0815a2

1 What are the zeros of the polynomial function graphed below?

1) $\{-3,-1,2\}$
2) $\{3,1,-2\}$
3) $\{4,-8\}$
4) $\{-6\}$

2 A study compared the number of years of education a person received and that person's average yearly salary. It was determined that the relationship between these two quantities was linear and the correlation coefficient was 0.91 . Which conclusion can be made based on the findings of this study?

1) There was a weak relationship.
2) There was a strong relationship.
3) There was no relationship.
4) There was an unpredictable relationship.

3 What is the value of $4 x^{\frac{1}{2}}+x^{0}+x^{-\frac{1}{4}}$ when $x=16$?

1) $7 \frac{1}{2}$
2) $9 \frac{1}{2}$
3) $16 \frac{1}{2}$
4) $17 \frac{1}{2}$

4 The expression $\sqrt[4]{81 x^{2} y^{5}}$ is equivalent to

1) $3 x^{\frac{1}{2}} y^{\frac{5}{4}}$
2) $3 x^{\frac{1}{2}} y^{\frac{4}{5}}$
3) $9 x y^{\frac{5}{2}}$
4) $9 x y^{\frac{2}{5}}$

5 The exact value of $\csc 120^{\circ}$ is

1) $\frac{2 \sqrt{3}}{3}$
2) 2
3) $-\frac{2 \sqrt{3}}{3}$
4) -2

6 Which statement about the equation $3 x^{2}+9 x-12=0$ is true?

1) The product of the roots is -12 .
2) The product of the roots is -4 .
3) The sum of the roots is 3 .
4) The sum of the roots is -9 .

7 A scholarship committee rewards the school's top math students. The amount of money each winner receives is inversely proportional to the number of scholarship recipients. If there are three winners, they each receive $\$ 400$. If there are eight winners, how much money will each winner receive?

1) $\$ 1067$
2) $\$ 400$
3) $\$ 240$
4) $\$ 150$

8 What is the value of $\tan \left(\operatorname{Arccos} \frac{15}{17}\right)$?

1) $\frac{8}{15}$
2) $\frac{8}{17}$
3) $\frac{15}{8}$
4) $\frac{17}{8}$

9 The table below displays the number of siblings of each of the 20 students in a class.

Number of Siblings	Frequency
0	2
1	5
2	7
3	4
4	2

What is the population standard deviation, to the nearest hundredth, for this group?

1) 1.11
2) 1.12
3) 1.14
4) 1.15

10 An arithmetic sequence has a first term of 10 and a sixth term of 40 . What is the 20th term of this sequence?

1) 105
2) 110
3) 124
4) 130

11 Yusef deposits $\$ 50$ into a savings account that pays 3.25% interest compounded quarterly. The amount, A, in his account can be determined by the formula $A=P\left(1+\frac{r}{n}\right)^{n t}$, where P is the initial amount invested, r is the interest rate, n is the number of times per year the money is compounded, and t is the number of years for which the money is invested. What will his investment be worth in 12 years if he makes no other deposits or withdrawals?

1) $\$ 55.10$
2) $\$ 73.73$
3) $\$ 232.11$
4) $\$ 619.74$

12 How many distinct ways can the eleven letters in the word "TALLAHASSEE" be arranged?

1) 831,600
2) $1,663,200$
3) $3,326,400$
4) $5,702,400$

13 A customer will select three different toppings for a supreme pizza. If there are nine different toppings to choose from, how many different supreme pizzas can be made?

