0610ge

1 In the diagram below of circle O, chord \overline{AB} || chord \overline{CD} , and chord \overline{CD} || chord \overline{EF} .

Which statement must be true?

- 1) $\widehat{CE} \cong \widehat{DF}$
- 2) $\widehat{AC} \cong \widehat{DF}$
- 3) $\widehat{AC} \cong \widehat{CE}$
- 4) $\widehat{EF} \cong \widehat{CD}$
- 2 What is the negation of the statement "I am not going to eat ice cream"?
 - 1) I like ice cream.
 - 2) I am going to eat ice cream.
 - 3) If I eat ice cream, then I like ice cream.
 - 4) If I don't like ice cream, then I don't eat ice cream.

3 The diagram below shows a right pentagonal prism.

Which statement is always true?

- 1) $\overline{BC} \| \overline{ED}$
- 2) $\overline{FG} \| \overline{CD} \|$
- 3) $\overline{FJ} \parallel \overline{IH}$
- 4) $\overline{GB} \| \overline{HC} \|$
- 4 In isosceles triangle ABC, AB = BC. Which statement will always be true?
 - 1) $m \angle B = m \angle A$
 - 2) $m \angle A > m \angle B$
 - 3) $m \angle A = m \angle C$
 - 4) $m \angle C < m \angle B$

5 The rectangle *ABCD* shown in the diagram below will be reflected across the *x*-axis.

What will not be preserved?

- 1) slope of *AB*
- 2) parallelism of *AB* and *CD*
- 3) length of *AB*
- 4) measure of $\angle A$
- 6 A right circular cylinder has an altitude of 11 feet and a radius of 5 feet. What is the lateral area, in square feet, of the cylinder, to the *nearest tenth*?
 - 1) 172.7
 - 2) 172.8
 - 3) 345.4
 - 4) 345.6
- 7 A transversal intersects two lines. Which condition would always make the two lines parallel?
 - 1) Vertical angles are congruent.
 - 2) Alternate interior angles are congruent.
 - 3) Corresponding angles are supplementary.
 - 4) Same-side interior angles are complementary.

- 8 If the diagonals of a quadrilateral do *not* bisect each other, then the quadrilateral could be a
 - 1) rectangle
 - 2) rhombus
 - 3) square
 - 4) trapezoid
- 9 What is the converse of the statement "If Bob does his homework, then George gets candy"?
 - 1) If George gets candy, then Bob does his homework.
 - 2) Bob does his homework if and only if George gets candy.
 - 3) If George does not get candy, then Bob does not do his homework.
 - 4) If Bob does not do his homework, then George does not get candy.
- 10 In $\triangle PQR$, PQ = 8, QR = 12, and RP = 13. Which statement about the angles of $\triangle PQR$ must be true?
 - 1) $m \angle Q > m \angle P > m \angle R$
 - 2) $m \angle Q > m \angle R > m \angle P$
 - 3) $m \angle R > m \angle P > m \angle Q$
 - 4) $m \angle P > m \angle R > m \angle Q$
- 11 Given: $y = \frac{1}{4}x 3$

 $y = x^2 + 8x + 12$

In which quadrant will the graphs of the given equations intersect?

- 1) I
- 2) II
- 3) III
- 4) IV

12 Which diagram shows the construction of an equilateral triangle?

- 13 Line segment *AB* is tangent to circle *O* at *A*. Which type of triangle is always formed when points *A*, *B*, and *O* are connected?
 - 1) right
 - 2) obtuse
 - 3) scalene
 - 4) isosceles
- 14 What is an equation for the circle shown in the graph below?

