0111ge

1 In the diagram below, $\overline{A B}, \overline{B C}$, and $\overline{A C}$ are tangents to circle O at points F, E, and D, respectively, $A F=6, C D=5$, and $B E=4$.

What is the perimeter of $\triangle A B C$?

1) 15
2) 25
3) 30
4) 60

2 Quadrilateral $M N O P$ is a trapezoid with $\overline{M N} \| \overline{O P}$. If $M^{\prime} N^{\prime} O^{\prime} P^{\prime}$ is the image of $M N O P$ after a reflection over the x-axis, which two sides of quadrilateral $M^{\prime} N^{\prime} O^{\prime} P^{\prime}$ are parallel?

1) $\overline{M^{\prime} N^{\prime}}$ and $\overline{O^{\prime} P^{\prime}}$
2) $\overline{M^{\prime} N^{\prime}}$ and $\overline{N^{\prime} O^{\prime}}$
3) $\overline{P^{\prime} M^{\prime}}$ and $\overline{O^{\prime} P^{\prime}}$
4) $\overline{P^{\prime} M^{\prime}}$ and $\overline{N^{\prime} O^{\prime}}$

3 In the diagram below of $\triangle A B C, D$ is the midpoint of $\overline{A B}$, and E is the midpoint of $\overline{B C}$.

If $A C=4 x+10$, which expression represents $D E$?

1) $x+2.5$
2) $2 x+5$
3) $2 x+10$
4) $8 x+20$

4 Which statement is true about every parallelogram?

1) All four sides are congruent.
2) The interior angles are all congruent.
3) Two pairs of opposite sides are congruent.
4) The diagonals are perpendicular to each other.

5 The diagram below shows a rectangular prism.

Which pair of edges are segments of lines that are coplanar?

1) $\overline{A B}$ and $\overline{D H}$
2) $\overline{A E}$ and $\overline{D C}$
3) $\overline{B C}$ and $\overline{E H}$
4) $\overline{C G}$ and $\overline{E F}$

6 A line segment has endpoints $A(7,-1)$ and $B(-3,3)$.
What are the coordinates of the midpoint of $\overline{A B}$?

1) $(1,2)$
2) $(2,1)$
3) $(-5,2)$
4) $(5,-2)$

7 What is the image of the point $(-5,2)$ under the translation $T_{3,-4}$?

1) $(-9,5)$
2) $(-8,6)$
3) $(-2,-2)$
4) $(-15,-8)$

8 When writing a geometric proof, which angle relationship could be used alone to justify that two angles are congruent?

1) supplementary angles
2) linear pair of angles
3) adjacent angles
4) vertical angles

9 Plane \mathcal{R} is perpendicular to line k and plane \mathscr{D} is perpendicular to line k. Which statement is correct?

1) Plane \mathcal{R} is perpendicular to plane \mathscr{D}.
2) Plane \mathbb{R} is parallel to plane \mathscr{D}.
3) Plane \mathcal{R} intersects plane \mathcal{D}.
4) Plane \mathbb{R} bisects plane \mathscr{D}.

10 The vertices of the triangle in the diagram below are $A(7,9), B(3,3)$, and $C(11,3)$.

What are the coordinates of the centroid of $\triangle A B C$?

1) $(5,6)$
2) $(7,3)$
3) $(7,5)$
4) $(9,6)$

11 Which set of numbers does not represent the sides of a right triangle?

1) $\{6,8,10\}$
2) $\{8,15,17\}$
3) $\{8,24,25\}$
4) $\{15,36,39\}$

12 In the diagram below of rhombus $A B C D$, $\mathrm{m} \angle C=100$.

What is $\mathrm{m} \angle D B C$?

1) 40
2) 45
3) 50
4) 80

13 In the diagram below of circle O, radius $\overline{O C}$ is 5 cm . Chord $\overline{A B}$ is 8 cm and is perpendicular to $\overline{O C}$ at point P.

What is the length of $\overline{O P}$, in centimeters?

1) 8
2) 2
3) 3
4) 4

14 What is an equation of the line that passes through the point $(-2,3)$ and is parallel to the line whose equation is $y=\frac{3}{2} x-4$?

