $\frac{2}{5}$

12 Which relation is not a function?

1) $\{(x, y): y=|x|\}$
2) $\left\{(x, y): y=-x^{2}\right\}$
3) $\{(x, y): y=x\}$
4) $\{(x, y): y= \pm \sqrt{x}\}$

13 What does the correlation coefficient of -0.975 on a linear regression indicate?

1) The slope is positive.
2) One variable causes the other.
3) The scatterplot shows no association of the variables.
4) One variable has a strong relationship with the other.

14 Which angle has the same terminal side as an angle of 155° ?

1) -205°
2) -155°
3) 25°
4) 335°

15 For any power of i, the imaginary unit, where b is a whole number, $i^{4 b+3}$ equals

1) 1
2) i
3) -1
4) $-i$

16 What is the solution set of $x-\frac{10}{x}+3=0$?

1) $\{-5,2\}$
2) $\{-2,5\}$
3) $\{-1,10\}$
4) $\{-10,1\}$

17 In triangle $A B C$, if $\mathrm{m} \angle A=40, B C=10$, and $A B=12$, then $m \angle C$ can be

1) an acute angle, only
2) a right angle, only
3) an obtuse angle, only
4) either an acute or an obtuse angle

18 To the nearest thousandth, what is $23^{\circ} 50^{\prime}$, in radian measure?

1) 0.416
2) 0.415
3) 0.410
4) 0.409

19 When $f(x)=\frac{x-7}{2}$, what is the value of $\left(f \circ f^{-1}\right)(3)$?

1) $2 x+7$
2) -2
3) 3
4) x

20 What is the equation of the circle passing through the point $(-5,-2)$ whose center is at $(-2,3)$?

1) $(x+5)^{2}+(y+2)^{2}=34$
2) $(x+5)^{2}+(y+2)^{2}=50$
3) $(x+2)^{2}+(y-3)^{2}=34$
4) $(x+2)^{2}+(y-3)^{2}=50$

21 If $a=-2$ and $b=-3$, what is the value of the expression $\frac{c^{a}}{c^{b}}-\frac{c^{b}}{c^{a}}$, when $c \neq 0$?

1) 0
2) $\frac{c^{2}+1}{c}$
3) $2 c$
4) $\frac{c^{2}-1}{c}$

22 What is the fourth term in the expansion of $(2 x-1)^{6}$?

1) $-160 x^{3}$
2) $-40 x^{3}$
3) $16 x^{4}$
4) $240 x^{4}$

23 If the roots of a quadratic equation are real, irrational, and unequal, the discriminant could have a value of

1) 1
2) 0
3) 8
4) -6

24 What is the nth term of the sequence $-1,3,7,11, \ldots$?

1) $a_{n}=-1-4(n-1)$
2) $a_{n}=-1+4(n-1)$
3) $a_{n}=4-(n-1)$
4) $a_{n}=4+(n-1)$

25 What is the sample standard deviation of the data in the table below, rounded to the nearest tenth?

Scores	Frequency
50	1
60	2
70	7
80	6
90	3
100	2

1) 12.5
2) 12.8
3) 17.1
4) 18.7

26 Which equation is not true?

1) $\cot ^{2} \theta=1-\sec ^{2} \theta$
2) $\sin ^{2} \theta=1-\cos ^{2} \theta$
3) $\sec ^{2} \theta=\tan ^{2} \theta+1$
4) $\csc ^{2} \theta=1+\cot ^{2} \theta$

27 Which quadratic equation has roots whose sum is $-\frac{9}{4}$ and product is $\frac{2}{3}$?

1) $12 x^{2}+8 x+27=0$
2) $12 x^{2}-27 x+8=0$
3) $12 x^{2}-8 x-27=0$
4) $12 x^{2}+27 x+8=0$

28 Factor $6 x^{3}+33 x^{2}-63 x$ completely.

29 Five thousand dollars is invested at an interest rate of 3.5% compounded quarterly. No money is deposited or withdrawn from the account. Using the formula below, determine, to the nearest cent, how much this investment will be worth in 18 years.

