## 0114ge

1 The midpoint of $\overline{A B}$ is $M(4,2)$. If the coordinates of $A$ are $(6,-4)$, what are the coordinates of $B$ ?

1) $(1,-3)$
2) $(2,8)$
3) $(5,-1)$
4) $(14,0)$

2 Which diagram shows the construction of a $45^{\circ}$ angle?
1)

2)

3)

4)

3 What are the coordinates of the center and the length of the radius of the circle whose equation is $(x+1)^{2}+(y-5)^{2}=16$ ?

1) $(1,-5)$ and 16
2) $(-1,5)$ and 16
3) $(1,-5)$ and 4
4) $(-1,5)$ and 4

4 If distinct planes $\mathbb{R}$ and $S$ are both perpendicular to line $\ell$, which statement must always be true?

1) Plane $R$ is parallel to plane $S$.
2) Plane $R$ is perpendicular to plane $S$.
3) Planes $R$ and $S$ and line $\ell$ are all parallel.
4) The intersection of planes $R$ and $S$ is perpendicular to line $\ell$.

5 If $\triangle A B C$ and its image, $\triangle A^{\prime} B^{\prime} C^{\prime}$, are graphed on a set of axes, $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$ under each transformation except

1) $D_{2}$
2) $R_{90^{\circ}}$
3) $r_{y=x}$
4) $T_{(-2,3)}$

6 A rectangular right prism is shown in the diagram below.


Which pair of edges are not coplanar?

1) $\overline{B F}$ and $\overline{C G}$
2) $\overline{B F}$ and $\overline{D H}$
3) $\overline{E F}$ and $\overline{C D}$
4) $\overline{E F}$ and $\overline{B C}$

7 How many points in the coordinate plane are 3 units from the origin and also equidistant from both the $x$-axis and the $y$-axis?

1) 1
2) 2
3) 8
4) 4

8 As shown below, the medians of $\triangle A B C$ intersect at D.


If the length of $\overline{B E}$ is 12 , what is the length of $\overline{B D}$ ?

1) 8
2) 9
3) 3
4) 4

9 The solution of the system of equations $y=x^{2}-2$ and $y=x$ is

1) $(1,1)$ and $(-2,-2)$
2) $(2,2)$ and $(-1,-1)$
3) $(1,1)$ and $(2,2)$
4) $(-2,-2)$ and $(-1,-1)$

10 Line $\ell$ passes through the point $(5,3)$ and is parallel to line $k$ whose equation is $5 x+y=6$. An equation of line $\ell$ is

1) $y=\frac{1}{5} x+2$
2) $y=-5 x+28$
3) $y=\frac{1}{5} x-2$
4) $y=-5 x-28$

11 In the diagram below of quadrilateral $A B C D, E$ and $F$ are points on $\overline{A B}$ and $\overline{C D}$, respectively, $\overline{B E} \cong \overline{D F}$, and $\overline{A E} \cong \overline{C F}$.


Which conclusion can be proven?

1) $\overline{E D} \cong \overline{F B}$
2) $\overline{A B} \cong \overline{C D}$
3) $\angle A \cong \angle C$
4) $\angle A E D \cong \angle C F B$

12 In the diagram below, four pairs of triangles are shown. Congruent corresponding parts are labeled in each pair.


Using only the information given in the diagrams, which pair of triangles can not be proven congruent?

1) $A$
2) $B$
3) $C$
4) $D$

13 In $\triangle A B C$ shown below, $L$ is the midpoint of $\overline{B C}, M$ is the midpoint of $\overline{A B}$, and $N$ is the midpoint of $\overline{A C}$.


If $M N=8, M L=5$, and $N L=6$, the perimeter of trapezoid $B M N C$ is

1) 35
2) 31
3) 28
4) 26

14 In the diagram below, $\overleftrightarrow{R C B T}$ and $\triangle A B C$ are shown with $\mathrm{m} \angle A=60$ and $\mathrm{m} \angle A B T=125$.


What is $\mathrm{m} \angle A C R$ ?

1) 125
2) 115
3) 65
4) 55

15 Which equation represents circle $O$ shown in the graph below?


1) $x^{2}+(y-2)^{2}=10$
2) $x^{2}+(y+2)^{2}=10$
3) $x^{2}+(y-2)^{2}=25$
4) $x^{2}+(y+2)^{2}=25$

16 For which measures of the sides of $\triangle A B C$ is angle $B$ the largest angle of the triangle?

1) $A B=2, B C=6, A C=7$
2) $A B=6, B C=12, A C=8$
3) $A B=16, B C=9, A C=10$
4) $A B=18, B C=14, A C=5$

17 What is the measure of the largest exterior angle that any regular polygon can have?

1) $60^{\circ}$
2) $90^{\circ}$
3) $120^{\circ}$
4) $360^{\circ}$

18 As shown in the diagram below, a landscaper uses a cylindrical lawn roller on a lawn. The roller has a radius of 9 inches and a width of 42 inches.


To the nearest square inch, the area the roller covers in one complete rotation is

1) 2,374
2) 2,375
3) 10,682
4) 10,688

19 In the diagram below, $\overline{A C}$ and $\overline{B C}$ are tangent to circle $O$ at $A$ and $B$, respectively, from external point $C$.


If $\mathrm{m} \angle A C B=38$, what is $\mathrm{m} \angle A O B$ ?

1) 71
2) 104
3) 142
4) 161

20 What is the perimeter of a square whose diagonal is $3 \sqrt{2}$ ?

1) 18
2) 12
3) 9
4) 6

21 The coordinates of point $P$ are $(7,1)$. What are the coordinates of the image of $P$ after $R_{90^{\circ}}$ about the origin?

1) $(1,7)$
2) $(-7,-1)$
3) $(1,-7)$
4) $(-1,7)$

22 Lines $p$ and $q$ are intersected by line $r$, as shown below.


If $\mathrm{m} \angle 1=7 x-36$ and $\mathrm{m} \angle 2=5 x+12$, for which value of $x$ would $p \| q$ ?

1) 17
2) 24
3) 83
4) 97

23 What is the equation of the circle with its center at $(-1,2)$ and that passes through the point $(1,2)$ ?

1) $(x+1)^{2}+(y-2)^{2}=4$
2) $(x-1)^{2}+(y+2)^{2}=4$
3) $(x+1)^{2}+(y-2)^{2}=2$
4) $(x-1)^{2}+(y+2)^{2}=2$

24 In the diagram below, diameter $\overline{A B}$ bisects chord $C D$ at point $E$ in circle $F$.


If $A E=2$ and $F B=17$, then the length of $\overline{C E}$ is

1) 7
2) 8
3) 15
4) 16

25 Which quadrilateral does not always have congruent diagonals?

1) isosceles trapezoid
2) rectangle
3) rhombus
4) square

26 A circle with the equation $(x+6)^{2}+(y-7)^{2}=64$ does not include points in Quadrant

1) $I$
2) II
3) III
4) IV

27 Trapezoid QRST is graphed on the set of axes below.


Under which transformation will there be no invariant points?

1) $r_{y=0}$
2) $r_{x=0}$
3) $r_{(0,0)}$
4) $r_{y=x}$

28 How many common tangent lines can be drawn to the circles shown below?


1) 1
2) 2
3) 3
4) 4

29 The diameter of a sphere is 5 inches. Determine and state the surface area of the sphere, to the nearest hundredth of a square inch.

30 Using a compass and straightedge, construct the perpendicular bisector of $\overline{A B}$. [Leave all construction marks.]


31 The endpoints of $\overline{A B}$ are $A(3,-4)$ and $B(7,2)$.
Determine and state the length of $\overline{A B}$ in simplest radical form.

32 A right prism has a square base with an area of 12 square meters. The volume of the prism is 84 cubic meters. Determine and state the height of the prism, in meters.

33 State whether the lines represented by the equations $y=\frac{1}{2} x-1$ and $y+4=-\frac{1}{2}(x-2)$ are parallel, perpendicular, or neither. Explain your answer.

34 A tree, $T$, is 6 meters from a row of corn, $c$, as represented in the diagram below. A farmer wants to place a scarecrow 2 meters from the row of corn and also 5 meters from the tree. Sketch both loci. Indicate, with an $\mathbf{X}$, all possible locations for the scarecrow.

35 In the diagram of $\triangle B C D$ shown below, $\overline{B A}$ is drawn from vertex $B$ to point $A$ on $\overline{D C}$, such that $\overline{B C} \cong \overline{B A}$.


In $\triangle D A B, \mathrm{~m} \angle D=x, \mathrm{~m} \angle D A B=5 x-30$, and $\mathrm{m} \angle D B A=3 x-60$. In $\triangle A B C, A B=6 y-8$ and $B C=4 y-2$. [Only algebraic solutions can receive full credit.] Find $\mathrm{m} \angle D$. Find $\mathrm{m} \angle B A C$. Find the length of $\overline{B C}$. Find the length of $\overline{D C}$.