1) $y=\frac{-2}{3} x$
2) $y=\frac{-2}{3} x+\frac{5}{3}$
3) $y=\frac{3}{2} x$
4) $y=\frac{3}{2} x+6$

15 In scalene triangle $A B C, \mathrm{~m} \angle B=45$ and $\mathrm{m} \angle C=55$. What is the order of the sides in length, from longest to shortest?

1) $\overline{A B}, \overline{B C}, \overline{A C}$
2) $\overline{B C}, \overline{A C}, \overline{A B}$
3) $\overline{A C}, \overline{B C}, \overline{A B}$
4) $B C, A B, A C$

16 What is an equation of a circle with center $(7,-3)$ and radius 4 ?

1) $(x-7)^{2}+(y+3)^{2}=4$
2) $(x+7)^{2}+(y-3)^{2}=4$
3) $(x-7)^{2}+(y+3)^{2}=16$
4) $(x+7)^{2}+(y-3)^{2}=16$

17 What is the volume, in cubic centimeters, of a cylinder that has a height of 15 cm and a diameter of 12 cm ?

1) 180π
2) 540π
3) 675π
4) $2,160 \pi$

18 Which compound statement is true?

1) A triangle has three sides and a quadrilateral has five sides.
2) A triangle has three sides if and only if a quadrilateral has five sides.
3) If a triangle has three sides, then a quadrilateral has five sides.
4) A triangle has three sides or a quadrilateral has five sides.

19 The two lines represented by the equations below are graphed on a coordinate plane.

$$
\begin{gathered}
x+6 y=12 \\
3(x-2)=-y-4
\end{gathered}
$$

Which statement best describes the two lines?

1) The lines are parallel.
2) The lines are the same line.
3) The lines are perpendicular.
4) The lines intersect at an angle other than 90°.

20 Which diagram shows the construction of the perpendicular bisector of $\overline{A B}$?

21 In circle O, a diameter has endpoints $(-5,4)$ and $(3,-6)$. What is the length of the diameter?

1) $\sqrt{2}$
2) $2 \sqrt{2}$
3) $\sqrt{10}$
4) $2 \sqrt{41}$

22 In the diagram of quadrilateral $A B C D, \overline{A B} \| \overline{C D}$, $\angle A B C \cong \angle C D A$, and diagonal $\overline{A C}$ is drawn.

Which method can be used to prove $\triangle A B C$ is congruent to $\triangle C D A$?

1) AAS
2) SSA
3) SAS
4) SSS

23 In the diagram below of right triangle $A B C, \overline{C D}$ is the altitude to hypotenuse $\overline{A B}, C B=6$, and $A D=5$.

What is the length of $\overline{B D}$?

1) 5
2) 9
3) 3
4) 4

24 In the diagram below, quadrilateral $J U M P$ is inscribed in a circle..

Opposite angles J and M must be

1) right
2) complementary
3) congruent
4) supplementary

25 Which graph represents a circle with the equation $(x-3)^{2}+(y+1)^{2}=4$?
1)

2)

3)

26 The point $(3,-2)$ is rotated 90° about the origin and then dilated by a scale factor of 4 . What are the coordinates of the resulting image?

1) $(-12,8)$
2) $(12,-8)$
3) $(8,12)$
4) $(-8,-12)$

27 In the diagram below of $\triangle A B C$, side $\overline{B C}$ is extended to point $D, \mathrm{~m} \angle A=x, \mathrm{~m} \angle B=2 x+15$, and $\mathrm{m} \angle A C D=5 x+5$.

What is $\mathrm{m} \angle B$?

1) 5
2) 20
3) 25
4) 55

28 Point P lies on line m. Point P is also included in distinct planes $Q, \mathcal{R} S$, and \mathcal{T}. At most, how many of these planes could be perpendicular to line m ?

1) 1
2) 2
3) 3
4) 4

29 In the diagram below of $\triangle A C D, B$ is a point on $\overline{A C}$ such that $\triangle A D B$ is an equilateral triangle, and
$\triangle D B C$ is an isosceles triangle with $\overline{D B} \cong \overline{B C}$. Find $\mathrm{m} \angle C$.

30 Triangle $A B C$ has vertices $A(-2,2), B(-1,-3)$, and $C(4,0)$. Find the coordinates of the vertices of $\Delta A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after the transformation $r_{x \text {-axis }}$. [The use of the grid is optional.]