1) 12
2) 27
3) 84
4) 504

14 Which values of x in the interval $0^{\circ} \leq x<360^{\circ}$ satisfy the equation $2 \sin ^{2} x+\sin x-1=0$?

1) $\left\{30^{\circ}, 270^{\circ}\right\}$
2) $\left\{30^{\circ}, 150^{\circ}, 270^{\circ}\right\}$
3) $\left\{90^{\circ}, 210^{\circ}, 330^{\circ}\right\}$
4) $\left\{90^{\circ}, 210^{\circ}, 270^{\circ}, 330^{\circ}\right\}$

15 Expressed as a function of a positive acute angle, $\sin 230^{\circ}$ is equal to

1) $-\sin 40^{\circ}$
2) $-\sin 50^{\circ}$
3) $\sin 40^{\circ}$
4) $\sin 50^{\circ}$

16 Which equation represents a circle with its center at $(2,-3)$ and that passes through the point $(6,2)$?

1) $(x-2)^{2}+(y+3)^{2}=\sqrt{41}$
2) $(x+2)^{2}+(y-3)^{2}=\sqrt{41}$
3) $(x-2)^{2}+(y+3)^{2}=41$
4) $(x+2)^{2}+(y-3)^{2}=41$

17 What is the domain of the function $\mathrm{g}(x)=3^{x}-1$?

1) $(-\infty, 3]$
2) $(-\infty, 3)$
3) $(-\infty, \infty)$
4) $(-1, \infty)$

18 The expression $\frac{3-\sqrt{8}}{\sqrt{3}}$ is equivalent to

1) $\frac{\sqrt{3}-2 \sqrt{6}}{\sqrt{3}}$
2) $-\sqrt{3}+\frac{2}{3} \sqrt{6}$
3) $\frac{3-\sqrt{24}}{3}$
4) $\sqrt{3}-\frac{2}{3} \sqrt{6}$

19 What is the period of the graph of the equation $y=\frac{1}{3} \sin 2 x ?$

1) $\frac{1}{3}$
2) 2
3) π
4) 6π

20 The first four terms of the sequence defined by $a_{1}=\frac{1}{2}$ and $a_{n+1}=1-a_{n}$ are

1) $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$
2) $\frac{1}{2}, 1,1 \frac{1}{2}, 2$
3) $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}$
4) $\frac{1}{2}, 1 \frac{1}{2}, 2 \frac{1}{2}, 3 \frac{1}{2}$

21 The scores on a standardized exam have a mean of 82 and a standard deviation of 3.6. Assuming a normal distribution, a student's score of 91 would rank

1) below the $75^{\text {th }}$ percentile
2) between the $75^{\text {th }}$ and $85^{\text {th }}$ percentiles
3) between the $85^{\text {th }}$ and $95^{\text {th }}$ percentiles
4) above the $95^{\text {th }}$ percentile

22 If $\cos \theta=\frac{3}{4}$, then what is $\cos 2 \theta$?

1) $\frac{1}{8}$
2) $\frac{9}{16}$
3) $-\frac{1}{8}$
4) $\frac{3}{2}$

23 If $m=\{(-1,1),(1,1),(-2,4),(2,4),(-3,9),(3,9)\}$, which statement is true?

1) m and its inverse are both functions.
2) m is a function and its inverse is not a function.
3) m is not a function and its inverse is a function.
4) Neither m nor its inverse is a function.

24 The expression $\sqrt{-180 x^{16}}$ is equivalent to

1) $-6 x^{4} \sqrt{5}$
2) $-6 x^{8} \sqrt{5}$
3) $6 x^{4} i \sqrt{5}$
4) $6 x^{8} i \sqrt{5}$

25 The ninth term of the expansion of $(3 x+2 y)^{15}$ is

1) ${ }_{15} C_{9}(3 x)^{6}(2 y)^{9}$
2) ${ }_{15} C_{9}(3 x)^{9}(2 y)^{6}$
3) ${ }_{15} C_{8}(3 x)^{7}(2 y)^{8}$
4) ${ }_{15} C_{8}(3 x)^{8}(2 y)^{7}$

26 Six people met at a dinner party, and each person shook hands once with everyone there. Which expression represents the total number of handshakes?

