0115ge

1 What is the solution of the system of equations graphed below?

$$
\begin{gathered}
y=2 x+1 \\
y=x^{2}+2 x-3
\end{gathered}
$$

1) $(0,-3)$
2) $(-1,-4)$
3) $(-3,0)$ and $(1,0)$
4) $(-2,-3)$ and $(2,5)$

2 What are the coordinates of the midpoint of the line segment with endpoints $(2,-5)$ and $(8,3)$?

1) $(3,-4)$
2) $(3,-1)$
3) $(5,-4)$
4) $(5,-1)$

3 As shown in the diagram below, when hexagon $A B C D E F$ is reflected over line m, the image is hexagon $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime} F^{\prime}$.

Under this transformation, which property is not preserved?

1) area
2) distance
3) orientation
4) angle measure

4 In the diagram of $\triangle A B C$ below, $\overline{B D}$ is drawn to side $\overline{A C}$.

If $\mathrm{m} \angle A=35, \mathrm{~m} \angle A B D=25$, and $\mathrm{m} \angle C=60$, which type of triangle is $\triangle B C D$?

1) equilateral
2) scalene
3) obtuse
4) right

5 In the diagram below of rhombus $A B C D$, the diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E.

If $A C=18$ and $B D=24$, what is the length of one side of rhombus $A B C D$?

1) 15
2) 18
3) 24
4) 30

6 What are the truth values of the statement "Opposite angles of a trapezoid are always congruent" and its negation?

1) The statement is true and its negation is true.
2) The statement is true and its negation is false.
3) The statement is false and its negation is true.
4) The statement is false and its negation is false.

7 What is the length of a line segment whose endpoints have coordinates $(5,3)$ and $(1,6)$?

1) 5
2) 25
3) $\sqrt{17}$
4) $\sqrt{29}$

8 In the diagram below of isosceles $\triangle A B C$, the measure of vertex angle B is 80°. If $\overline{A C}$ extends to point D, what is $\mathrm{m} \angle B C D$?

1) 50
2) 80
3) 100
4) 130

9 A student used a compass and a straightedge to construct $\overline{C E}$ in $\triangle A B C$ as shown below.

Which statement must always be true for this construction?

1) $\angle C E A \cong \angle C E B$
2) $\angle A C E \cong \angle B C E$
3) $\overline{A E} \cong \overline{B E}$
4) $\overline{E C} \cong \overline{A C}$

10 In $\triangle A B C, A B=4, B C=7$, and $A C=10$. Which statement is true?

1) $\mathrm{m} \angle B>\mathrm{m} \angle C>\mathrm{m} \angle A$
2) $\mathrm{m} \angle B>\mathrm{m} \angle A>\mathrm{m} \angle C$
3) $\mathrm{m} \angle C>\mathrm{m} \angle B>\mathrm{m} \angle A$
4) $\mathrm{m} \angle C>\mathrm{m} \angle A>\mathrm{m} \angle B$

11 A circle whose center has coordinates $(-3,4)$ passes through the origin. What is the equation of the circle?

1) $(x+3)^{2}+(y-4)^{2}=5$
2) $(x+3)^{2}+(y-4)^{2}=25$
3) $(x-3)^{2}+(y+4)^{2}=5$
4) $(x-3)^{2}+(y+4)^{2}=25$

12 Point W is located in plane \mathbb{R}. How many distinct lines passing through point W are perpendicular to plane R ?

1) one
2) two
3) zero
4) infinite

13 In the diagram below, line ℓ is parallel to line m, and line w is a transversal.

If $\mathrm{m} \angle 2=3 x+17$ and $\mathrm{m} \angle 3=5 x-21$, what is $\mathrm{m} \angle 1$?

1) 19
2) 23
3) 74
4) 86

14 The diagram below is a graph of circle O.

Which equation represents circle O ?

1) $(x-5)^{2}+(y+3)^{2}=4$
2) $(x+5)^{2}+(y-3)^{2}=4$
3) $(x-5)^{2}+(y+3)^{2}=16$
4) $(x+5)^{2}+(y-3)^{2}=16$

15 In isosceles trapezoid $Q R S T$ shown below, $\overline{Q R}$ and $\overline{T S}$ are bases.

If $\mathrm{m} \angle Q=5 x+3$ and $\mathrm{m} \angle R=7 x-15$, what is $\mathrm{m} \angle Q$?