31 Find, in degrees, the measures of both an interior angle and an exterior angle of a regular pentagon.

32 In the diagram below of circle O, chord $\overline{A B}$ bisects chord $\overline{C D}$ at E. If $A E=8$ and $B E=9$, find the length of $\overline{C E}$ in simplest radical form.

33 On the diagram below, use a compass and straightedge to construct the bisector of $\angle A B C$. [Leave all construction marks.]

34 Find the slope of a line perpendicular to the line whose equation is $2 y-6 x=4$.

35 On the set of axes below, graph the locus of points that are four units from the point $(2,1)$. On the same set of axes, graph the locus of points that are two units from the line $x=4$. State the coordinates of all points that satisfy both conditions.

36 In the diagram below, $\overline{B F C E}, \overline{A B} \perp \overline{B E}, \overline{D E} \perp \overline{B E}$, and $\angle B F D \cong \angle E C A$. Prove that $\triangle A B C \sim \triangle D E F$.

37 In the diagram below of $\triangle A D E, B$ is a point on $\overline{A E}$ and C is a point on $\overline{A D}$ such that $\overline{B C} \| \overline{E D}$, $A C=x-3, B E=20, A B=16$, and $A D=2 x+2$. Find the length of $\overline{A C}$.

38 Quadrilateral MATH has coordinates $M(1,1)$, $A(-2,5), T(3,5)$, and $H(6,1)$. Prove that quadrilateral MATH is a rhombus and prove that it is not a square. [The use of the grid is optional.]

0111ge

Answer Section
1 ANS: 3

PTS: 2
REF: 011101ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: two tangents
2 ANS: $1 \quad$ PTS: 2
REF: 011102ge
STA: G.G. 55
TOP: Properties of Transformations
3 ANS: 2
$\frac{4 x+10}{2}=2 x+5$
PTS: 2
4 ANS: 3
REF: 011103ge
STA: G.G. 42
TOP: Parallelograms
5 ANS: 3
PTS: 2
REF: 011104ge
PTS: 2
REF: 011105ge
STA: G.G. 10
TOP: Solids
6 ANS: 2
$M_{x}=\frac{7+(-3)}{2}=2 . M_{Y}=\frac{-1+3}{2}=1$.
PTS: 2
REF: 011106ge
STA: G.G. 66
TOP: Midpoint
7 ANS: 3
$-5+3=-2 \quad 2+-4=-2$
PTS: 2
8 ANS: 4
REF: 011107ge
STA: G.G. 54
REF: 011108ge
TOP: Translations
TOP: Angle Proofs
9 ANS: 2
PTS: 2
REF: 011109ge
STA: G.G. 9
TOP: Planes
10 ANS: 3
PTS: 2
REF: 011110ge
STA: G.G. 21
KEY: Centroid, Orthocenter, Incenter and Circumcenter
11 ANS: 3
$8^{2}+24^{2} \neq 25^{2}$
PTS: 2
REF: 011111ge
STA: G.G. 48
REF: 011112ge
TOP: Pythagorean Theorem
12 ANS: 1
PTS: 2
TOP: Special Parallelograms

13 ANS: 3

PTS: 2
REF: 011112ge
14 ANS: 4
$y=m x+b$
$3=\frac{3}{2}(-2)+b$
$3=-3+b$
$6=b$

PTS: 2
REF: 011114ge
STA: G.G. 65
15 ANS: 4
$\mathrm{m} \angle A=80$
PTS: 2
REF: 011115ge
PTS: 2
TOP: Equations of Circles
17 ANS: 2
$V=\pi r^{2} h=\pi \cdot 6^{2} \cdot 15=540 \pi$
PTS: 2
18 ANS: 4
TOP: Compound Statements
REF: 011117ge
PTS: 2

