0116ge

1 What is the equation of a circle with its center at $(5,-2)$ and a radius of 3 ?

1) $(x-5)^{2}+(y+2)^{2}=3$
2) $(x-5)^{2}+(y+2)^{2}=9$
3) $(x+5)^{2}+(y-2)^{2}=3$
4) $(x+5)^{2}+(y-2)^{2}=9$

2 In the diagram below, $\angle A B C$ is inscribed in circle O.

The ratio of the measure of $\angle A B C$ to the measure of $\overparen{A C}$ is

1) $1: 1$
2) $1: 2$
3) $1: 3$
4) $1: 4$

3 In the diagram below of rectangle $R S T U$, diagonals $\overline{R T}$ and $\overline{S U}$ intersect at O.

If $\underline{R T}=6 x+4$ and $S O=7 x-6$, what is the length of $\overline{U S}$?

1) 8
2) 2
3) 16
4) 32

4 How many points are 3 units from the origin and also equidistant from both the x-axis and y-axis?

1) 1
2) 2
3) 0
4) 4

5 The converse of the statement "If a triangle has one right angle, the triangle has two acute angles" is

1) If a triangle has two acute angles, the triangle has one right angle.
2) If a triangle has one right angle, the triangle does not have two acute angles.
3) If a triangle does not have one right angle, the triangle does not have two acute angles.
4) If a triangle does not have two acute angles, the triangle does not have one right angle.

6 The surface area of a sphere is 2304π square inches. The length of a radius of the sphere, in inches, is

1) 12
2) 24
3) 288
4) 576

7 As shown in the diagram below of $\triangle A B C, \overline{B C}$ is extended through $D, \mathrm{~m} \angle A=70$, and $\mathrm{m} \angle A C D=115$.

Which statement is true?

1) $A C>A B$
2) $A B>B C$
3) $B C<A C$
4) $A C<A B$

8 In trapezoid $L M N O$ below, median $\overline{P Q}$ is drawn.

If $L M=x+7, O N=3 x+11$, and $P Q=25$, what is the value of x ?

1) 1.75
2) 3.5
3) 8
4) 17

9 Points A and B are on line ℓ. How many points are 3 units from line ℓ and also equidistant from A and B ?

1) 1
2) 2
3) 3
4) 4

10 The lines whose equations are $2 x+3 y=4$ and $y=m x+6$ will be perpendicular when m is

1) $-\frac{3}{2}$
2) $-\frac{2}{3}$
3) $\frac{3}{2}$
4) $\frac{2}{3}$

11 As shown in the diagram below, M, R, and T are midpoints of the sides of $\triangle A B C$.

If $A B=18, A C=14$, and $B C=10$, what is the perimeter of quadrilateral $A C R M$?

1) 35
2) 32
3) 24
4) 21

12 In the diagram below, $\overline{A B C} \| \overline{D E F G}$. Transversal $\overline{B H E}$ and line segment $H F$ are drawn.

If $\mathrm{m} \angle H F G=130$ and $\mathrm{m} \angle E H F=70$, what is $\mathrm{m} \angle A B E$?

1) 40
2) 50
3) 60
4) 70

13 The graphs of the lines represented by the equations $y=\frac{1}{3} x+7$ and $y=-\frac{1}{3} x-2$ are

1) parallel
2) horizontal
3) perpendicular
4) intersecting, but not perpendicular

14 Which graph represents a circle whose equation is $(x+3)^{2}+(y-1)^{2}=4$?
1)

2)

3)

15 In $\triangle A B C, \mathrm{~m} \angle C A B=2 x$ and $\mathrm{m} \angle A C B=x+30$. If $\overline{A B}$ is extended through point B to point D, $\mathrm{m} \angle C B D=5 x-50$. What is the value of x ?

1) 25
2) 30
3) 40
4) 46

16 In circle O shown below, chord $\overline{A B}$ and diameter $\overline{C D}$ are parallel, and chords $\overline{A D}$ and $\overline{B C}$ intersect at point E.

Which statement is false?