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

$$
A=\mathrm{amount}
$$

$$
P=\text { principal }
$$

$$
r=\text { interest rate }
$$

$$
n=\text { number of times the interest rate }
$$

compounded annually

$$
t=\text { time in years }
$$

30 A colony of bacteria grows exponentially. The table below shows the data collected daily.

Day (x)	Population (y)
0	200
1	425
2	570
3	800
4	1035
5	1650
6	2600

State the exponential regression equation for the data, rounding all values to the nearest hundredth.

31 Express $\frac{2+\frac{6}{x-3}}{\frac{x}{x-3}}$ in simplest form, where $x \neq 0$
and $x \neq 3$.

32 A central angle whose measure is $\frac{2 \pi}{3}$ radians intercepts an arc with a length of 4π feet. Find the radius of the circle, in feet.

33 A sine function is graphed below.

Determine and state the amplitude and period of this function.

34 On the Algebra 2/Trigonometry midterm at Champion High School, the scores of 210 students were normally distributed with a mean of 82 and a standard deviation of 4.2. Determine how many students scored between 79.9 and 88.3.

35 Given $\tan \theta=-\frac{5}{12}$ and $\frac{\pi}{2}<\theta<\pi$, determine the exact value of the expression $\sin \theta \cot \theta$.

36 The lengths of the sides of a triangle are $6 \mathrm{~cm}, 11$ cm , and 7 cm . Determine, to the nearest tenth of a degree, the measure of the largest angle of the triangle.

37 Solve algebraically for c : $\left|\frac{3}{2} c-10\right|-9 \leq-1$

38 Solve $2 \cos ^{2} \theta=\cos \theta$ for all values of θ in the interval $0^{\circ} \leq \theta<360^{\circ}$.

39 Solve for p algebraically:

$$
\log _{16}\left(p^{2}-p+4\right)-\log _{16}(2 p+11)=\frac{3}{4}
$$

$0616 a 2$

Answer Section

1 ANS: 1
$\frac{3}{4} \sqrt{-1} \sqrt{16} \sqrt{5}=3 i \sqrt{5}$
PTS: 2 REF: 061601a2 STA: A2.N. 6 TOP: Square Roots of Negative Numbers
2 ANS: 2
$K=\frac{1}{2}(27)(19) \sin 135 \approx 181.4$
PTS: 2 REF: 061602 a 2 STA: A2.A. 74 TOP: Using Trigonometry to Find Area
KEY: basic
3 ANS: 3
$\frac{\sqrt{5}}{7-\sqrt{5}} \cdot \frac{7+\sqrt{5}}{7+\sqrt{5}}=\frac{7 \sqrt{5}+5}{49-5}=\frac{7 \sqrt{5}+5}{44}$
PTS: 2 REF: 061603a2 STA: A2.N.5 TOP: Rationalizing Denominators
4 ANS: 2
PTS: 2
REF: 061604a2
STA: A2.S. 15
TOP: Binomial Probability
KEY: modeling
5 ANS: 4
$2\left(\cos \frac{\pi}{3-2}+\cos \frac{\pi}{4-2}+\cos \frac{\pi}{5-2}+\cos \frac{\pi}{6-2}\right)=2\left(-1+0+\frac{1}{2}+\frac{\sqrt{2}}{2}\right)=2\left(-\frac{1}{2}+\frac{\sqrt{2}}{2}\right)=-1+\sqrt{2}$
PTS: 2
REF: 061605a2
STA: A2.N. 10 TOP: Sigma Notation
KEY: advanced
6 ANS: 3
PTS: 2
TOP: Domain and Range
REF: 061606a2
STA: A2.A. 51

ANS: 3
${ }_{15} P_{3}=2730$
PTS: 2
REF: 061607a2
STA: A2.S. 10
TOP: Permutations
8 ANS: 3
$f(-2)=4(-2)^{3}+6(-2)^{2}-(-2)=-32+24+2=-6$
PTS: 2 REF: 061608a2 STA: A2.A. 41 TOP: Functional Notation
9 ANS: 1
$\left(x^{2}-2 x+3\right)(x+1)=x^{3}+x^{2}-2 x^{2}-2 x+3 x+3=x^{3}-x^{2}+x+3$
PTS: 2 REF: 061609a2 STA: A2.N. 3 TOP: Operations with Polynomials
KEY: multiplication

