0110ge

1 In the diagram below of trapezoid RSUT, $\overline{RS} \parallel \overline{TU}$, X is the midpoint of \overline{RT} , and V is the midpoint of \overline{SU} .

If RS = 30 and XV = 44, what is the length of \overline{TU} ?

- 37 1)
- 2) 58
- 3) 74
- 4) 118
- 2 In $\triangle ABC$, m $\angle A = x$, m $\angle B = 2x + 2$, and $m \angle C = 3x + 4$. What is the value of *x*? 29
 - 1)
 - 31 2)
 - 3) 59
 - 4) 61

3 Which expression best describes the transformation shown in the diagram below?

- same orientation; reflection 1)
- 2) opposite orientation; reflection
- same orientation; translation 3)
- opposite orientation; translation 4)

Geometry Regents Exam 0110 www.jmap.org

4 Based on the construction below, which statement must be true?

- 1) $m \angle ABD = \frac{1}{2} m \angle CBD$
- 2) $m \angle ABD = m \angle CBD$
- 3) $m \angle ABD = m \angle ABC$

4)
$$m \angle CBD = \frac{1}{2} m \angle ABD$$

5 In the diagram below, $\triangle ABC$ is inscribed in circle *P*. The distances from the center of circle *P* to each side of the triangle are shown.

Which statement about the sides of the triangle is true?

- 1) AB > AC > BC
- 2) AB < AC and AC > BC
- $3) \quad AC > AB > BC$
- 4) AC = AB and AB > BC

- 6 Which transformation is *not* always an isometry?
 - 1) rotation
 - 2) dilation
 - 3) reflection
 - 4) translation
- 7 In $\triangle ABC$, $\overline{AB} \cong \overline{BC}$. An altitude is drawn from *B* to \overline{AC} and intersects \overline{AC} at *D*. Which conclusion is *not* always true?
 - 1) $\angle ABD \cong \angle CBD$
 - 2) $\angle BDA \cong \angle BDC$
 - 3) $AD \cong BD$
 - 4) $\overline{AD} \cong \overline{DC}$
- 8 In the diagram below, tangent \overline{PA} and secant \overline{PBC} are drawn to circle *O* from external point *P*.

If PB = 4 and BC = 5, what is the length of \overline{PA} ?

- 1) 20
- 2) 9
- 3) 8
- 4) 6

9 Which geometric principle is used to justify the construction below?

- A line perpendicular to one of two parallel 1) lines is perpendicular to the other.
- 2) Two lines are perpendicular if they intersect to form congruent adjacent angles.
- When two lines are intersected by a transversal 3) and alternate interior angles are congruent, the lines are parallel.
- When two lines are intersected by a transversal 4) and the corresponding angles are congruent, the lines are parallel.
- 10 Which equation represents the circle whose center is (-2,3) and whose radius is 5?
 - 1) $(x-2)^2 + (y+3)^2 = 5$
 - 2) $(x+2)^2 + (y-3)^2 = 5$
 - 3) $(x+2)^2 + (y-3)^2 = 25$
 - 4) $(x-2)^2 + (y+3)^2 = 25$
- 11 Towns A and B are 16 miles apart. How many points are 10 miles from town A and 12 miles from town B?
 - 1) 1
 - 2) 2
 - 3 3)
 - 4) 0

- 12 Lines *j* and *k* intersect at point *P*. Line *m* is drawn so that it is perpendicular to lines *j* and *k* at point *P*. Which statement is correct?
 - 1) Lines *j* and *k* are in perpendicular planes.
 - Line *m* is in the same plane as lines *j* and *k*. 2)
 - 3) Line *m* is parallel to the plane containing lines *j* and k.
 - Line *m* is perpendicular to the plane containing 4) lines *j* and *k*.
- 13 In the diagram below of parallelogram STUV, SV = x + 3, VU = 2x - 1, and TU = 4x - 3.

What is the length of SV?

- 1) 5
- 2 2)
- 3) 7 4
- 4)
- 14 Which equation represents a line parallel to the line whose equation is 2y - 5x = 10?
 - 1) 5v - 2x = 25
 - 2) 5y + 2x = 10
 - 3) 4y 10x = 12
 - 4) 2y + 10x = 8

15 In the diagram below of circle *O*, chords \overline{AD} and \overline{BC} intersect at *E*, $\widehat{mAC} = 87$, and $\widehat{mBD} = 35$.

What is the degree measure of $\angle CEA$?

- 1) 87
- 2) 61
- 3) 43.5
- 4) 26
- 16 In the diagram below of $\triangle ADB$, m $\angle BDA = 90$, $AD = 5\sqrt{2}$, and $AB = 2\sqrt{15}$.

