0113ge

- 1 If $\Delta MNP \cong \Delta VWX$ and \overline{PM} is the shortest side of ΔMNP , what is the shortest side of ΔVWX ?
 - 1) XV
 - 2) WX
 - 3) \overline{VW}
 - 4) \overline{NP}
- 2 In circle O shown in the diagram below, chords AB and \overline{CD} are parallel.

- If $\widehat{mAB} = 104$ and $\widehat{mCD} = 168$, what is \widehat{mBD} ?
- 1) 38
- 2) 44
- 3) 88
- 4) 96
- 3 As shown in the diagram below, *CD* is a median of $\triangle ABC$.

Which statement is *always* true?

- 1) $AD \cong DB$
- 2) $\overline{AC} \cong \overline{AD}$
- 3) $\angle ACD \cong \angle CDB$
- 4) $\angle BCD \cong \angle ACD$

4 In the diagram below, under which transformation is $\Delta A'B'C'$ the image of ΔABC ?

- 1) *D*₂
- 2) r_{x-axis}
- 3) r_{v-axis}
- 4) $(x,y) \rightarrow (x-2,y)$
- 5 Line segment *AB* is a diameter of circle *O* whose center has coordinates (6,8). What are the coordinates of point *B* if the coordinates of point *A* are (4, 2)?
 - 1) (1,3)
 - 2) (5,5)
 - 3) (8,14)
 - 4) (10, 10)
- 6 Plane A and plane B are two distinct planes that are both perpendicular to line l. Which statement about planes A and B is true?
 - 1) Planes \mathcal{A} and \mathcal{B} have a common edge, which forms a line.
 - 2) Planes \mathcal{A} and \mathcal{B} are perpendicular to each other.
 - Planes A and B intersect each other at exactly one point.
 - 4) Planes \mathcal{A} and \mathcal{B} are parallel to each other.

- 7 Triangle *ABC* is similar to triangle *DEF*. The lengths of the sides of $\triangle ABC$ are 5, 8, and 11. What is the length of the shortest side of $\triangle DEF$ if its perimeter is 60?
 - 10 1)
 - 12.5 2)
 - 3) 20
 - 27.5 4)
- 8 In the diagram below of right triangle *ABC*, altitude CD is drawn to hypotenuse AB.

- If AD = 3 and DB = 12, what is the length of altitude CD?
- 1) 6
- 2) $6\sqrt{5}$
- 3) 3
- 4) $3\sqrt{5}$
- The diagram below shows the construction of an 9 equilateral triangle.

Which statement justifies this construction?

- $\angle A + \angle B + \angle C = 180$ 1)
- 2) $m \angle A = m \angle B = m \angle C$

$$3) \quad AB = AC = BC$$

AB + BC > AC4)

- 10 What is the slope of the line perpendicular to the line represented by the equation 2x + 4y = 12? -2
 - 1) 2) 2
 - $-\frac{1}{2}$ 3)
 - $\frac{1}{2}$ 4)
- 11 Triangle *ABC* is shown in the diagram below.

If DE joins the midpoints of ADC and AEB, which statement is not true?

- 1) $DE = \frac{1}{2}CB$
- 2) $\overline{DE} \parallel \overline{CB}$
- 3) $\frac{AD}{DC} = \frac{DE}{CB}$
- $\Delta ABC \sim \Delta AED$ 4)
- 12 The equations $x^2 + y^2 = 25$ and y = 5 are graphed on a set of axes. What is the solution of this system?
 - (0,0)
 - (5,0)
 - (0,5)
 - 4) (5,5)
- 13 Square ABCD has vertices A(-2, -3), B(4, -1), C(2,5), and D(-4,3). What is the length of a side of the square?

1)
$$2\sqrt{5}$$

- 2) $2\sqrt{10}$
- 3) $4\sqrt{5}$
- 4) $10\sqrt{2}$

14 The diagram below shows $\triangle ABD$, with ABC, $\overline{BE} \perp \overline{AD}$, and $\angle EBD \cong \angle CBD$.

If $m \angle ABE = 52$, what is $m \angle D$?

- 1) 26
- 2) 38
- 3) 52
- 4) 64
- 15 As shown in the diagram below, \overline{FD} and \overline{CB} intersect at point A and \overline{ET} is perpendicular to both \overline{FD} and \overline{CB} at A.

Which statement is not true?

- 1) *ET* is perpendicular to plane *BAD*.
- 2) \overline{ET} is perpendicular to plane *FAB*.
- 3) *ET* is perpendicular to plane *CAD*.
- 4) *ET* is perpendicular to plane *BAT*.

- 16 Which set of numbers could *not* represent the lengths of the sides of a right triangle?
 - 1) $\{1, 3, \sqrt{10}\}$
 - 2) $\{2,3,4\}$
 - $3) \{3,4,5\}$
 - $4) \quad \{8, 15, 17\}$
- 17 How many points are 5 units from a line and also equidistant from two points on the line?
 - 1) 1
 - 2) 2
 - 3) 3
 - 4) 0
- 18 The equation of a circle is $(x-2)^2 + (y+5)^2 = 32$. What are the coordinates of the center of this circle and the length of its radius?
 - 1) (-2,5) and 16
 - 2) (2, -5) and 16
 - 3) (-2, 5) and $4\sqrt{2}$
 - 4) (2, -5) and $4\sqrt{2}$
- 19 The equation of a line is $y = \frac{2}{3}x + 5$. What is an equation of the line that is perpendicular to the given line and that passes through the point (4,2)?
 - 1) $y = \frac{2}{3}x \frac{2}{3}$ 2) $y = \frac{3}{2}x - 4$ 3) $y = -\frac{3}{2}x + 7$ 4) $y = -\frac{3}{2}x + 8$

20 Consider the relationship between the two statements below.

If
$$\sqrt{16+9} \neq 4+3$$
, then $5 \neq 4+3$

If
$$\sqrt{16+9} = 4+3$$
, then $5 = 4+3$

- These statements are
- 1) inverses
- 2) converses
- 3) contrapositives
- 4) biconditionals
- 21 In the diagram of trapezoid *ABCD* below, $\overline{AB} \parallel \overline{DC}$, $\overline{AD} \cong \overline{BC}$, $m \angle A = 4x + 20$, and $m \angle C = 3x - 15$.

What is $m \angle D$?

- 1) 25
- 2) 35
- 3) 60
- 4) 90

22 In circle *R* shown below, diameter \overline{DE} is perpendicular to chord \overline{ST} at point *L*.

Which statement is not always true?

- 1) $SL \cong TL$
- 2) RS = DR
- 3) $\overline{RL} \cong \overline{LE}$

$$4) \quad (DL)(LE) = (SL)(LT)$$

23 Which equation represents circle *A* shown in the diagram below?

1)
$$(x-4)^2 + (y-1)^2 = 3$$

- 2) $(x+4)^2 + (y+1)^2 = 3$
- 3) $(x-4)^2 + (y-1)^2 = 9$
- 4) $(x+4)^2 + (y+1)^2 = 9$

24 Which equation represents a line that is parallel to the line whose equation is 3x - 2y = 7?

1)
$$y = -\frac{3}{2}x + 5$$

2) $y = -\frac{2}{3}x + 4$
3) $y = \frac{3}{2}x - 5$
4) $y = \frac{2}{3}x - 4$

25 In the diagram below of circle O, \overline{PAC} and \overline{PBD} are secants.

If $\widehat{mCD} = 70$ and $\widehat{mAB} = 20$, what is the degree measure of $\angle P$?

- 1) 25
- 2) 35
- 3) 45
- 4) 50
- 26 The measure of an interior angle of a regular polygon is 120°. How many sides does the polygon have?
 - 1) 5
 - 2) 6
 - 3) 3
 - 4) 4

27 As shown in the diagram of rectangle *ABCD* below, diagonals \overline{AC} and \overline{BD} intersect at *E*.

If AE = x + 2 and BD = 4x - 16, then the length of \overline{AC} is

- 1) 6
- 2) 10
- 3) 12
- 4) 24
- 28 If the vertices of $\triangle ABC$ are A(-2,4), B(-2,8), and C(-5,6), then $\triangle ABC$ is classified as
 - 1) right
 - 2) scalene
 - 3) isosceles
 - 4) equilateral
- 29 After the transformation $r_{y=x}$, the image of $\triangle ABC$ is $\triangle A'B'C'$. If AB = 2x + 13 and A'B' = 9x - 8, find the value of x.
- 30 In the diagram below, circles A and B are tangent at point C and \overline{AB} is drawn. Sketch all common tangent lines.

31 On the set of axes below, graph the locus of points 4 units from (0, 1) and the locus of points 3 units from the origin. Label with an **X** *any* points that satisfy *both* conditions.

32 Write an equation of a circle whose center is (-3, 2) and whose diameter is 10.

33 Using a compass and straightedge, construct a line perpendicular to line ℓ through point *P*. [Leave all construction marks.]

34 Write an equation of the line that is the perpendicular bisector of the line segment having endpoints (3,-1) and (3,5). [The use of the grid below is optional]

- 35 A right circular cylinder with a height of 5 cm has a base with a diameter of 6 cm. Find the lateral area of the cylinder to the *nearest hundredth of a square centimeter*. Find the volume of the cylinder to the *nearest hundredth of a cubic centimeter*.
- 36 Triangle *ABC* has vertices A(5, 1), B(1, 4) and C(1, 1). State and label the coordinates of the vertices of $\Delta A''B''C''$, the image of ΔABC , following the composite transformation $T_{1,-1} \circ D_2$. [The use of the set of axes below is optional.]

37 In $\triangle ABC$, m $\angle A = x^2 + 12$, m $\angle B = 11x + 5$, and m $\angle C = 13x - 17$. Determine the longest side of $\triangle ABC$.

38 The diagram below shows rectangle *ABCD* with points *E* and *F* on side \overline{AB} . Segments *CE* and *DF* intersect at *G*, and $\angle ADG \cong \angle BCG$. Prove: $\overline{AE} \cong \overline{BF}$

0113ge Answer Section

	TOP: Triangle Cong		2	REF:	011301ge	STA:	G.G.29
2	2 ANS: 2 Parallel chords intercept congruent arcs. $\frac{360 - (104 + 168)}{2} = 44$						
3	PTS: 2 ANS: 1						
	TOP: Identifying Tr			REF:	011304ge	STA:	G.G.56
5	ANS: 3 $6 = \frac{4+x}{2}$. 8 =	$=\frac{2+y}{2}.$					
	4 + x = 12 $2 + y = x = 8$ $y = x = 8$						
	PTS: 2 ANS: 4 TOP: Planes ANS: 2						
Perimeter of ΔDEF is 5 + 8 + 11 = 24. $\frac{5}{24} = \frac{x}{60}$ 24x = 300 x = 12.5							
8	PTS: 2 KEY: perimeter and ANS: 1 $x^2 = 3 \times 12$ x = 6		011307ge	STA:	G.G.45	TOP:	Similarity
9	PTS: 2 KEY: altitude ANS: 3	PTS:	-		G.G.47 011309ge		Similarity G.G.20
10	TOP: Constructions ANS: 2 The slope of $2x + 4y$		$n = \frac{-A}{B} = \frac{-2}{4}$	$=-\frac{1}{2}.$	$m_{\perp} = 2.$		
	PTS: 2	REF:	011310ge	STA:	G.G.62	TOP:	Parallel and Perpendicular Lines

11 ANS: 3 PTS: 2 REF: 011311ge STA: G.G.42 **TOP:** Midsegments 12 ANS: 3 $x^2 + 5^2 = 25$ x = 0PTS: 2 REF: 011312ge STA: G.G.70 TOP: Quadratic-Linear Systems 13 ANS: 2 $\sqrt{(-2-4)^2 + (-3-(-1))^2} = \sqrt{40} = \sqrt{4}\sqrt{10} = 2\sqrt{10}$ REF: 011313ge PTS: 2 STA: G.G.69 TOP: Quadrilaterals in the Coordinate Plane 14 ANS: 1 $\frac{180-52}{2} = 64.\ 180 - (90 + 64) = 26$ PTS: 2 STA: G.G.30 REF: 011314ge TOP: Interior and Exterior Angles of Triangles 15 ANS: 4 PTS: 2 REF: 011315ge STA: G.G.1 TOP: Planes 16 ANS: 2 $2^2 + 3^2 \neq 4^2$ PTS: 2 REF: 011316ge STA: G.G.48 TOP: Pythagorean Theorem 17 ANS: 2 PTS: 2 REF: 011317ge STA: G.G.22 TOP: Locus 18 ANS: 4 STA: G.G.73 PTS: 2 REF: 011318ge TOP: Equations of Circles 19 ANS: 4 $m = \frac{2}{3}$. $2 = -\frac{3}{2}(4) + b$ $m_{\perp} = -\frac{3}{2} \quad \begin{array}{c} 2 = -6 + b \\ 8 = b \end{array}$ PTS: 2 STA: G.G.64 REF: 011319ge **TOP:** Parallel and Perpendicular Lines STA: G.G.26 20 ANS: 1 PTS: 2 REF: 011320ge **TOP:** Conditional Statements 21 ANS: 3 2(4x + 20) + 2(3x - 15) = 360. $\angle D = 3(25) - 15 = 60$ 8x + 40 + 6x - 30 = 36014x + 10 = 36014x = 350*x* = 25 PTS: 2 STA: G.G.40 REF: 011321ge TOP: Trapezoids