1) $\overparen{A C} \cong \overparen{B D}$
2) $B E=C E$
3) $\triangle A B E \sim \triangle C D E$
4) $\angle B \cong \angle C$

17 When the transformation $T_{2,-1}$ is performed on point A, its image is point $A^{\prime}(-3,4)$. What are the coordinates of A ?

1) $(5,-5)$
2) $(-5,5)$
3) $(-1,3)$
4) $(-6,-4)$

18 If the sum of the interior angles of a polygon is 1440°, then the polygon must be

1) an octagon
2) a decagon
3) a hexagon
4) a nonagon

19 In $\triangle A B C$ shown below, medians $\overline{A D}, \overline{B E}$, and $\overline{C F}$ intersect at point R.

If $C R=24$ and $R F=2 x-6$, what is the value of x ?

1) 9
2) 12
3) 15
4) 27

20 Which equation represents a line that passes through the point $(-2,6)$ and is parallel to the line whose equation is $3 x-4 y=6$?

1) $3 x+4 y=18$
2) $4 x+3 y=10$
3) $-3 x+4 y=30$
4) $-4 x+3 y=26$

21 The bases of a right prism are triangles in which $\triangle M N P \cong \triangle R S T$. If $M P=9, M R=18$, and $M N=12$, what is the length of $\overline{N S}$?

1) 9
2) 12
3) 15
4) 18

22 Triangle $A B C$ has the coordinates $A(3,0), B(3,8)$, and $C(6,6)$. If $\triangle A B C$ is reflected over the line $y=x$, which statement is true about the image of $\triangle A B C$?

1) One point remains fixed.
2) The size of the triangle changes.
3) The orientation does not change.
4) One side of $\triangle A B C$ is parallel to the line $y=x$.

23 A right circular cone has a diameter of $10 \sqrt{2}$ and a height of 12 . What is the volume of the cone in terms of π ?

1) 200π
2) 600π
3) 800π
4) 2400π

24 Which statement is not always true when
$\triangle A B C \cong \triangle X Y Z$.

1) $\overline{B C} \cong \overline{Y Z}$
2) $\overline{C A} \cong \overline{X Y}$
3) $\angle C A B \cong \angle Z X Y$
4) $\angle B C A \cong \angle Y Z X$

25 If two sides of a triangle have lengths of $\frac{1}{4}$ and $\frac{1}{5}$, which fraction can not be the length of the third side?

1) $\frac{1}{9}$
2) $\frac{1}{8}$
3) $\frac{1}{3}$
4) $\frac{1}{2}$

26 In the diagram below of $\triangle A B C, \overline{C D A}, \overline{C E B}$, $\overline{D E} \| \overline{A B}, D E=4, A B=10, C D=x$, and $D A=x+3$.

What is the value of x ?

1) 0.5
2) 2
3) 5.5
4) 6

27 Given: $\overline{A E}$ bisects $\overline{B D}$ at C $\overline{A B}$ and $\overline{D E}$ are drawn $\angle A B C \cong \angle E D C$

Which statement is needed to prove
$\triangle A B C \cong \triangle E D C$ using ASA?

1) $\angle A B C$ and $\angle E D C$ are right angles.
2) $\overline{B D}$ bisects $\overline{A E}$ at C.
3) $\angle B C A \cong \angle D C E$
4) $\angle D E C \cong \angle B A C$

28 In the construction shown below, $\overline{C D}$ is drawn.

In $\triangle A B C, \overline{C D}$ is the

1) perpendicular bisector of side $\overline{A B}$
2) median to side $\overline{A B}$
3) altitude to side $\overline{A B}$
4) bisector of $\angle A C B$

29 The sides of a triangle measure 7,4 , and 9 . If the longest side of a similar triangle measures 36 , determine and state the length of the shortest side of this triangle.

30 Triangle $A B C$ has coordinates $A(6,-4), B(0,2)$, and $C(6,2)$. On the set of axes below, graph and label $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a dilation of $\frac{1}{2}$.

31 In parallelogram $R S T U, \mathrm{~m} \angle R=5 x-2$ and $\mathrm{m} \angle S=3 x+10$. Determine and state the value of x.