- $1) \quad x^2 + y^2 = 2$
- $2) \quad x^2 + y^2 = 4$
- $3) \quad x^2 + y^2 = 8$
- 4) $x^2 + y^2 = 16$
- 15 Which transformation can map the letter **S** onto itself?
 - 1) glide reflection
 - 2) translation
 - 3) line reflection
 - 4) rotation

- 16 In isosceles trapezoid *ABCD*, $\overline{AB} \cong \overline{CD}$. If BC = 20, AD = 36, and AB = 17, what is the length of the altitude of the trapezoid?
 - 1) 10
 - 2) 12
 - 3) 15
 - 4) 16
- 17 In plane \mathcal{P} , lines *m* and *n* intersect at point *A*. If line *k* is perpendicular to line *m* and line *n* at point *A*, then line *k* is
 - 1) contained in plane \mathcal{P}
 - 2) parallel to plane \mathcal{P}
 - 3) perpendicular to plane P
 - 4) skew to plane \mathcal{P}

18 The diagram below shows \overline{AB} and \overline{DE} .

Which transformation will move \overline{AB} onto \overline{DE} such that point *D* is the image of point *A* and point *E* is the image of point *B*?

- 1) $T_{3,-3}$
- 2) $D_{\frac{1}{2}}$
- 3) $R_{90^{\circ}}$
- 4) $r_{y=x}$

19 In the diagram below of circle O, chords \overline{AE} and \overline{DC} intersect at point *B*, such that $\widehat{mAC} = 36$ and $\widehat{mDE} = 20.$

What is $m \angle ABC$?

- 1) 56
- 2) 36
- 3) 28
- 4) 8

20 The diagram below shows the construction of a line through point *P* perpendicular to line *m*.

Which statement is demonstrated by this construction?

- If a line is parallel to a line that is 1) perpendicular to a third line, then the line is also perpendicular to the third line.
- 2) The set of points equidistant from the endpoints of a line segment is the perpendicular bisector of the segment.
- 3) Two lines are perpendicular if they are equidistant from a given point.
- Two lines are perpendicular if they intersect to 4) form a vertical line.
- 21 What is the length, to the *nearest tenth*, of the line segment joining the points (-4, 2) and (146, 52)?
 - 141.4 1)
 - 2) 150.5
 - 3) 151.9
 - 4) 158.1
- 22 What is the slope of a line perpendicular to the line whose equation is y = 3x + 4?
 - $\frac{1}{3}$ 1)
 - $-\frac{1}{3}$ 2)

 - 3) 3 4) -3

23 In the diagram below of circle *O*, secant *AB* intersects circle *O* at *D*, secant \overline{AOC} intersects circle *O* at *E*, AE = 4, AB = 12, and DB = 6.

What is the length of *OC*?

- 1) 4.5
- 2) 7
- 3) 9
- 4) 14
- 24 The diagram below shows a pennant in the shape of an isosceles triangle. The equal sides each measure 13, the altitude is x + 7, and the base is 2x.

What is the length of the base?

- 1) 5
- 2) 10
- 3) 12
- 4) 24

25 In the diagram below of $\triangle ABC$, \overline{CD} is the bisector of $\angle BCA$, \overline{AE} is the bisector of $\angle CAB$, and \overline{BG} is drawn.

Which statement must be true?

- 1) DG = EG
- $2) \quad AG = BG$
- 3) $\angle AEB \cong \angle AEC$
- 4) $\angle DBG \cong \angle EBG$
- 26 In the diagram below of circle *O*, chords *AD* and \overline{BC} intersect at *E*.

Which relationship must be true?

- 1) $\Delta CAE \cong \Delta DBE$
- 2) $\triangle AEC \sim \triangle BED$
- 3) $\angle ACB \cong \angle CBD$
- 4) $\widehat{CA} \cong \widehat{DB}$

27 Two lines are represented by the equations

 $-\frac{1}{2}y = 6x + 10$ and y = mx. For which value of *m* will the lines be parallel? 1) -12

- 2) -3
- $\frac{2}{3}$ 3
- 4) 12
- /
- 28 The coordinates of the vertices of parallelogram *ABCD* are A(-3,2), B(-2,-1), C(4,1), and D(3,4). The slopes of which line segments could be calculated to show that *ABCD* is a rectangle?
 - 1) AB and DC
 - 2) AB and BC
 - 3) \overline{AD} and \overline{BC}
 - 4) \overline{AC} and \overline{BD}
- 29 Tim is going to paint a wooden sphere that has a diameter of 12 inches. Find the surface area of the sphere, to the *nearest square inch*.
- 30 In the diagram below of $\triangle ABC$, \overline{DE} is a midsegment of $\triangle ABC$, DE = 7, AB = 10, and BC = 13. Find the perimeter of $\triangle ABC$.