1) $6!$
2) $6!\cdot 2$!
3) $\frac{6!}{2!}$
4) $\frac{6!}{4!\cdot 2!}$

27 Which value of k will make $x^{2}-\frac{1}{4} x+k$ a perfect square trinomial?

1) $\frac{1}{64}$
2) $\frac{1}{16}$
3) $\frac{1}{8}$
4) $\frac{1}{4}$

28 Determine, to the nearest minute, the number of degrees in an angle whose measure is 2.5 radians.

29 Solve for x : $\frac{1}{16}=2^{3 x-1}$

30 If $\mathrm{f}(x)=x^{2}-x$ and $\mathrm{g}(x)=x+1$, determine $\mathrm{f}(\mathrm{g}(x))$ in simplest form.

31 The probability of winning a game is $\frac{2}{3}$.
Determine the probability, expressed as a fraction, of winning exactly four games if seven games are played.

32 In a circle, an arc length of 6.6 is intercepted by a central angle of $\frac{2}{3}$ radians. Determine the length of the radius.

33 Show that $\frac{\sec ^{2} x-1}{\sec ^{2} x}$ is equivalent to $\sin ^{2} x$.

34 Solve algebraically for the exact values of x : $\frac{5 x}{2}=\frac{1}{x}+\frac{x}{4}$

35 Simplify: $\sum_{a=1}^{4}\left(x-a^{2}\right)$.

36 In a triangle, two sides that measure 8 centimeters and 11 centimeters form an angle that measures 82°. To the nearest tenth of a degree, determine the measure of the smallest angle in the triangle.

37 Solve the equation $2 x^{3}-x^{2}-8 x+4=0$ algebraically for all values of x.

38 Solve algebraically for x : $|3 x-5|-x<17$

39 Solve algebraically, to the nearest hundredth, for all values of x :
$\log _{2}\left(x^{2}-7 x+12\right)-\log _{2}(2 x-10)=3$

0815a2
Answer Section

1 ANS: $1 \quad$ PTS: 2
TOP: Solving Polynomial Equations
2 ANS: 2
TOP: Correlation Coefficient
3 ANS: 4
$f(16)=4(16)^{\frac{1}{2}}+16^{0}+16^{-\frac{1}{4}}$ $=4(4)+1+\frac{1}{2}$
$=17 \frac{1}{2}$
PTS: 2
REF: 081503a2
4 ANS: 1
$\sqrt[4]{81 x^{2} y^{5}}=81^{\frac{1}{4}} x^{\frac{2}{4}} y^{\frac{5}{4}}=3 x^{\frac{1}{2}} y^{\frac{5}{4}}$
PTS: 2
REF: 081504a2
5 ANS: 1
$\sin 120=\frac{\sqrt{3}}{2} \csc 120=\frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}$
PTS: 2
REF: 081505a2
STA: A2.A. 59
TOP: Reciprocal Trigonometric Relationships
6 ANS: 2
$P=\frac{c}{a}=\frac{-12}{3}=-4$
PTS: 2
REF: 081506a2
STA: A2.A. 20
TOP: Roots of Quadratics
7 ANS: 4
$3 \cdot 400=8 x$

$$
150=x
$$

PTS: 2
REF: 081507a
STA: A2.A. 5
TOP: Inverse Variation
8 ANS: 1
If $\sin \theta=\frac{15}{17}$, then $\cos \theta=\frac{8}{17} \cdot \tan \theta=\frac{\frac{8}{17}}{\frac{15}{17}}=\frac{8}{15}$
PTS: 2
REF: 081508a2 STA: A2.A. 64
KEY: advanced

STA: A2.A. 11
TOP: Radicals as Fractional Exponents
REF: 081501a2
STA: A2.A. 50

REF: 081502a2 STA: A2.S.8
R

STA.
A2.N. 1
TOP: Negative and Fractional Exponents

9 ANS: 2
TOP: Dispersion
PTS: 2
KEY: basic, group frequency distributions

10 ANS: 3

$$
\begin{aligned}
\frac{40-10}{6-1}=\frac{30}{5}=6 & a_{n}=6 n+4 \\
& a_{20}=6(20)+4=124
\end{aligned}
$$