22 ANS: 3 PTS: 2 REF: 011322ge STA: G.G.49 TOP: Chords 23 ANS: 4 REF: 011323ge PTS: 2 STA: G.G.72 TOP: Equations of Circles 24 ANS: 3 $m = \frac{-A}{B} = \frac{-3}{-2} = \frac{3}{2}$ PTS: 2 REF: 011324ge STA: G.G.63 TOP: Parallel and Perpendicular Lines 25 ANS: 1 $\frac{70-20}{2} = 25$ PTS: 2 REF: 011325ge STA: G.G.51 TOP: Arcs Determined by Angles KEY: outside circle 26 ANS: 2 $\frac{(n-2)180}{n} = 120 \ .$ 180n - 360 = 120n60n = 360n = 6PTS: 2 REF: 011326ge STA: G.G.37 TOP: Interior and Exterior Angles of Polygons 27 ANS: 4 2x - 8 = x + 2. AE = 10 + 2 = 12. AC = 2(AE) = 2(12) = 24x = 10PTS: 2 REF: 011327ge STA: G.G.39 **TOP:** Special Parallelograms 28 ANS: 3 AB = 8 - 4 = 4, $BC = \sqrt{(-2 - (-5))^2 + (8 - 6)^2} = \sqrt{13}$, $AC = \sqrt{(-2 - (-5))^2 + (4 - 6)^2} = \sqrt{13}$ PTS: 2 REF: 011328ge STA: G.G.69 TOP: Triangles in the Coordinate Plane 29 ANS: Distance is preserved after the reflection. 2x + 13 = 9x - 821 = 7x3 = xPTS: 2 REF: 011329ge STA: G.G.55 **TOP:** Properties of Transformations

ID: A

A"(11, 1), B"(3, 7), C"(3, 1)

PTS: 4 REF: 011336ge STA: G.G.58 TOP: Compositions of Transformations 37 ANS: $x^2 + 12 + 11x + 5 + 13x - 17 = 180$. $m \angle A = 6^2 + 12 = 48$. $\angle B$ is the largest angle, so \overline{AC} in the longest side.

$$2 + 11x + 5 + 13x - 17 = 180. \quad m \angle A = 6^{2} + 12 = 48 \quad . \quad \angle B \text{ is the large}$$
$$x^{2} + 24x - 180 = 0 \qquad m \angle B = 11(6) + 5 = 71$$
$$(x + 30)(x - 6) = 0 \qquad m \angle C = 13(6) - 7 = 61$$
$$x = 6$$

PTS: 4 REF: 011337ge STA: G.G.34 TOP: Angle Side Relationship 38 ANS:

Rectangle *ABCD* with points *E* and *F* on side \overline{AB} , segments *CE* and *DF* intersect at *G*, and $\angle ADG \cong \angle BCE$ are given. $\overline{AD} \cong \overline{BC}$ because opposite sides of a rectangle are congruent. $\angle A$ and $\angle B$ are right angles and congruent because all angles of a rectangle are right and congruent. $\triangle ADF \cong \triangle BCE$ by ASA. $\overline{AF} \cong \overline{BE}$ per CPCTC. $\overline{EF} \cong \overline{FE}$ under the Reflexive Property. $\overline{AF} - \overline{EF} \cong \overline{BE} - \overline{FE}$ using the Subtraction Property of Segments. $\overline{AE} \cong \overline{BF}$ because of the Definition of Segments.

PTS: 6 REF: 011338ge STA: G.G.27 TOP: Quadrilateral Proofs