What is the length of \overline{BD} ?

- 1) $\sqrt{10}$
- 2) $\sqrt{20}$
- 3) $\sqrt{50}$
- 4) $\sqrt{110}$
- 17 What is the distance between the points (-3,2) and (1,0)?
 - 1) $2\sqrt{2}$
 - 2) $2\sqrt{3}$
 - 3) $5\sqrt{2}$
 - 4) $2\sqrt{5}$

- 18 What is an equation of the line that contains the point (3,-1) and is perpendicular to the line whose equation is y = -3x + 2?
 - 1) y = -3x + 82) y = -3x3) $y = \frac{1}{3}x$ 4) $y = \frac{1}{3}x - 2$
- 19 In the diagram below, \overline{SQ} and \overline{PR} intersect at T, \overline{PQ} is drawn, and $\overline{PS} \parallel \overline{QR}$.

What technique can be used to prove that $\triangle PST \sim \triangle RQT$?

- 1) SAS
- 2) SSS
- 3) ASA
- 4) AA

20 The equation of a circle is $(x-2)^2 + (y+4)^2 = 4$. Which diagram is the graph of the circle?

21 In the diagram below, $\triangle ABC$ is shown with \overline{AC} extended through point *D*.

If $m \angle BCD = 6x + 2$, $m \angle BAC = 3x + 15$, and $m \angle ABC = 2x - 1$, what is the value of x? 1) 12 2) $14\frac{10}{11}$ 3) 16

- 4) $18\frac{1}{9}$
- 22 Given $\triangle ABC \sim \triangle DEF$ such that $\frac{AB}{DE} = \frac{3}{2}$. Which statement is *not* true?
 - 1) $\frac{BC}{EF} = \frac{3}{2}$

2)
$$\frac{m \angle A}{m \angle D} = \frac{3}{2}$$

area of $\triangle ABC$

3)
$$\frac{\text{area of } \triangle ABC}{\text{area of } \triangle DEF} = \frac{9}{4}$$

4)
$$\frac{\text{perimeter of } \Delta ABC}{\text{perimeter of } \Delta DEF} = \frac{3}{2}$$

23 The pentagon in the diagram below is formed by five rays.

What is the degree measure of angle *x*?

- 1) 72
- 2) 96
- 3) 108
- 4) 112
- 24 Through a given point, *P*, on a plane, how many lines can be drawn that are perpendicular to that plane?
 - 1) 1
 - 2) 2
 - 3) more than 2
 - 4) none
- 25 What is the slope of a line that is perpendicular to the line whose equation is 3x + 4y = 12?
 - 1) $\frac{3}{4}$ 2) -
 - 3) $\frac{4}{2}$
 - $(4) -\frac{4}{2}$
 - 1)

- 26 What is the image of point A(4,2) after the composition of transformations defined by $R_{90^{\circ}} \circ r_{y=x}$?
 - 1) (-4,2)
 - 2) (4,-2)
 - 3) (-4,-2)
 - 4) (2,-4)
- 27 Which expression represents the volume, in cubic centimeters, of the cylinder represented in the diagram below?

- 1) 162π
- 2) 324*π*
- 3) 972*π*
- 4) $3,888\pi$
- 28 What is the inverse of the statement "If two triangles are not similar, their corresponding angles are not congruent"?
 - 1) If two triangles are similar, their corresponding angles are not congruent.
 - 2) If corresponding angles of two triangles are not congruent, the triangles are not similar.
 - 3) If two triangles are similar, their corresponding angles are congruent.
 - 4) If corresponding angles of two triangles are congruent, the triangles are similar.

Geometry Regents Exam 0110 www.jmap.org

- 29 In $\triangle RST$, m $\angle RST = 46$ and $\overline{RS} \cong \overline{ST}$. Find m $\angle STR$.
- 30 Tim has a rectangular prism with a length of 10 centimeters, a width of 2 centimeters, and an unknown height. He needs to build another rectangular prism with a length of 5 centimeters and the same height as the original prism. The volume of the two prisms will be the same. Find the width, in centimeters, of the new prism.
- 31 In the diagram below of circle C, \overline{QR} is a diameter, and Q(1,8) and C(3.5,2) are points on a coordinate plane. Find and state the coordinates of point R.

32 Using a compass and straightedge, and AB below, construct an equilateral triangle with all sides congruent to \overline{AB} . [Leave all construction marks.]

33 In the diagram below of $\triangle ACD$, *E* is a point on \overline{AD} and *B* is a point on \overline{AC} , such that $\overline{EB} \parallel \overline{DC}$. If $\underline{AE} = 3$, ED = 6, and DC = 15, find the length of \overline{EB} .