1) 83
2) 48
3) 16
4) 9

16 Triangle $A B C$ is graphed on the set of axes below.

What are the coordinates of the point of intersection of the medians of $\triangle A B C$?

1) $(-1,2)$
2) $(-3,2)$
3) $(0,2)$
4) $(1,2)$

17 Given the statement, "If a number has exactly two factors, it is a prime number," what is the contrapositive of this statement?

1) If a number does not have exactly two factors, then it is not a prime number.
2) If a number is not a prime number, then it does not have exactly two factors.
3) If a number is a prime number, then it has exactly two factors.
4) A number is a prime number if it has exactly two factors.

18 Which graph represents a circle whose equation is $(x-2)^{2}+(y+4)^{2}=4$?
1)

3)

19 If two sides of a triangle have lengths of 4 and 10 , the third side could be

1) 8
2) 2
3) 16
4) 4

20 The lines represented by the equations $4 x+6 y=6$ and $y=\frac{2}{3} x-1$ are

1) parallel
2) the same line
3) perpendicular
4) intersecting, but not perpendicular

21 In the diagram of $\triangle A B C$ below, $\overline{D E} \| \overline{A B}$.

If $C D=4, C A=10, C E=x+2$, and $E B=4 x-7$, what is the length of $\overline{C E}$?

1) 10
2) 8
3) 6
4) 4

22 Parallelogram $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}$ intersecting at E is shown below.

Which statement must be true?

1) $\overline{B E} \cong \overline{C E}$
2) $\angle B A E \cong \angle D C E$
3) $\overline{A B} \cong \overline{B C}$
4) $\angle D A E \cong \angle C B E$

23 In the diagram below of circle $O, \mathrm{~m} \angle A B C=24$.

What is the $\mathrm{m} \angle A O C$?

1) 12
2) 24
3) 48
4) 60

24 Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a dilation of 2 . Which statement is true?

1) $A B=A^{\prime} B^{\prime}$
2) $B C=2\left(B^{\prime} C^{\prime}\right)$
3) $\mathrm{m} \angle B=\mathrm{m} \angle B^{\prime}$
4) $\mathrm{m} \angle A=\frac{1}{2}\left(\mathrm{~m} \angle A^{\prime}\right)$

25 In the diagram of the circle below, $\overline{A D} \| \overline{B C}$,
$\overparen{A B}=(5 x+30)^{\circ}$, and $\overparen{C D}=(9 x-10)^{\circ}$.

What is $\mathrm{m} \overparen{A B}$?

1) 5
2) 10
3) 55
4) 80

26 The bases of a prism are right trapezoids, as shown in the diagram below.

Which two edges do not lie in the same plane?

1) $\overline{B C}$ and $\overline{W Z}$
2) $\overline{A W}$ and $\overline{C Y}$
3) $\overline{D C}$ and $\overline{W X}$
4) $\overline{B X}$ and $\overline{A B}$

27 In the diagram below, $\overline{A^{\prime} B^{\prime}}$ is the image of $\overline{A B}$ under which single transformation?

1) dilation
2) rotation
3) translation
4) glide reflection

28 For which diagram is the statement
$\triangle A B C \sim \triangle A D E$ not always true??
1)

2)

4)

29 Given: $\overline{B E}$ and $\overline{A D}$ intersect at point C
$\overline{B C} \cong \overline{E C}$
$\overline{A C} \cong \overline{D C}$
$\overline{A B}$ and $\overline{D E}$ are drawn
Prove: $\triangle A B C \cong \triangle D E C$

30 Using a compass and straightedge, construct the perpendicular bisector of side $\overline{A R}$ in $\triangle A R T$ shown below. [Leave all construction marks.]

31 Determine and state the measure, in degrees, of an interior angle of a regular decagon.

32 Write an equation of a line that is parallel to the line whose equation is $3 y=x+6$ and that passes through the point $(-3,4)$.

33 In the diagram below, secants $\overline{P Q R}$ and $\overline{P S T}$ are drawn to a circle from point P.

If $P R=24, P Q=6$, and $P S=8$, determine and state the length of $\overline{P T}$.

