0610ge

1 In the diagram below of circle O,
chord $\overline{A B} \|$ chord $\overline{C D}$, and chord $\overline{C D} \|$ chord $\overline{E F}$.

Which statement must be true?

1) $\overparen{C E} \cong \overparen{D F}$
2) $\overparen{A C} \cong \overparen{D F}$
3) $\overparen{A C} \cong \overparen{C E}$
4) $\overparen{E F} \cong \overparen{C D}$

2 What is the negation of the statement "I am not going to eat ice cream"?

1) I like ice cream.
2) I am going to eat ice cream.
3) If I eat ice cream, then I like ice cream.
4) If I don't like ice cream, then I don't eat ice cream.

3 The diagram below shows a right pentagonal prism.

Which statement is always true?

1) $\overline{B C} \| \overline{E D}$
2) $\overline{F G} \| \overline{C D}$
3) $\overline{F J} \| \overline{I H}$
4) $\overline{G B} \| \overline{H C}$

4 In isosceles triangle $A B C, A B=B C$. Which statement will always be true?

1) $\mathrm{m} \angle B=\mathrm{m} \angle A$
2) $\mathrm{m} \angle A>\mathrm{m} \angle B$
3) $\mathrm{m} \angle A=\mathrm{m} \angle C$
4) $\mathrm{m} \angle C<\mathrm{m} \angle B$

5 The rectangle $A B C D$ shown in the diagram below will be reflected across the x-axis.

What will not be preserved?

1) slope of $\overline{A B}$
2) parallelism of $\overline{A B}$ and $\overline{C D}$
3) length of $\overline{A B}$
4) measure of $\angle A$

6 A right circular cylinder has an altitude of 11 feet and a radius of 5 feet. What is the lateral area, in square feet, of the cylinder, to the nearest tenth?

1) 172.7
2) 172.8
3) 345.4
4) 345.6

7 A transversal intersects two lines. Which condition would always make the two lines parallel?

1) Vertical angles are congruent.
2) Alternate interior angles are congruent.
3) Corresponding angles are supplementary.
4) Same-side interior angles are complementary.

8 If the diagonals of a quadrilateral do not bisect each other, then the quadrilateral could be a

1) rectangle
2) rhombus
3) square
4) trapezoid

9 What is the converse of the statement "If Bob does his homework, then George gets candy"?

1) If George gets candy, then Bob does his homework.
2) Bob does his homework if and only if George gets candy.
3) If George does not get candy, then Bob does not do his homework.
4) If Bob does not do his homework, then George does not get candy.

10 In $\triangle P Q R, P Q=8, Q R=12$, and $R P=13$. Which statement about the angles of $\triangle P Q R$ must be true?

1) $\mathrm{m} \angle Q>\mathrm{m} \angle P>\mathrm{m} \angle R$
2) $\mathrm{m} \angle Q>\mathrm{m} \angle R>\mathrm{m} \angle P$
3) $\mathrm{m} \angle R>\mathrm{m} \angle P>\mathrm{m} \angle Q$
4) $\mathrm{m} \angle P>\mathrm{m} \angle R>\mathrm{m} \angle Q$

11 Given: $y=\frac{1}{4} x-3$

$$
y=x^{2}+8 x+12
$$

In which quadrant will the graphs of the given equations intersect?

1) I
2) II
3) III
4) IV

12 Which diagram shows the construction of an equilateral triangle?
1)

2)

3)

13 Line segment $A B$ is tangent to circle O at A. Which type of triangle is always formed when points A, B, and O are connected?

1) right
2) obtuse
3) scalene
4) isosceles

14 What is an equation for the circle shown in the graph below?

1) $x^{2}+y^{2}=2$
2) $x^{2}+y^{2}=4$
3) $x^{2}+y^{2}=8$
4) $x^{2}+y^{2}=16$

15 Which transformation can map the letter S onto itself?

1) glide reflection
2) translation
3) line reflection
4) rotation

16 In isosceles trapezoid $A B C D, \overline{A B} \cong \overline{C D}$. If $B C=20, A D=36$, and $A B=17$, what is the length of the altitude of the trapezoid?

1) 10
2) 12
3) 15
4) 16

17 In plane \mathscr{P}, lines m and n intersect at point A. If line k is perpendicular to line m and line n at point A, then line k is

1) contained in plane \mathscr{P}
2) parallel to plane \mathscr{P}
3) perpendicular to plane \mathscr{P}
4) skew to plane \mathscr{P}

18 The diagram below shows $\overline{A B}$ and $\overline{D E}$.

Which transformation will move $\overline{A B}$ onto $\overline{D E}$ such that point D is the image of point A and point E is the image of point B ?

1) $T_{3,-3}$
2) $D \frac{1}{2}$
3) $R_{90^{\circ}}$
4) $r_{y=x}$

19 In the diagram below of circle O, chords $\overline{A E}$ and $\overline{D C}$ intersect at point B, such that $\mathrm{m} \overparen{A C}=36$ and $\mathrm{m} \overparen{D E}=20$.

What is $\mathrm{m} \angle A B C$?

1) 56
2) 36
3) 28
4) 8

20 The diagram below shows the construction of a line through point P perpendicular to line m.

Which statement is demonstrated by this construction?

1) If a line is parallel to a line that is perpendicular to a third line, then the line is also perpendicular to the third line.
2) The set of points equidistant from the endpoints of a line segment is the perpendicular bisector of the segment.
3) Two lines are perpendicular if they are equidistant from a given point.
4) Two lines are perpendicular if they intersect to form a vertical line.

21 What is the length, to the nearest tenth, of the line segment joining the points $(-4,2)$ and $(146,52)$?

1) 141.4
2) 150.5
3) 151.9
4) 158.1

22 What is the slope of a line perpendicular to the line whose equation is $y=3 x+4$?

1) $\frac{1}{3}$
2) $-\frac{1}{3}$
3) 3
4) -3

23 In the diagram below of circle O, secant $\overline{A B}$ intersects circle O at D, secant $\overline{A O C}$ intersects circle O at $E, A E=4, A B=12$, and $D B=6$.

(Not drawn to scale)
What is the length of $\overline{O C}$?

1) 4.5
2) 7
3) 9
4) 14

24 The diagram below shows a pennant in the shape of an isosceles triangle. The equal sides each measure 13 , the altitude is $x+7$, and the base is $2 x$.

What is the length of the base?

1) 5
2) 10
3) 12
4) 24

25 In the diagram below of $\triangle A B C, \overline{C D}$ is the bisector of $\angle B C A, \overline{A E}$ is the bisector of $\angle C A B$, and $\overline{B G}$ is drawn.

Which statement must be true?

1) $D G=E G$
2) $A G=B G$
3) $\angle A E B \cong \angle A E C$
4) $\angle D B G \cong \angle E B G$

26 In the diagram below of circle O, chords $\overline{A D}$ and $\overline{B C}$ intersect at E.

Which relationship must be true?

1) $\triangle C A E \cong \triangle D B E$
2) $\triangle A E C \sim \triangle B E D$
3) $\angle A C B \cong \angle C B D$
4) $\overparen{C A} \cong \overparen{D B}$

27 Two lines are represented by the equations
$-\frac{1}{2} y=6 x+10$ and $y=m x$. For which value of m will the lines be parallel?

1) -12
2) -3
3) 3
4) 12

28 The coordinates of the vertices of parallelogram $A B C D$ are $A(-3,2), B(-2,-1), C(4,1)$, and $D(3,4)$. The slopes of which line segments could be calculated to show that $A B C D$ is a rectangle?

1) $\overline{A B}$ and $\overline{D C}$
2) $\overline{A B}$ and $\overline{B C}$
3) $\overline{A D}$ and $\overline{B C}$
4) $\overline{A C}$ and $\overline{B D}$

29 Tim is going to paint a wooden sphere that has a diameter of 12 inches. Find the surface area of the sphere, to the nearest square inch.

30 In the diagram below of $\triangle A B C, \overline{D E}$ is a midsegment of $\triangle A B C, D E=7, A B=10$, and $B C=13$. Find the perimeter of $\triangle A B C$.

31 In right $\triangle D E F, \mathrm{~m} \angle D=90$ and $\mathrm{m} \angle F$ is 12 degrees less than twice $\mathrm{m} \angle E$. Find $\mathrm{m} \angle E$.

32 Triangle $X Y Z$, shown in the diagram below, is reflected over the line $x=2$. State the coordinates of $\Delta X^{\prime} Y^{\prime} Z^{\prime}$, the image of $\Delta X Y Z$.

33 Two lines, $\overleftrightarrow{A B}$ and $\overleftrightarrow{C R D}$, are parallel and 10 inches apart. Sketch the locus of all points that are equidistant from $\overleftrightarrow{A B}$ and $\overleftrightarrow{C R D}$ and 7 inches from point R. Label with an \mathbf{X} each point that satisfies both conditions.

34 The base of a pyramid is a rectangle with a width of 6 cm and a length of 8 cm . Find, in centimeters, the height of the pyramid if the volume is $288 \mathrm{~cm}^{3}$.

35 Given: Quadrilateral $A B C D$ with $\overline{A B} \cong \overline{C D}$, $\overline{A D} \cong \overline{B C}$, and diagonal $\overline{B D}$ is drawn Prove: $\angle B D C \cong \angle A B D$

36 Find an equation of the line passing through the point $(6,5)$ and perpendicular to the line whose equation is $2 y+3 x=6$.

37 Write an equation of the circle whose diameter $\overline{A B}$ has endpoints $A(-4,2)$ and $B(4,-4)$. [The use of the grid below is optional.]

38 In the diagram below, quadrilateral $S T A R$ is a rhombus with diagonals $\overline{S A}$ and $\overline{T R}$ intersecting at E. $S T=3 x+30, S R=8 x-5, S E=3 z, T E=5 z+5$, $A E=4 z-8, \mathrm{~m} \angle R T A=5 y-2$, and $\mathrm{m} \angle T A S=9 y+8$. Find $S R, R T$, and $\mathrm{m} \angle T A S$.

0610ge

Answer Section

1 ANS: 1
Parallel lines intercept congruent arcs.

PTS: 2	REF: 061006 ge	STA: G.G. 14	TOP: Volume and Lateral Area	
ANS: 2	PTS: 2	REF: 061007 ge	STA: G.G. 35	
TOP: Parallel Lines and Transversals				
ANS: 4	PTS: 2	REF: 061008 ge	STA: G.G. 40	
TOP: Trapezoids				
ANS: 1	PTS: 2	REF: 061009 ge	STA: G.G. 26	
TOP: Converse				
ANS: 1	PTS: 2	REF: 061010 ge	STA: G.G. 34	
TOP: Angle Side Relationship				

11 ANS: 3

$\begin{array}{lllll}\text { PTS: } 2 & \text { REF: } 061011 \text { ge } & \text { STA: G.G. } 70 & \text { TOP: Quadratic-Linear Systems } \\ \text { ANS: } 1 & \text { PTS: } 2 & \text { REF: 061012ge } & \text { STA: G.G. } 20 \\ \text { TOP: Constructions } & & & & \\ \text { ANS: } 1 & \text { PTS: } 2 & \text { REF: 061013ge } & \text { STA: G.G. } 50 \\ \text { TOP: Tangents } & \text { KEY: point of tangency } & & & \\ \text { ANS: } 4\end{array}$
14 ANS: 4
The radius is 4. $r^{2}=16$.
PTS: 2
REF: 061014ge
STA: G.G. 72
15 ANS: 4
PTS: 2
REF: 061015ge
TOP: Equations of Circles
STA: G.G. 56

16 ANS: 3

PTS: 2 REF: 061016ge STA: G.G. 40 TOP: Trapezoids
17 ANS: 3
TOP: Planes
PTS: 2
REF: 061017ge
STA: G.G. 1

18 ANS: 4 PTS: 2 REF: 061018ge STA: G.G. 56
TOP: Identifying Transformations
19 ANS: 3
$\frac{36+20}{2}=28$

PTS: 2
REF: 061019ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inside circle
20 ANS: $2 \quad$ PTS: 2
REF: 061020ge
STA: G.G. 19
TOP: Constructions
21 ANS: 4
$d=\sqrt{(146-(-4))^{2}+(52-2)^{2}}=\sqrt{25,000} \approx 158.1$

PTS: 2
REF: 061021ge
STA: G.G. 67
REF: 061022ge
TOP: Distance
22 ANS: 2
PTS: 2
STA: G.G. 62
TOP: Parallel and Perpendicular Lines
23 ANS: 2

$$
\begin{aligned}
(d+4) 4 & =12(6) \\
4 d+16 & =72 \\
d & =14 \\
r & =7
\end{aligned}
$$

PTS: 2
REF: 061023ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: two secants