PTS: 2 REF: 081510a2 STA: A2.A. 32 TOP: Sequences
11 ANS: 2
$A=50\left(1+\frac{.0325}{4}\right)^{4 \cdot 12}=50(1.008125)^{48} \approx 73.73$
PTS: 2 REF: 081511a2 STA: A2.A. 12 TOP: Evaluating Exponential Expressions
12 ANS: 1
$\frac{{ }_{11} P_{11}}{3!2!2!2!}=\frac{39,916,800}{48}=831,600$
PTS: 2 REF: 081512a2 STA: A2.S. 10 TOP: Permutations
13 ANS: 3
${ }_{9} C_{3}=84$
PTS: 2
REF: 081513a2
STA: A2.S. 11
TOP: Combinations
14 ANS: 2
$(2 \sin x-1)(\sin x+1)=0$
$\sin x=\frac{1}{2},-1$
$x=30,150,270$
PTS: 2
REF: 081514a2
STA: A2.A. 68
TOP: Trigonometric Equations
KEY: quadratics
15 ANS: 2
PTS: 2
REF: 081515a2 STA: A2.A. 57
TOP: Reference Angles
16 ANS: 3
$r=\sqrt{(6-2)^{2}+(2--3)^{2}}=\sqrt{16+25}=\sqrt{41}$
PTS: 2
REF: 081516a2
STA: A2.A. 48
TOP: Equations of Circles
17 ANS: 3
PTS: 2
REF: 081517a2 STA: A2.A. 39
TOP: Domain and Range
KEY: real domain
18 ANS: 4
$\frac{3-\sqrt{8}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{3 \sqrt{3}-\sqrt{24}}{3}=\frac{3 \sqrt{3}-2 \sqrt{6}}{3}=\sqrt{3}-\frac{2}{3} \sqrt{6}$
PTS: 2 REF: 081518a2 STA: A2.N. 5 TOP: Rationalizing Denominators

19 ANS: 3
$\frac{2 \pi}{2}=\pi$
PTS: 2
REF: 081519a2 STA: A2.A. 69
TOP: Properties of Graphs of Trigonometric Functions
20
TOP: Sequences
21 ANS: 4
$\frac{91-82}{3.6}=2.5 \mathrm{sd}$
PTS: 2
REF: 081521a2
STA: A2.S. 5
TOP: Normal Distributions
KEY: interval
22 ANS: 1
$\cos 2 \theta=2\left(\frac{3}{4}\right)^{2}-1=2\left(\frac{9}{16}\right)-1=\frac{9}{8}-\frac{8}{8}=\frac{1}{8}$

PTS: 2
REF: 081522a2
STA: A2.A. 77
TOP: Double Angle Identities
KEY: evaluating
23 ANS: 2
PTS: 2
REF: 081523a2
STA: A2.A. 44
TOP: Inverse of Functions KEY: ordered pairs
24 ANS: 4
$\sqrt{-180 x^{16}}=6 x^{8} i \sqrt{5}$
$\begin{array}{llllll}\text { PTS: } 2 & \text { REF: } 081524 \mathrm{a} 2 & \text { STA: } & \text { A2.N. } 6 & \text { TOP: } & \text { Square Roots of Negative Numbers } \\ \text { ANS: } 3 & \text { PTS: } 2 & \text { REF: } 081525 \mathrm{a} 2 & \text { STA: } & \text { A2.A. } 36\end{array}$
TOP: Binomial Expansions
26 ANS: 4
PTS: 2
REF: 081526a2
STA: A2.S. 9
TOP: Differentiating Permutations and Combinations
27 ANS: 1
$\left(\frac{1}{2}\left(-\frac{1}{4}\right)\right)^{2}=\frac{1}{64}$
PTS: 2 REF: 081527a2 STA: A2.A. 24 TOP: Completing the Square
28 ANS:
$2.5\left(\frac{180}{\pi}\right)=143^{\circ} 14^{\prime}$
PTS: 2
REF: 081528a2
STA: A2.M. 2
TOP: Radian Measure
KEY: degrees