36 The coordinates of the vertices of $\triangle A B C$ are $A(-6,5), B(-4,8)$, and $C(1,6)$. State and label the coordinates of the vertices of $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the image of $\triangle A B C$ after the composition of transformations $T_{(4,-5)}{ }^{\circ} r_{y \text {-axis }}$. [The use of the set of axes below is optional.]


37 In right triangle $A B C$ below, $\overline{C D}$ is the altitude to hypotenuse $\overline{A B}$. If $C D=6$ and the ratio of $A D$ to $A B$ is 1:5, determine and state the length of $\overline{B D}$. [Only an algebraic solution can receive full credit.]


38 In the diagram of circle $O$ below, diameter $\overline{R S}$, chord $\overline{A S}$, tangent $\overrightarrow{T S}$, and secant $\overline{T A R}$ are drawn.


Complete the following proof to show $(R S)^{2}=R A \cdot R T$

| Statements |  |
| :--- | :--- |
| 1. circle $O$, diameter $\overline{R S}$, chord $\overline{A S}$, | Reasons |
| tangent $\overrightarrow{T S}$, and secant $\overline{T A R}$ | 1. Given |
| 2. $\overline{R S} \perp \overrightarrow{T S}$ | 2. |
| 3. $\angle R S T$ is a right angle | 3. $\perp$ lines form right angles |
| 4. $\angle R A S$ is a right angle | 4. |
| 5. $\angle R S T \cong \angle R A S$ | 5. |
| 6. $\angle R \cong \angle R$ | 7. |
| 7. $\triangle R S T \sim \triangle R A S$ | 8. |
| 8. $\frac{R S}{R A}=\frac{R T}{R S}$ | 9. |
| 9. $(R S)^{2}=R A \cdot R T$ |  |

## 0114ge

Answer Section
1 ANS: 2

$$
\begin{array}{rlrl}
\frac{6+x}{2} & =4 . & \frac{-4+y}{2} & =2 \\
x & =2 \quad y & =8
\end{array}
$$

PTS: 2 REF: 011401ge
2 ANS: 3
PTS: 2
STA: G.G. 66
REF: 011402ge
TOP: Midpoint
TOP: Constructions
3 ANS: 4
PTS: 2
TOP: Equations of Circles
4 ANS: 1
PTS: 2
TOP: Planes
5 ANS: $1 \quad$ PTS: 2
TOP: Properties of Transformations
6 ANS: 4
PTS: 2
TOP: Solids
7 ANS: 4
PTS: 2
TOP: Locus
8 ANS: 1

$$
\begin{aligned}
2 x+x & =12 . \overline{B D}=2(4)=8 \\
3 x & =12 \\
x & =4
\end{aligned}
$$

PTS: 2
REF: 011408ge
STA: G.G. 43
TOP: Centroid
9 ANS: 2

$$
\begin{aligned}
x^{2}-2 & =x \\
x^{2}-x-2 & =0 \\
(x-2)(x+1) & =0 \\
x & =2,-1
\end{aligned}
$$

PTS: 2
REF: 011409ge
STA: G.G. 70
TOP: Quadratic-Linear Systems
10 ANS: 2
$m=\frac{-A}{B}=\frac{-5}{1}=-5 \quad y=m x+b$
$3=-5(5)+b$
$28=b$
PTS: 2
REF: 011410ge
STA: G.G. 65
11 ANS: 2
PTS: 2
REF: 011411ge
TOP: Parallel and Perpendicular Lines
TOP: Quadrilateral Proofs

REF: 011403ge STA: G.G. 73
REF: 011404ge STA: G.G. 9
REF: 011405ge STA: G.G. 59
REF: 011406ge STA: G.G. 10
REF: 011407ge STA: G.G. 23

STA: G.G. 17

12 ANS: 1 PTS: 2 REF: 011412ge STA: G.G. 28
TOP: Triangle Congruency
13 ANS: 1


PTS: 2
REF: 011413ge
STA: G.G. 42 TOP: Midsegments
14 ANS: 2
$\mathrm{m} \angle A B C=55$, so $\mathrm{m} \angle A C R=60+55=115$
PTS: 2 REF: 011414ge STA: G.G. 32 TOP: Exterior Angle Theorem
15 ANS: 4
PTS: 2
REF: 011415ge
STA: G.G. 72
TOP: Equations of Circles
16 ANS: $1 \quad$ PTS: 2
TOP: Angle Side Relationship
17 ANS: 3
The regular polygon with the smallest interior angle is an equilateral triangle, with $60^{\circ} .180^{\circ}-60^{\circ}=120^{\circ}$

