0113ge

1 If $\triangle M N P \cong \triangle V W X$ and $\overline{P M}$ is the shortest side of $\triangle M N P$, what is the shortest side of $\triangle V W X$?

1) $\overline{X V}$
2) $\overline{W X}$
3) $\overline{V W}$
4) $\overline{N P}$

2 In circle O shown in the diagram below, chords $\overline{A B}$ and $\overline{C D}$ are parallel.

If $\mathrm{m} \overparen{A B}=104$ and $\mathrm{m} \overparen{C D}=168$, what is $\mathrm{m} \overparen{B D}$?

1) 38
2) 44
3) 88
4) 96

3 As shown in the diagram below, $\overline{C D}$ is a median of $\triangle A B C$.

Which statement is always true?

1) $\overline{A D} \cong \overline{D B}$
2) $\overline{A C} \cong \overline{A D}$
3) $\angle A C D \cong \angle C D B$
4) $\angle B C D \cong \angle A C D$

4 In the diagram below, under which transformation is $\triangle A^{\prime} B^{\prime} C^{\prime}$ the image of $\triangle A B C$?

1) D_{2}
2) $r_{x \text {-axis }}$
3) $r_{y \text {-xis }}$
4) $(x, y) \rightarrow(x-2, y)$

5 Line segment $A B$ is a diameter of circle O whose center has coordinates $(6,8)$. What are the coordinates of point B if the coordinates of point A are $(4,2)$?

1) $(1,3)$
2) $(5,5)$
3) $(8,14)$
4) $(10,10)$

6 Plane \mathcal{A} and plane \mathscr{B} are two distinct planes that are both perpendicular to line ℓ. Which statement about planes \mathcal{A} and \mathscr{B} is true?

1) Planes \mathcal{A} and \mathscr{B} have a common edge, which forms a line.
2) Planes \mathcal{A} and \mathscr{B} are perpendicular to each other.
3) Planes \mathcal{A} and \mathcal{B} intersect each other at exactly one point.
4) Planes \mathcal{A} and \mathscr{B} are parallel to each other.

7 Triangle $A B C$ is similar to triangle $D E F$. The lengths of the sides of $\triangle A B C$ are 5,8 , and 11 . What is the length of the shortest side of $\triangle D E F$ if its perimeter is 60 ?

1) 10
2) 12.5
3) 20
4) 27.5

8 In the diagram below of right triangle $A B C$, altitude $\overline{C D}$ is drawn to hypotenuse $\overline{A B}$.

If $A D=3$ and $D B=12$, what is the length of altitude $\overline{C D}$?

1) 6
2) $6 \sqrt{5}$
3) 3
4) $3 \sqrt{5}$

9 The diagram below shows the construction of an equilateral triangle.

Which statement justifies this construction?

1) $\angle A+\angle B+\angle C=180$
2) $\mathrm{m} \angle A=\mathrm{m} \angle B=\mathrm{m} \angle C$
3) $A B=A C=B C$
4) $A B+B C>A C$

10 What is the slope of the line perpendicular to the line represented by the equation $2 x+4 y=12$?

1) -2
2) 2
3) $-\frac{1}{2}$
4) $\frac{1}{2}$

11 Triangle $A B C$ is shown in the diagram below.

If $\overline{D E}$ joins the midpoints of $\overline{A D C}$ and $\overline{A E B}$, which statement is not true?

1) $D E=\frac{1}{2} C B$
2) $\overline{D E} \| \overline{C B}$
3) $\frac{A D}{D C}=\frac{D E}{C B}$
4) $\triangle A B C \sim \triangle A E D$

12 The equations $x^{2}+y^{2}=25$ and $y=5$ are graphed on a set of axes. What is the solution of this system?

1) $(0,0)$
2) $(5,0)$
3) $(0,5)$
4) $(5,5)$

13 Square $A B C D$ has vertices $A(-2,-3), B(4,-1)$, $C(2,5)$, and $D(-4,3)$. What is the length of a side of the square?

1) $2 \sqrt{5}$
2) $2 \sqrt{10}$
3) $4 \sqrt{5}$
4) $10 \sqrt{2}$

14 The diagram below shows $\triangle A B D$, with $\overrightarrow{A B C}$, $\overline{B E} \perp \overline{A D}$, and $\angle E B D \cong \angle C B D$.

If $\mathrm{m} \angle A B E=52$, what is $\mathrm{m} \angle D$?

1) 26
2) 38
3) 52
4) 64

15 As shown in the diagram below, $\overline{F D}$ and $\overline{C B}$
 $\overline{F D}$ and $\overline{C B}$ at A.

Which statement is not true?