34 In the diagram below of $\triangle TEM$, medians \overline{TB} , \overline{EC} , and \overline{MA} intersect at *D*, and TB = 9. Find the length of \overline{TD} .

35 In $\triangle KLM$, m $\angle K = 36$ and KM = 5. The transformation D_2 is performed on $\triangle KLM$ to form $\triangle K'L'M'$. Find m $\angle K'$. Justify your answer. Find the length of $\overline{K'M'}$. Justify your answer.

36 Given: JKLM is a parallelogram. $\overline{JM} \cong \overline{LN}$ $\angle LMN \cong \angle LNM$ Prove: JKLM is a rhombus.

37 On the grid below, graph the points that are equidistant from both the x and y axes and the points that are 5 units from the origin. Label with an X all points that satisfy both conditions.

38 On the set of axes below, solve the following system of equations graphically for all values of *x* and *y*.

$$y = (x - 2)^{2} + 4$$
$$4x + 2y = 14$$

• X

0110ge Answer Section

1 ANS: 2

The length of the midsegment of a trapezoid is the average of the lengths of its bases. $\frac{x+30}{2} = 44$.

x + 30 = 88x = 58

2	PTS: ANS:	2 1	REF:	011001ge	STA:	G.G.40	TOP:	Trapezoids	
	x + 2x + 2 + 3x + 4 = 180								
	6x + 6 = 180								
	<i>x</i> = 29								
	PTS:	2	REF:	011002ge	STA:	G.G.30	TOP:	Interior and Exterior Angles of Triangles	
3	ANS:	2	PTS:	2	REF:	011003ge	STA:	G.G.55	
	TOP:	Properties of 7	Fransfo	rmations		-			
4	ANS:	2	PTS:	2	REF:	011004ge	STA:	G.G.17	
	TOP:	Constructions							
5	ANS:	1							
	The closer a chord is to the center of a circle, the longer the chord.								
	DTC	2	DEE	011005		C C 40	TOD		
(PIS:	2	KEF:	011005ge	SIA:	G.G.49	TOP:	Chords	
0	ANS:	2 Isometries	P15:	2	KEF:	011006ge	51A:	G.G.30	
7	ANG.	2	DTC.	2	DEE.	011007@	ST V ·	G G 21	
/	ANS. TOP	J Isosceles Tria	r I S. nale Th	2 Jeorem	KEF.	01100/ge	51A.	0.0.51	
8	ANS.								
0	$r^{2} = (A + 5) \times A$								
	$x = (4+5) \times 4$								
	$x^2 = 36$								
	x = 6								
	PTS:	2	REF:	011008ge	STA:	G.G.53	TOP:	Segments Intercepted by Circle	
	KEY: tangent and secant								
9	ANS:	4	PTS:	2	REF:	011009ge	STA:	G.G.19	
	TOP:	Constructions				C			
10	ANS:	3	PTS:	2	REF:	011010ge	STA:	G.G.71	
	TOP:	ΓOP: Equations of Circles							
11	ANS:	2	PTS:	2	REF:	011011ge	STA:	G.G.22	
	TOP:	Locus							
12	ANS:	4	PTS:	2	REF:	011012ge	STA:	G.G.1	
	TOP:	Planes							

13 ANS: 1

Opposite sides of a parallelogram are congruent. 4x - 3 = x + 3. SV = (2) + 3 = 5.

$$3x = 6$$

$$x = 2$$
PTS: 2 REF: 011013ge STA: G.G.38 TOP: Parallelograms
14 ANS: 3
$$m = \frac{-d}{B} = \frac{5}{2}, m = \frac{-d}{B} = \frac{10}{4} = \frac{5}{2}$$
PTS: 2 REF: 011014ge STA: G.G.63 TOP: Parallel and Perpendicular Lines
15 ANS: 2
$$\frac{87+35}{2} = \frac{122}{2} = 61$$
PTS: 2 REF: 011015ge STA: G.G.51 TOP: Arcs Determined by Angles
KEY: inside circle
16 ANS: 1
$$a^{2} + (5\sqrt{2})^{2} = (2\sqrt{15})^{2}$$

$$a^{2} + (25\times2) = 4 \times 15$$

$$a^{2} + (25\times2) = 4 \times 15$$

$$a^{2} + 50 = 60$$

$$a^{2} = 10$$

$$a = \sqrt{10}$$
PTS: 2 REF: 011016ge STA: G.G.48 TOP: Pythagorean Theorem
17 ANS: 4
$$d = \sqrt{(-3-1)^{2} + (2-0)^{2}} = \sqrt{16+4} = \sqrt{20} = \sqrt{4} \cdot \sqrt{5} = 2\sqrt{5}$$
PTS: 2 REF: 011017ge STA: G.G.67 TOP: Distance
18 ANS: 4
The slope of $y = -3x + 2$ is -3 . The perpendicular slope is $\frac{1}{3}, -1 = \frac{1}{3}(3) + b$

$$-1 = 1 + b$$

$$b = -2$$
PTS: 2 REF: 011018ge STA: G.G.64 TOP: Parallel and Perpendicular Lines
19 ANS: 4
PTS: 2 REF: 011018ge STA: G.G.64 TOP: Parallel and Perpendicular Lines
19 ANS: 4
PTS: 2 REF: 011018ge STA: G.G.64 TOP: Parallel and Perpendicular Lines
19 ANS: 4
PTS: 2 REF: 011018ge STA: G.G.64 TOP: Parallel and Perpendicular Lines
19 ANS: 4
PTS: 2 REF: 011018ge STA: G.G.64 TOP: Parallel and Perpendicular Lines
19 ANS: 4
PTS: 2 REF: 011018ge STA: G.G.64 TOP: Parallel and Perpendicular Lines
19 ANS: 4
PTS: 2 REF: 011018ge STA: G.G.64 TOP: Parallel and Perpendicular Lines
19 ANS: 4
PTS: 2 REF: 011018ge STA: G.G.64 TOP: Parallel and Perpendicular Lines
19 ANS: 4
PTS: 2 REF: 011018ge STA: G.G.64 TOP: Parallel and Perpendicular Lines
19 ANS: 4
PTS: 2 REF: 011018ge STA: G.G.64 TOP: Parallel and Perpendicular Lines
19 ANS: 4
PTS: 2 REF: 011018ge STA: G.G.64 TOP: Parallel and Perpendicular Lines
19 ANS: 4
PTS: 2 REF: 011018ge STA: G.G.64 TOP: Parallel and Perpendicular Lines
19 ANS: 4
PTS: 2 REF: 011018ge STA: G.G.64 TOP: Parallel and Perpendicular Lines
19 ANS: 4
PTS: 2 REF: 011018ge STA: G.G.64 TOP: Parallel and Perpendicular Lines
19 ANS: 4
PTS: 2 REF: 011018ge STA: G.G.64 TOP: Parallel and Perpendicular Lines
19 ANS: 4
PTS: 2 REF: 011019ge STA: G.G.74
PTS: 2

29 ANS: 67. $\frac{180-46}{2} = 67$

PTS: 2 REF: 011029ge STA: G.G.31 TOP: Isosceles Triangle Theorem 30 ANS: $4 \quad l \ w \ h = l \ w \ h$

4.
$$l_1 w_1 h_1 = l_2 w_2 h_2$$
$$10 \times 2 \times h = 5 \times w_2 \times h$$
$$20 = 5w_2$$
$$w_2 = 4$$

PTS: 2 REF: 011030ge STA: G.G.11 31 ANS:

TOP: Volume

(6,-4).
$$C_x = \frac{Q_x + R_x}{2}$$
. $C_y = \frac{Q_y + R_y}{2}$.
 $3.5 = \frac{1 + R_x}{2}$ $2 = \frac{8 + R_y}{2}$
 $7 = 1 + R_x$ $4 = 8 + R_y$
 $6 = R_x$ $-4 = R_y$

PTS: 2 REF: 011032ge STA: G.G.20 TOP: Constructions

33 ANS:

5.
$$\frac{3}{x} = \frac{6+3}{15}$$
$$9x = 45$$
$$x = 5$$

PTS: 2 REF: 011033ge STA: G.G.46 TOP: Side Splitter Theorem 34 ANS: 6. The centroid divides each median into segments whose lengths are in the ratio 2 : 1. $\overline{TD} = 6$ and $\overline{DB} = 3$

PTS: 2 REF: 011034ge STA: G.G.43 TOP: Centroid

35 ANS:

36, because a dilation does not affect angle measure. 10, because a dilation does affect distance.

PTS: 4 REF: 011035ge STA: G.G.59 TOP: Properties of Transformations 36 ANS:

 $\overline{JK} \cong \overline{LM}$ because opposite sides of a parallelogram are congruent. $\overline{LM} \cong \overline{LN}$ because of the Isosceles Triangle Theorem. $\overline{LM} \cong \overline{JM}$ because of the transitive property. JKLM is a rhombus because all sides are congruent.

PTS: 6

REF: 011038ge

STA: G.G.70

TOP: Quadratic-Linear Systems