10 ANS: 2
To determine student interest, survey the widest range of students.
PTS: 2 REF: 061610a2 STA: A.S. 3 TOP: Analysis of Data
KEY: bias
11 ANS: 1
$\left(2^{3}\right)^{1-p}=\left(2^{4}\right)^{2 p-1}$
$3-3 p=8 p-4$
$7=11 p$
$\frac{7}{11}=p$
PTS: 2
REF: 061611a2
STA: A2.A. 27
TOP: Exponential Equations
KEY: common base not shown
12 ANS: 4 PTS: 2
REF: 061612a2 STA: A2.A. 38
TOP: Defining Functions
13 ANS: 4 PTS: 2
TOP: Correlation Coefficient
14 ANS: 1
$-205^{\circ}+360^{\circ}=155^{\circ}$
PTS: 2 REF: 061614a2
STA: A2.A. 60 TOP: Unit Circle
15 ANS: 4
PTS: 2
REF: 061615a2 STA: A2.N. 7
TOP: Imaginary Numbers
16 ANS: 1
$x^{2}-10+3 x=0$
$x^{2}+3 x-10=0$
$(x+5)(x-2)=0$
$x=-5,2$
PTS: 2 REF: 061616a2 STA: A2.A. 23 TOP: Solving Rationals
KEY: rational solutions
17 ANS: 4

$$
\begin{array}{rlr}
\frac{10}{\sin 40} & =\frac{12}{\sin C} & 50.5+40<180 \\
C & =\sin ^{-1} \frac{12 \sin 40}{10} & \\
& \approx 50.5 &
\end{array}
$$

PTS: 2
REF: 061617a2 STA: A2.A.75
TOP: Law of Sines - The Ambiguous Case

18 ANS: 1
$23 \frac{5}{6}\left(\frac{\pi}{180}\right) \approx 0.416$
PTS: 2 REF: 061618a2 STA: A2.M. 2 TOP: Radian Measure
KEY: radians
19 ANS: 3
$x=\frac{y-7}{2} \quad f^{-1}(3)=2(3)+7=13$
$y=2 x+7 \quad f(13)=\frac{13-7}{2}=3$
PTS: 2 REF: 061619a2 STA: A2.A. 44 TOP: Inverse of Functions
KEY: equations
20 ANS: 3
$r=\sqrt{(-5--2)^{2}+(-2-3)^{2}}=\sqrt{9+25}=\sqrt{34}$
PTS: 2 REF: 061620a2 STA: A2.A. 48 TOP: Equations of Circles
21 ANS: 4
$\frac{c^{-2}}{c^{-3}}-\frac{c^{-3}}{c^{-2}}=c-\frac{1}{c}=\frac{c^{2}-1}{c}$
PTS: 2 REF: 061621a2 STA: A2.N. 1 TOP: Negative and Fractional Exponents
22 ANS: 1
${ }_{56} C_{3}(2 x)^{3}(-1)^{3}=20 \cdot 8 x^{3} \cdot-1=-160 x^{3}$
PTS: 2 REF: 061622a2 STA: A2.A. 36 TOP: Binomial Expansions
23 ANS: 3
PTS: 2
REF: 061623a2 STA: A2.A. 2
TOP: Using the Discriminant KEY: determine equation given nature of roots
24 ANS: $2 \quad$ PTS: 2
REF: 061624a2 STA: A2.A. 29
TOP: Sequences
25 ANS: 2
TOP: Dispersion
PTS: 2
REF: 061625a2 STA: A2.S. 4
ANS: 1
$\cot ^{2} \theta=1-\sec ^{2} \theta$
$\frac{\cos ^{2} \theta}{\sin ^{2} \theta}=1-\frac{1}{\cos ^{2} \theta}$
$\frac{\cos ^{2} \theta}{\sin ^{2} \theta}=\frac{\cos ^{2} \theta-1}{\cos ^{2} \theta}$
$\frac{\cos ^{2} \theta}{\sin ^{2} \theta} \neq \frac{-\sin ^{2} \theta}{\cos ^{2} \theta}$
PTS: 2
REF: 061626a2
STA: A2.A. 67
TOP: Simplifying Trigonometric Expressions

