0114ge

- 1 The midpoint of \overline{AB} is M(4, 2). If the coordinates of *A* are (6, -4), what are the coordinates of *B*?
 - 1) (1,-3)
 - 2) (2,8)
 - 3) (5,-1)
 - 4) (14,0)
- 2 Which diagram shows the construction of a 45° angle?

- 3 What are the coordinates of the center and the length of the radius of the circle whose equation is $(x + 1)^2 + (y - 5)^2 = 16?$
 - 1) (1,-5) and 16
 - 2) (-1,5) and 16
 - 3) (1,-5) and 4
 - 4) (-1, 5) and 4
- 4 If distinct planes R and S are both perpendicular to line l, which statement must always be true?
 - 1) Plane \mathcal{R} is parallel to plane \mathcal{S} .
 - 2) Plane \mathcal{R} is perpendicular to plane \mathcal{S} .
 - 3) Planes \mathcal{R} and \mathcal{S} and line ℓ are all parallel.
 - 4) The intersection of planes \mathcal{R} and \mathcal{S} is perpendicular to line ℓ .
- 5 If $\triangle ABC$ and its image, $\triangle A'B'C'$, are graphed on a set of axes, $\triangle ABC \cong \triangle A'B'C'$ under each transformation *except*
 - 1) *D*₂
 - 2) $R_{90^{\circ}}$
 - 3) $r_{y=x}$
 - 4) $T_{(-2,3)}$

Geometry Regents Exam 0114 www.jmap.org

6 A rectangular right prism is shown in the diagram below.

Which pair of edges are not coplanar?

- 1) BF and CG
- 2) BF and DH
- 3) \overline{EF} and \overline{CD}
- 4) EF and BC
- 7 How many points in the coordinate plane are 3 units from the origin and also equidistant from both the *x*-axis and the *y*-axis?
 - 1) 1
 - 2) 2
 - 3) 8
 - 4) 4
- 8 As shown below, the medians of $\triangle ABC$ intersect at *D*.

If the length of *BE* is 12, what is the length of *BD*?

- 1) 8
- 2) 9
- 3) 3
- 4) 4

- 9 The solution of the system of equations $y = x^2 2$ and y = x is
 - 1) (1, 1) and (-2, -2)
 - 2) (2,2) and (-1,-1)
 - 3) (1, 1) and (2, 2)
 - 4) (-2, -2) and (-1, -1)
- 10 Line ℓ passes through the point (5,3) and is parallel to line k whose equation is 5x + y = 6. An equation of line ℓ is
 - 1) $y = \frac{1}{5}x + 2$
 - 2) y = -5x + 28
 - $3) \quad y = \frac{1}{5}x 2$
 - 4) y = -5x 28
- 11 In the diagram below of quadrilateral *ABCD*, *E* and *F* are points on \overline{AB} and \overline{CD} , respectively, $\overline{BE} \cong \overline{DF}$, and $\overline{AE} \cong \overline{CF}$.

Which conclusion can be proven?

- 1) $\overline{ED} \cong \overline{FB}$
- 2) $\overline{AB} \cong \overline{CD}$
- 3) $\angle A \cong \angle C$
- 4) $\angle AED \cong \angle CFB$

12 In the diagram below, four pairs of triangles are shown. Congruent corresponding parts are labeled in each pair.

Using only the information given in the diagrams, which pair of triangles can *not* be proven congruent?

- 1) A
- 2) *B*
- 3) *C*
- 4) D
- 13 In $\triangle ABC$ shown below, *L* is the midpoint of \overline{BC} , *M* is the midpoint of \overline{AB} , and *N* is the midpoint of \overline{AC} .

If MN = 8, ML = 5, and NL = 6, the perimeter of trapezoid *BMNC* is

- 1) 35
- 2) 31
- 3) 28
- 4) 26

14 In the diagram below, *RCBT* and $\triangle ABC$ are shown with m $\angle A = 60$ and m $\angle ABT = 125$.

What is $m \angle ACR$? 1) 125

- 2) 115
- 3) 65
- 4) 55
- 15 Which equation represents circle *O* shown in the graph below?