24 ANS: 2

$$
\begin{aligned}
x^{2}+(x+7)^{2} & =13^{2} \\
x^{2}+x^{2}+7 x+7 x+49 & =169 \\
2 x^{2}+14 x-120 & =0 \\
x^{2}+7 x-60 & =0 \\
(x+12)(x-5) & =0 \\
x & =5 \\
2 x & =10
\end{aligned}
$$

PTS: 2 REF: 061024ge STA: G.G. 48 TOP: Pythagorean Theorem
25 ANS: 4
$\overline{B G}$ is also an angle bisector since it intersects the concurrence of $\overline{C D}$ and $\overline{A E}$
PTS: 2 REF: 061025ge STA: G.G. 21
KEY: Centroid, Orthocenter, Incenter and Circumcenter
26
ANS: 2

PTS: 2
REF: 061026ge
STA: G.G. 51 TOP: Arcs Determined by Angles
KEY: inscribed
27
ANS: 1
$-2\left(-\frac{1}{2} y=6 x+10\right)$

$$
y=-12 x-20
$$

PTS: 2 REF: 061027ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
28 ANS: 2
Adjacent sides of a rectangle are perpendicular and have opposite and reciprocal slopes.
PTS: 2 REF: 061028ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane
29 ANS:
452. $S A=4 \pi r^{2}=4 \pi \cdot 6^{2}=144 \pi \approx 452$

PTS: 2
REF: 061029ge
STA: G.G. 16
TOP: Volume and Surface Area

30 ANS:
37. Since $\overline{D E}$ is a midsegment, $A C=14.10+13+14=37$

PTS: 2 REF: 061030ge STA: G.G. 42 TOP: Midsegments
31 ANS:
34. $2 x-12+x+90=180$

$$
\begin{aligned}
3 x+78 & =90 \\
3 x & =102 \\
x & =34
\end{aligned}
$$

PTS: 2
REF: 061031ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles
32 ANS:

PTS: 2
REF: 061032ge
STA: G.G. 54
KEY: grids
33 ANS:

PTS: 2
REF: 061033ge
STA: G.G. 22
TOP: Locus

34 ANS:
18. $V=\frac{1}{3} B h=\frac{1}{3} l w h$

$$
\begin{aligned}
288 & =\frac{1}{3} \cdot 8 \cdot 6 \cdot h \\
288 & =16 h \\
18 & =h
\end{aligned}
$$

PTS: 2
REF: 061034ge
STA: G.G. 13 TOP: Volume
35 ANS:
$\overline{B D} \cong \overline{D B}$ (Reflexive Property); $\triangle A B D \cong \triangle C D B(\mathrm{SSS}) ; \angle B D C \cong \angle A B D$ (CPCTC).

PTS: 4 REF: 061035ge STA: G.G. 27 TOP: Quadrilateral Proofs
ANS:
$y=\frac{2}{3} x+1.2 y+3 x=6 \quad . y=m x+b$

$$
2 y=-3 x+6 \quad 5=\frac{2}{3}(6)+b
$$

$$
y=-\frac{3}{2} x+3 \quad 5=4+b
$$

$$
m=-\frac{3}{2} \quad 1=b
$$

$$
m_{\perp}=\frac{2}{3} \quad y=\frac{2}{3} x+1
$$

PTS: 4 REF: 061036ge STA: G.G. 64 TOP: Parallel and Perpendicular Lines
Midpoint: $\left(\frac{-4+4}{2}, \frac{2+(-4)}{2}\right)=(0,-1)$. Distance: $d=\sqrt{(-4-4)^{2}+(2-(-4))^{2}}=\sqrt{100}=10$

$$
\begin{aligned}
r & =5 \\
r^{2} & =25
\end{aligned}
$$

$x^{2}+(y+1)^{2}=25$
PTS: 4
REF: 061037ge
STA: G.G. 71
TOP: Equations of Circles

38 ANS:

$$
\begin{aligned}
& 8 x-5=3 x+30.4 z-8=3 z .9 y+8+5 y-2=90 . \\
& 5 x=35 \quad z=8 \quad 14 y+6=90 \\
& x=7 \\
& \begin{aligned}
14 y & =84 \\
y & =6
\end{aligned}
\end{aligned}
$$

PTS: 6
REF: 061038ge STA: G.G. 39
TOP: Special Parallelograms