32 Determine and state the length of a line segment whose endpoints are $(6,4)$ and $(-9,-4)$.

33 The base of a right pentagonal prism has an area of 20 square inches. If the prism has an altitude of 8 inches, determine and state the volume of the prism, in cubic inches.

34 Using a compass and a straightedge, construct the bisector of $\angle C D E$. [Leave all construction marks.]

35 The coordinates of $\triangle A B C$, shown on the graph below, are $A(2,5), B(5,7)$, and $C(4,1)$. Graph and label $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after it is reflected over the y-axis. Graph and label $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the image of $\triangle A^{\prime} B^{\prime} C^{\prime}$ after it is reflected over the x-axis. State a single transformation that will map $\triangle A B C$ onto $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.

36 On the set of axes below, solve the following system of equations graphically and state the coordinates of all points in the solution.

$$
y=x^{2}+4 x+2
$$

$$
y-2 x=5
$$

37 Given: Triangle $R S T$ has coordinates $R(-1,7)$, $S(3,-1)$, and $T(9,2)$
Prove: $\triangle R S T$ is a right triangle
[The use of the set of axes below is optional.]

38 In right triangle $F G H$ shown below, $\mathrm{m} \angle G H F=90$, altitude $\overline{H J}$ is drawn to $\overline{F G}, F J=16$, and $H G=15$.

Determine and state the length of $\overline{J G}$. Determine and state the length of $\overline{H J}$. [Only algebraic solutions can receive full credit.]

0116ge
Answer Section
1 ANS: $2 \quad$ PTS: 2
TOP: Equations of Circles
2 ANS: 2
PTS: 2
TOP: Arcs Determined by Angles
REF: 011602ge
STA: G.G. 51
3 ANS: 3
$6 x+4=2(7 x-6) \quad U S=6(2)+4=16$
$6 x+4=14 x-12$
$16=8 x$

$$
x=2
$$

PTS: 2
4 ANS: 4
REF: 011603ge
TOP: Locus
5 ANS: 1
PTS: 2
STA: G.G. 39
REF: 011604ge
TOP: Special Parallelograms
STA: G.G. 23

TOP: Converse and Biconditional
6 ANS: 2
$2304 \pi=4 \pi r^{2}$

$$
576=r^{2}
$$

$$
24=r
$$

PTS: 2
REF: 011606ge
7 ANS: 4
PTS: 2
STA: G.G. 16
TOP: Angle Side Relationship
8 ANS: 3
$\frac{x+7+3 x+11}{2}=25$

$$
\begin{aligned}
4 x+18 & =50 \\
4 x & =32 \\
x & =8
\end{aligned}
$$

PTS: 2
9 ANS: 2
TOP: Locus
10 ANS: 3
$m=\frac{-A}{B}=\frac{-2}{3} m_{\perp}=\frac{3}{2}$
PTS: 2
REF: 011610ge
REF: 011608ge
PTS: 2

STA: G.G. 40
REF: 011609ge

STA: G.G. 62

TOP: Trapezoids
STA: G.G. 22

REF: 011607ge STA: G.G. 34

11 ANS: 1

PTS: 2
12 ANS: 3
TOP: Parallel Lines and Transversals
13 ANS: 4 PTS: 2
TOP: Parallel and Perpendicular Lines
14 ANS: $1 \quad$ PTS: 2
TOP: Graphing Circles
15 ANS: 3
$2 x+x+30=5 x-50$
$80=2 x$

$$
x=40
$$

PTS: 2
16 ANS: 2
REF: 011615ge
TOP: Chords and Secants
17 ANS: 2
PTS: 2
TOP: Translations
18 ANS: 2
$(n-2) 180=1440$

$$
\begin{aligned}
n-2 & =8 \\
n & =10
\end{aligned}
$$

PTS: 2
REF: 011618ge STA: G.G. 36
19 ANS: 1
$2(2 x-6)=24$

$$
\begin{aligned}
2 x-6 & =12 \\
2 x & =18 \\
x & =9
\end{aligned}
$$

PTS: 2
REF: 011619ge
STA: G.G. 43

TOP: Midsegments
STA: G.G. 35
REF: 011613ge STA: G.G. 63
REF: 011614ge STA: G.G. 74