19 ANS: 4
$x+6 y=12$
$6 y=-x+12$
$y=-\frac{1}{6} x+2$
$m=-\frac{1}{6}$

PTS: 2
20 ANS: 1
TOP: Constructions

REF: 011119ge

$$
\begin{aligned}
3(x-2) & =-y-4 \\
-3(x-2) & =y+4 \\
m & =-3
\end{aligned}
$$

PTS: 2
STA: G.G. 63
REF: 011120ge

REF: 011118ge
KEY: general

STA: G.G. 34
REF: 011116ge

TOP: Volume and Lateral Area
STA: G.G. 25

TOP: Parallel and Perpendicular Lines

STA: G.G. 71

21 ANS: 4
$d=\sqrt{(-5-3)^{2}+(4-(-6))^{2}}=\sqrt{64+100}=\sqrt{164}=\sqrt{4} \sqrt{41}=2 \sqrt{41}$
PTS: 2 REF: 011121ge STA: G.G. 67 TOP: Distance
KEY: general
22 ANS: $1 \quad$ PTS: 2
REF: 011122GE STA: G.G. 28
TOP: Triangle Congruency
23 ANS: 4
$6^{2}=x(x+5)$
$36=x^{2}+5 x$
$0=x^{2}+5 x-36$
$0=(x+9)(x-4)$
$x=4$
PTS: 2
REF: 011123ge
STA: G.G. 47
KEY: leg
24 ANS: 4
PTS: 2
TOP: Arcs Determined by Angles
REF: 011124ge
KEY: inscribed
REF: 011125ge STA: G.G. 74
TOP: Graphing Circles
26 ANS: 3
$(3,-2) \rightarrow(2,3) \rightarrow(8,12)$
PTS: 2
REF: 011126ge
STA: G.G. 54
TOP: Compositions of Transformations
KEY: basic
27 ANS: 3

$$
\begin{aligned}
x+2 x+15 & =5 x+15 \quad 2(5)+15=25 \\
3 x+15 & =5 x+5 \\
10 & =2 x \\
5 & =x
\end{aligned}
$$

PTS: 2
28 ANS: 1
TOP: Planes
29 ANS:

PTS: 2
REF: 011129ge
STA: G.G. 31
TOP: Isosceles Triangle Theorem

ANS:

PTS: 2
REF: 011130ge STA: G.G. 54
TOP: Reflections
KEY: grids
31 ANS:
$(5-2) 180=540 . \frac{540}{5}=108$ interior. $180-108=72$ exterior
PTS: 2
REF: 011131ge
STA: G.G. 37
TOP: Interior and Exterior Angles of Polygons
32 ANS:
$x^{2}=9 \cdot 8$
$x=\sqrt{72}$
$x=\sqrt{36} \sqrt{2}$
$x=6 \sqrt{2}$
PTS: 2
REF: 011132ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: two chords
33
ANS:

PTS: 2
REF: 011133ge
STA: G.G. 17
TOP: Constructions
34 ANS:
$m=\frac{-A}{B}=\frac{6}{2}=3 . m_{\perp}=-\frac{1}{3}$.
PTS: 2
REF: 011134ge
STA: G.G. 62
TOP: Parallel and Perpendicular Lines

35 ANS:

PTS: 4 REF: 011135ge STA: G.G. 23 TOP: Locus
36 ANS:
$\angle B$ and $\angle E$ are right angles because of the definition of perpendicular lines. $\angle B \cong \angle E$ because all right angles are congruent. $\angle B F D$ and $\angle D F E$ are supplementary and $\angle E C A$ and $\angle A C B$ are supplementary because of the definition of supplementary angles. $\angle D F E \cong \angle A C B$ because angles supplementary to congruent angles are congruent. $\triangle A B C \sim \triangle D E F$ because of AA.

PTS: 4 REF: 011136ge STA: G.G. 44 TOP: Similarity Proofs
37 ANS:
32. $\frac{16}{20}=\frac{x-3}{x+5} \quad \cdot \overline{A C}=x-3=35-3=32$
$16 x+80=20 x-60$
$140=4 x$
$35=x$
PTS: 4 REF: 011137ge STA: G.G. 46 TOP: Side Splitter Theorem
38 ANS:

The length of each side of quadrilateral is 5 . Since each side is congruent, quadrilateral $M A T H$ is a rhombus. The slope of $\overline{M H}$ is 0 and the slope of $\overline{H T}$ is $-\frac{4}{3}$. Since the slopes are not negative reciprocals, the sides are not perpendicular and do not form rights angles. Since adjacent sides are not perpendicular, quadrilateral $M A T H$ is not a square.

PTS: 6 REF: 011138ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane

