Geometry Regents Exam 0116 www.jmap.org

0116ge

- 1 What is the equation of a circle with its center at (5,-2) and a radius of 3?
 - 1) $(x-5)^2 + (y+2)^2 = 3$
 - 2) $(x-5)^2 + (y+2)^2 = 9$
 - 3) $(x+5)^2 + (y-2)^2 = 3$
 - 4) $(x+5)^2 + (y-2)^2 = 9$
- 2 In the diagram below, $\angle ABC$ is inscribed in circle *O*.

The ratio of the measure of $\angle ABC$ to the measure of \widehat{AC} is

- 1) 1:1
- 2) 1:2
- 3) 1:3
- 4) 1:4
- 3 In the diagram below of rectangle *RSTU*, diagonals \overline{RT} and \overline{SU} intersect at *O*.

If RT = 6x + 4 and SO = 7x - 6, what is the length of \overline{US} ?

- 1) 8
- 2) 2
- 3) 16
- 4) 32

- 4 How many points are 3 units from the origin and also equidistant from both the *x*-axis and *y*-axis?
 - 1) 1
 - 2) 2
 - 3) 0 4) 4
 - 4) 4
- 5 The converse of the statement "If a triangle has one right angle, the triangle has two acute angles" is
 - 1) If a triangle has two acute angles, the triangle has one right angle.
 - 2) If a triangle has one right angle, the triangle does not have two acute angles.
 - 3) If a triangle does not have one right angle, the triangle does not have two acute angles.
 - 4) If a triangle does not have two acute angles, the triangle does not have one right angle.
- 6 The surface area of a sphere is 2304π square inches. The length of a radius of the sphere, in inches, is
 - 1) 12
 - 2) 24
 - 3) 288
 - 4) 576
- 7 As shown in the diagram below of $\triangle ABC$, BC is extended through D, m $\angle A = 70$, and m $\angle ACD = 115$.

Which statement is true?

- 1) AC > AB
- 2) AB > BC
- 3) BC < AC
- 4) AC < AB

8 In trapezoid *LMNO* below, median \overline{PQ} is drawn.

If LM = x + 7, ON = 3x + 11, and PQ = 25, what is the value of *x*?

- 1.75 1)
- 2) 3.5
- 3) 8
- 4) 17
- Points A and B are on line ℓ . How many points are 9 3 units from line ℓ and also equidistant from A and *B*?
 - 1) 1
 - 2) 2
 - 3 3)
 - 4) 4
- 10 The lines whose equations are 2x + 3y = 4 and y = mx + 6 will be perpendicular when m is
 - $-\frac{3}{2}$ $-\frac{2}{3}$ $\frac{3}{2}$ $\frac{2}{3}$ 1) 2) 3)

 - 4)

11 As shown in the diagram below, M, R, and T are midpoints of the sides of $\triangle ABC$.

If AB = 18, AC = 14, and BC = 10, what is the perimeter of quadrilateral ACRM?

- 1) 35
- 2) 32
- 24 3)
- 4) 21
- 12 In the diagram below, $\overline{ABC} \parallel \overline{DEFG}$. Transversal BHE and line segment HF are drawn.

If $m \angle HFG = 130$ and $m \angle EHF = 70$, what is $m \angle ABE?$

- 1) 40
- 2) 50
- 3) 60
- 4) 70

13 The graphs of the lines represented by the equations $y = \frac{1}{3}x + 7$ and $y = -\frac{1}{3}x - 2$ are

- 1) parallel
- 2) horizontal
- 3) perpendicular
- 4) intersecting, but not perpendicular

14 Which graph represents a circle whose equation is $(x+3)^2 + (y-1)^2 = 4?$

- 15 In $\triangle ABC$, m $\angle CAB = 2x$ and m $\angle ACB = x + 30$. If \overline{AB} is extended through point *B* to point *D*, m $\angle CBD = 5x - 50$. What is the value of *x*? 1) 25
 - $\frac{1}{2}$ $\frac{23}{30}$
 - 3) 40
 - 4) 46

16 In circle O shown below, chord \overline{AB} and diameter \overline{CD} are parallel, and chords \overline{AD} and \overline{BC} intersect at point E.

Which statement is *false*?

- 1) $\widehat{AC} \cong \widehat{BD}$
- 2) BE = CE
- 3) $\triangle ABE \sim \triangle CDE$
- 4) $\angle B \cong \angle C$
- 17 When the transformation $T_{2,-1}$ is performed on point *A*, its image is point *A*'(-3,4). What are the coordinates of *A*?
 - 1) (5,-5)
 - 2) (-5,5)
 - 3) (-1,3)
 - 4) (-6,-4)
- 18 If the sum of the interior angles of a polygon is 1440°, then the polygon must be
 - 1) an octagon
 - 2) a decagon
 - 3) a hexagon
 - 4) a nonagon

19 In $\triangle ABC$ shown below, medians \overline{AD} , \overline{BE} , and \overline{CF} intersect at point *R*.

- If CR = 24 and RF = 2x 6, what is the value of *x*?
- 1) 9
- 2) 12
- 3) 15
- 4) 27
- 20 Which equation represents a line that passes through the point (-2, 6) and is parallel to the line whose equation is 3x - 4y = 6?
 - 1) 3x + 4y = 18
 - $2) \quad 4x + 3y = 10$
 - 3) -3x + 4y = 30
 - $4) \quad -4x + 3y = 26$
- 21 The bases of a right prism are triangles in which $\triangle MNP \cong \triangle RST$. If MP = 9, MR = 18, and MN = 12, what is the length of \overline{NS} ?
 - 1) 9
 - 2) 12
 - 3) 15
 4) 18
- 22 Triangle *ABC* has the coordinates A(3,0), B(3,8), and C(6,6). If $\triangle ABC$ is reflected over the line y = x, which statement is true about the image of
 - $\triangle ABC?$
 - 1) One point remains fixed.
 - 2) The size of the triangle changes.
 - 3) The orientation does not change.
 - 4) One side of $\triangle ABC$ is parallel to the line y = x.

- 23 A right circular cone has a diameter of $10\sqrt{2}$ and a height of 12. What is the volume of the cone in terms of π ?
 - 1) 200π
 - 2) 600π
 - 800π
 - 4) 2400*π*
- 24 Which statement is *not* always true when $\triangle ABC \cong \triangle XYZ$.
 - 1) $\overline{BC} \cong \overline{YZ}$
 - 2) $\overline{CA} \cong \overline{XY}$
 - 3) $\angle CAB \cong \angle ZXY$
 - 4) $\angle BCA \cong \angle YZX$
- 25 If two sides of a triangle have lengths of $\frac{1}{4}$ and $\frac{1}{5}$, which fraction can *not* be the length of the third side?
 - 1) $\frac{1}{9}$ 2) $\frac{1}{8}$ 3) $\frac{1}{3}$ 4) $\frac{1}{2}$

Geometry Regents Exam 0116 www.jmap.org

26 In the diagram below of $\triangle ABC$, \overline{CDA} , \overline{CEB} , $\overline{DE} \parallel \overline{AB}$, DE = 4, AB = 10, CD = x, and DA = x + 3.

What is the value of *x*?

- 1) 0.5
- 2) 2
- 3) 5.5
- 4) 6

27 Given: \overline{AE} bisects \overline{BD} at C \overline{AB} and \overline{DE} are drawn $\angle ABC \cong \angle EDC$

Which statement is needed to prove $\triangle ABC \cong \triangle EDC$ using ASA?

- 1) $\angle ABC$ and $\angle EDC$ are right angles.
- 2) BD bisects AE at C.
- 3) $\angle BCA \cong \angle DCE$
- 4) $\angle DEC \cong \angle BAC$

28 In the construction shown below, \overline{CD} is drawn.

In $\triangle ABC$, \overline{CD} is the

- 1) perpendicular bisector of side AB
- 2) median to side \overline{AB}
- 3) altitude to side \overline{AB}
- 4) bisector of $\angle ACB$
- 29 The sides of a triangle measure 7, 4, and 9. If the longest side of a similar triangle measures 36, determine and state the length of the shortest side of this triangle.

30 Triangle *ABC* has coordinates A(6,-4), B(0,2), and C(6,2). On the set of axes below, graph and label $\Delta A'B'C'$, the image of ΔABC after a dilation of $\frac{1}{2}$.

- 31 In parallelogram *RSTU*, $m \angle R = 5x 2$ and $m \angle S = 3x + 10$. Determine and state the value of *x*.
- 32 Determine and state the length of a line segment whose endpoints are (6,4) and (-9,-4).
- 33 The base of a right pentagonal prism has an area of 20 square inches. If the prism has an altitude of 8 inches, determine and state the volume of the prism, in cubic inches.

34 Using a compass and a straightedge, construct the bisector of $\angle CDE$. [Leave all construction marks.]

35 The coordinates of $\triangle ABC$, shown on the graph below, are A(2,5), B(5,7), and C(4,1). Graph and label $\triangle A'B'C'$, the image of $\triangle ABC$ after it is reflected over the *y*-axis. Graph and label $\triangle A''B''C''$, the image of $\triangle A'B'C'$ after it is reflected over the *x*-axis. State a single transformation that will map $\triangle ABC$ onto $\triangle A''B''C''$.

36 On the set of axes below, solve the following system of equations graphically and state the coordinates of all points in the solution.

37 Given: Triangle *RST* has coordinates R(-1,7), S(3,-1), and T(9,2)Prove: $\triangle RST$ is a right triangle [The use of the set of axes below is optional.]

38 In right triangle *FGH* shown below, $m\angle GHF = 90$, altitude \overline{HJ} is drawn to \overline{FG} , FJ = 16, and HG = 15.

Determine and state the length of \overline{JG} . Determine and state the length of \overline{HJ} . [Only algebraic solutions can receive full credit.]