29 ANS:
$2^{-4}=2^{3 x-1}$
$-4=3 x-1$
$-3=3 x$
$-1=x$
PTS: 2
REF: 081529a2
STA: A2.A. 27
TOP: Exponential Equations
KEY: common base shown
30 ANS:
$(x+1)^{2}-(x+1)=x^{2}+2 x+1-x-1=x^{2}+x$
PTS: 2 REF: 081530a2 STA: A2.A. 42 TOP: Compositions of Functions
KEY: variables
31 ANS:
${ }_{7} C_{4}\left(\frac{2}{3}\right)^{4}\left(\frac{1}{3}\right)^{3}=35\left(\frac{16}{81}\right)\left(\frac{1}{27}\right)=\frac{560}{2187}$
PTS: 2 REF: 081531a2 STA: A2.S. 15 TOP: Binomial Probability
KEY: exactly
32
$r=\frac{6.6}{\frac{2}{3}}=9.9$

PTS: 2
REF: 081532a2
STA: A2.A. 61
TOP: Arc Length
KEY: radius
33
ANS:
$\frac{\frac{1}{\cos ^{2} x}-1}{\frac{1}{\cos ^{2} x}} \cdot \frac{\cos ^{2} x}{\cos ^{2} x}=\frac{1-\cos ^{2} x}{1}=\sin ^{2} x$
PTS: 2 REF: 081533a2 STA: A2.A. 58 TOP: Reciprocal Trigonometric Relationships

34 ANS:
$\frac{10 x}{4}=\frac{1}{x}+\frac{x}{4}$
$\frac{9 x}{4}=\frac{1}{x}$
$9 x^{2}=4$
$x^{2}=\frac{4}{9}$

$$
x= \pm \frac{2}{3}
$$

PTS: 2
REF: 081534a2
STA: A2.A. 23
TOP: Solving Rationals
KEY: rational solutions
35 ANS:
$x-1+x-4+x-9+x-16=4 x-30$
PTS: 2 REF: 081535a2 STA: A2.N. 10 TOP: Sigma Notation
KEY: advanced
36 ANS:
$a=\sqrt{8^{2}+11^{2}-2(8)(11) \cos 82} \approx 12.67$. The angle opposite the shortest side: $\frac{8}{\sin x}=\frac{12.67}{\sin 82}$

$$
x \approx 38.7
$$

PTS: 4 REF: 081536a2 STA: A2.A. 73 TOP: Law of Cosines
KEY: advanced
37 ANS:
$x^{2}(2 x-1)-4(2 x-1)=0$
$\left(x^{2}-4\right)(2 x-1)=0$
$(x+2)(x-2)(2 x-1)=0$

$$
x= \pm 2, \frac{1}{2}
$$

PTS: 4 REF: 081537a2 STA: A2.A. 26 TOP: Solving Polynomial Equations
38 ANS:
$|3 x-5|<x+173 x-5<x+17$ and $3 x-5>-x-17-3<x<11$

$$
\begin{array}{rlrl}
2 x & <22 & 4 x & >-12 \\
x & <11 & x & >-3
\end{array}
$$

PTS: 4
REF: 081538a2
STA: A2.A. 1
TOP: Absolute Value Inequalities

39 ANS:

$$
\begin{aligned}
\log _{2}\left(\frac{x^{2}-7 x+12}{2 x-10}\right) & =3 \quad x=\frac{23 \pm \sqrt{(-23)^{2}-4(1)(92)}}{2(1)} \approx 17.84,5.16 \\
\frac{x^{2}-7 x+12}{2 x-10} & =8 \\
x^{2}-7 x+12 & =16 x-80 \\
x^{2}-23 x+92 & =0
\end{aligned}
$$

PTS: 6
REF: 081539a2
STA: A2.A. 28
TOP: Logarithmic Equations KEY: applying properties of logarithms