- 1) $x^2 + (y-2)^2 = 10$
- 2) $x^2 + (y+2)^2 = 10$
- 3) $x^2 + (y-2)^2 = 25$
- 4) $x^2 + (y+2)^2 = 25$
- 16 For which measures of the sides of $\triangle ABC$ is angle *B* the largest angle of the triangle?
 - 1) AB = 2, BC = 6, AC = 7
 - 2) AB = 6, BC = 12, AC = 8
 - 3) AB = 16, BC = 9, AC = 10
 - 4) AB = 18, BC = 14, AC = 5

Geometry Regents Exam 0114 www.jmap.org

- 17 What is the measure of the largest exterior angle that any regular polygon can have?
 - 60° 1)
 - 2) 90°
 - 3) 120°
 - 4) 360°
- 18 As shown in the diagram below, a landscaper uses a cylindrical lawn roller on a lawn. The roller has a radius of 9 inches and a width of 42 inches.

To the nearest square inch, the area the roller covers in one complete rotation is

- 1) 2,374
- 2) 2,375
- 3) 10,682
- 10,688 4)
- 19 In the diagram below, \overline{AC} and \overline{BC} are tangent to circle O at A and B, respectively, from external point C.

If $m \angle ACB = 38$, what is $m \angle AOB$?

- 1) 71
- 2) 104
- 3) 142
- 4) 161

- 20 What is the perimeter of a square whose diagonal is $3\sqrt{2}?$
 - 1) 18
 - 2) 12
 - 9 3)
 - 4) 6
- 21 The coordinates of point P are (7, 1). What are the coordinates of the image of P after $R_{90^{\circ}}$ about the origin?
 - (1,7)
 - 2) (-7, -1)
 - (1,-7)
 - 4) (-1,7)
- 22 Lines p and q are intersected by line r, as shown below.

If $m \angle 1 = 7x - 36$ and $m \angle 2 = 5x + 12$, for which value of x would $p \parallel q$?

- 1) 17
- 2) 24
- 3) 83
- 4) 97
- 23 What is the equation of the circle with its center at (-1, 2) and that passes through the point (1, 2)?

1)
$$(x+1)^2 + (y-2)^2 = 4$$

2) $(x-1)^2 + (y+2)^2 = 4$

3)
$$(x+1)^2 + (y-2)^2 = 2$$

3) $(x+1)^2 + (y-2)^2 = 2$ 4) $(x-1)^2 + (y+2)^2 = 2$

24 In the diagram below, diameter \overline{AB} bisects chord \overline{CD} at point *E* in circle *F*.

- If AE = 2 and FB = 17, then the length of CE is
- 1) 7
- 2) 8
- 3) 15
- 4) 16
- 25 Which quadrilateral does *not* always have congruent diagonals?
 - 1) isosceles trapezoid
 - 2) rectangle
 - 3) rhombus
 - 4) square
- 26 A circle with the equation $(x + 6)^2 + (y 7)^2 = 64$ does *not* include points in Quadrant
 - 1) I
 - 2) II
 - 3) III
 - 4) IV

27 Trapezoid *QRST* is graphed on the set of axes below.

Under which transformation will there be *no* invariant points?

- 1) $r_{y=0}$
- 2) $r_{x=0}$
- 3) $r_{(0,0)}$
- 4) $r_{y=x}$
- 28 How many common tangent lines can be drawn to the circles shown below?

29 The diameter of a sphere is 5 inches. Determine and state the surface area of the sphere, to the *nearest hundredth of a square inch*.

Geometry Regents Exam 0114 www.jmap.org

30 Using a compass and straightedge, construct the perpendicular bisector of \overline{AB} . [Leave all construction marks.]

- 31 The endpoints of \overline{AB} are A(3,-4) and B(7,2). Determine and state the length of \overline{AB} in simplest radical form.
- 32 A right prism has a square base with an area of 12 square meters. The volume of the prism is 84 cubic meters. Determine and state the height of the prism, in meters.
- 33 State whether the lines represented by the equations $y = \frac{1}{2}x 1$ and $y + 4 = -\frac{1}{2}(x 2)$ are parallel, perpendicular, or neither. Explain your answer.

34 A tree, *T*, is 6 meters from a row of corn, *c*, as represented in the diagram below. A farmer wants to place a scarecrow 2 meters from the row of corn and also 5 meters from the tree. Sketch both loci. Indicate, with an X, all possible locations for the scarecrow.

35 In the diagram of $\triangle BCD$ shown below, \overline{BA} is drawn from vertex *B* to point *A* on \overline{DC} , such that $\overline{BC} \cong \overline{BA}$.