27 ANS: 4
sum of the roots, $\frac{-b}{a}=\frac{-27}{12}=-\frac{9}{4}$. product of the roots, $\frac{c}{a}=\frac{8}{12}=\frac{2}{3}$
PTS: 2 REF: 061627a2 STA: A2.A. 21 TOP: Roots of Quadratics
KEY: basic
28 ANS:
$6 x^{3}+33 x^{2}-63 x$
$3 x\left(2 x^{2}+11 x-21\right)$
$3 x(x+7)(2 x-3)$
PTS: 2 REF: 061628a2 STA: A2.A. 7 TOP: Factoring Polynomials
KEY: single variable
29 ANS:
$A=5000\left(1+\frac{.035}{4}\right)^{4 \cdot 18} \approx 9362.36$
PTS: 2 REF: 061629a2 STA: A2.A. 12 TOP: Evaluating Exponential Expressions
30 ANS:
$y=239.21(1.48)^{x}$
PTS: 2 REF: 061630a2 STA: A2.S. 7 TOP: Regression
KEY: exponential
31 ANS:
$\frac{2+\frac{6}{x-3}}{\frac{x}{x-3}} \cdot \frac{\frac{x-3}{1}}{\frac{x-3}{1}}=\frac{2(x-3)+6}{x}=\frac{2 x-6+6}{x}=2$
PTS: 2 REF: 061631a2 STA: A2.A. 17 TOP: Complex Fractions
32 ANS:
$r=\frac{s}{\theta}=\frac{4 \pi}{\frac{2 \pi}{3}}=6$
PTS: 2
REF: 061632a2 STA: A2.A. 61
TOP: Arc Length
KEY: radius
33 ANS:
$2,2 \pi$
PTS: 2
REF: 061633a2 STA: A2.A. 69
TOP: Properties of Graphs of Trigonometric Functions
KEY: period

34 ANS:
$(0.191+0.433) 210 \approx 131$
PTS: 2
REF: 061634a2
STA: A2.S. 5
TOP: Normal Distributions
KEY: predict
35 ANS:
$\sin \theta \cot \theta=\left(-\frac{12}{5}\right)\left(\frac{5}{13}\right)=-\frac{60}{65}$
PTS: 2
REF: 061635a2 STA: A2.A. 64
TOP: Using Inverse Trigonometric Functions
KEY: advanced
36 ANS:

$$
\begin{aligned}
11^{2} & =6^{2}+7^{2}-2(6)(7) \cos A \\
121 & =85-84 \cos A \\
36 & =-84 \cos A \\
-\frac{36}{84} & =\cos A \\
115.4 & \approx A
\end{aligned}
$$

PTS: 4 REF: 061636a2 STA: A2.A. 73 TOP: Law of Cosines
KEY: find angle
37 ANS:

$$
\begin{array}{rlrl}
\left|\frac{3}{2} c-10\right| \leq 8 & \frac{3}{2} c-10 & \leq 8 \text { and } \frac{3}{2} c-10 & \geq-8 \\
\frac{3}{2} c & \leq 18 & \frac{3}{2} c & \geq 2 \\
c & \leq 12 & c & \geq \frac{4}{3}
\end{array}
$$

PTS: 4
REF: 061637a2
STA: A2.A. 1
TOP: Absolute Value Inequalities
38 ANS:

$$
\begin{aligned}
2 \cos ^{2} \theta-\cos \theta & =0 \\
\cos \theta(2 \cos \theta-1) & =0 \\
\cos \theta & =0, \frac{1}{2} \\
\theta & =90,270,60,300
\end{aligned}
$$

PTS: 4
REF: 061638a2
STA: A2.A. 68
TOP: Trigonometric Equations
KEY: quadratics

39 ANS:

$$
\begin{aligned}
\log _{16}\left(\frac{p^{2}-p+4}{2 p+11}\right) & =\frac{3}{4} \\
\frac{p^{2}-p+4}{2 p+11} & =16^{\frac{3}{4}} \\
\frac{p^{2}-p+4}{2 p+11} & =8 \\
p^{2}-p+4 & =16 p+88 \\
p^{2}-17 p-84 & =0 \\
(p-21)(p+4) & =0 \\
p & =21,-4
\end{aligned}
$$

PTS: 6
REF: 061639a2
KEY: applying properties of logarithms