1) $\overline{E T}$ is perpendicular to plane $B A D$.
2) $\overline{E T}$ is perpendicular to plane $F A B$.
3) $\overline{E T}$ is perpendicular to plane $C A D$.
4) $\overline{E T}$ is perpendicular to plane $B A T$.

16 Which set of numbers could not represent the lengths of the sides of a right triangle?

1) $\{1,3, \sqrt{10}\}$
2) $\{2,3,4\}$
3) $\{3,4,5\}$
4) $\{8,15,17\}$

17 How many points are 5 units from a line and also equidistant from two points on the line?

1) 1
2) 2
3) 3
4) 0

18 The equation of a circle is $(x-2)^{2}+(y+5)^{2}=32$. What are the coordinates of the center of this circle and the length of its radius?

1) $(-2,5)$ and 16
2) $(2,-5)$ and 16
3) $(-2,5)$ and $4 \sqrt{2}$
4) $(2,-5)$ and $4 \sqrt{2}$

19 The equation of a line is $y=\frac{2}{3} x+5$. What is an equation of the line that is perpendicular to the given line and that passes through the point $(4,2)$?

1) $y=\frac{2}{3} x-\frac{2}{3}$
2) $y=\frac{3}{2} x-4$
3) $y=-\frac{3}{2} x+7$
4) $y=-\frac{3}{2} x+8$

20 Consider the relationship between the two statements below.

$$
\begin{aligned}
& \text { If } \sqrt{16+9} \neq 4+3, \text { then } 5 \neq 4+3 \\
& \text { If } \sqrt{16+9}=4+3, \text { then } 5=4+3
\end{aligned}
$$

These statements are

1) inverses
2) converses
3) contrapositives
4) biconditionals

21 In the diagram of trapezoid $A B C D$ below, $\overline{A B} \| \overline{D C}$, $\overline{A D} \cong \overline{B C}, \mathrm{~m} \angle A=4 x+20$, and $\mathrm{m} \angle C=3 x-15$.

What is $\mathrm{m} \angle D$?

1) 25
2) 35
3) 60
4) 90

22 In circle R shown below, diameter $\overline{D E}$ is perpendicular to chord $\overline{S T}$ at point L.

Which statement is not always true?

1) $\overline{S L} \cong \overline{T L}$
2) $R S=D R$
3) $\overline{R L} \cong \overline{L E}$
4) $(D L)(L E)=(S L)(L T)$

23 Which equation represents circle A shown in the diagram below?

1) $(x-4)^{2}+(y-1)^{2}=3$
2) $(x+4)^{2}+(y+1)^{2}=3$
3) $(x-4)^{2}+(y-1)^{2}=9$
4) $(x+4)^{2}+(y+1)^{2}=9$

24 Which equation represents a line that is parallel to the line whose equation is $3 x-2 y=7$?

1) $y=-\frac{3}{2} x+5$
2) $y=-\frac{2}{3} x+4$
3) $y=\frac{3}{2} x-5$
4) $y=\frac{2}{3} x-4$

25 In the diagram below of circle $O, \overline{P A C}$ and $\overline{P B D}$ are secants.

If $\mathrm{m} \overparen{C D}=70$ and $\mathrm{m} \overparen{A B}=20$, what is the degree measure of $\angle P$?

1) 25
2) 35
3) 45
4) 50

26 The measure of an interior angle of a regular polygon is 120°. How many sides does the polygon have?

1) 5
2) 6
3) 3
4) 4

27 As shown in the diagram of rectangle $A B C D$ below, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E.

If $A E=x+2$ and $B D=4 x-16$, then the length of $\overline{A C}$ is

1) 6
2) 10
3) 12
4) 24

28 If the vertices of $\triangle A B C$ are $A(-2,4), B(-2,8)$, and $C(-5,6)$, then $\triangle A B C$ is classified as

1) right
2) scalene
3) isosceles
4) equilateral

29 After the transformation $r_{y=x}$, the image of $\triangle A B C$ is $\Delta A^{\prime} B^{\prime} C^{\prime}$. If $A B=2 x+13$ and $A^{\prime} B^{\prime}=9 x-8$, find the value of x.

30 In the diagram below, circles A and B are tangent at point C and $\overline{A B}$ is drawn. Sketch all common tangent lines.

31 On the set of axes below, graph the locus of points 4 units from $(0,1)$ and the locus of points 3 units from the origin. Label with an \mathbf{X} any points that satisfy both conditions.

32 Write an equation of a circle whose center is $(-3,2)$ and whose diameter is 10 .

33 Using a compass and straightedge, construct a line perpendicular to line ℓ through point P. [Leave all construction marks.]