0116ge Answer Section

1 ANS: 2 PTS: 2 REF: 011601ge STA: G.G.71 TOP: Equations of Circles 2 ANS: 2 PTS: 2 REF: 011602ge STA: G.G.51 TOP: Arcs Determined by Angles KEY: inscribed 3 ANS: 3 6x + 4 = 2(7x - 6) US = 6(2) + 4 = 166x + 4 = 14x - 1216 = 8xx = 2PTS: 2 REF: 011603ge STA: G.G.39 **TOP:** Special Parallelograms 4 ANS: 4 STA: G.G.23 PTS: 2 REF: 011604ge TOP: Locus 5 ANS: 1 PTS: 2 REF: 011605ge STA: G.G.26 TOP: Converse and Biconditional 6 ANS: 2 $2304\pi = 4\pi r^2$ $576 = r^2$ 24 = rPTS: 2 REF: 011606ge STA: G.G.16 TOP: Volume and Surface Area PTS: 2 7 ANS: 4 REF: 011607ge STA: G.G.34 TOP: Angle Side Relationship 8 ANS: 3 $\frac{x+7+3x+11}{2} = 25$ 4x + 18 = 504x = 32x = 8PTS: 2 STA: G.G.40 TOP: Trapezoids REF: 011608ge 9 ANS: 2 PTS: 2 REF: 011609ge STA: G.G.22 TOP: Locus 10 ANS: 3 $m = \frac{-A}{B} = \frac{-2}{3} m_{\perp} = \frac{3}{2}$ PTS: 2 REF: 011610ge STA: G.G.62 TOP: Parallel and Perpendicular Lines 11 ANS: 1

20 ANS: 3 $m = \frac{-A}{B} = \frac{-3}{-4} = \frac{3}{4} \quad 6 = \frac{3}{4}(-2) + b \qquad y = \frac{3}{4}x + \frac{15}{2}$ $\frac{12}{2} = \frac{-3}{2} + b \qquad 4y = 3x + 30 \\ -3x + 4y = 30$ $\frac{15}{2} = b$ PTS: 2 REF: 011620ge STA: G.G.65 TOP: Parallel and Perpendicular Lines 21 ANS: 4 PTS: 2 REF: 011621ge STA: G.G.10 **TOP:** Solids 22 ANS: 1 C(6,6) remains fixed after the reflection. PTS: 2 REF: 011622ge STA: G.G.55 **TOP:** Properties of Transformations 23 ANS: 1 $V = \frac{1}{3}\pi \cdot \left(5\sqrt{2}\right)^2 \cdot 12 = 200\pi$ PTS: 2 STA: G.G.15 REF: 011623ge TOP: Volume and Lateral Area 24 ANS: 2 PTS: 2 REF: 011624ge STA: G.G.29 TOP: Triangle Congruency 25 ANS: 4 $\frac{5}{20} - \frac{4}{20} = \frac{1}{20} \frac{1}{20} < s < \frac{9}{20} \frac{1}{2} > \frac{9}{20}$ $\frac{5}{20} + \frac{4}{20} = \frac{9}{20}$ PTS: 2 REF: 011625ge STA: G.G.33 TOP: Triangle Inequality Theorem 26 ANS: 4 $\frac{x}{4} = \frac{x+x+3}{10}$ 10x = 8x + 122x = 12x = 6STA: G.G.46 PTS: 2 REF: 011626ge TOP: Side Splitter Theorem 27 ANS: 3 STA: G.G.28 PTS: 2 REF: 011627ge TOP: Triangle Congruency 28 ANS: 2 PTS: 2 REF: 011628ge STA: G.G.18 **TOP:** Constructions

29 ANS: $\frac{9}{36} = \frac{4}{x}$ 9x = 144 x = 16

PTS: 2	REF: 011629ge	STA: G.G.45	TOP: Similarity
KEY: basic	-		

30 ANS:

STA: G.G.58 **TOP:** Dilations PTS: 2 REF: 011630ge 31 ANS: 5x - 2 + 3x + 10 = 1808x + 8 = 1808x = 172*x* = 21.5 REF: 011631ge STA: G.G.38 PTS: 4 TOP: Parallelograms 32 ANS: $\sqrt{(6--9)^2 + (4--4)^2} = \sqrt{225+64} = \sqrt{289} = 17$ PTS: 2 REF: 011632ge STA: G.G.67 TOP: Distance 33 ANS: $V = 20 \times 8 = 160$ PTS: 2 REF: 011633ge STA: G.G.12 TOP: Volume

ID: A

REF: 011634ge S

35 ANS:

STA: G.G.17

TOP: Constructions

PTS: 4

REF: 011636ge

STA: G.G.70

TOP: Quadratic-Linear Systems

37 ANS:

PTS: 4	REF: 011638ge	STA: G.G.69	TOP: Triangles in the Coor	dinate Plane
38 ANS:				
x(x+16) =	$15^2 y^2 = 16 \cdot 9$			
$x^2 + 16x - 225 =$	$0 \qquad y^2 = 144$			
(x+25)(x-9) =	0 y = 12			
x = 1	9			
PTS: 6 KEY: leg	REF: 011638ge	STA: G.G.47	TOP: Similarity	