34 The slope of $\overline{Q R}$ is $\frac{x-1}{4}$ and the slope of $\overline{S T}$ is $\frac{8}{3}$. If $\overline{Q R} \perp \overline{S T}$, determine and state the value of x.

35 Quadrilateral $H Y P E$ has vertices $H(2,3), Y(1,7)$, $P(-2,7)$, and $E(-2,4)$. State and label the coordinates of the vertices of $H^{\prime \prime} Y^{\prime \prime} P^{\prime \prime} E^{\prime \prime}$ after the composition of transformations $r_{x-a x i s}{ }^{\circ} T_{5,-3}$. [The use of the set of axes below is optional.]

36 On the set of axes below, graph two horizontal lines whose y-intercepts are $(0,-2)$ and $(0,6)$, respectively. Graph the locus of points equidistant from these horizontal lines. Graph the locus of points 3 units from the y-axis. State the coordinates of the points that satisfy both loci.

37 In the diagram below, a right circular cone with a radius of 3 inches has a slant height of 5 inches, and a right cylinder with a radius of 4 inches has a height of 6 inches.

Determine and state the number of full cones of water needed to completely fill the cylinder with water.

38 In the diagram below, right triangle $R S U$ is inscribed in circle O, and $\overline{U T}$ is the altitude drawn to hypotenuse $\overline{R S}$. The length of $\overline{R T}$ is 16 more than the length of $\overline{T S}$ and $T U=15$. Find the length of $\overline{T S}$. Find, in simplest radical form, the length of $R U$.

0115ge

Answer Section

1 ANS: 4
TOP: Quadratic-Linear Systems
2 ANS: 4
$M_{x}=\frac{2+8}{2}=5 . M_{Y}=\frac{-5+3}{2}=-1$.

PTS: 2
KEY: general
3 ANS: $3 \quad$ PTS: 2
TOP: Properties of Transformations
4 ANS: 1

PTS: 2
REF: 011504ge
5 ANS: 1

PTS: 2
6 ANS: 3
TOP: Negations
7 ANS: 1
$d=\sqrt{(5-1)^{2}+(3-6)^{2}}=\sqrt{16+9}=\sqrt{25}=5$

PTS: 2
REF: 011507ge
STA: G.G. 67
KEY: general
8 ANS: 4
$180-\frac{180-80}{2}=130$

PTS: 2
9 ANS: 2
TOP: Constructions
10 ANS: 2
TOP: Angle Side Relationship
11 ANS: 2 PTS: 2
TOP: Equations of Circles

PTS: 2
REF: 011508ge
PTS: 2
\qquad

STA: G.G. 31
REF: 011509 ge

REF: 011510ge
REF: 011511ge

TOP: Isosceles Triangle Theorem
STA: G.G. 17

STA: G.G. 34
STA: G.G. 71

12 ANS: 1 PTS: 2 REF: 011512ge STA: G.G. 3
TOP: Planes
13 ANS: 4
$3 x+17+5 x-21=180 \mathrm{~m} \angle 1=3(23)+17=86$

$$
8 x-4=180
$$

$$
8 x=184
$$

$$
x=23
$$

PTS: 2 REF: 011513ge STA: G.G. 35
14 ANS: 3
PTS: 2
REF: 011514 ge
TOP: Equations of Circles
15 ANS: 2
$5 x+3=7 x-15 \quad 5(9)+3=48$

$$
\begin{aligned}
18 & =2 x \\
9 & =x
\end{aligned}
$$

PTS: 2
REF: 011515ge
STA: G.G. 40
TOP: Trapezoids
16 ANS: 1

PTS: 2 REF: 011516ge STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
17 ANS: 2
PTS: 2
REF: 011517ge
STA: G.G. 26
TOP: Contrapositive
18 ANS: 3
PTS: 2
REF: 011518ge
STA: G.G. 74
TOP: Graphing Circles
19 ANS: 1

$$
10-4<s<10+4
$$

$$
6<s<14
$$

PTS: 2
REF: 011519ge
STA: G.G. 33
TOP: Triangle Inequality Theorem
ANS: 4
$m=\frac{-A}{B}=\frac{-4}{6}=-\frac{2}{3}$
PTS: 2
REF: 011520ge
STA: G.G. 63
TOP: Parallel and Perpendicular Lines