STA: G.G. 32
REF: 011616ge
REF: 011617ge STA: G.G. 54

TOP: Exterior Angle Theorem
STA: G.G. 52
,
TOP: Centroid

20 ANS: 3

$$
\begin{array}{rlrl}
m=\frac{-A}{B}=\frac{-3}{-4}=\frac{3}{4} \quad 6 & =\frac{3}{4}(-2)+b & y & =\frac{3}{4} x+\frac{15}{2} \\
\frac{12}{2} & =\frac{-3}{2}+b & 4 y & =3 x+30 \\
\frac{15}{2} & =b & -3 x+4 y & =30
\end{array}
$$

PTS: 2
21 ANS: 4
TOP: Solids
22 ANS: 1
$C(6,6)$ remains fixed after the reflection.
PTS: 2
REF: 011622ge
STA: G.G. 55
ANS: 1
$V=\frac{1}{3} \pi \cdot(5 \sqrt{2})^{2} \cdot 12=200 \pi$
PTS: 2
24 ANS: 2
TOP: Triangle Congruency
25 ANS: 4
$\frac{5}{20}-\frac{4}{20}=\frac{1}{20} \quad \frac{1}{20}<s<\frac{9}{20} \quad \frac{1}{2}>\frac{9}{20}$
$\frac{5}{20}+\frac{4}{20}=\frac{9}{20}$
PTS: 2
REF: 011625ge
STA: G.G. 33
TOP: Triangle Inequality Theorem
26 ANS: 4
$\frac{x}{4}=\frac{x+x+3}{10}$
$10 x=8 x+12$
$2 x=12$
$x=6$
PTS: 2
27 ANS: 3
REF: 011626ge
PTS: 2
TOP: Triangle Congruency
28 ANS: $2 \quad$ PTS: 2
TOP: Constructions

REF: 011620ge
PTS: 2
STA: G.G. 65
REF: 011621ge

TOP: Parallel and Perpendicular Lines
STA: G.G. 10

TOP: Properties of Transformations

STA: G.G. 15
REF: 011624ge
TOP: Volume and Lateral Area
STA: G.G. 29

29 ANS:
$\frac{9}{36}=\frac{4}{x}$
$9 x=144$
$x=16$
PTS: 2
KEY: basic
30 ANS:

PTS: 2
REF: 011630ge STA: G.G. 58
TOP: Dilations
31 ANS:

$$
\begin{aligned}
5 x-2+3 x+10 & =180 \\
8 x+8 & =180 \\
8 x & =172 \\
x & =21.5
\end{aligned}
$$

PTS: 4
REF: 011631ge
STA: G.G. 38
TOP: Parallelograms
32 ANS:
$\sqrt{(6--9)^{2}+(4--4)^{2}}=\sqrt{225+64}=\sqrt{289}=17$
PTS: 2
REF: 011632ge
STA: G.G. 67
TOP: Distance
33 ANS:
$V=20 \times 8=160$
PTS: 2
REF: 011633ge
STA: G.G. 12
TOP: Volume

34 ANS:

PTS: 2
REF: 011634ge
ANS:

PTS: 4
KEY: grids
36

PTS: 4
REF: 011636ge
STA: G.G. 70
TOP: Quadratic-Linear Systems

37 ANS:

PTS: 4 REF: 011638ge STA: G.G. 69 TOP: Triangles in the Coordinate Plane
38 ANS:

$$
\begin{aligned}
& x(x+16)=15^{2} \quad y^{2}=16 \cdot 9 \\
& x^{2}+16 x-225=0 \quad y^{2}=144 \\
& (x+25)(x-9)=0 \quad y=12 \\
& x=9
\end{aligned}
$$

PTS: 6 REF: 011638ge STA: G.G. 47 TOP: Similarity
KEY: leg