31 In right ΔDEF , m $\angle D = 90$ and m $\angle F$ is 12 degrees less than twice m $\angle E$. Find m $\angle E$.

32 Triangle *XYZ*, shown in the diagram below, is reflected over the line x = 2. State the coordinates of $\Delta X'Y'Z'$, the image of ΔXYZ .

33 Two lines, \overrightarrow{AB} and \overrightarrow{CRD} , are parallel and 10 inches apart. Sketch the locus of all points that are equidistant from \overrightarrow{AB} and \overrightarrow{CRD} and 7 inches from point *R*. Label with an **X** each point that satisfies both conditions.

- 34 The base of a pyramid is a rectangle with a width of 6 cm and a length of 8 cm. Find, in centimeters, the height of the pyramid if the volume is 288 cm³.
- 35 Given: Quadrilateral *ABCD* with $\overline{AB} \cong \overline{CD}$, $\overline{AD} \cong \overline{BC}$, and diagonal \overline{BD} is drawn Prove: $\angle BDC \cong \angle ABD$
- 36 Find an equation of the line passing through the point (6, 5) and perpendicular to the line whose equation is 2y + 3x = 6.
- 37 Write an equation of the circle whose diameter *AB* has endpoints A(-4, 2) and B(4, -4). [The use of the grid below is optional.]

38 In the diagram below, quadrilateral *STAR* is a rhombus with diagonals \overline{SA} and \overline{TR} intersecting at *E*. ST = 3x + 30, SR = 8x - 5, SE = 3z, TE = 5z + 5, AE = 4z - 8, m $\angle RTA = 5y - 2$, and m $\angle TAS = 9y + 8$. Find *SR*, *RT*, and m $\angle TAS$.

0610ge Answer Section

1	ANS: 1 Parallel lines intercept congruent arcs.								
	·····								
	PTS:	2	REF:	061001ge	STA:	G.G.52	TOP:	Chords	
2	ANS:	2	PTS:	2	REF:	061002ge	STA:	G.G.24	
	TOP:	Negations							
3	ANS:	4	PTS:	2	REF:	061003ge	STA:	G.G.10	
4	TOP:	Solids	DTC	2	DEE	0(1004		0.0.21	
4	ANS:	3 Jacqueles Trie	PIS: nala Th	2	KEF:	061004ge	81A:	G.G.31	
5	IUP.			2	DEE	061005 00	ST V ·	C C 55	
5	TOP	Properties of	г і S. Fransfo	2 ormations	ΚΕΓ.	001003ge	51A.	0.0.33	
6	ANS.								
U	$L = 2\pi$	$2\pi rh = 2\pi \cdot 5 \cdot 11 \approx 345.6$							
	PTS:	2	REF:	061006ge	STA:	G.G.14	TOP:	Volume and Lateral Area	
7	ANS:	2	PTS:	2	REF:	061007ge	STA:	G.G.35	
0	IOP:	UP: Parallel Lines and Transversals							
8	ANS:	4 Tranazaida	P15:	2	KEF:	061008ge	S 1A:	G.G.40	
0	ANG.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	D Τς·	r	DEE	0610000	ST V ·	6626	
7	TOP	Converse	r 15.	2	KEF.	001009ge	SIA.	0.0.20	
10	ANS:	1	PTS:	2	REF:	061010ge	STA:	G.G.34	
	TOP:	OP: Angle Side Relationship							
11	ANS:	ANS: 3							
	PTS:	2	REF:	061011ge	STA:	G.G.70	TOP:	Quadratic-Linear Systems	
12	ANS:	1	PTS:	2	REF:	061012ge	STA:	G.G.20	
	TOP:	Constructions							
13	ANS:	1	PTS:	2	REF:	061013ge	STA:	G.G.50	
	TOP:	Tangents	KEY:	point of tange	ncy				
14	ANS:	4							
	The radius is 4. $r^2 = 16$.								
	PTS:	2	REF:	061014ge	STA:	G.G.72	TOP:	Equations of Circles	
15	ANS:	4	PTS:	2	REF:	061015ge	STA:	G.G.56	
	TOP:	TOP: Identifying Transformations							