21 ANS: 3

$$
\begin{aligned}
\frac{4}{6} & =\frac{x+2}{4 x-7} \\
16 x-28 & =6 x+12 \\
10 x & =40 \\
x & =4
\end{aligned}
$$

PTS: 2
REF: 011521ge
STA: G.G. 46
REF: 011522ge
TOP: Side Splitter Theorem
ANS: 2
PTS: 2
TOP: Parallelograms
23 ANS: 3 PTS: 2
TOP: Arcs Determined by Angles
REF: 011523ge
STA: G.G. 51
KEY: inscribed
24 ANS: $3 \quad$ PTS: 2
REF: 011524ge
STA: G.G. 58
25 ANS: 4
$9 x-10=5 x+305(10)+30=80$
$4 x=40$
$x=10$
PTS: 2
26 ANS: 1
TOP: Solids
27 ANS: 4
(2) rotation is also a correct response

PTS: 2
28 ANS: 4
TOP: Similarity Proofs
29 ANS:
$\overline{B E}$ and $\overline{A D}$ intersect at point $C, \overline{B C} \cong \overline{E C}, \overline{A C} \cong \overline{D C}, \overline{A B}$ and $\overline{D E}$ are drawn (Given). $\angle B C A \cong \angle E C D$ (Vertical Angles). $\triangle A B C \cong \triangle D E C$ (SAS).

PTS: 2 REF: 011529ge STA: G.G. 27 TOP: Triangle Proofs

30 ANS:

PTS: 2
REF: 011530ge
STA: G.G. 18
TOP: Constructions
31 ANS:
$\frac{(n-2) 180}{n}=\frac{(10-2) 180}{10}=144$
PTS: 2
REF: 011531ge
STA: G.G. 37
TOP: Interior and Exterior Angles of Polygons
32 ANS:

$$
\begin{aligned}
m=\frac{1}{3} \quad 4 & =\frac{1}{3}(-3)+b \quad y=\frac{1}{3} x+5 \\
4 & =-1+b \\
5 & =b
\end{aligned}
$$

PTS: 2
REF: 011532ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines
33 ANS:
$24 \cdot 6=w \cdot 8$

$$
\begin{aligned}
144 & =8 w \\
18 & =w
\end{aligned}
$$

PTS: 2
REF: 011533ge STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: two secants
34 ANS:
$\frac{x-1}{4}=\frac{-3}{8}$
$8 x-8=-12$

$$
8 x=-4
$$

$$
x=-\frac{1}{2}
$$

PTS: 2
REF: 011534ge
STA: G.G. 62

TOP: Parallel and Perpendicular Lines

35 ANS:

$$
\begin{aligned}
& H^{\prime}(7,0), Y^{\prime}(6,4), P^{\prime}(3,4), E^{\prime}(3,1) \\
& H^{\prime \prime}(7,0), Y^{\prime \prime}(6,-4), P^{\prime \prime}(3,-4), E^{\prime \prime}(3,-1)
\end{aligned}
$$

PTS: 4 REF: 011535ge STA: G.G. 58 TOP: Compositions of Transformations KEY: grids
36 ANS:

PTS: 4
REF: 011536ge
STA: G.G. 23 TOP: Locus
37 ANS:
$h=\sqrt{5^{2}-3^{2}}=4 \quad V=\frac{1}{3} \pi \cdot 3^{2} \cdot 4=12 \pi \quad V=\pi \cdot 4^{2} \cdot 6=96 \pi \quad \frac{96 \pi}{12 \pi}=8$
PTS: 4
REF: 011537ge STA: G.G. 15
TOP: Volume and Lateral Area

38 ANS:

$$
\begin{array}{rlrl}
x(x+16) & =15^{2} & 25 \cdot 34=y^{2} \\
x^{2}+16 x-225 & =0 & 5 \sqrt{34}=y \\
(x+25)(x-9) & =0 & \\
x & =9
\end{array}
$$

PTS: 6
REF: 011538ge STA: G.G. 47
TOP: Similarity KEY: leg