PTS: 2
18 ANS: 2
$18 \pi \cdot 42 \approx 2375$
PTS: 2
19 ANS: 3
$180-38=142$
PTS: 2
KEY: two tangents
20 ANS: 2

$$
\begin{aligned}
s^{2}+s^{2} & =(3 \sqrt{2})^{2} \\
2 s^{2} & =18 \\
s^{2} & =9 \\
s & =3
\end{aligned}
$$

PTS: 2
21 ANS: 4
TOP: Rotations

REF: 011417ge STA: G.G. 37

REF: 011418ge
STA: G.G. 14
TOP: Volume and Lateral Area

REF: 011419ge
STA: G.G. 50
TOP: Tangents

22 ANS: 1

$$
\begin{aligned}
7 x-36+5 x+12 & =180 \\
12 x-24 & =180 \\
12 x & =204 \\
x & =17
\end{aligned}
$$

PTS: 2 REF: 011422ge STA: G.G. 35
23 ANS: 1
PTS: 2
REF: 011423ge
TOP: Parallel Lines and Transversals
TOP: Equations of Circles
24 ANS: 2
$\sqrt{17^{2}-15^{2}}=\sqrt{289-225}=\sqrt{64}=8$
PTS: 2
REF: 011424ge
STA: G.G. 49
REF: 011425 ge
TOP: Chords
ANS: 3
PTS: 2
STA: G.G. 39
TOP: Special Parallelograms
26 ANS: 4 PTS: 2
TOP: Equations of Circles
REF: 011426ge STA: G.G. 73
ANS: $3 \quad$ PTS:
REF: 011427ge
STA: G.G. 56
TOP: Identifying Transformations
28 ANS: 4
PTS: 2
REF: 011428ge
STA: G.G. 50
TOP: Tangents KEY: common tangency
29 ANS:
$S A=4 \pi r^{2}=4 \pi \cdot 2.5^{2}=25 \pi \approx 78.54$
PTS: 2 REF: 011429ge STA: G.G. 16 TOP: Volume and Surface Area
30 ANS:


PTS: 2
REF: 011430ge
STA: G.G. 18
TOP: Constructions
31 ANS:
$\sqrt{(3-7)^{2}+(-4-2)^{2}}=\sqrt{16+36}=\sqrt{52}=\sqrt{4} \sqrt{13}=2 \sqrt{13}$.
PTS: 2
REF: 011431ge STA: G.G. 67
TOP: Distance

32 ANS:

$$
\begin{aligned}
B h & =V \\
12 h & =84 \\
h & =7
\end{aligned}
$$

PTS: 2 REF: 011432ge STA: G.G. 12 TOP: Volume
33 ANS:
Neither. The slope of $y=\frac{1}{2} x-1$ is $\frac{1}{2}$. The slope of $y+4=-\frac{1}{2}(x-2)$ is $-\frac{1}{2}$. The slopes are neither the same nor opposite reciprocals.

PTS: 2 REF: 011433ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
34 ANS:


PTS: 2
REF: 011434ge STA: G.G. 22
TOP: Locus
35
ANS:

$$
\left.\begin{array}{rlrl}
x+3 x-60+5 x-30 & =180 & 5(30)-30=120 & 6 y-8
\end{array}\right)=4 y-2 \quad \overline{D C}=10+10=20
$$



PTS: 3
REF: 011435ge
STA: G.G. 31
TOP: Isosceles Triangle Theorem

ANS:


PTS: 3
REF: 011436ge
STA: G.G. 58
TOP: Compositions of Transformations
KEY: grids
37
ANS:
$4 x \cdot x=6^{2}$
$4 x^{2}=36$
$x^{2}=9$
$x=3$
$\overline{B D}=4(3)=12$
PTS: 4
REF: 011437ge
STA: G.G. 47
TOP: Similarity
KEY: leg
38 ANS:
2. The diameter of a circle is $\perp$ to a tangent at the point of tangency. 4. An angle inscribed in a semicircle is a right angle. 5. All right angles are congruent. 7. AA. 8. Corresponding sides of congruent triangles are in proportion. 9. The product of the means equals the product of the extremes.

PTS: 6
REF: 011438ge STA: G.G. 27
TOP: Circle Proofs