34 Write an equation of the line that is the perpendicular bisector of the line segment having endpoints $(3,-1)$ and $(3,5)$. [The use of the grid below is optional]

35 A right circular cylinder with a height of 5 cm has a base with a diameter of 6 cm . Find the lateral area of the cylinder to the nearest hundredth of a square centimeter. Find the volume of the cylinder to the nearest hundredth of a cubic centimeter.

36 Triangle $A B C$ has vertices $A(5,1), B(1,4)$ and $C(1,1)$. State and label the coordinates of the vertices of $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the image of $\triangle A B C$, following the composite transformation $T_{1,-1} \circ D_{2}$.
[The use of the set of axes below is optional.]

37 In $\triangle A B C, \mathrm{~m} \angle A=x^{2}+12, \mathrm{~m} \angle B=11 x+5$, and $\mathrm{m} \angle C=13 x-17$. Determine the longest side of $\triangle A B C$.

38 The diagram below shows rectangle $A B C D$ with points E and F on side $\overline{A B}$. Segments $C E$ and $D F$ intersect at G, and $\angle A D G \cong \angle B C G$. Prove: $\overline{A E} \cong \overline{B F}$

0113ge
 Answer Section

1 ANS: 1
PTS: 2
REF: 011301ge
STA: G.G. 29
TOP: Triangle Congruency
2 ANS: 2
Parallel chords intercept congruent arcs. $\frac{360-(104+168)}{2}=44$
PTS: 2
REF: 011302ge
STA: G.G. 52
3 ANS: 1
PTS: 2
REF: 011303ge
TOP: Statements
4 ANS: $3 \quad$ PTS: 2
TOP: Identifying Transformations
5 ANS: 3

$$
\begin{array}{rlrl}
6 & =\frac{4+x}{2} . & 8 & =\frac{2+y}{2} . \\
4+x & =12 & 2+y & =16 \\
x & =8 & y & =14
\end{array}
$$

$\begin{array}{lllll}\text { PTS: } 2 & \text { REF: } 011305 \mathrm{ge} & \text { STA: G.G.66 } & \text { TOP: Midpoint } \\ \text { ANS: } 4 & \text { PTS: } 2 & \text { REF: } 011306 \mathrm{ge} & \text { STA: } & \text { G.G. } 9\end{array}$
TOP: Planes
7 ANS: 2
Perimeter of $\triangle D E F$ is $5+8+11=24$. $\frac{5}{24}=\frac{x}{60}$

$$
\begin{aligned}
24 x & =300 \\
x & =12.5
\end{aligned}
$$

PTS: 2
REF: 011307 g
STA: G.G. 45
TOP: Similarity
KEY: perimeter and area
8 ANS: 1
$x^{2}=3 \times 12$
$x=6$

PTS: 2
KEY: altitude
9 ANS: 3
TOP: Constructions
10 ANS: 2
The slope of $2 x+4 y=12$ is $m=\frac{-A}{B}=\frac{-2}{4}=-\frac{1}{2} . m_{\perp}=2$.
PTS: 2
REF: 011310ge
STA: G.G. 62

TOP: Parallel and Perpendicular Lines

11 ANS: 3
PTS: 2
REF: 011311ge
STA: G.G. 42
TOP: Midsegments
12 ANS: 3

$$
\begin{aligned}
x^{2}+5^{2} & =25 \\
x & =0
\end{aligned}
$$

PTS: 2
REF: 011312ge
STA: G.G. 70
TOP: Quadratic-Linear Systems
13 ANS: 2
$\sqrt{(-2-4)^{2}+(-3-(-1))^{2}}=\sqrt{40}=\sqrt{4} \sqrt{10}=2 \sqrt{10}$
PTS: 2
REF: 011313ge STA: G.G. 69
TOP: Quadrilaterals in the Coordinate Plane
14 ANS: 1
$\frac{180-52}{2}=64.180-(90+64)=26$
PTS: 2
15 ANS: 4 TOP: Planes
16 ANS: 2
$2^{2}+3^{2} \neq 4^{2}$
PTS: 2
17 ANS: 2
REF: 011316ge
STA: G.G. 48
TOP: Locus
18 ANS: 4
PTS: 2
REF: 011317ge
TOP: Pythagorean Theorem
REF: 011314ge
STA: G.G. 30
PTS: 2
REF: 011315ge
TOP: Interior and Exterior Angles of Triangles
STA: G.G. 1

TOP: Equations of Circles
19 ANS: 4
$m=\frac{2}{3} \quad .2=-\frac{3}{2}(4)+b$
$\begin{array}{ll}m_{\perp}=-\frac{3}{2} & 2=-6+b \\ 8 & =b\end{array}$
PTS: 2
REF: 011319ge
STA: G.G. 64
20 ANS: 1
PTS: 2
REF: 011320ge
TOP: Parallel and Perpendicular Lines
TOP: Conditional Statements
21 ANS: 3

$$
\begin{aligned}
2(4 x+20)+2(3 x-15) & =360 . \quad \angle D=3(25)-15=60 \\
8 x+40+6 x-30 & =360 \\
14 x+10 & =360 \\
14 x & =350 \\
x & =25
\end{aligned}
$$