KEY: two secants

24 ANS: 2

$$x^{2} + (x + 7)^{2} = 13^{2}$$

$$x^{2} + x^{2} + 7x + 7x + 49 = 169$$

$$2x^{2} + 14x - 120 = 0$$

$$x^{2} + 7x - 60 = 0$$

$$(x + 12)(x - 5) = 0$$

$$x = 5$$

$$2x = 10$$

PTS: 2 REF: 061024ge STA: G.G.48 TOP: Pythagorean Theorem 25 ANS: 4

 \overline{BG} is also an angle bisector since it intersects the concurrence of \overline{CD} and \overline{AE}

PTS: 2 REF: 061025ge STA: G.G.21

KEY: Centroid, Orthocenter, Incenter and Circumcenter

26 ANS: 2

PTS: 2 REF: 061026ge STA: G.G.51 TOP: Arcs Determined by Angles KEY: inscribed 27 ANS: 1

$$-2\left(-\frac{1}{2}y = 6x + 10\right)$$
$$y = -12x - 20$$

PTS: 2 REF: 061027ge STA: G.G.63 TOP: Parallel and Perpendicular Lines 28 ANS: 2

Adjacent sides of a rectangle are perpendicular and have opposite and reciprocal slopes.

PTS: 2 REF: 061028ge STA: G.G.69 TOP: Quadrilaterals in the Coordinate Plane 29 ANS: 452. $SA = 4\pi r^2 = 4\pi \cdot 6^2 = 144\pi \approx 452$ PTS: 2 REF: 061029ge STA: G.G.16 TOP: Volume and Surface Area 30 ANS:

37. Since \overline{DE} is a midsegment, AC = 14. 10 + 13 + 14 = 37

PTS: 2 REF: 061030ge STA: G.G.42 TOP: Midsegments 31 ANS: 34. 2x - 12 + x + 90 = 1803x + 78 = 903x = 102*x* = 34 PTS: 2 REF: 061031ge STA: G.G.30 TOP: Interior and Exterior Angles of Triangles

TOP: Reflections

TOP: Locus

34 ANS:

y

18.
$$V = \frac{1}{3}Bh = \frac{1}{3}lwh$$
$$288 = \frac{1}{3} \cdot 8 \cdot 6 \cdot h$$
$$288 = 16h$$
$$18 = h$$

PTS: 2 REF: 061034ge STA: G.G.13 TOP: Volume 35 ANS:

 $\overline{BD} \cong \overline{DB}$ (Reflexive Property); $\triangle ABD \cong \triangle CDB$ (SSS); $\angle BDC \cong \angle ABD$ (CPCTC).

PTS: 4 REF: 061035ge STA: G.G.27 TOP: Quadrilateral Proofs 36 ANS:

$$= \frac{2}{3}x + 1. \quad 2y + 3x = 6 \qquad . \quad y = mx + b$$

$$2y = -3x + 6 \qquad 5 = \frac{2}{3}(6) + b$$

$$y = -\frac{3}{2}x + 3 \qquad 5 = 4 + b$$

$$m = -\frac{3}{2} \qquad 1 = b$$

$$m_{\perp} = \frac{2}{3} \qquad y = \frac{2}{3}x + 1$$

PTS: 4 REF: 061036ge STA: G.G.64 TOP: Parallel and Perpendicular Lines 37 ANS:

Midpoint:
$$\left(\frac{-4+4}{2}, \frac{2+(-4)}{2}\right) = (0, -1)$$
. Distance: $d = \sqrt{(-4-4)^2 + (2-(-4))^2} = \sqrt{100} = 10$
 $r = 5$
 $r^2 = 25$
 $x^2 + (y+1)^2 = 25$

PTS: 4 REF: 061037ge STA: G.G.71 TOP: Equations of Circles

 $8x - 5 = 3x + 30. \quad 4z - 8 = 3z. \quad 9y + 8 + 5y - 2 = 90.$ $5x = 35 \qquad z = 8 \qquad 14y + 6 = 90$ $x = 7 \qquad 14y = 84$ y = 6

PTS: 6

REF: 061038ge STA: G.G.39

TOP: Special Parallelograms