In ΔDAB , $m \angle D = x$, $m \angle DAB = 5x - 30$, and $m \angle DBA = 3x - 60$. In ΔABC , AB = 6y - 8 and BC = 4y - 2. [Only algebraic solutions can receive full credit.] Find $m \angle D$. Find $m \angle BAC$. Find the length of \overline{BC} . Find the length of \overline{DC} .

36 The coordinates of the vertices of $\triangle ABC$ are A(-6,5), B(-4,8), and C(1,6). State and label the coordinates of the vertices of $\triangle A''B''C''$, the image of $\triangle ABC$ after the composition of transformations $T_{(4,-5)} \circ r_{y\text{-axis}}$. [The use of the set of axes below is optional.]

37 In right triangle *ABC* below, \overline{CD} is the altitude to hypotenuse \overline{AB} . If CD = 6 and the ratio of AD to AB is 1:5, determine and state the length of \overline{BD} . [Only an algebraic solution can receive full credit.]

38 In the diagram of circle *O* below, diameter \overline{RS} , chord \overline{AS} , tangent \overrightarrow{TS} , and secant \overline{TAR} are drawn.

Complete the following proof to show $(RS)^2 = RA \cdot RT$

Statements	Reasons
1. circle O, diameter \overline{RS} , chord \overline{AS} , tangent \overline{TS} , and secant \overline{TAR}	1. Given
2. $\overline{RS} \perp \overline{TS}$	2
3. ∠ <i>RST</i> is a right angle	3. ⊥ lines form right angles
4. $\angle RAS$ is a right angle	4
5. $\angle RST \cong \angle RAS$	5
$6. \angle R \cong \angle R$	6. Reflexive property
7. $\triangle RST \sim \triangle RAS$	7
$8. \frac{RS}{RA} = \frac{RT}{RS}$	8
9. $(RS)^2 = RA \bullet RT$	9

0114ge Answer Section

1 ANS: 2 $\frac{6+x}{2} = 4$. $\frac{-4+y}{2} = 2$ x = 2 y = 8PTS: 2 REF: 011401ge STA: G.G.66 TOP: Midpoint 2 ANS: 3 PTS: 2 REF: 011402ge STA: G.G.17 **TOP:** Constructions 3 ANS: 4 PTS: 2 REF: 011403ge STA: G.G.73 TOP: Equations of Circles 4 ANS: 1 PTS: 2 REF: 011404ge STA: G.G.9 TOP: Planes 5 ANS: 1 PTS: 2 REF: 011405ge STA: G.G.59 **TOP:** Properties of Transformations 6 ANS: 4 PTS: 2 REF: 011406ge STA: G.G.10 TOP: Solids 7 ANS: 4 PTS: 2 REF: 011407ge STA: G.G.23 TOP: Locus 8 ANS: 1 2x + x = 12. BD = 2(4) = 83x = 12x = 4REF: 011408ge STA: G.G.43 PTS: 2 TOP: Centroid 9 ANS: 2 $x^2 - 2 = x$ $x^2 - x - 2 = 0$ (x-2)(x+1) = 0x = 2, -1PTS: 2 REF: 011409ge STA: G.G.70 TOP: Quadratic-Linear Systems 10 ANS: 2 $m = \frac{-A}{B} = \frac{-5}{1} = -5$ y = mx + b3 = -5(5) + b28 = bPTS: 2 REF: 011410ge STA: G.G.65 TOP: Parallel and Perpendicular Lines PTS: 2 STA: G.G.27 11 ANS: 2 REF: 011411ge **TOP:** Quadrilateral Proofs