PTS: 2
REF: 011321ge
STA: G.G. 40
TOP: Trapezoids

22 ANS: 3 PTS: 2 REF: 011322ge STA: G.G. 49
TOP: Chords
23 ANS: 4 PTS: 2 REF: 011323ge STA: G.G. 72
TOP: Equations of Circles
24 ANS: 3
$m=\frac{-A}{B}=\frac{-3}{-2}=\frac{3}{2}$
PTS: 2
25 ANS: 1
$\frac{70-20}{2}=25$
PTS: 2
REF: 011325ge STA: G.G. 5
KEY: outside circle
26 ANS: 2
$\frac{(n-2) 180}{n}=120$.
$180 n-360=120 n$

$$
\begin{aligned}
60 n & =360 \\
n & =6
\end{aligned}
$$

PTS: 2
REF: 011326ge STA: G.G. 37
TOP: Interior and Exterior Angles of Polygons
27 ANS: 4
$2 x-8=x+2 . A E=10+2=12 . A C=2(A E)=2(12)=24$

$$
x=10
$$

PTS: 2
REF: 011327ge
STA: G.G. 39
TOP: Special Parallelograms
28 ANS: 3
$A B=8-4=4 . B C=\sqrt{(-2-(-5))^{2}+(8-6)^{2}}=\sqrt{13} \cdot A C=\sqrt{(-2-(-5))^{2}+(4-6)^{2}}=\sqrt{13}$
PTS: 2 REF: 011328ge STA: G.G. 69 TOP: Triangles in the Coordinate Plane
29 ANS:
Distance is preserved after the reflection. $2 x+13=9 x-8$

$$
\begin{aligned}
21 & =7 x \\
3 & =x
\end{aligned}
$$

PTS: 2
REF: 011329ge STA: G.G. 55
TOP: Properties of Transformations

30
ANS:

PTS: 2
REF: 011330ge
STA: G.G. 50
TOP: Tangents
KEY: common tangency
31 ANS:

PTS: 2
REF: 011331ge
STA: G.G. 23
TOP: Locus
32 ANS:
If $r=5$, then $r^{2}=25 .(x+3)^{2}+(y-2)^{2}=25$
PTS: 2
REF: 011332ge STA: G.G. 71
ANS:

PTS: 2
REF: 011333ge
STA: G.G. 19
TOP: Constructions
34 ANS:
$M=\left(\frac{3+3}{2}, \frac{-1+5}{2}\right)=(3,2) . y=2$.

PTS: 2
REF: 011334ge
STA: G.G. 68
ANS:
$L=2 \pi r h=2 \pi \cdot 3 \cdot 5 \approx 94.25 . V=\pi r^{2} h=\pi(3)^{2}(5) \approx 141.37$
PTS: 4
REF: 011335ge STA: G.G. 14

36
ANS:

$$
A^{\prime \prime}(11,1), B^{\prime \prime}(3,7), C^{\prime \prime}(3,1)
$$

PTS: 4
REF: 011336ge STA: G.G. 58
TOP: Compositions of Transformations
37
$x^{2}+12+11 x+5+13 x-17=180 . \mathrm{m} \angle A=6^{2}+12=48 . \angle B$ is the largest angle, so $\overline{A C}$ in the longest side.

$$
\begin{aligned}
x^{2}+24 x-180 & =0 & & \mathrm{~m} \angle B=11(6)+5=71 \\
(x+30)(x-6) & =0 & & \mathrm{~m} \angle C=13(6)-7=61 \\
x & =6 & &
\end{aligned}
$$

PTS: 4 REF: 011337ge STA: G.G. 34 TOP: Angle Side Relationship ANS:
Rectangle $A B C D$ with points E and F on side $\overline{A B}$, segments $C E$ and $D F$ intersect at G, and $\angle A D G \cong \angle B C E$ are given. $\overline{A D} \cong \overline{B C}$ because opposite sides of a rectangle are congruent. $\angle A$ and $\angle B$ are right angles and congruent
 $\overline{E F} \cong \overline{F E}$ under the Reflexive Property. $\overline{A F}-\overline{E F} \cong \overline{B E}-\overline{F E}$ using the Subtraction Property of Segments. $\overline{A E} \cong \overline{B F}$ because of the Definition of Segments.

PTS: 6
REF: 011338ge
STA: G.G. 27
TOP: Quadrilateral Proofs