12	ANS: 1 TOP: Triangle Con	PTS:		REF:	011412ge	STA:	G.G.28
13	ANS: 1	5					
14	PTS: 2 ANS: 2 $m \angle ABC = 55$, so $m \angle$		011413ge 60 + 55 = 115	STA:	G.G.42	TOP:	Midsegments
	PTS: 2	REF:	011414ge	STA:	G.G.32	TOP:	Exterior Angle Theorem
15	ANS: 4	PTS:	-		011415ge		G.G.72
	TOP: Equations of						
16	ANS: 1 TOD: Angle Side D	PTS:		REF:	011416ge	STA:	G.G.34
17	TOP: Angle Side R ANS: 3	erations	smp				
17		with th	e smallest inter	ior ang	le is an equilate	eral tria	ngle, with 60°. $180^{\circ} - 60^{\circ} = 120^{\circ}$
				-	-		-
10	PTS: 2	REF:	011417ge	STA:	G.G.37	TOP:	Interior and Exterior Angles of Polygons
18	ANS: 2 $18\pi \cdot 42 \approx 2375$						
10	PTS: 2	REF:	011418ge	STA:	G.G.14	TOP:	Volume and Lateral Area
19	ANS: 3 180 - 38 = 142						
	100 50 - 142						
	PTS: 2	REF:	011419ge	STA:	G.G.50	TOP:	Tangents
20	KEY: two tangents ANS: 2						
20	Ans. 2 $s^2 + s^2 = (3\sqrt{2})^2$						
	$2s^2 = 18$						
	$s^2 = 9$						
	<i>s</i> = 3						
	PTS: 2	REE	011420ge	ST 4 ·	G.G.39	ΤΟΡ·	Special Parallelograms
21	ANS: 4	PTS:	-		011421ge		G.G.54
	TOP: Rotations	,			\mathcal{O}^{\perp}		

22 ANS: 1 7x - 36 + 5x + 12 = 18012x - 24 = 18012x = 204*x* = 17 PTS: 2 REF: 011422ge STA: G.G.35 TOP: Parallel Lines and Transversals 23 ANS: 1 PTS: 2 REF: 011423ge STA: G.G.71 TOP: Equations of Circles 24 ANS: 2 $\sqrt{17^2 - 15^2} = \sqrt{289 - 225} = \sqrt{64} = 8$ PTS: 2 REF: 011424ge STA: G.G.49 TOP: Chords 25 ANS: 3 PTS: 2 REF: 011425ge STA: G.G.39 **TOP:** Special Parallelograms 26 ANS: 4 PTS: 2 REF: 011426ge STA: G.G.73 TOP: Equations of Circles 27 ANS: 3 PTS: 2 REF: 011427ge STA: G.G.56 TOP: Identifying Transformations 28 ANS: 4 PTS: 2 REF: 011428ge STA: G.G.50 TOP: Tangents KEY: common tangency 29 ANS: $SA = 4\pi r^2 = 4\pi \cdot 2.5^2 = 25\pi \approx 78.54$ PTS: 2 REF: 011429ge STA: G.G.16 TOP: Volume and Surface Area 30 ANS: PTS: 2 REF: 011430ge STA: G.G.18 TOP: Constructions 31 ANS: $\sqrt{(3-7)^2 + (-4-2)^2} = \sqrt{16+36} = \sqrt{52} = \sqrt{4}\sqrt{13} = 2\sqrt{13}$.

PTS: 2 REF: 011431ge STA: G.G.67 TOP: Distance

ID: A

32 ANS: Bh = V12h = 84h = 7PTS: 2 REF: 011432ge STA: G.G.12 TOP: Volume 33 ANS: Neither. The slope of $y = \frac{1}{2}x - 1$ is $\frac{1}{2}$. The slope of $y + 4 = -\frac{1}{2}(x - 2)$ is $-\frac{1}{2}$. The slopes are neither the same nor opposite reciprocals. PTS: 2 REF: 011433ge STA: G.G.63 TOP: Parallel and Perpendicular Lines 34 ANS: PTS: 2 REF: 011434ge STA: G.G.22 TOP: Locus 35 ANS: 6y - 8 = 4y - 2 $\overline{DC} = 10 + 10 = 20$ x + 3x - 60 + 5x - 30 = 1805(30) - 30 = 1209x - 90 = 180 $m \angle BAC = 180 - 120 = 60$ 2y = 69x = 270y = 3 $x = 30 = m \angle D$ $4(3) - 2 = 10 = \overline{BC}$ 482 С PTS: 3 REF: 011435ge STA: G.G.31 TOP: Isosceles Triangle Theorem

ID: A

37	PTS: 3 KEY: grids ANS: $4x \cdot x = 6^2$ $4x^2 = 36$ $x^2 = 9$ x = 3 $\overline{BD} = 4(3) = 12$	REF:	011436ge	STA:	G.G.58	TOP:	Compositions of Transformations
38	PTS: 4 KEY: leg ANS:	REF:	011437ge	STA:	G.G.47	TOP:	Similarity
	An angle inscribed in a semicircle is a sides of congruent triangles are in nes.						

PTS: 6 REF: 011438ge STA: G.G.27 TOP: Circle Proofs

5